16 research outputs found

    A generalized method for the transient analysis of Markov models of fault-tolerant systems with deferred repair

    Get PDF
    Randomization is an attractive alternative for the transient analysis of continuous time Markov models. The main advantages of the method are numerical stability, well-controlled computation error, and ability to specify the computation error in advance. However, the fact that the method can be computationally expensive limits its applicability. Recently, a variant of the (standard) randomization method, called split regenerative randomization has been proposed for the efficient analysis of reliability-like models of fault-tolerant systems with deferred repair. In this article, we generalize that method so that it covers more general reward measures: the expected transient reward rate and the expected averaged reward rate. The generalized method has the same good properties as the standard randomization method and, for large models and large values of the time t at which the measure has to be computed, can be significantly less expensive. The method requires the selection of a subset of states and a regenerative state satisfying some conditions. For a class of continuous time Markov models, class C'_2, including typical failure/repair reliability models with exponential failure and repair time distributions and deferred repair, natural selections for the subset of states and the regenerative state exist and results are available assessing approximately the computational cost of the method in terms of “visible” model characteristics. Using a large model class C'_2 example, we illustrate the performance of the method and show that it can be significantly faster than previously proposed randomizationbased methods.Postprint (published version

    A generalized method for the transient analysis of Markov models of fault-tolerant systems with deferred repair

    Get PDF
    Randomization is an attractive alternative for the transient analysis of continuous time Markov models. The main advantages of the method are numerical stability, well-controlled computation error and ability to specify the computation error in advance. However, the fact that the method can be computationally expensive limits its applicability. Recently, a variant of the (standard) randomization method, called split regenerative randomization has been proposed for the efficient analysis of reliability-like models of fault-tolerant systems with deferred repair. In this paper, we generalize that method so that it covers more general reward measures: the expected transient reward rate and the expected averaged reward rate. The generalized method has the same good properties as the standard randomization method and, for large models and large values of the time t at which the measure has to be computed, can be significantly less expensive. The method requires the selection of a subset of states and a regenerative state satisfying some conditions. For a class of continuous time Markov models, class C'_2, including typical failure/repair reliability models with exponential failure and repair time distributions and deferred repair, natural selections for the subset of states and the regenerative state exist and results are available assessing approximately the computational cost of the method in terms of “visible” model characteristics. Using a large model class C'_2 example, we illustrate the performance of the method and show that it can be significantly faster than previously proposed randomization-based methods.Preprin

    Techniques for the Fast Simulation of Models of Highly dependable Systems

    Get PDF
    With the ever-increasing complexity and requirements of highly dependable systems, their evaluation during design and operation is becoming more crucial. Realistic models of such systems are often not amenable to analysis using conventional analytic or numerical methods. Therefore, analysts and designers turn to simulation to evaluate these models. However, accurate estimation of dependability measures of these models requires that the simulation frequently observes system failures, which are rare events in highly dependable systems. This renders ordinary Simulation impractical for evaluating such systems. To overcome this problem, simulation techniques based on importance sampling have been developed, and are very effective in certain settings. When importance sampling works well, simulation run lengths can be reduced by several orders of magnitude when estimating transient as well as steady-state dependability measures. This paper reviews some of the importance-sampling techniques that have been developed in recent years to estimate dependability measures efficiently in Markov and nonMarkov models of highly dependable system

    Failure distance based bounds of dependability measures

    Get PDF
    El tema d'aquesta tesi és el desenvolupament de mètodes de fitació per a una classe de models de confiabilitat basats en cadenes de Markov de temps continu (CMTC) de sistemes tolerants a fallades.Els sistemes considerats a la tesi es conceptualitzen com formats per components (hardware o software) que fallen i, en el cas de sistemes reparables, són reparats. Els components s'agrupen en classes de forma que els components d'una mateixa classe són indistingibles. Per tant, un component és considerat com a una instància d'una classe de components i el sistema inclou un bag de classes de components definit sobre un cert domini. L'estat no fallada/fallada del sistema es determina a partir de l'estat no fallada/fallada dels components mitjançant una funció d'estructura coherent que s'especifica amb un arbre de fallades amb classes d'esdeveniments bàsics. (Una classe d'esdeveniment bàsic és la fallada d'un component d'una classe de components.)La classe de models basats en CMTC considerada a la tesi és força àmplia i permet, per exemple, de modelar el fet que un component pot tenir diversos modes de fallada. També permet de modelar fallades de cobertura mitjançant la introducció de components ficticis que no fallen per ells mateixos i als quals es propaguen les fallades d'altres components. En el cas de sistemes reparables, la classe de models considerada admet polítiques de reparació complexes (per exemple, nombre limitat de reparadors, prioritats, inhibició de reparació) així com reparació en grup (reparació simultània de diversos components). Tanmateix, no és possible de modelar la reparació diferida (és a dir, el fet de diferir la reparació d'un component fins que una certa condició es compleixi).A la tesi es consideren dues mesures de confiabilitat: la no fiabilitat en un instant de temps donat en el cas de sistemes no reparables i la no disponibilitat en règim estacionari en el cas sistemes reparables.Els mètodes de fitació desenvolupats a la tesi es basen en el concepte de "distància a la fallada", que es defineix com el nombre mínim de components que han de fallar a més dels que ja han fallat per fer que el sistema falli.A la tesi es desenvolupen quatre mètodes de fitació. El primer mètode dóna fites per a la no fiabilitat de sistemes no reparables emprant distàncies a la fallada exactes. Aquestes distàncies es calculen usant el conjunt de talls mínims de la funció d'estructura del sistema. El conjunt de talls mínims s'obté amb un algorisme desenvolupat a la tesi que obté els talls mínims per a arbres de fallades amb classes d'esdeveniments bàsics. El segon mètode dóna fites per a la no fiabilitat usant fites inferiors per a les distàncies a la fallada. Aquestes fites inferiors s'obtenen analitzant l'arbre de fallades del sistema, no requereixen de conèixer el conjunt de talls mínims i el seu càlcul és poc costós. El tercer mètode dóna fites per a la no disponibilitat en règim estacionari de sistemes reparables emprant distàncies a la fallada exactes. El quart mètode dóna fites per a la no disponibilitat en règim estacionari emprant les fites inferiors per a les distàncies a la fallada.Finalment, s'il·lustren les prestacions de cada mètode usant diversos exemples. La conclusió és que cada un dels mètodes pot funcionar molt millor que altres mètodes prèviament existents i estendre de forma significativa la complexitat de sistemes tolerants a fallades per als quals és possible de calcular fites ajustades per a la no fiabilitat o la no disponibilitat en règim estacionari.The subject of this dissertation is the development of bounding methods for a class of continuous-time Markov chain (CTMC) dependability models of fault-tolerant systems.The systems considered in the dissertation are conceptualized as made up of components (hardware or software) that fail and, for repairable systems, are repaired. Components are grouped into classes, the components of the same class being indistinguishable. Thus, a component is regarded as an instance of some component class and the system includes a bag of component classes defined over a certain domain. The up/down state of the system is determined from the unfailed/failed state of the components through a coherent structure function specified by a fault tree with basic event classes. (A basic event class is the failure of a component of a component class.)The class of CTMC models considered in the dissertation is quite wide and allows, for instance, to model the fact that a component may have different failure modes. It also allows to model coverage failures by means of introducing fictitious components that do not fail by themselves and to which uncovered failures of other components are propagated. In the case of repairable systems, the considered class of models supports very complex repair policies (e.g., limited repairpersons, priorities, repair preemption) as well as group repair (i.e., simultaneous repair of several components). However, deferred repair (i.e., the deferring of repair until some condition is met) is not allowed.Two dependability measures are considered in the dissertation: the unreliability at a given time epoch for non-repairable systems and the steady-state unavailability for repairable systems.The bounding methods developed in the dissertation are based on the concept of "failure distance from a state," which is defined as the minimum number of components that have to fail in addition to those already failed to take the system down.We develop four bounding methods. The first method gives bounds for the unreliability of non-repairable fault-tolerant systems using (exact) failure distances. Those distances are computed using the set of minimal cuts of the structure function of the system. The set of minimal cuts is obtained using an algorithm developed in the dissertation that obtains the minimal cuts for fault trees with basic event classes. The second method gives bounds for the unreliability using easily computable lower bounds for failure distances. Those lower bounds are obtained analyzing the fault tree of the system and do not require the knowledge of the set of minimal cuts. The third method gives bounds for the steady-state unavailability using (exact) failure distances. The fourth method gives bounds for the steady-state unavailability using the lower bounds for failure distances.Finally, the performance of each method is illustrated by means of several large examples. We conclude that the methods can outperform significantly previously existing methods and extend significantly the complexity of the fault-tolerant systems for which tight bounds for the unreliability or steady-state unavailability can be computed

    Reliability bounds for fault-tolerant systems with deferred repair using bounding split regenerative randomization

    No full text
    A numerically stable method is developed which computes seemingly tight bounds at a small computational cost relative to the model size, when that model size is large, for the unreliability and bounds for the unreliability using, respectively, exact and bounding failure/repair continuous-time Markov chain models of fault-tolerant systems with exponential failure and repair time distributions, in which repair is deferred until some condition on the collection of failed components is satisfied, and, then, proceeds until reaching the state without failed components, with failure rates much smaller than repair rates and not too different output rates from states with deferred repair

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore