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SUMMARY 

 The main objective of the topology optimization is to fulfill the objective function 

with the minimum amount of material. This reduces the overall cost of the structure and 

at the same time reduces the assembly, manufacturing and maintenance costs because of 

the reduced number of parts in the final structure. The concept of reliability analysis can 

be incorporated into the deterministic topology optimization method; this incorporated 

scheme is referred to as Reliability-based Topology Optimization (RBTO).  In RBTO, the 

statistical nature of constraints and design problems are defined in the objective function 

and probabilistic constraint. The probabilistic constraint can specify the required 

reliability level of the system.  

 In practical applications, however, finding global optimum in the presence of 

uncertainty is a difficult and computationally intensive task, since for every possible 

design a full stochastic analysis has to be performed for estimating various statistical 

parameters. Efficient methodologies are therefore required for the solution of the 

stochastic part and the optimization part of the design process. 

 This research will explore a reliability-based synthesis method which estimates all 

the statistical parameters and finds the optimum while being less computationally 

intensive. The efficiency of the proposed method is achieved with the combination of 

topology optimization and stochastic approximation which utilizes a sampling technique 

such as Latin Hypercube Sampling (LHS) and metamodeling techniques such as Local 

Regression and Classification using Artificial Neural Networks (ANN). Local regression 

is comparatively less computationally intensive and produces good results in case of low 

probability of failures whereas Classification is particularly useful in cases where the 

reliability of failure has to be estimated with disjoint failure domains. Because 

classification using ANN is comparatively more computationally demanding than Local 

regression, classification is only used when local regression fails to give the desired level 
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of goodness of fit. Nevertheless, classification is an indispensible tool in estimating the 

probability of failure when the failure domain is discontinuous. 

 Representative examples will be demonstrated where the method is used to design 

customized meso-scale truss structures and a macro-scale hydrogen storage tank. The 

final deliverable from this research will be a less computationally intensive and robust 

RBTO procedure that can be used for design of truss structures with variable design 

parameters and force and boundary conditions.  

  

  

 

 

 



 

1 

CHAPTER 1 

INTRODUCTION 

1.1 Mesostructured Materials 

One of the most widespread trends in recent product development has been the copy of 

nature since nature has designed some of the most highly efficient systems for handling 

any condition in its environment. These natural systems utilize materials and structures 

capable of sensing the environment, processing data, responding, and adapting to the 

given condition. For instance, animal bones have been evolutionally optimized to support 

various loading conditions with minimum weight. The internal structure of bone can be 

considered a cellular structure which can be used to strength, stiffen, and even create 

light-weight parts. The pursuit of engineering cellular materials is biologically inspired as 

shown in Figure 1. 1. The key advantages offered by cellular materials are high strength, 

energy absorption characteristics, and improved thermal and acoustic insulation 

properties accompanied by a relatively low mass. However, the use of advanced novel 

materials as primary structural elements is still a rarity, particularly in the industrial 

vehicle arena due to the difficulty with comprehensive understanding of uncertainties in 

system behavior. 

 

 

 

 

 

 

 

Figure 1. 1 Cellular material structures 
(a) Natural  (b) Artificial 
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Mesostructure materials are materials that have a characteristic cell length in the range of 

0.1 to 10 mm. Small truss structures, honeycombs, and foams are examples of 

mesostructures [1]. The concept of mesostructured materials is motivated by the desire to 

put material only where it is needed for a specific application. Additive manufacturing 

processes are capable of fabricating the complex geometries inherent in cellular materials 

[2]. With the advancement of additive manufacturing technologies it is now possible to 

design custom mesostructures which have increased strength and low relative density 

when compared to the already available mesostructure materials [3]. For example 

Seepersad et al. [4] designed the topology of extruded cellular material to find the best 

compromise between heat transfer and part strength in a structural heat transfer 

application.  

1.2 Topology Optimization 

Topology optimization is often referred to as layout optimization or generalized shape 

optimization [5]. Topology optimization operates on a fixed mesh of finite elements and 

defines a design variable, which is associated with each element in the mesh. The stiffest 

structure problem [6] has been posed as a compliance minimization problem for the 

design of truss structures. Developments in the computational analysis of structures and 

components, especially by means of the Finite Element Method (FEM), have made the 

process of designing specialized truss structures using the topology optimization method 

possible. Bendsoe studied optimal shape design as a material distribution problem [7]. 

This method was adapted by various engineering fields for generating topologies for 

compliant mechanisms which have maximum displacement at a desired point [8, 9]. 

Many other applications of topology optimization are considered in the fields of material 

design for designing materials with prescribed macroscopic properties and recently in the 

field of biomechanics. In traditional topology optimization methods, it is assumed that the 
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loading is prescribed and that a given amount of structural material is specified within a 

given 2D or 3D design domain with specified boundary conditions [10].  

 Research in the field of topology optimization of continuum structures began with 

the problem of generating optimal topologies in structural design in order to define the 

stiffest structures, which was explored by Bendsoe and Kikuchi [6]. Their strategy was to 

define the problem with a composite material represented by each element having 

material plus a void (hole) inside (Figure 1. 2).   The building blocks can be rectangular 

in general and also be oriented at a certain angle  to the horizontal as shown in Figure 1. 

3. Here each building block is represented by five design variables namely, W1, W2, L1, 

L2 and . The material properties of each element are then dependent on the size and 

orientation of the void within the element according to a homogenization relationship. A 

sizing optimization is then performed to optimize the size/orientations of the voids of all 

the elements for a given objective function. Elements with large voids (low material 

density) will represent empty cells and the elements with small voids (high material 

density) indicate that material exists and hence that cell is a part of the structure. More 

details of this method can be found in [11]. 

 

 
Figure 1. 2 Material structure as an arrangement of material and void 

Force 

Boundary conditions 

Enlarged subdomain discretized 
into mateial(blue) and voids(white) 
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An alternative but conceptually similar approach is to directly use the material density of 

each element (instead of voids) as the design variable. An empirical formula is required 

in this case instead of using the homogenization formulation. The topology optimization 

results from this formulation are reported to be similar to those obtained from the 

homogenization formulation [12].    

 Bendsoe studied optimal shape design as a material distribution problem [7]. This 

method was adapted by various engineering fields for generating topologies for 

compliant mechanisms that have maximum displacement at a desired point [8, 9]. Many 

other applications of topology optimization are considered in the fields of material design 

for designing materials with prescribed macroscopic properties and recently in the field 

of biomechanics. In traditional topology optimization methods, it is assumed that the 

loading is prescribed and that a given amount of structural material is specified within a 

given 2D or 3D design domain with specified boundary conditions [10].   

 Strang and Kohn [13] recommended the use of composites in structural 

optimizatin problems because the existance/ non-existance of building blocks results in a 

ill-posed minimization problem, where the optimal solution might be difficult to obtain. 

To solve this problem they suggest a “relaxation” of the problem where the material in 

the design domain is modelled as a composite with continously varying density which 

L1 

W1 

L2 

W2 

 

(a) (b) 

Figure 1. 3 Representation of building block with 5 design variables 



 5 

transforms the original problem into one that has a solution. Hence by modeling the 

material as a composite and then using material homogenization techniques to determine 

the composite’s structural properties, a minimization problem is created which can be 

solved by common optimization algorithms.  

 Optimality criteria methods are typically used to solve the minimization problem 

created by this “relaxation”. Specifically, an iterative redesign procedure modifies the 

initial design values until the design satisfies a set of optimality criteria. Even though the 

optimality criteria values are satisfied, there is no guarantee that the design solution is a 

global optimum. It has been shown that an optimal component design’s shape depends 

upon both the initial material density values and the material microstructure model when 

using homogenization-based techniques. 

1.3 Uncertainty in Structural Design 

Uncertainty is a acknowledged phenomenon in the process of structural design. During a 

design optimization process the designer looks for a safe design that has the ability to 

perform according to the design specifications while it is exposed to various 

uncertainties. Traditionally safety factors were used to account for the uncertainties. 

However, use of safety factor does not usually lead to minimum cost designs for a given 

level of safety because different structural members or different failure modes require 

different safety factors. Recently, probabilistic approaches have been used which can 

give a safer design at a certain computational cost. These methods give an alternative to 

the designers who use the traditional safety factor design approach. However, these kind 

of processes would require the statistical parameters for the design at hand which could 

be computationally expensive to obtain. Hence the probabilisic approaches require 

solving an expensive, complex optimization problem that needs robust formulations and 

efficient computational techniques for stable and accelerated convergence.  
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 Probabilistic methods are used in reliability analysis by assuming that the amount 

of raw material available is sufficient to determine the probability density function and 

calculate other statistical inputs. However, in practical applications sufficient raw data 

might not be available due to restrictions in time, human and facility requirements and 

finances. It has been reported in Ref. [14] that probabilistic methods are not appropriate 

in cases where sufficient data is not available. To handle uncertainty with insufficient 

information, possibility-based (fuzzy set) methods have been recently introduced in the 

field of stochastic structural analysis and design optimization [15]. Additionally, 

Dempster- Shafer theory of evidence [16, 17], random set [18], probability bounds [19-

21], imprecise probabilities [22] and convex model [23] are other methods that have been 

used to describe stochastic uncertainty well. All of these methods have a variety of 

mathematical description although all of them are based on interval analysis [24]. 

Although the theory of fuzzy sets was introduced by Zadeh [25], the application of 

interval analysis in structural analysis is very recent. An interval analysis approach 

utilizing the finite element method was introduced by Koyluoglu et al. [26] in order to 

deal with pattern loading and structural uncertainties. Recently, Muhanna and Mullen 

[27-29] formulated the development of interval based methods for fuzziness in 

continuum mechanics. These methods help to incorpporate uncertain loads in static 

structural problems using an interval-based fuzzy finite element in the analysis. 

 In cases when sufficient data is available Reliability based Design Optimization 

(RBDO) can be conducted using probabilistic methods. In case of  RBDO the probability 

density function (PDF) should be known before starting the optimization process. The 

PDF is used to sample points using a Monte Carlo Simulation or Latin Hypercibe 

Sampling Scheme to simulate uncertain data on the design. The different methods for 

PDF estimation can be classified as Parametric, Non-Parametric and Semi-Parametric. 

In Parametric method the PDF is assumed to be of a standard form (gaussing, weibull, 

beta, etc.). The parameters of the assumed PDF can be estimated using Maximum 
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Likelihood estimation (MLE) or Bayesian Estimation. The Non-Parametric methods 

include histogram based methods and the K-nearest neighbor methods [30]. In Semi-

Parametric methods the given density can be modeled as a combination of known 

densities. Mixture of Gaussians (MOG) is a well known method where a data set is 

assumed to come from different gaussian distributions. The parameters for MOG can 

then be estimated either by using gradient descent method or Expectation Maximization 

(EM) algorithm [30]. 

 The behaviour of a structure in structural reliability analysis in probabilistic 

methods is measured by the performance function. The performance function is called the 

limit state function which is typically expressed as the difference between the capacity 

(e.g.,yield strength, displacement, allowable vibration level) and the response of the 

system (e.g., stress, maximum allowable displacement, actual vibration). Reliability 

analysis methods can be broadly classified into two categories- analytical methods and 

simulation methods. While analytical methods are easy to use and are mostly limited to 

single failure modes, the simulation methods can acess complex limit state functions and 

can also handle multiple limit states together. Simulation approaches like Monte Carlo 

Simulation (MCS) or Latin Hypercube Sampling (LHS) are computationally intensive but 

unlike analytical methods which can only handle only linear limit state functions, they 

can handle any kind of limit state functions.  Most real life applications exhibit multiple 

limit state functions and multiple failure modes and most of the cases there is no prior 

information on the nonlinearity of the limit state function. Simulation based methods like 

MCS and LHS are the obvious choices in those scenarios. Since realibiality analysis is an 

iterative process and using crude MCS is computationally expensive, researchers develop 

variants of MCS or other methods like response surface and other function approximation 

techniques that can replace a part of the reliability analysis computational process and 

obviate the need to repeatedly access the expensive computer models viz. FEM in case of 

structural optimization. 
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1.4 Reliability based Design Optimization 

In deterministic design optimization design solutions at the boundary of the design 

constraints are also considered leaving no latitude for variations in the design parameters. 

The resulting deterministic optimal solution is usually associated with a high chance of 

failure due to the influence of uncertainties inherently present during the modeling and 

manufacturing phases of the product and due to uncertainties in the external operating 

conditions of the product. Uncertainties in simulation-based design are inherently present 

and need to be accounted for in the design optimization process. Uncertainties may lead 

to high probability of failure, resulting from large variations in the performance 

characteristics of the system. Optimized deterministic designs determined without 

considering uncertainties can be unreliable and might lead to catastrophic failure of the 

product being designed. Robust design optimization and reliability based design 

optimization are methodologies that address these problems. The goal in robust design is 

to minimize the variations in the performance function. The goal in reliability-based 

design is to minimize the probability of failure. Hence in order to maintain high market 

share it is extremely important that designers consider variations in the design of new 

products and systems. This dissertation specifically focuses on reliability based design 

optimization problems in the context of topology optimization problems for the design of 

optimal truss structures. The goal in Reliability based Design Optimization (RBDO) is to 

minimize the probability of failure of a structural design. While using RBDO the designer 

has to make a tradeoff between making the design more reliable or minimizing cost. 

More reliable structures include more material than the corresponding deterministic 

optimization solution. The first step in RBDO is to characterize the important uncertain 

variables and the failure modes. In most engineering applications, the uncertainty is 

generally characterized using probability theory. Different statistical models can be used 

to describe the probability distribution function of the uncertain variables. While 

designing products with multiple failure modes it is important to justify the safety of the 
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product with respect to each failure mode and also with respect to the overall system 

failure. In a RBDO formulation, the critical failure modes in deterministic optimization 

are replaced with constraints on probabilities of failure corresponding to each of the 

failure driven modes or with a single constraint on the system probability of failure. The 

reliability index, or the probability of failure corresponding to either a failure mode or the 

system, can be computed by performing a probabilistic reliability analysis. Some of the 

techniques used in reliability analysis are the first order reliability method (FORM), 

second order reliability method (SORM), and Monte Carlo simulation (MCS) techniques. 

FORM and SORM are based on the Taylor series expansion and MCS/LHS are 

simulation based methods that can be used alone or a solver substitution can be made 

using an appropriate surrogate modeling technique to reduce the computation. Figure 1. 4 

represents the taxonomy of the different reliability assessment methods that can be used 

to evaluate the probability constraint. The methods within solver substitution can be 

further classified into function approximation based methods or classification based 

methods. Out of the many methods for classification neural networks using a back 

propagation method was used for this research because of their ease of use and 

effectiveness. In case of function approximation, Moving Least Squares local regression 

method was used because of their efficacy in approximating highly nonlinear responses 

and their ability to estimate low probability of failures. 
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Figure 1. 4 Taxonomy of reliability assessment methods 

1.5 Reliability-based Topology Optimization 

 Optimization algorithms traditionally have been solved using a deterministic 

approach where a design solution was obtained for specific force and boundary 

conditions. However, performing probabilistic analysis prior to the early stage of 

fabrication is critical to reduce cost, improve product quality, and provide a better 

understanding of failure mechanisms and sensitivity to process variation. With the high-

powered digital computers, it has become feasible to find numerical solutions to realistic 

problems of large-scale, complex systems involving uncertainties in their behavior. This 

feasibility has sparked an interest in combining traditional optimization methods with 

uncertainty quantification measures. These new optimization techniques, which can 

consider randomness or uncertainty in the data, are known as stochastic programming, 

stochastic optimization, optimization under uncertainty, or reliability-based design 

optimization. These methods ensure robust designs that are insensitive to given 

uncertainties and provide the designer with a guarantee of satisfaction with respect to the 

uncertainties in the objective function, performance constraints, and design variables [31] 
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The use of integrated reliability analysis and topology optimization procedures, such as 

reliability-based topology optimization (RBTO) models as stated by Kharmanda et al. 

[32], yield structures that are more reliable than those produced by deterministic topology 

optimization methods. However, realistic representations of uncertainty and the 

improvement of the computational efficiency are still challenging in the existing methods 

[33, 34]. 

1.6 Discontinous Responses and Disjoint Failure Domains 

The reliability analysis of complex structures is hindered by the implicit nature of the 

limit-state function. For their approximation use has been made of the Response Surface 

Method (RSM) and more recently of Artificial Neural Networks. Both these methods 

come into the broad category of  Regression Approach. 

 
Figure 1. 5 Continuous failure domain example- suitable for regression approach 

 
Figure 1. 5 shows design points in red, which belong to a continuous domain. Hence a 

single function can be used to approximate the failure behavior. Hence a regression-based 

approach is suitable for being used as a surrogate model in this case. 
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 A common problem faced in case of approximation using the regression approach 

is the inability of regression based methods to approximate discontinous functions. A 

simple disjoint failure domain is represented in Figure 1. 6 where the red lines mark the 

boundary between the safe and unsafe regions in the design space. The red design points 

shown in the figure represent the unsafe designs and the green points represent the safe 

designs.  

 

 
Figure 1. 6 Example of a disjoint failure domain limit state 

 

Hence in cases where the failure domains are disjoint regression will not be suitable for 

estimating the failure behaviour of the design. A classification approach can be used in 

those cases for approximating the limit states and estimating the probability of failure. 

1.7 Low Probability of Failures 

In structural realiability analysis the designer would like to minimize the probabilty of 

failure as much as possible. Theoretically the probability value can’t be zero hence a low 

value such as 10-4 or 10-6 is chosen by a majority of  designers as the required probability 

of failure during a design optimization procedure. In order to reduce the computation cost 
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in evaluating the reliability constraint during the optimization procedure a surrogate 

model is used by designers with the data obtained using a suitable experimental design 

procedure. Choi et. al. explored the application of response surface method[35] after 

Latin Hypercube Sampling (LHS) and Local Regression method[36] for the 

approximation of the limit state function during design optimization. 

 1.8 Research Questions and Hypothesis 

The current thesis deals with the development of computationally efficient reliability 

based topology optimization procedure for the design of truss structures for different 

scales and applications in the presence of uncertainty. Traditional reliability based 

methods are not computationally efficient since they have to evaluate the limit state 

function during every iteration of the optimization algorithm. A surrogate modeling 

technique can be used in those cases for reducing the computational requirement of the 

RBTO procedure.  

 In cases where the failure domain is discontinuous a regression-based surrogate 

modeling technique will be invalid for use since regression can only approximate 

continuous domains. Another major concern in Reliability based designs is the need to 

deal with low probability of failures. The surrogate model should be able to estimate low 

values. Due to numerical stability issues many surrogate modeling techniques can’t be 

used for estimating responses whose values range in different orders. 

 The factors discussed above raise the following research questions. Every 

research question is followed by the hypothesis. The following chapters validate these 

hypotheses.  
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Research Question 1 

How can the Reliability based Topology optimization procedure be made 

computationally efficient for the design of truss structures? 

 

Hypothesis: 

The computational requirement of Reliability based Topology Optimization procedure 

can be reduced by approximating the reliability constraint with an appropriate surrogate 

modeling technique. 

 

Research Question 2 

How can the probability of failure be calculated in case of disjoint failure domains and 

low values of probability of failures? 

 

Hypothesis: 

Moving Least squares Local Regression procedure can be used for the efficient 

computation of the probability of failures. This method is efficient in estimating low 

probability of failures. In cases where the failure domain is not continuous a 

classification-based approach using Artificial Neural Networks can be used for 

estimating the probability of failure.  

1.9 Current Research 

The intent of the current research is to explore the synthesis of optimized truss-like 

mesostructured materials when the loading, boundary conditions and geometry vary 

according to assumed statistical properties. In this research, a reliability-based synthesis 

framework to develop risk-minimized cellular structures that satisfy the performance 
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criteria while specific loading, displacement and shape conditions are imposed on them, 

is proposed. This is achieved by utilizing the stochastic local regression [36] procedure 

for approximating the failure behavior when the reliability constraint is linear in nature. 

In cases where the reliability constraints are nonlinear or discontinuous an artificial 

neural network based classification technique is proposed which can be used to 

approximate the failure behavior. Classification based reliability analysis divides the 

failure domain into safe and unsafe regions and evaluates and classifies the data into one 

of the two classifies hence eluding the need to evaluate the response.  

 The proposed algorithms include a simulation based risk estimation model that 

provides feedback to the design process and potentially improves the reliability of the 

mesoscale material structure. Thus, a reliability-based design technique will be integrated 

to mitigate the risk of structural failure via enhancements of conventional topology 

optimization techniques.  

 The following chapters describe important aspects of the algorithm and the 

solution principle for designing truss like material structure under uncertainty which will 

result in the design of more reliable mesostructured materials. 

1.10 Thesis Organization 

The thesis is organized as shown in Table 1. Chapter 1 introduces the concept of 

mesostructured materials and how they can be designed based on concepts from 

structural optimization. It also introduces basic ideas behind Topology Optimization, 

Uncertainty in design optimization and Relibility based Topology Optimization. The rest 

of the thesis introduces the research questions and the approach taken to validate the 

hypothesis for the research questions. 
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Table 1 Organization of the thesis 

Chapter 1 Introduction 

Chapter 2  Reliability-based Topology 
Optimization 

Chapter 3  Efficient Reliability-based 
Topology Optimization 

Chapter 4  Illustrative Examples 

Chapter 5  Conclusion and Future Work 

 
 

 Chapter 2 introduces the concepts of reliability based topology optimization 

procedure. The basic concepts of Monte Carlo Simulation, Latin Hypercube Sampling, 

surrogate models and function approximation are described. Local regression and 

classification schemes are introduced and described in details. A brief description of 

artificial neural networks is also provided in this chapter since they are used for the 

classification procedure in this research. The concept of disjoint failure domains is then 

explained in this chapter with the help of an example. 

 Classification and Local regression are combined into the reliability based 

topology optimization framework in chapter 3. The overall framework that combines the 

efficacy of both Local regression procedure and the classification procedure is 

demonstrated.  

 Illustrative examples, which validate the efficacy of the proposed framework, are 

shown in chapter 4. The framework is also validated using the hydrogen tank design 

example. 

 Chapter 5 summarizes the main points outlined in the thesis along with the 

advantages of the proposed framework. The limitations of the current research are 

discussed along with the suggestions of future work that can improve this research. 
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CHAPTER 2 

RELIABILITY-BASED TOPOLOGY OPTIMIZATION 

With the advances in computer technology and the relative cheaply available 

computational resources, structural optimization has revolutionized the way structures are 

designed.  This phenomenon has led designers to deviate from the traditional design-

analysis-new design method of designing structures to the process of structural design 

through optimization [37].  

2.1 Deterministic Optimization 

2.1.1 Description of an Optimization Problem 

An optimization problem seeks the maximum/minimum of a function  and the 

variable vector  that it depends on. Here  is called the objective 

function and ,  are the variables that determine the objective function and are 

typically called design variables. Any vector X in the  dimensional design space 

represents a single design where  represents the number of design variables in the 

optimization problem. It is important to note that the design variables can be either 

continuous or discrete. For example, a structure might have to be made using truss 

elements for a machine component. If the areas of cross-sections are taken as the design 

variables and trusses with certain cross-sections can only be purchased then the design 

variables should be considered as discrete. Since we can purchase any length of these 

truss elements or cut the purchased truss elements to desired lengths, the lengths can be 

considered as continuous variables. 

 In many of the design scenarios the designer is posed with constraints in terms of 

geometry, performance, safety, cost and manufacturability. Some of these constraints 

might have an equality form. Owing to this the number of independent dimensions in the 
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design space is reduced, from , by the number of equality constraints. Along with this 

the strict inequality constraints reduce the design space to a subset of . 

 In the most general form, an optimization problem can be represented as: 

 

Minimize                (2.1) 

 
Subject to ,               (2.2) 

             ,                   (2.3) 

        ,             (2.4) 

 

where ,  and  are the number of equality constraints, inequality constraints and 

design variables, respectively.  and  are the lower and upper bounds on the design 

variable . The implementation of a simple optimization procedure can be represented as 

shown in   Figure 2. 1 below. 

 

 
  Figure 2. 1 The optimization procedure 

  

If the objective function and all the constraints are linear functions of the design variables 

then the problem is termed linear optimization problem. In a nonlinear optimization 
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problem, either the objective function or at least one of the constraints is nonlinear 

function of the design variables. In general structural optimization problems are non 

linear in nature. Further, design optimization can be classified into size optimization, 

shape optimization and topology optimization. A brief description of each type of 

optimization follows. 

2.1.2 Size Optimization 

In size optimization the domain is fixed and does not change during the optimization 

process. Hence most of the time size optimization is performed in the final stages of the 

product design process [38]. 

 The basic idea behind size optimization is explained next with the help of Figure 

2. 2. The figure shows a structure that can be discretized into six beam elements. For any 

given objective function the design can be optimized for a better performance by altering 

the thickness of the six beam elements. Hence the thicknesses of the beam elements are 

considered as the design variables in this case. An important thing to note here is that 

although the answer from this procedure might be “optimal”, changes to the beam 

element’s shapes and the overall topology could possibly give a better result. 

  

 
Figure 2. 2 Size optimization of beam with six elements 
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2.1.3 Shape Optimization 

 
Shape, or geometrical, optimization is somewhat more complex process. In case of shape 

optimization the topology1 of the design is fixed whereas the shape is not fixed.  The blue 

points shown in Figure 2. 3 can be used as control points to define the shape of the beam. 

The wider shape will mean more material usage in this case. Based on the designer’s 

preference the eight variables can be changed that will define the location of the control 

points and the shape of the overall structure. Similarly, a collection of B-splines or Bezier 

curves [39] can be used for the shape optimization of a cross-sectional shape. Shape 

optimization is generally performed during the initial stages of the design process. In 

general shape optimization can lead to better results than size optimization but again 

changes to a beam’s topology could possibly lead to better results. 

 

 
Figure 2. 3 Shape optimization of beam with eight control points

                                                

 
 
1 Mathematically, two geometrical figures are said to have the same topology if they can be transformed 
from one to another through continuous transformations. Continuous transformations means pulling, 
stretching, twisting, bending or squashing without tearing or gluing points together 
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2.1.4 Topology Optimization 

Topology optimization has the complex features of both size and shape optimization. 

Topology optimization is often referred to as layout optimization or generalized shape 

optimization [5]. In this case, the design variables control the topology of the design. This 

is also the most general optimization procedure, as the size and shape of the structure are 

affected by the topology. The difficulty in implementing this procedure comes from its 

generality. Representing the topology of the structure is difficult and generally requires a 

large number of design variables. Topology optimization operates on a fixed mesh of 

finite elements and defines a design variable, which is associated with each element in 

the mesh. Common way of representing a topology optimization problem is to treat it as a 

configuration design problem where the design is treated as an assembly of a large 

number of “building blocks”. The procedure begins by discretizing the design space into 

all possible identical building blocks. As the optimization process proceeds, various 

“building blocks” are allowed to disappear or reappear, which in turn alters the topology 

of the structure. In some classical methods of topology optimization a design variable 

value of 1 means the corresponding building block is present whereas a value of 0 means 

that it is not. With some other optimization procedures the design variables can take 

intermediate values between 0 and 1, signifying that a material of low density is present 

in the corresponding block.   

In Figure 2. 4 a topology optimization procedure with 72 design variables in shown. In 

order to design the stiffest beam for a given amount of material, the whole design domain 

is divided into 72 building blocks. Typically the target amount of material to be used in 

the final design is stated as a fraction of the total volume of the structure if all design 

variables were at their upper bound. As the optimization procedure proceeds the blocks in 

white are the ones that are removed from the final design. The final optimized design 

only constitutes of the building blocks in blue. 
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Figure 2. 4 Topology optimization of beam using density design variable 

3.1.4.1 Topology optimization of truss structures 

Topology optimization of trusses in the form of grid-like continua is a classical subject in 

structural design. Michell [33] pioneered the study of grid like continuum structures. The 

development of computationally efficient topology optimization methods is not only 

important for designing truss structures but also for the design of material structures. The 

optimization of the geometry and topology of trusses can be conveniently formulated 

with the so-called ground structure method [40].  The truss topology optimization 

problem is formulated so that the cross-sectional area  of every possible truss element 

connecting the predefined nodes is a design variable. Each of these truss elements at the 

end of the optimization routine can either exist or vanish depending on the problem at 

hand. This is possible by defining the cross-sections as continously varrying, owing to 

which the problem can be viewed as a standard sizing problem. This sizing reformulation 

is possible because the truss as a continuum geometrically is described as one 

dimensional. Thus for both planer and space trusses there are extra dimensions in 

physical space that can describe the extension of the truss as a true physical element of 

space, simplifying the basic modeling for truss topology design as compared to topology 

design of three dimensional continuum structures [7]. Since area of cross-sections were 

formulated as continous design variables, a non-zero (small) lower bound on the cross-
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sectional areas has to be imposed in order to have a positive definite stiffness matrix. 

Two different types of preliminary structures are shown in Figure 2. 5.  

 

 

 

 

Groundstructure in figure (a) consists of three nodes along the length and the height of 

the design space. In this case each node is connected to every other node. Practically 

trusses can cross each other in space since they can be bolted together to lie in different 

planes this kind of initial structure can be an effictive way to form the superset of all 

possible designs. In a ground structure if there are  nodes in total then the number of 

truss elements in the design space is , which is represented by Equation 2.5 . The 

number of degrees of freedom equals  for a planer structure. 

 

    
          (2.5)

 

 

In the unit cell each node is only connected to the most immediate neighbor making this 

kind of initial structure not as exhaustive as the ground structure. Nevertheless, these kind 

of initial structures are useful when the designer wants to keep the structure simple and 

easy to assemble from individual truss elements. These kind of structures can be 

Figure 2. 5 Topological model for RBDO framework for (a) Ground structure and (b) Unit cell 
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advantageous while designing mesostructured  materials. A simple formulation for 

topotlogy optimization with area of cross section Ai as the design variables for truss 

structures design for stiffest structure [41] objective can be represented as  

 

Minimize: Mean Compliance                                (2.6) 

Subject to:             (2.7) 

                               (2.8) 

        Ku = F             (2.9) 

 

Equation 2.6 represents the stiffest structure objective because a stiffest structure will 

have minimum mean compliance. Equation 2.7 represents the volume constraint where Li 

represents the length of each truss element and V* represents the target volume of the 

final optimized structure. Al and Au are the lower and upper bounds for the design 

variable. Equation 2.9 represents the finite element method that is used to evaluate the 

objective function and other constraints.  

 The following sections describe reliability based design. Reliability based design 

can easily be included in the formulation for topology optimization by including the 

reliability constraint into the formulation of topology optimization. 

2. 2 Reliability Analysis 

2.2.1 Structural Reliability Assessment 

Reliability is the probability that a system will perform its function over a specified 

amount of time and under specified service conditions. Primarily, reliability-based design 

consists of minimizing an objective function while satisfying reliability constraints. The 

reliability constraints are based on the failure probability corresponding to each failure 

mode or a single failure mode decreasing the system failure. The estimation of failure 
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probability is usually performed by reliability analysis. In case of structural optimization 

the structure is under the influence of loads and boundary conditions and the response 

also depends on the stiffness and mass properties. The responses that are critical for the 

reliability of the structure such as critical location stresses, resonant frequencies, 

displacements etc. are considered satisfactory when the design requirements imposed on 

the structural behavior are well within the degree of certainty. Each of these requirements 

is called limit-state.  The probability of violation of the limit state is a metric for 

quantifying the reliability of the structure under consideration. Once the limit state has 

been violated the structure is believed to have undergone failure for the sake of 

calculations. By determining the number of times the structure failed out of the number 

of evaluations the probability of failure can be determined. Once the probability has been 

determined the next step will be to choose design alternatives that improve structural 

reliability and minimize the risk of failure.  

 Generally the limit state indicates the margin of safety between the resistance and 

the load of structures. The limit-state function, , and probability of failure, , can be 

defined as 

 

            (2.10) 

 

           (2.11) 

 

where R is the resistance and S is the loading of the system. Both  and  are 

functions of random variables . Here  represents the failure surface.  

and  represent the failure region and safe region respectively.  

  The mean of the limit state  can be expressed as in Equations 2.8, where  

and  represent the means of R and S respectively.  
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            (2.12) 

 

The standard deviation of g(.) is 

 

          (2.13) 

where,  is the correlation coefficient between R and S, and  and  are the 

standard deviations of R and S, respectively.  The safety index or reliability index is then 

defined as 

 

         (2.14) 

 

The safety index indicates the distance of the mean margin of safety from g(.)=0. The 

idea behind the safety index is that the design is more reliable if  is farther to the limit 

state surface. 

 For a special case, if the resistance R and the loading S are assumed to be 

normally distributed and uncorrelated, then the probability density function of the limit-

state function can be represented as 

 

         (2.15) 

 

The probability of failure can then be represented as 
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           (2.16) 

 

For a multidimensional case, the generalization of Equation 3.11 becomes 

 

       (2.17) 

 

where g(X) is the n-dimensional limit-state function and  is the joint 

probability density function of all relevant random variables X. 

 Due to the curse of dimensionality in the probability of failure calculation in 

Equation 2.13 numerical methods can be used to simplify the numerical treatment of the 

integration process. The Taylor series expansion is often taken to make the limit state 

g(X)=0, linear. This is the basis of the First order reliability method (FORM) [42] and  

Second order reliability method (SORM) [43]. Other strategies have also been used in the 

past for probabilistic analysis for designing reliable structures. Stochastic Finite Element 

method [44, 45], sampling methods and stochastic expansions [46] are some of the most 

commonly used methods for conducting reliability analysis.  

2.2.2 Sampling Methods 

In this research the efficient use of sampling methods for design of reliable material 

structures is explored. The basic advantage of sampling methods is that the probabilistic 

information or mathematical solution of a problem can be obtained by direct use of 

experiments.  

2.2.2.1 Monte Carlo Simulation 

Monte Carlo methods were originally practiced under more generic names such as 

statistical sampling, and the name is a reference to the famous casino in Monaco. The 



 28 

methods use of randomness and iterative procedure is similar to a casino’s activities. In 

Monte Carlo Sampling (MCS) [47] the inverse transform method is used to generate 

random variables with specified probability distributions. This method can be applied to 

variables for which the cumulative distribution function has been obtained from direct 

observation, or where an analytic expression for the inverse cumulative function, , 

exists [31].  

 Let FX (xi) be the Cumulative Distribution Function (CDF) of random variable xi. 

Since the value of CDF can only lie between 0 and 1, F(.) has a value between 0 and 1. If 

u is the uniformly distributed random variable that is generated using MCS then the 

inverse transfer method is used to equate u to FX (xi) as follows: 

 

            (2.18) 

or 

            (2.19) 

 

This method can be applied to variables for which a cumulative distribution function has 

been obtained from experiments or where an expression for the inverse cumulative 

function exists. The process starts with the random number generator producing random 

numbers between 0 and 1 based on randomly selected seed values. The corresponding 

CDF value of the uniform distribution and target distribution can easily be obtained using 

the random numbers that were generated. The final step is to obtain the random number 

for the target PDF using Equation 2.18.  

 Monte Carlo sampling can be very computationally expensive since they are 

random in nature. In order to make MCS less computationally expensive sometimes 

variance reduction techniques are integrated. Latin Hypercube Sampling is an excellent 
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variance reduction technique that reduces the computational requirement for the 

simulation as well as increasing the accuracy with the same number of runs. 

2.2.2.2 Latin Hypercube Sampling 

In order to reduce the computational cost of the reliability assessment, a variance 

reduction sampling method, namely Latin Hypercube Sampling (LHS) [48], is 

introduced. LHS, also known as the stratified sampling technique, represents a 

multivariate sampling method that guarantees non-overlapping designs. In LHS, the 

distribution for each random variable can be subdivided into n equal probability intervals 

or bins. Each bin has one analysis point. There are n analysis points, randomly mixed, so 

each of the n bins has 1/n of the distribution probability. Figure 2. 6 shows the basic steps 

for the general LHS method, which are: 

1. Divide the distribution for each variable into n non-overlapping intervals on the 

basis of equal probability. 

2. Select one value at random from each interval with respect to its probability 

density. 

3. Repeat steps (1) and (2) until you have selected values for all random variables, 

such as x1, x2,…, xk. 

4. Associate the n values obtained for each xi with the n values obtained for the 

other xj≠i at random. 
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                         (a) Step 1                                  (b) Step 2 

 
   (c) Step 3                                                                                 (d) Step 4      
                                   

Figure 2. 6 Basic concept of LHS: two variables and five realizations [31] 
             

The regularity of probability intervals on the probability distribution function ensures that 

each of the input variables has all portions of its range represented, resulting in relatively 

small variance in the response. At the same time, the analysis is much less 

computationally expensive to generate. The LHS method also provides flexible sample 

sizes while ensuring stratified sampling; i.e., each of the input variables is sampled at n 

levels.  

2.2.2.3 Probability of failure calculation 

The sampling methods can be used to calculate the probability of failure where the limit 

state function involves complex functions, and direct evaluation of the limit state is not 

possible. The following steps are taken to calculate the probability of failure : 
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1. Generate a sampling set of random variables according to the corresponding 

probability density functions. 

2. Set the mathematical model of the limit-state, which can determine failures for the 

drawing samples of the random variables. 

3. The simulation is executed and for each run the limit state is evaluated. 

4. If the limit-state function  is violated, the structure or the structural element 

has “failed”. 

5. The trial is repeated many times to guarantee convergence of the statistical 

results. 

6. If N trials are conducted, the probability of failure is given approximately by 

 

            (2.20)
 

 

where  is the number of trials for which the limit state function is violated out of the N 

experiments conducted.  

 An example is illustrated in Figure 2. 7. Here 10 data points are generated using 

LHS procedure. For each of the data point g(.) is evaluated to check if the corresponding 

point belongs to the safe region or the unsafe region. The safe and the unsafe region are 

depicted in the figure. In this example, 3 points are assumed to be in the unsafe region. 

Hence the probability of failure for this case would be 0.3. 
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2.3 Reliability - based Design Optimization 

2.3.1 Formulation of RBDO 

The formation of RBDO is similar to that of deterministic optimization: 

 

Minimize: the objective function,                  (2.21) 

Subject to:                               (2.22) 

      or   

 

where  represents the limit state function, b is the vector of deterministic design 

variables, and X  is the random vector, which can be random design variables or random 

parameters of the system.  and  are the specified probability of failure level and the 

specified reliability level of the system, respectively.  

Figure 2. 7 Calculation of probability of failure using sampling procedure 
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Equation 2.16 can be expressed in terms of the safety index: 

 

                                            (2.23) 

 

where   and  are the required safety index of the system and the safety index of the 

probabilistic constraint, respectively.  This method for calculating the reliability of a 

structure is also referred to as the Reliability Index Approach (RIA) [49]. This method is 

used to calculate the probability of failure in this work.  

 An alternative approach for RBDO problems is the Performance Measure 

Approach (PMA), which can efficiently measure violations of the constraint. In PMA, the 

performance measure is determined after solving inverse reliability analysis problems. 

Details of PMA are available in [34] and [50].  

 Figure 2. 8 represents the Reliability-based design optimization procedure. Apart 

from the objective function and the constraints that are dealt with in the deterministic 

optimization procedure the evaluation of the reliability constraint is an important step in 

RBDO. The evaluation of the reliability constraint introduces randomness in the 

optimization procedure. Owing to the stochastic nature of this procedure this process can 

also be called stochastic optimization process. Consequently, evaluation of the reliability 

constraint increases the computational requirement of the procedure drastically. Hence a 

surrogate model can be used to estimate the value of the constraint. The surrogate model 

can be constructed after conducting a suitable experimental design such as Latin 

Hypercube Sampling method. This procedure will be explained in the next section. 
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Figure 2. 8 Reliability-based design optimization 



 35 

2.3.2 Stochastic Optimization 

With the emergence of high power digital computers, it has become feasible to combine 

randomness or uncertainty in the optimization process and hence design large-scale 

complex systems. These methods are known as stochastic programming or stochastic 

optimization methods. These methods help the designer arrive at robust designs that are 

insensitive to given uncertainties and hence ensure a guarantee of satisfaction with 

respect to the uncertainty in the objective function, performance constraints and design 

variables.  

 Optimization under uncertainty, by its very nature is very expensive than solving 

deterministic problems, which alone may be computationally intensive. The 

computational cost of stochastic optimization problems turn out to be extremely high in 

many cases. This limitation has encouraged researchers to introduce and adapt efficient 

schemes to represent uncertainty in the optimization procedure. A common approach for 

treating the computationally expensive objective function and the constraints of the 

optimization problem is to build relatively inexpensive surrogate models using 

approximation techniques. The choice of surrogate-based optimization can be reasonable 

in typical engineering applications. Choi et al. [35] introduced a formulation that 

combines Polynomial Chaos Expansion (PCE) and Analysis of Variances (ANOVA) 

within the framework of LHS which can be effective in estimating the responses of large-

scale uncertain structural problems. Specifically, to represent variability in stochastic 

constraints or objective functions, fluctuating components are introduced and 

approximated in this method. Many other function approximations techniques can be 

used in order to approximate the variability in the model that can help reduce the 

computational requirement of the optimization procedure drastically.  
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2.3.3 Function Approximation 

Function approximations play a major role in iterative solutions and optimization of 

large-scale structures. For many structural optimization problems, evaluation of the 

objective function and constraints requires the execution of costly finite element analysis 

for displacements, stresses or other structural responses. The optimization process may 

require the evaluation of the objective function and the constraints hundreds or thousands 

of times. For example in case of the RBDO method, for every iteration of the 

optimization procedure the probability of failure has to be calculated using Equation 2.14, 

which can require the finite element analysis of the structure N number of times in order 

to evaluate the limit state function. In order to reduce the computational requirements of 

the procedure, an experimental design like LHS scheme is used to generate a small 

number of samples of input data and the response is obtained from the finite element 

analysis. This data is used to construct a surrogate model that can then be evaluated using 

N samples generated using any sampling scheme to evaluate the reliability constraint.  

 Some of these techniques can be used as a blackbox (viz. Neural Networks based 

methods), whereas for some of the methods (viz. Regression and Response surface 

techniques) it is important to have knowledge of the inherent physics of the problem. 

Furthermore, Artificial Neural Networks (ANN) has an added advantage that it can be 

used as either for function approximation or for classification. The following sections 

give a brief description of Moving Least Squares (MLS) and Artificial Neural Networks 

(ANN) methods.  

2.3.3.1 Moving Least Squares 

A primary challenge of stochastic analysis is to discover rigorous ways to forecast the 

low probability of failure, which is critical to reliability constraints. Simulation based 

methods evaluate the limit state function number of times in order to calculate the 
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probability of failure. In case of reliability-based design the probability of failure has to 

be calculated every iteration making it a computationally- expensive procedure.  

 A common approach to the computationally expensive procedure of probabilistic 

methods is to approximate the system response using relatively inexpensive surrogate 

modeling techniques. To achieve a high quality surrogate model, the local regression 

model, namely Moving Least-Squares (MLS) method [51] can be used. 

 The main advantage of the MLS method is that the regression coefficients are not 

constant, but rather parameter dependent. This quality allows the data analysis to not be 

constrained to a specific global function in order to fit a model to the data. Instead, the 

fitting segments spawn a local-global approximation allowing the data to acclimate to the 

function over a wide range of parameters. The main idea of local regression is to fit 

curves and surfaces to localized subsets of the data by a multivariate smoothing 

procedure with moving processes. 

The details of MLS process are shown in Figure 2. 9. In the first step we define the local 

domain based on the domain influence factor or the bandwidth, r. In the second step an 

approximation is estimated at the point . This process can then be repeated at different 

calculation points by moving the local domain. Therefore, the regression coefficients of 

the MLS are not constant but a function of the calculation position or location.  
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Figure 2. 9 Moving-least squares approximation [36] 

 
 

A linear regression model can be written as  

 

      (2.24) 

 

where , j = 0,1,2,…,m, are the basis polynomial of order m,  are the regression 

coefficients, and , the error of the model equation, is assumed to be normally 

distributed with mean zero and variance .  Equation 2.24 can be expressed in matrix 

notation for n sample values of x and y as  
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          (2.25) 

where 

            and    

Here, the simplest polynomial model is the monomials of xm, i.e.,  

 = .  

The coefficients can be calculated using a least square formulation. The regression 

coefficients can be represented as 

 

              (2.26) 

 

The estimated target values and the errors are given by 

 

 and                (2.27) 

 

The weight matrix W(x) is also present in the equation for coefficient matrix in case of 

Moving Least-Squares (MLS) approximation. The regression coefficient vector, 

� 

ˆ β (x) , 

can be calculated as 

 

� 

ˆ β (x) = XTW (x)X[ ]−1
XTW (x)Y        (2.28) 

 

where X is a n x p matrix of the levels of the regressor variables, Y is a n x 1 vector of the 

responses, and W(x) is a none zero diagonal weight matrix which is given by 
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        (2.29) 

 

A close examination of Equation 2.26 and Equation 2.28 Hence, the estimates for the 

MLS model can be represented as follows 

 

� 

uh (x) = p j (x) ˆ β j (x) =
j= 0

m

∑ pT (x) ˆ β (x)        (2.30) 

 

The weight matrix in Equation 2.29 is a function of the location or position of x and there 

are several types of weighting functions. The exponential, canonical and spline functions 

are widely used as weight functions and are represented as 

 

Exponential weight function 

 

        (2.31) 

 

Conical weight function  

 

         (2.32) 

 

 

 



 41 

Spline weight function 

 

       (2.33) 

 

where  is the distance from the sample point xi to x, and ri is the smoothening 

parameter or the bandwidth. The smoothening parameter is an important factor; 

depending on which the function approximation can widely vary.  

 

 
Figure 2. 10 Weight functions [36] 

 

Figure 2. 10 depicts the three types of the weight functions discussed in this section. It is 

important to note that the shape of the fitted curve is not critically sensitive to the precise 

selection of the weight function. However, the careful adjustment of the domain influence 

factor of the weight function is critical so that the interval should contain enough data 
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points to obtain the regression coefficients. This is important in order to avoid the 

singularity of the weight matrix.  

2.3.3.2 Artificial Neural Networks 

2.3.3.2.1 Introduction and Applications 

Artificial Neural Networks (ANNs) are processing devices (algorithms or actual 

hardware) that are loosely modeled after the neuronal structure of the mammalian 

cerebral cortex but on much smaller scales. A large ANN might have hundreds or 

thousands of processor units, whereas a mammalian brain has billions of neurons with a 

corresponding increase in magnitude of their overall interaction and emergent behavior. 

Neural networks have been used for a variety of applications in the past. Some of them 

are in Machine Learning [52] and data mining, which include: 

• Having a computer program itself so that the programmer doesn’t have to write 

the code by himself. This is achieved by learning from a set of examples. 

• Optimization- Given an objective function and constraints, how do we find an 

optimal solution? 

• Classification- How to group patterns of data into classes? For example the 

United States Postal Service uses a neural network based scanning system to 

recognize the zip code on addresses. 

• Associative memory- Recalling a memory based on a partial match, which is 

analogous to case based reasoning. 

• Regression- It has been proved that neural networks have an ability to 

approximate any function given the optimal number of neurons in the network. 

Because of their robust nature and versatility, ANN’s find application in a variety of 

fields [53]. They have been applied in 
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• Signal processing: suppress line noise, wit adaptive echo canceling, blind source 

separation 

• Control: e.g. backing up a truck: cab position, rear position, and match with the 

dock get converted to steering instructions. Manufacturing plans for controlling 

automated machines. 

• Robotics: navigation, vision control. 

• Pattern recognition, i.e. recognizing handwritten characters 

• Medicine: Storing medical records based on case information 

• Speech recognition and production, which helps reading texts aloud. 

• Vision based applications like face recognition, edge detection and visual search 

engines 

• Business: Rules for mortgage decisions are made based on the old decisions that 

produced good results 

• Financial applications: time series analysis, stock market prediction 

• Data Compression: speech signal, image and faces. 

• Game playing: chess, pacman etc. 

 The simplest computational element for a neural network is called a neuron. A 

neuron can receive inputs from other neurons or from external source. Each input to a 

neuron has an associated weight w, which can be modified to model synaptic learning. 

The weighted inputs are then summed to form the net input for the activation function f. 

A neuron computed some function  f of the weighted sum of its inputs: 

 

           (2.34) 

 

The output from this neuron can be input into another neuron for making a network. 

There can be neurons in parallel or series making different layers of neurons that can 
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make a complex network that is able to approximate any function. Most of the times the 

number of layers and the number of neurons in each layer has to be decided based on the 

problem at hand. A simple neuron model can be represented as shown in Figure 2. 11. 

 

 

 

 

 
 
 
 
 

 
 

 

 

 

In Figure 2. 11 the weighted sum  is called the net input to neuron unit i which is 

referred to as neti or the sum S.  

2.3.3.2.2 Transfer functions 

The function f in Equation 2.32 is referred to as the unit’s activation function or transfer 

function. For the simplest case, f is the identity function and the unit’s output is just it’s 

net input. The neuron in that case would be called a linear neuron. The Hard-Limit 

transfer function and the Sigmoid transfer function are the two other most used transfer 

functions. Each of these transfer functions are shown below with red color. The values of 

all the transfer functions range from -1 to +1. 

Figure 2. 11 A simple neuron model with n inputs 

Neuron 
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Figure 2. 12 Linear transfer function 

 
The neurons of this type are used in linear filters as linear approximators. 
 

 
Figure 2. 13 Hard-limit transfer function 
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The Hard-limit transfer function shown in Figure 2. 13 limits the output of the neuron to 

either 0, if the net input argument x is less than 0, or 1, if x is greater than or equal to 0. 

This function is generally used in classification problems pertaining to perceptrons.  

 

 
Figure 2. 14 Sigmoid transfer function 

 

The Sigmoid transfer function is differentiable, which makes it suitable for use in 

backpropagation networks. 

2.3.3.2.3 Back Propagation learning algorithm 

In general there are many different types of ANNs and usually there is no single 

architecture that is suitable for all problems. The main types of ANN architectures widely 

used are competitive learning, the Boltzmann machine, the Hopfield network and the back 

propagation network. The back propagation network type is the most popular due to its 

simplicity and ease of use. Its name comes from the way it “back-propagates” the error 

that occurs during the training process. Back propagation network is used for the current 

research and only think kind of network will be discussed further. 
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 A back propagating (BP) neural network consists of multiple interconnected 

processing elements belonging to different layers. In a BP algorithm learning is carried 

out using a set of input training patterns propagated through a network consisting of an 

input layer, one or more hidden layers and an output layer as shown in Figure 2. 15.
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The hidden layers represent complicated association between patterns and propagated 

data in a feed-forward manner from the input towards the output layer. The number of 

neurons and the number of hidden layers play an important factor in determining the 

ability of the network to model complex relationship between Inputs and outputs. In 

general, increasing the number of neurons and number of hidden layers increases the 

ability of the network to model nonlinear relationships, which also increases the training 

time for the network. The number of nodes in the hidden layer(s) is usually selected as 

the mean value of the number of the input and output nodes plus the input nodes [54]. 

More sophisticated networks use “dynamic node pruning” or “node growing” in 

intermediate layer(s).  

 Most of the neural networks use the gradient descent algorithms, such as least 

squares, in order to correct the values of the weight connections. This comes as an 

optimization problem where the difference between the computed and desired output 

values is minimized. The correction step of the weights mentioned above is generally 

called as the delta rule. Once the network has “learned”, it produces different outputs for 

every set of different inputs it evaluates. 

Input Layer  

Ist Hidden Layer 

 

2nd Hidden Layer 

Output layer 

Figure 2. 15 A fully connected ANN configuration 
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Figure 2. 16 shows the connection between two layers of neurons. Let wp,ij be the 

connection weight between the i neuron in the q(source) layer and the j neuron in the 

p(target) layer. Let the input signal transmitted from the i neuron of the layer q to the 

nodes of the target layer p be called netq, i , and the output produced at the j neuron of the 

layer p be netp, j . The exterior inputs xi corresponds to netq, i for the input layer.  

 In a typical neuron, the output signal is produced only if the incoming signal is 

strong enough to simulate the neuron. This output is simulated with NN by 

 

Out p, j = f (net p, j)           (2.35)  

 

where f is an activation function which produces the output at the j neuron of the p layer. 

The activation function used in this research is the commonly used sigmoid function 

 

1 

2 

i 

n 

1 

2 

j 

m 

Layer q Layer p 

Figure 2. 16 Network layout between two layers with n and m neurons 
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        (2.36) 

 

where bp, j is a bias parameter which acts as a function shifting term that improves the 

overall network accuracy. Bias parameters can be learned during the training in the same 

manner as the other weights. Any random values can be assigned to the weights and bias 

and during the backpropagation and correction phase the values are improved as the 

procedure continues. One major advantage of the sigmoid function is that it can handle 

small as well as large input values. At the output the error can be calculated as the 

difference between the expected and the actual output value 

 

           (2.37) 

 

where tar k,i and out k,i  are the target (expected) and the observed outputs for the node i of 

the output layer k respectively. The following relationship is used to evaluate the weight 

changes in the output layer that is related to the input signals. 

 

           (2.38) 

 

where η denotes the learning rate coefficient usually selected between 0.01 and 0.9 and 

out p, j denotes the output of the hidden layer p. Here, η is analogous to the step size 

parameter in gradient-based optimization algorithms.  

 The term  is the result of the multiplication of the derivative of the activation 

function, for the neuron in question, with the error signal that is represented as in 

Equation 3.39. 
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           (2.39) 

 

The derivative of the sigmoid function is given by 

 

          (2.40)  

 

This method can be repeated until the desired error level is reached for the training set. 

This type of training mentioned above is called supervised learning. Only a brief 

description of backpropagation neural networks was given in the previous section. More 

detailed explanation of back propagation network and other kind of networks can be 

found in Ref. [30] 

 In order for the back propagation algorithm to give satisfactory results the training 

data has to be chosen carefully. A sufficient number of input data properly distributed in 

the design space together with the output data resulting from the undergone Finite 

element analysis is needed for producing satisfactory results in structural optimization 

problems. 

 The order to predict accurate structural analysis outputs the ANN has to be trained 

properly which encompasses three tasks: 

1. Selecting the proper training set 

2. Finding a suitable network architecture 

3. Determining the appropriate values of the characteristic parameters such as the 

training rate 

An important limitation of ANN is that there are no rules for determining the efficient 

training set, architecture or the training rate. Most of the times the designer has to rely on 

past experience to determine the appropriate characteristics for the data in hand. Most of 

the times a hit and trail approach is used.  



 52 

 In this research, in order to reduce the computational requirements of the 

procedure, backpropagation ANN is used for estimating the probability of failure with the 

classification approach in the reliability based topology optimization problem. The 

probability of failure will be estimated using two different approaches in this research: 

 

1. Regression approach- In case randomness is introduced in a design variable x 

and the output from the FEA is y which is used to calculate the limit state, x is the 

input to the ANN and y is the expected output. A network is trained that can 

accurately estimate the response y for an input x. The output y can then be used to 

calculate the limit state and check if it satisfies the safety criteria. By counting the 

number of times the limit state has been violated, the probability of failure of the 

structure can be calculated. 

  This method will be useful to approximate the limit state value in cases 

 where the limit state is highly nonlinear. The disadvantage of this process lies in 

 the fact that there is no set procedure to decide on the characteristics of the ANN 

 such as the learning rate, number of neurons etc. Another major disadvantage of 

 this procedure is that function approximation/regression gives unsatisfactory 

 (wrong) results if the underlying limit state function is discontinuous. Even in 

 such cases, the regression approach will give us a value for y for which the 

 corresponding x value didn’t exist in the neighborhood of the training dataset. 

 The classification approach could be beneficial in this case. 

 

2. Classification approach- Classification is used in case we have to classify the 

inputs into different classes. In order to determine the probability of failure we 

have to determine if for the inputs x the structure has failed or not. Then the ratio 

of the number of times the structure failed and the total number of input data 

gives us the probability of failure. Hence it should be sufficient to determine if the 
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structure has failed for the input xi. This implies that it would be sufficient to 

classify an input xi into either of two classes i.e., pass or fail.  

  This procedure starts with evaluating the limit state for each of the 

training data point xi and evaluating the limit state for each of them and checking 

if the  structure has failed or not and assigning a corresponding class to it. This 

data is  supplied to ANN and a network is created which classifies the test  data 

into either of the two classes. By counting the number of elements in the fail 

class, the probability of failure can be calculated. This procedure is illustrated in 

the figure below. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. 17 Classification approach to probability of failure calculation 
 
Both the regression approach and the classification approach can be used for estimating 

the probability of failure for structural reliability assessment. Specifically Artificial 

Neural Networks can be used for both the regression approach and the classification 

approach. The back propagation neural networks can be used for both the classification 
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and well as the regression approach. In cases where the data is not linearly separable 

Probabilistic Neural Networks (PNN) can be used in order to classify the data.  

 The main differences between the regression approach and the classification 

approach of reliability analysis have been summarized in Table 2. 

 

 

 

 

 

 

 

 

 

Classification can be used to calculate the probability of failure in case of disjoint failure 

domains. However, a classification process using artificial neural network might be 

computationally more expensive than the regression approach. Hence in case of large-

scale problems function approximation using regression approach should be tried first in 

order to reduce the computation cost of the process. 

 

 

 

Table 2 Difference between the classification and regression approach to reliability analysis 



 55 

CHAPTER 3 

EFFICIENT RELIABILITY-BASED TOPOLOGY OPTIMIZATION 

3.1 Reliability-based Topology Optimization of Truss Structures 

3.1.1 Problem Formulation 

In order to design reliable mesostructured materials a reliability based topology 

optimization procedure can be effective. In designing a structure using RBTO method it 

is wished that the new design were reliable enough to have acceptable performance in 

case the structure is exposed to expected uncertainty after it is manufactured and placed 

“in the field”. “In the field” indicates the location for which the structure was designed. A 

simple reliability based topology optimization problem for minimizing mean compliance 

can be represented as 

 

Minimize:    Mean Compliance                                (3.1) 

Subject to:                                (3.2) 

                     (3.3) 

                     (3.4) 

          Ku = F             (3.5) 

 

where g(.) is the limit state function and PRj is the target probability of failure Pf of the 

structure after optimization. For practical applications this Pf value is set to 10-4. Ai and Li 

are the area of cross section and length of each truss element in the super structure 

respectively. Equation 3.4 represents the bounds on the design variables, which are areas 

of cross sections for this design problem. It is desirable to specify the lower limit on the 

design variable as a low number instead of 0 i.e., 10-3~10-6, in order to preserve the 
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numerical stability of the optimization process. Equation 4.2 is commonly referred to as 

the volume constraint. Here V* is the final target volume for the structure. A general rule 

of thumb is to specify the V* as 30% of the initial volume of the structure before 

optimization i.e., the volume of the structure initially if all the elements had the 

maximum possible value for each of the design variable. In other words the required 

volume fraction could be specified as 0.3. Hence Equation 3.2 can also be specified in 

terms of the volume fraction and some designers prefer the volume fraction approach. 

Equation 3.5 represents the Finite Element Method, which is used to compute the 

objective function and the constraints. The objective function for this optimization 

problem is the minimization of mean compliance. Mean compliance is the total work 

done on the body by all external forces, which includes body forces, point forces and 

contact forces. According to Clayperon’s theorem [55] the mean compliance of a body is 

half of the strain energy contained in the body. Hence, Equation 3.6 can further substitute 

Equation 3.1. 

 

Minimize:             (3.6) 

 

In Equation 3.6 SE represents the Strain Energy of the structure, u represents the 

displacements of nodes in the structure and K is the global stiffness matrix of the 

structure. The displacement vector u is obtained after the finite element analysis of the 

structure.  

3.1.2 Proposed framework using Local regression method 

The proposed framework for designing optimal mesostructured materials is depicted in 

Figure 3. 1.  First, the geometry of the super structure is specified with other input 

parameters such as material properties, loading and boundary conditions and 
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corresponding statistical properties of the random variables. In this research two kinds of 

superstructures are used- ground structure and unit cell. 

 

 

 

  

 During the iterative optimization process, a nested loop computes the probabilistic 

constraints. The reliability constraint (Equation 3. 2) specifies the allowable probability 

of failure in the structure. In the nested loop, the uncertain input parameters are sampled 

using a stratified sampling technique such as Latin Hypercube Sampling (LHS). For each 

instance of the random variables, the FEA procedure is invoked. The results from the 

FEA procedure are used to evaluate the probabilistic constraint or specified limit state 

function. The limit state function is in turn predefined by the user and states if the 

structure has failed for that particular instance of random variables and other boundary 

conditions. In order to reduce the computational cost and improve the overall efficiency 

of the optimization procedure, the local linear regression method is utilized. Once the 

Yes 

No 

Conduct Optimization  
using Sequential Quadratic 

Programming 

Converged? 

Improved Design 

Reliability-based Optimum 

Initial Feasible Solution 

 
 
 
 

Simulate Black Box Model 

Input: Geometry, Loading, Boundary 
conditions, Statistical properties of 

random variables 
Generate Experimental Design 

(LHS) 

Conduct Stochastic Local Regression 

Evaluate Stochastic Constraints or 
Objective Function 

Reliability Assessment 

Figure 3. 1 Proposed framework using local regression for surrogate model 
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limit state function is modeled using the local regression procedure, the crude Monte 

Carlo Sampling (MCS) is applied to estimate the probability of failure of the constraints. 

This reliability assessment procedure can be readily integrated into the conventional 

optimization process. The final optimum design will be achieved when the required 

convergence criterion is satisfied.  

3.1.3 Proposed framework using Classification-based ANN 

The limit state function used in the previous section was a linear function of displacement 

of a single node. In practical applications it’s rare to find a failure criteria, which is linear. 

Hence it is important to closely examine the function approximation methods that rely on 

simple curve fitting methods to estimate the probability of failure. One major complaint 

in case of function approximation techniques relying on regression based methods is the 

curse of dimensionality [30]. Hence it becomes necessary to investigate the use of other 

methods in order to estimate the response. In this research classification using neural 

networks is proposed as a useful alternative in determining the probabilities of failure in 

case when sampling methods are used for the estimation. 

3.1.3.1 Classification 

Statistical classification is a procedure in which individual data points are placed into 

groups based on quantitative information on one or more characteristics inherent in the 

data points and based on training set of previously labeled data points [56]. 

 Formally, the problem can be stated as follows: given training data 

 produce a classifier  which maps an object  to its true 

classification label  defined by some unknown mapping  (ground truth). 

For example, if the problem is filtering spam, then xi is some representation of an email 

and y is either “Spam” or “Non-Spam”. Statistical classification algorithms are typically 

used in pattern recognition systems [57].  
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 In analogy to the previous example, in case of Reliability-based Topology 

Optimization for estimation of the probability of failure, xi is the random variable, which 

was assumed to have uncertainty. The values of xi are generated from a probability 

density function (pdf) for which the designer provides the mean and variance to the 

optimization algorithms. The estimation in this case is w which has a value of -1 if the 

structure fails and has a value of +1 if the structure is safe for the generated xi values. The 

points having a value of -1 for w can be considered to be from class 1 and those with 

value of +1 can be considered to be from class 2. Once wi’s are obtained for all xi’s the 

classifier is trained using artificial neural networks. n random numbers are generated 

using Latin Hypercube Sampling and new w is estimated for each of the new samples. 

The ratio of the number of points in class 1 and n gives the probability of failure Pf. This 

process is illustrated in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2 Procedure for classification scheme 
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3.1.3.2 Classification using Artificial Neural Networks 

Traditional statistical classification procedures such as discriminant analysis are built on 

the Bayesian decision theory [58]. In these methods, a probability model must be 

assumed in order to calculate the posterior probability upon which the classification 

decision is made [59]. Hence, the validity of the underlying assumptions is important for 

these methods to work properly. A good depth of knowledge in both data property and 

model capabilities is essential in order to use these methods properly.  

 Predictive learning is an important aspect of data mining. A wide variety of 

methods have been created for classification from which Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Decision Trees, Multivariate Adaptive 

Regression Splines (MARS), k- Nearest Neighbors and Kernel methods [30] have been 

used widely for varied applications. For each particular method there are situations for 

which it is particularly well suited, and others where it performs badly compared to the 

best that can be done with that data. Table 3 summarizes the characteristics of a number 

of classification techniques.  

Table 3 Some characteristics of different learning methods, Key: 1=good, 2=fair, 3=poor [16] 
Characteristic Neural 

Nets 
SVM Trees MARS k-NN, 

kernels 
Natural handling of data of 

“mixed” type 
3 3 1 1 3 

Handling of missing values 3 3 1 1 1 

Robustness to outliers in 
input space 

3 3 1 3 1 

Insensitive to monotone 
transformations of inputs 

3 3 1 3 3 

Computational scalability 3 3 1 1 3 

Ability to deal with irrelevant 
inputs 

3 3 1 1 3 

Ability to extract linear 
combinations of features 

1 1 3 3 2 

Interpretability 3 3 2 1 3 

Predictive power 1 1 3 2 1 
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 In general, the data obtained in industries or from commercial organizations are 

not complete and may also have missing values. In addition sometimes the data can be a 

mixture of categorical, quantitative and binary forms and hence difficult to interpret. 

Sometimes the data might also have a lot of outliers. In order to deal with these specific 

situations domain specific knowledge is required to filter out data that is not relevant to 

the problem at hand. But apart from the specific applications like pattern recognition, 

domain specific knowledge is difficult to obtain. In such cases “decision trees” have been 

suggested as an “off-the-shelf” technique that can be applied to the data without requiring 

a great deal of time consuming data preprocessing or careful tuning of the learning 

procedure [30]. Decision trees naturally deal with numerical and categorical data and also 

with missing predictor variables. They are also immune to predictor outliers and also 

immune to scaling and other general transformations. But Decision Trees suffer from 

inaccuracy in prediction (as can be seen in Table 3) making them inappropriate for many 

applications. On the other hand Neural Net, SVM and k-NN along with kernel methods 

perform well for prediction applications but don’t perform well when dealing with data 

that is not preprocessed. 

  Neural networks have emerged as an important tool for classification. Various 

research have proved that ANN’s [60] are a promising alternative to conventional 

classification techniques. Michie et al. [61] report a comparative study in which three 

general classification techniques of neural networks, statistical classifiers and machine 

learning using 23 techniques on 20 different real data sets. The general conclusion drawn 

from the study was that no single classifier is the best for all datasets. However, the feed 

forward and backpropagation ANN’s have good performance over a wide range of 

problems. Artificial Neural Networks have also been compared to decision trees [60, 62], 

discriminant analysis [60, 63], CART [64, 65], k-nearest–neighbor [63, 66], and linear 

programming [63].  
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 The advantages of neural networks above other methods are in the following 

theoretical aspects: 

• Neural networks can be used as black box models since they are data driven and 

self-adaptive in nature. Hence they can adjust themselves to the data without any 

explicit specification of functional or distributional form for underlying model. 

• Neural Networks have been proved to be able to approximate any function with 

arbitrary accuracy [67-69]. Since all classification procedures seek a functional 

relationship between the independent variable and the feature, this attribute is 

essential for the success of the classification procedure. 

• Since Neural Networks are nonlinear in nature it makes it easier to model real 

world data complex relationship. 

• Neural networks are able to estimate the posterior probabilities, which provides 

the basis for estimating classification rules like Bayes classification rule and 

perform statistical analysis [70]. 

Owing to above advantages, classification procedure using ANN’s have been used for 

bankruptcy prediction, bond rating, medical diagnosis, product recognition, handwritten 

character recognition and speech recognition applications. In case of reliability based 

design optimization problems the designer is faced with cases where the limit state 

function is nonlinear or discontinuous. In addition to discontinuities, nonlinear problems 

are characterized by disjoint failure regions, thus further limiting the use of classical 

approaches to assess the probabilities of failure [71]. Classification procedure can resolve 

all of these situations. Hence a classification based RBTO procedure using Artificial 

Neural Networks can be used for estimating the probability of failure. 
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3.1.3.3 Example of a two variable limit state function 

Consider a limit state function with two random variables  

 

           (3.12) 

 

where u1 and u2 can be any of the variables that are outputs of the finite element analysis. 

In case of this limit state function the structure is considered to be safe if  < 0 and 

the structure is considered to have failed if  > 0.  

 

 
Figure 3. 3 Sampling space for evaluating the limit state function 

 

Figure 3.3 shows the boundary of the limit state function   in black and the 

sampled data points in blue. The design variables u1 and u2 are sampled using Latin 
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hypercube sampling method from a Gaussian distribution ~ . 100 points were 

sampled and classified according to their relative position in the u1 vs. u2 space shown in 

Figure 3. 3.  

 A probabilistic neural network based ANN was used to classify the data points 

depending on whether they fall into the failure region or the safe region. Probabilistic 

neural networks (PNN) are a kind of radial basis network suitable for classification 

problems. This network has radial basis neurons for which weighted inputs are 

calculated using the Euclidean distance of the data point from the origin. Gaussian radial 

functions were used in this case which are given by 

 

 for  > 0          (3.13)  

 

where  and ci is the center associated with this radial basis function. More 

information about radial basis networks and probabilistic neural networks can be found in 

Ref. [72].  
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Figure 3. 4 Data points classified into safe and unsafe regions 

 

This example problem was solved in MATLAB and the classification solution is shown 

in Figure 3. 4. The points in the safe region are in blue and those in the unsafe region are 

in red.  

 In order to validate the efficacy of the proposed method a Monte Carlo Simulation 

is conducted with 10,000 samples. The probability of failure is calculated from these 

10,000 samples of MCS. This is done in order to validate the results obtained from the 

classification-based framework for calculation of probability of failure. The result 

obtained from the MCS is compared to the result obtained by both classification using 

ANN and local regression. The results are shown in Table 4. 

 

Safe region 

Unsafe region 

Unsafe region 
P2 

P1 
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Table 4 Results from the disjoint failure domain example 

 Classification  

(200 Samples) 

Local Regression 

(200 Samples)         

MCS 

 (10,000 Samples) 

Pf 0.3452 0.5412 0.3566 

 
 
The results confirm that classification gives close results in case of disjoint failure 

domains since the Pf value obtained from Classification is close to that obtained from 

MCS. 

 An important conclusion from the last example problem is that classification can 

be used to label points as fit/unfit better than estimating the function using a non-

parametric techniques [30] and then calculating the probability of failure. Another 

advantage of using classification based approaches against the regression based methods 

is that regression based methods can’t be used when the limit-state function is 

discontinuous. For example, if  were to be estimated using regression based 

methods, points P1 and P2 would have been joined since regression functions can’t 

recognize the discontinuity pattern after point P1 and before point P2 in Figure 3.4. 

3.1.3.4 Proposed framework for Classification based RBTO method 

The previous section proved that classification could be an effective technique to 

calculate the probability of failure during the optimization procedure. Figure 3. 5 shows 

the framework for conducting Reliability-based Topology Optimization using an 

Artificial Neural Network for conducting classification. 

 As with the RBTO method using moving least squares local regression method 

that was discussed before, RBTO using artificial neural network has the same basic 

information flow. An initial geometry (ground truss or unit cell), force and boundary 

conditions, and statistical properties of the random variables have to be specified. Along 
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with this a starting initial guess is required for the algorithm to proceed. The reliability 

constraint is then evaluated for a small number of samples generated using Latin 

Hypercube Sampling. Each of these data-points is then marked as safe/unsafe depending 

on whether the limit state function was satisfied. This data is the training data for the 

ANN. Once the network is trained data points are generated using Monte Carlo Sampling 

(MCS) method and these values are projected on the network to check whether a data 

point represents a safe design or a design that can fail when it is exposed to uncertainty. 

Hence, the network classifies the data into the two classes. The ratio of the number of 

data points in the fail class and total number of data points gives the probability of 

failure. Once the Pf value is calculated, the optimization algorithm updates the design and 

marches along the steepest gradient towards the optimum. The convergence criterion 

specifies if the required optimum is reached. If an optimum is reached then the final value 

of the design variables is the required solution. Figure 3. 5 shows a flowchart for the 

discussed framework. 
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In case there is no prior knowledge of the limit state function it can be better to use the 

simulation based methods for reliability assessment since simulation based methods can 

handle discontinuous limit state functions as well as multiple limit state functions at the 

same time. To emphasis this feature of classification algorithms an example problem 

involving multiple limit state functions is solved next using probabilistic neural networks. 
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Figure 3. 5 Framework for RBTO using classification based RBTO 
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3.1.4 Overall Framework 

 

 

 

 

 

 

 

 

 

 

The overall framework for Reliability based Topology Optimization can be represented 

as in Figure 3. 6. This framework combines the efficacy of Moving Least Squares Local 

Regression method and the Classification procedure using Artificial Neural Networks. In 

the reliability assessment part of the algorithm, after the evaluation of the limit state 

function and preparing training data Local regression is used for constructing the 

surrogate model for evaluating the reliability constraint. The fit of local regression is then 

checked using the R2 statistic. If the value of R2 is acceptable then the reliability 

constraint is evaluated using samples generated using MCS. In case the value is not 

acceptable classification using artificial neural network can be used. The classification 

procedure using artificial neural networks is relatively more computationally expensive 

Figure 3. 6 Overall framework 
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than the local regression procedure. Hence it is used only if the local regression 

procedure fails to give satisfactory results.  

 One possible reason for not getting a good fit with local regression is in case of 

disjoint failure domain. The case of disjoint failure domain can be effectively 

encountered by classification approach as described in the previous sections. Hence this 

overall framework combines the effectiveness of both the local regression procedure and 

the classification based Artificial Neural Networks procedure.  

 This framework has been validated with the design of a hydrogen tank in the next 

section. The hydrogen tank is designed according to the design objectives for 2010. 
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CHAPTER 4 

EXAMPLES 

4.1 Stiffest Structure Design Problem 

The stiffest structure problem, namely the minimization of compliance (maximization of 

stiffness) for a given total mass of the structure, is considered to show the efficacy and 

applicability of the developed framework. The objective function in this case is the 

minimization of strain energy for the structure when the cross-sectional areas are the 

design variables. A volume constraint specifies the maximum amount of material that can 

be used for the layout of the truss structure. The optimization statement for the ground 

structure example is represented as 

 

Minimize:                          (4.1) 

Subject to:                  (4.2) 

              (4.3) 

                 (4.4) 

          Ku = F             (4.5) 

            

  Figure 4.1 represents a ground truss with three nodes on all four sides. The 

ground truss structure contains nine nodes in total and all nodes are pin-connected to each 

other with truss elements. The number of truss elements is 28. The boundary conditions 

of the nodes of the bottom part are fixed and a force of 100 N is applied at the top-right 

node. The length of each side of the square shaped ground structure is 100 mm and the 

Young’s modulus of the material used for the structure is assumed as 2.1×105 N/mm2 

with a Poisson’s ratio of 0.3. The upper bound on the cross-sectional area is taken as 10 
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mm2 and the lower bound is taken as 10-4  mm2. The cross sectional area is used as the 

design variable for this problem. 

 

    

 

  

 

Figure 4. 2(a) shows the optimum truss structure for the deterministic case, which does 

not include the reliability constraint as shown in Equation 4.2. Five truss elements are 

retained in the final solution. All the truss elements have a cross-sectional area at the 

upper limit of 10 mm2.  The rest of the truss elements converged to the lower bound. This 

F 

y 

x 

Figure 4. 1 Representation of a ground truss structure for solving stiffest structure problem 
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optimization problem was solved using the Sequential Quadratic Programming (SQP) 

method. As the number of elements are increased corresponding to the increase in the 

number of nodes in the x- and y-axes the time taken for convergence increases 

exponentially. This structure does not guarantee to resist failure in the wake of uncertain 

boundary conditions and material properties. For a truss structure to resemble a material 

design, the material structure should be able to endure various boundary conditions in the 

wake of uncertainty.  

 

 

 

         (a) Deterministic optimum             (b) Stochastic optimum 

 

 

For the stochastic optimization case, all the given conditions are the same as the 

deterministic problem except for the consideration of the reliability constraint (Equation 

4.2). The applied force, F, is considered as the random variable. It is assumed to be 

normally distributed, F~N (100 N, 15 N). To consider the constraint of the probability of 

failure, the limit state function is taken as the displacement, u, in the positive x-direction 

at the top-right node; namely, g(u)= (u - 0.013) meters. The structure is said to have 

failed if g(u) > 0. The target probability of failure level is chosen as, Pf = 10-4 in Equation 

4.2. 200 samples were generated using LHS, which would represent variable force on the 

Figure 4. 2 Optimum solutions 
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top right end node of the ground truss. The displacement at the top-right end node is 

calculated using the FEA for the 200 cases. In order to estimate the system response for 

subsequent cases a surrogate model is created using the local regression method. The 

probability of failure was calculated based on the number of displacement values for 

which g(u) > 0. The displacement values were calculated by projecting the 10,000 force 

values that were sampled using MCS on the local linear regression surface. The 

optimization problem was solved using SQP method and the optimized solution is shown 

in Figure 4. 2(b). The stochastic procedure distributed material in a wider space and 

contains more truss elements than the deterministic procedure. A higher number of truss 

elements connected to the point of application of the force helps to distribute the varying 

load more effectively. The obtained stochastic solution has a Pf value of 0.8×10-4 which 

represents a 53.6 % decrease in Pf  value from the deterministic solution. This decrease in 

Pf  value resulted in a 39.16 % increase in the volume of material compared to the 

volume used in the deterministic solution. Specifically, the deterministic solution resulted 

in a volume of 7.3x102 mm3 while the stochastic solution resulted in a volume of 

1.203x103 mm3. Hence based on the design requirements, a more reliable structure can be 

designed using RBTO method while using some more material than that is required for 

the deterministic optimization method. 

4.2 Hydrogen Storage Tank Design 

With the depleting oil resources and the increasing concern for the environment, the 

focus for research in the automotive, marine, and aerospace industries has been on 

alternative fuels.  A promising energy source that has had the attention of many 

researchers is hydrogen.  Hydrogen has shown to be a high rated alternative to gasoline 

by providing lower emission levels, high efficiency, and it can be produced and 

consumed continuously.  The two common methods for using hydrogen as an energy 

source is as a fuel cell to produce electricity, which is in turn, used to power an electric 
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motor or as a hydrogen powered combustion engine similar to the traditional gasoline 

engine.  For both methods, there exist technical difficulties in the use of hydrogen for 

commercial-level products. For instance, hydrogen has about three times greater energy 

content by weight than gasoline, but around four times less energy content by volume. 

For this reason, it is a difficult task to store hydrogen within the size and weight 

constraints for vehicular applications. One of the most technically difficult tasks 

impeding widespread use of hydrogen as an energy source is developing safe, reliable, 

compact, and cost-effective methods for storing hydrogen. Hydrogen-powered cars must 

be able to safely store sufficient amounts of hydrogen to travel more than 300 miles 

between fills in order to be competitive with conventional vehicles [73, 74]. This is a 

challenging task due to the significant amount of space required to store enough 

quantities of hydrogen. For light-duty vehicular applications the available compressed 

hydrogen tanks are larger and heavier than necessary.  A higher amount of hydrogen is 

able to be stored in liquefied hydrogen tanks as compared to compressed hydrogen 

storage; however energy is required to liquefy hydrogen and the required tank insulation 

has large impact on the weight and allowable volume of hydrogen stored. As well as 

different methods for storing hydrogen, there is an urgent need to create concepts for 

conformable high-pressure hydrogen tanks to cope with the difficulties in packaging 

conventional cylindrical tanks. 

 A possible solution to the above mentioned problems with compressed hydrogen 

storage tanks is the design of a storage tank utilizing mesostructures within the tank wall 

as structural support.  Since the tank is represented as a cylinder with constant radius with 

two hemispherical ends, analysis can be performed on half of the tank.  In addition, given 

that the internal pressure, P, of the tank acts equally throughout the internal surface, the 

analysis will be reduced to the optimization of a single 3D unit cell as shown in Figure 4. 

3. 
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This assumption allows one to utilize the reliability based topology optimization model 

described previously.  Since this model is used on a 2D unit cell, the optimized unit cell 

from the analysis is assumed to be the optimal cell, which is parallel to the cross-section 

of the cylindrical portion of the tank.  This results in the creation of a 3D unit cell that is 

then copied throughout the surface of the tank resulting in the final design.  

 From the information gained from the solid wall analysis, the chosen size of the 

unit cell is a square with dimensions equal to that of the thickness of the tank.  The stress 

on a thin walled pressure vessel with the geometry described above is broken up into the 

hoop stress, σh and radial stress σr which are determined as follows 

 

                                     (4.6) 

             

                           (4.7) 

Optimized 2-D 
truss orientation 

Cylinder Outer Wall 

Cylinder Inner 
Wall 

Figure 4. 3 Geometrical assumptions for designing the hydrogen tank 
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where P, r and t are obtained from the solid wall hydrogen tank optimization. Here P is 

the pressure inside the hydrogen tank, r is the internal radius of the cylindrical tank and t 

is the wall thickness of the tank. The various dimensions of the hydrogen tank are 

represented in Figure 4. 4. 

 
Figure 4. 4 Representation of various dimensions of the hydrogen tank 

 

In addition to the hoop and radial stresses there is an axial stress applied as a results of 

the closed ends of the tank. The axial stress has been neglected in this analysis. In cases 

where the height of the tank is not too large compared to the other dimensions of the tank 

the axial stress cannot be neglected. 

 In order to design the hydrogen storage tank specific objectives and constraints 

must be defined. The objectives chosen for the design of the tank are to minimize the 

volume of the gas (Volume) and the tank material volume or weight of the tank material 

(Weight). The constraints chosen for these objectives are based on the goals for hydrogen 

storage for fuel cell applications. The main targets for fuel cell technology for the years 

2010 and 2015 are shown in Table 5.  For this thesis the goals for 2010 are chosen as the 

basis for the constraints. 
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Table 5: Targets for hydrogen storage for 2010 and 2015 [75] 

 Targets for 2010  Targets for 2015  

Gravimetric Density (wt%)  6  9  

Volumetric Density (kg/m
3
)  45  81  

System Mass (kg)  83  55.6  

System Volume (m
3
)  0.111  0.062  

Min Operating Temp. (°C)  -30  -30  

Max Operating Temp. (°C)  85  85  

 

Most hydrogen storage tanks are cylindrical in shape with spherical ends as shown in 

Figure 4. 4.  The represented variables shown are the height, h, tank wall thickness, t, 

inner radius, rinner, and outer radius, router, which designate the main geometric design 

variables. 

 The volume of the gas is equal to the inner volume of the storage tank, shown in 

Figure 4. 4, and is calculated using Equation 4.8. 

 

                   (4.8) 

 

The volume of the tank material can be calculated using a similar equation with the 

addition of the outer radius term.  The equation for the tank material volume, Vtank, is 

shown in Equation 4.9. 

 

                (4.9) 
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In addition to the volume calculations, a model equation is needed to calculate the mass 

of hydrogen for a given set of design variables.  Since hydrogen is the lightest element, it 

needs to be compressed at high pressures to be able to store it.  Increasing pressures cause 

gases, including hydrogen, to lose their compressibility. For situations such as this, the 

equation of state is given by 

 

 PVsgas=zRT'                 (4.10) 

 

where P is the pressure, Vsgas the specific volume of the gas, z the compressibility factor, 

R is the universal gas constant (8.314 m3 Pa K-1 mol-1) and T the temperature.  

There are different methods for estimating the impact of increased pressure on the 

compressibility of gases. The Benedict-Webb-Rubin equation [76] has shown to be an 

accurate predictor of hydrogen state at high pressures which incorporates available 

compressibility.  From this equation the compressibility factor can be expressed as 

follows. 

 

         (4.11) 

 

where a, A0, b, B0, c, C0, α, and γ are Benedict-Webb-Rubin constants defined in [76].  

This equation combined with Equation 4.10 shows the relationship between the 

volumetric density and the pressure inside the tank.  However, the equation is a 6th order 

polynomial making evaluation of the density of hydrogen difficult.  A more simple 

equation to evaluate the compressibility accurately at high pressures is given in [77]. 

 

                (4.12) 
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Substituting this equation and the definition of specific volume into Equation 4.10 

produces Equation 4.13. 

 

               (4.13) 

 

The constant in the beginning of the equation represents the conversion from mol of 

hydrogen to kg of hydrogen based on the units of the universal gas constant, R.  Equation 

4.13 is used in this design problem to determine the mass of hydrogen in the tank for a 

specific set of design variables.  Equation 4.13 relates the calculated volume of the tank, 

temperature, and pressure to the mass of hydrogen.  To utilize this equation the pressure 

and temperature must be determined.  For this evaluation the temperature is going to be 

taken as an uncertain variable that is normally distributed.  The mean temperature is 

chosen to be 293.15 K with a standard deviation of 20 K based on the target 

specifications given in Table 5. 

 The following optimization problem is considered for the tank design. 

 
Minimize:     Volume and Weight 

Subject to:    0.10 ≤ r ≤ 0.30 m           (4.8) 

  0.0 ≤ h ≤ 1.0 m           (4.9) 

  0.01 ≤ t ≤ 0.250 m         (4.10) 

   Htotal ≤ 1.35          (4.11) 

   10 ≤ P ≤ 100 MPa           (4.12) 

                      (4.13) 

             (4.14) 
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where h is the height of cylindrical portion of the tank and Htotal  is the total height of the 

tank. The objective in this optimization problem is to maximize the amount of hydrogen 

contained inside the hydrogen tank as well as 

 The given storage tank used for the RBTO procedure has a length of 1.35 m and 

an inner radius for the cylindrical portion of the tank of 0.3 m.  The wall thickness is 

given as 8.29 mm.  The internal pressure of the tank is given as 25.4 MPa.  The storage 

tank is assumed to be made of a carbon composite with Young’s Modulus of 379 GPa, 

and a Poisson’s Ratio of 0.2. The target probability of failure for the mesoscale truss 

structure design is 10-4. 

 

 

 

Figure 4. 5 Initial structural layout for the RBTO procedure 
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From the information gained from the solid wall analysis, the chosen size of the unit cell 

for both cases is a square with dimensions equal to that of the thickness of the tank which 

is 8.29 mm.  From the given internal pressure, the hoop stress and radial stress are 

calculated using Eqs. (4.6) and (4.7).  Since the devised RBTO algorithm only accepts 

forces acting at nodes these stresses are converted to point loads acting at the bottom 

nodes of the unit cell.  The values of the forces due to these stresses are Fh=305072 N and 

Fr=152370 N.  The radial force is applied in the vertical direction as shown in Figure 4. 

5. The hoop force is applied to the bottom left node and the bottom right node in opposite 

directions which represents the tension applied to the bottom elements.  The assumed 

manufacturing uncertainties are accounted for by varying the Young’s Modulus.  The 

variation is modeled as a PDF with mean value of the noted Young’s Modulus of 

3.78x108 N/mm2 and a standard deviation of 10%. 

The upper bound of the cross-sectional area for the analysis is chosen to be 7 mm2.  

Variations in the volume fraction are used in order to determine an optimal truss 

orientation based on the RBTO method.  By verifying a consistency in the results from 

variations in volume fraction a validation of the important cross members can be 

obtained.  The chosen variation used in the analysis of the unit cell is 0.3, 0.4, and 0.5 for 

the volume fractions corresponding to a 70%, 60%, and 50% decrease in initial volume of 

the unit cell in Figure 4. 5.  The results of the analysis process are shown in Figure 4. 6. 

 

 (a) V=0.3       (b) V=0.4        (c) V=0.5 

 Figure 4. 6 Solutions for various volume fractions V 
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As can be seen from the results there are a number of elements that are not as important 

as others.  There is also a trend showing that more truss members are needed near the 

inner wall where the applied load is to absorb the energy from the internal pressure.  A 

very important observation can also be made from looking at these optimum designs as 

the volume fraction is decreased.  It is shown in Figure 4. 6 that there is a convergence 

towards specific truss members representing an optimal topology.  In Figure 4.6 (b) and 

Figure 4. 6(c) there is a constant overall orientation of truss members with only a change 

in cross-sectional area.  Therefore it is deduced that this topology is optimal for the 

application of the hydrogen storage tank.   

 A finite element model of the cylindrical portion of the hydrogen storage tank is 

created using the above information as stated previously.  The visualization of this 

portion of the tank is shown in Figure 4. 7. As can be seen from Figure 4. 7, the weight of 

the tank was reduced by 50% after this procedure while conserving the strength of the 

overall tank constant.  An experimental design using Latin Hypercube Scheme was 

considered with 200 samples. Local regression process was used for creating the 

surrogate model during every iteration of the optimization process. After the surrogate 

model was created 10,000 samples were created using Monte Carlo scheme to evaluate 

the probability of failure. The probability of failure of the optimized mesostructure was 

0.932x10-4. This probability of failure value was calculated using the surrogate-based 

framework. A crude Monte Carlo sampling scheme with 100,000 samples was used for 

validating this result. The probability of failure value calculated using the Monte Carlo 

Sampling scheme was 0.966x10-4. 
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(a) Iso-view    (b) Cross-section view    

 

(c) Applied mesostructure 

 
Figure 4. 7 Mesostructured hydrogen storage tank FEA model 

 
 

As can be seen from Figure 4. 7, the weight of the tank will be significantly reduced 

compared to that of a solid wall tank from the use of cellular structures. In particular, the 

storage tank designed using cellular structures has 227 cells along the circumference and 

88 cells along the length of the cylindrical section. This results in a total of 19,976 cell 

elements arranged together to form the cylindrical part of the storage tank. Since each 

cell consists of a volume of 338.224 mm3 the total volume of the cylindrical section of 

the storage tank is 6,756.36 cm3. In comparison the volume occupied by the cylindrical 
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section of a metallic hydrogen storage tank is 21.386.95 cm3. Therefore analyzing the 

above design and a tank comprising of a solid wall of the same dimensions and material 

that can endure the pressure of 25.4 MPa, the storage tank designed using cellular 

structures uses 68.41% less volume. Compared to a solid tank of the same dimensions as 

the mesostructured tank there is a significant improvement in the gravimetric density of 

the hydrogen storage tank. At a pressure of 25.4 Mpa the weight of hydrogen contained 

in the hydrogen tank is 9.492 kilograms for both the solid hydrogen tank and the 

mesostructured hydrogen tank. The gravimetric density, which is the ratio of mass of 

hydrogen in the tank to the mass of material of the tank, is 14.95% for a solid hydrogen 

tank whereas the gravimetric density for the mesostructured tank is 30.47%. Both of 

these values conform to the design requirements of 2010 and 2015. This design meets the 

goals of the optimization problem as well. In addition, the strength of the cellular 

structure tank can be compared to that of the solid wall tank through Finite Element 

Analysis.  The purposes of topology optimization and the use of cellular structures are to 

reduce the overall volume of the material with little to no effect to the overall reliability 

of the system.  Based on this statement it is hypothesized that further structural analysis 

of the cellular structure hydrogen storage tank will further validate this improved design. 
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CHAPTER 5 

CONCLUSION  

5.1 Contributions 

The current research focuses on integrating reliability analysis in the topology 

optimization procedure in order to design reliable truss structures. In addition to this the 

current thesis answers the age-old problem of estimating probability of failure in case of 

disjoint failure domain and low probability of failure. The major contributions of this 

research are summed below: 

 

• The topology optimization solutions obtained using the homogenization 

procedure has to go through post processing after running to optimization routine. 

Since the densities are not always 0 or 1 they have to be classified using an image 

processing application before they can be used. The ground structure based 

Topology optimization procedure used gives results that can be manufactured 

directly without the need of major post processing. Integrating reliability based 

optimization into the topology optimization procedure gives solutions that are not 

sensitive to fluctuating external and internal factors. Furthermore, since these 

results are obtained using the ground structure based topology optimization 

procedure they can be manufactured as they are obtained from the optimization 

procedure. 

 

• Local regression method has been used as a surrogate modeling technique for 

estimating the probability of failure to reduce the computational requirement of 

the Reliability-based Topology Optimization procedure. The Local regression 
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method is similar to the Moving Least squares method and it can be used when 

the failure domain is continuous. 

 

• In cases where the failure domain is not continuous a classification approach 

instead of a regression approach can be used for the approximation of the 

reliability constraint. In classification the reliability assessment problem is framed 

as a decision problem where every design is labeled as either safe or unsafe. This 

underlies the reliability assessment as a simple problem of counting the number of 

design points in the unsafe region.  

 

• It has been shown that Reliability based Topology Optimization provides design 

solutions with significantly lower probability of failure values. This reduction of 

probability of failure comes at a price. In case of topology optimization the low 

probability of failure underlies the use of more material than that is required by 

the Deterministic Topology Optimization solutions. 

 

• Local regression procedure has been integrated with Topology optimization 

procedure for this first time in this research. Furthermore, the classification based 

approach for estimating the probability of failure has been used for the first used 

along with Topology optimization procedure. In this research Artificial Neural 

Networks have been used for the classification procedure. The main advantage of 

using Neural Network for classification is their ease of use and their applicability 

for use as a black box model. Hence, even with less knowledge of the data mining 

techniques the designers can use Neural Networks for the classification procedure 

for reliability assessment. 
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• A final framework was presented that uses the classification approach once the 

regression procedure using Local regression fails to achieve the desired accuracy. 

Correlation Coefficient R2 is used as the parameter that determines the goodness 

of fit. In case R2 has a low value a classification approach is then used. This 

proposed framework was validated using a design problem that involved the 

design of a hydrogen tank according to certain design constraints.  

 

The following sections describe certain limitation of this research and further work that 

can improve the proposed framework and the design results. 

5.2 Limitations 

The research presents a novel application of classification based ANN and local 

regression within RBTO as surrogate modeling technique for approximating the limit 

state function. Nevertheless, it has the following limitations: 

 

• The optimization results have not manufactured and the prototypes were not 

tested for the conditions they were made for.  These mesostructures could 

possibly be made using additive manufacturing process where the prototyping 

process is divided into a layer based manufacturing process making it easier for 

prototyping even complex shapes. 

 

• The overall framework switches from Local regression technique to Classification 

using ANN procedure based on the goodness of fit. The statistic that has been 

used for characterizing the goodness of fit is the R2 value. While R2 values are the 

easiest to compute and use they are not good indicators of goodness of fit [78]. 

Mallow’s Cp, PRESS etc. could be better indicators of the goodness of fit for 

regression applications.  
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• The classification scheme using Artificial Neural Network is accurate but 

computationally inefficient compared to Support Vector Machines (SVM) which 

are better classification machines. But considering the ease of use which artificial 

neural networks provide, ANN was used for this research. 

 

• The groundstruss used for the topology optimization process is in two dimensions. 

For optimizing complex products and structures the design process has to be 

extended to three dimensions that would increase the computational requirement 

of the process immensely. Using a commercially available FEM application like 

GENESIS, ANSYS, NASTRAN could increase the range of problems that can be 

handled using the proposed framework.  

5.3 Future Work 

The current research answers the research questions and hence gives a framework that 

can produce reliable truss structures in the face of disjoint failure domains and nonlinear 

failure behavior. This framework is also effective in dealing with low probability of 

failure values. The efficacy of the RBTO procedure has been shown with the help of a 

truss design example and a hydrogen storage tank design example. Nevertheless, the 

current work can be improved by the following: 

 

• The optimization results can be prototyped and tested to check if they actually are 

insensitive to fluctuations of internal and external factors. 

 

• The finite element and ground truss used for the examples are limited to two 

dimensions, which could be easily extended to three dimensions by using a 

commercial FEM application. 
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• In the proposed final framework the goodness of fit criteria can be switched from 

the correlation coefficient R2 to a better goodness of fit parameter like PRESS 

which doesn’t depend on the number of parameters used for the regression 

procedure and which are more global in nature. 

 

• The hydrogen storage tank design shown in Figure 4. 7 should be validated using 

suitable FEA software such as NASTRAN, ANSYS, COMSOL etc. for it to be 

used in any real life application. 
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