27,256 research outputs found

    Structural matching by discrete relaxation

    Get PDF
    This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we locus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations ai the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter

    Graph matching with a dual-step EM algorithm

    Get PDF
    This paper describes a new approach to matching geometric structure in 2D point-sets. The novel feature is to unify the tasks of estimating transformation geometry and identifying point-correspondence matches. Unification is realized by constructing a mixture model over the bipartite graph representing the correspondence match and by affecting optimization using the EM algorithm. According to our EM framework, the probabilities of structural correspondence gate contributions to the expected likelihood function used to estimate maximum likelihood transformation parameters. These gating probabilities measure the consistency of the matched neighborhoods in the graphs. The recovery of transformational geometry and hard correspondence matches are interleaved and are realized by applying coupled update operations to the expected log-likelihood function. In this way, the two processes bootstrap one another. This provides a means of rejecting structural outliers. We evaluate the technique on two real-world problems. The first involves the matching of different perspective views of 3.5-inch floppy discs. The second example is furnished by the matching of a digital map against aerial images that are subject to severe barrel distortion due to a line-scan sampling process. We complement these experiments with a sensitivity study based on synthetic data

    Technological Regimes and the Growth of Networks An Empirical Analysis

    Get PDF
    This paper shows how specific technological and relational regimes have shaped the growth of the network of R&D collaborative agreements in pharmaceuticals in the 1990s. Our analysis reveals the existence of a complex set of regimes of firm growth within the network, providing additional evidence supporting prediction that both growth and innovative activities of large and small firms respond, even within a given industry, to considerably different technological and economic factors. Moreover, the paper shows, in the context of a specific industry and by means of a series of preliminary and explorative empirical analyses, that information on the topological properties of a given industrial settings and on roles/positions of organizations within it can be used to disentangle some fundamental generative processes underlying observed processes of growth. This result contributes to the 'old' stochastic approach to firm growth, in the direction of building parsimonious and, at the same time, more realistic, representations of processes of industrial growth.-

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials
    • …
    corecore