80 research outputs found

    Counterexample Generation in Probabilistic Model Checking

    Get PDF
    Providing evidence for the refutation of a property is an essential, if not the most important, feature of model checking. This paper considers algorithms for counterexample generation for probabilistic CTL formulae in discrete-time Markov chains. Finding the strongest evidence (i.e., the most probable path) violating a (bounded) until-formula is shown to be reducible to a single-source (hop-constrained) shortest path problem. Counterexamples of smallest size that deviate most from the required probability bound can be obtained by applying (small amendments to) k-shortest (hop-constrained) paths algorithms. These results can be extended to Markov chains with rewards, to LTL model checking, and are useful for Markov decision processes. Experimental results show that typically the size of a counterexample is excessive. To obtain much more compact representations, we present a simple algorithm to generate (minimal) regular expressions that can act as counterexamples. The feasibility of our approach is illustrated by means of two communication protocols: leader election in an anonymous ring network and the Crowds protocol

    Quantitative Analysis of Information Leakage in Probabilistic and Nondeterministic Systems

    Get PDF
    This thesis addresses the foundational aspects of formal methods for applications in security and in particular in anonymity. More concretely, we develop frameworks for the specification of anonymity properties and propose algorithms for their verification. Since in practice anonymity protocols always leak some information, we focus on quantitative properties, which capture the amount of information leaked by a protocol. The main contribution of this thesis is cpCTL, the first temporal logic that allows for the specification and verification of conditional probabilities (which are the key ingredient of most anonymity properties). In addition, we have considered several prominent definitions of information-leakage and developed the first algorithms allowing us to compute (and even approximate) the information leakage of anonymity protocols according to these definitions. We have also studied a well-known problem in the specification and analysis of distributed anonymity protocols, namely full-information scheduling. To overcome this problem, we have proposed an alternative notion of scheduling and adjusted accordingly several anonymity properties from the literature. Our last major contribution is a debugging technique that helps on the detection of flaws in security protocols.Comment: thesis, ISBN: 978-94-91211-74-

    Quantitative Modeling and Verification of Evolving Software

    Get PDF
    Mit der steigenden Nachfrage nach Innovationen spielt Software in verschiedenenWirtschaftsbereichen eine wichtige Rolle, wie z.B. in der Automobilindustrie, bei intelligenten Systemen als auch bei Kommunikationssystemen. Daher ist die Qualität für die Softwareentwicklung von großer Bedeutung. Allerdings ändern sich die probabilistische Modelle (die Qualitätsbewertungsmodelle) angesichts der dynamischen Natur moderner Softwaresysteme. Dies führt dazu, dass ihre Übergangswahrscheinlichkeiten im Laufe der Zeit schwanken, welches zu erheblichen Problemen führt. Dahingehend werden probabilistische Modelle im Hinblick auf ihre Laufzeit kontinuierlich aktualisiert. Eine fortdauernde Neubewertung komplexer Wahrscheinlichkeitsmodelle ist jedoch teuer. In letzter Zeit haben sich inkrementelle Ansätze als vielversprechend für die Verifikation von adaptiven Systemen erwiesen. Trotzdem wurden bei der Bewertung struktureller Änderungen im Modell noch keine wesentlichen Verbesserungen erzielt. Wahrscheinlichkeitssysteme werden als Automaten modelliert, wie bei Markov-Modellen. Solche Modelle können in Matrixform dargestellt werden, um die Gleichungen basierend auf Zuständen und Übergangswahrscheinlichkeiten zu lösen. Laufzeitmodelle wie Matrizen sind nicht signifikant, um die Auswirkungen von Modellveränderungen erkennen zu können. In dieser Arbeit wird ein Framework unter Verwendung stochastischer Bäume mit regulären Ausdrücken entwickelt, welches modular aufgebaut ist und eine aktionshaltige sowie probabilistische Logik im Kontext der Modellprüfung aufweist. Ein solches modulares Framework ermöglicht dem Menschen die Entwicklung der Änderungsoperationen für die inkrementelle Berechnung lokaler Änderungen, die im Modell auftreten können. Darüber hinaus werden probabilistische Änderungsmuster beschrieben, um eine effiziente inkrementelle Verifizierung, unter Verwendung von Bäumen mit regulären Ausdrücken, anwenden zu können. Durch die Bewertung der Ergebnisse wird der Vorgang abgeschlossen.Software plays an innovative role in many different domains, such as car industry, autonomous and smart systems, and communication. Hence, the quality of the software is of utmost importance and needs to be properly addressed during software evolution. Several approaches have been developed to evaluate systems’ quality attributes, such as reliability, safety, and performance of software. Due to the dynamic nature of modern software systems, probabilistic models representing the quality of the software and their transition probabilities change over time and fluctuate, leading to a significant problem that needs to be solved to obtain correct evaluation results of quantitative properties. Probabilistic models need to be continually updated at run-time to solve this issue. However, continuous re-evaluation of complex probabilistic models is expensive. Recently, incremental approaches have been found to be promising for the verification of evolving and self-adaptive systems. Nevertheless, substantial improvements have not yet been achieved for evaluating structural changes in the model. Probabilistic systems are usually represented in a matrix form to solve the equations based on states and transition probabilities. On the other side, evolutionary changes can create various effects on theese models and force them to re-verify the whole system. Run-time models, such as matrices or graph representations, lack the expressiveness to identify the change effect on the model. In this thesis, we develop a framework using stochastic regular expression trees, which are modular, with action-based probabilistic logic in the model checking context. Such a modular framework enables us to develop change operations for the incremental computation of local changes that can occur in the model. Furthermore, we describe probabilistic change patterns to apply efficient incremental quantitative verification using stochastic regular expression trees and evaluate our results

    Finite-State Abstractions for Probabilistic Computation Tree Logic

    No full text
    Probabilistic Computation Tree Logic (PCTL) is the established temporal logic for probabilistic verification of discrete-time Markov chains. Probabilistic model checking is a technique that verifies or refutes whether a property specified in this logic holds in a Markov chain. But Markov chains are often infinite or too large for this technique to apply. A standard solution to this problem is to convert the Markov chain to an abstract model and to model check that abstract model. The problem this thesis therefore studies is whether or when such finite abstractions of Markov chains for model checking PCTL exist. This thesis makes the following contributions. We identify a sizeable fragment of PCTL for which 3-valued Markov chains can serve as finite abstractions; this fragment is maximal for those abstractions and subsumes many practically relevant specifications including, e.g., reachability. We also develop game-theoretic foundations for the semantics of PCTL over Markov chains by capturing the standard PCTL semantics via a two-player games. These games, finally, inspire a notion of p-automata, which accept entire Markov chains. We show that p-automata subsume PCTL and Markov chains; that their languages of Markov chains have pleasant closure properties; and that the complexity of deciding acceptance matches that of probabilistic model checking for p-automata representing PCTL formulae. In addition, we offer a simulation between p-automata that under-approximates language containment. These results then allow us to show that p-automata comprise a solution to the problem studied in this thesis

    Probabilistic Reachability for Parametric Markov Models

    Get PDF
    Abstract. Given a parametric Markov model, we consider the problem of computing the formula expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression is computed. Afterwards, this expression is evaluated to a closed form expression representing the reachability probability. This paper investigates how this idea can be turned into an effective procedure. It turns out that the bottleneck lies in an exponential growth of the regular expression relative to the number of states. We therefore proceed differently, by tightly intertwining the regular expression computation with its evaluation. This allows us to arrive at an effective method that avoids the exponential blow up in most practical cases. We give a detailed account of the approach, also extending to parametric models with rewards and with non-determinism. Experimental evidence is provided, illustrating that our implementation provides meaningful insights on non-trivial models.

    Formal methods applied to the analysis of phylogenies: Phylogenetic model checking

    Get PDF
    Los árboles filogenéticos son abstracciones útiles para modelar y caracterizar la evolución de un conjunto de especies o poblaciones respecto del tiempo. La proposición, verificación y generalización de hipótesis sobre un árbol filogenético inferido juegan un papel importante en el estudio y comprensión de las relaciones evolutivas. Actualmente, uno de los principales objetivos científicos es extraer o descubrir los mensajes biológicos implícitos y las propiedades estructurales subyacentes en la filogenia. Por ejemplo, la integración de información genética en una filogenia ayuda al descubrimiento de genes conservados en todo o parte del árbol, la identificación de posiciones covariantes en el ADN o la estimación de las fechas de divergencia entre especies. Consecuentemente, los árboles ayudan a comprender el mecanismo que gobierna la deriva evolutiva. Hoy en día, el amplio espectro de métodos y herramientas heterogéneas para el análisis de filogenias enturbia y dificulta su utilización, además del fuerte acoplamiento entre la especificación de propiedades y los algoritmos utilizados para su evaluación (principalmente scripts ad hoc). Este problema es el punto de arranque de esta tesis, donde se analiza como solución la posibilidad de introducir un entorno formal de verificación de hipótesis que, de manera automática y modular, estudie la veracidad de dichas propiedades definidas en un lenguaje genérico e independiente (en una lógica formal asociada) sobre uno de los múltiples softwares preparados para ello. La contribución principal de la tesis es la propuesta de un marco formal para la descripción, verificación y manipulación de relaciones causales entre especies de forma independiente del código utilizado para su valoración. Para ello, exploramos las características de las técnicas de model checking, un paradigma en el que una especificación expresada en lógica temporal se verifica con respecto a un modelo del sistema que representa una implementación a un cierto nivel de detalle. Se ha aplicado satisfactoriamente en la industria para el modelado de sistemas y su verificación, emergiendo del ámbito de las ciencias de la computación. Las contribuciones concretas de la tesis han sido: A) La identificación e interpretación de los árboles filogeneticos como modelos de la evolución, adaptados al entorno de las técnicas de model checking. B) La definición de una lógica temporal que captura las propiedades filogenéticas habituales junto con un método de construcción de propiedades. C) La clasificación de propiedades filogenéticas, identificando categorías de propiedades según estén centradas en la estructura del árbol, en las secuencias o sean híbridas. D) La extensión de las lógicas y modelos para contemplar propiedades cuantitativas de tiempo, probabilidad y de distancias. E) El desarrollo de un entorno para la verificación de propiedades booleanas, cuantitativas y paramétricas. F) El establecimiento de los principios para la manipulación simbolica de objetos filogenéticos, p. ej., clados. G) La explotación de las herramientas de model checking existentes, detectando sus problemas y carencias en el campo de filogenia y proponiendo mejoras. H) El desarrollo de técnicas "ad hoc" para obtener ganancia de complejidad alrededor de dos frentes: distribución de los cálculos y datos, y el uso de sistemas de información. Los puntos A-F se centran en las aportaciones conceptuales de nuestra aproximación, mientras que los puntos G-H enfatizan la parte de herramientas e implementación. Los contenidos de la tesis están contrastados por la comunidad científica mediante las siguientes publicaciones en conferencias y revistas internacionales. La introducción de model checking como entorno formal para analizar propiedades biológicas (puntos A-C) ha llevado a la publicación de nuestro primer artículo de congreso [1]. En [2], desarrollamos la verificación de hipótesis filogenéticas sobre un árbol de ejemplo construido a partir de las relaciones impuestas por un conjunto de proteínas codificadas por el ADN mitocondrial humano (ADNmt). En ese ejemplo, usamos una herramienta automática y genérica de model checking (punto G). El artículo de revista [7] resume lo básico de los artículos de congreso previos y extiende la aplicación de lógicas temporales a propiedades filogenéticas no consideradas hasta ahora. Los artículos citados aquí engloban los contenidos presentados en las Parte I--II de la tesis. El enorme tamaño de los árboles y la considerable cantidad de información asociada a los estados (p.ej., la cadena de ADN) obligan a la introducción de adaptaciones especiales en las herramientas de model checking para mantener un rendimiento razonable en la verificación de propiedades y aliviar también el problema de la explosión de estados (puntos G-H). El artículo de congreso [3] presenta las ventajas de rebanar el ADN asociado a los estados, la partición de la filogenia en pequeños subárboles y su distribución entre varias máquinas. Además, la idea original del model checking rebanado se complementa con la inclusión de una base de datos externa para el almacenamiento de secuencias. El artículo de revista [4] reúne las nociones introducidas en [3] junto con la implementación y resultados preliminares presentados [5]. Este tema se corresponde con lo presentado en la Parte III de la tesis. Para terminar, la tesis reaprovecha las extensiones de las lógicas temporales con tiempo explícito y probabilidades a fin de manipular e interrogar al árbol sobre información cuantitativa. El artículo de congreso [6] ejemplifica la necesidad de introducir probabilidades y tiempo discreto para el análisis filogenético de un fenotipo real, en este caso, el ratio de distribución de la intolerancia a la lactosa entre diversas poblaciones arraigadas en las hojas de la filogenia. Esto se corresponde con el Capítulo 13, que queda englobado dentro de las Partes IV--V. Las Partes IV--V completan los conceptos presentados en ese artículo de conferencia hacia otros dominios de aplicación, como la puntuación de árboles, y tiempo continuo (puntos E-F). La introducción de parámetros en las hipótesis filogenéticas se plantea como trabajo futuro. Referencias [1] Roberto Blanco, Gregorio de Miguel Casado, José Ignacio Requeno, and José Manuel Colom. Temporal logics for phylogenetic analysis via model checking. In Proceedings IEEE International Workshop on Mining and Management of Biological and Health Data, pages 152-157. IEEE, 2010. [2] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and José Manuel Colom. Phylogenetic analysis using an SMV tool. In Miguel P. Rocha, Juan M. Corchado Rodríguez, Florentino Fdez-Riverola, and Alfonso Valencia, editors, Proceedings 5th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 93 of Advances in Intelligent and Soft Computing, pages 167-174. Springer, Berlin, 2011. [3] José Ignacio Requeno, Roberto Blanco, Gregorio de Miguel Casado, and José Manuel Colom. Sliced model checking for phylogenetic analysis. In Miguel P. Rocha, Nicholas Luscombe, Florentino Fdez-Riverola, and Juan M. Corchado Rodríguez, editors, Proocedings 6th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 154 of Advances in Intelligent and Soft Computing, pages 95-103. Springer, Berlin, 2012. [4] José Ignacio Requeno and José Manuel Colom. Model checking software for phylogenetic trees using distribution and database methods. Journal of Integrative Bioinformatics, 10(3):229-233, 2013. [5] José Ignacio Requeno and José Manuel Colom. Speeding up phylogenetic model checking. In Mohd Saberi Mohamad, Loris Nanni, Miguel P. Rocha, and Florentino Fdez-Riverola, editors, Proceedings 7th International Conference on Practical Applications of Computational Biology and Bioinformatics, volume 222 of Advances in Intelligent Systems and Computing, pages 119-126. Springer, Berlin, 2013. [6] José Ignacio Requeno and José Manuel Colom. Timed and probabilistic model checking over phylogenetic trees. In Miguel P. Rocha et al., editors, Proceedings 8th International Conference on Practical Applications of Computational Biology and Bioinformatics, Advances in Intelligent and Soft Computing. Springer, Berlin, 2014. [7] José Ignacio Requeno, Gregorio de Miguel Casado, Roberto Blanco, and José Manuel Colom. Temporal logics for phylogenetic analysis via model checking. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(4):1058-1070, 2013

    Learning Probabilistic Automata for Model Checking

    Get PDF

    On Relative and Probabilistic Finite Counterability

    Get PDF
    corecore