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Catalunya, Barcelona, Spain

Randomization is an attractive alternative for the transient analysis of continuous
time Markov models. The main advantages of the method are numerical stability,
well-controlled computation error, and ability to specify the computation error
in advance. However, the fact that the method can be computationally expensive
limits its applicability. Recently, a variant of the (standard) randomization method,
called split regenerative randomization has been proposed for the efficient analysis
of reliability-like models of fault-tolerant systems with deferred repair. In this
article, we generalize that method so that it covers more general reward measures:
the expected transient reward rate and the expected averaged reward rate. The
generalized method has the same good properties as the standard randomization
method and, for large models and large values of the time t at which the
measure has to be computed, can be significantly less expensive. The method
requires the selection of a subset of states and a regenerative state satisfying some
conditions. For a class of continuous time Markov models, class C′

2, including
typical failure/repair reliability models with exponential failure and repair time
distributions and deferred repair, natural selections for the subset of states and
the regenerative state exist and results are available assessing approximately the
computational cost of the method in terms of “visible” model characteristics. Using
a large model class C′

2 example, we illustrate the performance of the method and
show that it can be significantly faster than previously proposed randomization-
based methods.

Keywords Continuous-time Markov chains; Deferred repair; Fault-tolerant
systems; Randomization; Transient analysis.

Mathematics Subject Classification 60J22.

Received September 3, 2004; Accepted November 19, 2004
Address correspondence to Juan A. Carrasco, Departament d’Enginyeria Electrònica,

Universitat Politècnica de Catalunya, Diagonal 647, plta. 9, Barcelona 08028, Spain; E-mail:
carrasco@eel.upc.edu

631

D
ow

nl
oa

de
d 

by
 [

M
ar

y 
A

nn
 M

ul
le

r]
 a

t 0
7:

05
 2

1 
Ja

nu
ar

y 
20

14
 



632 Temsamani and Carrasco

1. Introduction

Repair deferment is an interesting approach in fault-tolerant systems in which
actions of replacement of failed components are expensive, for instance, because
the system is located at a remote site. Clearly, there are several tradeoffs that can
be analyzed in fault-tolerant systems with deferred repair. One of them could be
an appropriate repair-deferment policy: a policy allowing many faults to happen
before starting repair could result in too a small system’s reliability. These and other
tradeoffs can be studied with the aid of models. Homogeneous continuous time
Markov chain (CTMC) models are frequently used to analyze the reliability and
performability of fault-tolerant systems. To illustrate such models, Fig. 1 depicts a
small reliability CTMC model of a fault-tolerant system with deferred repair using
the pair-and-spare technique (Johnson, 1989), in which active modules have failure
rate �M, the spare module does not fail, the failure of an active module is “soft” with
probability SM and “hard” with probability 1− SM, and whether soft or hard, the
failure of an active module is covered with probability CM. Modules in soft failure
mode are independently recovered at rate �S and modules in hard failure mode are
repaired by a single repairman at rate �H. Repair is deferred till two modules are
failed and, when that condition is reached, repair proceeds till reaching the state 1
without failed components, unless the system fails before. The states with deferred
repair are states 2 and 3.

Rewarded CTMC models have emerged in the last years as a useful modeling
paradigm. Let X = �X�t�� t ≥ 0� be a CTMC with state space � modeling the system
under study. In this article, we will consider rewarded CTMC models obtained by
defining a reward rate structure ri ≥ 0, i ∈ �. The quantity ri has the meaning of
“rate” at which reward is earned while X is in state i. In that context, two useful
measures to consider are the expected transient reward rate ETRR�t� = E	rX�t�
 and

Figure 1. CTMC reliability model of a repairable fault-tolerant system with deferred repair
using the pair-and-spare technique.
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A Generalized Method for the Transient Analysis 633

the expected averaged reward rate EARR�t� = E	�1/t�
∫ t

0 rX��� d�
. As examples of
instances of those generic measures, consider a CTMC modeling a fault-tolerant
system with deferred repair that can be up or down, and assume that a reward rate
0 is assigned to the states in which the system is up and a reward rate 1 is assigned
to the states in which the system is down. Then, ETRR�t� would be the unavailability
of the system at time t and EARR�t� would be the expected interval unavailability
at time t (i.e., the expected value of the fraction of time that the system is down in
the interval 	0� t
). The reward rates could also represent the “performance” rate of
the system and, then, the ETRR�t� measure would be the expected performance rate
of the system at time t and the EARR�t� measure would be the expected averaged
performance rate of the system during the time interval 	0� t
.

Computation of the ETRR�t� and EARR�t� measures involves the transient
analysis of X. Randomization (also called uniformization) is a well-known method
for performing such analysis. The randomization method is attractive because it
is numerically stable and, unlike ODE solvers (Malhotra et al., 1994; Malhotra,
1996; Reibman and Trivedi, 1988) the computation error is well controlled and
can be specified in advance. It was first proposed by Grassman (1977) and has
been further developed by Gross and Miller (1984). The randomization method is
based on the following result (Kijima, 1997, Theorem 4.19). Let �i�j , i� j ∈ �, j �= i,
be the transition rate of X from state i to state j and let �i =

∑
j∈�−�i� �i�j , i ∈ �,

be the output rate of X from state i. Consider any 
 ≥ maxi∈� �i and define
the homogeneous discrete time Markov chain (DTMC) X̂ = �X̂n� n = 0� 1� 2� � � � �
with same state space and initial probability distribution as X and transition
probabilities P	X̂n+1 = j � X̂n = i
 = Pi�j = �i�j/
, i ∈ �, j �= i, P	X̂n+1 = i � X̂n = i
 =
Pi�i = 1− �i/
, i ∈ �. Let Q = �Q�t�� t ≥ 0� be a Poisson process with arrival
rate 
 independent of X̂ (P	Q�t� = n
 = e−
t�
t�n/n!). Then, X = �X�t�� t ≥ 0� is
probabilistically identical to �X̂Q�t�� t ≥ 0�. We call this the randomization result.
We will review next typical implementations of the randomization method for the
computation of the ETRR�t� and EARR�t� measures.

Using the randomization result, we can express ETRR�t� as

ETRR�t� =
�∑
n=0

d�n�e−
t �
t�n

n! �

with d�n� =∑
i∈� riP	X̂n = i
, and, using EARR�t� = �1/t�

∫ t

0 ETRR��� d� and
∫ t

0 e
−
�

�
��n/n!d� = �1/
�
∑�

l=n+1 e
−
t�
t�l/l!, we can express EARR�t� as

EARR�t� = 1

t

�∑
n=0

d�n�
�∑

l=n+1

e−
t �
t�l

l! �

In a practical implementation of the randomization method, approximate values for
ETRR�t�, ETRRa

N �t�, and EARR�t�, EARRa
N �t�, are obtained by truncating the above

summatories:

ETRRa
N �t� =

N∑
n=0

d�n�e−
t �
t�n

n! �

EARRa
N �t� =

1

t

N∑
n=0

d�n�
N+1∑
l=n+1

e−
t �
t�l

l! = 1

t

N+1∑
n=1

( n−1∑
l=0

d�l�

)
e−
t �
t�n

n! �
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634 Temsamani and Carrasco

Taking into account 0 ≤ d�n� ≤ rmax = maxi∈� ri, it can be easily shown that both
ETRR�t�− ETRRa

N �t� and EARR�t�− EARRa
N �t� are ≥ 0 and are upper bounded by

rmax
∑�

n=N+1 e
−
t�
t�n/n! Then, being � an error control parameter, N is chosen as

N = min

{
m ≥ 0 � rmax

�∑
n=m+1

e−
t �
t�n

n! ≤ �

}
�

guaranteeing an absolute error ≤ � in both ETRR�t� and EARR�t�. Let q�n� be the
row vector �P	X̂n = i
�i∈� and let P = �Pi�j�i�j∈� be the transition probability matrix
of X̂. Computation of ETRRa

N �t� and EARRa
N �t� requires the knowledge of q�n�,

0 ≤ n ≤ N . Vector q�0� is known, since it is the initial probability row vector of X.
Vectors q�n�, 0 < n ≤ N can be computed from q�0� using

q�n+ 1� = q�n�P� (1.1)

Stable and efficient computation of the Poisson probabilities e−
t�
t�n/n!
avoiding overflows and intermediate underflows is a delicate issue and several
alternatives have been proposed (see Bowerman et al., 1990; Fox and Glynn, 1988;
Knüsel, 1986; Moorsel and Sanders, 1997). Our implementation of all randomization-
based methods will use the approach described in (Knüsel, 1986, pp. 1028–1029)
(see also Abramowitz and Stegun, 1964), which has good numerical stability.

For large models, the computational cost of the randomization method is
roughly due to the N vector-matrix multiplications (1.1). The truncation parameter
N increases with 
t and, for that reason, 
 is usually taken equal to maxi∈� �i.
Using the well-known result (Ross, 1983, Theorem 3.3.5) that Q�t� has for 
t → �
an asymptotic normal distribution with mean and variance 
t, it is easy to realize
that, for large 
t and � 	 1, the required N will be ≈ 
t. Then, if the model is
large and has to be solved for values of t for which 
t is large, the randomization
method will be expensive.

Several variants of the (standard) randomization method have been proposed
to improve its efficiency. Miller (1983) has used selective randomization to solve
reliability models with detailed representation of error handling activities. The
idea behind selective randomization (Melamed and Yadin, 1984) is to randomize
the model only in a subset of the state space. Reibman and Trivedi (1988) have
proposed an approach based on the multistep concept. The idea is to compute PM

explicitly, where M is the length of the multistep, and use the recurrence q�n+M� =
q�n�PM to advance X̂ faster for steps which have negligible contributions to the
transient solution of X at time t. Since, for large 
t, the number of q�n�’s with
significant contributions is of the order of

√

t, the multistep concept allows a

significant reduction of the required number of vector-matrix multiplications when

t is large. However, when P is sparse, significant fill-in can occur when computing
PM . Adaptive uniformization (Moorsel and Sanders, 1994) is a method in which
the randomization rate is adapted depending on the states in which the randomized
DTMC can be at a given step. Numerical experiments have shown that adaptive
uniformization can be faster than standard randomization for short to medium
mission times. In addition, it can be used to solve models with infinite state spaces
and not uniformly bounded output rates. Recently, it has been proposed to combine
adaptive uniformization and standard randomization to obtain a method which
outperforms both adaptive uniformization and standard randomization for most
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A Generalized Method for the Transient Analysis 635

models (Moorsel and Sanders, 1997). Steady-state detection (Malhotra et al., 1994)
is another proposal to speed up the standard randomization method. A method
based on steady-state detection with error bounds has been developed (Sericola,
1999). Steady-state detection is useful for models which reach their steady-state
before the largest time at which the measure has to be computed. Another recently
proposed randomization-based method is regenerative randomization (Carrasco,
2002b, 2003). That method covers rewarded CTMC models X with finite state
space � = S ∪ �f1� f2� � � � � fA�, A ≥ 0, satisfying some conditions. In the method, a
truncated transformed model is obtained having the same measure as the original
model with some arbitrarily small error and the truncated transformed model
is, then, solved by standard randomization. The method requires the selection
of a regenerative state r ∈ S and its performance depends on that selection. The
truncated transformed model is constructed by characterizing with enough accuracy
the behavior of the original model from S′ = S − �r� up to state r or a state fi
and from r until next hit of r or a state fi, and its size depends on how fast the
randomized DTMC X̂ of X with a randomization rate slightly larger than maxi∈� �i
hits with high probability r or a state fi starting at a state in S′. For large enough
models and large enough t, regenerative randomization will be significantly more
efficient than standard randomization. Furthermore, for a class of models, class C′,
including typical failure/repair models with exponential failure and repair time
distributions and repair in every state with failed components, a natural selection
for the regenerative state exists and theoretical results are available assessing
approximately the performance of the method for that natural selection in terms of
“visible” model characteristics. The bounding regenerative randomization method
(Carrasco, 2002a) allows to compute inexpensively tight bounds for a certain class
of models, class C′′, including typical failure/repair reliability-like models with
exponential failure and repair time distributions and repair in every state with failed
components. Randomization with quasistationarity detection (Carrasco, 2004) is
another recently proposed randomization-based method. The method is applicable
to CTMC models with state space S ∪ �f1� � � � � fA�, where the states fi, 1 ≤ i ≤ A,
are absorbing and all states in S are transient and reachable from each other, and
is based on the existence of a quasistationary distribution in the subset of transient
states of DTMCs with a certain structure. For those models and large t the method
can be significantly more efficient than the standard randomization method.

Recently, Temsamani and Carrasco (2004) have proposed a method called split
regenerative randomization that is specifically targeted to the transient analysis of
CTMC models of fault-tolerant systems with deferred repair. The method covers
CTMCs X with finite state space � = S ∪ �f1� f2� � � � � fA�, �S� ≥ 3, A ≥ 1, where fi
are absorbing states and S has to satisfy some conditions, and allows to compute
the measure m�t� =∑A

i=1 rfiP	X�t� = fi
, where all rfi are different and ≥0. The
method requires the selection of a subset E of states and a regenerative state r. For
a class of CTMC models, model class C2, including typical failure/repair models
of fault-tolerant systems with exponential failure and repair time distributions and
deferred repair, natural selections for E and r exist and, for those natural selections,
theoretical results are available predicting approximately the computational cost of
the method. Numerical experiments have shown that, for models in that class, the
method can be significantly faster than all other randomization-based methods.

In this article we generalize the split regenerative randomization method. The
generalized method considers the same class of CTMCs as the previously proposed

D
ow

nl
oa

de
d 

by
 [

M
ar

y 
A

nn
 M

ul
le

r]
 a

t 0
7:

05
 2

1 
Ja

nu
ar

y 
20

14
 



636 Temsamani and Carrasco

split regenerative randomization method with A ≥ 01 and allows to compute the
ETRR�t� and EARR�t� measures with an arbitrary reward rate structure ri ≥ 0, i ∈ �.
The method has the same good properties as standard randomization (numerical
stability, well-controlled computation error, and ability to specify the computation
error in advance) and can be much faster than that method. In fact, it can be
proved that the computational cost of the method increases smoothly with t. That
property is called “benign” behavior. For a class of rewarded CTMC models, class
C′

2, generalizing model class C2, the computational cost of the generalized method
can be predicted approximately. The rest of the article is organized as follows.
Section 2 develops the generalized method. Section 3 states the benign behavior of
the method, discusses qualitatively the efficiency of the method compared with that
of standard randomization, defines randomization, defines the model class C′

2, and
discusses how the computational cost of the method for those models can be predicted
approximately. Using a large class C′

2 model, Sec. 4 analyzes the performance of
the method and compares it with that of standard randomization, regenerative
randomization, randomization with quasistationarity detection and, for ETRR�t�,
adaptive uniformization, which has been shown (Moorsel and Sanders, 1994) to
improve the performance of standard randomization for failure/repair models with
deferred repair for short to mediummission times. Finally, Sec. 5 concludes the article.

2. The Generalized Method

The method covers rewarded CTMCs X with finite state space � and selections of
the subset of states E and the regenerative state r such that, letting E′ = E − �r� and
E = S − E, the following conditions are satisfied:

C1. � = S ∪ �f1� � � � � fA�, �S� ≥ 3, A ≥ 0, where the states fi, 1 ≤ i ≤ A, are
absorbing and either all states in S are transient or S includes a single recurrent
class of states C ⊂ S.

C2. All states are reachable (from some state with nonnull initial probability).
C3. ri ≥ 0, i ∈ �, and all rfi are different.
C4. E ⊂ S.
C5. r ∈ E and if X includes a single recurrent class of states C ⊂ S, r ∈ C.
C6. �E� ≥ 2.
C7. �E� ≥ 1.
C8. r can only be entered from E (�i�r = 0, i ∈ E′).
C9. r is the only entry point in E (�i�j = 0, i ∈ E, j ∈ E′).
C10. �r�j > 0 for some j ∈ E′.

Condition C10 can be easily circumvented in practice by adding, in case �r�j = 0 for
all j ∈ E′, a tiny transition rate � ≤ 10−10�/�2rmaxtmax� from r to some state in E′,
where � is the allowed error, rmax = maxi∈� ri, and tmax is the largest time at which
the measure has to be computed, introducing an error ≤ 10−10� in both ETRR�t�
and EARR�t�, t ≤ tmax (see Carrasco, 2003). Also, if X has a single recurrent class of
states C ⊂ S, by conditions C5 and C10, �C� ≥ 2, since �C� = 1 would imply through
condition C5 that r would be absorbing, in contradiction with condition C10.

1The case A = 0 was not previously considered because in that case the m�t� measure is
identical to 0. The developments made in Temsamani and Carrasco (2004) for the case A ≥ 1
carry immediately to the more general case A ≥ 0 considered here.
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A Generalized Method for the Transient Analysis 637

Therefore, when the method is applicable, f1� f2� � � � � fA have to be the only
absorbing states. This makes it easy to check whether the method is applicable
to a given finite CTMC with given selections for E and r. The part ri ≥ 0, i ∈ �,
from condition C3 can be circumvented by shifting the reward rates by a positive
quantity d so that all new reward rates r ′i = ri + d are ≥ 0. The ETRR�t� and
EARR�t� measures of the original rewarded CTMC are related to the corresponding
measures, ETRR′�t� and EARR′�t�, of the rewarded CTMC with shifted reward rates
by ETRR�t� = ETRR′�t�− d and EARR�t� = EARR′�t�− d. The part that all reward
rates of states fi are different from condition C3 can be obviated by merging
absorbing states with same reward rate. Finally, condition C2 can be obviated by
deleting non-reachable states.

In the following, we will let �i = P	X�0� = i
, �C =∑
i∈C �i, C ⊂ �, and

�i�C =∑
j∈C �i�j , C ⊂ �− �i�. Also, given a DTMC Y = �Yn� n = 0� 1� 2� � � � �, we will

use the notation Yl�mc for the predicate which is true when Yn satisfies condition c
for all n, l ≤ n ≤ m (by convention, the predicate will be true for l > m) and #�Yl�mc�
for the number of indices n, l ≤ n ≤ m, for which Yn satisfies condition c.

In the generalized method, a truncated transformed rewarded CTMC model
is built with having error ≤�/2 the same ETRR�t� and EARR�t� measures as the
original rewarded CTMC model X and the ETRR�t� (EARR�t�) measure of the
truncated transformed rewarded CTMC model is computed with error ≤�/2 using
the standard randomization method.

Let X̂ be the DTMC obtained by randomizing X with rate 
E in E and rate

E in E ∪ �f1� f2� � � � � fA�, where 
E is slightly larger than maxi∈E �i and 
E is
slightly larger than maxi∈E �i, e.g., 
E = �1+ ��maxi∈E �i, 
E = �1+ ��maxi∈E �i,
where � is a small quantity, say, 10−4. The DTMC X̂ has same state space
and initial probability distribution as X and transition probabilities Pi�j = �i�j/
E ,
i ∈ E, j �= i, Pi�i = 1− �i/
E , i ∈ E, Pi�j = �i�j/
E , i ∈ E ∪ �f1� f2� � � � � fA�, j �= i,
Pi�i = 1− �i/
E , i ∈ E ∪ �f1� f2� � � � � fA�. Note that Pi�i > 0, i ∈ �. We will say that
X̂ is the randomized DTMC of X with randomization rate 
E in E and 
E in
E ∪ �f1� f2� � � � � fA� and that X is the derandomized CTMC of X̂ with randomization
rate 
E in E and 
E in E ∪ �f1� f2� � � � � fA�. In the following we will let Pi�C =∑

j∈C Pi�j , C ⊂ �.
As in Temsamani and Carrasco (2004), to develop the generalized method

we will find it convenient to consider three DTMCs. The first one, Z = �Zn�
n = 0� 1� 2� � � � �, follows X̂ from r till re-entry in r. Formally, Z can be defined from
a version, X̂′, of X̂ with initial state r as

Z0 = r�

Zn =
{
i if X̂′

1�n �= r ∧ X̂′
n = i� i ∈ S′ ∪ �f1� f2� � � � � fA��

a if #�X̂′
1�n = r� > 0�

The DTMC Z has state space S ∪ �f1� f2� � � � � fA� a�, where fi, 1 ≤ i ≤ A, and a are
absorbing states and all states in S are transient (Proposition 5 in Temsamani and
Carrasco, 2004), and its (possibly) nonnull transition probabilities are:

P	Zn+1 = j �Zn = i
 = Pi�j� i ∈ S� j ∈ S′ ∪ �f1� f2� � � � � fA��

P	Zn+1 = a �Zn = i
 = Pi�r � i ∈ S�

P	Zn+1 = fi �Zn = fi
 = P	Zn+1 = a �Zn = a
 = 1� 1 ≤ i ≤ A�
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638 Temsamani and Carrasco

The second DTMC, Z′ = �Z′
n� n = 0� 1� 2� � � � �, follows X̂ from E′ till its first visit

to r. Formally, Z′ can be defined from X̂ as

Z′
n =

{
i if X̂0 ∈ E′ ∧ X̂1�n �= r ∧ X̂n = i� i ∈ S′ ∪ �f1� f2� � � � � fA��

a otherwise�

The DTMC Z′ has state space S′ ∪ �f1� f2� � � � � fA� a�, where fi, 1 ≤ i ≤ A, and a
are absorbing states and all states in S′ are transient (Proposition 6 in Temsamani
and Carrasco, 2004). The initial probability distribution of Z′ is P	Z′

0 = i
 = �i,
i ∈ E′, P	Z′

0 = i
 = 0, i ∈ E ∪ �f1� f2� � � � � fA�, P	Z′
0 = a
 = ��r�∪E∪�f1�f2�����fA�, and its

(possibly) nonnull transition probabilities are:

P	Z′
n+1 = j �Z′

n = i
 = Pi�j� i ∈ S′� j ∈ S′ ∪ �f1� f2� � � � � fA��

P	Z′
n+1 = a �Z′

n = i
 = Pi�r � i ∈ S′�

P	Z′
n+1 = fi �Z′

n = fi
 = P	Z′
n+1 = a �Z′

n = a
 = 1� 1 ≤ i ≤ A�

The third DTMC, Z′′ = �Z′′
n� n = 0� 1� 2� � � � �, follows X̂ from E till its first visit to

state r. Z′′ can be defined from X̂ as (note that, by condition C9, the only entry
point of X̂ in E is state r)

Z′′
n =

{
i if X̂0 ∈ E ∧ X̂1�n �= r ∧ X̂n = i� i ∈ E ∪ �f1� f2� � � � � fA��

a otherwise�

The DTMC Z′′ has state space E ∪ �f1� f2� � � � � fA� a�, where fi, 1 ≤ i ≤ A, and a are
absorbing states and all states in E are transient (Proposition 7 in Temsamani and
Carrasco, 2004). The initial probability distribution of Z′′ is P	Z′′

0 = i
 = �i, i ∈ E,
P	Z′′

0 = fi
 = 0, 1 ≤ i ≤ A, P	Z′′
0 = a
 = �E∪�f1�f2�����fA�, and its (possibly) nonnull

transition probabilities are:

P	Z′′
n+1 = j �Z′′

n = i
 = Pi�j� i ∈ E� j ∈ E ∪ �f1� f2� � � � � fA��

P	Z′′
n+1 = a �Z′′

n = i
 = Pi�r � i ∈ E�

P	Z′′
n+1 = fi �Z′′

n = fi
 = P	Z′′
n+1 = a �Z′′

n = a
 = 1� 1 ≤ i ≤ A�

Let P = �Pi�j�i�j∈� be the transition probability matrix of X̂. Denoting by PC′�C′′ ,
C ′� C ′′ ⊂ �, the subblock of P collecting the transition probabilities from states in C′

to states in C ′′ and letting P′
E�E the matrix identical to PE�E except that the elements

of the column corresponding to state r are 0, the transition probability matrix of Z
restricted to its subset of transient states, S, has, with the ordering of states E�E,
the form:

PZ =
(
P′

E�E PE�E

0 PE�E

)
�

where 0 is a matrix of all zeroes of appropriate dimensions. The restriction of the
transition probability matrix of Z′ to its subset of transient states, S′, has with the
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A Generalized Method for the Transient Analysis 639

ordering of states E′, E the form:

PZ′ =
(
PE′�E′ PE′�E

0 PE�E

)
�

The transition probability matrix of Z′′ restricted to its subset of transient states, E, is

PZ′′ = PE�E�

Let �i�n� = P	Zn = i
, i ∈ E, �i�n� l� = P	Zn ∈ E ∧ Zn+1�n+l ∈ E ∧ Zn+l = i
, i ∈ E,
�′
i�n� = P	Z′

n = i
, i ∈ E′, �′
i�n� l� = P	Z′

n ∈ E′ ∧ Z′
n+1�n+l ∈ E ∧ Z′

n+l = i
, i ∈ E, and
�′′
i �n� = P	Z′′

n = i
, i ∈ E, and consider the row vectors ��n� = ��i�n��i∈E , ��n� l� =
��i�n� l��i∈E , �′�n� = ��′

i�n��i∈E′ , �′�n� l� = ��′
i�n� l��i∈E , and �′′�n� = ��′′

i �n��i∈E .
Assuming that, within E, state r is numbered first, those vectors, can be computed
for n ≥ 0, l ≥ 1 using:

��0� = �100 · · · 0��
��n+ 1� = ��n�P′

E�E� n ≥ 0�

��n� 1� = ��n�PE�E� n ≥ 0�

��n� l+ 1� = ��n� l�PE�E� l ≥ 1�

�′�0� = ��i�i∈E′ �

�′�n+ 1� = �′�n�PE′�E′ � n ≥ 0�

�′�n� 1� = �′�n�PE′�E� n ≥ 0�

�′�n� l+ 1� = �′�n� l�PE�E� l ≥ 1�

�′′�0� = ��i�i∈E�

�′′�n+ 1� = �′′�n�PE�E� n ≥ 0�

To define the truncated transformed model we will consider a discrete-time
stochastic process V̂ = �V̂n� n = 0� 1� 2� � � � � defined from X̂ as:

V̂n =



sk if 0 ≤ k ≤ n ∧ X̂n−k = r ∧ X̂n−k+1�n ∈ E′�
sk�l if 0 ≤ k ≤ n− 1 ∧ 1 ≤ l ≤ n− k ∧ X̂n−k−l = r

∧ X̂n−k−l+1�n−l ∈ E′ ∧ X̂n−l+1�n ∈ E�

s′n if X̂0�n ∈ E′�
s′k�n−k if 0 ≤ k ≤ n− 1 ∧ X̂0�k ∈ E′ ∧ X̂k+1�n ∈ E�

s′′n if X̂0�n ∈ E�

fi if X̂n = fi�

In words, V̂n = sk if, by step n, X̂ has not left S, has visited r, the last time it visited
r was k steps before, and has not left E since then; V̂n = sk�l if X̂ has not left S, has
visited r , the last time it visited r was k+ l steps before and, since then, has been
first k+ 1 steps in E and, after that, l steps in E; V̂n = s′n if, by step n, X̂ has not
left E′; V̂n = s′k�n−k if, by step n, X̂ has been in E′ the first k+ 1 steps and, after that,
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640 Temsamani and Carrasco

has been in E n− k steps; V̂n = s′′n if, by step n, X̂ has not left E; and V̂n = fi if, by
step n, X̂ has been absorbed into fi. Note that V̂n = s0 if and only if X̂n = r and that
V̂n = fi if and only if X̂n = fi. Let

a�k� =∑
i∈E

�i�k�� (2.1)

a�k� l� =∑
i∈E

�i�k� l�� (2.2)

a′�k� = ∑
i∈E′

�′
i�k�� (2.3)

a′�k� l� =∑
i∈E

�′
i�k� l�� (2.4)

a′′�k� =∑
i∈E

�′′
i �k�� (2.5)

wk =
∑

i∈E �i�k�Pi�E′

a�k�
� (2.6)

vik =
∑

j∈E �j�k�Pj�fi

a�k�
� (2.7)

hk =
∑

i∈E �i�k�Pi�E

a�k�
� (2.8)

wk�l =
∑

i∈E �i�k� l�Pi�E

a�k� l�
� (2.9)

qk�l =
∑

i∈E �i�k� l�Pi�r

a�k� l�
� (2.10)

vik�l =
∑

j∈E �j�k� l�Pj�fi

a�k� l�
� (2.11)

w′
k =

∑
i∈E′ �′

i�k�Pi�E′

a′�k�
� (2.12)

v′ik =
∑

j∈E′ �′
j�k�Pj�fi

a′�k�
� (2.13)

h′
k =

∑
i∈E′ �′

i�k�Pi�E

a′�k�
� (2.14)

w′
k�l =

∑
i∈E �′

i�k� l�Pi�E

a′�k� l�
� (2.15)

q′
k�l =

∑
i∈E �′

i�k� l�Pi�r

a′�k� l�
� (2.16)

v′ik�l =
∑

j∈E �′
j�k� l�Pj�fi

a′�k� l�
� (2.17)
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A Generalized Method for the Transient Analysis 641

w′′
k =

∑
i∈E �′′

i �k�Pi�E

a′′�k�
� (2.18)

q′′
k =

∑
i∈E �′′

i �k�Pi�r

a′′�k�
� (2.19)

v′′ik =
∑

j∈E �′′
j �k�Pj�fi

a′′�k�
� (2.20)

Note that, being Pr�E′ > 0 (by condition C10) and Pi�i > 0, i ∈ E′, there will exist
i ∈ E with �i�k� > 0 for all k ≥ 0, implying a�k� > 0 for all k ≥ 0. Also, for k such
that a�k� 1� > 0, we have �i�k� 1� > 0 for some i ∈ E and, since Pi�i > 0, i ∈ E, there
will exist i ∈ E with �i�k� l� > 0 for all l ≥ 1, implying a�k� l� > 0 for all l ≥ 1.
In addition, assuming �E′ > 0, �′

i�0� > 0 for some i ∈ E′ and, since Pi�i > 0, i ∈ E′,
there will exist i ∈ E′ with �′

i�k� > 0 for all k ≥ 0, implying a′�k� > 0 for all k ≥ 0.
Assuming �E′ > 0, for k such that a′�k� 1� > 0, �′

i�k� 1� > 0 for some i ∈ E and, since
Pi�i > 0, i ∈ E, there will exist i ∈ E with �′

i�k� l� > 0, implying a′�k� l� > 0 for all
l ≥ 1. Finally, assuming �E > 0, �′′

i �0� > 0 for some i ∈ E and, since Pi�i > 0, i ∈ E,
there will exist i ∈ E with �′′

i �k� > 0 for all k ≥ 0, implying a′′�k� > 0 for all k ≥ 0.
Assume �E′ > 0 and �E > 0. Then, it has been shown in Temsamani and

Carrasco (2004) that V̂ is a DTMC with reachable state space EV ∪ EV ∪
�f1� f2� � � � � fA�, EV = �sk� k ≥ 0� ∪ �s′k� k ≥ 0�, EV = �sk�l � k ≥ 0 ∧ a�k� 1� > 0 ∧
l ≥ 1� ∪ �s′k�l � k ≥ 0 ∧ a′�k� 1� > 0 ∧ l ≥ 1� ∪ �s′′k � k ≥ 0�, initial probability distri-
bution P	V̂0 = s0
 = �r , P	V̂0 = s′0
 = �E′ , P	V̂0 = s′′0 
 = �E , P	V̂0 = fi
 = �fi �

1 ≤ i ≤ A, P	V̂0 = i
 = 0, i �∈ �s0� s
′
0� s

′′
0 � f1� f2� � � � � fA�, and (possibly) nonnull

transition probabilities P	V̂n+1 = s0 � V̂n = s0
 = Pr�r , P	V̂n+1 = sk+1 � V̂n = sk
 = wk,
P	V̂n+1 = fi � V̂n = sk
 = vik, P	V̂n+1=sk�1 � V̂n=sk
 = hk, P	V̂n+1=sk�l+1 � V̂n=sk�l
=wk�l,
P	V̂n+1 = s0 � V̂n = sk�l
 = qk�l, P	V̂n+1 = fi � V̂n = sk�l
 = vik�l, P	V̂n+1 = s′k+1 � V̂n =
s′k
 = w′

k, P	V̂n+1 = fi � V̂n = s′k
 = v′ik , P	V̂n+1 = s′k�1 � V̂n = s′k
 = h′
k, P	V̂n+1 = s′k�l+1 �

V̂n = s′k�l
 = w′
k�l, P	V̂n+1 = s0 � V̂n = s′k�l
 = q′

k�l, P	V̂n+1=fi � V̂n=s′k�l
=v′ik�l, P	V̂n+1=
s′′k+1 � V̂n = s′′k 
 = w′′

k , P	V̂n+1 = s0 � V̂n = s′′k 
 = q′′
k , P	V̂n+1 = fi � V̂n = s′′k 
 = v′′ik ,

P	V̂n+1 = fi � V̂n = fi
 = 1, where a�k�, a�k� l�, a′�k�, a′�k� l�, a′′�k�, wk, v
i
k, hk, wk�l,

qk�l, v
i
k�l, w

′
k, v

′i
k , h

′
k, w

′
k�l, q

′
k�l, v

′i
k�l, w

′′
k , q

′′
k , and v′′ik are given by (2.1)–(2.20). The state

transition diagram of V̂ has, for the case �E′ > 0 and �E > 0, two combs and a
string of states as illustrated in Fig. 2 for the case A = 1. The first comb has as a
back the states sk and as teeth the strings of states sk�l with k fixed. The second
comb has as a back the states s′k and as teeth the strings of states s′k�l with k fixed.
The string includes the states s′′k . When �E′ = 0, V̂ loses the second comb. When
�E = 0, V̂ loses the string of states s′′k . Formally, the state space of V̂ can be defined
in the general case as EV ∪ EV ∪ �f1� f2� � � � � fA�, where, when �E′ = 0, EV does not
include the states s′k and EV does not include the states s′k�l and, when �E = 0, EV

does not include the states s′′k .
Let V = �V�t�� t ≥ 0� be the CTMC obtained by derandomizing V̂ with rate 
E

in EV and rate 
E in EV ∪ �f1� f2 � � � � fA�. The CTMC V has same state space and
initial probability distribution as V̂ . Figure 3 illustrates the state transition diagram
of V for the case �E′ > 0, �E > 0 and A = 1.

All developments up to now (with the generalization to the case A ≥ 0) are
taken from Temsamani and Carrasco (2004). Let Ic denote the indicator function
returning the value 1 if condition c is satisfied and the value 0 otherwise and let,
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642 Temsamani and Carrasco

Figure 2. State transition diagram of the DTMC V̂ for the case �E′ > 0, �E > 0, and A = 1.
(There can exist transitions to f1 from any state and transitions to s0 from any state sk�l,
s′k�l, and s′′k .)
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A Generalized Method for the Transient Analysis 643

Figure 3. State transition diagram of the CTMC V for the case �E′ > 0, �E > 0, and A = 1.
(There can exist transitions to f1 from any state and transitions to s0 from any state sk�l,
s′k�l, and s′′k .)
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644 Temsamani and Carrasco

conventionally, the product of 0 by a non-defined quantity be equal to 0. The key
to generalize the method is the following result:

Proposition 2.1. For i ∈ S,

P	X�t� = i
 = Ii∈E
�∑
k=0

�i�k�

a�k�
P	V�t� = sk
+ Ii∈E

�∑
k=0

Ia�k�1�>0

�∑
l=1

�i�k� l�

a�k� l�
P	V�t� = sk�l


+ I�E′>0

(
Ii∈E′

�∑
k=0

�′
i�k�

a′�k�
P	V�t� = s′k
+ Ii∈E

�∑
k=0

Ia′�k�1�>0

×
�∑
l=1

�′
i�k� l�

a′�k� l�
P	V�t� = s′k�l


)
+ I�E>0Ii∈E

�∑
k=0

�′′
i �k�

a′′�k�
P	V�t� = s′′k 
�

Proof. See Temsamani and Carrasco (2005). �

Let ETRRV �t� and EARRV �t� be, respectively, the expected transient reward rate
and the expected averaged reward rate of V with the reward rate structure:

r ′fi = rfi � (2.21)

r ′sk = b�k� =
∑

i∈E ri�i�k�

a�k�
� (2.22)

r ′sk�l = b�k� l� =
∑

i∈E ri�i�k� l�

a�k� l�
� (2.23)

r ′
s′k
= b′�k� =

∑
i∈E′ ri�

′
i�k�

a′�k�
� (2.24)

r ′
s′k�l

= b′�k� l� =
∑

i∈E ri�′
i�k� l�

a′�k� l�
� (2.25)

r ′
s′′k
= b′′�k� =

∑
i∈E ri�′′

i �k�

a′′�k�
� (2.26)

Then:

Theorem 2.1. ETRRV �t� = ETRR�t� and EARRV �t� = EARR�t�.

Proof. Using (proof of Theorem 1 of Temsamani and Carrasco, 2004) P	V�t� = fi
 =
P	X�t� = fi
, 1 ≤ i ≤ A, Proposition 2.1, and (2.21)–(2.26):

ETRR�t� = ∑
i∈�

riP	X�t� = i
 =∑
i∈S

riP	X�t� = i
+
A∑
i=1

rfiP	X�t� = fi


=
�∑
k=0

∑
i∈E ri�i�k�

a�k�
P	V�t� = sk


+
�∑
k=0

Ia�k�1�>0

�∑
l=1

∑
i∈E ri�i�k� l�

a�k� l�
P	V�t� = sk�l
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A Generalized Method for the Transient Analysis 645

+ I�E′>0

( �∑
k=0

∑
i∈E′ ri�

′
i�k�

a′�k�
P	V�t� = s′k


+
�∑
k=0

Ia�k�1�>0

�∑
l=1

∑
i∈E ri�′

i�k� l�

a′�k� l�
P	V�t� = s′k�l


)

+ I�E>0

�∑
k=0

∑
i∈E ri�′′

i �k�

a′′�k�
P	V�t� = s′′k 
+

A∑
i=1

rfiP	V�t� = fi


=
�∑
k=0

b�k�P	V�t� = sk
+
�∑
k=0

Ia�k�1�>0

�∑
l=1

b�k� l�P	V�t� = sk�l


+ I�E′>0

( �∑
k=0

b′�k�P	V�t� = s′k
+
�∑
k=0

Ia′�k�1�>0

�∑
l=1

b′�k� l�P	V�t� = s′k�l


)

+ I�E>0

�∑
k=0

b′′�k�P	V�t� = s′′k 
+
A∑
i=1

r ′fiP	V�t� = fi


= ETRRV �t��

Finally, using EARR�t� = �1/t�
∫ t

0 ETRR���d� and EARRV �t� = �1/t�
∫ t

0 ETRR
V ���d�,

EARR�t� = 1
t

∫ t

0
ETRR���d� = 1

t

∫ t

0
ETRRV ���d� = EARRV �t��

�

The truncated transformed rewarded CTMC, VT , is obtained from V by
introducing an absorbing state a with null reward rate capturing the truncated
behavior and:

(1) keeping the states sk up to sK , K ≥ 1, and directing to a the transition rates
from sK;

(2) for each k, 0 ≤ k ≤ K − 1, for which a�k� 1� > 0, keeping the states sk�l up to
l = Kk ≥ 1 and directing the transition rates from sk�Kk

to a;
(3) if �E′ > 0, keeping the states s′k up to s′L, L ≥ 1, and directing to a the transition

rates from s′L;
(4) if �E′ > 0, for each k, 0 ≤ k ≤ L− 1, for which a′�k� 1� > 0, keeping the states

s′k�l up to l = Lk ≥ 1 and directing the transitions rates from sk�Lk
to a; and,

(5) if �E > 0, keeping the states s′′k up to s′′M , M ≥ 1, and directing to a the transition
rates from s′′M . The CTMC VT can be defined from V as:

VT�t� =


V�t� if, by time t, V has not exited state sK ,

a state sk�Kk
, state s′L, a state s′k�Lk

, or state s′′M�
a otherwise.

(2.27)

The initial probability distribution of VT is the same as that of V , i.e., P	VT �0� =
s0
 = �r , P	VT �0� = s′0
 = �E′ , P	VT �0� = s′′0 
 = �E , P	VT �0� = fi
 = �fi , 1 ≤ i ≤ A,
P	VT �0� = i
 = 0, i � �s0� s

′
0� s

′′
0 � f1� f2� � � � � fA�. Let E

T
V denote the set of states in EV

kept in VT and let E
T

V denote the set of states in EV kept in VT . Note that the state
space of VT is ET

V ∪ E
T

V ∪ �f1� f2� � � � � fA� a�.
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646 Temsamani and Carrasco

The truncated transformed rewarded CTMC model VT yields approximate
values ETRRa�t� and EARRa�t�, for, respectively, ETRR�t� and EARR�t�. Formally,
ETRRa�t� and EARRa�t� are, respectively, the expected transient reward rate and
expected averaged reward rate of VT . Let rmax = maxi∈� ri. The following two
theorems upper bound the model truncation error for, respectively, the measure
ETRR�t� and the measure EARR�t�.

Theorem 2.2. 0 ≤ ETRR�t�− ETRRa�t� ≤ rmaxP	VT �t� = a
 = ETRRe�t�.

Proof. We can write:

ETRR�t�− ETRRa�t� = ∑
i∈EV∪EV

riP	V�t� = i
+
A∑
i=1

rfiP	V�t� = fi


−
( ∑

i∈ET
V∪ET

V

riP	VT �t� = i
+
A∑
i=1

rfiP	VT �t� = fi


)

= ∑
i∈�EV−ET

V �∪�EV−E
T
V �

riP	V�t� = i
+ ∑
i∈ET

V∪ET
V

ri�P	V�t� = i


−P	VT �t� = i
�+
A∑
i=1

rfi �P	V�t� = fi
− P	VT �t� = fi
��

According to (2.27), P	VT �t� = i
 ≤ P	V�t� = i
, i ∈ ET
V ∪ E

T

V and P	VT �t� = fi
 ≤
P	V�t� = fi
, 1 ≤ i ≤ A, implying ETRR�t�− ETRRa�t� ≥ 0. Also, since∑

i∈EV∪EV
P	V�t� = i
+∑A

i=1 P	V�t� = fi
 = 1 and
∑

i∈ET
V∪ET

V
P	VT �t� = i
+∑A

i=1 P	VT �t� = fi
+ P	VT �t� = a
 = 1:

ETRR�t�− ETRRa�t�

≤ rmax

( ∑
i∈�EV−ET

V �∪�EV−E
T
V �

P	V�t� = i
+ ∑
i∈ET

V∪ET
V

�P	V�t� = i
− P	VT �t� = i
�

+
A∑
i=1

�P	V�t� = fi
− P	VT �t� = fi
�

)

= rmax

( ∑
i∈EV∪EV

P	V�t� = i
+
A∑
i=1

P	V�t� = fi


− ∑
i∈ET

V∪ET
V

P	VT �t� = i
−
A∑
i=1

P	VT �t� = fi


)

= rmax

(
1− ∑

i∈ET
V∪ET

V

P	VT �t� = i
−
A∑
i=1

P	VT �t� = fi


)

= rmaxP	VT �t� = a
 = ETRRe�t�� �

Theorem 2.3. 0 ≤ EARR�t�− EARRa�t� ≤ �rmax/t�
∫ t

0 P	VT ��� = a
d� = EARRe�t�.
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A Generalized Method for the Transient Analysis 647

Proof. Using EARR�t� = �1/t�
∫ t

0 ETRR���d�, EARR
a�t� = �1/t�

∫ t

0 ETRR
a���d�, and

Theorem 2.2,

EARR�t�− EARRa�t� = 1
t

∫ t

0
ETRR���d�− 1

t

∫ t

0
ETRRa���d�

= 1
t

∫ t

0
�ETRR���− ETRRa����d��

0 ≤ EARR�t�− EARRa�t� ≤ rmax

t

∫ t

0
P	VT ��� = a
d�� �

The upper bound for the model truncation error for the ETRR�t� measure
given by Theorem 2.2 is formally identical to the model truncation error upper
bound for the less general measure considered in Temsamani and Carrasco (2004).
Then, letting �K = �k � 0 ≤ k ≤ K − 1 ∧ a�k� 1� > 0� and �′L = �k � 0 ≤ k ≤ L− 1 ∧
a′�k� 1� > 0�, we can state the following result:

Theorem 2.4.

ETRRe�t� ≤ I�E>0rmaxa
′′�M�

�∑
k=M+1

e−
Et
�
Et�

k

k!

+ I�E′>0

(
rmaxa

′�L�
�∑

k=L+1

e−
Et
�
Et�

k

k!

+ ∑
k∈�′L

rmax a
′�k� Lk�

�∑
l=k+1

e−
Et
�
Et�

l

l!

)

+ rmax��S − a′′�M��a�K�
�∑

k=K+1

�k− K�e−
Et
�
Et�

k

k!

+ ∑
k∈�K

rmax��S − a′′�M��a�k�Kk�
�∑

l=k+1

�l− k�e−
Et
�
Et�

l

l! �

The following theorem gives an upper bound for the model truncation error for
the EARR�t� measure.

Theorem 2.5.

EARRe�t� ≤ I�E>0
rmaxa

′′�M�


Et

�∑
k=M+2

�k−M − 1�e−
Et
�
Et�

k

k!

+ I�E′>0

(
rmaxa

′�L�

Et

�∑
k=L+2

�k− L− 1�e−
Et
�
Et�

k

k!

+ ∑
k∈�′L

rmaxa
′�k� Lk�


Et

�∑
l=k+2

�l− k− 1�e−
Et
�
Et�

l

l!

)

+ rmax��S − a′′�M��a�K�


Et

�∑
k=K+2

�k− K��k− K − 1�
2

e−
Et
�
Et�

k

k!

+ ∑
k∈�K

rmax��S − a′′�M��a�k�Kk�


Et

�∑
l=k+2

�l− k��l− k− 1�
2

e−
Et
�
Et�

l

l! �
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648 Temsamani and Carrasco

Proof. From Theorems 2.2–2.4.

EARRe�t� = rmax

t

∫ t

0
P	VT ��� = a
d� = 1

t

∫ t

0
ETRRe���d�

≤ I�E>0
rmaxa

′′�M�

t

�∑
k=M+1

∫ t

0
e−
E�

�
E��
k

k! d�

+ I�E′>0

(
rmaxa

′�L�
t

�∑
k=L+1

∫ t

0
e−
E�

�
E��
k

k! d�

+ ∑
k∈�′L

rmaxa
′�k� Lk�

t

�∑
l=k+1

∫ t

0
e−
E�

�
E��
l

l! d�

)

+ rmax��S − a′′�M��a�K�

t

�∑
k=K+1

�k− K�
∫ t

0
e−
E�

�
E��
k

k! d�

+ ∑
k∈�K

rmax��S − a′′�M��a�k�Kk�

t

�∑
l=k+1

�l− k�
∫ t

0
e−
E�

�
E��
l

l! d��

Using
∫ t

0 e
−
��
��k/k!d� = �1/
�

∑�
l=k+1 e

−
t�
t�l/l!:
�∑

k=M+1

∫ t

0
e−
E�

�
E��
k

k! d� = 1

E

�∑
k=M+2

�k−M − 1�e−
Et
�
Et�

k

k! �

�∑
k=L+1

∫ t

0
e−
E�

�
E��
k

k! d� = 1

E

�∑
k=L+2

�k− L− 1�e−
Et
�
Et�

k

k! �

�∑
l=k+1

∫ t

0
e−
E�

�
E��
l

l! d� = 1

E

�∑
l=k+2

�l− k− 1�e−
Et
�
Et�

l

l! �

�∑
k=K+1

�k− K�
∫ t

0
e−
E�

�
E��
k

k! d� = 1

E

�∑
k=K+2

(
k−1∑

l=K+1

�l− K�

)
e−
Et

�
Et�
k

k!

= 1

E

�∑
k=K+2

�k− K��k− K − 1�
2

e−
Et
�
Et�

k

k! �

�∑
l=k+1

�l− k�
∫ t

0
e−
E�

�
E��
l

l! d� = 1

E

�∑
l=k+2

�l− k��l− k− 1�
2

e−
Et
�
Et�

l

l! �

and the result follows. �

The truncation parameters K, L, M , Kk, k ∈ �K , and Lk, k ∈ �′L, have to
be selected so that the upper bound for the model truncation error given by
Theorem 2.4 for the measure ETRR�t� and by Theorem 2.5 for the measure EARR�t�
is ≤ �/2. For the ETRR�t� measure the truncation parameters are selected as follows.
First, for the case �E > 0, M is selected using:

M = min
{
m ≥ 1 � rmaxa

′′�m�
�∑

k=m+1

e−
Et
�
Et�

k

k! ≤ �1

}
�
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A Generalized Method for the Transient Analysis 649

where �1 = �/6 if �E′ > 0 and �1 = �/4 if �E′ = 0. The truncation parameter K is,
then, chosen using:

K = min
{
m ≥ 1 � rmax��S − a′′�M��a�m�

�∑
k=m+1

�k−m�e−
Et
�
Et�

k

k! ≤ �2

}
�

where �2 = �/12 if �E′ > 0 and �E > 0, �2 = �/8 if �E′ > 0 and �E = 0 or �E′ = 0 and
�E > 0, and �2 = �/4 if �E′ = 0 and �E = 0 (a′′�M� = 0 if �E = 0). The truncation
parameters Kk, k ∈ �K , are chosen using:

Kk = min
{
m ≥ 1 � rmax��S − a′′�M��a�k�m�

�∑
l=k+1

�l− k�e−
Et
�
Et�

l

l! ≤ �2

��K�
}
�

Finally, for the case �E′ > 0, the truncation parameter L is chosen using:

L = min
{
m ≥ 1 � rmaxa

′�m�
�∑

k=m+1

e−
Et
�
Et�

k

k! ≤ �3

}
�

where �3 = �/12 if �E > 0 and �3 = �/8 if �E = 0, and the truncation parameters Lk,
k ∈ �′L, are chosen using:

Lk = min
{
m ≥ 1 � rmaxa

′�k�m�
�∑

l=k+1

e−
Et
�
Et�

l

l! ≤ �3

��′L�
}
�

For the measure EARR�t�, for the case �E > 0, M is selected using:

M = min
{
m ≥ 1 �

rmaxa
′′�m�


Et

�∑
k=m+2

�k−m− 1�e−
Et
�
Et�

k

k! ≤ �1

}
�

The truncation parameter K is, then, chosen using:

K = min

{
m ≥ 1 �

rmax��S − a′′�M��a�m�


Et

�∑
k=m+2

�k−m��k−m− 1�
2

e−
Et
�
Et�

k

k! ≤ �2

}
�

The truncation parameters Kk, k ∈ �K , are chosen using:

Kk = min

{
m ≥ 1 �

rmax��S − a′′�M��a�k�m�


Et

×
�∑

l=k+2

�l− k��l− k− 1�
2

e−
Et
�
Et�

l

l! ≤ �2

��K�

}
�

Finally, for the case �E′ > 0, the truncation parameter L is chosen using:

L = min
{
m ≥ 1 �

rmaxa
′�m�


Et

�∑
k=m+2

�k−m− 1�e−
Et
�
Et�

k

k! ≤ �3

}
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650 Temsamani and Carrasco

and the truncation parameters Lk, k ∈ �′L, are chosen using:

Lk = min
{
m ≥ 1 �

rmaxa
′�k�m�


Et

�∑
l=k+2

�l− k− 1�e−
Et
�
Et�

l

l! ≤ �3

��′L�
}
�

It has been proved in Temsamani and Carrasco (2004) that the upper bound
for the model truncation error for the ETRR�t� measure given by Theorem 2.4 is
increasingwith t. Since the upper bound for themodel truncation error for theEARR�t�
measure given by Theorem 2.5 is the averaged value in the interval 	0� t
 of the upper
bound given by Theorem 2.4, it follows that the upper bound given by Theorem 2.5
is also increasing with t. Then, if either ETRR�t� or EARR�t� has to be computed for
several values of t, the truncation parameters can be selected using the largest t.

To clarify, Figs. 4 and 5 give a C-like algorithmic description of the method
for the ETRR�t� measure. The algorithm has as inputs the CTMC X, the number of
absorbing states A, the reward rates ri, i ∈ �, an initial probability distribution row
vector � = ��i�i∈�, the subset E ⊂ S, the regenerative state r ∈ E, the allowed error
�, the number of time points n at which which estimates for the measure have to
be computed, and the time points, t1� t2� � � � � tn. The algorithm has as outputs the
estimates for the measure at the time points ti, ẼTRR�t1�� ẼTRR�t2�� � � � � ẼTRR�tn�. It
is assumed that conditions C1–C10 regarding the structure of X and the selection
of the subset E and the regenerative state r ∈ E are satisfied. The truncated
transformed CTMC model, called V in the algorithmic description, is built using the
functions add_state�V� s� p� and add_transition�V� s� s′� ��. The first function adds to
V the state s with initial probability p; the second function adds to V a transition
rate � from state s to state s′. The model truncation error is controlled for tmax =
max�t1� t2� � � � � tn�. The algorithm makes two traversals of the backs of the combs:
the first one to determine K and ��K� (called n_k in the algorithm), and, if �E′ > 0,
L and ��′L� (also called n_k in the algorithm), and the second one to build the teeth.
The method for EARR�t� can be described similarly, with the obvious changes.

The method requires the computation of the summatories

S�m� =
�∑

k=m+1

e−
t �
t�k

k! �

S′�m� =
�∑

k=m+1

�k−m�e−
t �
t�k

k! �

S′′�m� =
�∑

k=m+2

�k−m− 1�e−
t �
t�k

k! �

S′′′�m� =
�∑

k=m+2

�k−m��k−m− 1�
2

e−
t �
t�k

k! �

for 
 = 
E or 
 = 
E , t = tmax, and increasing values of m. Efficient and
numerically stable procedures for computing S�m�, S′�m�, and S′′′�m� are described
in Carrasco (2002b) and Carrasco (2003). Since S′′�m� = S′�m+ 1�, an efficient
and numerically stable procedure for computing S′′�m� can be obtained easily by
adapting the procedure for computing S′�m�.

We note that, once P has been computed, the transition rates of the truncated
transformed model are obtained without subtractions. Thus, the method has
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A Generalized Method for the Transient Analysis 651

Figure 4. Algorithmic description of split regenerative randomization for the ETRR�t�
measure.
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652 Temsamani and Carrasco

Figure 5. Algorithmic description of split regenerative randomization for the ETRR�t�
measure (continuation).

the same excellent numerical stability as the standard randomization method. In
addition, the computation error is well-controlled and can be specified in advance.

3. Theoretical Properties

The model truncation error bound for the ETRR�t� measure is formally identical
to the model truncation error bound for the less general measure considered in
Temsamani and Carrasco (2004). Then, letting KE =∑

k∈�K Kk and LE =∑
k∈�′L Lk,

we have the following result:

Theorem 3.1. The number of steps, K, L, M , KE , and LE , required in the split regene-
rative randomization method for the ETRR�t� measure are, respectively, O�log�
Et/���,
O�log�1/���, O�log�1/���, O��log�
Et/���

2�, and O��log�1/���2� .
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A Generalized Method for the Transient Analysis 653

A similar result is available regarding the EARR�t� measure:

Theorem 3.2. The number of steps, K, L, M , KE , and LE , required in the split regene-
rative randomization method for the EARR�t� measure are, respectively, O�log�
Et/���,
O�log�1/���, O�log�1/���, O��log�
Et/���

2�, and O��log�1/���2� .

Proof. The terms of the model truncation error bound used in the split regenerative
randomization method for the EARR�t� measure are the averaged values in the
interval 	0� t
 of the corresponding terms of the model truncation error bound for
the ETRR�t� measure. Furthermore, the terms of the model truncation error bound
for the ETRR�t� measure increase with t. Then, the terms of the model truncation
error bound for EARR�t� are not greater than the corresponding terms of the model
truncation error bound for ETRR�t� and the result follows from Theorem 3.1. �

Theorems 3.1 and 3.2 tell that K, L, M , KE , and LE are all smooth functions
of t and � for both ETRR�t� and EARR�t�. That property is called benign behavior
and implies that, for large enough X and large enough t, the proposed method will
be significantly less costly than standard randomization. This is because (1) the cost
of the first phase of the method (generation of the truncated transformed model)
is made up of components approximately proportional to, respectively, K, L, M ,
KE and LE , while the cost of standard randomization is, for large t, approximately
proportional to maxi∈� �it, and (2) being the maximum output rate of the truncated
transformed model at most �1+ �� times the maximum output rate of the original
model, the cost of the second phase of the method (solution of the truncated
transformed model by standard randomization) will scale with the cost of standard
randomization at most as the size of the truncated transformed model scales with
the size of the original model, X.

The performance of the method depends, of course, on the selections for the
subset E and the regenerative state r, since those selections influence the behavior
of a�k�, a′�k�, a′′�k�, a�k� l�, and a′�k� l�, and, then, the required values for the
truncation parameters K, L, M , Kk, k ∈ �K , and Lk, k ∈ �′L. Ideally, E and r should be
chosen so that a�k�, a′�k�, a′′�k�, a�k� l�, and a′�k� l� decrease as fast as possible. For
general models, automatic selection of E and r does not seem to be easy in general.
A model class, class C′

2, can, however, be defined for which natural selections for
E and r exist, and for models in that class and those natural selections, theoretical
results are available assessing approximately the performance of the method in
terms of “visible” model characteristics.

The model class C′
2 includes all CTMCs X with finite state space � satisfying

the following conditions:

C11. � = S ∪ �f1� f2� � � � � fA�, �S� ≥ 3, A ≥ 0, where the states fi, 1 ≤ i ≤ A, are
absorbing and either all states in S are transient or X has a single recurrent
class of states C ⊂ S.

C12. All states are reachable (from some state with nonnull initial probability).
C13. ri ≥ 0, i ∈ � and all rfi are different.
C14. There exists a partition S0 ∪ S1 ∪ · · · ∪ SNC

∪ S1 ∪ S2 ∪ · · · ∪ SNC
for S satisfying

the following properties:

P1. �S0� = �o� (i.e., �S0� = 1).
P2. If X has a single recurrent class of states C ⊂ S, then o ∈ C.
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654 Temsamani and Carrasco

P3. �S0 ∪ S1 ∪ · · · ∪ SNC
� ≥ 2, and �S1 ∪ S2 ∪ · · · ∪ SNc

� ≥ 1.
P4. �o�S1∪···∪SNC > 0.
P5. For each i ∈ Sk, 0 < k ≤ NC , �i�S0∪···∪Sk = 0.
P6. For each i ∈ Sk, 1 ≤ k ≤ NC , �i�S1∪···∪SNc = 0.
P7. max1≤k≤NC

maxi∈Sk �i�Sk−�i�∪Sk+1∪···∪SNC
is significantly smaller than

min1≤k≤NC
mini∈Sk �i�S0∪S1∪···∪Sk−1∪�f1�f2�����fA� > 0.

The class includes failure/repair models with exponential failure and repair time
distributions in which repair is deferred until some condition on the subset of failed
components is fulfilled and, then, proceeds until the state in which no component is
failed is reached, when failure rates are significantly smaller than repair rates. For
those models, a partition for S for which properties P1–P7 would be satisfied is
the partition in which Sk includes the states without repair and the same number
of failed components, with the subsets Sk ordered following increasing number of
failed components, and Sk includes the states with repair and the same number
of failed components, with the subsets Sk similarly ordered following increasing
number of failed components. Similar failure/repair models with exponential failure
time distributions and repair times with acyclic phase-type distributions (Neuts, 1994)
(which can be used to fit distributions of non-exponential positive random variables
Bobbio and Telek, 1994), are also covered by model class C′

2, provided that failure
rates are significantly smaller than the transition rates of the transient CTMCs
defining the phase-type distributions.

With the selection E = S0 ∪ S1 ∪ · · · ∪ SNC
and r = o, models in r = o, models

in class C′
2 satisfy the conditions applicable. Furthermore, with those selections, the

models move “fast” from states in E to either state o or a state fi, making those
selections natural ones. Let

RE =
max0≤k≤NC

maxi∈Sk �i
min0<k≤NC

mini∈Sk �i
�

RE =
max1≤k≤NC

maxi∈Sk �i

min1≤k≤NC
mini∈Sk �i

�

Note that once E and r have been identified, both RE and RE are model
characteristics that can be easily estimated. Let

� =
max1≤k≤NC

maxi∈Sk �i�Sk−�i�∪Sk+1∪···∪SNC

min1≤k≤NC
mini∈Sk �i�S0∪S1�∪···∪Sk−1∪�f1�����fA�

�

The � can be regarded as a “rarity” parameter measuring how strongly property P7
is satisfied. Then, it has been shown in Temsamani and Carrasco (2004) that with the
natural selections for E and r, (1) both a�k� and a′�k� are, for k → �, upper bounded
by functions of the form C

(
k

p−1

)
qk
E , C > 0, p integer ≥ 1, where qE ≈ 1− 1/RE ,

and (2) a�k� l�, a′�k� l�, and a′′�l� are, for l → �, upper bounded by functions of the
form C���

(
l

p���−1

)
����, C��� > 0, p��� integer ≥ 1, with lim�→0 ���� = qE ≈ 1− 1/RE .

Then, for RE close to 1, the required K and L should be small and, as RE gets apart
from 1, the required K and L should increase. A similar behavior exhibit M , Kk,
and Lk with respect to RE . Moreover, for small �, the required M , Kk, and Lk will
be mainly determined by the decay rate of, respectively, a�k� l�, a′�k� l�, and a′′�l�
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A Generalized Method for the Transient Analysis 655

and, following the discussion done in Temsamani and Carrasco (2004), for RE � 1,
the required M , Kk, and Lk can be roughly upper bounded by 30RE . Regarding the
truncation parameters K and L, for small �, they can be upper bounded roughly
using a�k� = a′�k� = qk

E ≈ �1− 1/RE�
k. Then, for class C′

2 models with the natural
selections for E and r, the computational cost of split regenerative randomization
can be estimated roughly.

4. A Large Example

In this section we analyze the performance of the method and will compare it with
that of standard randomization, regenerative randomization, randomization with
quasistationarity detection, and, for the ETRR�t� measure, adaptive uniformization
using a class C′

2 performability model of a fault-tolerant multiprocessor including
16 processors interconnected by a 8-node hypercube, as shown in Fig. 6. Processors
fail with rate �P; nodes of the hypercube fail with rate �N; links of the hypercube
fail with rate �L. A fault of a processor is covered with probability CP; a fault of
a node of the hypercube is covered with probability CN. Coverage to link faults is
assumed perfect. There is an unlimited number of repairmen. Repair starts when the
number of failed components gets ≥2. The repair rate is �P for processors, �N for
nodes, and �L for links. A completely down system because there was an uncovered
fault is brought to a fully operational state without failed components at rate �G.
It is assumed the availability of diagnosis and reconfiguration procedures to both
determine a subset of interconnected unfailed processors of maximal size and to
reconfigure the multiprocessor so that it works using that maximal healthy subset.
As reward rates, we take the speedup function of the number of processors in the
maximal subset shown in Table 1. Then, ETRR�t� will be the expected speedup of the
system at time t and EARR�t� will be the expected speedup of the system averaged
over the time interval 	0� t
. As model parameters we use �P = 2× 10−5 h−1,
�N = 10−5 h−1, �L = 5× 10−6 h−1, CP = 0�99, CN = 0�995, �P = 0�1 h−1, �N =
0�05 h−1, �L = 0�05 h−1, and �G = 0�2 h−1. Regarding the initial probability distri-
bution, we will consider two cases: (1) the initial state of the system is the state
without failed components; and (2) with probability 0.5 the initial state is the
state without failed components, with probability 0.25 the initial state is the state
with deferred repair in which processor P0 is the only failed component, and with
probability 0.25 the initial state is the state in which processor P0 is the only failed
component and repair is underway.

An exact model of the multiprocessor system has an unmanageable size and we
will consider instead bounding models with state space S ∪ �f1�, where S includes
the states with up to NF covered faults and the state in which the system is down
due to an uncovered fault and entry into the absorbing state f1 occurs when the
exact model enters a state with more than NF covered faults. A lower (upper)
bound for ETRR�t� and EARR�t� is obtained by assigning to the absorbing state
f1 a reward rate equal to 0 (12). The bounding models belong to model class
C′

2. Taking NF = 4 is enough to get very tight bounds. Thus, for Case 1 and t =
100,000 h, the lower and upper bounds thus obtained for ETRR�t� are 11�760559 h−1

and 11�760562 h−1 and the lower and upper bounds for EARR�t� are 11�762899 h−1

and 11�762901 h−1. With that value of NF , the bounding models have 213,104 states.
The reported results are identical for the lower and the upper bounding models. For
split regenerative randomization we take for r and E the natural selections, i.e., r is
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656 Temsamani and Carrasco

Figure 6. Architecture of the fault-tolerant multiprocessor system.

Table 1
Speedups of the multiprocessor system as a

function of the maximum number of
connected operational processors

Processors Speedup

1 1
2 1�96667
3 2�9
4 3�8
5 4�66667
6 5�5
7 6�3
8 7�06667
9 7�8

10 8�5
11 9�16667
12 9�8
13 10�4
14 10�96667
15 11�5
16 12
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A Generalized Method for the Transient Analysis 657

Table 2
Truncation parameters as a function of t for ETRR�t�

Case 1 Case 2

t (h) K KE K KE L LE M

1 2 111 2 121 2 199 9
5 3 174 3 194 3 253 16
10 3 202 3 220 3 280 21
50 4 292 4 319 3 351 46
100 4 339 4 367 4 410 69
500 5 500 5 533 5 553 154
1,000 6 603 6 645 5 624 154
5,000 8 904 8 961 7 865 154
10,000 9 1,050 9 1,116 8 958 154
50,000 10 1,276 11 1,380 9 1,021 154
100,000 11 1,359 11 1,443 9 1,021 154

the single state o without failed components and E includes the states in S without
repair. With that natural selection, we have �E′ = 0 and �E = 0 for Case 1 and �E′ >
0 and �E > 0 for Case 2. For regenerative randomization we use the selection r = o.
All CPU times are measured on a Sun-Blade 1000, 4GB workstation running each
method with a unique target time t. For all methods we use � = 10−10.

We start by discussing the dependence on t of the truncation parameters of split
regenerative randomization. Table 2 gives the values of the truncation parameters
K, L, and M , KE =∑

k∈�K Kk, and LE =∑
k∈�′L Lk for the method for the ETRR�t�

measure; Table 3 gives the corresponding values for the method for the EARR�t�
measure. We can note that for both measures and in all cases the truncation

Table 3
Truncation parameters as a function of t for EARR�t�

Case 1 Case 2

t (h) K KE K KE L LE M

1 2 102 2 112 2 186 8
5 3 155 3 173 2 222 14
10 3 182 3 201 3 258 19
50 4 263 4 287 3 328 42
100 4 308 4 335 4 376 64
500 5 456 5 489 5 508 144
1,000 6 547 6 586 5 576 150
5,000 7 805 8 884 7 802 153
10,000 8 949 9 1,032 8 902 154
50,000 10 1,214 10 1,290 9 1,007 154
100,000 10 1,276 11 1,380 9 1,014 154
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658 Temsamani and Carrasco

Figure 7. CPU times in seconds for the ETRR�t� measure: Case 1 (left), Case 2 (right).

parameters increase smoothly with t. Also, the truncation parameters K and L
have very small values. This is because, having the system many components with
quite similar failure rates, the output rates from states in E are very similar and,
therefore, RE is only slightly larger than 1 and qE is very small. The truncation
parameters M , Kk, and Lk have also reasonably small values. In all cases, the
truncation parameters for the method for the EARR�t� measure are non-greater than
the truncation parameters in the method for the ETRR�t� measure. This can be
explained by recalling that the model truncation error bounds for the method for the
EARR�t� measure are non-greater than the respective model truncation error bounds
for the method for the ETRR�t� measure.

We compare next the performance of split regenerative randomization (SRR)
with those of standard randomization (SR), regenerative randomization (RR),
randomization with quasistationarity detection (RQD), and, for the ETRR�t�
measure, adaptive uniformization (AU). For AU we choose the AU layered
uniformization variant for AU processes with converged rate described in Moorsel
and Sanders (1994), since this ensures for AU the same numerical stability as all
other three methods have. Figure 7 gives the CPU times for the ETRR�t� measure;
Fig. 8 gives the CPU times for the EARR�t� measure. We start discussing the results

Figure 8. CPU times in seconds for the EARR�t� measure: Case 1 (left), Case 2 (right).
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A Generalized Method for the Transient Analysis 659

for Case 1. Although not clearly seen in Fig. 7, for ETRR�t�, AU is, with few
exceptions, the fastest method for t not larger than about 1,000 h. Compared with
SR, there is a crossing point at about 5,000 h below which AU is faster and above
which AU is slower. This fact is in accordance with the known behavior of AU
with respect to SR (Moorsel and Sanders, 1994). RR performs not much worse
than SR for both ETRR�t� and EARR�t�. In addition, since the size of the truncated
transformed model built in RR is logarithmic in t and the number of steps required
in SR grows linearly with t, for t large enough RR will eventually become faster
than SR. In the example, RR becomes faster than SR for t larger than about
50,000 h for both ETRR�t� and EARR�t�. For the considered values of t, RQD is
the more expensive method, but it would outperform also SR for larger t’s. Finally,
SRR is the fastest method for t beyond approximately 1,000 h. For t = 100,000 h,
SRR is, for the ETRR�t� measure, about 18.2 times faster than the fastest of the other
methods (RR) and, for the EARR�t� measure, about 19.3 times faster than the fastest
of the other methods (RR). In Case 2, there is almost no difference in performance
between AU and SR for the ETRR�t� measure. This is because, in that case, the
adapted randomization rate used in AU is large from the initial steps. In that case
RR compares worse with SR than it did in Case 1. The reason is that when the
initial probability distribution is not concentrated in the regenerative state (the state
without failed components), the truncated transformed model built in RR is larger
than when that initial probability distribution is concentrated in the regenerative
state (Carrasco, 2003). The performance of RQD is, however, very similar to the
performance of that method in Case 1. As in Case 1, for t large enough, SRR is
the fastest method. However, the time beyond which SRR is the fastest method is
now about 5,000 h for both measures, larger than in Case 1. The reason is that the
truncated transformed model is larger than in Case 1 because of the presence of the
comb having as back the states s′0� s

′
1� � � � � s

′
L and the string of states s′′0 � s

′′
1 � � � � � s

′′
M .

The gain in performance of SRR over the other methods is significant albeit smaller
than in Case 1. Thus, for t = 100,000 h, SRR is, for the ETRR�t� measure, about
15.4 times faster than the fastest of the other methods (SR) and, for the EARR�t�
measure, also about 15.4 times faster than the fastest of the other methods (SR).
For the example, RE ≈ 8. Were the repair rates more different, RE would be greater,
M , KE , and LE would be greater and split regenerative randomization would be
relatively more costly.

5. Conclusions

We have generalized a method called split regenerative randomization which is
specifically targeted at the transient analysis of rewarded CTMC models of fault-
tolerant systems with deferred repair. The generalized method covers a slightly
wider type of CTMC models and allows to compute two transient measures: the
expected transient reward rate and the expected averaged reward rate. The method
has the same good properties as the randomization method (numerical stability,
well-controlled computation error, and ability to specify the computation error in
advance) and can be significantly less costly than that method. The method requires
the selection of a subset of states and a regenerative state and its performance
depends on those selections. For a class of rewarded CTMC models, class C′

2,
including typical failure/repair models with exponential failure and repair time
distributions and deferred repair, natural selections for the subset of states and
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660 Temsamani and Carrasco

the regenerative state exist and, for those natural selections, theoretical results are
available assessing approximately the computational cost of the method in terms
of “visible” model characteristics. Using a large class C′

2 model, we have shown
that, for models in that class, the method can be significantly faster than other
randomization-based methods.
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