

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Probabilistic Reachability for Parametric Markov Models

Hahn, Ernst Moritz; Hermanns, Holger; Zhang, Lijun

Published in:
International Journal on Software Tools for Technology Transfer

Link to article, DOI:
10.1007/s10009-010-0146-x

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Hahn, E. M., Hermanns, H., & Zhang, L. (2011). Probabilistic Reachability for Parametric Markov Models.
International Journal on Software Tools for Technology Transfer, 13(1), 3-19. DOI: 10.1007/s10009-010-0146-x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13778702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10009-010-0146-x
http://orbit.dtu.dk/en/publications/probabilistic-reachability-for-parametric-markov-models(6108b710-d140-48cb-b6f6-fa3f4a6ff747).html

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Probabilistic Reachability for Parametric Markov Models

Ernst Moritz Hahn1, Holger Hermanns1,2, Lijun Zhang3

1 Saarland University, Saarbrücken, Germany
2 INRIA Grenoble – Rhône-Alpes, France
3 DTU Informatics, Technical University of Denmark

The date of receipt and acceptance will be inserted by the editor

Abstract. Given a parametric Markov model, we con-
sider the problem of computing the rational function ex-
pressing the probability of reaching a given set of states.
To attack this principal problem, Daws has suggested
to first convert the Markov chain into a finite automa-
ton, from which a regular expression is computed. After-
wards, this expression is evaluated to a closed form func-
tion representing the reachability probability. This paper
investigates how this idea can be turned into an effec-
tive procedure. It turns out that the bottleneck lies in the
growth of the regular expression relative to the number
of states (nΘ(log n)). We therefore proceed differently, by
tightly intertwining the regular expression computation
with its evaluation. This allows us to arrive at an effec-
tive method that avoids this blow up in most practical
cases. We give a detailed account of the approach, also
extending to parametric models with rewards and with
non-determinism. Experimental evidence is provided, il-
lustrating that our implementation provides meaningful
insights on non-trivial models.

1 Introduction

Markov processes have been applied successfully to rea-
son about quantitative properties in a large number of
areas such as computer science, engineering, mathemat-
ics, biological systems. This paper is about parametric
Markov processes. In this model class certain aspects are
not fixed, but depend on parameters of the model. As an
example, consider a communication network with a lossy
channel, where whenever a package is sent, it is received
with probability x but lost with probability 1− x. Such
a network can be specified in a probabilistic variation
of the Promela language [2] or in the language of the
Prism [19] model checker. In this context, we might aim,

for instance, at determining the parametric reachability
probability, i.e., the probability to reach a given set of
target states. This probability is a rational function in
x.

For (discrete-time) Markov chains (MCs), Daws [10]
has devised a language-theoretic approach to solve this
problem. In this approach, the transition probabilities
are considered as letters of an alphabet. Thus, the model
can be viewed as a finite automaton. Then, based on the
state elimination [20] method, the regular expression de-
scribing the language of such an automaton is calculated.
In a post-processing step, this regular expression is re-
cursively evaluated, resulting in a rational function over
the parameters of the model. Recently, Gruber and Jo-
hannsen [14] have shown, however, that the size of the
regular expression of a finite automaton explodes: it is
nΘ(log n) where n is the number of states.

This excessive growth is not only a theoretical in-
sight, but also a very practical problem, as we will dis-
cuss. The goal of this paper is to nevertheless present an
efficient and effective algorithm for parametric Markov
models. Apart from Markov chains, we also consider ex-
tensions with rewards or non-determinism.

Our method core is also rooted in the state elimina-
tion algorithm. The key difference to the method used
by Daws [10] is that instead of post-processing a (possi-
bly prohibitively large) regular expression, we intertwine
the state elimination and the computation of the ratio-
nal function. More precisely, in a state elimination step,
we do not use regular expressions to label edges, but
label the edges directly with the appropriate rational
function representing the flow of probabilities. This also
means that we do not work on a finite automaton rep-
resentation, but instead stay in the domain of MCs all
along the process.

We obtain the rational functions in a way inspired by
the evaluation put forward by Daws [10]. But since we do
this as early as possible, we can exploit symmetries, can-

2 Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models

cellations and simplifications of arithmetic expressions,
especially if most of the transition probabilities of the in-
put model are constants. In practice, this induces drastic
savings in the size of the intermediate rational function
representations, and hence is the key to an efficient im-
plementation, as experimental evidence shows.

We apply this idea to parametric Markov reward
models (PMRMs), in which states and transitions are
additionally equipped with reward structures, and these
reward structures are possibly parametric. We discuss
how to compute the expected accumulated reward with
respect to a set of target states B. Intuitively, this
amounts to the sum of probabilities of paths leading to
B, each weighted with the reward accumulated along
this path. A direct extension of the state elimination ap-
proach does not work for PMRMs, as in the final regular
expression the probability of individual paths leading to
B is lost. Surprisingly, our modified approach for para-
metric MCs can be extended in a straightforward way to
handle reward models. Each time we eliminate a state,
the transition probabilities are updated as for the under-
lying parametric MCs. Notably, we update the reward
function corresponding to the weighted sum represent-
ing the local expected accumulated rewards.

To round off the applicability of our method,
we present an extension which can tackle parametric
Markov decision processes (MDPs), models which in-
volve both probabilistic and non-determinism choices.
Here, we are interested in the maximum probability of
reaching a given set of target states. In order to answer
this question, we encode the non-deterministic choices
via additional binary parameters, which induce a para-
metric MC. This modified model is then submitted to
the dedicated algorithm for parametric MCs.

In most settings, we reduce the state space prior
to state elimination, by extending standard strong [11]
and weak bisimulation [3] lumping techniques (comput-
ing the quotient model for further analysis) to para-
metric MCs. A very important observation is that for
parametric MDPs we can apply the lumping on the en-
coded parametric MC, since this preserves the maximum
reachability probability. This allows us to minimise para-
metric MDPs efficiently. We have implemented the algo-
rithms in our tool Param [15], including the parametric
bisimulation lumping. We illustrate the feasibility of the
entire approach on a number of non-trivial parametric
MCs, MRMs and MDPs.

Organisation of the paper. In Section 2 we introduce
the parametric models used in this paper. Then, in Sec-
tion 3, we present our main algorithms for parametric
models, and discuss bisimulation minimisation for para-
metric models and the complexity of our algorithms.
We provide experimental results in Section 4. In Sec-
tion 5, we compare our method to the original approach
of Daws. Related work is discussed in Section 6. Finally,
Section 7 concludes this paper.

2 Parametric Models

In this section we present the parametric models which
we will use throughout the paper. Firstly, we introduce
some general notations. Let S be a finite set. We let
V = {x1, . . . , xn} denote a set of variables with domain
R. An evaluation u is a partial function u : V ⇀ R. We
let Dom(u) denote the domain of u. We say that u is
total if Dom(u) = V . A polynomial g over V is a sum of
monomials

g(x1, . . . , xn) =
∑

i1,...,in

ai1,...,inx
i1
1 · · ·xin

n

where each ij ∈ N0 and each ai1,...,in ∈ R. A ratio-
nal function f over a set of variables V is a fraction

f(x1, . . . , xn) = f1(x1,...,xn)
f2(x1,...,xn)

of two polynomials f1, f2
over V . Let FV denote the set of rational functions from
V to R. Given f ∈ FV , a set of variables X ⊆ V ,
and an evaluation u, we let f [X/u] denote the ratio-
nal function obtained by substituting each occurrence of
x ∈ X ∩Dom(u) with u(x).

Definition 1. A parametric Markov chain (PMC) is a
tuple D = (S, s0,P, V) where S is a finite set of states,
s0 is the initial state, V = {v1, . . . , vn} is a finite set of
parameters and P is the probability matrix P : S×S →
FV .

PMCs have already been introduced in previous pub-
lications [10,27]. We now define the underlying graph of
a PMC.

Definition 2. The underlying graph GD of a PMC D =
(S, s0,P, V) is defined as GD = (S,ED) where ED =
{(s, s′) | P(s, s′) 6= 0}.

We omit the subscript D if it is clear from the con-
text. Based on the above definition, we introduce some
more notations. For s ∈ S, we let pre(s) = {s′ |
(s′, s) ∈ E} denote the set of predecessors of s, and
let post(s) = {s′ | (s, s′) ∈ E} denote the set of succes-
sors of s. We say that s′ is reachable from s, denoted
by reachGD(s, s′), if s′ is reachable from s in the under-
lying graph GD. For A ⊆ S, we write reachGD (s, A) if
reachGD (s, s′) for any s′ ∈ A. We omit the superscript
GD if it is clear from the context. Now we define the
induced PMC with respect to an evaluation:

Definition 3. Let D = (S, s0,P, V) be a PMC. The
PMC Du induced by an evaluation u is defined as
Du = (S, s0,Pu, V \ Dom(u)) where the transition ma-
trix Pu : S × S → FV \Dom(u) is given by Pu(s, s

′) =
P(s, s′)[Dom(u)/u].

We introduce the notion of well-defined evaluations.
A total evaluation u is well-defined for D if Pu(s, s

′) ∈
[0, 1] for all s, s′ ∈ S, and Pu(s, S) ∈ [0, 1] for all s ∈ S
where Pu(s, S) denotes the sum

∑
s′∈S Pu(s, s

′). In-
tuitively, u is well-defined if and only if the resulting

Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models 3

PMC Du is then an ordinary MC without parameters.
For a well-defined evaluation, state s is called stochas-
tic if Pu(s, S) = 1, sub-stochastic if Pu(s, S) < 1. If
Pu(s, S) = 0, s is called absorbing.

Let u be a well-defined evaluation, and consider the
underlying graphs GD = (S,ED) and GDu = (S,EDu).
Obviously, it holds that EDu ⊆ ED. We say that the
total evaluation function u is strictly well-defined if the
equality holds, i.e., EDu = ED. Intuitively, a strictly
well-defined evaluation does not destroy the reachability
property of the underlying graph. This implies that any
edge with function f evaluates to a non-zero probability.
As probabilities often correspond to failure probabilities,
we often do not need to consider non-strictly well-defined
evaluations; we are usually not interested in considering
that the probability of a failure is 0 or, at the other hand,
that the probability of success is 0.

An infinite path is an infinite sequence σ = s0s1s2 . . .
of states, and a finite path is a finite sequence σ =
s0s1s2 . . . sn of states. A finite path σ = s0s1s2 . . . sn
has length |σ| = n. Let first(σ) = s0 denote the first
state, and last(σ) = sn denote the last state (for a finite
path). A maximal path is either an infinite path or a
finite path σ such that last(σ) is absorbing. With σ[i]
we denote the ith state of σ (starting at 0). Let PathD

denote the set of maximal paths of D and PathD
fin the

set of finite paths. Let PathD(s) (PathD
fin(s)) be the set

of maximal (finite) paths starting in s. For a finite path
σ, we define a rational function PrD(σ) ∈ FV by

PrD(σ) =
|σ|−1∏
i=0

P(σ[i], σ[i + 1]) .

For a set of paths C ⊆ PathD
fin such that there are

no σ, σ′ ∈ C where σ is a prefix of σ′, let PrD(C) =∑
σ∈C PrD(σ). The function PrD can be uniquely ex-

tended to the set of paths PathD. For a well-defined
evaluation u, PrD(σ)[V/u] is exactly the probability of
the path σ in Du, and PrDu is the uniquely defined prob-
ability measure [31] over the set of paths PathD given a
fixed initial state s0. We omit the superscript D if it is
clear from the context. Now we consider the extension
of PMCs with rewards:

Definition 4. A Parametric Markov Reward Model
(PMRM) is a tuple R = (D, r) where D = (S, s0,P, V)
is a PMC and r : (S ∪ (S × S)) → FV is the reward
function.

Intuitively, for states s, s′ ∈ S, r(s) is the reward
gained by visiting s, and r(s, s′) denotes the reward
gained if the transition from s to s′ is taken. Both r(s)
and r(s, s′) are rational functions over V . As for PMCs,
we define the induced PMRM.

Definition 5. Let R = (D, r) be a PMRM. The
PMRM Ru induced by an evaluation u is defined as
Ru = (Du, ru). Here Du is defined as in Definition 3.

For s ∈ S and (s1, s2) ∈ S × s we define ru(s) =
r(s)[Dom(u)/u] and ru(s1, s2) = r(s1, s2)[Dom(u)/u].

The evaluation u is well-defined and strictly well-
defined forR iff it is well-defined and strictly well-defined
for D, respectively. We will also use paths as well as the
underlying graph of R = (D, r) without referring to D
explicitly. Finally, we consider parametric Markov deci-
sion processes which are extensions of PMCs with non-
deterministic decisions:

Definition 6. A parametric Markov decision process
(PMDP) is a tuple M = (S, s0,Act ,P, V) where S, s0
and V are as for PMCs, and Act is a finite set of ac-
tions. The transition probability matrix P is a function
P : S × Act × S → FV .

As for PMCs, we introduce the PMDP induced by a
valuation function:

Definition 7. Given a PMDP M = (S, s0,Act ,P, V)
and an evaluation u, the PMDP induced by u is defined
by Mu = (S, s0,Act ,Pu, V \ Dom(u)) where Pu : S ×
Act × S → FV \Dom(u) is defined by

Pu(s, a, s
′) = P(s, a, s′)[Dom(u)/u]

With Act(s) = {a | ∃s′ ∈ S. P(s, a, s′) 6= 0} we
specify the set of enabled actions of a state. An infinite
path of M is an infinite sequence σ = s0a0s1a1 . . ., and
a finite path is a finite sequence σ = s0a0s1a1 . . . sn. The
notations maximal path, σ[i], PathM, PathM

fin , Path
M(s)

and PathM
fin(s) are defined in a similar way as for PMCs.

The non-deterministic choices are resolved by the notion
of schedulers. A scheduler is a function

A : PathM
fin(s0) → Act

satisfying that for σ ∈ PathM
fin(s0), A(σ) = a implies

a ∈ Act(last(σ)). We say that A is stationary (or called
memoryless in the literature) if A depends only on the
last state, i.e., A is a function A : S → Act . With
MD(M) we denote the set of stationary schedulers of
M. A stationary scheduler induces a PMC as follows:

Definition 8. Given a PMDP M = (S, s0,Act ,P, V)
and a stationary scheduler A, the PMC induced by A
is defined as MA = (S, s0,PA, V) where the transition
matrix PA : S × S → FV is defined by PA(s, s

′) =
P(s, A(s), s′).

A total evaluation u is called strictly well-defined for
M if for each stationary scheduler A ∈ MD(M), u is
strictly well-defined for MA. For strictly well-defined
evaluation u, let PrMu,A denote the probability mea-
sure in the PMC (MA)u.

4 Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models

2.1 Bisimulation Relations

A bisimulation is an equivalence relation on states which
subsumes states satisfying the same reachability proba-
bility properties. Now we extend the standard strong [23,
11] and weak bisimulation [3,4] relations for Markov
models to our parametric setting in an obvious way.

Definition 9. Let D = (S, s0,P, V) be a PMC and R
be an equivalence relation on S. R is a strong bisimula-
tion on D with respect to B if for all s1Rs2 it holds
s1 ∈ B iff s2 ∈ B, and for all C ∈ S/R it holds
P(s1, C) = P(s2, C).

States s1 and s2 are strongly bisimilar, denoted
s1 ∼D s2 iff there exists a strong bisimulation R on D.
Note that we have operations on functions in the defi-
nition, instead of numbers. Strong bisimulation can be
extended for PMRMs without transition rewards by ad-
ditionally requiring that r(s1) = r(s2) for all C ∈ S/R
if s1Rs2. Now we give the notion of weak bisimulation:

Definition 10. Let D = (S, s0,P, V) be a PMC and R
be an equivalence relation on S. Let B be a set of target
states. R is a weak bisimulation on D with respect to B
if for all s1Rs2 s1 ∈ B iff s2 ∈ B, and

1. If P(si, [si]R) 6= 1 for i = 1, 2 then for all C ∈ S/R,
C 6= [s1]R = [s2]R:

P(s1, C)

1−P(s1, [s1]R)
=

P(s2, C)

1−P(s2, [s2]R)
.

2. s1 can reach a state outside [s1]R iff s2 can reach a
state outside [s2]R.

We say that states s1 and s2 are weakly bisimilar,
denoted s1 ≈D s2 iff there exists a weak bisimulation R
on D. Weak bisimulation is strictly coarser than strong
bisimulation. To the best of our knowledge, weak bisimu-
lation has not been introduced for Markov reward mod-
els. The largest (strong or weak) bisimulation equiva-
lence allows us to obtain the quotient, which is the small-
est model bisimilar to the original model. As the reach-
ability properties are preserved under bisimulations, we
can work with the quotient instead of the original model.

3 Algorithms

In this section we first present an algorithm for the reach-
ability probability for PMCs. Then, we extend our algo-
rithm to PMRMs and PMDPs in Subsection 3.2 and
Subsection 3.3 respectively. In Subsection 3.4 we discuss
how to minimise parametric models using bisimulation,
and we discuss the complexity of our algorithm in Sub-
section 3.5.

s2

ss1 s2pbpa

pc

pd

pa
1

1−pc
pb + pd

s1

Figure 1. State Elimination for PMCs

3.1 Parametric MCs

Let D be a PMC and let B be a set of target states. We
are interested in the parametric reachability probability,
i.e., the function representing the probability to reach a
set of target states B from s0, for all well-defined valu-
ations. This is defined by

PrD({σ ∈ PathD | σ[0] = s0 ∧ ∃i.σ[i] ∈ B}) .

Daws [10] has already solved this problem as follows.
First, the PMC is transformed into a finite automaton,
with the same initial state, and B as the final states.
Transition probabilities are described by symbols from
an alphabet of the automaton of the form p

q or x repre-
senting rational numbers, or variables. Afterwards, based
on the state elimination [20] method, the regular expres-
sion describing the language of such an automaton is cal-
culated. Then, these regular expressions are evaluated
into rational functions representing the probability to fi-
nally reach the target states. However, this approach can
become very costly, as the length of a regular expression
obtained from an automaton is nΘ(log n) [14].

In this section, we present an improved algorithm in
which state elimination and the computation of rational
functions are intertwined. As we do not compute the
regular expressions as an intermediate step anymore, this
allows for a more efficient implementation. The reason
is that the rational functions can be simplified during
the state elimination steps, thus avoiding the blowup of
regular expressions.

The algorithm is presented in Algorithm 1. The input
is a PMC D and a set of target states B. Since we are
interested in the reachability probability, w.l.o.g., we can
make the target states absorbing, and remove states (and
corresponding edges) not reachable from s0, or which
can not reach B a priori. We note that removing states
could induce sub-stochastic states. A usual search algo-
rithm is sufficient for this preparation. In the algorithm
+,−, etc. are operations for rational functions, and exact
arithmetic is used to avoid numerical problems. The key
idea of the algorithm is to eliminate states from the PMC
one by one, while maintaining the reachability probabil-
ity. The elimination of a single state s 6∈ {s0}∪B is illus-
trated in Figure 1. The labels represent the correspond-
ing transition probabilities. The function eliminate(s)

Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models 5

Algorithm 1 Parametric Reachability Probability for PMCs

Require: PMC D = (S, s0,P, V) and the set of target states B. State s ∈ B is absorbing. For all s ∈ S, it holds
reach(s0, s) and reach(s,B).

1: for all s ∈ S \ ({s0} ∪B) do
2: for all (s1, s2) ∈ pre(s)× post(s) do
3: P(s1, s2) = P(s1, s2) +P(s1, s)

1
1−P(s,s)P(s, s2)

4: eliminate(s)
5: return 1

1−P(s0,s0)
P(s0,B)

eliminates state s from D. When eliminating s, we con-
sider all pairs (s1, s2) ∈ pre(s) × post(s). After elimi-
nating s, the new transition probability from s1 to s2
becomes f(s1, s2) := pd + papb

1−pc
. The second term papb

1−pc

of f(s1, s2) is the geometric sum
∑∞

i=0 pap
i
cpb = papb

1−pc
,

which corresponds to the probability of reaching s2 from
s1 through s.

We now discuss the correctness of our algorithm.
Consider the simple PMC in Figure 1. Assume that
we have V = {pa, pb, pc, pd}. For strictly well-defined
evaluation, our computed rational function f(s1, s2) is
correct, which can be seen as follows. If u is strictly
well-defined, we have that ED = EDu , implying that
u(pc) > 0, u(pb) > 0 and u(pc) + u(pb) ≤ 1. This in-
dicates also that the denominator 1− u(pc) is not zero.
Obviously, for a well-defined evaluation u with u(pc) = 1,
our result f(s1, s2) is not defined at all. The problem is
that state s can not reach s2 in GDu any more. Now con-
sider another well-defined (but not strictly well-defined)
evaluation u satisfying u(pc) = 0 and u(pb) = 1. It is easy
to check that f(s1, s2) returns the right result in this
case. We introduce the notion of maximal well-defined
evaluations for this purpose:

Definition 11. Assume that the PMC D and the set
of states B satisfy the requirement of Algorithm 1. The
total evaluation u is maximal well-defined, if it is well-
defined, and if for each s ∈ S it holds that reachDu(s,B).

This means that under maximal well-defined evaluations
we can still reach the set of target states from all states
of the model after inserting values into the parametric
model according to the evaluation. This does not mean
that the reachability probability is 1, because we allow
sub-stochastic models. Now we give the correctness of
Algorithm 1.

Lemma 1. Assume that the PMC D and the set of
states B satisfy the requirement of Algorithm 1. Assume
that the algorithm returns f ∈ FV . Then, for maximal
well-defined evaluation u it holds that PrDu(s0,B) =
f [V/u].

The detailed induction-based proof can be found in
Appendix A.1. We can handle non-maximal evaluations
by reducing them to maximal evaluations. The details
are skipped here.

3.2 Parametric MRMs

Let R = (D, r) be a PMRM with D = (S, s0,P, V). Let
B ⊆ S be a set of target states. We are interested in
the parametric expected accumulated reward [26] until B
is reach. We denote this value by RR(s0,B). Formally,
RR(s0,B) is the expectation of the random variable

XR : σ ∈ PathD(s0) → R≥0

which is defined by: XR(σ) equals 0 if first(σ) ∈ B, ∞
if σ[i] /∈ B for all i, and otherwise, equals:

min{j|σ[j]∈B}−1∑
i=0

r(σ[i]) + r(σ[i], σ[i + 1]).

In Algorithm 2, we extend the algorithm for PMCs
to handle PMRMs. The input model is a PMRM R =
(D, r) where we have the same requirement of D as Algo-
rithm 1 plus the assumption that the set of target states
is reached with probability 1 (can be checked by Algo-
rithm 1) for the evaluations under consideration. We dis-
cuss briefly how other special cases can be dealt with by
means of simple search algorithms. As for PMCs, states
not reachable from s0 need not be considered. Assume
that there exists a state s satisfying the property that
reach(s0, s) and that ¬reach(s,B). By definition, any
path σ containing s would have infinite reward, which
implies also that RR(s0,B) = ∞. Assume that D sat-
isfies the requirement of the algorithm. In this case we
have

RR(s0,B) =
∑
σ

PrD(σ) ·XR(σ)

where σ ranges over all maximal paths of D. The key
part of the algorithm is the adaption of the state elim-
ination algorithm for R. Consider the pair (s1, s2) ∈
pre(s) × post(s). The core is how to obtain the transi-
tion reward for the new transition (s1, s2) after elim-
inating s. Consider Figure 2, where the label p/r of
the edge (s, s′) denotes the transition probability and
the transition reward of the transition respectively. We
construct the transition from s1 to s2 in two steps. In
the first step we assume that P(s1, s2) = 0 (pd = 0 in
the figure). As for PMCs, after removing s, the prob-
ability of moving from s1 to s2 is the infinite sum
f(s1, s2) :=

∑∞
i=0 pap

i
cpb = papb

1−pc
. Strictly according to

6 Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models

Algorithm 2 Parametric Expected Reward for PMRM

Require: PMRM R = (D, r) with D = (S, s0,P, V), the set of target states B. State s ∈ B is absorbing. For all
s ∈ S, it holds that reach(s0, s) and for all maximal well-defined evaluations u it is PrDu(s,B) = 1

1: for all s ∈ S \ ({s0} ∪B) do
2: for all (s1, s2) ∈ pre(s)× post(s) do
3: pe = P(s1, s)

1
1−P(s,s)P(s, s2)

4: re = r(s1, s) + r(s, s2) + r(s) + P(s,s)
1−P(s,s) (r(s, s) + r(s))

5: r(s1, s2) =
pere+P(s1,s2)r(s1,s2)

pe+P(s1,s2)

6: P(s1, s2) = P(s1, s2) + pe
7: eliminate(s)

8: return
∑

s∈B

{
P(s0,s)

1−P(s0,s0)
· (r(s0) + r(s0, s)) +

P(s0,s0)P(s0,s)
(1−P(s0,s0))2

· (r(s0, s0) + r(s0))
}

s1

s1 s2

(pe + pd) /
(

pere+pdrd
pe+pd

)

s1 s/rs s2

pa/ra pb/rb

pc/rc

pd/rd

pd/rd

pe/re

s2

Figure 2. For Parametric MRMs in which we have pe = papb
1−pc

,

and re = ra + rb + rs + pc
1−pc

(rc + rs)

our definition, the expected accumulated rewards would
be

g(s1, s2) :=

∞∑
i=0

(pap
i
cpb) · (ra + rs + (rc + rs)i+ rb)

= (ra + rs + rb)
papb
1− pc

+ papb(rc + rs)

∞∑
i=0

ipic

The sum
∑∞

i=0 ip
i
c can be simplified to pc

(1−pc)2
. Then,

we would take the function re := g(s1,s2)
f(s1,s2)

for the new

reward from (s1, s2). It can be simplified to

re = ra + rb + rs +
pc

1− pc
(rc + rs) .

This reward can be understood as follows. The sum ra+
rb + rs corresponds to the rewards via visiting s and
taking transitions (s1, s) and (s, s2). The term pc

1−pc
can

be interpreted as the expected number of times that the
self-loop of s is taken, thus the second part is obtained
by multiplying it with the rewards rc + rs of a single
loop.

Now we take account of the case P(s1, s2) > 0. The
probability becomes then pe + pd where pe = papb

1−pc
and

pd = P(s1, s2). A similar analysis as above allows us to
get the reward pere+pdrd

pe+pd
. Now we give the correctness

of the algorithm for the expected reward, the proof of
which can be found in Appendix A.2.

Lemma 2. Assume that the PMRM R = (D, r) and B
satisfy the requirement of Algorithm 2. Assume that the
algorithm returns f ∈ FV . Let u be a maximal well-
defined evaluation. Then, it holds that RRu(s0,B) =
f [V/u].

3.3 Parametric MDPs

Let M = (S, s0,Act ,P, V) be a PMDP and let B ⊆ S
be a set of target states. Our goal in this section is to
compute the maximum reachability probability of B in
M with respect to all schedulers. Formally, we want
to compute the maximum maxA PrMu,A(s0,B) for each
strictly well-defined valuation u, with A ranging over all
schedulers. For the ordinary MDP case (e.g. Mu where
u is strictly well-defined), it has been shown [5] that the
class of stationary schedulers is sufficient to achieve this
maximum reachability probability. For PMDPs, differ-
ent stationary schedulers are needed for different evalu-
ations:

Example 1. Consider the PMDP

M = ({s0, s1, s2} , s0, {a, b} ,P, {x})
where P is defined by: P(s0, a, s1) = P(s0, a, s2) = 1

2 ,
P(s0, b, s1) = x, P(s0, b, s2) = 1− x. Let B = {s1}. Ob-
viously, for x ≤ 1

2 taking decision a we get the maximum
reachability probability 1

2 . Moreover, for x ≥ 1
2 we get

the maximum reachability probability x with decision b.

We introduce binary variables to encode non-deter-
ministic choices in PMDPs, as anticipated by Daws [10].
For state s ∈ S with a number of k = |Act(s)| non-
deterministic choices, we need to introduce k − 1 vari-
ables.

Definition 12. Let s ∈ S with |Act(s)| > 1. Let δ(s) ∈
Act(s) be an arbitrary selected action. Then, for each

Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models 7

a ∈ Act(s) and a 6= δ(s), we introduce a binary variable
vs,a, denoted by enc(s, a), to encode the transition from
s when choosing a. The transition with respect to δ(s)
is encoded via

enc(s, δ(s)) := 1−
∑

b∈Act(s),b6=δ(s)

vs,b .

In the following, we fix δ as defined above and let
Var δ denote the set of these variables, all of which have
domain {0, 1}. Intuitively, vs,a = 1 indicates that the
transition labelled with a is taken from s, whereas vs,a =
0 for all vs,a with a 6= δ indicates that δ(s) is taken. Now
we define the encoding of M with respect to Varδ.

Definition 13. LetM = (S, s0,Act ,P, V) be a PMDP.
The encoding PMC with respect to Varδ is defined as
enc(M) = (S, s0,Pδ, V ∪̇Var δ) where

Pδ(s, s
′) =

∑
a∈Act

P(s, a, s′) · enc(s, a).

To avoid confusion, we use v : Varδ → {0, 1} to de-
note a total evaluation function for Varδ. We say v is
stationary, if for each s with |Act(s)| > 1, there exists
at most one a ∈ Act(s) \ {δ(s)} with v(vs,a) = 1. We let
SEX denote the set of stationary evaluations v with do-
main Dom(v) = X , and let SE := SEVarδ

. Observe that
if v(vs,a) = 0 for all a ∈ Act(s) \ {δ(s)}, the transition
labelled with δ(s) is selected.

We can apply Algorithm 1 on the encoding PMC to
compute the parametric reachability probability. In the
following we discuss how to transform the result achieved
this way back to the maximum reachability probability
for the original PMDPs. The following lemma states that
each stationary scheduler corresponds to a stationary
evaluation with respect to Varδ:

Lemma 3. Let M = (S, s0,Act ,P, V) be a PMDP.
Then for each stationary scheduler A there is a station-
ary evaluation v ∈ SE such that MA = (enc(M))v.
Moreover, for each stationary evaluation v ∈ SE there
exists a stationary scheduler A such that (enc(M))v =
MA.

Proof. Let M = (S, s0,Act ,P, V) be a PMDP, and let
A : S → Act be a stationary scheduler. We define a
stationary evaluation v with

v(vs,a) =

{
0 , A(s) 6= a
1 , A(s) = a

Then we have MA = (enc(M))v. If on the other hand
we start with a stationary evaluation v, we can define a
stationary scheduler A by A(s) = a iff

– either v(vs,a) = 1, or
– δ(s) = a and for all vs,b it is v(vs,b) = 0.

Then again we have MA = (enc(M))v. 2

Because stationary schedulers are sufficient for maxi-
mum reachability probabilities, the above lemma sug-
gests that for a strictly well-defined evaluation u of M,
it holds that

max
A∈MD(M)

PrMu,A(s0,B) = max
v∈SE

Pr (enc(Mu))v (s0,B).

Together with Lemma 1, the following lemma discusses
the computation of this maximum:

Lemma 4. Let M = (S, s0,Act ,P, V) be a PMDP and
let f be the function obtained by applying Algorithm 1 on
enc(M). Let Varf denote the set of variables occurring
in f . Then for each strictly well-defined evaluation u of
M, it holds that:

max
A∈MD(M)

PrMu,A(s0,B) = max
v∈SEVarδ∩Varf

f [Varδ/v][V/u].

Proof. Let M = (S, s0,Act ,P, V) be a PMDP, let u be
a strictly well-defined evaluation for M and let A be a
stationary scheduler with

PrMu,A(s0,B) = max
A′∈MD(M)

PrMu,A
′
(s0,B) (1)

Without loss of generality, we can assume that the cho-
sen A in the above equation satisfies the following con-
straint:

PrMu,A(s,B) = max
A′∈MD(M)

PrMu,A
′
(s,B) (2)

for all s ∈ S instead of just the initial state [5]. Let
f be the function returned from applying Algorithm 1
on enc(M). Let v : Var δ → {0, 1} be the evalua-
tion from Lemma 3. Then v is the evaluation needed.
Applying first u and then v is equivalent to applying
w : V ∪̇Varδ → R with

w(a) =

{
u(a) if a ∈ V
v(a) if a ∈ Var δ

as V and Varδ are disjunctive sets. So, f [V ∪̇Varδ/w] =
f [Var δ/v][V/u]. We show that w is maximal well-defined
in enc(M) that is

1. w is well-defined, and
2. reach(enc(M))w(s,B) for all s ∈ S.

For (1), this is clear. For (2), let

S′ =
{
s ∈ S | reachenc(M)(s,B)

}
.

We only have to show that reach(enc(M))w (s,B)
for state s ∈ S′, because states not in S′ will
be removed by the preprocessing of the state-
elimination algorithm. As u is strictly well-defined,
reach(enc(M))u(s,B) for s ∈ S′. Thus there is a v′ with
Pr ((enc(M))u)v′ (s,B) > 0. This means there is a sched-

uler A′ with Pr (MA′)u(s,B) > 0. Because of Equation 2,

it follows that Pr (MA)u(s,B) > 0. Due to the defini-

tion of v, this also means Pr ((enc(M))u)v (s,B) > 0 and

8 Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models

in turn Pr (enc(M))w(s,B) > 0, which is equivalent to

reach(enc(M))w(s,B).
Now we have:

f [Varδ/v][V/u]

= f [V ∪̇Varδ/w] Lem.1
= Pr enc(M)w(s0,B)

= Pr((enc(M))v)u(s0,B)
Lem.3
= PrMu,A(s0,B)

Eq. (1)
= max

A′∈MD(M)
PrMu,A

′
(s0,B) .

2

In worst case, we have SEVarδ∩Varf
= SE . The size

|SE | = ∏
s∈S |Act(s)| grows exponential in the number

of states s with |Act(s) > 1|.

3.4 Bisimulation Minimisation for Parametric Models

We discuss how to apply bisimulation strategy to reduce
the state space before our main algorithm. For PMCs,
both strong and weak bisimulation can be applied, while
for PMRMs only strong bisimulation is used. The most
interesting part is for PMDPs, for which we minimise the
encoded PMC instead of the original one. The following
lemma shows that strong (weak) bisimilar states in D
are also strong (weak) bisimilar in Du for each maximal
well-defined evaluation:

Lemma 5. Let D = (S, s0,P, V) be a PMC with
s1, s2 ∈ S. Let B be a set of target states. Then, for
all maximal well-defined evaluation u, s1 ∼D s2 implies
that s1 ∼Du s2, and s1 ≈D s2 implies that s1 ≈Du s2.

Proof. First we prove: s1 ∼D s2 ⇒ s1 ∼Du s2 for all
well-defined evaluations u:

If s1 ∼ s2 then there exists a strong bisimulation R
with s1Rs2. Obviously R is also a bisimulation in Du:
for s′1Rs′2 and C ∈ S/R, we have: P(s′1, C) = P(s′2, C)
implies Pu(s

′
1, C) = Pu(s

′
2, C). Whether states are con-

tained in B is not changed by the model.
Now we prove: s1 ≈D s2 ⇒ s1 ≈Du s2 for all maximal

well-defined evaluations u:
If s1 ≈ s2 then there exists a weak bisimulation R

with s1Rs2. Moreover, for s′1Rs′2 it holds:

1. s′1 ∈ B iff s′2 ∈ B

2. if P(s′i, [s
′
i]R) 6= 1 for i = 1, 2 then it is

P(s′1,C)
1−P(s′1,[s

′
1]R) =

P(s′2,C)
1−P(s′2,[s

′
2]R) for all C ∈ S/R if s′1Rs′2, and

3. s′1 can reach a state outside [s′1] iff s′2 can also in GD.

We show that R is also a weak bisimulation in Du. For
(1), this is clear. For (2), assume that Pu(s

′
i, [s

′
i]R) < 1

for i = 1, 2. In this case, we must have P(s′i, [s
′
i]R) 6=

1 and thus
P(s′1,C)

1−P(s′1,[s
′
1]R) =

P(s′2,C)
1−P(s′2,[s

′
2]R) which implies

Pu(s
′
1,C)

1−Pu(s′1,[s
′
1]R) =

Pu(s
′
2,C)

1−Pu(s′2,[s
′
2]R) . For (3) we notice that in

1− vs1,a

1
2

s0 1
2

vs1,a

1

s4

s2

s1

s4s0
1

maximal evaluation

1
2

s0 1
2

1

s4

s2

s1

vs1,a = 0

1

original model

Figure 3. Weak Bisimulation Does Not Maintain Minimal Reach-
ability in PMDPs

maximal well-defined evaluations we always can reach B
from states not in B in GDu .

In Figure 3, it is illustrated why weak bisimula-
tion is only valid for maximal evaluations. The com-
puted partitioning with respect to weak bisimulation
is S/R = {{s0, s1, s2}, {s4}}. This is correct with re-
spect to any maximal well-defined valuation u: since
u(vs1,a) > 0 implying both s1 and s2 can reach B. The
quotient automaton is depicted in the middle of the fig-
ure.

Now consider the evaluation function u′ with
u′(vs1,a) = 0. Obviously u′ is not maximal well-defined,
as state s1 can not reach B. For this evaluation no states
are weak bisimilar, thus the quotient is the same as the
original automaton (depicted on the lower part). 2

Both strong and weak bisimulation preserve the
reachability probability for ordinary MCs [17,3]. By the
above lemma, for PMCs, both strong and weak bisimu-
lation preserve reachability probability for all maximal
well-defined evaluations. A similar result holds for PM-
RMs: if two states s1, s2 of R = (D, r) are strong bisimi-
lar, i.e. s1 ∼R s2, then for all maximal well-defined eval-
uations u, we have s1 ∼Ru s2. As a consequence, strong
bisimulation preserves expected accumulated rewards for
all well-defined evaluations for PMRMs.

Now we discuss how to minimise PMDPs. Instead
of computing the bisimulation quotient of the original
PMDPs M, we apply the bisimulation minimisation al-
gorithms on the encoded PMCs enc(M). Since both
strong and weak bisimulation preserve reachability for
PMCs, by Lemma 3 and Lemma 4, bisimulation min-
imisation on the encoded PMC enc(M) also preserves
the maximum reachability probability on M with re-

Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models 9

1− vs3,a

s0

s1 1

s3

1− vs0,a 1

vs0,a

s2

s1

s2

s3 s4

1 1

s0
1 vs3,a

Figure 4. Bisimulation for PMDPs

spect to strictly well-defined evaluations. Thus, we can
apply the efficient strong and weak bisimulation algo-
rithm for the encoding PMC directly. The following ex-
ample illustrates the use of strong and weak simulations
for PMDPs.

Example 2. Consider the encoding PMC on the upper
part of Figure 4. States s1, s2 are obviously strong bisim-
ilar. Moreover, in the quotient, we have that the proba-
bility of going to the equivalence class {s1, s2} from s0
is 1. Because of this, the variable vs,a disappears in the
quotient. Now consider the lower part. In this encoding
PMC, states s1, s2, s3 are weak bisimilar.

Remark: For the lower part of Figure 4, we explain be-
low why our results do not hold when computing mini-
mum reachability probabilities. Using the state elimina-
tion algorithm, we obtain that the probability of reach-
ing s4 from s0 is 1, independently of the variable vs,a.
However, the minimum reachability probability is ac-
tually 0 instead. Moreover, states s0, s1, s2 and s3 are
bisimilar, thus in the quotient we have the probability 1
of reaching the target state directly. Thus the informa-
tion about minimum reachability probability is also lost
during the state elimination and also during the weak
bisimulation lumping of the encoding PMC.

3.5 Complexity

Since our algorithm is dealing with rational functions,
we first discuss briefly the complexity of arithmetic
for polynomials and rational functions. For more de-
tail we refer to the literature [13]. For a polynomial
f , let mon(f) denote the number of monomials. Addi-
tion and subtraction of two polynomials f and g are
performed by adding or subtracting coefficients of like
monomials, which takes time mon(f) + mon(g). Multi-
plication is performed by cross-multiplying each mono-
mials, which takes O(mon(f) ·mon(g)). Division of two
polynomials results a rational function, which is then
simplified by shortening the greatest common divisor
(GCD), which can be obtained efficiently using a vari-
ation of the Euclid’s algorithm. Arithmetic for rational
functions reduces to manipulation of polynomials, for

example f1
f2

+ g1
g2

= f1g2+f2g1
f2g2

. Checking whether two

rational functions f1
f2

and g1
g2

are equal is equivalent to
checking whether f1g2 − f2g1 is a zero polynomial.

We now discuss the complexity of our algorithms. In
each elimination step, we have to update the transition
functions (or rewards for PMRMs) which takes O(n2)
polynomial operations in worst case. Thus, altogether
O(n3) many operations are needed to get the final func-
tion, which is the same as in the state elimination algo-
rithm [7]. The complexity of arithmetic for polynomials
depends on the degrees. The size of the final rational
function is in worst case nO(logn).

For PMDPs, we first encode the non-deterministic
choices via new binary variables. Then, the encoding
PMC is submitted to the dedicated algorithm for para-
metric MCs. The final function can thus contain both
variables from the input model and variables encoding
the non-determinism. As shown in Lemma 4, the eval-
uation is of exponential size in the number of variables
encoding the non-determinism occurring in the final ra-
tional function.

We also discuss briefly the complexity of the bisim-
ulation minimisation algorithms. For ordinary MCs,
strong bisimulation can be computed [11] in O(m log n)
where n,m denote the number of states and transitions
respectively. The complexity of deciding weak bisimula-
tion [3] is O(mn). These algorithms can be extended to
PMCs directly, with the support of operations on func-
tions. The complexity is then O(m logn) and O(mn)
many operations on rational functions for strong and
weak bisimulation respectively.

4 Case Studies

We have built the tool Param [15], which implements
our new algorithms, including both the state-elimination
algorithm as well as the bisimulation minimisation algo-
rithm. Param allows a guarded-commands based input
language supporting PMC, PMRM and PMDPs. The
language is extended from Prism [19] with unknown
parameters. Properties are specified by PCTL formulae
without nesting.

The sparse matrices are constructed from the model,
and then the set of target states B is extracted from
the formula. Then, bisimulation minimisation can be ap-
plied to reduce the state space. For PMCs, both strong
and weak bisimulation applies, and for PMRMs, cur-
rently only strong bisimulation is supported. For PMDP,
bisimulation is run for the encoded PMC. We imple-
mented methods and data structures to handle rational
functions for example the basic arithmetic operations,
comparisons and simplification. The computer algebra
library CoCoALib [1] is used for handling the cancella-
tion part. For details of the tool, we refer to the corre-
sponding tool paper [15].

10 Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models

We consider a selection of case studies to illustrate
the practicality of our approach. All of the models are
extended from the corresponding Prism models. All ex-
periments were run on a Linux machine with an Intel
Core 2 Duo (tm) processor at 2.16 GHz equipped with
2GB of RAM. We updated the performance figures for
the case studies and also give more details about the
time the different parts of the analysis need.

4.1 Crowds Protocol

The intention of the Crowds protocol [29] is to protect
the anonymity of Internet users. The protocol hides each
user’s communications via random routing. Assume that
we have N honest Crowd members, and M dishonest
members. Moreover, assume that there are R different
path reformulates. The model is a PMC with two pa-
rameters of the model:

1. B = M
M+N is the probability that a Crowd member

is untrustworthy,
2. P is the probability that a member forwards the

package to a random selected receiver.

With probability 1 − P it delivers the message to the
receiver directly. We consider the probability that the
actual sender was observed more than any other one
by the untrustworthy members. For various N and R
values, Table 1 summarises the time needed for com-
puting the function representing this probability, with
and without the weak bisimulation optimisation. With
“Build(s)” we denote the time needed to construct the
model for the analysis from the high level Prism model.
The column “Elim.(s)” states the time needed for the
state elimination part of the analysis. “Mem(MB)” gives
the memory usage. When applying bisimulation minimi-
sation, “Lump(s)” denotes the time needed for computing
the quotient. For entries marked by “-”, the analysis did
not terminate within one hour. In the last column we
evaluate the probability for M = N

5 (thus B = 1
6) and

P = 0.8. An interesting observation is that for several ta-
ble entries the weak bisimulation quotient has the same
size for the same R, but different probabilities. We also
checked that the graph structure was the same in these
cases. The reason for this is that then the other param-
eter N has only an effect on the transition probabilities
of the quotient and not its underlying graph.

From Table 1 we also see that for this case study the
usage of bisimulation helped to speed up the analysis
very much. For the N and R considered, the speedup was
in the range of about 10 for N = 5, R = 7 to factor such
that the time for the state elimination was negligible, as
for N = 15, R = 3. Also, the time for the bisimulation
minimisation itself did not take longer than 26 seconds.
Using bisimulation minimisation, we are able to handle
models with several hundred thousands of states.

In Figure 5 we give the plot for N = 5, R = 7. Ob-
serve that this probability increases with the number

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.4

 0.8

P
B

 0
 0.2

 0.4
 0.6 0

 0.2
 0.4

 0.6

 140

 144

 148

 152

p
q

Figure 5. Upper: Crowds Protocol. Lower: Zeroconf

of dishonest members M , which is due to the fact that
the dishonest members share their local information. On
the contrary, this probability decreases with P . The rea-
son is that each router forwards the message randomly
with probability P . Thus with increasing P the proba-
bility that the untrustworthy member can identify the
real sender is then decreased.

4.2 Zeroconf

Zeroconf [6] allows the installation and operation of a
network in the most simple way. When a new host joins
the network, it randomly selects an address among the
K = 65024 possible ones. With m hosts in the network,
the collision probability is q = m

K . The host asks other
hosts whether they are using this address. If a collision
occurs, the host tries to detect this by waiting for an
answer. The probability that the host gets no answer
in case of a collision is p, in which case he repeats the
question. If after n tries the host got no answer, the host
will erroneously consider the chosen address as valid. A
sketch of the model is depicted in Figure 6. We consider
the expected number of tries till either the IP address is
selected correctly or erroneously that is, B = {sok, serr}.
For n = 140, the plot of this function is depicted in
on the lower part of Figure 5. The expected number of
tests till termination increases with both the collision
probability as well as the probability that a collision is
not detected. Bisimulation optimisation was not of any
use, as the quotient equals the original model. For n =

Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models 11

N R Build(s)
no bisimulation weak bisimulation

Result
States Trans. Elim.(s) Mem(MB) States Trans. Lump(s) Elim.(s) Mem(MB)

5 3 3 1192 1982 4 3 33 62 0 0 2 0.3129
5 5 3 8617 14701 57 5 127 257 0 5 6 0.3840
5 7 5 37169 64219 1878 13 353 732 1 181 15 0.4627
10 3 3 6552 14857 132 4 33 62 0 0 5 0.2540
10 5 7 111098 258441 1670 40 127 257 2 6 51 0.3159
10 7 47 989309 2332513 - - 367 763 26 259 441 0.4062
15 3 4 19192 55132 504 10 33 62 0 0 12 0.2352
15 5 31 591455 1739356 - - 127 257 14 7 305 0.2933
20 3 8 42298 146807 2044 22 33 63 1 0 26 0.2260

Table 1. Performance Statistics for Crowds Protocol

1/n− 1

s0s−1

1− q/1

s1

1− p/1

q/1

sn serr

p/1p/1

. . .

p/1

1− p/1

sok

Figure 6. Zeroconf Collision Detection

140, the analysis took 64 seconds and 50 MB of memory.

4.3 Cyclic Polling Server

The cyclic polling server model [22] consists of a number
of N stations which are handled by the polling server.
Process i is allowed to send a job to the server if he
owns the token, which circulates around the stations
in a round robin manner. This model is a parametric
continuous-time Markov chain, but we can apply our
algorithm on the embedded discrete-time PMC, which
has the same reachability probability. We have two pa-
rameters: the service rate µ and γ is the rate to move
the token. Both are assumed to be exponentially dis-
tributed. Each station generates a new request with rate
λ = µ

N . Initially the token is at state 1. We consider
the probability p that station 1 will be served before any
other one. Table 2 summarises performance for differ-
ent N . The last column corresponds to the evaluation
µ = 1, γ = 200.

On the upper part of Figure 7 a plot for N = 8
is given. We have several interesting observations. If µ
is greater than approximately 1.5, p first decreases and
then increases with γ. The mean time of the token stay-
ing in state 1 is 1

γ . With increasing γ, it is more probable
that the token passes to the next station before station
1 sends the request. At some point however (approx-
imated γ = 6), p increases again as the token moves
faster around the stations. For small µ the probability p
always increases with increasing γ. The reason for this is
that the arrival rate λ = µ

N is very small, it means also
that the token moves so fast that the chance for station
1 to be scheduled at first point is rather small. Thus, by

 0.5 1 1.5 2 2.5 3 4
 8

 12
 16

 20
 0.108
 0.112
 0.116

 0.12
 0.124
 0.128

µ
γ

 0 0.2 0.4 0.6 0.8 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 4

 8

p1

p2

Figure 7. Upper: Cyclic Polling Server. Lower: Randomised Mu-
tual Exclusion

increasing the speed with which the token moves around,
we give station 1 more chances to catch it. Now we fix
γ to be greater than 6. Then, p decreases with µ, as
increasing µ implies also a larger λ, which means that
all other states become more competitive. However, for
small γ we observe that µ increases later again: in this
case station 1 has a higher probability of catching the
token initially at this station. Also in this model, bisim-
ulation has quite a large effect on the time needed for
the analysis.

4.4 Randomised Mutual Exclusion

In the randomised mutual exclusion protocol [28] several
processes try to enter a critical section. We consider the

12 Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models

N Build(s)
no bisimulation weak bisimulation

Result
States Trans. Elim.(s) Mem(MB) States Trans. Lump(s) Elim.(s) Mem(MB)

4 1 66 192 1 2 13 36 0 0 3 0.2500
5 1 162 560 2 2 16 46 0 0 3 0.2000
6 1 386 1536 10 2 19 58 0 0 2 0.1667
7 1 898 4032 41 3 22 68 0 0 3 0.1429
8 1 2050 10240 150 4 25 79 0 1 4 0.1250
9 2 4610 25344 733 6 28 91 0 1 6 0.1111

Table 2. Performance Statistics for Cyclic Polling Server

protocol with two processes i = 1, 2. Process i tries to
enter the critical section with probability pi, and with
probability 1 − pi, it waits until the next possibility to
enter and tries again. The model is a PMRM with pa-
rameters pi. A reward with value 1 is assigned to each
transition corresponding to the probabilistic branching
pi and 1− pi. We consider the expected number of coin
tosses until one of the processes enters the critical section
the first time. A plot of the expected number is given
on the lower part of Figure 7. This number decreases
with both p1 and p2, because both processes have more
chances to enter their critical sections. The computa-
tion took 98 seconds, and 5 MB of memory was used.
The model consisted of 77 states and 201 non-zero tran-
sitions. Converting the transition rewards to state re-
wards and subsequent strong bisimulation minimisation
lead only to a minimal reduction in state and transition
numbers and did not reduce the analysis time.

4.5 Bounded Retransmission Protocol

In the bounded retransmission protocol [18], a file to be
sent is divided into a number of N chunks. For each of
them, the number of retransmissions allowed is bounded
by MAX . There are two lossy channels K and L for
sending data and acknowledgements respectively. The
model is a PMDP with two parameters pK , pL denot-
ing the reliability of the channels K and L respectively.
We consider the property “The maximum reachability
probability that eventually the sender does not report a
successful transmission”. In Table 3 we give statistics for
several different instantiations of N and MAX . The col-
umn “Nd.Vars” gives the number of variables introduced
additionally to encode the non-deterministic choices. We
give only running time if the optimisation is used. Other-
wise, the algorithm does not terminate within one hour.
The last column gives the probability for pK = 0.98
and pL = 0.99, as the one in the Prism model. We ob-
serve that for all instances of N and MAX , with an in-
creasing reliability of channel K the probability that the
sender does not finally report a successful transmission
decreases.

Notably, we encode the non-deterministic choices via
additional variables, and apply the algorithm for the re-

sulting parametric MCs. This approach may suffer from
exponential enumerations in the number of these ad-
ditional variables in the final rational function. In this
case study however, the method works quite well. This
is partly owed to the fact, that after strong and weak
bisimulation on the encoding PMC, the additional vari-
ables vanish as illustrated in Example 2. We are well
aware however, that still much work needs to be done to
handle general non-deterministic models.

5 Comparison with Daws’ Method

Our algorithm is based on the state elimination ap-
proach, inspired by Daws [10], who treats the concrete
probabilities as an alphabet, and converts the MC into a
finite automaton. Then a regular expression is computed
and evaluated into functions afterwards (albeit lacking
any implementation). The length of the resulting reg-
ular expression, however, has size nΘ(logn) [14] where
n denotes the number of states of the automaton. Our
method instead intertwines the steps of state elimination
and evaluation. The size of the resulting function is in
worst case still in nO(logn), thus there is no theoretical
gain, pessimistically speaking.

The differences of our and Daws’ method are thus on
the practical side, where they indeed have dramatic im-
plications. Our method simplifies the rational functions
in each intermediate step. The worst case for our algo-
rithm can occur only in case no rational function can be
simplified during the entire process. In essence, this is
the case for models where each edge of the input model
has a distinguished parameter. We consider this a patho-
logical construction. In all of the interesting models we
have seen, only very few parameters appear in the input
model, and it seems natural that a model designer does
not deal with more than a handful of model parameters
in one go. For those models, the intermediate rational
functions can be simplified, leading to a space (and time)
advantage. This is the reason why our method does not
suffer from a blow up in the case studies considered in
Section 4. To shed light on the differences between the
two methods, we return to the cyclic polling server ex-
ample:

Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models 13

N MAX Build(s)
model weak bisimulation

Lump(s) Elim.(s) Mem(MB) Result
States Trans. Nd.Vars States Trans.

64 4 2 8551 11564 137 643 1282 3 0 6 1.50E-06
64 5 2 10253 13916 138 771 1538 3 0 6 4.48E-08
256 4 4 33511 45356 521 2563 5122 48 6 19 6.02E-06
256 5 4 40205 54620 522 3075 6146 58 8 22 1.79E-07
512 4 12 66792 90412 1035 5123 10243 230 35 52 1.20E-05
512 5 10 80142 108892 1036 6147 12291 292 52 56 3.59E-07

Table 3. Performance Statistics for Bounded Retransmission Protocol

Number of workstations 4 5 6 7 8

Length of regular expression (Daws’ method) 191 645 2294 8463 32011

Number of terms (our method) 7 9 11 13 15
Total degree (our method) 6 8 10 12 14

Table 4. Performance Comparisons with Regular Expressions Method

In Table 4, we compare the two methods in terms
of the observed size requirements. For each number of
workstations from 4 to 8, we give the length of the reg-
ular expression arising in Daws’ method. On the other
hand, we give the number of terms and the total degree
of the numerator and denominator polynomials of the ra-
tional function resulting from our method. The numbers
for Daws’ method are obtained by eliminating the states
in the same order as we did for our method, namely by
removing states with a lower distance to the target set
first. For the length of regular expressions, we counted
each occurrence of a probability as having the length 1,
as well as each occurrence of the choice operator (“+”)
and the Kleene star (“*”). We counted braces as well as
concatenation (“·”) as having length zero.

As can be seen from the table, the size of the regular
expression grows very fast, thus materializing the theo-
retical complexity. This makes the nice idea of Daws [10]
infeasible in a direct implementation. For our method,
both the number of terms as well as the total degree
grow only linearly with the number of workstations.

6 Related Work and Discussions

Our work has connections to several other recent sci-
entific contributions. Lanotte et al. [27] considered para-
metric MCs, showing that the problem whether there ex-
ists a well-defined evaluation is in PSPACE and whether
such an evaluation induces a given reachability proba-
bility c is however undecidable. Recently, Damman et
al. [9] have extended the approach of Daws [10] to gen-
erate counterexamples for MC. The regular expressions
generated can be seen as a more compact and structured
representation of counterexamples than providing a set
of paths.

A closely related work is done by Han, Katoen and
Mereacre [16], in which they have studied the para-
metric synthesis for parametric continuous-time Markov
chains (PCTMCs). Instead of abstracting time by steps
in discrete-time Markov chains, transitions in PCTMCs
have exponential distributions. CTMCs are widely useful
for modelling failure rates, produce or service rates. For
time bounded properties (probability of reaching a set of
goal state within a fixed number of steps), Han et al. [16]
have attacked the problem of finding the set of param-
eter values (forming the synthesis region) such that the
property holds in the induced CTMC. While this prob-
lem is in general undecidable, an approximative method
is used to solve it anyhow, in the majority of cases. This
is done by discretising the continuous region and obtain-
ing a finite number of sample points to approximate the
original region. Their work is orthogonal to ours: while
they study how to form the synthesis region, we give effi-
cient algorithm for computing the rational function rep-
resenting the unbounded reachability probability. Thus,
their algorithms can be directly applied in our setting to
solve the synthesis problem for unbounded reachability
for PMCs. They have not yet considered reward proper-
ties. One possible future work would be to combine our
approaches to consider continuous-time Markov reward
models.

Another closed model in the literature is interval
Markov chains [25,12,30,8]. In this model, each tran-
sition probability (or rate, for continuous-time models)
is given as an interval, such that it has a minimal and a
maximal value. The Markov chains represented by an in-
terval Markov chain are those concrete models in which
all probabilities lie within the restricting intervals, and
the probabilities sum up to one (for discrete-time mod-
els). This way, they can be used to represent abstrac-
tions of ordinary Markov chains [24]. In difference to
PMCs, results obtained are usually extremal probabili-

14 Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models

ties or other values of the model, instead of a function
representing all possible such values, as for PMCs.

There is also research in parametric models in the
area of timed automata. For instance, timed automata
are considered in which clock constraints are not fixed
but given as a set of parameters [21]. Instead of checking
whether the automaton fulfills the property, the paper
targets at computing parameter regions of the model for
which the property is fulfilled.

7 Conclusion

In this paper we have presented algorithms for analysing
parametric Markov models, possibly extended with re-
wards or non-determinism, together with an implemen-
tation in the tool Param. The Param source code is
published under the GPL license. The tool, the case
studies and additional material can be found at

http://depend.cs.uni-sb.de/tools/param.

As future work, we are investigating general improve-
ments of the implementation with respect to memory
usage and speed, especially for the setting with non-
determinism. We are also investigating heuristics for
the optimal order in which states are to be eliminated,
referring to memory and time usage. Additionally, we
plan to look into continuous time models –with clocks–,
and PMDPs with rewards. Other possible directions in-
clude the use of symbolic model representations, such as
MTBDD-based techniques, symbolic bisimulation min-
imisation [32], and also a symbolic variant of the state
elimination algorithm. We would also like to explore
whether our algorithm can be used for model checking
interval Markov chains [30].

Acknowledgements. This work is supported by the
NWO-DFG bilateral project ROCKS, by the DFG as
part of the Transregional Collaborative Research Center
SFB/TR 14 AVACS and the Graduiertenkolleg “Leis-
tungsgarantien für Rechnersysteme”, by the European
Community’s Seventh Framework Programme under
grant agreement no 214755, and is supported in part
by MT-LAB, a VKR Centre of Excellence.

We are grateful to Björn Wachter (Saarland Univer-
sity) for insightful discussions and for providing us with
the parser of Pass.

A Proofs

A.1 Proof of Lemma 1

Let D be a PMC and B be a set of target states. Assume
that the PMC D and set of states B satisfy the require-
ment of Algorithm 1, i.e., state s ∈ B is absorbing. For

all s ∈ S, it holds reach(s0, s) and reach(s,B). We show
that the execution of one loop iteration in lines 2-4 in
which a state s is eliminated does not change the proba-
bility of reachingB under any maximal well-defined eval-
uation function u. Let PathD

fin(s0,B) = {σ ∈ PathD
fin |

first(σ) = s0 ∧ last(σ) ∈ B} denote the set of paths
reaching B. The probability of reaching B can be then
expressed by the sum

PrDu(B) =
∑

σ∈PathD
fin(s0,B)

PrDu(σ)

We fix an evaluation function u. We let D1 = (S1, s0,P1)
denote the PMC before elimination of the state s ∈ S \
B ∪ {s0}, and let D2 = (S2, s0,P2) denote the PMC
after eliminating state s. Assume that u is maximal well-
defined for D1. By construction of the algorithm, it holds
that S2 = S1 \ {s}, and that

P2(s1, s2) = P1(s1, s2) +
P1(s1, s)P1(s, s2)

1−P1(s, s)
(3)

Now it is sufficient to show that

Pr (D1)u(B) = Pr (D2)u(B) (4)

For path σ ∈ PathD1

fin (s0,B) in D1, we define the in-

duced path in D2 by ind(σ) ∈ PathD2

fin (s0,B), which is
obtained by eliminating each occurrence of s in σ. For
an arbitrary path σ′ ∈ PathD2

fin (s0,B) in D2, we define

pre(σ′) = {σ ∈ PathD1

fin (s0,B) | ind(σ) = σ′}. The re-
lation of σ′ and pre(σ′) is illustrated in Figure 8. Obvi-
ously, it holds that:

PathD1

fin (s0,B) =
⋃

σ′∈Path
D2
fin (s0,B)

pre(σ′)

Now to show Equation 4, it is sufficient to show that
for each σ′ ∈ PathD2

fin (s0,B), it holds that:

Pr (D1)u(pre(σ′)) = Pr (D2)u(σ′) (5)

Without loss of generality, let σ′ = s0, s1, . . . , sn with
sn ∈ B. Before we show Equation 5, we first introduce
some notations. For j = 0, . . . , n − 1 and ij ∈ N, we
define f(sj , ij, sj+1) by:

f(sj , ij , sj+1)

=

{
P1(sj , sj+1) if ij = 0
P1(sj , s)P1(s, s)

ij−1P1(s, sj+1) if ij > 0
(6)

For an interpretation of f(sj , ij, sj+1), consider each
part . . . sjs

ijsj+1 . . . of the path s0s
i0s1s

i1 · · · sin−1sn:

1. sjsj+1, that is, no s occurs in between sj and sj+1.
Then the transition probability is P1(sj , sj+1), as we
have a direct transition from sj to sj+1 at this point.

http://depend.cs.uni-sb.de/tools/param

Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models 15

P(sn−1, sn) +
P(sn−1,s)P(s,sn)

1−P(s,s)

s1 sns0 s

P(s0, s1) P(s1, s2)

P(s0, s) P(s, s1)

P(s, s)

P(s1, s) P(s, s2)

P(sn−1, sn)

. . .s

P(s, s)

s

P(s, s)

P(s, sn)P(sn−1, s)

s0 s1

P(s0, s1) +
P(s0,s)P(s,s1)

1−P(s,s)
P(s1, s2) +

P(s1,s)P(s,s2)
1−P(s,s)

sn. . .

Figure 8. Illustration of State Elimination Proof

2. sjs
ij−1sj+1 where ij > 0 that is, there are one or

several s in between. We first have a transition from
sj to s, then a number of ij−1 self-loops in s and then
a transition from s to sj+1, leading to the probability
P1(sj , s)P1(s, s)

ij−1P1(s, sj+1).

If sj , sj+1 is clear from the context, we write simply
f(ij). Thus, it holds:

∞∑
ij=0

f(ij) = P1(sj , sj+1) +
P1(sj , s)P1(s, sj+1)

1−P1(s, s)

= P2(sj , sj+1) (7)

Now we show Equation 5:

Pr (D1)u(pre(σ′))

=

∞∑
i0=0

∞∑
i1=0

· · ·
∞∑

in−1=0

Pr (D1)u
(
s0s

i0s1s
i1 · · · sin−1sn

)

=

∞∑
i0=0

∞∑
i1=0

· · ·
∞∑

in−1=0


n−1∏

j=0

f(ij)




=

(∞∑
i0=0

f(i0)

)(∞∑
i1=0

f(i1)

)
· · ·

 ∞∑

in−1=0

f(in−1)




(7)
=

n−1∏
i=0

P2(si, si+1)

= Pr (D2)u(σ′)

Since u is maximal well-defined, 1 − P1(s, s) 6= 0, im-
plying Equation 5. Observe that u is also maximal well-
defined for D2, since reach(D1)u(s1,B) implying also

reach(D2)u(s1,B)

for all s1 6∈ B.
After the execution of lines 1-4 the model consists

only of the initial state s0 and the set of target states B.
Now we can directly compute the reachability probabil-
ity:

Pr (s0,B) =

∞∑
i=0

∑
s∈B

P(s0, s0)
iP(s0, s)

=
1

1−P(s0, s0)
P(s0,B)

2

A.2 Proof of Lemma 2

Let R = (D, r) be a PMRM and B be a set of target
states. Assume that the PMRM R and set of states B
satisfy the requirement of Algorithm 2, i.e., state s ∈ B
is absorbing. For all s ∈ S, it holds reach(s0, s) and
reach(s,B). We show that the execution of one loop it-
eration in lines 2-7 in which a state s is eliminated does
not change the expected reward until B is reached under
any maximal well-defined evaluation function u.

We fix an evaluation function u. We letR1 = (D1, r1)
with D1 = (S1, s0,P1) denote the PMRM before elimi-
nating state s ∈ S \B∪{s0}, and let R2 = (D2, r2) with
D2 = (S2, s0,P2) denote the PMRM after eliminating
state s. As for PMCs, it holds that S2 = S1 \ {s}, and
the matrix P2 is as defined in Equation 3. For s, s′ ∈ S1,
we let r∗1(s, s′) denote the reward r1(s) + r1(s, s

′). The
value r∗2(s, s

′) is defined likewise. We now discuss how
the reward function r2 is obtained in Algorithm 2. The
reward of a state s′ ∈ S2 does not change: r2(s

′) = r1(s
′).

For s1, s2 ∈ S2, let

pe(s1, s2) :=
P1(s1, s)P1(s, s2)

1−P1(s, s)
(8)

re(s1, s2) := r1(s1, s) + r∗1(s, s2) +
P1(s, s)

1−P1(s, s)
r∗1(s, s)

(9)

r2(s1, s2) :=
pe(s1, s2)re(s1, s2) +P1(s1, s2)r1(s1, s2)

pe(s1, s2) +P1(s1, s2)
(10)

P2(s1, s2) = pe(s1, s2) +P1(s1, s2) (11)

as defined in the algorithm. Note that in caseP1(s1, s) =
0, we have pe(s1, s2) = 0 implying that r2(s1, s2) =
r1(s1, s2). Assume that u is maximal well-defined for D1.
Now it is sufficient to show that

R(R1)u(s0,B) = R(R2)u(s0,B) (12)

Now with the notation of the proof of Lemma 1, we
prove that for each σ′ ∈ PathD2

fin (s0,B), it holds that:

R(R1)u(pre(σ′)) = R(R2)u(σ′) (13)

where RR(σ) = PrD(σ)XR(σ) for R, and RR(C) =∑
σ∈C RR(σ), for which we extended XR to finite paths

16 Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models

ending in B in an obvious way. Without loss of gen-
erality, let σ′ = s0, s1, . . . , sn with sn ∈ B. For j =
0, . . . , n− 1 and ij ∈ N, the function f(sj, ij , sj+1) is as
defined in Equation 6. Moreover, we define g(sj , ij, sj+1)
by:

g(sj , ij , sj+1) (14)

=

{
r∗1(sj , sj+1) if ij = 0
r∗1(sj , s) + r∗1(s, sj+1) + (ij − 1)(r∗1(s, s)) if ij > 0

If sj and sj+1 are clear from the context, we write
f(ij) and g(ij) instead. Similar to f(ij), g(ij) de-
notes the rewards gained via visiting the path segment
. . . sjsj+1 . . . for the case ij = 0, or . . . sjs

ijsj+1 . . . for
the case ij > 0. Now we show Equation 13:

R(R1)u(pre(σ′))

=

∞∑
i0=0

∞∑
i1=0

· · ·
∞∑

in−1=0

Pr (D1)u
(
s0s

i0s1s
i1 · · · sin−1sn

)

·X(R1)u
(
s0s

i0s1s
i1 · · · sin−1sn

)

=
∞∑

i0=0

∞∑
i1=0

· · ·
∞∑

in−1=0

(
n−1∏
j=0

f(ij)

n−1∑
k=0

g(ik)

)

=

n−1∑
k=0


 ∞∑

i0=0

∞∑
i1=0

· · ·
∞∑

in−1=0

n−1∏
j=0

f(ij)g(ik)




=

n−1∑
k=0

(∞∑
i0=0

f(i0)

)
· · ·

 ∞∑

ik−1=0

f(ik−1)




 ∞∑

ik=0

f(ik)g(ik)




·

 ∞∑

ik+1=0

f(ik+1)


 · · ·


 ∞∑

in−1=0

f(in−1)




(7)
=

n−1∑
k=0

(
n−1∏
i=0

P2(si, si+1) ·
∑∞

ik=0 f(ik)g(ik)

P2(sk, sk+1)

)

=

(
n−1∏
i=0

P2(si, si+1)

)(
n−1∑
k=0

∑∞
ik=0 f(ik)g(ik)

P2(sk, sk+1)

)

= Pr (D2)u(σ′)

(
n−1∑
k=0

∑∞
ik=0 f(ik)g(ik)

P2(sk, sk+1)

)

By definition, we have R(R2)(σ′) =

Pr (D2)u(σ′)X(R2)u(σ′). Recall for a path σ′, it holds

XR2(σ′) =
∑n−1

k=0 r
∗
2(sk, sk+1), thus, it is now sufficient

to show that for each k = 0, . . . , n− 1, it holds that:

∞∑
ik=0

f(ik)g(ik) = P2(sk, sk+1)r
∗
2(sk, sk+1) (15)

According to Equation 14,
∑∞

ik=1 f(ik)g(ik) equals

(
(r∗1(sk, s) + r∗1(s, sk+1))

∞∑
ik=1

f(ik)

)

+

(
r∗1(s, s)

∞∑
ik=1

f(ik)(ik − 1)

)
(16)

By Equation 7 and Equation 8, it holds that:

∞∑
ik=1

f(ik) = pe(sk, sk+1) (17)

For 0 ≤ pc < 1, the sum
∑∞

i=0 ip
i
c can be simplified

to pc

(1−pc)2
. Using this, we can simplify the second sum

of Equation 16:

∞∑
ik=1

f(ik)(ik − 1) = pe(sk, sk+1)
P1(s, s)

1−P1(s, s)
(18)

Now putting Equations 16,17,18 together with Equa-
tion 9, we have:

∞∑
ik=1

f(ik)g(ik)

= (re(sk, sk+1) + r1(sk))pe(sk, sk+1)

(10)
= P2(sk, sk+1)r2(sk, sk+1)

−P1(sk, sk+1)r1(sk, sk+1) + r1(sk)pe(sk, sk+1)

(11)
= P2(sk, sk+1)r

∗
2(sk, sk+1)−P1(sk, sk+1)r

∗
1(sk, sk+1)

which proves Equation 15. This means that the expected
accumulated reward till B is reached is equal in the old
and the new model. After the execution of lines 1-7 the
remaining paths with non-zero probabilities from the ini-
tial states to B all have a length of 1. Because of this,
in line 8 the expected reward can be obtained directly
from the probability matrix P and reward matrix r. As
before, let r∗(s, s′) denote r(s) + r(s, s′). Then,

R(R2)u(s0,B)

=
∑
s∈B

∞∑
i=0

P(s0, s0)
iP(s0, s) (r

∗(s0, s) + i · r∗(s0, s0))

=
∑
s∈B

(
P(s0, s)r

∗(s0, s)
∞∑
i=0

P(s0, s0)
i

+ P(s0, s)r
∗(s0, s0)

∞∑
i=0

i ·P(s0, s0)
i

)

=
∑
s∈B

(
P(s0, s)r

∗(s0, s)
1−P(s0, s0)

+
P(s0, s)r

∗(s0, s0)P(s0, s0)

(1−P(s0, s0))
2

)

The proof to show that no divisions by zero occur
and that the evaluation function u is still maximal well-
defined is analog to the one in A.1 2

References

1. John Abbott. The Design of CoCoALib. In ICMS, pages
205–215, 2006.

2. Christel Baier, Frank Ciesinski, and Marcus Größer.
ProbMela and verification of Markov decision processes.
SIGMETRICS, 32(4):22–27, 2005.

3. Christel Baier and Holger Hermanns. Weak Bisimulation
for Fully Probabilistic Processes. In CAV, pages 119–130,
1997.

Ernst Moritz Hahn et al.: Probabilistic Reachability for Parametric Markov Models 17

4. Christel Baier, Joost-Pieter Katoen, Holger Hermanns,
and Verena Wolf. Comparative Branching-Time Seman-
tics for Markov Chains. Inf. Comput., 200(2):149–214,
2005.

5. Andrea Bianco and Luca de Alfaro. Model Checking of
Probabilistic and Nondeterministic Systems. FSTTCS,
15, 1995.

6. Henrik C. Bohnenkamp, Peter van der Stok, Holger Her-
manns, and Frits W. Vaandrager. Cost-Optimization of
the IPv4 Zeroconf Protocol. In DSN, pages 531–540,
2003.

7. Janusz A. Brzozowski and E.J. Mccluskey. Signal Flow
Graph Techniques for Sequential Circuit State Diagrams.
IEEE Trans. on Electronic Computers, EC-12:67–76,
1963.

8. Krishnendu Chatterjee, Tom Henzinger, and Koushik
Sen. Model-Checking omega-Regular Properties of Inter-
val Markov Chains. In FoSSaCS, pages 302–317, 2008.

9. Berteun Damman, Tingting Han, and Joost-Pieter Ka-
toen. Regular Expressions for PCTL Counterexamples.
In QEST, 2008.

10. Conrado Daws. Symbolic and Parametric Model Check-
ing of Discrete-Time Markov Chains. In ICTAC, pages
280–294, 2004.

11. Salem Derisavi, Holger Hermanns, and William H.
Sanders. Optimal State-Space Lumping in Markov
Chains. Inf. Process. Lett., 87(6):309–315, 2003.

12. Harald Fecher, Martin Leucker, and Verena Wolf. Don’t
Know in Probabilistic Systems. In SPIN, pages 71–88,
2006.

13. Keith O. Geddes, Stephen R. Czapor, and George
Labahn. Algorithms for Computer Algebra. Kluwer Aca-
demic Publishers, 1992.

14. Hermann Gruber and Jan Johannsen. Optimal Lower
Bounds on Regular Expression Size Using Communica-
tion Complexity. In FoSSaCS, pages 273–286, 2008.

15. Ernst Moritz Hahn, Holger Hermanns, Björn Wachter,
and Lijun Zhang. PARAM: A Model Checker for Para-
metric Markov Models. In CAV, 2010. To appear.

16. Tingting Han, Joost-Pieter Katoen, and Alexandru
Mereacre. Approximate Parameter Synthesis for Prob-
abilistic Time-Bounded Reachability. In RTSS, pages
173–182, 2008.

17. Hans Hansson and Bengt Jonsson. A Logic for Reasoning
about Time and Reliability. FAC, 6(5):512–535, 1994.

18. Leen Helmink, Alex Sellink, and Frits W. Vaandrager.
Proof-Checking a Data Link Protocol. In TYPES, vol-
ume 806, pages 127–165. Springer, 1994.

19. Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman,
and David Parker. PRISM: A Tool for Automatic Veri-
fication of Probabilistic Systems. In TACAS, pages 441–
444, 2006.

20. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. Introduction to automata theory, languages, and
computation, 2nd edition. SIGACT News, 32(1):60–65,
2001.

21. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and
Frits W. Vaandrager. Linear Parametric Model Check-
ing of Timed Automata. J. Log. Algebr. Program., 52-
53:183–220, 2002.

22. Oliver C. Ibe and Kishor S. Trivedi. Stochastic Petri Net
Models of Polling Systems. IEEE Journal on Selected
Areas in Communications, 8(9):1649–1657, 1990.

23. Bengt Jonsson and Kim Guldstrand Larsen. Specifica-
tion and Refinement of Probabilistic Processes. In LICS,
pages 266–277. IEEE Computer Society, 1991.

24. Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and
Verena Wolf. Three-valued abstraction for continuous-
time markov chains. In CAV, volume 4590, pages 311–
324. Springer, 2007.

25. Igor Kozine and Lev V. Utkin. Interval-Valued Finite
Markov Chains. Reliable Computing, 8(2):97–113, 2002.

26. Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Stochastic Model Checking. In SFM, pages 220–
270, 2007.

27. Ruggero Lanotte, Andrea Maggiolo-Schettini, and An-
gelo Troina. Parametric Probabilistic Transition Sys-
tems for System Design and Analysis. FAC, 19(1):93–
109, 2007.

28. Amir Pnueli and Lenore Zuck. Verification of Multipro-
cess Probabilistic Protocols. Distrib. Comput., 1(1):53–
72, 1986.

29. Michael K. Reiter and Aviel D. Rubin. Crowds:
Anonymity for Web Transactions. ACM Trans. Inf. Syst.
Secur., 1(1):66–92, 1998.

30. Koushik Sen, Mahesh Viswanathan, and Gul Agha.
Model-Checking Markov Chains in the Presence of Un-
certainties. In TACAS, pages 394–410, 2006.

31. William J. Stewart. Introduction to the Numerical So-
lution of Markov Chains. Princeton University Press,
1994.

32. Ralf Wimmer, Salem Derisavi, and Holger Hermanns.
Symbolic Partition Refinement with Dynamic Balancing
of Time and Space. In QEST, pages 65–74, 2008.

	Introduction
	Parametric Models
	Algorithms
	Case Studies
	Comparison with Daws' Method
	Related Work and Discussions
	Conclusion
	Proofs

