
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/87181

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/87181

Q uantitative A nalysis of Inform ation Leakage in
Probabilistic and N ondeterm in istic System s

M iguel E. A ndres

Copyright © 2011 Miguel E. Andrés.
ISBN: 978-94-91211-74-4.
IPA dissertation series: 2011-09.

This thesis is typeset using LTEX.
Translation of the Dutch summary: Peter van Rossum.
Cover designed by Marieke Meijer - www.mariekemeijer.com.
Thesis printed by Ipskamp Drukers - www.ipskampdrukkers.nl.

N^O

The work in this thesis has been carried out under the auspices of the
research school IPA (Institute for Programming research and Algorithmics).
The research funding was provided by the NWO Grant through the open
project 612.000.526: Analysis of Anonymity.

http://www.mariekemeijer.com
http://www.ipskampdrukkers.nl

Een wetenschappelijke proeve op het gebied van de
Natuurwetenschappen, Wiskunde en Informatica.

Q uantitative A nalysis of Inform ation Leakage in
Probabilistic and N ondeterm in istic System s

P r o e f s c h r i f t

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus, prof. mr. S.C.J.J. Kortmann,
volgens besluit van het College van Decanen

in het openbaar te verdedigen op vrijdag 1 juli 2011
om 10:30 uur precies

door

Miguel E. Andres

geboren op 02 July 1980,
te Rio Cuarto, Cordoba, Argentinie.

Coprom otoren:
dr. Peter van Rossum
dr. Catuscia Palamidessi INRIA

M anuscriptcom m issie:
prof. dr. Joost-Pieter Katoen RWTH Aachen University
dr. Pedro R. D’Argenio Universidad Nacional de Córdoba
prof. dr. Frits W. Vaandrager

P rom otor:
prof. dr. Bart P.F. Jacobs

A scientific essay in Science.

D o c t o r a l t h e s i s

to obtain the degree of doctor
from Radboud University Nijmegen

on the authority of the Rector Magnificus, Prof. dr. S.C.J.J. Kortmann,
according to the decision of the Council of Deans
to be defended in public on Friday, 1st July 2011

at 10:30 hours

by

Miguel E. Andres

Q uantitative A nalysis of Inform ation Leakage in
Probabilistic and N ondeterm in istic System s

born in Rio Cuarto, Cordoba, Argentina
on 02 July 1980.

Co-supervisors:
dr. Peter van Rossum
dr. Catuscia Palamidessi INRIA

D octoral T hesis C om m ittee:
prof. dr. Joost-Pieter Katoen RWTH Aachen University
dr. Pedro R. D’Argenio Universidad Nacional de Córdoba
prof. dr. Frits W. Vaandrager

Supervisor:
prof. dr. Bart P.F. Jacobs

Summary

As we dive into the digital era, there is growing concern about the
amount of personal digital information tha t is being gathered about us.
Websites often track people’s browsing behavior, health care insurers gather
medical data, and many smartphones and navigation systems store or trans­
mit information tha t makes it possible to track the physical location of
their users at any time. Hence, anonymity, and privacy in general, are in­
creasingly at stake. Anonymity protocols counter this concern by offering
anonymous communication over the Internet. To ensure the correctness of
such protocols, which are often extremely complex, a rigorous framework is
needed in which anonymity properties can be expressed, analyzed, and ulti­
mately verified. Formal methods provide a set of mathematical techniques
tha t allow us to rigorously specify and verify anonymity properties.

This thesis addresses the foundational aspects of formal methods for
applications in security and in particular in anonymity. More concretely,
we develop frameworks for the specification of anonymity properties and
propose algorithms for their verification. Since in practice anonymity pro­
tocols always leak some information, we focus on quantitative properties
which capture the amount of information leaked by a protocol.

We start our research on anonymity from its very foundations, namely
conditional probabilities - these are the key ingredient of most quantitative
anonymity properties. In Chapter 2 we present cpCTL, the first temporal
logic making it possible to specify conditional probabilities. In addition,
we present an algorithm to verify cpCTL formulas in a model-checking
fashion. This logic, together with the model-checker, allows us to specify

i

and verify quantitative anonymity properties over complex systems where
probabilistic and nondeterministic behavior may coexist.

We then turn our attention to more practical grounds: the constructions
of algorithms to compute information leakage. More precisely, in Chapter
3 we present polynomial algorithms to compute the (information-theoretic)
leakage of several kinds of fully probabilistic protocols (i.e. protocols with­
out nondeterministic behavior). The techniques presented in this chapter
are the first ones enabling the computation of (information-theoretic) leak­
age in interactive protocols.

In Chapter 4 we attack a well known problem in distributed anonymity
protocols, namely full-information scheduling. To overcome this problem,
we propose an alternative definition of schedulers together with several
new definitions of anonymity (varying according to the attacker’s power),
and revise the famous definition of strong-anonymity from the literature.
Furthermore, we provide a technique to verify tha t a distributed protocol
satisfies some of the proposed definitions.

In Chapter 5 we provide (counterexample-based) techniques to debug
complex systems, allowing for the detection of flaws in security protocols.
Finally, in Chapter 6 we briefly discuss extensions to the frameworks and
techniques proposed in Chapters 3 and 4.

A cknow ledgem ents

This thesis would not have been possible without the continuous support
of many people to whom I will always be grateful.

I am heartily thankful to my supervisor Bart Jacobs. He has closely
followed the evolution of my PhD and made sure I always had all the
resources a PhD student could possibly need.

I also owe my deepest gratitude to my co-supervisor, Peter van Rossum.
Four years have passed since he decided to take the risk to hire me, an
Argentinian guy tha t he barely knew. I was very lucky to have him as my
supervisor; he is not only one of the most brilliant people I have ever met,
but also a very supportive and sympathetic person. I will never forget the
soccer World Cup of 2006 (not tha t Argentina did very well); back then
I was invited to spend one week in Nijmegen for an official job interview.
Fortunately, before I had the time to stress too much about formal talks
and difficult questions, I was sharing a beer with Peter while watching
Argentina vs the Netherlands (luckily Argentina did not win, I still wonder
what would have happened otherwise). This was just the first of many nice
moments we shared together, including dinners, conversations, and trips.
In addition to having fun together, we have also worked very very hard,
indeed the most important proof of this thesis was proven at midnight after
a long working day at Peter’s house (and also after Marielle finally managed
to get little Quinten to sleep ^) .

I cannot allow myself to continue this letter without mentioning Catus-
cia Palamidessi. In June 2007, Catuscia visited our group in Nijmegen.
After exchanging some ideas about work, Catuscia went back to Paris with
the promise of keeping in touch. And gosh she kept her word!!! After her
visit we exchanged some emails (today the count goes up to 2173 emails)
and coordinated the first of several research visits. Much has changed
since tha t first visit, together we have spent many days (and especially
nights) working hard, written several articles, attended many conferences
(including several in amazing places like Australia and Cyprus), and, most
importantly, become good friends. I am forever indebted to Catuscia for
all she has taught me and for her unconditional friendship.

This work has greatly benefited from the insightful remarks and sugges­
tions of the members of the reading committee Joost-Pieter Katoen, Pedro
D ’Argenio, and Frits Vaandrager, whom I wish to thank heartily. To Pedro
I am also grateful for his sustained guidance and support in my life as a
researcher. Many results in this thesis are a product of joint work, and
apart from Peter and Catuscia, I am grateful to my co-authors Mario S.
Alvim, Pedro R. D ’Argenio, Geoffrey Smith and Ana Sokolova, all of whom
shared their expertise with me. I am also thankful to Jasper Berendsen,
Domingo Gomez, David Jansen, Marielle Stoelinga, Tingting Han, Sergio
Giro, Jeremy Dubreil, and Konstantinos Chatizikokolakis for many fruitful
discussions during my time as a PhD student. Also many thanks to Anne-
Lise Laurain for her constant (emotional and technical) support during the
writing of my thesis, Alexandra Silva for her insightful comments on the in­
troduction of this work, and Marieke Meijer for devoting her artistic talent
to the design of the cover of this thesis.

Special thanks to my paranymphs and dear friends Viceng, Igor, Cristina,
and Flavio. Together we have shared so much... uncountable lunches in
the Refter, coffees in the blue coaches, and trips around the world among
many more experiences. But, even more importantly, we have always been
there to support each other in difficult times, and this is worth the world
to me.

I wish to thank my colleagues in the DS group for providing such a
friendly atmosphere which contributed greatly to the realization of my PhD.
I explicitly want to thank Alejandro, Ana, Chris, Christian, Erik, Fabian,
Gerhard, Ichiro, Jorik, Ken, Lukasz, Olha, Pieter, Pim, Roel, Thanh Son,
and Wojciech with whom I have shared many coffees, nice conversations,
table tennis, and much more. My journey in the DS group would not have
been as easy if it was not for Maria and Desiree whose help on administra­
tive issues saved me lots of pain; as for any kind of technical problem or
just IT advice, Ronny and Engelbert have been always very helpful.

I also wish to thank all the members of the Comete group for making
me feel welcome in such a wonderful and fun group. In particular, I want to
thank the Colombian crowd - Frank, Andres, and Luis - for the nice nights
out to “La Pena” and all the fun we had together, Jeremy for introducing me

to the tennis group, Sophia for helping correct my English in this thesis,
Kostas for many interesting conversations on the most diverse topics of
computer science (and life in general), and Mario for finally acknowledging
the superiority of the Argentinian soccer over the Brazilian one

Along the years, I always had a very happy and social life in Nijmegen.
Many people, in addition to my paranymphs, have greatly contributed to
this. A very big thanks to “A nita” , for so many happy moments and her
unconditional support during my life in Nijmegen. Also many thanks to
my dear friend Renee, every time I hear “It is difficult to become friends
with Dutch people, but once they are your friends they would NEVER let
you down” I have to think of her. Special thanks to Elena and Clara for
being there for me when I could not even speak English, Errez for sharing
his wisdom in hunting matters ^ , Hilje and Daphne for being there for
me when I just arrived to Nijmegen (this was very important to me), also
thanks to Klasien, David, and Patricia for many nice nights out and to
my dear neighbours - Marleen, Kim, and Marianne - for welcoming me in
their house and being always so understanding with me. Besides, I would
like to thank to the “Blonde Pater crowd” including Cristina, Christian,
Daniela, Davide, Deniz, Francesco, Jordan, Mariam, Nina, Shankar, and
Vicenc with all of whom I shared many nice cappuccinos, conversations,
and nights out. Special thanks to the sweet Nina for being always willing
help me, to Francesco for the wonderful guitar nights, to Mariam for her
help in Dutch, and to Christian... well, simply for his “buena onda” .

More than four years have passed since I left Argentina, and many things
have certainly changed in my life. However, the support and affection of
my lifetime friends have remained immutable. Many thanks to Duro, Seba,
Tony, Viole, Gabi, and Martin for all they have contributed to my life.
Special thanks to my “brothers” Tincho and Lapin, my life would not be
the same without them.

Last but not least, all my affection to my family: dad Miguel, mum
Bacho, sister Josefina, and brothers Ignacio and Augusto. Every single
success in my life I owe mostly to them. Thanks to my brothers and sister
for their constant support and everlasting smiles, which mean to me more
than I can express in words. Thanks to my parents for their incessant and

selfless sacrifice, thanks to which their children have had all anybody could
possible require to be happy and successful. My parents are the greatest
role models for me and to them I dedicate this thesis.

To my dear parents, Miguel and Bacho.

Por último, el “gracias” mas grande del mundo es para mis queridos
padres - Miguel y Bacho - y hermanos - Ignacio, Josefina y Augusto. Porque
cada logro conseguido en mi vida, ha sido (en gran parte) gracias a ellos. A
mis hermanos, les agradezco su apoyo y sonrisas constantes, que significaron
y siguen significando para mi mucho mús de lo que las palabras puedan
expresar. A mis padres, su incansable y desinteresado sacrificio, gracias al
cual sus hijos han tenido y tienen todas las oportunidades del mundo para
ser felices y exitosos. Ellos son, sin lugar a dudas, mi ejemplo de vida, y a
ellos dedico esta tesis:

A mis queridos padres, Miguel y Bacho.

Miguel E. Andrés
Paris, May 2011.

Contents

Sum m ary i

A cknow ledgem ents iii

1 Introduction 1
1.1 Anonymity ... 1

1.1.1 The relevance of anonymity nowadays 1
1.1.2 Anonymizing technologies nowadays 3
1.1.3 Anonymizing technologies: a bit of h is to ry 4
1.1.4 Anonymity and computer science................................. 4

1.2 Formal methods ... 5
1.2.1 The need of formal v e rific a tio n 6
1.2.2 Formal verification ... 8

1.3 B ackground ... 10
1.4 Contribution and plan of the thesis .. 17
1.5 Origins of the Chapters and Credits 19

2 C onditional P robabilities over Probabilistic and N ondeter-
m inistic System s 23
2.1 Introduction ... 24
2.2 Markov Decision Processes ... 26
2.3 Conditional Probabilities over MDPs 29
2.4 Conditional Probabilistic Temporal Logic 30

vii

2.4.1 E xp ressiveness ... 31
2.5 Semi History-Independent and Deterministic Schedulers . . 33

2.5.1 Semi History-Independent Schedulers 33
2.5.2 Deterministic Schedulers... 50

2.6 Model Checking c p C T L .. 52
2.6.1 Model Checking P <a[^ | ^ j .. 53
2.6.2 C o m p lex ity .. 66

2.7 Counterexamples for cp C T L ... 66

3 C om puting th e Leakage o f Inform ation H iding System s 69
3.1 In troduction ... 69
3.2 P re lim in a rie s .. 72

3.2.1 Probabilistic a u to m a ta .. 72
3.2.2 Noisy C h annels ... 73
3.2.3 Information leakage ... 73

3.3 Information Hiding S y stem s... 74
3.4 Reachability analysis a p p ro a c h ... 77

3.4.1 Complexity A n a ly s is ... 78
3.5 The Iterative Approach .. 79

3.5.1 Partial m atrices... 80
3.5.2 On the computation of partial matrices....................... 81
3.5.3 Identifying high-leakage sources.................................... 85

3.6 Information Hiding Systems with Variable a P r i o r i 86
3.7 Interactive Information Hiding Systems 89
3.8 Related W o rk .. 92

4 Inform ation H iding in Probabilistic Concurrent System s 95
4.1 In troduction ... 96

4.1.1 C o n tr ib u tio n ... 97
4.2 Preliminaries .. 98

4.2.1 Probabilistic autom ata .. 98
4.2.2 Noisy Channels ... 100
4.2.3 Information leakage ... 100
4.2.4 Dining Cryptographers .. 101

4.3 S y s te m s ... 102
4.3.1 Tagged Probabilistic A u to m a ta 102
4.3.2 Components ... 104
4.3.3 Systems .. 106

4.4 Admissible Schedulers ... 109
4.4.1 The screens intuition ... 110
4.4.2 The formalization ... 112

4.5 Information-hiding properties in presence of nondeterminism 113
4.5.1 Adversaries .. 113
4.5.2 Information leakage ... 115
4.5.3 Strong anonymity (re v is e d) .. 118

4.6 Verifying strong anonymity: a proof technique based on au­
tomorphisms .. 120
4.6.1 The proof te c h n iq u e ... 121
4.6.2 An Application: Dining C ryp tog raphers.................... 126

4.7 Related W o rk .. 127

5 Significant D iagnostic C ounterexam ple G eneration 129
5.1 Introduction ... 130
5.2 Preliminaries .. 133

5.2.1 Markov Decision Processes .. 133
5.2.2 Schedulers... 135
5.2.3 Markov C h a in s ... 136
5.2.4 Linear Temporal L og ic .. 137

5.3 C ounterexam ples... 138
5.4 Representative Counterexamples, Partitions and Witnesses 140
5.5 Rails and Torrents .. 142
5.6 Significant Diagnostic Counterexamples 150
5.7 Computing Counterexamples .. 153

5.7.1 Maximizing Schedulers.. 153
5.7.2 Computing most indicative torrent-counterexamples 154
5.7.3 Debugging is s u e s .. 155

5.8 Related W o rk .. 156

6 Interactive System s and Equivalences for Security 159
6.1 Interactive Information Flow .. 160

6.1.1 Applications .. 162
6.2 Nondeterminism and Information F lo w 163

7 C onclusion 167
7.1 C on tribu tions.. 167
7.2 Further directions... 169

Bibliography 171

Sam envatting (D utch Sum m ary) 185

Index 187

Curriculum V itae 189

Chapter 1

Introduction

1.1 A nonym ity

The world Anonymity derives from the Greek avu w ^C a , which means
“without a name” . In general, this term is used to express the fact that
the identity of an individual is not publicly known.

Since the beginning of human society, ano­
nymity has been an important issue. For in­
stance, people have always felt the need to
be able to express their opinions without be­
ing identified, because of the fear of social and
economical retribution, harassment, or even
threats to their lives.

1.1.1 T he relevance o f anon ym ity nowadays

W ith the advent of the Internet, the issue of anonymity has been magni­
fied to extreme proportions. On the one hand, the Internet increases the
opportunities of interacting online, communicating information, expressing
opinion in public forums, etc. On the other hand, by using the Internet
we are disclosing information about ourselves: every time we visit a web­
site certain data about us may be recorded. In this way, organizations

1

2 Chapter 1. Introduction

like multinational corporations can build a permanent, commercially valu­
able record of our interests. Similarly, every email we send goes through
multiple control points and it is most likely scanned by profiling software
belonging to organizations like the National Security Agency of the USA.
Such information can be used against us, ranging from slightly annoying
practices like commercial spam, to more serious offences like stealing credit
cards’ information for criminal purposes.

Anonymity, however, is not limited to individual issues: it has consider­
able social and political implications. In countries controlled by repressive
governments, the Internet is becoming increasingly more restricted, with
the purpose of preventing their citizens from accessing uncensored infor­
mation and from sending information to the outside world. The role of
anonymizing technologies in this scenario is twofold: (1) they can help
accessing sources of censored information via proxies (2) they can help in­
dividuals to freely express their ideas (for instance via online forums).

The practice of censoring the Internet is actually not limited to re­
pressive governments. In fact, a recent research project conducted by the
universities of Harvard, Cambridge, Oxford and Toronto, studied govern­
ment censorship in 46 countries and concluded tha t 25 of them, including
various western countries, filter to some extent communications concerning
political or religious positions.

Anonymizing technologies, as most technologies, can also be used for
malicious purposes. For instance, they can be used to help harassment, hate
speech, financial scams, disclosure of private information, etc. Because of
their nature, they are actually more controversial than other technologies:
people are concerned tha t terrorists, pedophiles, or other criminals could
take advantage of them.

Whatever is the use one can make of anonymity, and the personal view
one may have on this topic, it is clearly important to be able to assess the
degree of anonymity of a given system. This is one of the aims of this thesis.

1.1. Anonymity 3

1.1.2 A non ym izing tech nolog ies nowadays

The most common use of anonymizing technologies is to prevent observers
from discovering the source of communications.

This is not an easy task, since in general users
must include in the message information about
themselves. In practice, for Internet communi­
cation, this information is the (unique) IP ad­
dress of the computer in use, which specifies its
location in the topology of the network. This
IP number is usually logged along with the host
name (logical name of the sender). Even when
the user connects to the Internet with a tempo­
rary IP number assigned to him for a single ses­
sion, this number is in general logged by the ISP
(Internet Service Provider), which makes it pos­
sible, with the ISP’s collaboration, to know who used a certain IP number
at a certain time and thus to find out the identity of the user.

The currently available anonymity tools aim at preventing the observers
of an online communication from learning the IP address of the participants.
Most applications rely on proxies, i.e. intermediary computers to which
messages are forwarded and which appear then as senders of the communi­
cation, thus hiding the original initiator of the communication. Setting up a
proxy server nowadays is easy to implement and maintain. However, single­
hop architectures in which all users enter and leave through the same proxy,
create a single point of failure which can significantly threaten the security
of the network. Multi-hop architectures have therefore been developed to
increase the performance as well as the security of the system. In the so-
called daisy-chaining anonymization for instance, traffic hops deliberately
via a series of participating nodes (changed for every new communication)
before reaching the intended receiver, which prevents any single entity from
identifying the user. Anonymouse [Ans], FilterSneak [Fil] and Proxify [Pro]
are well-known free web based proxies, while Anonymizer [Ane] is currently
one of the leading commercial solutions.

4 Chapter 1. Introduction

1.1.3 A non ym izing technologies: a b it o f h istory

Anonymous posting/reply services on the Internet were started around 1988
and were introduced primarily for use on specific newsgroups which dis­
cussed particularly volatile, sensitive and personal subjects. In 1992, ano­
nymity services using remailers were originated by Cypherpunk. Global
anonymity servers which served the entire Internet soon sprang up, com­
bining the functions of anonymous posting as well as anonymous remailing
in one service. The new global services also introduced the concept of
pseudonymity which allowed anonymous mail to be replied.

The first popular anonymizing tool was the Penet remailer developed
by Johan Helsingius of Finland in the early 1990s. The tool was originally
intended to serve only Scandinavia but Helsingius eventually expanded to
worldwide service due to a flood of international requests.

Based on this tool, in 1995, Mikael Berglund made a study on how
anonymity was used. His study was based on scanning all publicly available
newsgroups in a Swedish Usenet News server. He randomly selected a
number of messages from users of the Penet remailer and classified them
by topic. His results are shown in Table 1.1.

In 1993, Cottrell wrote the Mixmaster remailer and two years later he
launched Anonymizer which became the first Web-based anonymity tool.

1.1.4 A n on ym ity and com puter science

The role of computer science with respect to anonymity is twofold. On one
the hand, the theory of communication helps in the design and implemen­
tation of anonymizing protocols. On the other hand, like for all software
systems, there is the issue of correctness, i.e., of ensuring tha t the protocol
achieves the expected anonymity guarantees.

While most of the work on anonymity in the literature belongs to the
first challenge, this thesis addresses the second one. Ensuring the correct­
ness of a protocol involves (1) the use of formalisms to precisely model the
behaviour of the protocol, and (2) the use of formalisms to specify unam­
biguously the desired properties. Once the protocol and its desired prop-

1.2. Formal methods 5

P ercentage Type o f m essage
30,0 % Discussion

Common topics: Sex, hobby, work, religion,
politics, ethics, software.

23,1 % Advertisements
Common topics: Sexual/romantic contact
advertisements dominated, a few other
advertisements also used anonymity, for
example ads searching for friends with a
particular interest. The authors of contact
ads were mostly male.

16,5 % Questions and answers
Common topics: Computer software issues,
sex, medicine and drugs.

13,2 % Texts
Common topics: Pornographic texts, about
50 % heterosexual and 50 % homosexual
(purported to be written by both men and
women). Jokes, sometimes nasty.

9,9 % Test messages
|To try out if the anonymity server works.

3,7 % Pictures
|Mostly erotlc/pornographlc.

0,4 °/o Computer software
3,3 % Unclassifiable

Written in a language the researcher could
not read, such as several messages in
Chinese. Note the repressive political regime
in China, which may be a reason why there
were several people who needed to use an
anonymity server in discussing issues in that
language.

Figure 1.1: Statistics on the Use of Anonymity - Penet

erties have been specified, it is possible to employ verification techniques
to prove formally that the specified model satisfy such properties. These
topics belong to the branch of computer science called formal methods.

1.2 Formal m ethods

Formal methods are a particular kind of mathematically-based techniques
used in computer science and software engineering for the specification and
verification of software and hardware systems. These techniques have their

6 Chapter 1. Introduction

foundations on the most diverse conceptual frameworks: logic calculi, au­
tom ata theory, formal languages, program semantics, etc.

1.2.1 T he need o f form al verification

As explained in previous sections, internet technologies play an important
role in our lives. However, Internet is not the only kind of technology we
are in contact with: Every day we interact with embedded systems such
as mobile phones, smart cards, GPS receivers, videogame consoles, digital
cameras, DVD players, etc. Technology also plays an important role in
critical-life systems, i.e., systems where the malfunction of any component
may incur in life losses. Example of such systems can be found in the areas
of medicine, aeronautics, nuclear energy generation, etc.

The malfunction of a technological device can have important negative
consequences ranging from material to life loss. In the following we list
some famous examples of disasters caused by software failure.

M aterial loss: In 2004, the Air Traf­
fic Control Center of Los Angeles Inter­
national Airport lost communication with
Airplanes causing the immediate suspen­
sion of all operations. The failure in the
radio system was due to a 32-bit countdown
timer that decremented every millisecond.
Due to a bug in the software, when the
counter reached zero the system shut down
unexpectedly. This communication outage disrupted about 600 flights (in­
cluding 150 cancellations) impacting over 30.000 passengers and causing
millionaire losses to airway companies involved.

In 1996, an Ariane 5 rocket launched by the European Space Agency
exploded just forty seconds after lift-off. The rocket was on its first voyage,
after a decade of development costing U$S 7 billion. The destroyed rocket
and its cargo were valued at U$S 500 million. A board of inquiry inves­
tigated the causes of the explosion and in two weeks issued a report. It

1.2. Formal methods 7

turned out that the cause of the failure was a software error in the inertial
reference system. Specifically a 64 bit floating point number related to the
horizontal velocity of the rocket was converted to a 16 bit signed integer.

In the early nineties a bug (discovered by a professor of Lynchburg Col­
lege, U SA) in the floating-point division unit of the processor Intel Pentium
I I not only severely damaged In te l’s reputation, but it also forced the re­
placement of faulty processors causing a loss of 475 million U S dollars for
the company.

Figure 1.2: Therac-25 Facility.

Fatal loss: A software flaw in the con­
trol part of the radiation therapy machine
Therac-25 caused the death of six cancer
patients between 1985 and 1987 as they
were exposed to an overdose of radiation.

In 1995 the American Airlines Flight
965 connecting M iam i and Cali crashed
just five minutes before its scheduled ar­
rival. The accident led to a total of 159
deaths. Paris Kanellakis, a well known re­
searcher (creator of the partition refine­
ment algorithm, broadly used to verify
bisimulation), was in the flight together w ith his family. Investigations
concluded that the accident was originated by a sudden turn of the aircraft
caused by the autopilot after an instruction of one of the pilots: the pilot
input ‘R ’ in the navigational computer referring to a location called ‘Rozo’
but the computer erroneously interpreted it as a location called ‘Romeo’
(due to the spelling sim ilarity and physical proximity of the locations).

As the use and complexity of technological devices grow quickly, mech­
anisms to improve their correctness have become unavoidable. But, how
can we be sure of the correctness of such technologies, w ith thousands (and
sometimes, millions) of components interacting in complex ways? One pos­
sible answer is by using formal verification, a branch of formal methods.

8 Chapter 1. Introduction

1.2.2 Form al verification

Formal verification is considered a fundamental area of study in computer
science. In the context of hardware and software systems, formal verifica­
tion is the act of proving or disproving the correctness of the system with
respect to a certain property, using formal methods. In order to achieve
this, it is necessary to construct a mathematical model describing all pos­
sible behaviors of the system. In addition, the property must be formally
specified avoiding, in this way, possible ambiguities.

Important formal verification techniques include theorem proving, sim­
ulation, testing, and model checking. In this thesis we focus on the use of
this last technique.

M od el ch eck in g Model checking is an automated verification technique
that, given a finite model of the system and a formal property, systemati­
cally checks whether the property holds in the model or not. In addition,
if the property is falsified, debugging information is provided in the form
of a counterexample. This situation is represented in Figure 1.3.

Usual properties that can be verified are “Can the system reach a dead­
lock state?” , or “Every sent message is received w ith probability at least
0.99?” . Such automated verification is carried on by a so-called model
checker, an algorithm that exhaustively searches the space state of the
model looking for states violating the (correctness) property.

A major strength of model checking is the capability of generating
counterexamples which provide diagnostic information in case the prop­
erty is violated. Edmund M . Clarke, one of the pioneers of Model Check­
ing said [Cla08]: “It is impossible to overestimate the importance of the
counterexample feature. The counterexamples are invaluable in debugging
complex systems. Some people use model checking just for this feature”. In
case a state violating the property under consideration is encountered, the
model checker provides a counterexample describing a possible execution
that leads from the in itial state of the system to a violating state.

Other important advantages of model checking are: it is highly au­
tomatic so it requires little interaction and knowledge of designers, it is

1.2. Formal methods 9

Figure 1.3: Schematic view of model-checking approach

rather fast, it can be applied to a large range of problems, it allows partial
specifications.

The main disadvantage of model checking is that the space state of cer­
tain systems, for instance distributed systems, can be rather large, thus
making the verifications inefficient and in some cases even unfeasible (be­
cause of memory lim itations). This problem is known as the state explosion
problem. M any techniques to alleviate it have been proposed since the in­
vention of model checking. Among the most popular ones we mention the
use B inary Decision Diagrams (BD D s), partial order reduction, abstrac­
tion, compositional reasoning, and symmetry reduction. State-of-the-art
model checkers can easily handle up to 109 states w ith explicit state rep­
resentation. For certain specific problems, more dedicated data structures
(like BD D s) can be used thus making it possible to handle even up to 10476
states.

The popularity of model checking has grown considerably since its in­

10 Chapter 1. Introduction

vention at the beginning of the 80s. Nowadays, model checking techniques
are employed by most or all leading hardware companies (e.g. IN T E L , IB M
and M O T O R O LA - just to mention few of them). W hile model checking
is applied less frequently by software developing companies, there have
been several cases in which it has helped to detect previously unknown
defects in real-world software. A prominent example is the result of re­
search in Microsoft’s SLA M project in which several formal techniques
were used to autom atically detect flaws in device drivers. In 2006, M i­
crosoft released the Static Driver Verifier as part of Windows Vista, SD V
uses the SLA M software-model-checking engine to detect cases in which de­
vice drivers linked to V ista violate one of a set of interface rules. Thus SD V
helps uncover defects in device drivers, a primary source of software bugs
in Microsoft applications. Investigations have shown that model checking
procedures would have revealed the exposed defects in, e.g., Intels Pentium
I I processor and the Therac-25 therapy radiation machine.

F ocu s of th is th esis This thesis addresses the foundational aspects of
formal methods for applications in security and in particular in anonymity:
W e investigate various issues that have arisen in the area of anonymity, we
develop frameworks for the specification of anonymity properties, and we
propose algorithms for their verification.

1.3 Background

In this section we give a brief overview of the various approaches to the
foundations of anonymity that have been explored in the literature. We
w ill focus on anonymity properties, although the concepts and techniques
developed for anonymity apply to a large extent also to neighbor topics
like information flow, secrecy, privacy. The common denominator of these
problems is the prevention of the leakage of information. More precisely,
we are concerned w ith situations in which there are certain values (data,
identities, actions, etc) that are intended to be secret, and we want to
ensure that an adversary w ill not be able to infer the secret values from

1.3. Background 11

the information which is publicly available. Some researchers use the term
information hiding to refer to this class of problems [H005].

The frameworks for reasoning about anonymity can be classified into
two main categories: the possibilistic approaches, and the probabilistic (or
quantitative) ones.

P o ssib ilis tic n o tion s

The term “possibilistic” refers to the fact that we do not consider quan­
titative aspects. More precisely, anonymity is formulated in terms of the
possibility or inferring some secrets, without worrying about “how likely”
this is, or “how much” we narrow down the secret.

These approaches have been widely explored in the literature, using
different conceptual frameworks. Examples include the proposals based
on epistemic logic ([SS99, H005]), on “function views” ([HS04]), and on
process equivalences (see for instance [SS96, RS01]). In the following we
w ill focus on the latter kind.

In general, possibilistic anonymity means that the observables do not
identify a unique culprit. Often this property relies on nondeterminism :
for each culprit, the system should be able to produce alternative executions
w ith different observables, so that in turn for a given observable there are
many agents that could be the culprit. More precisely, in its strongest
version this property can be expressed as follows: if in one computation
the identity of the culprit is i and the observable outcome is o, then for
every other agent j there must be a computation where, w ith culprit j , the
observable is still o.

This kind of approach can be applied also in case of systems that use ran­
domization. The way this is done is by abstracting the probabilistic choices
into nondeterministic ones. See for example the Dining Cryptographers ex­
ample in [SS96], where the coin tossing is represented by a nondeterministic
process.

In general the possibilistic approaches have the advantages of simplicity
an efficiency. On the negative side, they lack precision, and in some cases
the approximation can be rather loose. This is because every scenario that

12 Chapter 1. Introduction

has a non-null probability is interpreted as possible. For instance, consider
the case in which a system reveals the culprit 90 percent of the times by
outputting his identity, while in the remaining 10 percent of the times it
outputs the name of some other agent. The system would not look very
anonymous. Yet, the possibilistic definition of anonymity would be satisfied
because all users would appear as possible culprits to the observer regardless
of the output of the system. In general, in the possibilistic approach the
strongest notion of anonymity we can express is possible innocence, which
is satisfied when no agent appear to be the culprit for sure : there is always
the possibility that he is innocent (no matter how unlikely it is).

In this thesis we consider only the probabilistic approaches. Their com­
mon feature is that they deal w ith probabilities in a concrete way and they
are, therefore, much more precise. They have become very popular in re­
cent times, and there has been a lot of work dedicated to understanding
and formalizing the notion in a rigorous way. In the next section we give a
brief overview of these efforts.

P ro b a b ilis tic n o tion s

These approaches take probabilities into account, and are based on the
likelihood that an agent is the culprit, for a given observable. One notion
of probabilistic anonymity which has been thoroughly investigated in the
literature is strong anonymity.

Stron g a n on ym ity In tu itively the idea behind this notion is that the ob­
servables should not allow to infer any (quantitative) information about the
identity of the culprit. The corresponding notion in the field of information
flow is (quantitative) non-interference.

Once we try to formalize more precisely the above notion we discover
however that there are various possibilities. Correspondingly, there have
been various proposals. W e recall here the three most prominent ones.

1. Equality of the a posteriori probabilities for different culprits. The
idea is to consider a system strongly anonymous if, given an observ­

1.3. Background 13

able o, the a posteriori probability that the identity of the culprit
is i, P (i|o), is the same as the a posteriori probability of any other
identity j . Formally:

P (i|o) = P (j |o) for all observables o, and all identities i and j (1.1)

This is the spirit of the definition of strong anonymity by Halpern and
O ’Neill [H005], although their formalization involves more sophisti­
cated epistemic notions.

2. Equality of the a posteriori and a priori probabilities for the same
culprit. Here the idea is to consider a system strongly anonymous
if, for any observable, the a posteriori probability that the culprit
is a certain agent i is the same as its a priori probability. In other
words, the observation does not increase or decrease the support for
suspecting a certain agent. Formally:

P (i|o) = P (i) for all observables o, and all identities i (1.2)

This is the definition of anonymity adopted by Chaum in [Cha88] . He
also proved that the Dining Cryptographers satisfy this property if
the coins are fair. Halpern and O ’Neill consider a similar property in
their epistemological setting, and they call it conditional anonymity
[H005].

3. Equality of the likelihood of different culprits. In this third definition
a system is strongly anonymous if, for any observable o and agent i,
the likelihood of i being the culprit, namely P(o |i), is the same as the
likelihood of any other agent j . Formally:

P (o |i) = P (o |j) for all observables o, and all identities i and j (1.3)

This was proposed as definition of strong anonymity by Bhargava and
Palamidessi [BP05].

In [B C PP0 8] it has been proved that definitions (1.2) and (1.3) are
equivalent. Definition (1.3) has the advantage that it does extend in a nat­
ural way to the case in which the choice of the culprit is nondeterministic.

14 Chapter 1. Introduction

This could be useful when we do not know the a priori distribution of the
culprit, or when we want to abstract from it (for instance because we are
interested in the worst case).

Concerning Definition (1.1) , it probably looks at first sight the most
natural, but it actually turns out to be way too strong. In fact it is equiv­
alent to (1.2) and (1.3) , plus the following condition:

P (i) = P (j) for all identities i and j (1.4)

namely the condition that the a priori distribution be uniform.
It is interesting to notice that (1.1) can be split in two orthogonal prop­

erties: (1.3) , which depends only in the protocol, and (1.4) , which depends
only in the distribution on the secrets.

Unfortunately all the strong anonymity properties discussed above are
too strong, almost never achievable in practice. Hence researches have
started exploring weaker notions. One of the most renowned properties of
this kind (among the “simple” ones based on conditional probabilities) is
that of probable innocence.

P rob ab le in n o cen ce The notion of probable innocence was formulated
by Rubin and Reiter in the context of their work on the Crowds protocol
[RR98]. In tu itively the idea is that, after the observation, no agent is more
likely to be the culprit than not to be. Form ally:

P (i|o) < P (- i|o) for all observations o, and all identities i

or equivalently

P(i|o) < 2 for all observations o, and all identities i

In [RR98] Rubin and Reiter proved that the Crowds protocol satisfies prob­
able innocence under a certain assumption on the number of attackers rel­
atively to the number of honest users.

A ll the notions discussed above are rather coarse, in the sense that they
are cut-off notions and do not allow to represent small variations in the

1.3. Background 15

degree of anonymity. In order to be able to compare different protocols in
a more precise way, researcher have started exploring settings to measure
the degree of anonymity. The most popular of these approaches are those
based in information theory.

In form ation th eo ry

The underlying idea is that anonymity systems are interpreted as channels
in the information-theoretic sense. The input values are the possible iden­
tities of the culprit, which, associated to a probability distribution, form a
random variable Id . The outputs are the observables, and the transition
m atrix consists of the conditional probabilities of the form P(o |i), repre­
senting the probability that the system produces an observable o when the
culprit is i. A central notion here is the Shannon entropy, which represents
the uncertainty of a random variable. For the culprit’s possible identity,
this is given by:

H (Id) = — ^ P (i) log P (i) (uncertainty a priori)
i

Note that Id and the matrix also determine a probability distribution on
the observables, which can then be seen as another random variable O b .
The conditional entropy H (IdI Ob), representing the uncertainty about the
identity of the culprit after the observation, is given by

H (Id | Ob) = — ^ P (o) ^ P (i | o) logP(i|o) (uncertainty a posteriori)
o i

It can be shown that 0 < H (IdI Ob) < H (Id). We have H (Id | Ob) = 0
when there is no uncertainty left about Id after the value of Ob is known.
Namely, when the value of Ob completely determines the value of Id . This
is the case of maximum leakage. At the other extreme, we have H (Id | Ob) =
H (Id) when Ob gives no information about Id , i.e. when Ob and Id are
independent.

The difference between H (Id) and H (IdI Ob) is called mutual informa­
tion and it is denoted by I (Id ; Ob):

I (Id ; Ob) = H (Id) — H (Id | Ob)

16 Chapter 1. Introduction

The maximum mutual information between Id and Ob over all possible
input distributions P 1d(■) is known as the channel’s capacity:

C = max I (Id ; Ob)
P/d (•)

In the case of anonymity, the mutual information represents the dif­
ference between the a priori and the a posteriori uncertainties about the
identity of the culprit. It can therefore be considered as the leakage of
information due to the system, i.e. the amount of anonymity which is lost
because of the observables produced by the system. Sim ilarly, the capacity
represents the worst-case leakage under all possible distributions on the cul­
p rit’s possible identities. It can be shown that the capacity is 0 if and only
if the rows of the m atrix are pairwise identical. This corresponds exactly
to the version (1.3) of strong anonymity.

This view of the degree of anonymity has been advocated in various
works, including [M NCM 03, MNS03, ZB05, CPP08a]. In the context of
information flow, the same view of leakage in information theoretic terms
has been widely investigated as well. W ithout pretending to be exhaustive,
we mention [M cL90, Gra91, CHM01, CHM05a, Low02, Bor06].

In [Smi09] Sm ith has investigated the use of an alternative notion of
entropy, namely Renyi’s min entropy [Ren60], and has proposed to define
leakage as the analogous of mutual information in the setting of Renyi’s
min entropy. The justification for proposing this variant is that it repre­
sents better certain attacks called one-try attacks. In general, as Kopf and
Basin illustrate in their cornerstone paper [KB07], one can use the above
information-theoretic approach with many different notions of entropy, each
representing a different model of attacker, and a different way of measuring
the success of an attack.

A different information-theoretic approach to leakage has been proposed
in [CMS09]: in that paper, the authors define as information leakage the
difference between the a priori accuracy of the guess of the attacker, and the
a posteriori one, after the attacker has made his observation. The accuracy
of the guess is defined as the Kullback-Leibler distance between the belief
(which is a weight attributed by the attacker to each input hypothesis) and

1.4. Contribution and plan of the thesis 17

the true distribution on the hypotheses. In [HSP10] a Renyi’s min entropy
variant of this approach has been explored as well.

W e conclude this section by remarking that, in all the approaches dis­
cussed above, the notion of conditional probability plays a central role.

1.4 Contribution and plan of the thesis

W e have seen in Section 1.3 that conditional probabilities are the key ingre­
dients of all quantitative definitions of anonymity. It is therefore desirable
to develop techniques to analyze and compute such probabilities.

Our first contribution is cpCTL, a temporal logic allowing us to specify
properties concerned with conditional probabilities in systems combining
probabilistic and nondeterministic behavior. This is presented in Chapter
2. cpC TL is essentially pC TL (probabilistic Computational Tree Logic)
[H J94] enriched w ith formulas of the kind P<a[0|0], stating that the proba­
bility of 0 given 0 is at most a. W e do so by enriching pC TL w ith formulas
of the form P Ma[0|0]. W e propose a model checker for cpCTL. Its de­
sign has been quite challenging, due to the fact that the standard model
checking algorithms for pC TL in M D Ps (Markov Decision Processes) do
not extend to conditional probability formulas. More precisely, in contrast
to pC TL, verifying a conditional probability cannot be reduced to a linear
optimization problem. A related point is that, in contrast to pC TL, the
optimal probabilities are not attained by history independent schedulers.
W e attack the problem by proposing the notion of semi history indepen­
dent schedulers, and we show that these schedulers do attain optim ality
w ith respect to the conditional probabilities. Surprisingly, it turns out that
we can further restrict to deterministic schedulers, and still attain optimal­
ity. Based on these results, we show that it is decidable whether a cpCTL
formula is satisfied in a M D P, and we provide an algorithm for it. In ad­
dition, we define the notion of counterexample for the logic and sketch an
algorithm for counterexample generation.

Unfortunately, the verification of conditional cpC TL formulae is not ef­
ficient in the presence of nondeterminism. Another issue, related to nonde­

18 Chapter 1. Introduction

terminism w ithin the applications in the field of security, is the well known
problem of almighty schedulers (see Chapter 4). Such schedulers have the
(unrealistic) ab ility to peek on internal secrets of the component and make
their scheduling policy dependent on these secrets, thus leaking the secrets
to external observers. W e address these problems in separate chapters.

In Chapter 3 we restrict the framework to purely probabilistic models
where secrets and observables do not interact, and we consider the prob­
lem of computing the leakage and the maximal leakage in the information-
theoretic approach. These are defined as mutual information and capacity,
respectively. W e address these notions w ith respect to both the Shannon
entropy and the Renyi min entropy. W e provide techniques to compute
channel matrices in O ((o x q)3) time, where o is the number of observables,
and q the number of states. (From the channel matrices, we can compute
mutual information and capacity using standard techniques.) W e also show
that, contrarily to what was stated in literature, the standard information
theoretical approaches to leakage do not extend to the case in which secrets
and observable interact.

In Chapter 4 we consider the problem of the almighty schedulers. We
define a restricted fam ily of schedulers (admissible schedulers) which can­
not base their decisions on secrets, thus providing more realistic notions
of strong anonymity than arbitrary schedulers. W e provide a framework
to represent concurrent systems composed by purely probabilistic compo­
nents. A t the global level we still have nondeterminism, due to the various
possible ways the component may interact w ith each other. Schedulers
are then defined as devices that select at every point of the computation
the component(s) moving next. Admissible schedulers make this choice
independently from the values of the secrets. In addition, we provide a
sufficient (but not necessary) technique based on automorphisms to prove
strong anonymity for this fam ily of schedulers.

The notion of counterexample has been approached indirectly in Chap­
ters 2 and 3. In Chapter 5 we come back and fully focus on this topic. We
propose a novel technique to generate counterexamples for model checking
on Markov Chains. Our propose is to group together violating paths that
are likely to provide similar debugging information thus alleviating the de­

1.5. Origins of the Chapters and Credits 19

bugging tasks. We do so by using strongly connected component analysis
and show that it is possible to extend these techniques to Markov Decision
Processes.

Chapter 6 is an overview chapter. There we briefly describe extensions
to the frameworks presented in Chapters 3 and 41. First, we consider the
case in which secrets and observables interact, and show that it is still pos­
sible to define an information-theoretic notion of leakage, provided that we
consider a more complex notion of channel, known in literature as channel
with m em ory and feedback. Second, we extend the systems proposed in
Chapter 4 by allowing nondeterminism also internally to the components.
Correspondingly, we define a richer notion of admissible scheduler and we
use it for defining notion of process equivalences relating to nondeterminism
in a more flexible way than the standard ones in the literature. In particu­
lar, we use these equivalences for defining notions of anonymity robust with
respect to implementation refinement.

In Figure 1.4 we describe the relation between the different chapters of
the thesis. Chapter 5 is not explicitly depicted in the figure because it does
not fit in any of the branches of cpC TL (efficiency - security foundations).
However, the techniques developed in Chapter 5 have been applied to the
works in both Chapters 2 and 3.

W e conclude this thesis In Chapter 7, there we present a summary of
our main contributions and discuss further directions.

1.5 Origins of the Chapters and Credits

In the following we list, for each chapter, the set of related articles together
w ith their publication venue and corresponding co-authors.

• Chapter 2 is mainly based on the article [AvR08] by Peter van Rossum
and myself. The article was presented in TA C A S 2008. In addition,
this chapter contains material of an extended version of [AvR08] that
is being prepared for submission to a journal.

1For more inform ation about the topics discussed in this chapter we refer the reader
to [A A P10a, AA P11, A A P10b, AAPvR10].

20 Chapter 1. Introduction

Figure 1.4: Chapters relation.

• Chapter 3 is based on the article [APvRS10a] by Catuscia Palamidessi,
Peter van Rossum, Geoffrey Sm ith and myself. The article was pre­
sented in TA C A S 2010.

• Chapter 4 is based on

— The article [APvRS10b] by Catuscia Palamidessi, Peter van Rossum,
Ana Sokolova and myself. This article was presented in Q EST
2010 .

— The journal article [A P v R S ll] by the same authors.

• Chapter 5 is based on the article [ADvR08] by Pedro D ’Argenio, Peter
van Rossum, and myself. The article was presented in H VC 2008.

• Chapter 6 is based on

— The article [AAP10b] by Mario S. Alvim , Catuscia Palamidessi,
and myself. This work was presented in L IC S 2010 as part of an
invited talk by Catuscia Palamidessi.

— The article [AAP10a] by Mario S. Alvim , Catuscia Palamidessi,
and myself. This work presented in C O N C U R 2010.

— The journal article [AAP11] by the same authors of the previous
works.

1.5. Origins of the Chapters and Credits 21

— The article [A A PvR10] by Mario S. Alvim , Catuscia Palamidessi,
Peter van Rossum, and myself. This work was presented in IF IP -
T C S 2010.

The chapters remain close to their published versions, thus there is
inevitably some overlapping between them (in particular in their introduc­
tions where basic notions are explained).

A short note about authorship: I am the first author in all the articles
and journal works included in this thesis w ith the exception of the ones
presented in Chapter 6 .

Chapter 2

Conditional Probabilities
over Probabilistic and
Nondeterm inistic Systems

In this chapter we introduce cpC TL, a logic which extends the
probabilistic temporal logic pCTL with conditional probabilities
allowing to express statements of the form “the probability of $
given ^ is at m ost a ”. We interpret cpC TL over Markov Chains
and Markov Decision Processes. While model checking cpCTL
over Markov Chains can be done with existing techniques, those
techniques do not carry over to Markov Decision Processes. We
study the class of schedulers that suffice to find the maximum
and minimum conditional probabilities, show that the problem
is decidable for Markov Decision Processes and propose a model
checking algorithm. Finally, we present the notion of counterex­
amples for cpC TL model checking and provide a method for
counterexample generation.

23

24 Chapter 2. Conditional probabilistic temporal logic

2.1 Introduction

Conditional probabilities are a fundamental concept in probability theory.
In system validation these appear for instance in anonymity, risk assess­
ment, and diagnosability. Typical examples here are: the probability that
a certain message was sent by Alice, given that an intruder observes a cer­
tain traffic pattern; the probability that the dykes break, given that it rains
heavily; the probability that component A has failed, given error message
E .

In this chapter we introduce cpC TL (conditional probabilistic C T L), a
logic which extends strictly the probabilistic temporal logic pC TL [H J89]
w ith new probabilistic operators of the form P<a[$|0]. Such formula means
that the probability of $ given 0 is at most a. W e interpret cpC TL formulas
over Markov Chains (M Cs) and Markov Decision Processes (M D Ps). Model
checking cpC TL over MCs can be done w ith model checking techniques for
pC TL*, using the equality P[$|0] = P [$ A 0]/P[0].

In the case of M DPs, cpC TL model checking is significantly more com­
plex. W riting P n[$|0] for the probability P[$|0] under scheduler n, model
checking P< J$ |0] reduces to computing P+[$|0] = maxnP n[$|0] = maxn
P n[$ A 0]/Pn[0]. Thus, we have to maximize a non-linear function. (Note
that in general P+[$|0] = P+[$ A 0]/P+ [0].) Therefore, we cannot reuse
the efficient techniques for pC TL model checking, since they heavily rely
on linear optimization techniques [BdA95].

In particular we show that, differently from what happens in pC TL
[BdA95], history independent schedulers are not sufficient for optimizing
conditional reachability properties. This is because in cpC TL the opti­
mizing schedulers are not determined by the local structure of the system.
That is, the choices made by the scheduler in one branch may influence the
optimal choices in other branches. W e introduce the class of semi history-
independent schedulers and show that these suffice to attain the optimal
conditional probability. Moreover, deterministic schedulers still suffice to
attain the optimal conditional probability. This is surprising since many
non-linear optimization problems attain their optimal value in the interior
of a convex polytope, which correspond to randomized schedulers in our

2.1. Introduction 25

setting.
Based on these properties, we present an (exponential) algorithm for

checking whether a given system satisfies a formula in the logic. Further­
more, we define the notion of counterexamples for cpC TL model checking
and provide a method for counterexample generation.

To the best of our knowledge, our proposal is the first temporal logic
dealing w ith conditional probabilities.

A pp lications

C om p lex S ystem s. One application of the techniques presented in this
chapter is in the area of complex system behavior. W e can model the
probability distribution of natural events as probabilistic choices, and the
operator choices as non-deterministic choices. The computation of max­
imum and minimum conditional probabilities can then help to optimize
run-time behavior. For instance, suppose that the desired behavior of the
system is expressed as a pC TL formula $ and that during run-time we are
making an observation about the system, expressed as a pC TL formula 0.
The techniques developed in this chapter allow us to compute the maxi­
mum probability of $ given 0 and to identify the actions (non-deterministic
choices) that have to be taken to achieve this probability.

A n on ym iz in g P ro to co ls . Another application is in the area of anonymiz-
ing protocols. The purpose of these protocols is to hide the identity of the
user performing a certain action. Such a user is usually called the culprit.
Examples of these protocols are Onion Routing [CL05], Dining Cryptogra­
phers [Cha88] , Crowds [RR98] and voting protocols [FOO92] (just to men­
tion a few). Strong anonymity is commonly formulated [Cha8 8 , BP05] in
terms of conditional probability: A protocol is considered strongly anony­
mous if no information about the culprit’s identity can be inferred from the
behavior of the system. Formally, this is expressed by saying that culprit’s
identity and the observations, seen as random variables, are independent
from each other. That is to say, for all users u and all observations of the
adversary o:

26 Chapter 2. Conditional probabilistic temporal logic

P [culprit = u | observation = o] = P [culprit = u].

If considering a concurrent setting, it is customary to give the adver­
sary full control over the network [DY83] and model its capabilities as
nondeterministic choices in the system, while the user behavior and the
random choices in the protocol are modeled as probabilistic choices. Since
anonymity should be guaranteed for all possible attacks of the adversary,
the above equality should hold for all schedulers. That is: the system is
strongly anonymous if for all schedulers n, all users u and all adversarial
observations o:

P n [culprit = u | observation = o]= P n [culprit = u]

Since the techniques in this chapter allow us to compute the maximal and
minimal conditional probabilities over all schedulers, we can use them to
prove strong anonymity in presence of nondeterminism.

Sim ilarly, probable innocence means that a user is not more likely to
be innocent than not to be (where “ innocent” mans “not the culprit”). In
cpC TL this can be expressed as P <0 5 [culprit = u | observations = o].

O rgan iza tion o f th e ch apter In Section 2.2 we present the necessary
background on M DPs. In Section 2.3 we introduce conditional probabilities
over M D Ps and in Section 2.4 we introduce cpC TL. Section 2.5 introduces
the class of semi history-independent schedulers and Section 2.6 explains
how to compute the maximum and minimum conditional probabilities. F i­
nally, Section 2.7, we investigate the notion of counterexamples.

2.2 Markov Decision Processes

Markov Decision Processes constitute a formalism that combines nondeter-
ministic and probabilistic choices. They are a dominant model in corporate
finance, supply chain optimization, and system verification and optimiza­
tion. W hile there are many slightly different variants of this formalism (e.g.,
action-labeled M D Ps [Bel57, FV97], probabilistic automata [SL95, SdV04]),
we work w ith the state-labeled M D Ps from [BdA95].

2.2. Markov Decision Processes 27

The set of all discrete probability distributions on a set S is denoted by
D istr(S). The D irac distribution on an element s e S is written as 1s. We
also fix a set P of propositions.

D efin itio n 2 .2 .1 . A Markov Decision Process (M D P) is a four-tuple n =
(S, s0 ,T, L) where: S is the finite state space of the system, s0 e S is the
in itial state, L : S ^ p (P) is a labeling function that associates to each
state s e S a subset of propositions, and t : S ^ p (D istr(S)) is a function
that associates to each s e S a non-empty and finite subset of of successor
distributions.

In case |t(s)| = 1 for all states s we say that n is a Markov Chain.
W e define the successor relation q C S x S
by Q — {(s ,t) | 3 n e t (s) . n (t) > 0}
and for each state s e S we define the
sets Paths(s) — {s 0s ^ 2 ... e S w | s0 =
s A Vn e N . Q(sn,sn+1)}, and Paths*(s) —
{s 0s1 . . .s n e S* | s0 = s A V 0 < i <
n . Q(sn,sn+1) } of paths and finite paths re­
spectively beginning at s. Sometimes we w ill
use Paths(n) to denote Paths(s0), i.e. the set
of paths of n . For w e Paths(s), we write
the n-th state of w as wn. In addition, we
write a 1 C g2 if g2 is an extension of a 1, i.e.
a 2 = ct1ct/ for some a'. W e define the basic cylinder of a finite path g as the
set of (infinite) paths that extend it, i.e (a) — {w e Paths(s) | a C w }. For
a set of paths R we write (R) for its set of cylinders, i.e. (R) — (J^ r (g) .
As usual, we let C p (Paths(s)) be the Borel a-algebra on the basic
cylinders.

E xam p le 2 .2 .2 . Figure 2.1 shows a M D P. States w ith double lines repre­
sent absorbing states (i.e., states s w ith t (s) = { 1s}) and a is any constant
in the interval [0,1]. This M D P features a single nondeterministic decision,
to be made in state s2.

{B,P}

{B,P} {P} {} {P} {}

Figure 2.1: M D P

1
10

. 2

28 Chapter 2. Conditional probabilistic temporal logic

Schedulers (also called strategies, adversaries, or policies) resolve the non-
deterministic choices in a M D P [PZ93, Var85, BdA95].

D e fin itio n 2.2.3. Let n = (S, s0 ,t , L) be a M D P and s G S. An s-
scheduler n for n is a function from Paths*(s) to D istr(p (D istr(S))) such
that for all a G Paths*(s) we have n (a) G D istr(r(last(a))). W e denote the
set of all s-schedulers on n by Schs(n). W hen s = s0 we omit it.

Note that our schedulers are randomized, i.e., in a finite path a a scheduler
chooses an element of t(la s t(a)) probabilistically. Under a scheduler n,
the probability that the next state reached after the path a is t, equals

(last(o-) n (a)(n) ■ n (t). In this way, a scheduler induces a probability
measure on Bs defined as follows:

D e fin itio n 2.2.4. Let n be a M D P, s G S , and n an s-scheduler on n .
The probability measure P s,n is the unique measure on Bs such that for all
s0s i ... sn G Paths*(s)

n— 1
Ps,n (N s i . ..sn)) = n e n(s0si . ..s i)(n) ■ n (si+ i).

i=0 nGr (si)

Often we w ill write P n(A) instead of P s,n(A) when s is the initial state
and A G B s. W e now recall the notions of deterministic and history inde­
pendent schedulers.

D e fin itio n 2.2.5. Let n be a M D P, s G S, and n an s-scheduler for n . We
say that n is deterministic if n (a)(n) is either 0 or 1 for all n G t(la s t(a)) and
all a G Paths*(s). W e say that a scheduler is history independent (H I) if for
all finite paths a 1; a 2 of n w ith last(a1) = last(a2) we have n (a1) = n (a2).

D e fin itio n 2.2.6. Let n be a M D P, s G S , and A G Bs . Then the maximal
and minimal probabilities of A , P+ (A), P —(A), are defined as

P+ (A) = sup P s,n (A) and P — (A) = inf P s,n (A).
neSchs(n) neSchs(n)

A scheduler that attains P+ (A) or P — (A) is called an optimizing scheduler.

2.3. Conditional Probabilities over MDPs 29

W e define the notion of (finite) convex combination of schedulers.

D efin itio n 2 .2 .7 . Let n be a M D P and let s G S . An s-scheduler n is a
convex combination of the s-schedulers n1;. . . , nn if there are a 1;. . . , a n G
[0,1] w ith a 1 +----+an = 1 such that for all A G B s, P s,n(A) = a 1P s,ni (A) +
' ' ' + a nP s,nn (A) .

Note that taking the convex combination n of n1 and n2 as functions, i.e.,
n (a)(n) = an 1(a)(n) + (1 — a)n 2(a)(n), does not imply that n is a convex
combination of n1 and n2 in the sense above.

2.3 Conditional Probabilities over M DPs

The conditional probability P (A | B) is the probability of an event A,
given the occurrence of another event B. Recall that given a probability
space (Q ,F , P) and two events A, B G F w ith P (B) > 0, P (A | B) is
defined as P (A n B)/ P (B) . If P (B) = 0, then P (A | B) is undefined.
In particular, given a M D P n , a scheduler n, and a state s, consider the
probabilistic space (Paths(s), B s,P s,n). For two sets of paths A 1; A 2 G B s
w ith P s,n(A 2) > 0, the conditional probability of A 1 given A 2 is P s,n(A 1 |
A 2) = Ps,n (A 1 n A 2)/Ps,n (A 2). If Ps,n (A 2) = 0 , then P^ ,s(A 1 | A 2) is
undefined. W e define the maximum and minimum conditional probabilities
for all A 2 g B s as follows:

D efin itio n 2 .3 .1 . Let n be a M D P. The maximal and minimal condi­
tional probabilities P + (A 1|A 2), P — (A 1 |A2) of sets of paths A 1; A 2 G B s are
defined by

sup Ps,n (A 1IA 2) if Sch^ 2 = 0 ,
P + (A 1|A 2) ^ neSch>2

0 otherwise,

inf Ps,n (A 1IA 2) if Sch^0 = 0 ,
P —(A 1IA 2) M n^ Sch>2

1 otherwise,

where Sch^° = {n G Schs(n) | Ps,n(A2) > 0}.

30 Chapter 2. Conditional probabilistic temporal logic

The following lemma generalizes Lemma 6 of [BdA95] to conditional prob­
abilities.

L em m a 2 .3 .2 . Given A 1, A 2 G B s, its maximal and minimal conditional
probabilities are related by: P + (A 1|A 2) = 1 — P — (Paths(s) — A 1|A 2).

2.4 Conditional Probabilistic Temporal Logic

The logic cpC TL extends pC TL w ith formulas of the form P Ma[0|0] where
m g {< , <, >, > }. Intuitively, P< J0 |0] holds if the probability of 0 given
0 is at most a. Sim ilarly for the other comparison operators.

S y n ta x : The cpC TL logic is defined as a set of state and path formulas,
i.e., cpC TL = Stat U Path, where Stat and Path are defined inductively:

P C Stat,
0 ,0 G Stat ^ 0 A 0, -0 G Stat,
0 , 0 G Path ^ P m J0] ,P m J0|0] G Stat
0 ,0 G Stat ^ 0 U 0, 00, □ 0 G Path .

Here m g {< , <, >, > } and a G [0,1].

S em an tics: The satisfiability of state-formulas (s |= 0 for a state s) and
path-formulas (w |= 0 for a path w) is defined as an extension of the sat­
isfiability for pC TL. Hence, the satisfiability of the logical, temporal, and
pC TL operators is defined in the usual way. For the conditional probabilis­
tic operators we define

s |= P<a[0|0] ^ P+ ({w G Paths(s) | w |= 0 }|{w G Paths(s) | w |= 0 }) < a,
s |= P >a[0|0] ^ P —({w G Paths(s) | w |= 0 }|{w G Paths(s) | w |= 0 }) > a,

and sim ilarly for s |= P<a[0|0] and s |= P >a[0|0]. W e say that a model M
satisfy 0, denoted by M |= 0 if s0 |=

2.4. Conditional Probabilistic Temporal Logic 31

In the following we fix some notation that we w ill use in the rest of the
chapter,

P+[0] 4 P+ ({w G Paths(s) | w |= 0 }),

P+[0|0] — P+ ({w G Paths(s) | w |= 0 }|{w G Paths(s) | w |= 0 }),

P s,n[010] — Ps,n({w G Paths(s) | w |= 0 }|{w G Paths(s) | w |= 0 }),
P —[0|0] and P —[0] are defined analogously.
O b servation 2 .4 .1 . As usual, for checking if s |= P Ma[0|0], we only need
to consider the cases where 0 = 0 1U 0 2 and where 0 is either 0 1U 0 2 or
□0 1 . This follows from 00 o tr u e U 0, ^ 0 o -0 -0 and the relations

P+[-0|0] = 1 — P —[0|0] and P —[-0|0] = 1 — P+[0|0]
derived from Lemma 2.3.2. Since there is no way to relate P+[0|0] and
P+ [0|-0], we have to provide algorithms to compute both P+ [0|01U 0 2]
and P+ [0|□01]. The same remark holds for the minimal conditional prob­
abilities P —[0|01U 0 2] and P — [0|□01]. In this chapter we w ill only focus
on the former problem, i.e., computing maximum conditional probabilities,
the minimal case follows using sim ilar techniques.

2.4.1 E xpressiveness

W e now show that cpC TL is strictly more expressive than pC TL. The
notion of expressiveness of a temporal logic is based on the notion of formula
equivalence. Two temporal logic formulas 0 and 0 are equivalent w ith
respect to a set D of models (denoted by 0 =D 0) if for any model m G D
we have m |= 0 if and only if m |= 0. A temporal logic L is said to be at
least as expressive as a temporal logic L ', over a set of models D, if for any
formula 0 G L ' there is a formula 0 G L that is equivalent to 0 over D.
Two temporal logics are equally expressive when each of them is at least as
expressive as the other. Form ally:
D efin itio n 2 .4 .1 . Two temporal logics L and L ' are equally expressive
w ith respect to D if

V0 G L . (30 g L '.0 =D 0) A V0 G L '. (30 g L .0 =d 0).

32 Chapter 2. Conditional probabilistic temporal logic

T h eorem 2 .4 .2 . cpC TL is more expressive than pC TL w ith respect to
MCs and M DPs.

Proof. Obviously cpC TL is at least as expressive as pC TL, hence we only
need to show that the reverse does not hold. The result is rather intuitive
since the semantics of the conditional operator for cpC TL logic is provided
by a non-linear equation whereas there is no pC TL formula w ith non-linear
semantics.

The following is a formal proof. W e plan to show that there is no
pC TL formula 0 equivalent to 0 = P<0 5 [0A10B], w ith A and B atomic
propositions. The proof is by cases on the structure of the pC TL formula
0. The most interesting case is when 0 is of the form P<b[0], so we w ill
only prove this case. In addition we restrict our attention to b’s such that
0 < b < 1 (the cases b = 0 and b = 1 are easy). In Figure 2.2 we depict the
Markov Chains involved in the proof. W e use - 0 1 to mark the states with
an assignment of truth values (to propositional variables) falsifying 0 1.

Case 0 = P<b[O0 1]:
If 01 is tru e or fa lse the proof is obvious, so we assume otherwise. We
first note that we either have - 0 1 ^ - (B A -A) or - 0 1 ^ (B A - A).
In the former case, it is easy to see (using - B ^ 0 1) that we have
m2 |= 0 and m2 |= 0. In the second case we have m 1 |= 0 and
m 1 |= 0 .

Case 0 = P<b[0 1U 0 2]:
W e assume 01 = tru e , otherwise we fall into the previous case. We
can easily see that we have m3 |= 0 but m3 |= 0 .

Case 0 = P<b[^ 0 1]:
The case when 0 1 = tru e is easy, so we assume 0 1 = tru e . We can
easily see that we have m3 |= 0 but m3 |= 0 . □

Note that, since MCs are a special case of M D Ps, the proof also holds
for the latter class.

W e note that, in spite of the fact that a cpC TL formula of the form
P<a[0| 0] cannot be expressed as a pC TL formula, if dealing w ith fully

2.5. Semi History-Independent and Deterministic Schedulers 33

6 - 1 ^ 1

{A,B}

Figure 2.2: Markov Chains m 1, m2, and m3 respectively.

probabilistic systems (i.e. systems without nondeterministic choices) it is
still possible to verify such conditional probabilities formulas as the quotient
of two pC TL* formulas: P [010] = Pjp ff] . However, this observation does
not carry over to systems where probabilistic choices are combined with
nondeterministic ones (as it is the case of Markov Decision Processes). This
is due to the fact that, in general, it is not the case that P+[0|0] = PP + f f .

2.5 Semi H istory-Independent and D eterm inistic
Schedulers

Recall that there exist optimizing (i.e. maximizing and minimizing) sched­
ulers on pC TL that are HI and deterministic [BdA95]. W e show that,
for cpCTL, deterministic schedulers still suffice to reach the optimal condi­
tional probabilities. Because we now have to solve a non-linear optimization
problem, the proof differs from the pC TL case in an essential way. W e also
show that HI schedulers do not suffice to attain optimal conditional proba­
bility and introduce the fam ily of semi history-independent schedulers that
do attain it.

2.5.1 Sem i H istory-In dep en d en t Schedulers

The following example shows that maximizing schedulers are not necessarily
HI.

34 Chapter 2. Conditional probabilistic temporal logic

E xam p le 2 .5 .1 . Let n be the M D P of Figure 2.3
and the conditional probability P s 0 [0 B |0 P]. There
are only three deterministic history independent sched­
ulers, choosing n i, n2, or n3 in s0. For the first one,
the conditional probability is undefined and for the sec­
ond and third it is 0. The scheduler n that maximizes
Ps0,n[0 B | 0 P] satisfies n(so) = n3, n(so«3) = ^5, and
n(sos3so) = n1. Since n chooses on s0 first n2 and later
n1, n is not history independent.

Fortunately, as we show in Theorem 2.5.3, there exists a nearly HI scheduler
that attain optimal conditional probability. W e say that such schedulers
are nearly H I because they always take the same decision before the system
reaches a certain condition p and also always take the same decision after
p. This fam ily of schedulers is called p-semi history independent (p-sHI for
short) and the condition p is called stopping condition. For a pC TL path
formula 0 the stopping condition is a boolean proposition either validat­
ing or contradicting 0. So, the (validating) stopping condition of 00 is 0
whereas the (contradicting) stopping condition of D0 is -0. Formally:

StopC(0) - 0 i V 02 if 0 = 0 i U 021
[- 0 if 0 = D 0 .

Sim ilarly, for a cpC TL formula P ><a[0|0], the stopping condition is a
condition either validating or contradicting any of its pC TL formulas (0,
0), i.e., StopC(PMJ0 |0]) = StopC(0) V StopC(0).

W e now proceed w ith the formalization of semi history independent
schedulers.

D e fin itio n 2.5.2 (Semi History-Independent Schedulers). Let n be a M D P,
n a scheduler for n , and 0 V 0 e Stat. W e say that n is a (0 V 0) semi
history-independent scheduler ((0 V 0)-sHI scheduler for short) if for all

{}
Figure 2.3: M D P

2.5. Semi History-Independent and Deterministic Schedulers 35

o 1 , o2 e Paths*(s) such that last(a1) = last(o2) we have

o1, o2 |= 0 (0 V 0) ^ n (o1) = n(o2), and {H I before stopping condition}
o1; o2 |= 00 ^ n (o1) = n(o2), and {H I after stopping condition}

o1; o2 |= 00 ^ n (o1) = n(o2). {H I after stopping condition}

W e denote the set of all p-sHI schedulers of n by Sch^(n).

W e now prove that semi history-independent schedulers suffice to attain
the optimal conditional probabilities for cpC TL formula.

T h eorem 2 .5 .3 . Let n be a M D P, 0 ,0 e Path, and p = StopC(0) V
StopC(0). Assume that there exists a scheduler n such that P n[0] > 0 .
Then:

P+[0|0] = sup Pn [0|0].
neSch^(n)

(If there exists no scheduler n such that P n [0] > 0, then the supremum is 0.)
The proof of this theorem is rather complex. The first step is to prove

that there exists a scheduler n H I before the stopping condition and such
that P n [0 10] is ‘close’ (i.e. not further than a small value e) to the optimal
conditional probability P+[0|0]. For this purpose we introduce some defini­
tions and prove this property first for long paths (Lemma 2.5.5) and then,
step-by-step, in general (Lemma 2.5.6 and Corollary 2.5.1) . After that, we
create a scheduler that is also H I after the stopping condition and whose
conditional probability is still close to the optimal one (Lemma 2.5.7) . From
the above results, the theorem readily follows.

W e now introduce some definitions and notation that we w ill need for
the proof.

D e fin itio n 2.5.4 (Cuts). Given a M D P n we say that a set K C Paths*(n)
is a cut of n if K is a downward-closed set of finite paths such that every
infinite path passes through it, i.e.

• V o 1 e K . V o 2 e Pa th s*(n). o1 C o2 = ^ o2 e K , and

36 Chapter 2. Conditional probabilistic temporal logic

• Vw e Pa th s (n). 3 o e K . o C w.

where o1 C o2 means that o2 is an “extension” of o1, i.e. o2 = o1o/ for
some path o/. W e denote the set of all cuts of n by K (n).

For R C Paths* (s), we say that n is history independent in R if for all
o1; o2 e R such that last(o1) = last(o2) we have that n (o1) = n(o2). We
also define the sets $ and ^ as the set of finite paths validating 0 and 0
respectively, i.e. $ = {o e Paths*(n) | o |= 0 } and ^ = {o e Paths*(n) |
o |= 0 }. Finally, given a M D P n , two path formulas 0, 0, and e > 0 we
define the set

K = { (K , n) e K (n) x Sch (n) | $ U ^ C K and n is H I in K \ ($ U ^)
and P+[0|0] - P n[0|0] < e}

If a scheduler n is H I in K \ ($ U ^) then we say that n is H I before the
stopping condition.

Lem m a 2.5.5 (non emptiness of K). There exists (K , n) such that (K , n) e
K and that its complement K c = Paths*(n) \ K is finite.

Proof. We show that, given formulas 0, 0 and e > 0, there exists a cut K
and a scheduler n* such that K c is finite, $ U ^ C K , n* is H I in K \ ($ U ^),
and P+[0|0] - P n* [0|0] < e .

The proof is by case analysis on the structure of 0 and 0. W e w ill
consider the cases where 0 and 0 are either “eventually operators” (♦) or
“globally operators” (□), the proof for the until case follows along the same
lines.
• C ase 0 is o f the form 00 and 0 is o f the fo rm 00:
Let us start by defining the the probability of reaching 0 in at most N steps,
as P n[< N , 00] = P n[({o e Paths*(n) | o |= 00 A |o| < N }}]. Note that for
all pC TL reachability properties 00 and schedulers n we have

Jim Pn [< N , 0 0] = Pn [0 0].

We also note that this result also holds for pCTL* formulas of the form
00 A 00.

2.5. Semi History-Independent and Deterministic Schedulers 37

Let us now take a scheduler n and a number N such that

P+ [00|00] - P n[00|00] < e = e/3, and (2 .1)
P n[00 A 00] - P n[< N , 00 A 00] < e/, and (2.2)

Pn [00] - Pn [< N , 00] < e/. (2.3)

where e/ is such that e/ < min ^2 ■ e ■ Pn [0 0], Pn[0^A0Pn] +2-lPn[0^]) . The rea­
sons for this particular choice for the bound of e/ w ill become clear later on
in the proof.

W e define K as $ U ^ U Paths*(< N , n), where the latter set is defined
as the set of paths w ith length larger than N , i.e. Paths*(< N , n) ^ {o e
Paths*(n) | N < |o|}. In addition, we define n* as a scheduler H I in
Paths*(< N , n) behaving like n for paths of length less than or equal to
N which additionally minimizes P[00] after level N . In order to formally
define such a scheduler we let S N to be the set of states that can be reached
in exactly N steps, i.e., S N = {s e S | 3 o e Paths*(n) : |o| = N A
last(o) = s }. Now for each s e S we let to be a H I s-scheduler such that
P s ?s [00] = P - [00]. Note that such a scheduler exists, i.e., it is always
possible to find a H I scheduler minimizing a reachability pC TL formula
[BdA95].

W e now define n* as

{Cs(o|a|o|a +1 ■ ■ ■ o|CT|) if a C o for some a e Paths*(= N , n)
such that last(a) = s,

n(o) otherwise.

where Paths*(= N , n) denotes the set of paths of n of length N . It is easy to
see that n* minimizes P[00] after level N . As for the history independency
of n* in K there is still one more technical detail to consider: note there may
still be paths a 1s1o1t and a 2s2o2t such that a 1s1, a 2s2 e Paths*(= N , n)
and (s1o1t) = (s2o2t). This is the case when there is more than one
distribution in t (t) minimizing P t [00], and £S1 happens to choose a different

38 Chapter 2. Conditional probabilistic temporal logic

(minimizing) distribution than {S2 for the state t. Thus, the selection of
the fam ily of schedulers { { s} se,sN must be made in such a way that: for all
s1,s 2 e S n we have P Sl;?si [00] = P - [00], P s2,gs2 [00] = P-2[00], and for
all o1t e Paths*(s1) ,o 2t e Paths*(s2) : £s i(o 1t) = { S2(o 2t). It is easy to
check that such fam ily exists. W e conclude that n* is H I in Paths*(< N , n)
and thus H I in K \ ($ U ^).

W e note that P n* [00] > 0, this follows from 0 < P n[00], (2.1) , (2.3) ,
and the definition of n*.

Having defined n* we proceed to prove that such scheduler satisfies
P+[0|0] - P n[0|0] < e. It is possible to show that:

Pn [< N , 00] < Pn* [00] < Pn [00], (2.4)
Pn [< N , 00 A 00] < Pn*[00 A 00] < Pn [00 A 0 0]+ e ■ Pn [00]. (2.5)

(2.4) and the first inequality of (2.5) follow straightforwardly from the def­
inition of n*. For the second inequality of (2.5) suppose by contradiction
that P n* [00 A 00] > P n [00 A 00] + e ■ P n [00]. Then

P n* [00 A 00] P n [00 A 00] + e ■ P n [00]
Pn* [0 0] Pn [0 0]

contradicting (2 .1) .
Now we have all the necessary ingredients to show that

|Pn[0 0 |0 0] - Pn* [0 0 |0 0] | < 2 ■ e. (2 .6)

Note that

P n [00 A 0 0]- e/ P n [00 A 00]+ e ■ P n [00]
n Pn [000] < Pn*[° 0 '00] and P n*[00|00] < n' * p , ^] - / '

The first inequality holds because P n* [00] < P n[00] and (combining (2.5)
and (2.2)) P n* [00 A 00] > P n[00 A 00] - e/. The second inequality holds

2.5. Semi History-Independent and Deterministic Schedulers 39

because P n* [00 A 00] < P n[00 A 00] + e ■ P n[00] and (combining (2.4) and
(2.3)) P n* [00] > P n[00] - e/. It is easy to see that P n[00|00] falls in the
same interval, i.e., both P n[0 0 |0 0] and P n*[0 0 |0 0] are in the interval

Pn [00 A 00] - e/ Pn [00 A 0 0]+ e ■ Pn [00]
Pn [0 0] Pn [0 0] - e/

Thus, we can prove (2.6) by proving

Pn [0 0 A 0 0] Pn [0 0 A 0 0] - e'
Pn [0 ^]
Pn [0 0 A 0 0]

Pn [0 0]
Pn [00 A 00] + e ■ Pn [00]

Pn [0 0] - e' Pn [0 0]

< 2 • e, and

< 2 -e.

The first inequality holds if and only if e/ < 2
inequality, we have

P n [00]. As for the second

P„ [0^A0]̂+ê P„ [0]̂ P„ [0M 0]̂
Pn [0^]-e'

Pn[0 0] 2 ■ e + Pn

Pn[0 0] 2 ■ e + Pn
ePn [0^]2

Pn [0̂] < 2 e

n
e' <

A 00] ■ e' < 2 ■ e ■ (Pn [00] - e') ■ Pn [00]

A 00] ■ e' < 2 ■ e ■ P n[00]2 - 2 ■ e ■ e' ■ P n[00]

Pn [0^A0^]+2-e-Pn [0]̂ ‘

W e conclude, by definition of e/, that both inequalities hold.
Now, putting (2 .1) and (2 .6) together, we have P+ [00 |00]-Pn* [00|00] <

3 ■ e = e, which concludes the proof for this case.
• Case 0 is o f the fo rm 00 and 0 is o f th e fo rm Q0:
W e now construct a cut K and a scheduler n* such that K c is finite, $ U ^ C
K , n* is H I in K \ ($ U ^), and P n* p - 0 p 0] - P _ p - 0 p 0] < e. Note
that such a cut and scheduler also satisfy P+ [0 0 P0] - P n* [0 0 P 0] < e.

The proof goes sim ilarly to the previous case. W e start by defining
the probability of paths of length N always satisfying 0 as P n [= N , ^0] =

40 Chapter 2. Conditional probabilistic temporal logic

P n[({o e Paths*(n) | o |= ^ 0 A |o| = N }}]. Note that for all pC TL formula
of the form □ 0 and schedulers n we have

lim P n[= N , ^ 0] = P n P 0].

The same result holds for the pCTL* formula ^ (0 A 0). It is easy to check
that for all N and 0 we have P n [= N , ^0] > P n p 0].

Now we take a scheduler n and a number N such that:

0 < P n[□ -0|^0] - P — [□ -0|^0] < e = e/3, and
0 < P n[= N , □ (-0 A 0)] - P n[□ (-0 A 0)] < e/, and

0 < P n [= N , ^0] - P n p 0] < e/.

where e/ is such that e/ < min ê ■ P np 0], P .

W e define K as before, i.e., K = $ U ^ U Paths*(< N , n). In addition,
we can construct (as we did in the previous case) a scheduler n* behaving
as n for paths of length at most N and maximizing (instead of minimizing
as in the previous case) P p 0] afterwards. Again, it is easy to check that
n* is H I in K \ ($ U ^).

Then we have

P n P 0] < P n *P 0] < Pn [= N , □ #
Pn [□ (-0 A 0)] - e ■ P n P 0] < Pn* [□ (-0 A 0)] < Pn [= N , □ (—0 A 0)].

In addition, it is easy to check that

- P np 0] ■ e < P n* [□ (—0 A 0)] - P n[□ (—0 A 0)] < e/
0 < P n* p 0] - P n p 0] < e/.

Sim ilarly to the previous case we now show that

|Pn P —0 P 0] - P n* P —0 P 0] | < 2 ■ e. (2.7)

which together w ith P n[□—0 p 0] - P _ p —0 p 0] < e concludes the proof.

2.5. Semi History-Independent and Deterministic Schedulers 41

In order to prove (2.7) we show that

-2 ■ e < P n* [Ilh 0 p 0] - P np - 0 p 0] < e

or, equivalently

a) P n* [D (- 0 A 0)] ' P n[D0] - P n[D (- 0 A 0)] ' P n*[D0] <
P n [D0] ■ P n* [D0] ■ e, and

b) 2 ■ P n [D0] ■ P n* [D0] ■ e <
P n* [D (- 0 A 0)] ' P n[D0] - P n[D (- 0 A 0)] ' P n*[D 0].

It is possible to verify that a) is equivalent to e' < e ■ P n [D0] and that
6-P [D^l2

b) is equivalent to e' < P [□(— . The desired result follows by definition
of e'. ̂ □

In the proof of the following lemma we step-by-step find pairs (K , n) in
K w ith larger K and n still close to the optimal until finally K is equal to
the whole of Paths*(n).

Lem m a 2.5.6 (completeness of K). There exists a scheduler n such that
(Paths*(n),n) e K .

Proof. W e prove that if we take a (K , n) e K such that |K c| is minimal
then K c = 0 or, equivalently, K = Paths*(n). Note that a pair (K , n) w ith
minimal |K c| exists because, by the previous lemma, K is not empty.

The proof is by contradiction: we suppose K c = 0 and arrive to a
contradiction on the m inim ality of |K c|. Formally, we show that for all
(K , n) e K such that K c = 0, there exists a cut K * D K and a scheduler
n* such that (K * , n*) e K , i.e. such that n* is H I in K * \ ($ U ^) and
Pn [010] < Pn*[0 10].

To improve readability, we prove this result for the case 0 is of the form
00 and 0 is of the form 00. However, all the technical details of the proof
hold for arbitrary 0 and 0 .

Let us start defining the boundary of a cut K as

¿ K = (cti e K | V 02 e Paths*(M) . C cti = ^ e K }.

42 Chapter 2. Conditional probabilistic temporal logic

Let p be a path in K c such that pt e ¿ K . Note that by assumption
of K c = 0 such p exists. Now, if for all paths a e K we have last(a) =
last(p) = ^ n (a) = n(p) then n is also H I in (K U {p }) \ ($ U ^) so we have
(K U {p }, n) e K as we wanted to show. Now let us assume otherwise, i.e.
that there exists a path a e K \ ($ U ^) such that last(a) = last(p) and
n (a) = n(p). We let s — last(p), n — n(p), n2 — n (a), and K s — {a e K |
last(a) = s } \ ($ U ^). Note that for all a ' e K s we have n (a ') = n2, this
follows from the fact that n is H I in K \ (^ U *) .

Figure 2.4 provides a graphic representation of this description. The fig­
ure shows the set Paths*(n) of all finite paths of n , the cut K of Paths*(n),
the path p reaching s (in red and dotted border line style), a path a reach­
ing s in K (in blue and continuous border line style). The fact that n takes
different decisions p and a is represented by the different colors and line
style of their respective last states s.

Figure 2.4: Graphic representation of Paths*(n), ^ U K , 5 K , p, and a.

We now define two schedulers ni and n2 such that they are H I in (K U
{p }) \ ($ U ^). Both ni and n2 are the same than n everywhere but in K s
and p, respectively. The first one selects n1 for all a £ K s (instead of n2 as
n does), and the second scheduler selects n2 in p (instead of n1):

2.5. Semi History-Independent and Deterministic Schedulers 43

I n i if a £ Ks I n2 if a = p
n1(CT) = S and n2(a) = s

ln (a) otherwise ln (a) otherwise.

Now we plan to prove that either n1 is “better” than n or n2 is “better”
than n- In order to prove this result, we w ill show that:

Pm [0 0 1 0 0] < Pn2 [0 0 1 0 0] ^ P n [0 0 1 0 0] < Pn2 [0 0 1 0 0] (2 -8)
and

Pn2[00|00] < Pm [00|00] ^ P n [0 0 |0 0] < P ^ [00|00] (2-9)
Therefore, if P n i[00|00] < P n2 [00|00] then we have (K U {p },n 2) £ K , and
otherwise (K U {p },n 1) £ K . So, the desired result follows from (2.8) and
(2.9) . W e w ill prove (2.8) , the other case follows the same way.

In order to prove (2.8) we need to analyze more closely the conditional
probability P[00|00] — P [$ |*] for each of the schedulers n, n1, and n2. For
that purpose we partition the sets $ n * and * into four parts, i.e. disjoint
sets. The plan is to partition $ n * and * in such way that we can make use
of the fact that n, n1, and n2 are sim ilar to each other (they only differ in
the decision taken in K s or p) obtaining, in this way, that the probabilities
of the parts are the same under these schedulers or differ only by a factor
(this intuition w ill become clearer later on in the proof), such condition is
the key element of our proof of (2.8) . Let us start by partitioning * :

i) We define *p k s as the set of paths in * neither passing through K s
nor p, formally

*p,ks — * \ ((K s)U (p))

ii) We define * pks as the set of paths in * passing through p but not
through K s, i.e.:

— * n (< p)\ (K s)).

iii) We define * p,ks as the set of paths in * passing through p and K s,
i.e.:

* m s — * n <p) n <Ks).

44 Chapter 2. Conditional probabilistic temporal logic

iv) W e define *p)ks as the set of paths in * passing through K s but not
through p, i.e.:

*-p,ks 4 * n (< K)\< p)).

Note that * = U U *p,fcs U ^ .
Sim ilarly, we can partition the set of paths $ n * into four parts ob­

taining $ n * _ ($ n *)p,s u ($ n *) pks u ($ n *)p ,fcs ($ n *) - .
In the following we analyze the probabilities (under n) of each part

separately.

• The probability of * pks can be written as pp -x^, where pp is the prob­
ability of p and x^ is the probability of reaching 0 without passing
through K s given p. More formally, P n[* pks] _ P n[* n (<p) \ <Ks))]
= Pn[<p)] ■ Pn [* n (<p) \ <Ks))|<p)] 4 Pp ■ x^/

• The probability of * p,ks can be written as pp ■ xs ■ i— -, where xs is
the probability of passing through K s given p, is the probability
of, given a, reaching 0 without passing through K s after a; and ys
is the probability of, given a, passing through K s again. Remember
that a is any path in K s. Formally, we have

Pn [*M -] = Pn [* n< p)n< Ks)]
= Pn[<p)] ■ Pn[<Ks)|<p)] ■ P n [* |< K) n <p)]
= pp ■ xs ■ Pn[*|<a)].

Furthermore,

P n[* |<a)] _ P n[* |K sagain n <a)]
_ Pn [^nK - again |(«)j

Pn [Ks again Ka)]_
_ i-ys .

where K s again 4 <a) \ (w e <aa) | a a e K s }.
• The probability of *p,ks can be written as pks ■ , where pks is the

probability of passing though Ks without passing through p. For­
mally, Pn[*p,fcs] _ Pn [* n (<Ks) \ <p))] _ Pn[<Ks) \ <p)] ■ Pn[*|<a)] 4
p .psfc l-ys

2.5. Semi History-Independent and Deterministic Schedulers 45

• Finally, we write the probability of *pk- as p , .

A similar reasoning can be used to analyze the probabilities associated
to the parts of $ n * . In this way we obtain that (1) P n[($ n *) pks] _
pp ■ x ^ ,, where x^, is the probability of reaching 0 and 0 without passing
through Ks given p, (2) Pn [($ n *) Afcs] _ pp ■ xs ■ f— -, where y^ , is the
probability of reaching 0 and 0 without passing through K s afterwards
given a, (3) P n[($ n *)p,fcs] _ pfcs ■ f— -, and (4) P n[($ n *)p;ks] _ p ^ ,.

In order to help the intuition of the reader, we now provide a graphical
representation of the probability (under n) of the sets $ n * and * by
means of a Markov chain (see Figure 2.5) . The missing values are defined
as p^, 4 p , - p ^ , p0 4 1 - psfc - pp - p , ; and sim ilarly for x ^ ,, x0, y ^ ,,
and yg. Furthermore, absorbing states 00 denote states where 0 A 0 holds,
absorbing states 00 denote states where -0 A 0 holds, and 0 denote a
state where -0 holds. Finally, the state p represents the state of the model
where p has been just reached and a a state where any of the paths a in
K s as been just reached. To see how this Markov Chain is related to the
probabilities of $ n * and * on the original M D P consider, for example,
the probabilities of the set $ n * . It is easy to show that

P n [$ n *] _ P n [$M -] + P n [$P,fc-] + P n[$p,fcs] + P n[$p,fcs]
_ p^, + pp ■ x<̂ + pp ■ xs ■ f— - + psfc ■ f— j _ p m [O00].

W e note that the values psk, pp, p ^ ,, p ^ ,, and pg coincide for n, n^ and
n2. Whereas the values x 4 (xs , x , , x^, , xg) coincide for n and ^ and the
values y 4 (ys, y , , y ^ ,, yg) coincide for n and n2. Thus, the variant of M n
in which y is replaced by x describes the probability of each partition under
the scheduler ni instead of n. Sim ilarly, the variant on which x is replaced
by y represents the probability of each partition under the scheduler n2.

Now we have all the ingredients needed to prove (2.8) . Our plan is to
show that:

1) P ^ [$ |^] < pn2[$|^] (Pp + Psk) ■ d < 0 d < 0, and

46 Chapter 2. Conditional probabilistic temporal logic

0

Figure 2.5: Graphical representation of how we write the probability of
each partition: M n.

2) Pn [$ |*] — Pn2[$ l*] ^ (1 - ys) ■ pp ■ d — 0 ^ d — 0 .

0

0

where d is the following determinant

ps + psfc xs - 1 ys - 1
d _ p^ , x^ , y^ ,

p, x, y ,

W e now proceed to prove 1)

Pm [$ |*] - Pn2[$ |*] < 0

P^ +Pp^x^+(pp^xs+psfc)•
P ̂+Pp-x̂ +(pp̂ xs+psfc)• 1—"- P ̂+Pp-ŷ +(pp̂ ys+psfc)• i-l- _

P^̂ (l X3)+pp + p5̂ P^̂ (l ys)+psy^̂ +p5̂ ^ 0
P ̂(1-xs)+ppx ̂+pSfc p̂ (1-ys)+Ppy ̂+pSfc —

p^ , (1 xs) + ppx^ , + psfc x^ ,
p , (1 - xs) + ppx, + pskx ,

p^ , (1 ys) + ppy^ , + psk y^ ,
p, (1 - ys) + ppy, + psk y,

0.

2.5. Semi History-Independent and Deterministic Schedulers 47

A long but straightforward computation shows that the 2x2 determinant
in the line above is equal to (pp + psk)d.

The proof of 2) proceeds along the same lines.

Pn [$ |*] - Pn2 [$ |*] — 0

P^ +Pp^x ̂+(pp̂ xs+psfc)• 1—l- P ^ +Pp^^+(pp^ys+psfc)• 1— - ^ 0
p̂ +Pp̂ x̂ +(pp̂ xs+psfc)• i-|- p̂ +Pp^ +(pp̂ ys +pSfc)• i-|- _

p ^ (i- ys)+ppx^^(i-ys)+(ppxs +pSfe)y^ p^ (l-yQ+Ppy^ +pSfe ^ 0
p̂ (1-ys)+Ppx ̂(1-ys)+(ppxs+psfc)y ̂ p̂ (1-ys)+Ppy ̂+pSfc <

p^ , (1 ys) + ppx^ , (1 ys) + (ppxs + psk)y^ , p^ , (1 ys) +ppy<£, + psk y^ ,
p , (1 - ys) + ppx, (1 - ys)+ (ppxs + psfc) y , p , (1 - ys) + ppy, + psfc y ,

< 0

and also here a long computation shows that this last 2x2 determinant is
equal to (1 - ys) ■ pp ■ d. □

Finally, we have all the ingredients needed to prove that there exists a
scheduler close to the supremum which is H I before the stopping condition.

C orollary 2 .5 .1 . [H I before stopping condition] Let n be a M D P, 0 ,0 e
Path. Then for all e > 0, there exists a scheduler n* such that P+[0|0] -
P n* [0 |0] < e and n* is history independent before the stopping condition.

Proof. Follows directly from Lemma 2.5.5 and Lemma 2.5.6. □

W e now proceed w ith the construction of a maximizing scheduler and
H I after the stopping condition.

L em m a 2 .5 .7 . [H I after stopping condition] Let n be a M D P, 0 ,0 e Path,
and f _ StopC(0) V StopC(0). Then for all schedulers n there exists a
scheduler n* such that

48 Chapter 2. Conditional probabilistic temporal logic

1) n* behaves like n before the stopping condition,

2) n* is H I after the stopping condition f , and

3) P n[0|0] < P n*[0|0].

Proof. We w ill prove this result for the case in which 0 is of the form 00
and 0 is of the form 0 0 , the proof for the remaining cases follows in the
same way.

Let us start by introducing some notation. W e define, respectively, the
set of paths reaching 0 , the set of paths not reaching 0 , the set of paths
reaching 0 without reaching 0 before, and the set of paths reaching 0 A - 0
without reaching 0 before as follows

A^ 4 {w e Paths(n) | w |_ 00 },

A -,0 4 {w e Paths(n) | w |_ D -0 },
A ,^ 4 {w e Paths(n) 1 w = - 0 U 0 }

A , 4 {w e Paths(n) 1 w = - 0 U (0 A - 0)} .

Note that the last two sets are disjoint. It is easy to check that

A n A , _ (A ,^ n A ,) u (A ^ , n A ^

A ̂ _ A ^ , u (A ,^ n A ^) _ [(A ^ , n A ^) u (A ^ , n A -^)] u (A ,^ n A ^) -
Let us now define the minimal set of finite paths “generating” (by their

basic cylinders) A ,^ and A ^ ,: K ,^ 4 { o e Paths*(n) | last(o) |= 0 AV i <
|o | : o |= -0 A - 0 } and sim ilarly 4 { o e Paths*(n) | last(o) |=
(0 A -0) A V i < |o | : Oi |= -0 A - 0 }. Note that A ,^ _ (K ,^) and
A ^ , _ (K ^ ,). Now we can write

P [00100] ____________ Pn [(K ^ n A] + Pn [(K ^) n A ^]__________ .
n[00100] P n [(K ,0) n A ,] + P n [(K ^ ,) n A^] + P n [(K * ,) n A-*]

The construction of the desired scheduler n* is in the spirit of the construc­
tion we proposed for the scheduler in Lemma 2.5.5. W e let S^ 4 {s e S |

2.5. Semi History-Independent and Deterministic Schedulers 49

s = 0 } and S , 4 {s e S | s = (0 A - 0)}. Note that S^ and S , are disjoint.
Now we define two families of schedulers {£s} ses^ and { (s} ses^ such that:
for all s i,s 2 e S^ we have P si>6i [00] _ P +1 [00], P s2,g-2 [00] _ P+2[00],
and for all o1t e Paths*(s1), o2t e Paths*(s2) we have £s i(o 1t) _ {s2 (o2t).
Sim ilarly for {(s }ses^ : for all s i,s 2 e S^ we have P si)C-i [00] _ P +1 [00],
P s2 Z-2 [00] _ P+2[00], and for all o1t e Paths*(s1), o2t e Paths*(s2) we
have (si (o 1t) _ Zs2 (02)̂.

W e now proceed to define n*:

{£s(o|a | ■ ■ ■ 0 |CT|) if a C o for some a e K such that la s t(a)_ s,
(s(o|a | ■ ■ ■ 0 |CT|) if a C o for some a e K , such that la s t(a)_ s,
n (o) otherwise.

where K 4 { o e Paths* | last(o) e S^ }, and sim ilarly K , 4 { o e Paths* |
last(o) e S , }.

It is easy to check that n* satisfies 1) and 2). As for 3) we first note
that P n [(K ^) n tf] — P n * [(K ^) n tf], P n [(K ^) n A *] — P ^ [(K ^ ,) n A *],
and pn[(K ^) n A -^] > P n*[(K ^ ,) n A -^].

In addition, we need the following simple remark.

R em ark 2 .5 .8 . Let ƒ : R ^ R be a function defined as ƒ (x) 4 a+x where
a and b are constants in the interval [0,1] such that b > a. Then ƒ is
increasing.

Finally, we have

P n[(K ,^) n A ,] + P n[(K ^ ,) n A ^]P n [00100] =

<

P n ^ A] + P n) ^ A ^] + P nKK <^) ^ A -^]
{by Remark 2.5.8}

P n* ^ A] + P n) ^ A ^]
P n* [K̂ ^^) ^ A] + P n) ^ A ^] + P n) ^ A -^]

{by Remark 2.5.8}

50 Chapter 2. Conditional probabilistic temporal logic

^ P n* [(K ,^) n A ,] + P n*[(K ^ ,) n A ^]
P n* [(K ,^) n A ,] + P n*[(K ^ ,) n A ^] + P n[(K ^ ,) n A -^]

^ P n* [(K ,^) n A ,] + P n*[(K ^ ,) n A ^]
P n* [(K ,^) n A ,] + P n*[(K ^ ,) n A ^] + P n*[(K ^ ,) n A -^]

_ Pn* [0 0 |0 0] □

P r o o f o f T h eorem 2 .5 .3 . It follows straightforwardly from Corollary
2.5.1 and Lemma 2.5.7. □

2.5.2 D eterm in istic Schedulers

We now proceed to show that deterministic schedulers suffice to attain
optimal conditional probabilities.

The following result states that taking the convex combination of sched­
ulers does not increase the conditional probability P[0|0].

L em m a 2 .5 .9 . Let n be a M D P, s a state, and 0 ,0 path formulas. Sup­
pose that the s-scheduler n is a convex combination of n1 and n2. Then
P s,n[0|0] < max(Ps,ni[0 |0 L P s,n2 [0|0]).
Proof. To prove this lemma we need to use the following technical result:
The function ƒ : R ^ R defined as below is monotonous.

A xV1 + (1 - x)V2
ƒ (x) 4 ------ ----- ---

xw1 + (1 — x)w 2

where v1, v2 e [0, to) and w 1, w2 e (0, to). This claim follows from the fact
that / (x) _ (is always > 0 or always — 0 .J v ' (xwi — (1-x)W2)2 J J —

Now, by applying the result above to

[0 ^ a P s,ni[0 A 0] + (1 — a)P s,n2[0 A 0]
’ ° ^ a P s,ni[0] + (1 — a)P s,n2[0]

we get that the maximum is reached at a _ 0 or a = 1. Because n is a
convex combination of n1 and n2, P s,n[010] — P s,n2 [0|0] (in the first case)
or P s,n[010] — P [0|0] (in the second case). □

2.5. Semi History-Independent and Deterministic Schedulers 51

L em m a 2 .5 .10 . Let n be a M D P, s a state, and 0 a path formula. Then
every p-sHI s-scheduler on n is a convex combination of deterministic p-sHI
s-schedulers.

Proof. The result follows from the fact that sH I schedulers have only finitely
many choices to make at each state (at most two) and every choice at a
particular state - either before or after the stopping condition- is a convex
combination of deterministic choices at that state - either before or after
the stopping condition. □

Finally, combining Theorem 2.5.3 and the previous lemma we obtain:

T h eorem 2 .5 .11 . Let n be a M D P, 0 ,0 e Path, and p _ StopC(0) V
StopC(0). Then we have

P+[0|0] _ sup Pn[0|0],
neSchj(n)

where Sch^(n) is the set of deterministic and p-sHI schedulers of n .

Since the number of deterministic and semi H I schedulers is finite we
know that there exists a scheduler attaining the optimal conditional prob-
abUtty L a supnesch^(n) P n[0|0] _ maxneSch^(n) P n[0|0]. Note that this
implies that cpC TL is decidable.

W e conclude this section showing that there exists a deterministic and
semi H I scheduler maximizing the conditional probabilities of Example
2.5.1.

E xam p le 2 .5 .12 . Consider the M D P and cpC TL formula of Example 2.5.1.
According to Theorem 2.5.11 there exists a deterministic and (B V P)-sHI
scheduler that maximizes P s0,n[0 B |0 P]. In this case, a maximizing sched­
uler w ill take always the same decision (n3) before the system reaches s3 (a
state satisfying the until stopping condition (B V P)) and always the same
decision (n1) after the system reaches s3.

52 Chapter 2. Conditional probabilistic temporal logic

2.6 M odel Checking cpCTL

Model checking cpC TL means checking if a state s satisfies a certain state
formula 0. We focus on formulas of the form P <a[0|0] and show how to
compute P+[0|0]. The case P — [010] is similar.

Recall that model checking pC TL is based on the Bellman-equations.
For instance, P+ [0B] _ maxn€r(s) Etesucc(s) n (t) ' P +[0B] whenever s = B .
So a scheduler n that maximizes P s[0B] chooses n e t (s) maximizing
^ tesucc(s)n (t) ■ P+ [0B]. In a successor state t, n still behaves as a scheduler
that maximizes P t [0B]. As shown below, such a local Bellman-equation
is not true for conditional probabilities: a scheduler that maximizes a
conditional probability such as P s[0 B |D P] does not necessarily maximize
P t [0 B |D P] for successors t of s.

E xam p le 2 .6 .1 . Consider the M D P and cpC TL formula P<a[0 B |D P]
of Figure 2.1. There are only two deterministic schedulers. The first
one, n1, chooses n2 when the system reaches the state s2 and the sec­
ond one, n2, chooses n3 when the system reaches s2. For the first one
P s0,n i[0 B p P] = 1 — , and for the second one P s0,n2 [0 B p P] _ . So
P + [0 B p P] _ max(1 — , 30). Therefore, if a > 62 the scheduler that
maximizes P s0 [0 B p P] is n2 (P s0 n2 [0 B p P] _ P+ [0 B p P]) and otherwise
it is m (Ps0,ni [0 B |D P] _ P+0 [0 B |D P]).

Furthermore, P+ [0 B p P] _ 1 and P+ [0 B |D P] _ 1 — 2a; the scheduler
that obtains this last maximum is the one that chooses n2 in s2.

Thus, if a > 62 the scheduler that maximizes the conditional probability
from so is taking a different decision than the one that maximize the condi­
tional probability from s2. Furthermore, max(1 — , 31) _ P+, [0 B |D P] _
4P+ [0 B |D P] + 4P+ [0 B |D P] = 1 — a for all a e (0,1], showing that the
Bellman-equation from above does not generalize to cpCTL.

As consequence of this observation, it is not possible to “ locally max­
imize” cpC TL properties (i.e. to obtain the global maximum P+ [0|0] by
maximizing P t [0|0] for all states t). This has a significant impact in terms
of model-checking complexity: as we w ill show in the rest of this section,
to verify a cpC TL property it is necessary to compute and keep track of

2.6. Model Checking cpCTL 53

several conditional probabilities and the desired maximum value can only
be obtained after all these probabilities have been collected.

2.6.1 M odel C hecking P<a[0|0]

An obvious way to compute P+[0|0] is by computing the pairs (P s,n[0 A 0],
P s,n[0]) for all deterministic sHI schedulers n, and then taking the max­
imum quotient P s,n[0 A 0]/Ps,n[0]. This follows from the fact that there
exist finitely many deterministic semi history-independent schedulers and
that one of them attains the maximal conditional probability; however, the
number of such schedulers grows exponentially in the size of the M D P
so computing these pairs for all of them is computationally expensive.
Our plan is to first present the necessary techniques to naively compute
(P s,n[0 A 0], P s,n[0]) for all deterministic sHI schedulers n and then present
an algorithm that allows model checking P<a[0 |0] without collecting such
pairs for all sHI scheduler.

1) A naive approach to co m p u te P+[0|0]

The algorithm is going to keep track of a list of pairs of probabilities of the
form (P t [0 A 0], P t,n[0]) for all states t and n a deterministic sHI scheduler.
W e start by defining a data structure to keep track of the these pairs of
probabilities.

D efin itio n 2 .6 .2 . Let L be the set of expressions of the form (p1, q1) V- ■ ■ V
(pn, 9n) where p», 9» e [0, to) and qi > p^ for all n e N*. On L we consider
the smallest congruence relation = 1 satisfying idempotence, commutativity,
and associativity, i.e.:

(P1,91) V (p1, 91) =1 (P 1, 91)
(P1, 91) V (p2, 92) =1 (p2, 92) V (p1, 91)

((p 1, 91) V (P2, 92)) V (p3, 93) = 1 (p1, 91) V ((p 2, 92) V (p3, 93))

Note that (p1,91) V ••• V (pn, 9n) = 1 (p1, 91) ••• (p ^ , 9n) if and only if
{ (P l , 9 l), • • •, (p^ 9n) } _ { (p1, 9i^ • • •, (p ^ , 9n) } .

54 Chapter 2. Conditional probabilistic temporal logic

W e let L i be the set of equivalence classes and denote the projection
map L —>• L\ that maps each expression to its equivalence class by f \ . On
L we also define maximum quotient T : L —>• [0, oo) by

Pi, Qi)^ = max (/ 0 ,i = 1, • • • ,n | U {0 }^

Note that T induces a map T L \ —> [0, oo) making the diagram in
Figure 2.6.1 (a) commute, i.e., such that T i o f \ = T .

D e fin it io n 2 .6 .3 . Let II be a M D P. W e define the function 8 : S x
Stat x Path x Path —>■ L by

§ { s , <p, (f), Ip) ~ V A0]-PS,»;[0])
j;€Sch^(n)

and we define 8\: S x Stat x Path x Path —>• L \ by = /i o 8.

V'i= i

L
T —►[0, oo)

(a) Com m utative diagram

C s2“>s) v(!’ w)

(1, 1) (0, 1) (0,0) (0, 1) (0,0)

(b) ¿-values

When no confusion arises, we omit the subscripts 1 and omit the projection
map /i, writing (pi, q{) V • • • V (pn, qn) for the equivalence class it generates.

Ex am p le 2.6.4. In Figure 2.6.1 we show the value 5(s , B V -■ P ,()B ,\3 P)
associated to each state s of the M D P in Figure 2.1.

The following lemma states that it is possible to obtain maximum condi­
tional probabilities using S.

2.6. Model Checking cpCTL 55

L em m a 2 .6 .5 . Given n = (S, s0, L, t) an acyclic M D P, and 0 i, 02,0 i, 02 S
Stat. Then

P+[0lU02|0lU02] = T (¿U(01U02 | 01U02))

and
P+ [0 iU02|D 0i] = T (S?(0 iU 02 | D 0 i)) ,

where ¿U (0 iU 0 2 | 0 iU 0 2) 4 ¿(s , StopC(0iU 0 2) V StopC(0iU 0 2) ,0 iU 0 2,
0 iU 0 2) and ¿ °(0 iW 0 2 | □ 0 i) = 5(s, StopC(0iU 0 2) V StopC (D 0i), 0 iU 0 2,
□0 i).

Proof. The lemma follows straightforwardly from the definitions of 5 and
T and the fact that the maximum conditional probability is indeed reached
by a deterministic sHI scheduler. □

Remember that there are finitely many sHI schedulers. Thus, 5 (and there­
fore P+ [— | —]) can in principle be computed by explicitly listing them all.
However, this is of course an inefficient way to compute maximum condi­
tional probabilities.

W e now show how to compute P+ [—|—] in a more efficient way. W e w ill
first provide an algorithm to compute maximum conditional probabilities
for acyclic M D Ps. W e then show how to apply this algorithm to M D Ps
w ith cycles by mean of a technique, based on SCC analysis, that allows the
transformation of an M D P w ith cycles to an equivalent acyclic M D P.

2) A n a lgorith m to co m p u te P+[0|0] for A cy c lic M D P s

W e w ill now present a recursive algorithm to compute P+[0|0] for acyclic
M D Ps using a variant of 5 (changing its image). As we mentioned be­
fore, to compute maximum conditional probabilities it is not necessary to
consider all the pairs (P n [0 A 0], P n [0]) (w ith n a deterministic and semi
H I scheduler). In particular, we w ill show that it is sufficient to consider
only deterministic and semi H I schedulers (see definition of D below) that
behave as an optimizing scheduler (i.e. either maximizing or minimizing

56 Chapter 2. Conditional probabilistic temporal logic

a pC TL formula 0) after reaching the stopping condition (i.e. a state s
satisfying StopC(^)).

W e plan to compute a function 5(—) C 5(—) such that T (5) = T (5).
Intuitively, 5(—) can be thought as

¿ (s ,^ ,0 ,0)= y (P s,n[0 A # P s,n[0])
neD

where D contains all deterministic and semi H I schedulers n such that n
optimizes P s n[0] for some s |= StopC(^) and 0 S pC TL formula.

This intuition w ill become evident when we present our recursive al­
gorithm to compute conditional probabilities (see Theorem 2.6.11 below).
The states s involved in the definition of D correspond to the base case
of the algorithm and the formula 0 corresponds to the formula that the
algorithm maximizes/minimizes when such s is reached.

W e w ill present algorithms to recursively (in s) compute 5U and in
acyclic M DPs. The base cases of the recursion are the states where the
stopping condition holds. In the recursive case we can express 5^ (respec­
tively 5 i?) in terms of the ¿U (respectively 5{?) of the successors states t of
s.

W e start by formalizing the notion of acyclic M D P. W e call a M D P
acyclic if it contains no cycles other than the triv ia l ones (i.e., other than
selfloops associated to absorbing states).

D efin itio n 2 .6 .6 . A M D P n is called acyclic if for all states s S S and all
n S t (s) we have n (s) = 0 or n (s) = 1, and, furthermore, for all paths w,
if there exist i, j such that i < j and w = Wj, then we have w = for all
k > i

In addition, in order to formally define 5 we define a new congruence =2.

D efin itio n 2 .6 .7 . Consider the set of expressions L defined in Definition
2.6.2. On L we now consider the smallest congruence relation = 2 containing
= i and satisfying

(1) (p i,q i) V (p i, 92) = 2 (p i, min(qi, 92)), and

2.6. Model Checking cpCTL 57

(2) (p i, t/i) V (p2,qi) = 2 (max(p1,p2) ,qi), and

(3) (pi + a, qi + a) V (pi ,qi) = 2 (pi + a, qi + a,),

where a e [0, oo). W e write L 2 for the set of equivalence classes and denote
the projection map L —>• L 2 by f 2.

Since = iC = 2, this projection maps factors through ƒ 1, say g: L \ —> L 2 is
the unique map such that g o f i = f 2.

D e fin it io n 2 .6 .8 . We define § : S x Stat x Path x Path —> L 2 by § = f 2 oS.

Now, in order to prove that T (£) = T (£) we need to define a scalar
multiplication operator © and an addition operator 0 on L.

D e fin it io n 2 .6 .9 . W e define w : [0, 00) x L —>■ L and © : I x I

n n

C © V (Pi, qi) = \ / (c - P i , c ■ qi) and

L by

i= 1
m

i= 1
n rrt

V (pQi) 0 V (pp qJ') - V V (pi + ,p'r 9i + q'j)-
j =1 i=l j=li= 1

Note that © and 0 induce maps © 1 : [0, 00) x L\ —> L\ and 0 i : L\ x L\ —>
L\ as shown in Figure 2.6 below. As before, we omit the subscript 1 if that
w ill not cause confusion.

[0,0 0) L
© ► L L L

® ► L

idx ƒ 1
fl Xfl

[0, 00) x L \ Oi ► L\ L\ xL\ ©1 ► L\
Figure 2.6: Commutative diagrams

The following seemingly innocent lemma is readily proven, but it con­
tains the key to allow us to discard certain pairs of probabilities. The fact

58 Chapter 2. Conditional probabilistic temporal logic

that T induces operations on L 2 means that it is correct to “simplify” ex­
pressions using = 2 when we are interested in the maximum or minimum
quotient.

The intuition is as follows. Normally, which decision is best in a cer­
tain state (or rather, at a certain finite path) to optimize the conditional
probability, might depend on probabilities or choices in a totally differ­
ent part of the automaton (see Example 2.6.1) . Sometimes, however, it
is possible to decide locally what decision the scheduler should take. The
congruence = 2 encodes three such cases, each of them corresponding to
one clause in Definition 2.6.7. (1) If from a state t the scheduler n can
either take a transition after which P n [0 A 0] = p1 and P n [0] = q1 or a
transition after which P n[0 A 0] = p1 and P n[0] = q2, then in order to
maximize the conditional probability is always best to take the decision
where P n[0] = min(q1,q2). (2) Sim ilarly, if the scheduler can either take
a transition after which P n [0 A 0] = p1 and P n [0] = q1 or one after which
P n [0 A 0] = p2 and P n [0] = q1, then it is always best to take the decision
where P n[0 A 0] = max(p1,p2). (3) Finally, if n has the option to either take
a transition after which P n [0 A 0] = p1 + a and P n [0] = q1 + a or one after
which P n[0 A 0] = p1 and P n[0] = q1, for some a > 0, then a maximizing
scheduler should always take the first of these two options.

L em m a 2 .6 .10 . The operators 0 , 0 , and T on L induce operators ©2, 0 2,
and T 2 on L 2.

Proof. The idempotence, com m utativity and associativity cases are trivial;
we only treat the other three cases.

(©) For (1) we have

c © ((p ,q) V (p ,q ')) 4 (c ■ p ,c ■ q) V (c ■ p ,c ■ q')
= (c ■ p, min(c ■ q,c ■ q')
= (c ■ p, c ■ min(q, q '))
4 c © (p, min(q, q'))

Additionally, note that since q > p and q' > p we have min(q, q') > p.

2.6. Model Checking cpCTL 59

For (2) the proof goes like in (1). For (3) we have the following

c © ((p + a, q + a) V (p, q)) = (c ■ p + c ■ a, c ■ q + c ■ a) V (c ■ p, c ■ q)
= (c ■ p + c ■ a, c ■ q + c ■ a)
4 c © (p + a, q + a)

(0) For (1) we have

((p, q) V (p, q ')) 0 V n=1(p i,qi)
4 V i= 1(p + pi,q + qi) v V i= 1(p + p i,q ' + qi)
= (3=1 ((p + pi,q + qi) V (p + pi, q' + qi))
= Vn=1(p + pi, min(q + qi,q' + qi))
= V n=1(p + pi, m in(q,q ')+ qi)
4 (p, min(q, q ')) 0 \/ i=1(pi, qi)

For (2) the proof goes like in (1). For (3) we have the following

(p + a, q + a) V (p, q)) 0 V n=1(pi, qi)
4 Vn=1(p + a + pi, q + a + qi) v v iU b + pi, q + qi)
= V n=1(p + a + pi, q + a + qi) V (p + pi, q' + qi)
= V n=1(p + a + pi, q + a + qi)
4 (p + a, q + a) 0 V n=1(pi, +qi)

(T) For (1) we w ill start by assuming that q, q' = 0. Then

T ((p, q) V (p, q') V Vn=1(p i, qi))
4 max ({ p} u { %} U { P‘ |V1<i<„.9i = 0} U {0 })

= max ({ m d m } u { !ii lV1<i<».«i = 0 }u {0 })
4 T ((p, min(q, q ')) V \Jn=1(p i,q i))

Now assume that q = 0, q' = 0 and the case q = 0, q' = 0 is similar.

60 Chapter 2. Conditional probabilistic temporal logic

Note that we now have that p = 0. Then

T ((p, q) V (p, q') V V ”=1(pi, qi))
4 max ({ 0 } U { I |V1<i<„.qi = 0} U |0 }j

= m a ^ { I |V1<i<„.qi = 0} U {0 })
4 T ((p, 0) V Vn=1(p i, qi))
= T ((p, min(q, q ')) v V i= 1(p i,q i))

Finally, assume that q = q' = 0, then also p = 0, so

T ((p, q) V (p, q') V V ™=1 (p i,q i)) 4 max ({ f i |V1<i<„.qi = 0} U {0 })
4 T ((p , 0) V V ™=1(p i, qi))
= T ((p, min(q, q ')) V \f ¡=1 (p i,q i))

For (2) the proof goes like in (1). For (3) we first need the following.

Let ƒ : R ^ R be a function defined as ƒ (x) 4 a±x where a and b
are constants in the interval (0,1]. Then ƒ is increasing. Let us now
assume that q = 0 or a = 0. Then

T ((p + a, q + a) V (p, q)) V V ™=1(pi, qi))
4 max ({ f g } U {% } U { | | V 1<i<„.qi = 0} U {0 })

= max ({ f+S } U { pi |V1<i<n-qi = 0 }U {0 })
{B y obervation above about ƒ }

4 T ((p + a, q + a) V n=1(p i,q i))

Now assume that q = a = 0. Then

T ((p + a, q + a) V (p, q)) V V ”) 1(pi, qi))
4 max ({ fi|V 1<i<„.qi = 0} U {0 })
= T ((p + a, 0) V V ”=1(p i,q i))
4 T ((p + a, q + a) v V n=1(p i,q i)) n

2.6. Model Checking cpCTL 61

The fact that T(<) = T (5) follows from previous lemma.
Finally, the following theorem provides recursive equations for the val­

ues of and <5°. If the M D Ps is acyclic, it can be used to compute these
values.

T h eorem 2 .6 .11 . Let n be a M D P, s G S , and 01U 0 2,0 1U 0 2, □ 0 1 G Path.
Then (01U 02 | 0 1U 0 2) =

(P+ 101U 0 2], P+[01U 0 2]) if s |= 0 2 ,
(P+ [01U 02], 1) if s |= - 0 2 A0 2 ,
(0, P - [0 1U 0 2]) if s |= - 0 1 A —02 A —0 2 ,
(0, 0) if s |= 01 A —02 A —01 A —0 2 ,

V (E n (t) © (01U 02 | 01U 0 2) I if s |= 01 A —02 A01 A —0 2 ,
nGr(s) \ tGsucc(s) /

and <5i?(01U 0 2 | □ 0 1) =

f (P+[^01], P+ [^01]) if s|= 02,
(0 , 0) if s = — 02 A — 01 ,
(0, P — [□ 01]) if s |= —01 A —02 A 0 1,

V (E© n (t) © 5^ (01U 02 | ^ 0 1) j if s |= 01 A —02 A 0 1 .
nGr(s) \ tGsucc(s) /

Proof. W e w ill consider the case . We w ill use p to denote 0 1 A —02 A 0 1A
— A 0 2, i.e., the stopping condition of cpC TL formula under consideration.

(a) Note that if s |= 02, then semi H I schedulers are exactly the H I
schedulers, i.e., Sch)f(n) = S c h ^ n).

62 Chapter 2. Conditional probabilistic temporal logic

(01U 02 | 01U 0 2)

= V (P*,n[01U02 A 0 1U 0 2], Ps,n[0 1U 0 2])
neSch^n)

{s 1= 0 2}

= V (Ps,n [0 1U 0 2], Ps,n [0 1U 0 2])
neSch^n)

=(P+ [0 1U 0 2] ,P+[0 1U 0 2]) {Case (3)}

(b) 5 (01U 02 | 0 1U 0 2)

= V (Ps,n[01U 02 A 0 1U 0 2],Ps,^[0 1U 0 2])
neSch^n)

{s 1= 0 2}

= V (P s,n [0 1U 0 2], P s,n[true])
neSch^n)
{Case (2) and definition of P [tru e]}

= (P+[01U 02], 1)

(c) ¿Sf (01U 02 | 0 1U 0 2)

= V (Ps,n[01U02 A 0 1U 0 2], Ps,n[0 1U 0 2])
neSch^n)
{s |= —01 A —02 A —0 2 }

= V (P s,n[false], P s,n [0 1U 0 2])
neSch^n)
{Case (1) and definition of P [fa lse]}

= (0 , P+ [0 1U 0 2])

2.6. Model Checking cpCTL 63

(d) ¿U (0 iU 02 | 0 iU 0 2)

= V (P*,n[0 iU 02 A 0 iU 0 2] ,P s,n[0 iU 0 2])
neSch^n)
{Since s | = —I 01 A — 02 A 01 A — 02 }

= V (P s,n[false]>P s,n[falsei) = (0, 0)
neSch^n)

(e) $ƒ (0 iU 02 | 0 lU 0 2)

= V (Ps,n [0 iU 02 A 0 iU 0 2], P s,n [0 iU 0 2])
neSch^n)

= V I E n(s)(t) © (P t,n[0 iU 0 2 A 0 iU 0 2] ,P t,n[0 iU 0 2])
neSch^n) \tesucc(s)

= Since n is acyclic}

V (E n (t) © V (P t,nt [0 iU 0 2 A 0 iU 0 2] > P t,nt [0 iU 0 2])
n£r(s) \ tesucc(s) nteSchf(n)

= V (E n (t) © ¿U) □
ner(s) \ tesucc(s) I

From M D P s to A cy c lic M D P s

Now, we show how to reduce a M D P w ith cycles to an acyclic one, thus
generalizing our results to M D Ps w ith cycles. For that purpose we first
reduce all cycles in n and create a new acyclic M D P [n] such that the
probabilities involved in the computation of P + [- |-] are preserved. We
do so by removing every strongly connected component (SCC) k of (the

64 Chapter 2. Conditional probabilistic temporal logic

graph of) n , keeping only input states and transitions to output states
(in the spirit of [ADvR08]). W e show that P+ [—|—] on [n] is equal to
the corresponding value on n . For this, we have to make sure that states
satisfying the stopping condition are ignored when removing SCCs.

(1) Id e n tify in g SCCs. Our first step is to make states satisfying the
stopping condition absorbing.

D e fin itio n 2.6.12. Let n = (S, so, t, L) be a M D P and ^ E Stat a state
formula. W e define a new M D P (n)^ = (S, so, (t)^ , L) where (t)^ (s) is
equal to t (s) if s = ^ and to 1s otherwise.

To recognize cycles in the M D P we define a graph associated to it.

D e fin itio n 2.6.13. Let n = (S, so, t , L) be M D P and ^ E Stat. W e define
the digraph G = G n ̂ = (S, ^) associated to (n)^ = (S, so, (t)^ , L) where
^ satisfies u ^ v ^ 3n E (t)^ (u).n (v) > 0.

Now we let SCC = SCCn^ Q p (S) be the set of SCC
of G. For each SCC k we define the sets In p k of
all states in k that have an incoming transition of
n from a state outside of k; we also define the set
Outk of all states outside of k that have an incoming
transition from a state of k. Formally, for each k E
SCC we define

Inpk — {u E k | 3 s E S \ {k } such that (s, u) E g},
Outk — {s E S \ {k } | 3 u E k such that (u, s) E g}.

where g is the successor relation defined in Section 2.2.
We then associate a M D P n to each SCC k of G. The space of states of n
is k U Outk and the transition relation is induced by the transition relation
of n .

D e fin itio n 2.6.14. Let n be a M D P and k E SCC be a SCC in n . We pick
an arbitrary element s& of Inpk and define the M D P n = (Sk , s&, Tk, L)
where Sk = {k } U Outk and Tk (s) is equal to {1 s} if s E Outk and to t (s)
otherwise.

2.6. Model Checking cpCTL 65

(2) C o n stru ctin g an acyc lic M D P . To obtain a reduced acyclic M D P
from the original one we first define the probability of reaching one state
from another according to a given HI scheduler in the following way.

D efin itio n 2 .6 .15 . Let n = (S, so, t, L) be a M D P, and n be a HI scheduler
on n . Then for each s ,t E S we define the function R such that R n (s
t) — P s,n(|w E Paths(s) | 3 i.Wj = t }).

W e note that such reachability values can be efficiently computed using
steady-state analysis techniques [Cas93].
Now we are able to define an acyclic M D P [n] related to n such that
P fm H —] = P n H - l-

D efin itio n 2 .6 .16 . Let n = (S, so,T, L) be a M D P. Then we define [n]
as ([S], so, [t], L) where

[S] = S \ | J k U J
kGSCC kGSCC

and for all s E [S] the set [t] (s) of probabilistic distributions on [S] is given
by

[T] (s) f T (s) if s E Scom’
U l j 1 (A E [S].R n fcs(s ^ t)) | n E SchH1 (n fcs) } if s E S mp.

Here ks is the SCC associated to s.

T h eorem 2 .6 .17 . Let n = (S, so, t, L) be a M D P, and P<a[0|0] E cpCTL.
Then [n] is an acyclic M D P and P+ n [0|0] = P ^ [nj [0|0], where P+̂ n,[—|—]
represents P+ [—|—] on the M D P n '.

Proof. The proof follows straightforwardly by the construction of [n] and
Theorem 2.5.11. □

Fina lly we can use the technique for acyclic M D Ps on the reduced M D P in
order to obtain P+ [—|—].

S in pS

66 Chapter 2. Conditional probabilistic temporal logic

2.6.2 C om p lex ity

As mentioned before, when computing maximum or minimum conditional
probabilities it is not possible to locally optimize. Therefore, it is necessary
to carry on, for each deterministic and H I scheduler n, the pair of probabil­
ities (P n [0 A 0], P n [0]) from the leafs (states satisfying the stopping condi­
tion) to the in itial state. As the number of H I schedulers in a M D P grows
exponentially on the state space, our algorithm to verify cpC TL formulas
has exponential time complexity.

W e believe that the complexity of computing optimal conditional prob­
abilities is intrinsically exponential, i.e. computing such probabilities is an
N P problem. However, a deeper study on this direction is still missing,

C on d ition a l p rob ab ility b ou n d s Even if computing exact conditional
probabilities is computationally expensive (exponential tim e), it is still pos­
sible to efficiently compute upper and lower bounds for such probabilities
(polynomial time).

O b servation 2 .6 .1 . Let n be a M D P and 0 ,0 two path pC TL formulas.
Then we have

P - [0 A 0] < P+[0|0] < P + [0 A 0] .
1 — P - [0] - - 1 — P+[0]

2.7 Counterexamples for cpCTL

Counterexamples in model checking provide important diagnostic informa­
tion used, among others, for debugging, abstraction-refinement [CGJ+00],
and scheduler synthesis [LBB+ 01]. For systems without probability, a coun­
terexample typ ically consists of a path violating the property under consid­
eration. Counterexamples in MCs are sets of paths. E.g, a counterexample
for the formula P< J0] is a set A of paths, none satisfying 0 , and such that
the probability mass of A is greater than a [HK07a, AD vR08, AL06].

In M DPs, we first have to find the scheduler achieving the optimal
probability. Both for pC TL and cpCTL, this scheduler can be derived from
the algorithms computing the optimal probabilities [ADvR08]. Once the

2.7. Counterexamples for cpCTL 67

optimal scheduler is fixed, the M D P can be turned into a Markov Chain and
the approaches mentioned before can be used to construct counterexamples
for pC TL. For cpC TL however, the situation is slightly more complex. It
follows directly from the semantics that:

s = P <a iff 3n e Schs(n).
P s,n({w E Paths(s)|w = 0 A 0 })

P s,n({w E Paths(s)|w = 0 })
> a.

<aL em m a 2 .7 .1 . Let a E [0, 1] and consider the formula P
A^ — {w E Paths | w = 0 }, A i C A^a^ , and A 2 C A ^ .
Pn (A i)/ (1 — P n (A 2)) implies a < P^[0|0].

Proof. W e first note that

P n (A i) < Pn(A^a^) and P^ (A 2) < P^ (A -^).

Let
Then a <

Then, it is easy to see that

a < Pn (A i) < Pn (A^a^)
1 — P n (A 2) 1 — P n(A -^)

P n (a ^a^) = p
Pn (A ^) P

This leads to the following notion of counterexample.

□

D efin itio n 2 .7 .2 . A counterexample for P<a[0|0] is a pair (A 1, A 2) of
measurable sets of paths satisfying A 1 C A^a^ , A 2 C A ^ , and a <
P n(A 1) / (1 — P n(A 2)), for some scheduler n.

Note that such sets A i and A 2 can be computed using the techniques on
Markov Chains mentioned above.

E xam p le 2 .7 .3 . Consider the evaluation of so = P<o75[O £ p P] on the
M D P obtained by taking a = 1, in the M D P depictured in Figure 2.1. The
corresponding M D P is shown in Figure 2.7(a). In this case the maximizing
scheduler, say n, chooses n2 in s2. In Figure 2.7(b) we show the Markov
Chain derived from M D P using n. In this setting we have P s0,n[O B p P] =
7o and consequently so does not satisfy this formula.

W e show this fact w ith the notion of counterexample of Definition 2.7.2.
Note that AqBaoP = (sos1)U (s os2s3) and A -op = (sos2s5). Using Lemma

68 Chapter 2. Conditional probabilistic temporal logic

{B,P}

>{P}

!,P} {P}

{B,P} {P} {} {P} {}

2.7(a) MDP

B,P} {P} {}

2.7(b) Markov Chain

I 44

2.7.1 w ith A 1 = (sos1) and A 2 = (sos2s5) we have 4 < 1-p(t̂)2) = I-^Ts =
. Consequently 4 < P s0,n[O B |O P], which proves that so = P<3y4 [O B |D P].

Chapter 3

Com puting the Leakage of
Information Hiding System s

In this chapter we address the problem of computing the infor­
mation leakage of a system in an efficient way. We propose two
methods: one based on reducing the problem to reachability, and
the other based on techniques from quantitative counterexample
generation. The second approach can be used either for exact or
approximate computation, and provides feedback for debugging.
These methods can be applied also in the case in which the in­
put distribution is unknown. We then consider the interactive
case and we point out that the definition of associated channel
proposed in literature is not sound. We show however that the
leakage can still be defined consistently, and that our methods
extend smoothly.

3.1 Introduction

By information hiding, we refer generally to the problem of constructing
protocols or programs that protect sensitive information from being de­
duced by some adversary. In anonymity protocols [CPP08a], for example,

69

70 Chapter 3. Computing the Leakage of Information Hiding Systems

the concern is to design mechanisms to prevent an observer of network
traffic from deducing who is communicating. In secure information flow
[SM03], the concern is to prevent programs from leaking their secret input
to an observer of their public output. Such leakage could be accidental or
malicious.

Recently, there has been particular interest in approaching these is­
sues quantitatively, using concepts of information theory. See for example
[MNCM03, CHM05b, DPW06, CMS09, CPP08a]. The secret input S and
the observable output O of an information-hiding system are modeled as
random variables related by a channel matrix, whose (s,o) entry specifies
P(o|s), the conditional probability of observing output o given input s.
If we define the vulnerability of S as the probability that the adversary
could correctly guess the value of S in one try, then it is natural to mea­
sure the information leakage by comparing the a priori vulnerability of S
with the a posteriori vulnerability of S after observing O. We consider two
measures of leakage: additive, which is the difference between the a posteri­
ori and a priori vulnerabilities; and multiplicative, which is their quotient
[Smi09, BCP09].

We thus view a protocol or program as a noisy channel, and we calculate
the leakage from the channel matrix and the a priori distribution on S.
But, given an operational specification of a protocol or program, how do
we calculate the parameters of the noisy channel: the sets of inputs and
outputs, the a priori distribution, the channel matrix, and the associated
leakage? These are the main questions we address in this chapter. We focus
on probabilistic automata, whose transitions are labeled with probabilities
and actions, each of which is classified as secret, observable, or internal.

We first consider the simple case in which the secret inputs take place
at the beginning of runs, and their probability is fixed. The interpretation
in terms of noisy channel of this kind of systems is well understood in
literature. The framework of probabilistic automata, however, allows to
represent more general situations. Thanks to the nondeterministic choice,
indeed, we can model the case in which the input distribution is unknown,
or variable. We show that the definition of channel matrix extends smoothly
also to this case. Finally, we turn our attention to the interactive scenario

3.1. Introduction 71

in which inputs can occur again after outputs. This case has also been
considered in literature, and there has been an attempt to define the channel
matrix in terms of the probabilities of traces [DJGP02]. However it turns
out that the notion of channel is unsound. Fortunately the leakage is still
well defined, and it can be obtained in the same way as the simple case.

We consider two different approaches to computing the channel matrix.
One uses a system of linear equations as in reachability computations. With
this system of equations one can compute the joint matrix, the matrix of
probabilities of observing both s and o; the channel matrix is trivially de­
rived from this joint matrix. The other approach starts with a 0 channel
matrix, which we call a partial matrix at this point. We iteratively add the
contributions in conditional probabilities of complete paths to this partial
matrix, obtaining, in the limit, the channel matrix itself. We then group
paths with the same secret and the same observable together using ideas
from quantitative counterexample generation, namely by using regular ex­
pressions and strongly connected component analysis. In this way, we can
add the contribution of (infinitely) many paths at the same time to the
partial matrices. This second approach also makes it possible to identify
which parts of a protocol contribute most to the leakage, which is useful
for debugging.

Looking ahead, after reviewing some preliminaries (Section 3.2) we
present restrictions on probabilistic automata to ensure that they have
well-defined and finite channel matrices (Section 3.3). This is followed by
the techniques to calculate the channel matrix efficiently (Section 3.4 and
Section 3.5). We then turn our attention to extensions of our information-
hiding system model. We use nondeterministic choice to model the situa­
tion where the a priori distribution on the secret is unknown (Section 3.6).
Finally, we consider interactive systems, in which secret actions and ob­
servable actions can be interleaved arbitrarily (Section 3.7).

72 Chapter 3. Computing the Leakage of Information Hiding Systems

3.2 Prelim inaries

3.2.1 P rob ab ilistic au tom ata

This section recalls some basic notions on probabilistic automata. More
details can be found in [Seg95]. A function ^ : Q ■ [0,1] is a discrete
probability distribution on a set Q if the support of ^ is countable and

^(q) = 1. The set of all discrete probability distributions on Q is
denoted by D(Q).

A probabilistic automaton is a quadruple M = (Q, £ ,q ,a) where Q is
a countable set of states, £ a finite set of actions, q the initial state, and
a a transition function a : Q ■ p /(D (£ x Q)). Here p /(X) is the set of
all finite subsets of X . If a(q) = 0 then q is a terminal state. We write
q ^ ^ for ^ e a(q), q e Q. Moreover, we write qA r for q, r e Q whenever
q ^ ^ and ^(a, r) > 0. A fully probabilistic automaton is a probabilistic
automaton satisfying |a(q)| < 1 for all states. In case a(q) = 0 we will
overload notation and use a(q) to denote the distribution outgoing from q.

A path in a probabilistic automaton is a sequence a = qo A q1 A ■ ■ ■
where q̂ e Q, a» e £ and q̂ ■i+1qi+1. A path can be finite in which case it
ends with a state. A path is complete if it is either infinite or finite ending
in a terminal state. Given a path a, first(a) denotes its first state, and
if a is finite then last(a) denotes its last state. A cycle is a path a such
that last(a) = first(a). We denote the set of actions occurring in a cycle
as CyclesA(M). Let Pathsq(M) denote the set of all paths, Paths*q(M) the
set of all finite paths, and CPathsq(M) the set of all complete paths of an
automaton M , starting from the state q. We will omit q if q = q. Paths are
ordered by the prefix relation, which we denote by <. The trace of a path is
the sequence of actions in £* U £ ^ obtained by removing the states, hence
for the above a we have trace (a) = a 1a2 If £ C £, then trace £/ (a) is
the projection of trace (a) on the elements of £ '. The length of a finite path
a, denoted by |a|, is the number of actions in its trace.

Let M(Q, £,q, a) be a (fully) probabilistic automaton, q e Q a state,
and let a e Paths^(M) be a finite path starting in q. The cone generated by
a is the set of complete paths (a) = (a ' e CPathsq(M) | a < a'}. Given a

3.2. Preliminaries 73

fully probabilistic automaton M = (Q, £, q, a) and a state q, we can calcu­
late the probability value, denoted by Pq(ct), of any finite path ct starting in q
as follows: Pq(q) = 1 and Pq(ct A q') = Pq(ct) ^(a, q'), where last(a) — ^.

Let = CPathsq(M) be the sample space, and let F q be the smallest
CT-algebra generated by the cones. Then P induces a unique probability
measure on F q (which we will also denote by Pq) such that Pq((c)) = Pq(ct)
for every finite path ct starting in q. For q = q we write P instead of P^.

Given a probability space (Q, F , P) and two events A, B e F with
P(B) > 0, the conditional probability of A given B, P(A | B), is defined as
P (a n B)/P (B).

3.2.2 N o isy C hannels

This section briefly recalls the notion of noisy channels from Information
Theory [CT06].

A noisy channel is a tuple C = (X , Y, P (-|-)) where X = (x i , . . . , xn}
is a finite set of input values, modeling the secrets of the channel, and
Y = (y1,y2, . . . } is a finite set of output values, the observables of the
channel. For e X and yj e Y, P(yj | x¿) is the conditional probability
of obtaining the output yj given that the input is x¿. These conditional
probabilities constitute the so called channel m atrix , where P (y j|x¿) is the
element at the intersection of the i-th row and the j -th column. For any
input distribution Px on X , Px and the channel matrix determine a joint
probability PA on X x Y, and the corresponding marginal probability Py on
Y (and hence a random variable Y). PX is also called a priori distribution
and it is often denoted by n. The probability of the input given the output
is called a posteriori distribution.

3.2 .3 Inform ation leakage

We recall now some notions of information leakage which allow us to quan­
tify the probability of success of a one-try attacker, i.e. an attacker that
tries to obtain the value of the secret in just one guess. In particular, we

74 Chapter 3. Computing the Leakage of Information Hiding Systems

consider Smith’s definition of multiplicative leakage [Smi09]1, and the addi­
tive leakage definition from Braun et al. [BCP09]. We assume given a noisy
channel C = (X , Y, P ('|')) and a random variable X on X . The a priori
vulnerability of the secrets in X is the probability of guessing the right se­
cret, defined as V(X) = maxxeX PX (x). The rationale behind this definition
is that the adversary’s best bet is on the secret with highest probability.

The a posteriori vulnerability of the secrets in X is the probability
of guessing the right secret, after the output has been observed, aver­
aged over the probabilities of the observables. The formal definition is
V(X 1 Y) = Eyey PY (y) max xeX P(x | y). Again, this definition is based on
the principle that the adversary will choose the secret with the highest a
posteriori probability.

Note that, using Bayes theorem, we can write the a posteriori vulner­
ability in terms of the channel matrix and the a priori distribution, or in
terms of the joint probability:

V(X 1 Y) = E mcai (P (y 1 x)Px (x)) = E mcai PA(x ,y) . (3.1)i ' x£X i ' xGX

The multiplicative leakage is then defined as the quotient between the a
posteriori and a priori vulnerabilities, L x (C,PX) = V(X| Y) / V(X). Simi­
larly, the additive leakage is defined as the difference between both vulner­
abilities, L+(C,Px) = V(X| Y) - V(X).

3.3 Inform ation H iding System s

To formally analyze the information-hiding properties of protocols and pro­
grams, we propose to model them as a particular kind of probabilistic au­
tomata, which we call Information-Hiding Systems (IHS). Intuitively, an
IHS is a probabilistic automaton in which the actions are divided in three

1The notion proposed by Sm ith in [Smi09] was given in a (equivalent) logarithmic
form, and called simply leakage. For uniform ity’s sake we use here the terminology and
formulation of [BCP09].

3.3. Information Hiding Systems 75

(disjoint) categories: those which are supposed to remain secret (to an ex­
ternal observer), those which are visible, and those which are internal to
the protocol.

First we consider only the case in which the choice of the secret takes
place entirely at the beginning, and is based on a known distribution. Fur­
thermore we focus on fully probabilistic automata. Later in the chapter we
will relax these constraints.

D efinition 3.3.1 (Information-Hiding System). An information-hiding sys­
tem (IHS) is a quadruple I = (M, £ S, £ O, £ T) where M = (Q, £, q, a) is a
fully probabilistic automaton, £ = £ S U £ O U £ T where £ S, £ O, and £ T
are pairwise disjoint sets of secret, observable, and internal actions, and a
satisfies the following restrictions:

1. a(q) e D (£s x Q),

2 . Vs e £ S 3!q . a(q)(s,q) = 0,

3. a(q) e D (£O U £ T x Q) for q = q,

4. CyclesA(M) C £ T,

5. P(CPaths(M) n Paths*(M)) = 1.

The first two restrictions are on the initial state and mean that only
secret actions can happen there (1) and each of those actions must have non
null probability and occur only once (2), Restriction 3 forbids secret actions
to happen in the rest of the automaton, and Restriction 4 specifies that only
internal actions can occur inside cycles, this restriction is necessary in order
to make sure that the channel associated to the IHS has finitely many inputs
and outputs. Finally, Restriction 5 means that infinite computations have
probability 0 and therefore we can ignore them.

We now show how to interpret an IHS as a noisy channel. We call
traces S (a) and t r a c e (a) the secret and observable traces of a, respec­
tively. For s e £S , we define [s] = (a e CPaths(M) | traces S(a) = s};
similarly for o e £ ^ , we define [o] = (a e CPaths(M) | t r a c e (a) = o}.

76 Chapter 3. Computing the Leakage of Information Hiding Systems

D efin itio n 3 .3 .2 . Given an IHS I = (M, X s, Xo, Xt), its noisy channel is
(S , O, P), where S = , O = t r a c e (CPaths(M)), and P (o | s) = P([o] |
[s]). The a priori distribution n G D(S) of I is defined by n(s) = a(q)(s, ■).
If C is the noisy channel of I , the multiplicative and additive leakage of I
are naturally defined as

L x (I) = L x (C, n) and L+(I) = L+ (C, n).

E xam p le 3 .3 .3 . Crowds [RR98] is a well-known anonymity protocol, in
which a user (called the initiator) wants to send a message to a
web server without revealing his identity. To
achieve this, he routes the message through a
crowd of users participating in the protocol.
Routing is as follows. In the beginning, the
initiator randomly selects a user (called a for­
warder), possibly himself, and forwards the re­
quest to him. A forwarder performs a probabilis­
tic choice. With probability p (a parameter of
the protocol) he selects a new user and again for­
wards the message. With probability 1 — p he
sends the message directly to the server. One
or more users can be corrupted and collaborate Figure3.1: Cr°wdsP r°-
with each other to try to find the identity of the tocol
initiator.

We now show how to model Crowds as an IHS for 2 honest and 1
corrupted user. We assume that the corrupted user immediately forwards
messages to the server, as there is no further information to be gained for
him by bouncing the message back.

Figure 3.1 shows the automaton2. Actions a and b are secret and repre­
sent who initiates the protocol; actions A, B , and U are observable; A and
B represent who forwards the message to the corrupted user; U represents
the fact that the message arrives at the server undetected by the corrupted

2For the sake of simplicity, we allow the in itiator of the protocol to send the message
to the server also in the first step of the protocol.

3.4. Reachability analysis approach 77

user. We assume U to be observable to represent the possibility that the
message is made publically available at the server’s site.

The channel associated to this IHS has S = (a, b}, O = (A, B, U}, and
a priori distribution n(a) = 3 , n(b) = 3 . Its channel matrix is computed in
the next section.

3.4 R eachability analysis approach

This section presents a method to compute the matrix of joint probabilities
Pa associated to an IHS, defined as

Pa(s, o) = P([s] PI [o]) for all s G S and o G O.

We omit the subscript A when no confusion arises. From Pa we can de­
rive the channel matrix by dividing Pa(s,o) by n(s). The leakage can be
computed directly from Pa , using the second form of the a posteriori vul­
nerability in (4.1) .

We write x j for the probability of the set of paths with trace A G
(£S U £ O)* starting from the state q of M :

X,A = Pq ([A] q),

where [A]q = (ct g CPathsq(M) | traces SusO(ct) = A}. The following key
lemma shows the linear relation between the x j ’s. We assume, w.l.o.g.,
that the IHS has a unique final state q /.

Lem m a 3.4.1. Let I = (M, £ 5 , Xo, Xt) be an IHS. For all A G (£ 5 UXo)*
and q G Q we have

x f = 1

x f = 0 for A = e,qf
xq EhGE-r E q /esucc(q) a(q)(h,q') ■ x^ for q = q /,

x j = Eq/ esucc(q) a (q)(first(A) , qO ' xJ
+ E h e sT a(q)(h, q') ■ xj/ for A = e and q = q /.

Furthermore, for s G S and o G O we have P([s] n [o]) = xqo.

78 Chapter 3. Computing the Leakage of Information Hiding Systems

Using this lemma, one can compute joint probabilities by solving the
system of linear equations in the variables x^’s. It is possible that the
system has multiple solutions; in that case the required solution is the
minimal one.

E xam p le 3 .4 .2 . Continuing with the Crowds example, we show how to
compute joint probabilities. Note that q/ = S. The linear equations from
Lemma 3.4.1 are

x
x

,aA _ in i t= 1
3 x a

^ x a

_ p 3 x a + p
3 x b + p

3 ' x CQrr ’ xA _corr — xA- xs

in i t= 2
“ 3 . xA x qb’ x _ p“ 3 . xA x qa + p3 . xAx qb + p3 . xA^ com xA _xS = 0 ,

,aB _
in i t=

1
3 . xB

x qa’
xB _
x qa

_ p 3 . xB
x qa + p3 x b + p3 . xBcorr xBcorr - xB- xs

,bB _
in i t=

2
3 . xB

x qb’ x b

_ p 3 . xB
x qa + p3 . xB

x qb + p3 x corr ’ xBxS 0
,aU _ in i t= 1

3 . xu
x qa’

xU _
x qa

_ p 3 . xU
x qa + p

3 . xu
x qb + (1 i) x x corr _= ’

,bU _
in i t= 2

“ 3 x b x b

_ p“ 3 . xU
x qa + p3 x b + (1 1) x = 1 .

x • • —
x —

Let us fix p = 0.9. By solving the system of linear equations we obtain

x«A _ 7
x init 40 ’

xbA _ 3
x init 2 0’

x«B _ _3_
x init 40 ’

xbB _ 7 x init 20 ’

„aU _
init

x init

1 A B U
12’ a 21 9 1

1
6 .

40 40 4
b 9

40
21
40

1
4

We can now compute the channel matrix by dividing each x
The result is shown in the figure above.

so
init by n(s)

3.4.1 C om p lex ity A nalysis

We now analyze the computational complexity for the computation of the
channel matrix of a simple IHS. Note that the only variables (from the
system of equations in Lemma 3.4.1) that are relevant for the computation
of the channel matrix are those x^ for which it is possible to get the trace
A starting from state q. As a rough overestimate, for each state q, there
are at most |S| ■ |O| A’s possible: in the initial state one can have every

3.5. The Iterative Approach 79

secret and every observable, in the other states no secret is possible and
only a suffix of an observable can occur. This gives at most |Q| ■ |S| ■ |O|
variables. Therefore, we can straightforwardly obtain the desired set of
values in O((|Q| ■ |S| ■ |O |)3) time (using Gaussian Elimination). Note that
using Strassen’s methods the exponent reduces to 2.807, this consideration
applies to similar results in the rest of the chapter as well.

Because secret actions can happen only at the beginning, the system of
equations has a special form. The variables of the form x |o only depend
on variables of the form x° (with varying o and q = q) and not on each
other. Hence, we can first solve for all variables of the form x° and then
compute the remaining few of the form x |o. Required time for the first step
is O((|O| ■ |Q|)3) and the time for the second step can be ignored.

Finally, in some cases not only do the secret actions happen only at
the beginning of the protocol, but the observable actions happen only at
the end of the protocol, i.e., after taking a transition with an observable
action, the protocol only performs internal actions (this is, for instance,
the case for our model of Crowds). In this case, one might as well enter a
unique terminal state q/ after an observable action happens. Then the only
relevant variables are of the form x |o, x°, and x f ; the x |o only depends on
the x£, the x^ only depend on x°, (with the same o, but varying q’s) and on
x f and x f = 1. Again ignoring the variables x |o for complexity purposes,
the system of equations has a block form with |O| blocks of (at most) |Q|
variables each. Hence the complexity in this case decreases to O(|O| ■ |Q |3).

3.5 The Iterative Approach

We now propose a different approach to compute channel matrices and
leakage. The idea is to iteratively construct the channel matrix of a system
by adding probabilities of sets of paths containing paths with the same
observable trace o and secret trace s to the (o|s) entry of the matrix.

One reason for this approach is that it allows us to borrow techniques
from quantitative counterexample generation. This includes the possibility
of using or extending counterexample generation tools to compute channel

80 Chapter 3. Computing the Leakage of Information Hiding Systems

matrices or leakage. Another reason for this approach is the relationship
with debugging. If a (specification of a) system has a high leakage, the iter­
ative approach allows us to determine which parts of the system contribute
most to the high leakage, possibly pointing out flaws of the protocol. Fi­
nally, if the system under consideration is very large, the iterative approach
allows us to only approximate the leakage (by not considering all paths, but
only the most relevant ones) under strict guarantees about the accuracy of
the approximation. We will focus on the multiplicative leakage; similar
results can be obtained for the additive case.

3.5.1 P artia l m atrices

We start by defining a sequence of matrices converging to the channel ma­
trix by adding the probability of complete paths one by one. We also define
partial version of the a posteriori vulnerability and the leakage. Later, we
show how to use techniques from quantitative counterexample generation
to add probabilities of many (maybe infinitely many) complete paths all at
once.

D efin itio n 3 .5 .1 . Let I = (M , Xs , Xo , Xr) be an IHS, n its a priori dis­
tribution, and <ji , <j2, . . . an enumeration of the set of complete paths of M .
We define the partial matrices P k : S x O ^ [0 , 1] as follows

(P k(o|s) + if trace^o(^fc+i) = o
P °(o|s) 4 0 ; P k+1(o|s) = < and traceSs(ak+i)= s ,

[P k (o|s) otherwise.

We define the partial vulnerability Vs o as E o maxs P k(o|s) ■ n(s), and the
partial multiplicative leakage Lk (I) as V |O/maxs n(s).

The following lemma states that partial matrices, a posteriori vulnera­
bility, and leakage converge to the correct values.

L em m a 3 .5 .2 . Let I = (M , Xs , Xo , XT) be an IHS. Then

3.5. The Iterative Approach 81

1 . P k(o|s) < P k+1(o|s), and iimk^ ^ P k(o|s) = P (o|s),

2. V| 0 < V jo1, and i i m ^ V| 0 = V(S |O),

3. LX(I) < LX+1(I), and i i m ^ LX(I) = L X(I).

Since rows must sum up to 1, this technique allow us to compute ma­
trices up to given error e. We now show how to estimate the error in the
approximation of the multiplicative leakage.

P ro p o s itio n 3 .5 .1 . Let (M, , Xr) be an IHS. Then we have

|S|
LX(I) < L x(I) < LX(I) + £ (1 - pk),

i=1

where pk denotes the mass probability of the i-th row of P k, i.e. pk =
E „ Pk (o|Si) .

3.5.2 On th e com p u tation o f partial m atrices.

After showing how partial matrices can be used to approximate channel
matrices and leakage we now turn our attention to accelerating the con­
vergence. Adding most likely paths first is an obvious way to increase the
convergence rate. However, since automata with cycles have infinitely many
paths, this (still) gives an infinite amount of path to process. Processing
many paths at once (all having the same observable and secret trace) tack­
les both issues at the same time: it increases the rate of convergence and
can deal with infinitely many paths at the same time,

Interestingly enough, these issues also appear in quantitative counterex­
ample generation. In that area, several techniques have already been pro­
vided to meet the challenges; we show how to apply those techniques in
the current context. We consider two techniques: one is to group paths to­
gether using regular expressions, the other is to group paths together using
strongly connected component analysis.

82 Chapter 3. Computing the Leakage of Information Hiding Systems

R egu lar exp ression s. In [Daw05], regular expressions containing prob­
ability values are used to reason about traces in Markov Chains. This idea
is used in [DHK08] in the context of counterexample generation to group
together paths with the same observable behaviour. The regular expression
there are over pairs (p, q) with p a probability value and q a state, to be able
to track both probabilities and observables. We now use the same idea to
group together paths with the same secret action and the same observable
actions.

We consider regular expressions over triples of the form (a, p, q) with
p e [0,1] a probability value, a e S an action label and q e Q a state.
Regular expressions represent sets of paths as in [DHK08]. We also take
the probability value of such a regular expression from that article.

D efin itio n 3 .5 .3 . The function val : R (S) ^ R evaluates regular expres­
sions:

val(e) = 1 , val(r ■ r') = val(r) x val(r'),
val((a,p,q)) = p, val(r*) = 1 if val(r) = 1 ,
val(r + r') = val(r) + val(r'), val(r*) = 1_v1a l if val(r) = 1 .

The idea is to obtain regular expressions representing sets of paths of
M, each regular expression will contribute in the approximation of the
channel matrix and leakage. Several algorithms to translate automata into
regular expressions have been proposed (see [Neu05]). Finally, each term
of the regular expression obtained can be processed separately by adding
the corresponding probabilities [Daw05] to the partial matrix.

As mentioned before, all paths represented by the regular expression
should have the same observable and secret trace in order to be able to add
its probability to a single element of the matrix. To ensure that condition
we request the regular expression to be normal, i.e., of the form r 1 +------+ rn
with the r¿ containing no + ’s.

We will now describe this approach by an example.

E xam p le 3 .5 .4 . We used JFLAP 7.0 [JFL] to obtain the regular expression

3.5. The Iterative Approach 83

r 4 r 1 + r 2 + ■ ■ ■ + r 10 equivalent to the automaton in Figure 3.1.

r 1 4 (b, 2, qb) ■ f* ■ (B, 0.3, corr) ■ (r, 1, S),
r2 4 (b, 3, qb) ■ f* ■ (t, 0.3, qa) ■ (t, 0.3, qa)* ■ (A, 0.3, corr) ■ (t, 1, S),
rs 4 (a ,1, qa) ■ (t , 0.3, qa)* ■ (A, 0.3, corr) ■ (t, 1, S),
r4 4 (b, 2 , qb) -f* . (U, 0.1, S),
r5 4 (a , 1, qa) ■ (t, 0.3, qa)* ■ (t, 0.3, qb) ■ f* ■ (B, 0.3, corr) ■ (t, 1 , S),
r 6 4 (b, | , qb) ■f* ■(T, 0.3, qa) ■(T, °.3, qa)* ■(U 0.1, S),
r7 4 (a 1, qa) ' (T 0.3, qa)* - (U 0.1, S),
r 8 4 (a 1, qa) ■ (T, 0.3, qa)* ■ (T, 0.3, qb) ■ f* ■ (T, 0.3, qa) ■ (T, 0.3, qa)*■

(A, 0.3, corr) ■ (t, 1 , S),
r9 4 (a 3 , qa) ■(T,0.3, qa)* ■(t 0.3, qb) ■f* ■(U 0 .1, ^
r 1° 4 (a 3 , qa) •(T,0 .3 , qa)*-(T,0 .3 , qb) -f*-(T,0 .3 , qa) •(T,0 .3 , qa)*-(U 0 .1 ,S)

where f 4 ((t, 0.3, qb)* ■ ((t, 0.3, qa) ■ (t, 0.3, qa)* ■ (t, 0.3, qb))*). We also note

val(n) = 2° (b, B), val(r2) = 2° (b, A), val(rs) = 7 (a, A),
val (r4) = g° (b,U) val (r5) =! 4° (a,B), val (re) = 2° (b, U),
val(r7) = 21 (a, U), val(r8) = 280 (a , A) val(r9) = 4° (a, U),

val(n °) = 28° (a, U).

where the symbols between brackets denote the secret and observable traces
of each regular expression.

Now we have all the ingredients needed to define partial matrices using
regular expressions.

D efin itio n 3 .5 .5 . Let I = (M, Xs, Xo, XT) be an IHS, n its a priori dis­
tribution, and r = r 1 + r 2 + ■ ■ ■ + rn a regular expression equivalent to M in
normal form. We define for k = 0 , 1 , . . . , n the matrices P k : S x O ^ [0 , 1]
as follows

84 Chapter 3. Computing the Leakage of Information Hiding Systems

P k (o|s) = p k - i(o js)+

P k -1(o|s)

if k = 0 ,
if k = 0 and t r a c e (rk) = o
and traces S (rk) = s,
otherwise.

Note that in the context of Definition 3.5.5, we have P n = P .

SC C an a lysis approach. In [ADvR08], paths that only differ in the way
they traverse strongly connected components (SCC’s) are grouped together.
Note that in our case, such paths have the same secret and observable
trace since secret and observable actions cannot occur on cycles. Follow­
ing [ADvR08], we first abstract away the SCC’s, leaving only probabilistic
transitions that go immediately from an entry point of the SCC to an exit
point (called input and output states in [ADvR08]). This abstraction hap­
pens in such a way that the observable behaviour of the automaton does
not change.

Instead of going into technical details (which also involves translating
the work [ADvR08] from Markov Chains to fully probabilistic automata),
we describe the technique by an example.

E xam p le 3 .5 .6 . Figure 3.2 shows the automaton obtained after abstract­
ing SCC. In the following we show the set of complete paths of the automa­
ton, together with their corresponding probabilities and traces

A . . . ao 1 = im t — :
A . . . b02 = im t — :

a03 = init — :
b04 = init — :
a05 = init — :
b06 = init — :

A Tqa — : corr — :
B Tqb — : corr —)
u , cqa : S,
u

qb — : S,
B

qa
qb

A
corr
corr ■

S ,
S ,

S ,
S ,

P(oi) = 40,
P(o2) = 20 >
P(03) = 1 2 ,
P(o4) = 11,
P(o5) = 40,
P(o6) = 2 0 ,

a, A),
b,B),

a, U),
b,U),
a, B),
b,A).

0

3.5. The Iterative Approach 85

Note that the SCC analysis approach groups more
paths together (for instance a group together the same
paths than the regular expressions r3 and r8 in the ex­
amples of this section), as a result channel matrix and
leakage are obtained faster. On the other hand, reg­
ular expressions are more informative providing more
precise feedback.

3.5 .3 Identify ing high-leakage sources

We now describe how to use the techniques presented
in this section to identify sources of high leakage of the
system. Remember that the a posteriori vulnerability
can be expressed in terms of joint probabilities

Crowds after the
SCC analysis

V(S | O) = V maxP([s] n [o]).s

This suggests that, in case we want to identify parts of the system generat­
ing high leakage, we should look at the sets of paths [o1] n [s1], . . . , [on] n [sn]
where {o1, .. . on} = O and s G arg (maxs P([oj] n [s])). In fact, the multi­
plicative leakage is given dividing V(S | O) by V(S), but since V(S) is a
constant value (i.e., it does not depend on the row) it does not play a role
here. Similarly for the additive case.

The techniques presented in this section allow us to obtain such sets
and, furthermore, to partition them in a convenient way with the purpose
of identifying states/parts of the system that contribute the most to its
high probability. Indeed, this is the aim of the counterexample generation
techniques previously presented. For further details on how to debug sets
of paths and why these techniques meet that purpose we refer to [AL08,
DHK08, ADvR08].

E xam p le 3 .5 .7 . To illustrate these ideas, consider the path a 1 of the
previous example; this path has maximum probability for the observable
A. By inspecting the path we find the transition with high probability

86 Chapter 3. Computing the Leakage of Information Hiding Systems

A
qa ^ corr. This suggests to the debugger that the corrupted user has an
excessively high probability of intercepting a message from user a in case
he is the initiator.

In case the debugger requires further information on how corrupted
users can intercept messages, the regular expression approach provides
further/more-detailed information. For instance, we obtain further infor­
mation by looking at regular expressions r3 and r8 instead of path a 1 (in
particular it is possible to visualize the different ways the corrupted user can
intercept the message of user a when he is the generator of the message).

3.6 Inform ation H iding System s w ith Variable a
Priori

In Section 3.3 we introduced a notion of IHS in which the distribution over
secrets is fixed. However, when reasoning about security protocols this is
often not the case. In general we may assume that an adversary knows the
distribution over secrets in each particular instance, but the protocol should
not depend on it. In such scenario we want the protocol to be secure, i.e.
ensuring low enough leakage, for every possible distribution over secrets.
This leads to the definition of maximum leakage.

D efinition 3.6.1 ([Smi09, BCP09]). Given a noisy channel C = (S, O, P),
we define the maximum multiplicative and additive leakage (respectively)
as

M L X(C) = max L x(C,n), and ML+(C) 4 max L+(C,n).

In order to model this new scenario where the distribution over secrets may
change, the selection of the secret is modeled as nondeterministic choice. In
this way such a distribution remains undefined in the protocol/automaton.
We still assume that the choice of the secret happens at the beginning, and
that we have only one secret per run. We call such automaton an IHS with
variable a priori.

3.6. Information Hiding Systems with Variable a Priori 87

D efinition 3.6.2. An IHS with variable a priori is a quadruple I = (M,
£ S, £ O, £ T) where M = (Q, £,q, a) is a probabilistic automaton, £ =
£ S U £ O U £ t where £ S, £ O, and £ T are pairwise disjoint sets of secret,
observable, and internal actions, and a satisfies the following restrictions:

1. a(q) C D (£s x Q),

2. |a(q)| = |S| A Vs G £ S . 3 q . n(s,q) = 1, for some n G a(q),

3. a(q) C D (£O U £ T x Q) and |a(q)| < 1, for all q = q,

4. Va G (£ S U £ O) . a G CyclesA(M),

5. Vq, s Vn G a(q) . (n(s, q) = 1 ^ P(CPathsq(M) n Paths*(M)) = 1).

Restrictions 1, 2 and 3 imply that the secret choice is non deterministic
and happens only at the beginning. Additionally, 3 means that all the other
choices are probabilistic. Restriction 4 ensures that the channel associated
to the IHS has finitely many inputs and outputs. Finally, 5 implies that,
after we have chosen a secret, every computation terminates except for a
set with null probability.

Given an IHS with variable a priori, by fixing the a priori distribution
we can obtain a standard IHS in the obvious way:

D efinition 3.6.3. Let I = ((Q, £, q, a), £ s , £ o , £ T) be an IHS with vari­
able a priori and n a distribution over S . We define the IHS associated to
(I, n) as I n = ((Q, £ ,q ,a ') , £ S, £ O, £ T) with a'(q) = a(q) for all q = q
and a'(q)(s, ■) = n(s).

The following result says that the conditional probabilities associated
to an IHS with variable a priori are invariant with respect to the a priori
distribution. This is fundamental in order to interpret the IHS as a channel.

P roposition 3.6.1. Let I be an IHS with variable a priori. Then for all
n, n' G D(S) such that n(s) = 0 and n'(s) = 0 for all s g S we have that
Pin = Pin, .

88 Chapter 3. Computing the Leakage of Information Hiding Systems

Proof. The secret s appears only once in the tree and only at the beginning
of paths, hence P([s] n [o]) = a'(q)(s, ■) Pqs([o]) and P([s]) = a'(q)(s, ■).
Therefore P([o] | [s]) = P([o]), where is the state after performing s.
While a'(q)(s, ■) is different in I n and I n , P ([o]) is the same, because it
only depends on the parts of the paths after the choice of the secret. □

Note that, although in the previous proposition we exclude input dis­
tributions with zeros, the concepts of vulnerability and leakage also make
sense for these distributions3.

This result implies that we can define the channel matrix of an IHS
I with variable a priori as the channel matrix of I n for any n, and we
can compute it, or approximate it, using the same techniques of previous
sections. Similarly we can compute or approximate the leakage for any
given n.

We now turn the attention to the computation of the maximum leakage.
The following result from the literature is crucial for our purposes.

P roposition 3.6.2 ([BCP09]). Given a channel C, we have argmaxneD(S)
L x (C, n) is the uniform distribution, and arg maxneD(S) L+(C, n) is a corner
point distribution, i.e. a distribution n such that n(s) = K on k elements
of S , and n(s) = 0 on all the other elements.

As an obvious consequence, we obtain:

C orollary 3 .6 .3 . Given an IHS I with variable a priori, we have M L x (I) =
L x (I n), where n is the uniform distribution, and) = L+(I n/),
where n' is a corner point distribution.

Corollary 3.6.3 gives us a method to compute the maxima leakages of
I . In the multiplicative case the complexity is the same as for computing
the leakage4. In the additive case we need to find the right corner point,

3We assume th a t conditional probabilities are extended by continuity on such distri­
butions.

4Actually we can com pute it even faster using an observation from [Smi09] which says
th a t the leakage on the uniform distribution can be obtained simply by summing up the
maxim um elements of each column of the channel matrix.

3.7. Interactive Information Hiding Systems 89

which can be done by computing the leakages for all corner points and then
comparing them. This method has exponential complexity (in |S|) as the
size of the set of corner points is 2|S| — 1. We conjecture that this complexity
is intrinsic, i.e. that the problem is NP-hard5.

3.7 Interactive Inform ation H iding System s

We now consider extending the framework to interactive systems, namely to
IHS’s in which the secrets and the observables can alternate in an arbitrary
way. The secret part of a run is then an element of £ ^ , like the observable
part is an element of ££,. The idea is that such system models an interactive
play between a source of secret information, and a protocol or program that
may produce, each time, some observable in response. Since each choice is
associated to one player of this “game”, it seems natural to impose that in
a choice the actions are either secret or observable/hidden, but not both.

The main novelty and challenge of this extension is that part of the
secrets come after observable events, and may depend on them.

D efin itio n 3 .7 .1 . Interactive IHS’s are defined as IHS’s (Definition 3.3.1) ,
except that Restrictions 1 to 3 are replaced by a(q) e D (£S x Q) U D (£ —
£ s x Q).

E xam p le 3 .7 .2 . Consider an Ebay-like auction protocol with one seller
and two possible buyers, one rich and one poor. The seller first publishes
the item he wants to sell, which can be either cheap or expensive. Then the
two buyers start bidding. At the end, the seller looks at the profile of the
bid winner and decides whether to sell the item or cancel the transaction.
Figure 3.7 illustrates the automaton representing the protocol, for certain
given probability distributions.

5 Since the publication of the article related to this chapter we have proved th a t our
conjecture is true. The proof will appear, together w ith other results, in an extended
version of the article

90 Chapter 3. Computing the Leakage of Information Hiding Systems

We assume that the identities of the
buyers are secret, while the price of the
item and the seller’s decision are observ­
able. We ignore for simplicity the in­
ternal actions which are performed dur­
ing the bidding phase. Hence =
{cheap, expensive, sell, cancel}, Xr = 0 ,
S = = {poor, rich}, and O =
{cheap, expensive} x {sell, cancel}. The distributions on S and O are
defined as usual. For instance we have P([cheap sell]) = P({q0c- eapq1

r, „ r, chea,p ~ rich ̂ — 2 3 4 , 2 2 3 _ 13
53 ► q7, q° r qi > 53 ► q7}) = 3 • 5 • 5 + 3 • 5 • 4 = 25 •

Let us now consider how to model the protocol in terms of a noisy
channel. It would seem natural to define the channel associated to the
protocol as the triple (S , O, P) where P (o | s) = P([o] | [s]) = PpQg|)°]). This
is, indeed, the approach taken in [DJGP02]. For instance, with the protocol
of Example 3.7.2, we would have:

Figure 3.3: Ebay Protocol

However, it turns out that in the interactive case (in particular when the
secrets are not in the initial phase), it does not make sense to model the
protocol in terms of a channel. At least, not a channel with input S . In
fact, the matrix of a channel is supposed to be invariant with respect to
the input distribution (like in the case of the IHS’s with variable a priori
considered in previous section), and this is not the case here. The following
is a counterexample.

E xam p le 3 .7 .3 . Consider the same protocol as in Example 3.7.2, but
assume now that the distribution over the choice of the buyer is uniform, i.e.
a(qi)(poor,q3) = a(qi)(rich, 54) = a(q2)(poor, 55) = a(q2)(rich, qe) = 1.
Then the conditional probabilities are different than those for Example

3.7. Interactive Information Hiding Systems 91

3.7.2. In particular, in contrast to (3.2), we have

P([cheap sell] | [poor]) =
P([poor] n [cheap sell])

P([poor])

2 1 4
3 • 2 • 5

2 1 I 1 13 • 2 + 3 • 2

8

15 '

The above observation, i.e. the fact that the conditional probabilities
depend on the input distribution, makes it unsound to reason about cer­
tain information-theoretic concepts in the standard way. For instance, the
capacity is defined as the maximum mutual information over all possible in­
put distributions, and the traditional algorithms to compute it are based on
the assumption that the channel matrix remains the same while the input
distribution variates. This does not make sense anymore in the interactive
setting.

However, when the input distribution is fixed, the matrix of the joint
probabilities is well defined as PA(s, o) = P([s] n [o]), and can be computed
or approximated using the same methods as for simple IHS’s. The a priori
probability and the channel matrix can then be derived in the standard
way:

PA(s,o)
P (o 1 s) =

n(s)

Thanks to the formulation (4.1) of the a posteriori vulnerability, the
leakage can be computed directly using the joint probabilities.

E xam p le 3 .7 .4 . Consider the Ebay protocol I presented in Example 3.7.2.
The matrix of the joint probabilities P\(s, o) is:

cheap sell cheap cancel expensive sell expensive cancel

poor

rich

8
25
1
5

2
25
J_
15

25
19
75

2
75
J_
75

Furthermore n(poor)
and L+(I) = 71.

15 and n(rich) 185. Hence we have L X(I) = 50

We note that our techniques to compute channel matrices and leakage
extend smoothly to the case where secrets are not required to happen at the

92 Chapter 3. Computing the Leakage of Information Hiding Systems

beginning. However, no assumptions can be made about the occurrences
of secrets (they do not need to occur at the beginning anymore). This
increases the complexity of the reachability technique to O((|S| ■ |O| ■ |Q|)3).
On the other hand, complexity bounds for the iterative approach remain
the same.

3.8 R elated W ork

To the best of our knowledge, this is the first work dealing with the effi­
cient computation of channel matrices and leakage. However, for the simple
scenario, channel matrices can be computed using standard model check­
ing techniques. Chatzikokolakis et al. [CPP08a] have used Prism [PRI] to
model Crowds as a Markov Chain and compute its channel matrix. Each
conditional probability P (o|s) is computed as the probability of reaching
a state where o holds starting from the state where s holds. Since for the
simple version of IHS’s secrets occur only once and before observables (as
in Crowds), such a reachability probability equals P (o|s). This procedure
leads to O(|S| ■ |O| ■ |Q|3) time complexity to compute the channel matrix,
where Q is the space state of the Markov Chain.

Note that the complexity is expressed in terms of the space state of a
Markov Chain instead of automaton. Since Markov Chains do not carry
information in transitions they have a larger state space than an equivalent
automaton. Figure 3.4 illustrates this: to model
the automaton (left hand side) we need to en­
code the information in its transitions into states
of the Markov Chain (right hand side). There­
fore, the probability of seeing observation a and
then c in the automaton can be computed as the
probability of reaching the state ac. The Markov
Chain used for modeling Crowds (in our two hon­
est and one corrupted user configuration) has 27
states.

For this reason we conjecture that our complexity O(|O| ■ |Q|3) is a

a i b

Figure 3.4: Automaton
vs Markov Chain

3.8. Related Work 93

considerable improvement over the one on Markov Chains O(|S| • |O| • |Q |3).
With respect to the interactive scenario, standard model checking tech­

niques do not extend because multiple occurrences of the same secret are
allowed (for instance in our Ebay example, P (cheap sell|rich) cannot be
derived from reachability probabilities from the two different states of the
automaton where rich holds).

Chapter 4

Information Hiding in
Probabilistic Concurrent
System s

In this chapter we study the problem of information hiding in
systems characterized by the coexistence of randomization and
concurrency. Anonymity and Information Flow are examples
of this notion. It is well known that the presence of nondeter­
minism, due to the possible interleavings and interactions of the
parallel components, can cause unintended information leaks.
The most established approach to solve this problem is to fix the
strategy of the scheduler beforehand. In this work, we propose
a milder restriction on the schedulers, and we define the notion
of strong (probabilistic) information hiding under various no­
tions of observables. Furthermore, we propose a method, based
on the notion of automorphism, to verify that a system satisfies
the property of strong information hiding, namely strong ano­
nymity or non-interference, depending on the context. Through
the chapter, we use the canonical example of the Dining Cryp­
tographers to illustrate our ideas and techniques.

95

96 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

4.1 Introduction

The problem of information hiding consists in trying to prevent the adver­
sary to infer confidential information from the observables. Instances of
this issue are Anonymity and Information Flow. In both fields there is a
growing interest in the quantitative aspects of the problem, see for instance
[H005, BP05, ZB05, CHM05a, CHM05b, Mal07, MC08, BCP08, CMS09,
CPP08a, CPP08b, Smi09]. This is justified by the fact that often we have
some a priori knowledge about the likelihood of the various secrets (which
we can usually express in terms of a probability distribution), and by the
fact that protocols often use randomized actions to obfuscate the link be­
tween secret and observable, like in the case of the anonymity protocols of
DC Nets [Cha8 8], Crowds [RR98], Onion Routing [SGR97], and Freenet
[CSWH00].

In a concurrent setting, like in the case of multi-agent systems, there
is also another source of uncertainty, which derives from the fact that the
various entities may interleave and interact in ways that are usually un­
predictable, either because they depend on factors that are too complex to
analyze, or because (in the case of specifications) they are implementation-
dependent.

The formal analysis of systems which exhibit probabilistic and nonde-
terministic behavior usually involves the use of so-called schedulers, which
are functions that, for each path, select only one possible (probabilistic)
transition, thus delivering a purely probabilistic execution tree, where each
event has a precise probability.

In the area of security, there is the problem that secret choices, like all
choices, give rise to different paths. On the other hand, the decision of the
scheduler may influence the observable behavior of the system. Therefore
the security properties are usually violated if we admit as schedulers all
possible functions of the paths: certain schedulers induce a dependence of
the observables on the secrets, and protocols which would not leak secret
information when running in “real” systems (where the scheduling devices
cannot “see” the internal secrets of the components and therefore cannot
depend on them), do leak secret information under this more permissive

4.1. Introduction 97

notion of scheduler. This is a well known problem for which various solu­
tions have already been proposed [CCK+06a, CCK+06b, CP10, CNP09].
We will come back to these in the “Related work” section.

4.1 .1 C ontribution

We now list the main contribution of this chapter:

• We define a class of partial-information schedulers (which we call ad­
missible), schedulers in this class are a restricted version of standard
(full-information) schedulers. The restriction is rather flexible and has
strong structural properties, thus facilitating the reasoning about se­
curity properties. In short, our systems consist of parallel components
with certain restrictions on the secret choices and nondeterministic
choices. The scheduler selects the next component (or components,
in case of synchronization) for the subsequent step independently of
the secret choices. We then formalize the notion of quantitative in­
formation flow, or degree of anonymity, using this restricted notion
of scheduler.

• We propose alternative definitions to the property of strong anony­
mity defined in [BP05]. Our proposal differs from the original defi­
nition in two aspects: (1) the system should be strongly anonymous
for all admissible schedulers instead of all schedulers (which is a very
strong condition, never satisfied in practice), (2) we consider several
variants of adversaries, namely (in increasing level of power): external
adversaries, internal adversaries, and adversaries in collusion with the
scheduler (in a Dolev-Yao fashion). Additionally, we use admissible
schedulers to extend the notions of multiplicative and additive leak­
age (proposed in [Smi09] and [BCP09] respectively) to the case of a
concurrent system.

• We propose a sufficient technique to prove probabilistic strong ano­
nymity, and probabilistic noninterference, based on automorphisms.
The idea is the following: In the purely nondeterministic setting, the
strong anonymity of a system is often proved (or defined) as follows:

98 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

take two users A and B and a trace in which user A is ‘the culprit’.
Now find a trace that looks the same to the adversary, but in which
user B is ‘the culprit’ [H005, GHvRP05, MVdV04, HK07c]. This
new trace is often most easily obtained by switching the behavior of
A and B. Non-interference can be proved in the same way (where A
and B are high information and the trace is the low information).

In this work, we make this technique explicit for anonymity in systems
where probability and nondeterminism coexist, and we need to cope
with the restrictions on the schedulers. We formalize the notion of
switching behaviors by using automorphism (it is possible to switch
the behavior of A and B if there exist an automorphism between
them) and then show that the existence of an automorphism implies
strong anonymity.

• We illustrate the problem with full-information schedulers in security,
our solution providing admissible schedulers, and the application of
our prove technique by means of the well known Dining Cryptogra­
phers anonymity protocol.

4.2 Prelim inaries

In this section we gather preliminary notions and results related to prob­
abilistic automata [SL95, Seg95], information theory [CT06], and informa­
tion leakage [Smi09, BCP09].

4.2 .1 P rob ab ilistic au tom ata

A function ^ : Q ^ [0,1] is a discrete probability distribution on a set Q
if £ ^(q) = 1. The set of all discrete probability distributions on Q is
denoted by D(Q).

A probabilistic automaton is a quadruple M = (Q, £, q, 0) where Q is a
countable set of states, £ a finite set of actions, q the initial state, and 0

a transition function 0 : Q ^ P (D (£ x Q)). Here P (X) is the set of all
subsets of X .

4.2. Preliminaries 99

If 0(q) = 0, then q is a terminal state. We write q A i for i e 0(q), q e
Q. Moreover, we write qA r for q, r € Q whenever q A i and i(a , r) > 0 . A
fully probabilistic automaton is a probabilistic automaton satisfying |0 (q)| <
1 for all states. In case 0(q) = 0 in a fully probabilistic automaton, we will
overload notation and use 0 (q) to denote the distribution outgoing from q.
A path in a probabilistic automaton is a sequence a = qo A qi A ■ ■ ■ where
q¿ € Q, a¿ € E and q¿ A 1qi+1. A path can be finite in which case it ends
with a state. A path is complete if it is either infinite or finite ending in
a terminal state. Given a path a, first(a) denotes its first state, and if a
is finite then last(a) denotes its last state. A cycle is a path a such that
last(a) = first(a). Let Pathsq(M) denote the set of all paths, Paths^(M)
the set of all finite paths, and CPathsq(M) the set of all complete paths of
an automaton M , starting from the state q. We will omit q if q = q. Paths
are ordered by the prefix relation, which we denote by <. The trace of a
path is the sequence of actions in E* U E ^ obtained by removing the states,
hence for the above path a we have trace (a) = a 1a2 __ If E' C E, then
trace£/ (a) is the projection of trace (a) on the elements of E'.

Let M = (Q, E, q, 0) be a (fully) probabilistic automaton, q e Q a state,
and let a e Paths^(M) be a finite path starting in q. The cone generated by
a is the set of complete paths (a) = {a' e CPathsq(M) | a < a'}. Given a
fully probabilistic automaton M = (Q, E, q, 0) and a state q, we can calcu­
late the probability value, denoted by Pq(a), of any finite path a starting in q
as follows: Pq(q) = 1 and Pq(a -A q') = Pq(a) ^(a, q'), where last(a) A ¡i.

Let 4 CPathsq(M) be the sample space, and let be the smallest
a-algebra generated by the cones. Then Pq induces a unique probability
measure on (which we will also denote by Pq) such that Pq((a)) = Pq(a)
for every finite path a starting in q. For q = q we write P instead of Pq.

A (full-information) scheduler for a probabilistic automaton M is a
function Z: Paths*(M) A (D(E x Q) U {^}) such that for all finite paths
a, if 0(last(a)) = 0 then Z(a) e 0(last(a)), and Z(a) = ± otherwise. Hence,
a scheduler Z selects one of the available transitions in each state, and
determines therefore a fully probabilistic automaton, obtained by pruning
from M the alternatives that are not chosen by Z. Note that a scheduler is

100 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

history dependent since it can take different decisions for the same state s
according to the past evolution of the system.

4.2 .2 N o isy C hannels

This section briefly recalls the notion of noisy channels from Information
Theory [CT06].

A noisy channel is a tuple C 4 (X , Y, P(-|-)) where X = {x1; x2, . . . , xn}
is a finite set of input values, modeling the secrets of the channel, and
Y = {y1,y2, . . . ,ym} is a finite set of output values, the observables of the
channel. For x e X and y- e Y, P (y- | x¿) is the conditional probability
of obtaining the output y- given that the input is ®j. These conditional
probabilities constitute the so called channel matrix, where P (y- |x¿) is the
element at the intersection of the i-th row and the j-th column. For any
input distribution Px on X , Px and the channel matrix determine a joint
probability PA on X x Y, and the corresponding marginal probability Py on
Y (and hence a random variable Y). PX is also called a priori distribution
and it is often denoted by n. The probability of the input given the output
is called a posteriori distribution.

4.2 .3 Inform ation leakage

We recall here the definitions of multiplicative leakage proposed in [Smi09],
and of additive leakage proposed in [BCP09]1. We assume given a noisy
channel C = (X , Y, PHO) and a random variable X on X . The a priori
vulnerability of the secrets in X is the probability of guessing the right
secret, defined as V(X) 4 maxxeX PX(x). The rationale behind this defi­
nition is that the adversary’s best bet is on the secret with highest prob­
ability. The a posteriori vulnerability of the secrets in X is the probabil­
ity of guessing the right secret, after the output has been observed, av­
eraged over the probabilities of the observables. The formal definition is

1The notion proposed by Sm ith in [Smi09] was given in a (equivalent) logarithmic
form, and called simply leakage. For uniform ity sake we use here the terminology and
formulation of [BCP09].

4.2. Preliminaries 101

V (X | Y) = Y1 yeY (y) maxxeX P(x | y). Again, this definition is based on
the principle that the adversary will choose the secret with the highest a
posteriori probability.

Note that, using Bayes theorem, we can write the a posteriori vulner­
ability in terms of the channel matrix and the a priori distribution, or in
terms of the joint probability:

V(X 1 Y) = ^ mca*(P(y 1 x)px (x)) = ^ maxp a (X y).
yeY y€Y

The multiplicative leakage is L X(C,PX) 4 whereas the additive
leakage is L+(C, Px) 4 V(X| Y) - V(X).

4 .2 .4 D in in g C ryptographers

This problem, described by Chaum in [Cha8 8], involves a situation in which
three cryptographers are dining together. At the end of the dinner, each of
them is secretly informed by a central agency (master) whether he should
pay the bill, or not. So, either the master will pay, or one of the cryptogra­
phers will be asked to pay. The cryptographers (or some external observer)
would like to find out whether the payer is one of them or the master.
However, if the payer is one of them, they also wish to maintain anonymity
over the identity of the payer.

A possible solution to this problem, described in [Cha8 8], is that each
cryptographer tosses a coin, which is visible to himself and his neighbor
to the left. Each cryptographer observes the two coins that he can see
and announces agree or disagree. If a cryptographer is not paying, he will
announce agree if the two sides are the same and disagree if they are not.
The paying cryptographer will say the opposite. It can be proved that if the
number of disagrees is even, then the master is paying; otherwise, one of the
cryptographers is paying. Furthermore, in case one of the cryptographers is
paying, neither an external observer nor the other two cryptographers can
identify, from their individual information, who exactly is paying (provided
that the coins are fair). The Dining Cryptographers (DC) will be a running
example through the chapter.

102 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

Figure 4.1: Chaum’s system for the Dining Cryptographers ([Cha8 8])

4.3 System s

In this section we describe the kind of systems we are dealing with. We
start by introducing a variant of probabilistic automata, that we call tagged
probabilistic automata (TPA). These systems are parallel compositions of
purely probabilistic processes, that we call components. They are equipped
with a unique identifier, that we call tag, or label, of the component. Note
that, because of the restriction that the components are fully determinis­
tic, nondeterminism is generated only from the interleaving of the parallel
components. Furthermore, because of the uniqueness of the tags, each tran­
sition from a node is associated to a different tag / pair of two tags (one in
case only one component makes a step, and two in case of a synchronization
step among two components).

4.3 .1 Tagged P robab ilistic A u tom ata

We now formalize the notion of TPA.

D efinition 4.3.1. A tagged probabilistic automaton (TPA) is a tuple (Q,
L, £, q, 6), where

4.3. Systems 103

• Q is a set of states,

• L is a set of tags, or labels,

• £ is a set of actions,

• q e Q is the initial state,

• d : Q a P(L x D (£ x Q)) is a transition function.

with the additional requirement that for every q e Q and every t e L there
is at most one ^ e D (£ x Q) such that (t, ^) e #(q).

A path for a TPA is a sequence a = qo —A qi —A q2 ■ ■ ■. In this way,
the process with identifier ^ induces the system to move from qi - 1 to qj
performing the action a^ and it does so with probability ^ (a^qj), where
^ ii is the distribution associated to the choice made by the component Zj .
Finite paths and complete paths are defined in a similar manner.

In a TPA, the scheduler’s choice is determined by the choice of the tag.
We will use enab(q) to denote the tags of the components that are enabled
to make a transition. Namely,

enab(q) 4 {t e L | 3 ^ e D (£ x Q) : (t,^) e 0(q)} (4.1)

We assume that the scheduler is forced to select a component among
those which are enabled, i.e., that the execution does not stop unless all
components are blocked (suspended or terminated). This is in line with the
spirit of process algebra, and also with the tradition of Markov Decision
Processes, but contrasts with that of the Probabilistic Automata of Lynch
and Segala [SL95]. However, the results in this chapter do not depend on
this assumption; we could as well allow schedulers which decide to terminate
the execution even though there are transitions which are possible from the
last state.

D efin itio n 4 .3 .2 . A scheduler for a TPA M = (Q, L, £ ,q ,0) is a func­
tion Z: Paths*(M) A (L U {^}) such that for all finite paths a, Z(a) e
enab(last(a)) if enab(last(a)) = 0 and Z(a) = ± otherwise.

104 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

4.3 .2 C om pon en ts

To specify the components we use a sort of probabilistic version of CCS [Mil89,
Mil99]. We assume a set of secret actions £ S with elements s, s1, s2, ■ ■ ■, and
a disjoint set of observable actions £ O with elements a, a1; a2, ■ ■ ■. Further­
more we have communication actions of the form c(x) (receive x on channel
c, where x is a formal parameter), or c(v) (send v on channel c, where v
is a value on some domain V). Sometimes we need only to synchronize
without transmitting any value, in which case we will use simply c and c.
We denote the set of channel names by C .

A component q is specified by the following grammar:

C om p on en ts

q ::= 0

| a.q
| E j Pi : qi
| E jP j : Sj.qj
| if x = v then q1 else q2

| A

O bservables

a ::= c | cc simple synchronization
| c(x) | c(v) synchronization and communication

The pj, in the blind and secret choices, represents the probability of
the i-th branch and must satisfy 0 < pj < 1 and E j Pj = 1. When no
confusion arises, we use simply + for a binary choice. The process call A
is a simple process identifier. For each of them, we assume a corresponding

def
unique process declaration of the form A = q. The idea is that, whenever
A is executed, it triggers the execution of q. Note that q can contain A or
another process identifier, which means that our language allows (mutual)
recursion.

termination
observable prefix
blind choice
secret choice
conditional
process call

4.3. Systems 105

Note that each component contains only probabilistic and sequential
constructs. In particular, there is no internal parallelism. Hence each com­
ponent corresponds to a purely probabilistic automaton (apart from the
input nondeterminism, which disappears in the definition of a system), as
described by the operational semantics below. The main reason to dismiss
the use of internal parallelism is verification: as mentioned in the Intro­
duction we will present a proof technique for the different definitions of
anonymity proposed in this work. This result would not be possible with­
out such restriction on the components (see Example 4.6.4) .

For an extension of this framework allowing the use of internal par­
allelism we refer to [AAPvR10]. There, the authors combine global non­
determinism (arising from the interleaving of the components) and local
nondeterminism (arising from the internal parallelism of the components).
The authors use such (extended) framework for a different purpose than
ours, namely to define a notion of equivalence suitable for security analysis.
No verification mechanisms are provided in [AAPvR10].

Components’ semantics: The operational semantics consists of probabilistic
transitions of the form qA ^ where q e Q is a process, and ^ e D (£ x Q) is
a distribution on actions and processes. They are specified by the following
rules:

v e V
PRF1 ---------------------------------

c(x).q A ¿(c(v), q[v/x])

PRF2 ------------------- if a = c(x)
a.q A ¿(a, q)

INT --------------------------------------
E j Pj : qj A ◦ j Pj ' ¿(T,qj)

SECR --
E j Pi : si.qi A ◦ i Pi ' ¿(«i,9i)

106 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

CND1 ---
i f v = v then qi else q2 — ¿(t, qi)

v = v'
CND2 --

i f v = v' then qi else q2 A ¿(t, q2)

q — ^ ACALL ------------ if A = q
A —— ^

◦ i P ■ ^ is the distribution ^ such that ^(x) = E t Pi^j(x). We use ¿(x)
to represent the delta of Dirac, which assigns probability 1 to x. The silent
action, t , is a special action different from all the observable and the secret
actions. q[v/x] stands for the process q in which any occurrence of x has
been replaced by v. To shorten the notation, in the examples throughout
the chapter, we omit writing explicit termination, i.e., we omit the symbol
0 at the end of a term.

4.3 .3 System s

A system consists of n processes (components) in parallel, restricted at the
top-level on the set of channel names C :

(C) qi y q2 II ■ ■ ■ II qn.

The restriction on C enforces synchronization (and possibly communica­
tion) on the channel names belonging to C , in accordance with the CCS
spirit. Since C is the set of all channels, all of them are forced to syn­
chronize. This is to eliminate, at the level of systems, the nondeterminism
generated by the rule for the receive prefix, PRF1.

System s’ semantics: The semantics of a system gives rise to a TPA, where
the states are terms representing systems during their evolution. A transi­
tion now is of the form q — ^ where ^ G (D(£ x Q)) and £ G L is either

4.3. Systems 107

the identifier of the component which makes the move, or a two-element
set of identifiers representing the two partners of a synchronization. The
following two rules provide the operational semantics rules in the case of
interleaving and synchronisation/communication, respectively.

In ter leav in g If aj e C

q jA E j Pj ■ ¿(aj , qjj)

(C) qi || ■ ■ ■ || qj || ■ ■ ■ || qn A E Pj ■ ¿(aj, (C) qi || ■ ■ ■ || qjj || ■ ■ ■ || q„)

where i indicates the tag of the component making the step.

S y n ch ro n iza tio n /C o m m u n ica tio n

qj A ¿(c(v), qj) qj A ¿(c(v), qj)

(C) qi || ■ ■ ■ | qj || ■ ■ ■ | qn - A ¿(t, (C) qi || ■ ■ ■ | qj || ■ ■ ■ || qj || ■ ■ ■ | q„)

here {i, j} is the tag indicating that the components making the step are
i and j. For simplicity we write —A instead of —A. The rule for synchro­
nization without communication is similar, the only difference is that we do
not have (v) and (v) in the actions. Note that c can only be an observable
action (neither a secret nor t), by the assumption that channel names can
only be observable actions.

We note that both interleaving and synchronization rules generate non­
determinism. The only other source of nondeterminism is PRF1, the rule
for a receive prefix c(x). However the latter is not real nondeterminism:
it is introduced in the semantics of the components but it disappears in
the semantics of the systems, given that the channel c is restricted at the

108 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

top-level. In fact the restriction enforces communication, and when com­
munication takes place, only the branch corresponding to the actual value v
transmitted by the corresponding send action is maintained, all the others
disappear.

P roposition 4.3.3. The operational semantics of a system is a TPA with
the following characteristics:

(a) Every step q — ^ is either

a blind choice: ^ = ◦ i p ■ ¿(t, qt), or

a secret choice: ^ = ◦ i p ■ ¿(si; qi), or

a delta of Dirac: ^ = ¿(a, q') with a G or a = t .

(b) I f q — ^ and q —— ^' then ^ = ^'.

Proof. For (a) , we have that the rules for the components and the rule
for synchronization / communication can only produce blind choices, se­
cret choices, or deltas of Dirac. Furthermore, because of the restriction on
all channels, the transitions at the system level cannot contain communi­
cation actions. Finally, observe that the interleaving rule maintains these
properties.

As for (b), we know that at the component level, the only source of
nondeterminism is PRF1, the rule for a receive prefix c(x). At the sys­
tem level, this action is forced to synchronize with a corresponding send
action, and, in a component, there can be only one such action available
at a time. Hence the tag determines the value to be sent, which in turn
determines the selection of exactly one branch in the receiving process.
The only other sources of nondeterminism are the interleaving and the syn­
chronization/communication rules, and they induce a different tag for each
alternative. □

Exam ple 4.3.1. We now present the components for the Dining Cryptog­
raphers using the introduced syntax. They correspond to Figure 4.1 and

4.4. Admissible Schedulers 109

to the automata depicted in Figure 4.3. As announced before, we omit the
symbol 0 for explicit termination at the end of each term. The secret ac­
tions sj represent the choice of the payer. The operators ©, 0 represent the
sum modulo 2 and the difference modulo 2, respectively. The test i = = n
returns 1 (true) if i = n, and 0 otherwise. The set of restricted channel
names is C = {co,o,co,i,ci,i,ci,2 ,c2,o,c2,2 ,m o ,m i,m2 }.

Master 4 p : mo(0) .mi(0) .m 2 (0) + (1 - p) : E L o Pi : Si •
mo(i = = 0) .m 1(i = = 1) .m 2(i = = 2)

= mí (pay). c^i (coini) • ^ © 1(0 0^ 2) • outi(pay © coini © com2}

= 0.5: Ci,i(0) • Ci©i,i(0) + 0.5: 0^ (1) .Ci©M(1)

Crypti

Coini

System 4 (c) Master y n 2=o Crypt j y n 2=o Coinj

Figure 4.2: Dining Cryptographers CCS

The operation pay © coini © coin2 in Figure 4.2 is syntactic sugar, it
can be defined using the if-then-else operator. Note that, in this way, if
a cryptographer is not paying (pay = 0), then he announces 0 if the two
coins are the same (agree) and 1 if they are not (disagree).

4.4 A dm issib le Schedulers

We now introduce the class of admissible schedulers.
Standard (full-information) schedulers have access to all the informa­

tion about the system and its components, and in particular the secret
choices. Hence, such schedulers can leak secrets by making their decisions
depend on the secret choice of the system. This is the case with the Dining
Cryptographers protocol of Section 4.2.4: among all possible schedulers for
the protocol, there are several that leak the identity of the payer. In fact
the scheduler has the freedom to decide the order of the announcements
of the cryptographers (interleaving), so a scheduler could choose to let the
payer announce lastly. In this way, the attacker learns the identity of the
payer simply by looking at the interleaving of the announcements.

110 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

Master Coini Crypti

ci,i(1)

ci©1,i(1)

m-i(O)

ci,i(0)

ci,i®1(0)

mi(1)

Ci,i (1)

' / ><cL (1)
Ci,i®1(1) , •

ci,i(o)

OUti(0)

ci,i®1(0)

OUti (1)

Figure 4.3: Dining Cryptographers Automata

4.4 .1 T he screens in tu ition

Let us first describe admissible schedulers informally. As mentioned in the
introduction, admissible schedulers can base their decisions only on partial
information about the evolution of the system, in particular admissible
schedulers cannot base their decisions on information concerned with the
internal behavior of components (such as secret choices).

We follow the subsequent intuition: admissible schedulers are entities
that have access to a screen with buttons, where each button represents
one (current) available option. At each point of the execution the sched­
uler decides the next step among the available options (by pressing the
corresponding button). Then the output (if any) of the selected compo­
nent becomes available to the scheduler and the screen is refreshed with
the new available options (the ones corresponding to the system after mak-

T

4.4. Admissible Schedulers 111

ing the selected step). We impose that the scheduler can base its decisions
only on such information, namely: the screens and outputs he has seen up
to that point of the execution (and, of course, the decisions he has made).

E xam p le 4 .4 .1 . Consider S = (|c i ,c 2 |) r || q || t, where

r = 0.5 : s1 .c1 .c2 + 0.5 : s2 .c1 .c2,
q = c1.(0.5 : a 1 + 0.5 : b1), t = c2 .(0.5 : a2 + 0.5 : b2).

Figure 4.4 shows the sequence of screens corresponding to a particular
sequence of choices taken by the scheduler2. Interleaving and communica­
tion options are represented by yellow and red buttons, respectively. An
arrow between two screens represents the transition from one to the other
(produced by the scheduler pressing a button), additionally, the decision
taken by the scheduler and corresponding outputs are depicted above each
arrow.

Figure 4.4: Screens intuition

Note that this system has exactly the same problem as the DC pro­
tocol: a full-information scheduler could reveal the secret by basing the
interleaving order (q first or t first) on the secret choice of the component
r. However, the same does not hold anymore for admissible schedulers (the
scheduler cannot deduce the secret choice by just looking at the screens
and outputs). This is also the case for the DC protocol, i.e., admissible
schedulers cannot leak the secret of the protocol.

2The transitions from screens 4 and 5 represent 2 steps each (for simplicity we omit
the T-steps generated by blind choices)

112 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

4.4 .2 T he form alization

Before formally defining admissible schedulers we need to formalize the
ingredients of the screens intuition. The buttons on the screen (available
options) are the enabled options given by the function enab (see (4.1) in
Section 4.3.1), the decision made by the scheduler is the tag of the selected
enabled option, observable actions are obtained by sifting the secret actions
to the schedulers by means of the following function:

A (a if a e S O U { t },
sift (a) = <

\ t if a e S s .
The partial information of a certain evolution of the system is given by the
map t defined as follows.

D efin itio n 4 .4 .1 . Let q —-A ■ ■ ■ — A qn+ 1 be a finite path of the system,
then we define t as:

Finally, we have all the ingredients needed to define admissible sched­
ulers.

D efinition 4.4.2 (Admissible schedulers). A scheduler Z is admissible if
for all a, a ' G Paths*

In this way, admissible schedulers are forced to take the same decisions
on paths that they cannot tell apart. Note that this is a restriction on the
original definition of (full-information) schedulers where t is the identity
map over finite paths (and consequently the scheduler is free to choose
differently).

In the kind of systems we consider (the TPAs) the only source of nonde­
terminism are the interleaving and interactions of the parallel components.

(enab (q),4 , sift (« 1)) ■ ■ ■ (enab (q„),^„, sift (an)) ■ enab (qn+1).

i(a) = i(a ') implies Z (ct) = Z (^).

4.5. Information-hiding properties in presence of nondeterminism 113

Consequently, in a TPA the notion of scheduler is quite simple: its role, in­
deed, is to select, at each step, the component or pair of components which
will perform the next transition. In addition, the TPA model allows us to
express in a simple way the notion of admissibility: in fact the transitions
available in the last state of a are determined by the set of components en­
abled in the last state of a, and t(a) gives (among other information) such
set. Therefore t(a) = t(a ') implies that the last states of a and a ' have the
same possible transitions, hence it is possible to require that Z(a) = Z(a')
without being too restrictive or too permissive. In more general systems,
where the sources of nondeterminism can be arbitrary, it is difficult to im­
pose that the scheduler“does not depend on the secret choices”, because
different secret choices in general may give rise to states with different sets
of transitions, and it is unclear whether such difference should be ruled
out as “inadmissible”, or should be considered as part of what a “real”
scheduler can detect.

4.5 Inform ation-hiding properties in presence of
nondeterm inism

In this section we revise the standard definition of information flow and
anonymity in our framework of controlled nondeterminism.

We first consider the notion of adversary. We consider three possible
notions of adversaries, increasingly more powerful.

4.5 .1 A dversaries

External adversaries: Clearly, an adversary should be able, by definition,
to see at least the observable actions. For an adversary external to the
system S , it is natural to assume that these are also the only actions that
he is supposed to see. Therefore, we define the observation domain, for an
external adversary, as the set of the (finite) sequences of observable actions,
namely:

Oe = SO.

114 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

Correspondingly, we need a function te : Paths*(S) A Oe that extracts the
observables from the executions:

Internal adversaries: An internal adversary may be able to see, besides
the observables, also the intearleaving and synchronizations of the various
components, i.e. which component(s) are active, at each step of the execu­
tion. Hence it is natural to define the observation domain, for an internal
adversary, as the sequence of pairs of observable action and tag (i.e. the
identifier(s) of the active component(s)), namely:

Correspondingly, we need a function t ; : Paths*(S) A O; that extracts the
observables from the executions:

Note that in this definition we could have equivalently used sift instead
than sieve.

Adversaries in collusion with the scheduler: Finally, we consider the case
in which the adversary is in collusion with the scheduler, or possibly the
adversary is the scheduler. To illustrate the difference between this kind of
adversaries and internal adversaries, consider the scheduler of an operating
system. In such scenario an internal adversary is able to see which process
has been scheduled to run next (process in the “running state”) whereas an
adversary in collusion with the scheduler can see as much as the scheduler,
thus being able to see (in addition) which processes are in the “ready state”
and which processes are in the “waiting / blocked” state. We will show
later that such additional information does not help the adversary to leak

where

sieve (a) 4

Oi 4 (L x (So U{t }))*.

ti (go —A ■ ■ ■ — A qn+i) = (¿1, sieve(a i)) ■ ■ ■ (¿n, sieve(an))

4.5. Information-hiding properties in presence of nondeterminism 115

information (see Proposition 4.5.9). The observation domain of adversaries
in collusion with the scheduler coincides with the one of the scheduler:

Os 4 (P(L) x L x (S o U {t }))*.

The corresponding function

is : Paths*(S) A Os

is defined as the one of the scheduler, i.e. ts = t.

4.5 .2 Inform ation leakage

In Information Flow and Anonymity there is a converging consensus for
formalizing the notion of leakage as the difference or the ratio between the
a priori uncertainty that the adversary has about the secret, and the a pos­
teriori uncertainty, that is, the residual uncertainty of the adversary once
it has seen the outcome of the computation. The uncertainty can be mea­
sured in different ways. One popular approach is the information-theoretic
one, according to which the system is seen as a noisy channel between the
secret inputs and the observable output, and uncertainty corresponds to the
Shannon entropy of the system (see preliminaries - Section 4.2). In this
approach, the leakage is represented by the so-called mutual information,
which expresses the correlation between the input and the output.

The above approach, however, has been recently criticized by Smith
[Smi09], who has argued that Shannon entropy is not suitable to represent
the security threats in the typical case in which the adversary is interested
in figuring out the secret in one-try attempt,
and he has proposed to use Renyi’s min entropy instead, or equivalently,
the average probability of succeeding. This leads to interpret the uncer­
tainty in terms of the notion of vulnerability defined in the preliminaries
(Section 4.2). The corresponding notion of leakage, in the pure probabilistic
case, has been investigated in [Smi09] (multiplicative case) and in [BCP09]
(additive case).

116 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

Here we adopt the vulnerability-based approach to define the notion of
leakage in our probabilistic and nondeterministic context. The Shannon-
entropy-based approach could be extended to our context as well, because
in both cases we only need to specify how to determine the conditional
probabilities which constitute the channel matrix, and the marginal prob­
abilities that constitute the input and the output distribution.

We will denote by S the random variable associated to the set of secrets
S = SS, and by Ox the random variables associated to the set of observables
Ox, where x e {e, i, s}. So, Ox represents the observation domains for the
various kinds of adversaries defined above.

As mentioned before, our results require some structural properties for
the system: we assume that there is a single component in the system con­
taining a secret choice and this component contains a single secret choice.
This hypothesis is general enough to allow expressing protocols like the
Dining Cryptographers, Crowds, voting protocols, etc., where the secret is
chosen only once.

A ssum ption 4.5.1. A system contains exactly one component with a syn­
tactic occurrence of a secret choice, and such a choice does not occur in the
scope of a recursive call.

Note that the assumption implies that the choice appears exactly once
in the operational semantics of the component. It would be possible to re­
lax the assumption and allow more than one secret choice in a component,
as long as there are no observable actions between the secret choices. For
the sake of simplicity in this paper we impose the more restrictive require­
ment. As a consequence, we have that the operational semantics of systems
satisfies the following property:

i iP roposition 4.5.2. I f q a v and q A are both secret choices, then
£ = £' and there exist p*’s, q*’s and qj’s such that:

V = ^ P*' ¿(s*,qi) ond v' = ^ P i ' ¿(s*,qj)
j j

i.e., v and v' differ only for the continuation states.

4.5. Information-hiding properties in presence of nondeterminism 117

Proof. Because of Assumption 4.5.1, there is only one component that can
generate a secret choice, and it generates only one such choice. Due to
the different possible interleavings, this choice can appear as an outgoing
transition in more than one state of the TPA, but the probabilities are
always the same, because the interleaving rule does not change them. □

Given a system, each scheduler Z determines a fully probabilistic au­
tomaton, and, as a consequence, the probabilities

Pc (s,o) 4 Pc (̂ { (c t } | a e Paths*(S),tx(a) = o, secr(a) = s

for each secret s e S and observable o e Ox, where x e {e, i, s}. Here secr
is the map from paths to their secret action. From these we can derive, in
standard ways, the marginal probabilities P^ (s), Pz (o), and the conditional
probabilities Pz (o | s).

Every scheduler leads to a (generally different) noisy channel, whose
matrix is determined by the conditional probabilities as follows:

D efin itio n 4 .5 .3 . Let x e {e, i, s}. Given a system and a scheduler Z, the
corresponding channel matrix ££ has rows indexed by s e S and columns
indexed by o e Ox. The value in (s, o) is given by

Pz (o | s) 4 .
zv 1 ! Pz (s)

Given a scheduler Z, the multiplicative leakage can be defined as L x (CX,),
while the additive leakage can be defined as L+(CX,P<z) where PZ is the a
priori distribution on the set of secrets (see preliminaries, Section 4.2).
However, we want a notion of leakage independent from the scheduler, and
therefore it is natural to consider the worst case over all possible admissible
schedulers.

D efinition 4.5.4 (x-leakage). Let x e {e, i, s}. Given a system, the multi­
plicative leakage is defined as

MLX = max L x (CX,Pz),C^Adm z

118 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

while the additive leakage is defined as

M L + = zmadx L+(CX,P Z)>CGAdm

where Adm is the class of admissible schedulers defined in the previous
section.

We have that the classes of observables e, i, and s determine an increas­
ing degree of leakage:

P roposition 4.5.5. Given a system, for the multiplicative leakage we have

1. For every scheduler Z, L x(Ce, Pz) < L x (CZ, Pz) < L x(C;Z, Pz)

2 . M L ex < M Lx < M L sx

Similarly for the additive leakage.

Proof.

1. The property follows immediately from the fact that the domain Oe
is an abstraction of O;, and O; is an abstraction of Os.

2. Immediate from previous point and from the definition of MLX and
M L+. □

4.5 .3 Strong anonym ity (revised)

We consider now the situation in which the leakage is the minimum for all
possible admissible schedules. In the purely probabilistic case, we know that
the minimum possible multiplicative leakage is 1 , and the minimum possible
additive one is 0. We also know that this is the case for all possible input
distributions if and only if the capacity of the channel matrix is 0 , which
corresponds to the case in which the rows of the matrix are all the same.
This corresponds to the notion of strong probabilistic anonymity defined
in [BP05]. In the framework of information flow, it would correspond to
probabilistic non-interference. Still in [BP05], the authors considered also
the extension of this notion in presence of nondeterminism, and required

4.5. Information-hiding properties in presence of nondeterminism 119

the condition to hold under all possible schedulers. This is too strong in
practice, as we have argued in the introduction: in most cases we can build
a scheduler that leaks the secret by changing the interleaving order. We
therefore tune this notion by requiring the condition to hold only under the
admissible schedulers.

D efinition 4.5.6 (x-strongly anonymous). Let x e {e, i, s}. We say that a
system is x-strongly-anonymous if for all admissible schedulers Z we have

PC (0 1 s i) = PC (0 1 s2)

for all s1; s2 e , and o e OX.

The following corollary is an immediate consequence of Proposition 4.5.5.

C orollary 4.5.7.

1. If a system is s-strongly-anonymous, then it is also i-strongly-anonymous.

2. If a system is i-strongly-anonymous, then it is also e-strongly-anonymous.

The converse of point (2), in the previous corollary, does not hold, as
shown by the following example:

Exam ple 4.5.8. Consider the system S = ({c1; c2}) P || Q || T where

P = (0.5: S1 . C1) + (0.5 : S2 .C2) Q = C1 . 0 T = C2 . 0

It is easy to check that S is e-strongly anonymous but not i-strongly
anonymous, showing that (as expected) internal adversaries can “distin­
guish more” than external adversaries.

On the contrary, for point (1) of Corollary 4.5.7, also the other direction
holds:

P roposition 4.5.9. A system is s-strongly-anonymous if and only i f it is
i-strongly-anonymous.

120 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

Proof. Corollary 4.5.7 ensures the only-if part. For the if part, we proceed
by contradiction. Assume that the system is i-strongly-anonymous but
that Pz (o | s1) = Pz (o | s2) for some admissible scheduler Z and observable
o e Os. Let o = (enab (q),£1, sift (a 1)) ■ ■ ■ (enab (qn),£n , sift (an)) and let o'
be the projection of o on Oi, i.e. o' = (£1; s ift(a 1)) ■ ■ ■ (£n, sift(an)). Since
the system is i-strongly-anonymous, Pz (o' | s 1) = Pz (o' | s2), which means
that the difference in probability with respect to o must be due to at least
one of the sets of enabled processes. Let us consider the first set L in o
which exhibits a difference in the probabilities, and let o'' be the prefix of
o up to the tuple containing L. Since the probabilities are determined by
the distributions on the probabilistic choices which occur in the individual
components, the probability of each £ e L to be available (given the trace
o'') is independent of the other labels in L. At least one such £ must
therefore have a different probability, given the trace o'', depending on
whether the secret choice was s 1 or s2. And, because of the assumption on
L, we can replace the conditioning on trace o'' with the conditioning on the
projection o''' of o'' on Oj. Consider now an admissible scheduler Z' that
acts like Z up to o'', and then selects £ if and only if it is available. Since
the probability that £ is not available depends on the choice of s 1 or s2, we
have Pc (o''' | s1) = Pz (o''' | s2), which contradicts the hypothesis that the
system is i-strongly-anonymous. □

Intuitively, this result means that an s-adversary can leak information
if and only if an i-adversary can leak information or, in other words, s-
adversaries are as powerful as i-adversaries (even when the former can ob­
serve more information).

4.6 V erifying strong anonym ity: a proof technique
based on autom orphism s

As mentioned in the introduction, several problems involving restricted
schedulers have been shown undecidable (including computing maximum
/ minimum probabilities for the case of standard model checking [GD07,

4.6. Verifying strong anonymity 121

Gir09]). These results are discouraging in the aim to find algorithms for
verifying strong anonymity/non-interference using our notion of admissible
schedulers (and most definitions based on restricted schedulers). Despite
the fact that the problem seems to be undecidable in general, in this sec­
tion we present a sufficient (but not necessary) anonymity proof technique:
we show that the existence of automorphisms between each pair of secrets
implies strong anonymity. We conclude this section illustrating the appli­
cability of our proof technique by means of the DC protocol, i.e., we prove
that the protocol does not leak information by constructing automorphisms
between pairs of cryptographers. It is worth mentioning that our proof tech­
nique is general enough to be used for the analysis of information leakage
of a broad family of protocols, namely any protocol that can be modeled
in our framework.

4.6 .1 T he p roof technique

In practice proving anonymity often happens in the following way. Given a
trace in which user A is the ‘culprit’, we construct an observationally equiv­
alent trace in which user B is the ‘culprit’ [H005, GHvRP05, MVdV04,
HK07c]. This new trace is typically obtained by ‘switching’ the behavior of
users A and B. We formalize this idea by using the notion of automorphism,
cf. e.g. [Rut00].

D efinition 4.6.1 (Automorphism). Given a TPA (Q, L, £, q , 0) we say that
a bijection ƒ : Q a Q is an automorphism if it satisfies ƒ (q) = q and

q -A g p * ■ ¿(a*, q*) ƒ (q) A g p * ■ ¿(a*, ƒ(q*)).
j j

In order to prove anonymity it is sufficient to prove that the behaviors
of any two ’culprits’ can be exchanged without the adversary noticing. We
will express this by means of the existence of automorphisms that exchange
a given pair of secret s* and Sj.

Before presenting the main theorem of this section we need to introduce
one last definition. Let S = (C) q1|| ■ ■ ■ || qn be a system and M its corre­
sponding TPA. We define MT as the automaton obtained after “hiding” all

122 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

the secret actions of M. The idea is to replace every occurrence of a secret
s in M by the silent action t . Note that this can be formalized by replacing
the secret choice by a blind choice in the corresponding component q* of
the system S.

We now formalize the relation between automorphisms and strong ano­
nymity. We will first show that the existence of automorphisms exchanging
pairs of secrets implies s-strong anonymity (Theorem 4.6.2). Then, we will
show that the converse does not hold, i.e. s-strongly-anonymous systems
are not necessarily automorphic (Example 4.6.3).

T h eorem 4 .6 .2 . Let S be a system satisfying Assumption 4.5.1 and M its
tagged probabilistic automaton. I f for every pair of secrets s*, sj e there
exists an automorphism ƒ of MT such that for any state q we have

q - A m q' = ^ ƒ (q) —A m ƒ (q'), (4.2)

then S is s -strongly-anonymous.

Proof. Assume that for every pair of secrets s*, sj we have an automorphism
ƒ satisfying the hypothesis of the theorem. We have to show that, for every
admissible scheduler Z we have:

V o e Os : Pz (o | s 1) = Pz (o | s2) .

We start by observing that for s*, by Proposition 4.5.2, there exists a
unique p* such that, for all transitions q A ^, if ^ is a (probabilistic) secret
choice, then ^(s*, —) = p*. Similarly for s j , there exists a unique pj such
that ^ (s j, —) = pj for all secret choices ^.

Let us now recall the definition of Pz (o | s):

Pz (o | s) = t i o A f)
z v 1 ’ Pz (s)

where Pz (o A s) = Pz ({n e CPaths | (n) = o A secr(n) = s}) with secr(n)
being the (either empty or singleton) sequence of secret actions of n, and
Pz (s) = Pz ({n e CPaths | secr(n) = s}).

4.6. Verifying strong anonymity 123

Note that, since a secret appears at most once on a complete path, we have:

Pz (s*) = Pz ({n —A a e CPaths | n ,a } j

= g Pz (n —̂ q*) = g Pz (n) ■ p*
n——g^Paths* last(n)——uU secret choice

and analogously

Pz (sj) = Pz ^{n —A a e CPaths | n, a}^

= g Pz (n - A q ^ = g Pz (n) ■ pj
n———gj GPaths* last(n)——uU secret choice

Let us now consider Pz (o | s*) and Pz (o | s j). We have:

Pz (o A s*) = Pz (| n —A a e CPaths | ts(n —A a) = o | j

= g Pz (n) ' p* ' g Pz (a)
n a

|ast(n)-̂ -u n—— aGPaths*
u secret choice , t,s;^ ts(n—— a)=oAlast(te(a))=T

again using that a secret appears at most once on a complete path. More­
over, note that we have overloaded the notation Pz by using it for different
measures when writing Pz (a), since a need not start in the initial state q .
Analogously we have:

Pz (o A s j) = Pz ^ |n —A a e CPaths | ts(n - A a) = o

= g Pz (n) ■ p j ' g Pz (a)
n a

last(n)_— u n—— aGPaths*U secret choice £,sj
ts(n—— a)=oAlast(te(a))=T

124 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

Therefore, we derive

£ £ PZ (n) ■ PZ (a)

PZ (o 1 si)

n a
last(n)- ̂ß n-—— aePaths
ß secret choice / -,sts (n —— a)=oAlast(te(a))=T

£

£ Pz (n)
-last(n)—ß

ß secret choice

£ PZ (n) ■ Pz (a)

(4.3)

PZ (o 1 sj)

I / \ - -,Sjlast(n)— ß n , a
ß secret choice -,

ts (n—
ePaths*
4- a)=oAlast(te(a))=T

£ Pz (n)
(4.4)

z
last(n)—— ß
U secret choice

Observe that the denominators of both formulae (4.3) and (4.4) are the
same. Also note that, since ƒ is an automorphism, for every path n, ƒ (n)
obtained by replacing each state in n with its image under ƒ is also a
path. ^Moreover, since ƒ satisfies (4.2) , for every path n —4 a we have that
ƒ (n) —4 ƒ (a) is also a path. Furthermore ƒ induces a bijection between
the sets

H i S- *{(n, a) | last(n) 4 ^ s.t. ^ secret choice, n —4 a e Paths
i s-ts(n —4 a) = o, last(te(a)) = t }, and

t'{(n,a) | last(n) 4 ß s.t. ß secret choice, n

t s (n - 4 a) = o, last(te(a)) = t }

a e Paths*

given by (n ,a) o (ƒ (n), ƒ (a)).
Finally, since Z is admissible, t s(n) = ts(ƒ(n)), and ƒ is an automor­

phism, it is easy to prove by induction that Pz (n) = Pz (ƒ(n)). Similarly,
Pz (a) = Pz (ƒ(a)). Hence the numerators of (4.3) and (4.4) coincide which
concludes the proof. □

4.6. Verifying strong anonymity 125

Note that, since s-strong anonymity implies i-strong anonymity and e-
strong anonymity, the existence of such an automorphism implies all the
notions of strong anonymity presented in this work. We now proceed to
show that the converse does not hold, i.e. strongly anonymous systems are
not necessarily automorphic.

E xam p le 4 .6 .3 . Consider the following (single component) system

0.5 : s 1.(0 .5 : (p : a + (1 — p) : b) + 0.5 : ((1—p) : a + p : b))
+

0.5 : s2 .(0 .5 : (q : a + (1 — q) : b) + 0.5 : ((1 — q) : a + q : b))

It is easy to see that such system is s-strongly-anonymous, however if p = q
and p = 1 — q there does not exist an automorphism for the pair of secrets
(s1,s 2).

The following example demonstrates that our proof technique does not
carry over to systems whose components admit internal parallelism.

E xam p le 4 .6 .4 . Consider S = ({c1,c2}) r || q || t, where

r = 0.5 : s 1.c1 + 0.5 : s2 .c2, q = c1.(a | b), t = c2.(a | b).

where q1 |q2 represents the parallel composition of q1 and q2. It is easy to
show that there exists an automorphism for s1 and s2. However, admissible
schedulers are able to leak such secrets. This is due to the fact that compo­
nent r synchronizes with q and t on different channels, thus a scheduler of
S is not restricted to select the same transitions on the branches associated
to s 1 and s2 (remember that schedulers can observe synchronization).

We now show that the definition of x-strong-anonymity is independent
of the particular distribution over secrets, i.e., if a system is x-strongly-
anonymous for a particular distribution over secrets, then it is x-strongly-
anonymous for all distributions over secrets. This result is useful because
it allows us to prove systems to be strongly anonymous even when their
distribution over secrets is not known.

126 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

T heorem 4.6.5. Consider a system S = (C) q1 || ■ ■ ■ || q* || ■ ■ ■ || qn . Let
q* be the component which contains the secret choice, and assume that it is
of the fo r m Y l j pj : sj . qj. Consider now the system S ' = (C) q1 || ■ ■ ■ ||
q* || ■ ■ ■ || qn, where q* is identical to q* except for the secret choice, which
is replaced by E j pj : sj . qj. Then we have that:

1. For every s*, sj there is an automorphism on S satisfying the assump­
tion of Theorem 4.6.2 if and only if the same holds for S'.

2. S is x-strongly-anonymous if and only i f S' is x-strongly-anonymous.

Note: 1) does not imply 2), because in principle neither S not S ' may have
the automorphism, and still one of the two could be strongly anonymous.

Proof. We note that the PAs generated by S and S ' coincide except for the
probability distribution on the secret choices. Since the definition of auto­
morphism and the assumption of Theorem 4.6.2 do not depend on these
probability distributions, (1) is immediate. As for (2), we observe that x-
strong anonymity only depends on the conditional probabilities Pz (o | s).
By looking at the proof of Theorem 4.6.2, we can see that in the com­
putation of Pz (o | s) the probabilities on the secret choices (i.e. the p j’s)
are eliminated. Namely Pz (o | s) does not depend on the p j’s, which means
that the value of the p j’s has no influence on whether the system is x-strong
anonymous or not. □

4.6 .2 A n A pplication: D in in g C ryptographers

Now we show how to apply the proof technique presented in this section to
the Dining Cryptographers protocol. Concretely, we show that there exists
an automorphism ƒ exchanging the behavior of the Crypto and Crypt 1; by
symmetry, the same holds for the other two combinations.

Consider the automorphisms of Master and Coin1 indicated in Figure
4.5. The states that are not explicitly mapped (by a dotted arrow) are
mapped to themselves.

4.7. Related Work 127

mo (0)

mi (0)

mo(1)
• - - •

mo(0)

mi(1)

m2 (0) m2 (1)

• - - •

Ci,i(0) (1)
• - - •

mo (0)

m1(0) Cj0 1,i(0)\ /Ci0 1,i(1)

Figure 4.5: Automorphism between Crypt0 and Crypt1

Also consider the identity automorphism on C rypt (for i = 0 , 1 , 2) and
on Coin (for i = 0,2). It is easy to check that the product of these seven
automorphisms is an automorphism for Crypt0 and Crypt1.

T

4.7 R elated W ork

The problem of the full-information scheduler has already been extensively
investigated in literature. The works [CCK+06a] and [CCK+06b] consider
probabilistic automata and introduce a restriction on the scheduler to the
purpose of making them suitable to applications in security. Their ap­
proach is based on dividing the actions of each component of the system
in equivalence classes (tasks). The order of execution of different tasks is
decided in advance by a so-called task scheduler. The remaining nondeter­
minism within a task is resolved by a second scheduler, which models the
standard adversarial scheduler of the cryptographic community. This sec­
ond entity has limited knowledge about the other components: it sees only
the information that they communicate during execution. Their notion of
task scheduler is similar to our notion of admissible scheduler, but more
restricted since the strategy of the task scheduler is decided entirely before

128 Chapter 4. Information Hiding in Probabilistic Concurrent Systems

the execution of the system.
Another work along these lines is [dAHJ01], which uses partitions on

the state-space to obtain partial-information schedulers. However that work
considers a synchronous parallel composition, so the setting is rather dif­
ferent from ours.

The works in [CP10, CNP09] are similar to ours in spirit, but in a sense
dual from a technical point of view. Instead of defining a restriction on the
class of schedulers, they provide a way to specify that a choice is transparent
to the scheduler. They achieve this by introducing labels in process terms,
used to represent both the states of the execution tree and the next action or
step to be scheduled. They make two states indistinguishable to schedulers,
and hence the choice between them private, by associating to them the same
label. Furthermore, their “equivalence classes” (schedulable actions with
the same label) can change dynamically, because the same action can be
associated to different labels during the execution.

In [AAPvR10] we have extended the framework presented in this work
(by allowing internal nondeterminism and adding a second type of scheduler
to resolve it) with the aim of investigating angelic vs demonic nondetermin­
ism in equivalence-based properties.

The fact that full-information schedulers are unrealistic has also been
observed in fields other than security. With the aim to cope with gen­
eral properties (not only those concerning security), first attempts used
restricted schedulers in order to obtain rules for compositional reason­
ing [dAHJ01]. The justification for those restricted schedulers is the same
as for ours, namely, that not all information is available to all entities in
the system. Later on, it was shown that model checking is undecidable in
its general form for the kind of restricted schedulers presented in [dAHJ01].
See [GD07] and, more recently, [Gir09].

Finally, to the best of our knowledge, this is the first work using auto­
morphisms as a sound proof technique (in our case to prove strong anony­
mity and non-interference). The closest line of work we are aware of is in
the field of model checking. There, isomorphisms can be used to identify
symmetries in the system, and such symmetries can then be exploited to
alleviate the state space explosion (see for instance [KNP06]).

Chapter 5

Significant D iagnostic
Counterexam ple Generation

In this chapter, we present a novel technique for counterexam­
ple generation in probabilistic model checking of Markov Chains
and Markov Decision Processes. (Finite) paths in counterexam­
ples are grouped together in witnesses that are likely to provide
similar debugging information to the user. We list five prop­
erties that witnesses should satisfy in order to be useful as de­
bugging aid: similarity, accuracy, originality, significance, and
finiteness. Our witnesses contain paths that behave similarly
outside strongly connected components. Then, we show how to
compute these witnesses by reducing the problem of generating
counterexamples for general properties over Markov Decision
Processes, in several steps, to the easy problem of generating
counterexamples for reachability properties over acyclic Markov
Chains.

129

130 Chapter 5. Significant Diagnostic Counterexample Generation

5.1 Introduction

Model checking is an automated technique that, given a finite-state model
of a system and a property stated in an appropriate logical formalism,
systematically checks the validity of this property. Model checking is a
general approach and is applied in areas like hardware verification and
software engineering.

Nowadays, the interaction geometry of distributed systems and network
protocols calls for probabilistic, or more generally, quantitative estimates
of, e.g., performance and cost measures. Randomized algorithms are in­
creasingly utilized to achieve high performance at the cost of obtaining
correct answers only with high probability. For all this, there is a wide
range of models and applications in computer science requiring quantita­
tive analysis. Probabilistic model checking allows to check whether or not
a probabilistic property is satisfied in a given model, e.g., “Is every message
sent successfully received with probability greater or equal than 0.99?”.

A major strength of model checking is the possibility of generating di­
agnostic information in case the property is violated. This diagnostic in­
formation is provided through a counterexample showing an execution of
the model that invalidates the property under verification. Besides the
immediate feedback in model checking, counterexamples are also used in
abstraction-refinement techniques [CGJ+00], and provide the foundations
for schedule derivation (see, e.g., [BLR05, Feh02]).

Although counterexample generation was studied from the very begin­
ning in most model checking techniques, this has not been the case for
probabilistic model checking. Only recently [AHL05, And06, AL06, HK07a,
HK07b, AL09] attention was drawn to this subject,fifteen years after the
first studies on probabilistic model checking. Contrarily to other model
checking techniques, counterexamples in this setting are not given by a
single execution path. Instead, they are sets of executions of the system
satisfying a certain undesired property whose probability mass is higher
than a given bound. Since counterexamples are used as a diagnostic tool,
previous works on counterexamples have presented them as sets of finite
paths with probability large enough. We refer to these sets as represen­

5.1. Introduction 131

tative counterexamples. Elements of representative counterexamples with
high probability have been considered the most informative since they con­
tribute mostly to the property refutation.

A challenge in counterexample generation for probabilistic model check­
ing is that (1) representative counterexamples are very large (often infinite),
(2) many of its elements have very low probability (which implies that they
are very distant from the counterexample), and (3) that elements can be
extremely similar to each other (consequently providing similar diagnos­
tic information). Even worse, (4) sometimes the finite paths with highest
probability do not indicate the most likely violation of the property under
consideration.

For example, look at the Markov Chain D in Figure 5.1. The property
D |=<05 0 ^ stating that execution reaches a state satisfying ^ (i.e., reaches
s3 or s4) with probability lower or equal than 0.5 is violated (since the
probability of reaching ^ is 1). The left hand side of table in Figure 5.2
lists finite paths reaching ^ ranked according to their probability. Note
that finite paths with highest probability take the left branch in the sys­
tem, whereas the right branch in itself has higher probability, illustrating
Problem 4. To adjust the model so that it does satisfy the property (bug
fixing), it is not sufficient to modify the left hand side of the system alone;
no matter how one changes the left hand side, the probability of reaching ^
remains at least 0.6. Furthermore, the first six finite paths provide similar
diagnostic information: they just make extra loops in s 1. This is an exam­
ple of Problem 3. Additionally, the probability of every single finite path
is far below the bound 0.5, making it unclear if a particular path is impor­
tant; see Problem 2 above. Finally, the (unique) counterexample for the
property D =<1 0 ^ consists of infinitely many finite paths (namely all finite
paths of D); see Problem 1. To overcome these problems, we partition a
representative counterexample into sets of finite paths that follow a similar
pattern. We call these sets witnesses. To ensure that witnesses provide
valuable diagnostic information, we desire that the set of witnesses that
form a counterexample satisfies several properties: two different witnesses
should provide different diagnostic information (solving Problem 3) and el­
ements of a single witness should provide similar diagnostic information,

132 Chapter 5. Significant Diagnostic Counterexample Generation

Single p ath s W itn e sse s
Rank F. Path Prob Witness Mass

1 So(Sl)1S3 0 .2 [sos2s4] 0 .6

2 So(Sl)2S3 0 .1 [SoSlS3] 0.4
3 So(Sl)3S3 0.05
4 So(Sl)4 S3 0.025
5 So(Sl)5S3 0.0125
6 S0(S1)6S3 0.00625
7 So(S2)l S4 0.006
8 So(S2)2S4 0.0059
9 So(S2)3S4 0.0058

Figure 5.1: Markov Chain Figure 5.2: Comparison Table

as a consequence witnesses have a high probability mass (solving Problems
2 and 4), and the number of witnesses of a representative counterexample
should be finite (solving Problem 1).

In our setting, witnesses consist of paths that behave the same outside
strongly connected components. In the example of Figure 5.1, there are
two witnesses: the set of all finite paths going right, represented by [sos2s4]
whose probability (mass) is 0 .6 , and the set of all finite paths going left,
represented by [soS1S3] with probability (mass) 0.4.

In this chapter, we show how to obtain such sets of witnesses for bounded
probabilistic LTL properties on Markov Decision Processes (MDP). In
fact, we first show how to reduce this problem to finding witnesses for up­
per bounded probabilistic reachability properties on discrete time Markov
Chains (MCs). The major technical matters lie on this last problem to
which most of the chapter is devoted.

In a nutshell, the process to find witnesses for the violation of D =<p 00,
with D being an MC, is as follows. We first eliminate from the original MC
all the “uninteresting” parts. This proceeds as the first steps of the model
checking process: make absorbing all states satisfying 0 , and all states that
cannot reach 0, obtaining a new MC D ^. Next reduce this last MC to an

5.2. Preliminaries 133

acyclic MC Ac(D^) in which all strongly connected components have been
conveniently abstracted with a single probabilistic transition. The original
and the acyclic MCs are related by a mapping that, to each finite path in
Ac(D^) (that we call rail), assigns a set of finite paths behaving similarly
in D (that we call torrent). This map preserves the probability of reaching
0 and hence relates counterexamples in Ac(D^) to counterexamples in D.
Finally, counterexamples in Ac(D^) are computed by reducing the problem
to a k shortest path problem, as in [HK07a]. Because Ac(D^) is acyclic,
the complexity is lower than the corresponding problem in [HK07a].

It is worth mentioning that our technique can also be applied to pCTL
formulas without nested path quantifiers.

Looking ahead, Section 5.2 presents the necessary background on Markov
Chains (MC), Markov Decision Processes (MDP), and Linear Temporal
Logic (LTL). Section 5.3 presents the definition of counterexamples and
discusses the reduction from general LTL formulas to upper bounded prob­
abilistic reachability properties, and the extraction of the maximizing MC
in an MDP. Section 5.4 discusses desired properties of counterexamples. In
Sections 5.5 and 5.6 we introduce the fundamentals on rails and torrents,
the reduction of the original MC to the acyclic one, and our notion of signif­
icant diagnostic counterexamples. Section 5.7 then presents the techniques
to actually compute counterexamples. In Section 5.8 we discuss related
work and give final conclusions.

5.2 Prelim inaries

We now recall the notions of Markov Decision Processes, Markov Chains,
and Linear Temporal Logic.

5.2.1 Markov Decision Processes

Markov Decision Processes (MDPs) constitute a formalism that combines
nondeterministic and probabilistic choices. They are an important model
in corporate finance, supply chain optimization, system verification and
optimization. There are many slightly different variants of this formalism

134 Chapter 5. Significant Diagnostic Counterexample Generation

such as action-labeled MDPs [Bel57, FV97], probabilistic automata [SL95,
SdV04]; we work with the state-labeled MDPs from [BdA95].

D efinition 5.2.1. Let S be a finite set. A probability distribution on S is
a function p : S 4 [0,1] such that E Ses P(s) = 1. We denote the set of
all probability distributions on S by Distr(S). Additionally, we define the
Dirac distribution on an element s e S as 1s, i.e., 1s(s) = 1 and 1s(t) = 0
for all t e S \ {s}.

D efinition 5.2.2. A Markov Decision Process (MDP) is a quadruple M =
(S, so, L, t), where

• S is the finite state space;
• so e S is the initial state;

• L is a labeling function that associates to each state s e S a set L(s)
of propositional variables that are valid in s;

• t : S 4 p(Distr(S)) is a function that associates to each s e S a
non-empty and finite subset of Distr(S) of probability distributions.

D efinition 5.2.3. Let M = (S, so, t , L) be an MDP. We define a successor
relation 5 C S x S by 5 4 {(s,t)|3n e t(s) . n(t) > 0} and for each state
s e S we define the sets

Paths(M, s) 4 {tot lt 2 . . . e Sw|to = s A Vn e N . 5(tn , tn+l)} and
Paths*(M, s) 4 {tot l . . . tn e S*|to = s AV 0 < i < n . 5(tn, tn+l)}

of paths of D and finite paths of D respectively beginning at s. We usually
omit M from the notation; we also abbreviate Paths(M, so) as Paths(M)
and Paths*(M ,so) as Paths*(M). For w e Paths(s), we write the (n+1)-st
state of w as wn. As usual, we let C p(Paths(s)) be the Borel a-algebra on
the cones (to . . . tn) 4 {w e Paths(s)|wo = to A . . . A wn = tn}. Additionally,
for a set of finite paths A C Paths*(s), we define (A) 4 | J ^ A(a).

Figure 5.3 shows an MDP. Absorbing states (i.e., states s with t (s) =
{1s}) are represented by double lines. This MDP features a single nonde-
terministic decision, to be made in state so, namely n l and n2.

5.2. Preliminaries 135

Figure 5.3: Markov Decision Process

D efin itio n 5 .2 .4 . Let M = (S, s0 ,T, L) be an MDP, s G S and A C S .
We define the sets of paths and finite paths reaching A from s as

Reach(M,s, A) 4 g Paths(M ,s) | 3j>0.Wj G A} and
Reach*(M, s, A) 4 {a g Paths*(M, s) | last(a) G A A Vi<|CT|- 1 .CTi G A}

respectively. Note that Reach*(M,s, A) consists of those finite paths a
starting on s reaching A exactly once, at the end of the execution. It is
easy to check that these sets are prefix free, i.e. contain finite paths such
that none of them is a prefix of another one.

5.2.2 Schedulers

Schedulers (also called strategies, adversaries, or policies) resolve the non-
deterministic choices in an MDP [PZ93, Var85, BdA95].

D efin itio n 5 .2 .5 . Let M = (S, s0 ,T, L) be an MDP. A scheduler n on
M is a function from Paths*(M) to Distr(p(Distr(S))) such that for all
a G Paths*(M) we have n(a) G Distr(r(last(a))). We denote the set of all
schedulers on M by Sch(M).

136 Chapter 5. Significant Diagnostic Counterexample Generation

Note that our schedulers are randomized, i.e., in a finite path a a sched­
uler chooses an element of t (last(a)) probabilistically. Under a scheduler
n, the probability that the next state reached after the path a is t, equals
E ner(last(o-)) n(a)(n) ■ n(t). In this way, a scheduler induces a probability
measure on Bs as usual.

D efinition 5.2.6. Let M = (S, s0 ,T, L) be an MDP and n a scheduler on
M . We define the probability measure Pn as the unique measure on Bs0

such that for all s0s1. . . sn G Paths*(M)

We now recall the notions of deterministic and memoryless schedulers.

D efinition 5.2.7. Let M be an MDP and n a scheduler on M . We say
that n is deterministic if n(a)(n^) is either 0 or 1 for all n G t(last(a)) and
all a G Paths*(M). We say that a scheduler is memoryless if for all finite
paths a 1; a 2 of M with last(a1) = last(a2) we have n(a1) = n(a2).

D efinition 5.2.8. Let M be an MDP and A G Bs0. Then the maximal
probability P+ and minimal probability P- of A are defined by

A scheduler that attains P+(A) or P (A) is called a maximizing or m ini­
mizing scheduler respectively.

5.2.3 Markov Chains

A (discrete time) Markov Chain is an MDP associating exactly one prob­
ability distribution to each state. In this way nondeterministic choices are
no longer allowed.

Pn((s0s 1 .. .s„)) = n e n(s0s 1 .. .si)(n) ■ n(si+1).
i=0 ner(si)

P+(A) 4 sup Pn(A) and P - (A) 4
neSch(M)

D efinition 5.2.9 (Markov Chain). Let M = (S, s0, t, L) be an MDP. If
|t(s)| = 1 for all s G S , then we say that M is a Markov Chain (MC).

5.2. Preliminaries 137

In order to simplify notation we represent probabilistic transitions on
MCs by means of a probabilistic matrix P instead of t . Additionally, we
denote by PD s the probability measure induced by a MC D with initial
state s and we abbreviate P„ as P „ .D ,so D

5.2.4 Linear Temporal Logic

Linear temporal logic (LTL) [MP91] is a modal temporal logic with modal­
ities referring to time. In LTL is possible to encode formulas about the
future of paths: a condition will eventually be true, a condition will be true
until another fact becomes true, etc.

D efin itio n 5 .2 .10 . LTL is built up from the set of propositional variables
V, the logical connectives - , A, and a temporal modal operator by the
following grammar:

0 ::= V | - 0 | 0 A 0 | 0U0.

Using these operators we define V, 4 , ♦, and □ in the standard way.

D efin itio n 5 .2 .11 . Let M = (S, s0 ,T, L) be an MDP. We define satisfia­
bility for paths w in M , propositional variables v G V, and LTL formulas
0 , y inductively by

w |=M v ^ v G L(w0) w =M 0 A y ^ W |=M 0 and w 1=̂ Y
w l=M - 0 ^ not(w =m 0) w =M 0UY ^ 3i>0.w|i =M Y and

V0<j<i.w4j =M 0

where w^ is the i-th suffix of w. When confusion is unlikely, we omit the
subscript M on the satisfiability relation.

D efin itio n 5 .2 .12 . Let M be an MDP. We define the language SatM (0)
associated to an LTL formula 0 as the set of paths satisfying 0, i.e. SatM (0)
4 {w G Paths(M) | w |= 0}. Here we also generally omit the subscript M .

We now define satisfiability of an LTL formula 0 on an MDP M . We say
that M satisfies 0 with probability at most p (M |=<p 0) if the probability
of getting an execution satisfying 0 is at most p.

138 Chapter 5. Significant Diagnostic Counterexample Generation

D efin itio n 5 .2 .13 . Let M be an MDP, 0 an LTL formula and p G [0,1].
We define = and = byI <p I >p <J

M |=<p 0 ^ P+(Sat(0)) < p,
M |=>p 0 ^ P - (Sat(0)) > p.

We define M |=<p 0 and M |=>p 0 in a similar way. In case the MDP
is fully probabilistic, i.e., an MC, the satisfiability problem is reduced to
M |=Mp 0 ^ PM (Sat(0)) m p, where mg {<, <, >, >}.

5.3 C ounterexam ples

In this section, we define what counterexamples are and how the problem of
finding counterexamples to a general LTL property over Markov Decision
Processes reduces to finding counterexamples to reachability problems over
Markov Chains.

D efinition 5.3.1 (Counterexamples). Let M be an MDP and 0 an LTL
formula. A counterexample to M |=<p 0 is a measurable set C C Sat(0)
such that P+(C) > p. Counterexamples to M |=<p 0 are defined similarly.

Counterexamples to M |=>p 0 and M |=>p 0 cannot be defined straight­
forwardly as it is always possible to find a set C C Sat(0) such that
P - (C) < p or P - (C) < p, note that the empty set trivially satisfies it.
Therefore, the best way to find counterexamples to lower bounded proba­
bilities is to find counterexamples to the dual properties M |=<i_p_,0 and
M |=<1-p_,0. That is, while for upper bounded probabilities, a counterex­
ample is a set of paths satisfying the property with mass probability beyond
the bound, for lower bounded probabilities the counterexample is a set of
paths that does not satisfy the property with sufficient probability.

E xam p le 5 .3 .1 . 5.3.1 Consider the MDP M of Figure 5.4 and the LTL
formula 0v. It is easy to check that M =<1 0v. The set C = Sat(Ov) =
{p G Paths(s0) 13»>0.p = s0(s1)j(s4)w} U {p G Paths(s0) 13»>0.p = s0(ss)j(s5)w}
is a counterexample. Note that Pn(C) = 1 where n is any deterministic
scheduler on M satisfying n(s0) = n 1.

5.3. Counterexamples 139

LTL formulas are actually checked by
reducing the model checking problem to
a reachability problem [dAKM97]. For
checking upper bounded probabilities, the
LTL formula is translated into an equiv­
alent deterministic Rabin automaton and
composed with the MDP under verifica­
tion. On the obtained MDP, the set of
states forming accepting end components
(SCC that traps accepting conditions with
probability 1) are identified. The maxi­
mum probability of the LTL property on
the original MDP is the same as the max­
imum probability of reaching a state of an
accepting end component in the final MDP. Hence, from now on we will fo­
cus on counterexamples to properties of the form M =<p 00 or M =<p 00,
where 0 is a propositional formula, i.e., a formula without temporal oper­
ators.

In the following, it will be useful to identify the set of states in which a
propositional property is valid.

D efin itio n 5 .3 .2 . Let M be an MDP. We define the state language
SatM(0) associated to a propositional formula 0 as the set of states sat­
isfying 0, i.e., SatM(0) — I s G S | s = 0}, where = has the obvious
satisfaction meaning for states. As usual, we generally omit the subscript

.

Figure 5.4:

We will show now that, in order to find a counterexample to a property
in an MDP with respect to an upper bound, it suffices to find a counterex­
ample for the MC induced by the maximizing scheduler. The maximizing
scheduler turns out to be deterministic and memoryless [BdA95]; conse­
quently the induced Markov Chain can be easily extracted from the MDP
as follows.

D efin itio n 5 .3 .3 . Let M = (S, Sq,t, L) be an MDP and n a deterministic

140 Chapter 5. Significant Diagnostic Counterexample Generation

memoryless scheduler. Then we define the MC induced by n as M n =
(S, s0,P n, L) where P n(s,t) = (n(s))(t) for all s ,t G S.

Now we state that finding counterexamples to upper bounded proba­
bilistic reachability LTL properties on MDPs can be reduced to finding
counterexamples to upper bounded probabilistic reachability LTL proper­
ties on MCs.

T h eorem 5 .3 .4 . Let M be an MDP, 0 a propositional formula and p G
[0,1]. Then, there is a maximizing (deterministic memoryless) scheduler n
such that M |=<p 00 ^ M n |=<p 00. Moreover, if C is a counterexample
to M n |=<p 0 0 then C is also a counterexample to M |=<p 00.

Note that n can be computed by solving a linear minimization problem
[BdA95]. See Section 5.7.1.

5.4 R epresentative C ounterexam ples, Partitions
and W itnesses

The notion of counterexample from Definition 5.3.1 is very broad: just an
arbitrary (measurable) set of paths with high enough mass probability. To
be useful as a debugging tool (and in fact to be able to present the coun­
terexample to a user), we need counterexamples with specific properties.
We will partition counterexamples (or rather, representative counterexam­
ples) in witnesses and list five informal properties that we consider valuable
in order to increase the quality of witnesses as a debugging tool.

We first note that for reachability properties it is sufficient to consider
counterexamples that consist of finite paths.

D efinition 5.4.1 (Representative counterexamples). Let M be an MDP,
0 a propositional formula and p G [0,1]. A representative counterexample
to M |=<p 00 is a set C C Reach*(M, Sat(0)) such that P+((C)) > p.
We denote the set of all representative counterexamples to M |=<p 0 0 by
R (M ,p ,0).

5.4. Representative Counterexamples, Partitions and Witnesses 141

O bservation 5.4.1. Let M be an MDP, 0 a propositional formula and p G
[0,1]. If C is a representative counterexample to M =<p 00, then (C) is a
counterexample to M =<p 00. Furthermore, there exists a counterexample
to M =<p 00 if and only if there exists a representative counterexample to
M =<p 0 0 .

Following [HK07a], we present the notions of minimum counterexample,
strongest evidence and most indicative counterexamples.

D efinition 5.4.2 (Minimum counterexample). Let D be an MC, 0 a propo­
sitional formula and p G [0,1]. We say that C G R(D,p, 0) is a minimum
counterexample if | C | < | C' |, for all C' G R(D,p, 0).

D efinition 5.4.3 (Strongest evidence). Let D be an MC, 0 a proposi­
tional formula and p G [0,1]. A strongest evidence to D =<p 0 0 is a
finite path a G Reach*(D, Sat(0)) such that PD((a)) > PD((p)), for all
p G Reach*(D, Sat(0)).

D efinition 5.4.4 (Most indicative counterexample). Let D be an MC, 0
a propositional formula and p G [0,1]. We call C G R(D,p, 0) a most
indicative counterexample if it is minimum and P ((C)) > P ((C')), for all
minimum counterexamples C' G R(D,p, 0).

Unfortunately, very often most indicative counterexamples are very
large (even infinite), many of its elements have insignificant measure and el­
ements can be extremely similar to each other (consequently providing the
same diagnostic information). Even worse, sometimes the finite paths with
highest probability do not exhibit the way in which the system accumu­
lates higher probability to reach the undesired property (and consequently
where an error occurs with higher probability). For these reasons, we are
of the opinion that representative counterexamples are still too general in
order to be useful as feedback information. We approach this problem by
refining a representative counterexample into sets of finite paths following
a “similarity” criteria (introduced in Section 5.5) . These sets are called
witnesses of the counterexample.

142 Chapter 5. Significant Diagnostic Counterexample Generation

Recall that a set Y of nonempty sets is a partition of X if the elements of
Y cover X and are pairwise disjoint. We define counterexample partitions
in the following way.

D efinition 5.4.5 (Counterexample partitions and witnesses). Let M be
an MDP, 0 a propositional formula, p G [0,1], and C a representative coun­
terexample to M =<p 00. A counterexample partition is a partition of
C. We call the elements of witnesses.

Since not every partition generates useful witnesses (from the debugging
perspective), we now state five informal properties that we consider valuable
in order to improve the diagnostic information provided by witnesses. In
Section 5.7 we show how to partition the representative counterexample in
order to obtain witnesses satisfying most of these properties.

Sim ilarity: Elements of a witness should provide similar debugging
information.

A ccuracy: Witnesses with higher probability should exhibit evolu­
tions of the system with higher probability of containing errors.

O riginality: Different witnesses should provide different debugging
information.

Significance: Witnesses should be as closed to the counterexample
as possible (their mass probability should be as closed as possible to
the bound p).

F in iten ess: The number of witnesses of a counterexample partition
should be finite.

5.5 R ails and Torrents

As argued before we consider that representative counterexamples are ex­
cessively general to be useful as feedback information. Therefore, we group

5.5. Rails and Torrents 143

finite paths of a representative counterexample in witnesses if they are “sim­
ilar enough”. We will consider finite paths that behave the same outside
SCCs of the system as providing similar feedback information.

In order to formalize this idea, we first reduce the original MC D to
an acyclic MC preserving reachability probabilities. We do so by removing
all SCCs K of D keeping just input states of K. In this way, we get a new
acyclic MC denoted by Ac(D). The probability matrix of the Markov Chain
relates input states of each SCC to its output states with the reachability
probability between these states in D. Secondly, we establish a map between
finite paths a in Ac(D) (rails) and sets of paths W in D (torrents). Each
torrent contains finite paths that are similar, i.e., behave the same outside
SCCs. We conclude the section showing that the probability of a is equal
to the mass probability of W .

R eduction to A cyclic Markov Chains

Consider an MC D = (S, s0, P ,L). Recall that a subset K C S is called
strongly connected if for every s ,t G K there is a finite path from s to t.
Additionally K is called a strongly connected component (SCC) if it is a
maximally (with respect to C) strongly connected subset of S.

Note that every state is a member of exactly one SCC of D; even those
states that are not involved in cycles, since the trivial finite path s connects
s to itself. We call trivial strongly connected components to the SCCs con­
taining absorbing states or states not involved in cycles (note that trivial
SCCs are composed by one single state). From now on we let SCC* be the
set of non trivial strongly connected components of an MC.

A Markov Chain is called acyclic if it contains only trivial SCCs. Note
that an acyclic Markov Chain still has absorbing states.

D efinition 5.5.1 (Input and Output states). Let D = (S, s0, P , L) be an
MC. Then, for each SCC* K of D, we define the sets InpK C S of all states in
K that have an incoming transition from a state outside of K and OutK C S
of all states outside of K that have an incoming transition from a state of
K in the following way

144 Chapter 5. Significant Diagnostic Counterexample Generation

InpK 4 {t e K | 3 s e S \ K .P(s, t) > 0},

OutK 4 {s G S \ K | 3 1 G K .P (t,s) > 0 }.

XU .
Input States

K

ttt
• • •

Output States

We also define for each SCC* K an MC related to K as D k = (K U OutK, sk,
P k,L k) where sk is any state in InpK, Lk(s) 4 L(s), and PK(s,t) is equal
to P (s ,t) if s G K and equal to 1s otherwise. Additionally, for every state
s involved in non trivial SCCs we define SCC+ as D k, where K is the SCC*
of D such that s e K.

Now we are able to define an acyclic MC Ac(D) related to D.

D efin itio n 5 .5 .2 . Let D = (S, so, P , L) be a MC. We define Ac(D) 4
(S', so, P ',L ') where

S' 4 S \ U KU |J InpK,
Kescc* Kescc*

L' 4 L,j|s' ,

P '(s ,t) 4

P (s ,t) if s G Scom,
PD s(Reach(SCC+, s, {t})) if s e Sinp A t e Outscc+,
1s if s e Sinp A Outscc+ = 0,
0 otherwise.

Note that Ac(D) is indeed acyclic.

E xam p le 5 .5 .1 . Consider the MC D of Figure 5.5(a). The strongly con­
nected components of D are Ki 4 { s^ s 3 ,s 4, s7}, K2 4 {s5 ,s 6 ,s 8} and the
singletons {so}, {s2}, {sc,}, {sio}, {sii}, {si2}, {si3}, and {sM}. The input
states of Ki are Inp^ = {si } and its output states are O ut^ = {s9 , s i0}.
For K2, InpK2 = {s5 ,s 6} and OutK2 = {si i , s i4}. The reduced acyclic MC
of D is shown in Figure 5.5(b).

S

5.5. Rails and Torrents 145

(a) Original MC (b) Derived Acyclic MC
Figure 5.5:

Rails and Torrents

We now relate (finite) paths in Ac(D) (rails) to sets of paths in D (torrents).

D efinition 5.5.3 (Rails). Let D be an MC. A finite path a e Paths*(Ac(D))
will be called a rail of D.

Consider a rail a, i.e., a finite path of Ac(D). We will use a to represent
those paths w of D that behave “similar to” a outside SCCs of D. Naively,
this means that a is a subsequence of w. There are two technical subtleties
to deal with: every input state in a must be the first state in its SCC in w
(freshness) and every SCC visited by w must be also visited by a (inertia)
(see Definition 5.5.5) . We need these extra conditions to make sure that no
path w behaves “similar to” two distinct rails (see Lemma 5.5.7).

Recall that given a finite sequence a and a (possible infinite) sequence
w, we say that a is a subsequence of w, denoted by a C w, if and only if there
exists a strictly increasing function ƒ : { 0 ,1 ,..., |a | — 1} 4 { 0 ,1 ,..., |w | — 1}
such that V0<i<|CT|.ai = wf(¿). If w is an infinite sequence, we interpret the
codomain of ƒ as N. In case ƒ is such a function we write a Cf w.

D efin itio n 5 .5 .4 . Let D = (S, s0, P , L) be an MC. On S we consider the
equivalence relation satisfying s t if and only if s and t are in the
same strongly connected component. Again, we usually omit the subscript

from the notation.

146 Chapter 5. Significant Diagnostic Counterexample Generation

The following definition refines the notion of subsequence, taking care
of the two technical subtleties noted above.

D efin itio n 5 .5 .5 . Let D = (S, so, P , L) be an MC, w a (finite) path of D,
and a e Paths*(Ac(D)) a finite path of Ac(D). Then we write a ; w if
there exists ƒ : { 0 ,1 ,..., |a| — 1} 4 N such that a Cf w and

Vo<j<f(j) : wf(j) / wj; for all i = 0 ,1 ,... |a| — 1, {Freshness property}
Vf(i)<j<f(j+i) : wf(j) ~ wj; for all i = 0 ,1 ,... |a| — 2. {Inertia property}

In case ƒ is such a function we write a ; w.

E xam p le 5 .5 .2 . Let D = (S, so, P , L) be the MC of Figure 5.5(a) and
take a = sos2s6s14. Then for all i e N we have a i f wj where wj =
sos2s6 (s5sss6)jsi4 and ¿(0) 4 0, ^(1) 4 1 , /¿(2) 4 2, and ^(3) 4 3 + 3i.
Additionally, a ; sos2s5sss6s14 since for all ƒ satisfying a Cf sos2s5sss6s 14
we must have ƒ(2) = 5; this implies that ƒ does not satisfy the freshness
property. Finally, note that a ; sos2s6s 11s14 since for all ƒ satisfying
a Cf sos2s6s 11s14 we must have ƒ(2) = 2; this implies that ƒ does not
satisfy the inertia property.

We now give the formal definition of torrents.

D efinition 5.5.6 (Torrents). Let D = (S, so, P , L) be an MC and a a
sequence of states in S. We define the function Torr by

Torr(D, a) 4 {w e Paths(D) | a ; w}.

We call Torr(D, a) the torrent associated to a.

We now show that torrents are disjoint (Lemma 5.5.7) and that the
probability of a rail is equal to the probability of its associated torrent
(Theorem 5.5.10) . For this last result, we first show that torrents can be
represented as the disjoint union of cones of finite paths. We call these
finite paths generators of the torrent (Definition 5.5.8) .

5.5. Rails and Torrents 147

L em m a 5 .5 .7 . Let D be an MC. For every a, p e Paths*(Ac(D)) we have

a = p ^ Torr(D, a) Pi Torr(D, p) = 0.

D efinition 5.5.8 (Torrent Generators). Let D be an MC. Then we define
for every rail a e Paths*(Ac(D)) the set

TorrGen(D, a) 4 {p e Paths*(D) | 3 ƒ : a ; p A ƒ(|a| — 1) = |p| — 1}.

In the example from the Introduction (see Figure 5.1), sos1s3 and sos2s4

are rails. Their associated torrents are, respectively, {sos^s" | n e N*} and
{sos^s4 | n e N*} (note that s3 and s4 are absorbing states), i.e. the paths
going left and the paths going right. The generators of the first torrent are
{sosns3 | n e N*} and similarly for the second torrent.

L em m a 5 .5 .9 . Let D be an MC and a e Paths*(Ac(D)) a rail of D. Then
we have

Torr(D,a) = y (p).
pETorrGen(D, a)

Proof.
(5) Let pop1 ••• pk e TorrGen(ats) and n t the lowest subindex of p
such that pnt = t. Take p 4 pop1... pnt and n 4 pnt . . . pk (Note that
pop1 ■ ■ ■ pk = p tail(n)). In order to prove that pop1 ■ ■ ■ pk e Aats we need to
prove that

(1) p e TorrGen(at), and

(2) n e Paths*(SCC+, t, {s}).

(1) Let ƒ be such that ats ; pop1 ••• pk and ƒ (|ats| — 1) = k. Take
g : { 0 ,1 ,..., |at| — 1} 4 N be the restriction of ƒ . I t is easy to check
that a t p. Additionally ƒ(|at| — 1) = nt (otherwise ƒ would not
satisfy the freshness property for i = |at| — 1). Then, by definition of
g, we have g(|at| — 1) = nt .

148 Chapter 5. Significant Diagnostic Counterexample Generation

(2) It is clear that n is a path from t to s. Therefore we only have to show
that every state of n is in SCC+. By definition of SCC+, no = t e
SCC+ and s e SCC+ since s e Outscc+. Additionally, since ƒ satisfies
inertia property we have that Vf(|<rt|-1)<j<f(|<rts|-1) : pf(|<rt|-1) ^ pj ,
since ƒ (|at| — 1) = nt and n 4 pnt . . . pfc we have Vo<j <|n|-1 : t ~ nj
proving that nj e SCC+ for j e {1, ■ ■ ■ , |n| — 2}.

(C) Take p e TorrGen(at) and tail(n) e Paths*(SCC+, t, {s}). In order
to prove that p tail(n) e TorrGen(ats) we need to show that there exists a
function g such that:

(1) ats ptail(n),

(2) g(|ats| — 1) = |p tail(n)| — 1.

Since p e TorrGen(at) we know that there exists ƒ be such that a t ; p
and ƒ(|at| — 1) = |p| — 1. We define g : { 0 ,1 ,..., |ats| — 1} 4 { 0 ,1 ,...,
|p tail(n)| — 1} by

g(i) 4 / ƒ(i) if i < |ats| — 1,
) \ |ptail(n)| — 1 if i = |ats| — 1.

(1) It is easy to check that ats Cg p tail(n). Now we will show that g
satisfies Freshness and Inertia properties.
Freshness property: We need to show that for all 0 < i < |ats| we have
Vo<j<g(j) : ptail(n)g(j) / ptail(n)j . For the cases i e { 0 ,..., |at| — 1}
this holds since a t ; f p and definition of g.

Consider i = |ats| — 1, in this case we have to prove Vo<j<|ptaii(n)|-1 :
p tail(n)|ptaii(n)| — 1) / p tail(n)j or equivalently Vo<j<|ptaii(n)| — 1 : s /
p tail (n) j .

Case j e { |p |,. . . |ptail(n)| — 1}.
From n e Paths*(SCC+, t, {s}) and s e Out+^+ it is easy to see

Vo<j<|taii(n)| — 1 : s ^ tail(n)j

5.5. Rails and Torrents 149

Case j e { 0 ,..., |p| — 1}.
From ats e Paths*(Ac(D)) we have Vo<j< |CTt|- 1 : s / a t j . Addi­
tionally, a t p and definition of g imply Vo<j<|p| : s / pj or
equivalently Vo<j<|p| : s / ptail(n)j.

Inertia property: Since n e Paths*(SCC+, t, {s}) we have Vo<j< |n |- 1 :
t ~ nj which implies that V|p|-1<j<|ptail(n) | - 1 : p tail(n) |p | - 1 ~ ptail(n)j
or equivalently Vg(|CT|- 1)<j<g(|CTs |-1) : p tail(n)g(|p|-1) ~ p tail(n)j show­
ing that g satisfies the inertia property.

(2) Follows from the definition of g. □

T h eorem 5 .5 .10 . Let D be an MC. Then for every rail a e Paths*(Ac(D))
we have

PAc(D) ((a)) = Pd(Torr(D, a)).

Proof. By induction on the structure of a.

Base Case: Note that Pac(D)((so)) = PAc(D)(Paths(Ac(D), so)) = 1 , and
similarly 1 = PD(Paths(D, so)) = PD(Torr(so)).

Inductive Step: Let t be such that last(a) = t. Suppose that t e SCom.
Then

PAc(D)((as))
= PAc(D) ((a)) ' Ac(P)(t,s)
= Pd (Torr(a)) -P (t, s)

{Inductive Hypothesis and definition of P}
PD (W pGTorrGen(a) (p)) ' P (t,s) {Lem. }

= SpeTorrGen(a) PD((p)) ' PD((ts))
= EpeTorrGen(a) PD((p tail(ts)))

which, by distributivity and last(p) = t for all p G TorrGen(a)}, is
equal to

150 Chapter 5. Significant Diagnostic Counterexample Generation

= SpeTorrGen(a), n€Paths(SCC+, t,{s}) PD((ptail(n)))
= £ * = * ,. Pd ((p)) {Dfn.A }
= EpeTorrGen(as) Pd ((p)) {Lem. 5.5.7}
= Pd (WpeTorrGen(as)(p))
= PD(Torr(as)) {Lem. 5.5.9}

Now suppose that t e Sinp. We denote by Ac(P) to the probability
matrix of Ac(D), then

Pac(d) ((as))
= PAc(d) ((a)) ' Ac(P)(t,s)
= Pp(Torr(a)) ■ Ac(P)(t,s) {HI}

PD (WpGTorrGen(a) (p)) ' Ac(P)(t,s) {Lem. 5.5.9}

= (SpeTorrGen(a) Pd ((p))) ' Ac(P)(t, s)
= EpeTorrGen(a) Pd ((p)) ' Pd ,t ^ {s}))

{By definition of Ac(P) and distributivity}
SpeTorrGen(a) Pd ((p)) ' Sn€Paths*(SCC+ ,t ,{s}) PD,t ((n))

= SpeTorrGen(a),n€Paths*(SCC+,t,{s}) PD ((p tail(n))) {Dfn. p }
= E p €ACTS Pd ((p)) {Dfn. A }
= EpeTorrGen(as) Pd ((p)) {Lem. 5.5.7}
= Pd (WpeTorrGen(as)(p))
= Pp (Torr(as)) {Lem. 5.5.9}

5.6 Significant D iagnostic C ounterexam ples

So far we have formalized the notion of paths behaving similarly (i.e., be­
having the same outside SCCs) in an MC D by removing all SCC of D, ob­
taining Ac(D). A representative counterexample to Ac(D) |=<p 0 0 gives rise
to a representative counterexample to D |=<p 00 in the following way: for

5.6. Significant Diagnostic Counterexamples 151

every finite path a in the representative counterexample to Ac(D) |=<p 00
the set TorrGen(D, a) is a witness, then we obtain the desired representative
counterexample to D |=<p 0 0 by taking the union of these witnesses.

Before giving a formal definition, there is still one technical issue to
resolve: we need to be sure that by removing SCCs we are not discarding
useful information. Because torrents are built from rails, we need to make
sure that when we discard SCCs, we do not discard rails that reach 0.

We achieve this by first making states satisfying 0 absorbing. Addi­
tionally, we make absorbing states from which it is not possible to reach 0 .
Note that this does not affect counterexamples.

D efin itio n 5 .6 .1 . Let D = (S, so, P , L) be an MC and 0 a propositional
formula. We define the MC D^ 4 (S, so, P ^ , L), with

where Sat0 (0) 4 {s e S | PD s (Reach(D, s, Sat(0))) > 0} is the set of states
reaching 0 in D.

The following theorem shows the relation between paths, finite paths,
and probabilities of D, D ^, and Ac(D^). Most importantly, the probability
of a rail a (in Ac(D^)) is equal to the probability of its associated torrent
(in D) (item 5 below) and the probability of 00 is not affected by reducing
D to Ac(D^) (item 6 below).

Note that a rail a is always a finite path in Ac(D^), but that we can
talk about its associated torrent Torr(D^, a) in D^ and about its associated
torrent Torr(D, a) in D. The former exists for technical convenience; it is
the latter that we are ultimately interested in. The following theorem also
shows that for our purposes, viz. the definition of the generators of the
torrent and the probability of the torrent, there is no difference (items 3
and 4 below).

1 if s e Sat ̂(0) A s = t,
1 if s e Sat(0) A s = t,
P (s ,t) if s e Sat^(0) — Sat(0),
0 otherwise,

152 Chapter 5. Significant Diagnostic Counterexample Generation

C orollary 5 .6 .1 . Let D = (S, so, P , L) be an MC and 0 a propositional
formula. Then for every a e Paths*(D^)

1. Reach*(D^,so,Sat(0)) = Reach*(D,so,Sat(0)),

2 . P ^ ((a)) = Pp((a)),

3. TorrGen(D^, a) = TorrGen(D, a),

4. P ^ (Torr(D ^,a))= Pp (Torr(D,a)),

5. PAc(D̂)((a)) = PD (Torr(D,a)),

6 . Ac(D^) |=<p 0 0 if and only if D |=<p 00, for any p e [0,1].

D efinition 5.6.2 (Torrent-Counterexamples). Let D = (S, so, P , L) be an
MC, 0 a propositional formula, and p e [0,1] such that D [=<p 00. Let C
be a representative counterexample to Ac(D^) |=<p 00. We define the set

TorRepCount(C) 4 {TorrGen(D, a) | a e C}.

We call the set TorRepCount(C) a torrent-counterexample of C. Note that
this set is a partition of a representative counterexample to D |=<p 00. Ad­
ditionally, we denote by R t (D, p, 0) to the set of all torrent-counterexamples
to D |=<p 00, i.e., {TorRepCount(C) | C e R(Ac(D),p,0)}.

T h eorem 5 .6 .3 . Let D = (S, so, P , L) be an MC, 0 a propositional for­
mula, and p e [0,1] such that D |=<p 00. Take C a representative counterex­
ample to Ac(D^) |=<p 00. Then the set of finite paths 1+)WeTorRepCount(C) W
is a representative counterexample to D |=<p 00.

Note that for each a e C we get a witness TorrGen(D, a). Also note that
the number of rails is finite, so there are also only finitely many witnesses.

Following [HK07a], we extend the notions of minimum counterexamples
and strongest evidence.

D efinition 5.6.4 (Minimum torrent-counterexample). Let D be an MC,
0 a propositional formula and p e [0,1]. We say that Ct e R t (D,p, 0) is a
minimum torrent-counterexample if |Ct | < |Ct|, for all Ct e R t (D ,p ,0).

5.7. Computing Counterexamples 153

D efin itio n 5 .6 .5 (Strongest torrent-evidence). Let D be an MC, 0 a
propositional formula and p G [0, l]. A strongest torrent-evidence to D =<p 00
is a torrent Torr(D, a) such that a G Paths*(Ac(D^)) and PD(Torr(D, a))
> PD(Torr(D, p)) for all p G Paths*(Ac(D^)).

Now we define our notion of significant diagnostic counterexamples. It
is the generalization of most indicative counterexample from [HK07a] to
our setting.

D efinition 5.6.6 (Most indicative torrent-counterexample). Let D be an
MC, 0 a propositional formula and p G [0, l]. We say that Ct G R t(D,p, 0)
is a most indicative torrent-counterexample if it is a minimum torrent-
counterexample and P(U yeCt (T)) > P(UTeC/ (T)) for all minimum torrent-
counterexamples Ct G R t(D,p, 0).

Note that in our setting, as in [HK07a], a minimal torrent-counterexample
C consists of the ICI strongest torrent-evidences.

By Theorem 5.6.3 it is possible to obtain strongest torrent-evidence and
most indicative torrent-counterexamples of an MC D by obtaining strongest
evidence and most indicative counterexamples of Ac(D^) respectively.

5.7 C om puting C ounterexam ples

In this section we show how to compute most indicative torrent-counterexamples.
We also discuss what information to present to the user: how to present
witnesses and how to deal with overly large strongly connected components.

5.7.1 M axim izing Schedulers

The calculation of the maximal probability on a reachability problem can
be performed by solving a linear minimization problem [BdA95, dA97].
This minimization problem is defined on a system of inequalities that has a
variable for each different state s¿ and an inequality ^ j n (sj) ■ Xj < for
each distribution n G t (s¿). The maximizing (deterministic memoryless)
scheduler n can be easily extracted out of such system of inequalities after

154 Chapter 5. Significant Diagnostic Counterexample Generation

obtaining the solution. If • • • ,pn are the values that minimize ^ i xi in
the previous system, then n is such that, for all si , n(si) = n whenever

n (s j) ■ pj = pi . In the following we denote Ps. [00] 4 xi .

5.7.2 Com puting m ost indicative torrent-counterexam ples

We divide the computation of most indicative torrent-counterexamples to
M =<p 00 in three stages: pre-processing, SCC analysis, and searching.

P re-p ro cessin g stage . We first modify the original MC D by making
all states in Sat(0) U S \ Sat0 (0) absorbing. In this way we obtain the MC
D^ from Definition 5.6.1. Note that we do not have to spend additional
computational resources to compute this set, since Sat0 (0) = {s G S |
Ps[O0] > 0} and hence all required data is already available from the LTL
model checking phase.

SCC an a lysis stage . We remove all SCCs K of D^ keeping just input
states of K, getting the acyclic MC Ac(D^) according to Definition 5.5.2.

To compute this, we first need to find the SCCs of D ^. There exists sev­
eral well known algorithms to achieve this: Kosaraju’s, Tarjan’s, Gabow’s
algorithms (among others). We also have to compute the reachability prob­
ability from input states to output states of every SCC. This can be done
by using steady-state analysis techniques [Cas93].

S earch in g s ta g e . To find most indicative torrent-counterexamples in D,
we find most indicative counterexamples in Ac(D^). For this we use the
same approach as [HK07a], turning the MC into a weighted digraph to
replace the problem of finding the finite path with highest probability by a
shortest path problem. The nodes of the digraph are the states of the MC
and there is an edge between s and t if P(s, t) > 0. The weight of such an
edge is — log(P(s, t)).

Finding the most indicative counterexample in Ac(D^) is now reduced
to finding k shortest paths. As explained in [HK07a], our algorithm has to
compute k on the fly. Eppstein’s algorithm [Epp98] produces the k shortest

5.7. Computing Counterexamples 155

paths in general in O(m + n log n + k), where m is the number of nodes and
n the number of edges. In our case, since Ac(D^) is acyclic, the complexity
decreases to O(m + k).

5.7.3 D ebugging issues

R ep resen ta tiv e fin ite p a th s. What we have computed so far is a most
indicative counterexample to Ac(D^) =<p 0^ . This is a finite set of rails,
i.e., a finite set of paths in Ac(D^). Each of these paths a represents a
witness TorrGen(D, a). Note that this witness itself has usually infinitely
many elements.

In practice, one has to display a witness to the user. The obvious way
would be to show the user the rail a. This, however, may be confusing to
the user as a is not a finite path of the original Markov Decision Process.
Instead of presenting the user with a, we therefore show the user the finite
path of TorrGen(D, a) with highest probability.

D efin itio n 5 .7 .1 . Let D be an MC, and a G Paths*(Ac(D^)) a rail of D.
We define the representant of Torr(D, a) as

repTorr (D, a) = repTorr I 1+1 (p)) 4 arg max P((p))
VeTorrGen(D,CT) / /Æ TorrG^^

Note that given repTorr (D, a) one can easily recover a. Therefore, no
information is lost by presenting torrents as one of its generators instead of
as a rail.

E xpanding SCC. Note that in the Preprocessing , s
stage, we reduced the size of many SCCs of the system 1'
(and likely even completely removed some) by making f ‘
states in Sat(0) U S \ Sat0 (0) absorbing. However, It is T K
possible that the system still contains some very large
strongly connected components. In that case, a single •“
witness could have a very large probability mass and Figure 5.6:

156 Chapter 5. Significant Diagnostic Counterexample Generation

one could argue that the information presented to the user is not detailed
enough. For instance, consider the Markov Chain of Figure 5.6 in which
there is a single large SCC with input state t and output state u.

The most indicative torrent-counterexample to the property D |=<0 9 00
is simply {TorrGen(stu)}, i.e., a single witness with probability mass 1 asso­
ciated to the rail stu. Although this may seem uninformative, we argue that
it is more informative than listing several paths of the form st ■ ■ ■ u with
probability summing up to, say, 0.91. Our single witness counterexample
suggests that the outgoing transition to a state not reaching 0 was simply
forgotten in the design; the listing of paths still allows the possibility that
one of the probabilities in the whole system is simply wrong.

Nevertheless, if the user needs more information to tackle bugs inside
SCCs, note that there is more information available at this point. In par­
ticular, for every strongly connected component K, every input state s of K
(even for every state in K), and every output state t of K, the probability
of reaching t from s is already available from the computation of Ac(D^)
during the SCC analysis stage of Section 5.7.2.

5.8 R elated W ork

Recently, some work has been done on counterexample generation tech­
niques for different variants of probabilistic models (Discrete Markov Chains
and Continue Markov Chains) [AHL05, AL06, HK07a, HK07b]. In our ter­
minology, these works consider witnesses consisting of a single finite path.
We have already discussed in the Introduction that the single path ap­
proach does not meet the properties of accuracy, originality, significance,
and finiteness.

Instead, our witness/torrent approach provides a high level of abstrac­
tion of a counterexample. By grouping together finite paths that behave
the same outside strongly connected components in a single witness, we
can achieve these properties to a higher extent. Behaving the same outside
strongly connected components is a reasonable way of formalizing the con­
cept of providing similar debugging information. This grouping also makes

5.8. Related W ork 157

witnesses significantly different from each other: each witness comes from
a different rail and each rail provides a different way to reach the undesired
property. Then each witness provides original information. Of course, our
witnesses are more significant than single finite paths, because they are
sets of finite paths. This also gives us more accuracy than the approach
with single finite paths, as a collection of finite paths behaving the same
and reaching an undesired condition with high probability is more likely to
show how the system reaches this condition than just a single path. Finally,
because there is a finite number of rails, there is also a finite number of
witnesses.

Another key difference of our work with respect to previous ones is
that our technique allows us to generate counterexamples for probabilistic
systems with nondeterminism. However, an independent and concurrent
study of counterexample generation for MDPs was carried out by Aljazzar
and Leue [AL09]. There, the authors consider generating counterexamples
for a fragment of pCTL, namely upper bounded formulas without nested
temporal operators. The authors present three methods for generating
counterexamples and study conditions under which these methods are suit­
able.

More recently, Schmalz et al. also investigated quantitative counterex­
ample generation for LTL formulas [SVV09]. In qualitative probabilistic
model checking, a counterexample is presented as a pair (0 , 7), where a
and y are finite words such that all paths that extend a and have infinitely
many occurrences of y violate the property under consideration. In quan­
titative probabilistic model checking, a counterexample is presented as a
pair (W, R), where W is a set of such finite words a and R is a set of such
finite words y .

Similar SCC reduction techniques to the one presented in this paper
have been studied for different purposes. In [lGM02], the authors focus on
the problem of software testing. They use Markov chains to model soft­
ware behaviour and SCC analysis to decompose the state space of large
Markov chains. More recently, Abraham et al. presented a model checker
for Markov chains based on the detection and abstraction of strongly con­
nected components [AJW+1 0]. Their algorithm has the advantage of of­

158 Chapter 5. Significant Diagnostic Counterexample Generation

fering abstract counterexamples, which can be interactively refined by the
user.

Finally, the problem of presenting counterexamples as single paths has
also been observed by Han, Katoen, and Damman [DHK08, HKD09]. There,
the authors propose to use regular expressions to group paths together.
Thus, in the same way that we group together paths behaving the same
outside SCC, they group together paths associated to the same regular ex­
pression.

For a more extensive survey on quantitative counterexample generation
for (both discrete and continuous time) Markov chains we refer the reader
to chapters 3, 4, and 5 of [Han09].

Chapter 6

Interactive Systems and
Equivalences for Security

In this overview chapter we briefly discuss extensions to the
frameworks presented in Chapters 3 and 41. First, we consider
the case in which secrets and observables interact (in contrast
with the situation in Chapter 3), and show that it is still possi­
ble to define an information-theoretic notion of leakage, provided
that we consider a more complex notion of channel, known in
literature as channel with memory and feedback. Second, we
extend the systems proposed in Chapter 4 by allowing nondeter­
minism also internally to the components. Correspondingly, we
define a richer notion of admissible scheduler suitable and we
use it for defining notion of process equivalences relating to non­
determinism in a more flexible way than the standard ones in
the literature. In particular, we use these equivalences for defin­
ing notions o f anonymity robust with respect to implementation
refinement.

1For more inform ation about the topics discussed in this chapter we refer the reader
to [A A P10a, AA P11, A A P10b, AAPvR10].

159

160 Chapter 6. Interactive Systems and Equivalences for Security

6.1 Interactive Inform ation Flow

In this section we discuss the applicability of the information-theoretic
approach to interactive systems. These systems were already considered
in [DJGP02]. In that paper the authors proposed to define the matrix
elements P(b | a) as the measure of the traces with (secret, observable)-
projection (a, b), divided by the measure of the trace with secret projection
a. This follows the definition of conditional probability in terms of joint
and marginal probability. However, this approach does not lead to an
information-theoretic channel. In fact, (by definition) a channel should be
invariant with respect to the input distribution and such construction is
not (as shown by Example 3.7.3).

In [AAP10a] and more recently in [AAP11], we consider an extension
of the theory of channels which makes the information-theoretic approach
applicable also the case of interactive systems. It turns out that a richer
notion of channel, known in Information Theory as channels with memory
and feedback, serves our purposes. The dependence of inputs on previous
outputs corresponds to feedback, and the dependence of outputs on previ­
ous inputs and outputs corresponds to memory.

Let us explain more in detail the difference with the classical approach.
In non-interactive systems, since the secrets always precede the observables,
it is possible to group the sequence of secrets (and observables) in a single
secret (respectively. observable) string. If we consider only one activation
of the system, or if each use of the system is independent from the other,
then we can model it as a discrete classical channel (memoryless, and with­
out feedback) from a single input string to a single output string. When
we have interactive systems, however, inputs and outputs may interleave
and influence each other. Considering some sort of feedback in the channel
is a way to capture this richer behavior. Secrets have a causal influence on
observables via the channel, and, in the presence of interactivity, observ­
ables have a causal influence on secrets via the feedback. This alternating
mutual influence between inputs and outputs can be modeled by repeated
uses of the channels. However, each time the channel is used it represents
a different state of the computation, and the conditional probabilities of

6.1. Interactive Information Flow 161

observables on secrets can depend on this state. The addition of memory
to the model allows expressing the dependency of the channel matrix on
such a state (which, as we will see, can also be represented by the history
of inputs and outputs).

Recent results in Information Theory [TM09] have shown that, in chan­
nels with memory and feedback, the transmission rate does not correspond
to the maximum mutual information (capacity), but rather to the maxi­
mum of the so-called directed information. Intuitively, this is due to the
fact that mutual information expresses the correlation between the input
and the output, and therefore it includes feedback. However, the feedback,
i.e the way the output influences the next input, should not be considered
part of the information transmitted. Directed information is essentially
mutual information minus the dependence of the next input on previous
output. We propose to adopt directed information and the corresponding
notion of directed capacity to represent leakage.

Our extension is a generalization of the classical model, in the sense
that it can represent both interactive and non-interactive systems. One
important feature of the classical approach is that the choice of secrets is
seen as external to the system, i.e. determined by the environment. This
implies that the probability distribution on the secrets (input distribution)
constitutes the a priori knowledge and does not count as leakage. In order
to encompass the classical approach, in our extended model we should
preserve this principle, and the most natural way is to consider the secret
choices, at every stage of the computation, as external. Their probability
distributions, which are now in general conditional probability distributions
(depending on the history of secrets and observables) should be considered
as part of the external knowledge, and should not be counted as leakage.

A second contribution of [AAP10a] and [AAP11] is the proof that the
channel capacity is a continuous function of the Kantorovich metric on in­
teractive systems. This was pointed out also in [DJGP02], however their
construction does not work in our case due to the fact (as far as we under­
stand) it assumes that the probability of a secret action (in any point of
the computation) is different from 0. This assumption is not guaranteed in
our case and therefore we had to come out with a different reasoning. The

162 Chapter 6. Interactive Systems and Equivalences for Security

fact that our proof does not need this assumption shows that the intuition
of [DJGP02] concerning the continuity of capacity is valid in general.

6.1.1 Applications

Interactive systems can be found in a variety of disparate areas such as game
theory, auction protocols, and zero-knowledge proofs. We now present two
examples of interactive systems.

• In the area of auction protocols, consider the cocaine auction protocol
[SA99]. The auction is organized as a succession of rounds of bidding.
Round i starts with the seller announcing the bid price b for that
round. Buyers have t seconds to make an offer (i.e. to say yes,
meaning “I am willing to buy at the current bid price bj”). As soon
as one buyer says yes, he becomes the winner w of that round and
a new round begins. If nobody says anything for t seconds, round i
is concluded by timeout and the auction is won by the winner wi-1
of the previous round. The identities of the buyers in each round
constitute the input of the channel, whereas the bid prices constitute
the output of the channel. Note that inputs and outputs alternate
so the system is interactive. It is also easy to see that inputs depend
on past outputs (feedback): the identity of the winner of each round
depends on the previous bid prices. Furthermore, outputs depend on
the previous inputs (memory): (in some scenarios) the bid price of
round i may depend on the identity of previous winners. For more
details on the modeling of this protocol using channels with memory
and feedback see [AAP11].

• In the area of game theory, consider the classic prisoner’s dilemma
(the present formulation is due to Albert W. Tucker [Pou92], but it
was originally devised by Merrill Flood and Melvin Dresher in 1950).
Two suspects are arrested by the police. The police have insufficient
evidence for a conviction, and, having separated both prisoners, visit
each of them to offer the same deal. If one testifies (defects from the
other) for the prosecution against the other and the other remains

6.2. Nondeterminism and Information Flow 163

silent (cooperates with the other), the betrayer goes free and the silent
accomplice receives the full 10-year sentence. If both remain silent,
both prisoners are sentenced to only six months in jail for a minor
charge. If each betrays the other, each receives a five-year sentence.
Each prisoner must choose to betray the other or to remain silent.
Each one is assured that the other would not know about the betrayal
before the end of the investigation. In the iterated prisoner’s dilemma,
the game is played repeatedly. Thus each player has an opportunity
to punish the other player for previous non-cooperative play. In this
case the strategy (cooperate or defect) of each player is the input of
the channel and the sentence is the output. Once again, it is easy
to see that the system is interactive: inputs and outputs alternate.
Furthermore, inputs depend on previous outputs (the strategy depend
on the past sentences) and outputs depend on previous inputs (the
sentence of the suspects depend on their declarations - cooperate or
defect).

6.2 N ondeterm inism and Inform ation Flow

The noise of channel matrices, i.e. the similarity between the rows of
the channel matrix, helps preventing the inference of the secret from the
observables. In practice noise is created by using randomization, see for
instance the DCNet [Cha88] and the Crowds [RR98] protocols.

In the literature about the foundations of Computer Security, however,
the quantitative aspects are often abstracted away, and probabilistic be­
havior is replaced by nondeterministic behavior. Correspondingly, there
have been various approaches in which information-hiding properties are
expressed in terms of equivalences based on nondeterminism, especially in
a concurrent setting. For instance, [SS96] defines anonymity as follows2: A
protocol S is anonymous if, for every pair of culprits a and b, S[a/ x] and
S[b/ x] produce the same observable traces. A similar definition is given in
[AG99] for secrecy, with the difference that S[a/ x] and S[b/ x] are required to

2The actual definition of [SS96] is more complicated, bu t the spirit is the same.

164 Chapter 6. Interactive Systems and Equivalences for Security

be bisimilar. In [DKR09], an electoral system S preserves the confidential­
ity of the vote if for any voters v and w, the observable behavior of S is the
same if we swap the votes of v and w. Namely, S[“/ v |b / w] S [b/ V 1 / w h
where ~ represents bisimilarity.

These proposals are based on the implicit assumption that all the non-
deterministic executions present in the specification of S will always be pos­
sible under every implementation of S. Or at least, that the adversary will
believe so. In concurrency, however, as argued in [CNP09], nondeterminism
has a rather different meaning: if a specification S contains some nonde-
terministic alternatives, typically it is because we want to abstract from
specific implementations, such as the scheduling policy. A specification is
considered correct, with respect to some property, if every alternative satis­
fies the property. Correspondingly, an implementation is considered correct
if all executions are among those possible in the specification, i.e. if the
implementation is a refinement of the specification. There is no expecta­
tion that the implementation will actually make possible all the alternatives
indicated by the specification.

We argue that the use of nondeterminism in concurrency corresponds
to a demonic view: the scheduler, i.e. the entity that will decide which
alternative to select, may try to choose the worst alternative. Hence we
need to make sure that “all alternatives are good”, i.e. satisfy the intended
property. In the above mentioned approaches to the formalization of se­
curity properties, on the contrary, the interpretation of nondeterminism is
angelic: the scheduler is expected to actually help the protocol to confuse
the adversary and thus protect the secret information.

There is another issue, orthogonal to the angelic/demonic dichotomy,
but relevant for the achievement of security properties: the scheduler should
not be able to make its choices dependent on the secret, or else nearly every
protocol would be insecure, i.e. the scheduler would always be able to leak
the secret to an external observer (for instance by producing different inter­
leavings of the observables, depending on the secret). This remark has been
made several times already, and several approaches have been proposed to
cope with the problem of the “almighty” scheduler (aka omniscient, clair­
voyant, etc.), see for example [CCK+06a, GD07, CNP09, APvRS11, CP10].

6.2. Nondeterminism and Information Flow 165

The risk of a naive use of nondeterminism to specify a security property,
is not only that it may rely on an implicit assumption that the scheduler
behaves angelically, but also that it is clairvoyant, i.e. that it peeks at the
secrets (that it is not supposed to be able to see) to achieve its angelic
strategy.

Consider the following system, in a CCS-like syntax:

S d=f (c, out)(A || Corr || Hi || H2),

with A d=f c(sec) ,Corr d=f c(s).out(s), H 1 d=f c(s).out(a), H2 d=f c(s).out(6)
and where || is the parallel operator, c(sec) is a process that sends sec on
channel c, c(s).P is a process that receives s on channel c and then continues
as P , and (c, out) is the restriction operator, enforcing synchronization on
c and out. In this example, sec represents a secret information.

It is easy to see that we have S [“/ sec] ~ S [b/ seJ . Note that, in order to
simulate the third branch in S [“/ sec], the process S [b/ sec] needs to select
its first branch. Viceversa, in order to simulate the third branch in S [b/ seJ ,
the process S [“/ sec] needs to select its second branch. This means that, in
order to achieve bisimulation, the scheduler needs to know the secret, and
change its choice accordingly.

This example shows a system that intuitively is not secure, because
the third component, Corr, reveals whatever secret it receives. However,
according to the equivalence-based notions of security discussed above, it
is secure. But it is secure thanks to a scheduler that angelically helps
the system to protect the secret, and it does so by making its choices
dependent on the secret! In our opinion these assumptions on the scheduler
are excessively strong.

In a recent work [AAPvR10] we address the above issue by defining
a framework in which it is possible to combine both angelic and demonic
nondeterminism in a setting in which also probabilistic behavior may be
present, and in a context in which the scheduler is restricted (i.e. not
clairvoyant). We propose safe versions of typical equivalence relations
(traces and bisimulation), and we show how to use them to characterize
information-hiding properties.

Chapter 7

Conclusion

In this chapter we summarize the main contributions of this
thesis and discuss further directions.

7.1 C ontributions

The goal of this thesis is to develop a formal framework for specifying, ana­
lyzing and verifying anonymity protocols and, more in general, information
hiding protocols.

As discussed in the Introduction, conditional probabilities are a key
concept in assessing the degree of information protection. In Chapter 2, we
have extended the probabilistic temporal logic pCTL to cpCTL, in which
it is possible to express conditional probabilities. We have also proved
that optimal scheduling decisions can always be reached by a deterministic
and semi history-independent scheduler. This fundamental result, allowed
us to define an algorithm to verify cpCTL formulas. Our algorithm first
reduces the MDP to an acyclic MDP and then computes optimal conditional
probabilities in the acyclic MDP. In addition, we have defined a notion
of counterexample for conditional formulas and sketched an algorithm for
counterexample generation.

We then turned our attention to more practical grounds. In Chapter

167

168 Chapter 7. Conclusion

3, we have addressed the problem of computing the information leakage of
a system in an efficient way. We have proposed two methods: one based
on reachability techniques and the other based on quantitative counterex­
ample generation. In addition, we have shown that when the automaton
is interactive it is not possible to define its channel in the standard way.
An intriguing problem is how to extend the notion of channel so to capture
the dynamic nature of interaction. In Chapter 6 we have briefly discussed
how to solve this problem by using more complex information theoretic
channels, namely channels with history and feedback.

In Chapter 4, we have attacked a well known problem of concurrent
information-hiding protocols, namely full-information scheduling. To over­
come this problem, we have defined a class of partial-information schedulers
which can only base their decisions on the information that they have avail­
able. In particular they cannot base their decisions on the internal behavior
of the components. We have used admissible schedulers to resolve nonde­
terminism in a realistic way, and to revise some anonymity definitions from
the literature. In addition, we have presented a technique to prove the var­
ious definitions of anonymity proposed in the chapter. This is particularly
interesting considering that many problems related to restricted schedulers
have been shown to be undecidable. We have illustrated the applicability of
our proof technique by proving that the well-known DC protocol is anony­
mous when considering admissible schedulers, in contrast to the situation
when considering full-information schedulers.

The last major contribution of this thesis is a novel technique for rep­
resenting and computing counterexamples for nondeterministic and prob­
abilistic systems. In Chapter 5, we have shown how to carefully partition
a counterexample in sets of paths. These sets are intended to provide in­
formation related to the violation of the property under consideration, so
we call them witnesses. Five properties that witnesses should satisfy (in
order to provide significant debugging information) are identified in this
chapter. The key contribution of this chapter is a technique based on
strongly connected component analysis that makes it possible to partition
counterexamples into witnesses satisfying the desired properties.

7.2. Further directions 169

7.2 Further directions

There are several ways of extending the work presented in this thesis.
As we have shown in Chapter 2, the most important issue when com­

puting conditional probabilities is that optimizing schedulers are not de­
termined by the local structure of the system. As a consequence, it is not
possible to reduce the problem of verifying cpCTL to a linear optimization
problem (as it is the case with pCTL). A natural question arising from this
observation, is whether the problem of model checking conditional proba­
bilities is inherently exponential or not. We believe that it is; however we
are of the idea that it is also possible to find suitable restrictions (either
to the formulas or to the systems under consideration) that would make it
possible to model check conditional probabilities in polynomial time.

In a more practical matter, counterexample generation for probabilistic
model checking is nowadays a very hot topic for which several applications
in the most diverse areas have been identified. During the last few years,
many techniques have been proposed for different flavours of logics and
models. However, to the best of our knowledge, no practical tool to au­
tomatically generate quantitative counterexamples has been implemented.
We believe that such a practical tool could be a significant contribution
to the field. More concretely, we believe that a tool implementing the
regular-expression and k-shortest path techniques introduced by Han et al.
in combination with the SCC analysis techniques presented in this thesis
would be of great value.

In Chapter 2, we have made a connection between quantitative coun­
terexample generation and information leakage computation. Thanks to
this connection, such a tool would also allow us to compute / approximate
leakage of large scale protocols. Furthermore, it would make it possible to
investigate in more depth how the debugging information provided by the
tool can be used to identify flaws of the protocol causing high leakage.

Finally, as for most definitions of partial-information schedulers from
the literature, our notions of admissible schedulers may raise undecidability
issues. Thus, it would be interesting to investigate whether the notions of
anonymity proposed in Chapter 4 are actually verifiable (remember that

170 Chapter 7. Conclusion

the proof technique we proposed is sufficient but not necessary). Another
interesting direction for future work is to adapt well known isomorphism-
checking algorithms and tolls to our setting in order to automatically verify
some anonymity properties.

Bibliography

[AAP10a]

[AAP10b]

[AAP11]

[AAPvR10]

[ADvR08]

Mario S. Alvim, Miguel E. Andres, and Catuscia Palamidessi.
Information flow in interactive systems. In Proceedings of
CONCUR, volume 6269 of LNCS, pages 102-116. Springer,
2010. C ited on pages 19, 20, 159, 160 and 161.

Mario S. Alvim, Miguel E. Andres, and Catuscia Palamidessi.
Probabilistic information flow. In Proceedings of LICS, pages
314-321. IEEE Computer Society, 2010. C ited on pages 19,
20 and 159.

Mario S. Alvim, Miguel E. Andres, and Catuscia Palamidessi.
Information Flow in Interactive Systems. Journal of Com­
puter Security, 2011. To appear. C ited on pages 19, 20, 159,
160, 161 and 162.

Maario S. Alvim, Miguel E. Andraes, Catuscia Palamidessi, and
Peter van Rossum. Safe equivalences for security properties.
In Proceedings of IFIP TCS, volume 323 of IFIP, pages 55-70.
Springer, 2010. C ited on pages 19, 21, 105, 128, 159 and 165.

Miguel E. Andres, Pedro R. D’Argenio, and Peter van
Rossum. Significant diagnostic counterexamples in probabilis­
tic model checking. In Proceedings of Haifa Verification Con­
ference, volume 5394 of LNCS, pages 129-148. Springer, 2008.
C ited on pages 20, 64, 66, 84 and 85.

171

172 Bibliography

[AG99]

[AHL05]

[AjW+10]

[AL06]

[AL08]

[AL09]

[And06]

Martin Abadi and Andrew D. Gordon. A calculus for crypto­
graphic protocols: The spi calculus. Inf. and Comp., 148(1):1-
70, 1999. C ited on page 163.

Husain Aljazzar, Holger Hermanns, and Stefan Leue. Coun­
terexamples for timed probabilistic reachability. In Proceed­
ings of FORMATS, volume 3829, pages 177-195, 2005. C ited
on pages 130 and 156.

Erika Abraham, Nils Jansen, Ralf Wimmer, Joost-Pieter Ka­
toen, and Bernd Becker. Dtmc model checking by scc re­
duction. In Proceedings of QEST, pages 37-46. IEEE, 2010.
C ited on page 157.

Husain Aljazzar and Stefan Leue. Extended directed search
for probabilistic timed reachability. In Proceedings of FOR­
MATS, volume 4202 of LNCS, pages 33-51, 2006. C ited on
pages 66, 130 and 156.

Husain Aljazzar and Stefan Leue. Debugging of dependability
models using interactive visualization of counterexamples. In
Proceedings of QEST, pages 189-198. IEEE, 2008. C ited on
page 85.

Husain Aljazzar and Stefan Leue. Generation of counterex­
amples for model checking of markov decision processes. In
In Proceedings of QEST, IEEE Computer Society, pages 197­
206, December 2009. C ited on pages 130 and 157.

Miguel E. Andres. Derivation of counterexamples for quanti­
tative model checking. Master’s thesis, supervised by Pedro
R. D’Argenio. Universidad Nacional de Cordoba, September
2006. C ited on page 130.

[APvRSlOa] Miguel E. Andres, Catuscia Palamidessi, Peter van Rossum,
and Geoffrey Smith. Computing the leakage of information-

Bibliography 173

[APvRS10b]

[APvRSll]

[AvR08]

[BCP08]

[BCP09]

[BCPP08]

[BdA95]

hiding systems. In Proceedings of TACAS, volume 6015 of
LNCS, pages 373-389. Springer, 2010. C ited on page 20.

Miguel E. Andres, Catuscia Palamidessi, Peter van Rossum,
and Ana Sokolova. Information hiding in probabilistic con­
current systems. In Proceedings of QEST, pages 17-26. IEEE
Computer Society, 2010. C ited on page 20.

Miguel E. Andres, Catuscia Palamidessi, Peter van Rossum,
and Ana Sokolova. Information Hiding in Probabilistic Con­
current Systems. Journal of Theoretical Computer Science,
412:3072-3089, 2011. C ited on pages 20 and 164.

Miguel E. Andres and Peter van Rossum. Conditional prob­
abilities over probabilistic and nondeterministic systems. In
Proceedings of TACAS, volume 4963 of LNCS, pages 157-172.
Springer, 2008. C ited on page 19.

Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Compositional methods for information-hiding.
In Proc. ofFOSSACS, volume 4962 of LNCS, pages 443-457.
Springer, 2008. C ited on page 96.

Christelle Braun, Konstantinos Chatzikokolakis, and Catus-
cia Palamidessi. Quantitative notions of leakage for one-try
attacks. In Proceedings of MFPS, volume 249 of ENTCS,
pages 75-91. Elsevier B.V., 2009. C ited on pages 70, 74, 86,
88, 97, 98, 100 and 115.

Romain Beauxis, Konstantinos Chatzikokolakis, Catuscia
Palamidessi, and Prakash Panangaden. Formal approaches to
information-hiding (tutorial). In Proc. of TGC, volume 4912
of LNCS, pages 347-362. Springer, 2008. C ited on page 13.

Andrea Bianco and Luca de Alfaro. Model checking of prob­
abilistic and nondeterministic systems. In Proceedings of

174 Bibliography

[Bel57]

[BLR05]

[Bor06]

[BP05]

[Cas93]

[CCK+06a]

[CCK+06b]

FSTTCS, volume 1026, pages 499-513, 1995. C ited on
pages 24, 26, 28, 30, 33, 37, 134, 135, 139, 140 and 153.

Richard E. Bellman. A Markovian decision process. J. Math.
Mech., 6:679-684, 1957. C ited on pages 26 and 134.

Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen.
Optimal scheduling using priced timed automata. SIGM ET-
RICS Perform. Eval. Rev., 32(4):34-40, 2005. C ited on
page 130.

Michele Boreale. Quantifying information leakage in process
calculi. In Proceedings of ICALP, volume 4052 of LNCS, pages
119-131. Springer, 2006. C ited on page 16.

Mohit Bhargava and Catuscia Palamidessi. Probabilistic ano­
nymity. In Martin Abadi and Luca de Alfaro, editors, CON­
CUR, volume 3653 of LNCS, pages 171-185, 2005. C ited on
pages 13, 25, 96, 97 and 118.

Christos G. Cassandras. Discrete Event Systems: Modeling
and Performance Analysis. Richard D. Irwin, Inc., and Aksen
Associates, Inc., 1993. C ited on pages 65 and 154.

Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov,
Nancy Lynch, Olivier Pereira, and Roberto Segala. Task-
structured probabilistic i/o automata. In Proc. of WODES,
2006. C ited on pages 97, 127 and 164.

Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses
Liskov, Nancy A. Lynch, Olivier Pereira, and Roberto Segala.
Time-bounded task-PIOAs: A framework for analyzing secu­
rity protocols. In Proc. of DISC, volume 4167 of LNCS, pages
238-253. Springer, 2006. C ited on pages 97 and 127.

Bibliography 175

[CGJ+00]

[Cha88]

[CHM01]

[CHM05a]

[CHM05b]

[CL05]

[Cla08]

[CMS09]

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,
and Helmut Veith. Counterexample-guided abstraction refine­
ment. In Proceedings of CAV, pages 154-169, 2000. C ited on
pages 66 and 130.

David Chaum. The dining cryptographers problem: Uncon­
ditional sender and recipient untraceability. Journal of Cryp­
tology, 1:65-75, 1988. C ited on pages 13, 25, 96, 101, 102
and 163.

David Clark, Sebastian Hunt, and Pasquale Malacaria. Quan­
titative analysis of the leakage of confidential data. In Pro­
ceedings o f QAPL, volume 59 (3) of ENTCS, pages 238-251.
Elsevier Science B.V., 2001. C ited on page 16.

David Clark, Sebastian Hunt, and Pasquale Malacaria. Quan­
tified interference for a while language. In Proceedings of
QAPL, volume 112 of ENTCS, pages 149-166. Elsevier Sci­
ence B.V., 2005. C ited on pages 16 and 96.

David Clark, Sebastian Hunt, and Pasquale Malacaria. Quan­
titative information flow, relations and polymorphic types. J.
of Logic and Computation, 18(2):181-199, 2005. C ited on
pages 70 and 96.

Jan Camenisch and Anna Lysyanskaya. A formal treatment
of onion routing. In Proceedings o f CRYPTO, volume 3621 of
LNCS, pages 169-187, 2005. C ited on page 25.

Edmund M. Clarke. The birth of model checking. In 25 Years
of Model Checking, pages 1-26, 2008. C ited on page 8.

Michael R. Clarkson, Andrew C. Myers, and Fred B. Schnei­
der. Belief in information flow. Journal of Computer Security,
17(5):655-701, 2009. C ited on pages 16, 70 and 96.

176 Bibliography

[CNP09]

[CP10]

[CPP08a]

[CPP08b]

[CSWHOO]

[CT06]

[dA97]

[dAHJOl]

Konstantinon Chatzikokolakis, Gethin Norman, and David
Parker. Bisimulation for demonic schedulers. In Proc. of FOS-
SACS, volume 5504 of LNCS, pages 318-332. Springer, 2009.
C ited on pages 97, 128 and 164.

Konstantinos Chatzikokolakis and Catuscia Palamidessi.
Making random choices invisible to the scheduler. Informa­
tion and Computation, 208:694-715, 2010. C ited on pages 97,
128 and 164.

Konstantinos Chatzikokolakis, Catuscia Palamidessi, and
Prakash Panangaden. Anonymity protocols as noisy channels.
Inf. and Comp., 206(2-4):378-40l, 2008. C ited on pages 16,
69, 70, 92 and 96.

Konstantinos Chatzikokolakis, Catuscia Palamidessi, and
Prakash Panangaden. On the Bayes risk in information-hiding
protocols. Journal of Computer Security, l6(5):53l-57l, 2008.
C ited on page 96.

Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Workshop on
Design Issues in Anonymity and Unobservability, volume
2009 of LNCS , pages 44-66. Springer, 2000. C ited on
page 96.

Thomas M. Cover and Joy A. Thomas. Elements of Informa­
tion Theory. John Wiley & Sons, Inc., second edition, 2006.
C ited on pages 73, 98 and 100.

Luca de Alfaro. Formal Verification of Probabilistic Systems.
PhD thesis, Stanford University, 1997. C ited on page 153.

Luca de Alfaro, Thomas A. Henzinger, and Ranjit Jhala.
Compositional methods for probabilistic systems. In Proc.

Bibliography 177

[dAKM97]

[Daw05]

[DHK08]

[DJGP02]

[DKR09]

[DPW06]

[DY83]

[Epp98]

of CONCUR, volume 2154 of LNCS. Springer, 2001. C ited
on page 128.

Luca de Alfaro, Arjun Kapur, and Zohar Manna. Hybrid di­
agrams: A deductive-algorithmic approach to hybrid system
verification. In Symposium on Theoretical Aspects of Com­
puter Science, pages 153-164, 1997. C ited on page 139.

Conrado Daws. Symbolic and parametric model checking
of discrete-time markov chains. In ICTAC, volume 3407 of
LNCS, pages 280-294. Springer, 2005. C ited on page 82.

Berteun Damman, Tingting Han, and Joost-Pieter Katoen.
Regular expressions for PCTL counterexamples. In Proceed­
ings o f QEST, pages 179-188. IEEE, 2008. C ited on pages 82,
85 and 158.

Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and
Prakash Panangaden. The metric analogue of weak bisimula­
tion for probabilistic processes. In Proc. o f LICS, pages 413­
422. IEEE, 2002. C ited on pages 71, 90, 160, 161 and 162.

Stephanie Delaune, Steve Kremer, and Mark Ryan. Verifying
privacy-type properties of electronic voting protocols. Jour­
nal of Computer Security, 17(4):435-487, 2009. C ited on
page 164.

Yuxin Deng, Jun Pang, and Peng Wu. Measuring anonymity
with relative entropy. In Proceedings of FAST , volume 4691
of LNCS, pages 65-79. Springer, 2006. C ited on page 70.

Danny Dolev and Andrew C. Yao. On the security of public
key protocols. IEEE Transactions on Information Theory,
29(2):198-208, 1983. C ited on page 26.

David Eppstein. Finding the k shortest paths. In SIA M Jour­
nal of Computing, pages 652-673, 1998. C ited on page 154.

178 Bibliography

[Feh02]

[FOO92]

[FV97]

[GD07]

[GHvRP05]

[Gir09]

[Gra91]

[Han09]

[HJ89]

Ansgar Fehnker. Citius, Vilius, Melius - Guiding and Cost-
Optimality in Model Checking of Timed and Hybrid Systems.
PhD thesis, KUNijmegen, 2002. C ited on page 130.

A. Fujioka, T. Okamoto, and K. Ohta. A practical secret
voting scheme for large scale elections. In Proceedings o f Ad­
vances in Cryptology (AU SCRYPT ’92), volume 718, pages
244-251, 1992. C ited on page 25.

J. Filar and K. Vrieze. Competitive Markov Decision Pro­
cesses. 1997. C ited on pages 26 and 134.

Sergio Giro and Pedro R. D’Argenio. Quantitative model
checking revisited: Neither decidable nor approximable. In
FORM ATS , volume 4763 of LNCS , pages 179-194. Springer,
2007. C ited on pages 121, 128 and 164.

Flavio D. Garcia, Ichiro Hasuo, Peter van Rossum, and Wolter
Pieters. Provable anonymity. In FMSE, pages 63-72. ACM,
2005. C ited on pages 98 and 121.

Sergio Giro. Undecidability results for distributed probabilis­
tic systems. In SBMF, volume 5902 of LNCS, pages 220-235.
Springer, 2009. C ited on pages 121 and 128.

J. W. Gray, III. Toward a mathematical foundation for in­
formation flow security. In SSP, pages 21-35, Washington -
Brussels - Tokyo, May 1991. IEEE. C ited on page 16.

Tingting Han. Diagnosis, synthesis and analysis of probabilis­
tic models. PhD Thesis, 2009. C ited on page 158.

H. Hansson and B. Jonsson. A framework for reasoning about
time and reliability. In Proceedings of Real Time Systems
Symposium, pages 102-111, 1989. C ited on page 24.

Bibliography 179

[HJ94]

[HK07a]

[HK07b]

[HK07c]

[HKD09]

[H005]

[HS04]

[HSP10]

Hans Hansson and Bengt Jonsson. A logic for reasoning about
time and reliability. Formal Asp. Comput., 6(5):512-535,
1994. C ited on page 17.

Tingting Han and Joost-Pieter Katoen. Counterexamples in
probabilistic model checking. In Proceedings of TACAS , vol­
ume 4424, pages 60-75, 2007. C ited on pages 66, 130, 133,
141, 152, 153, 154 and 156.

Tingting Han and Joost-Pieter Katoen. Providing evidence
of likely being on time: Counterexample generation for ctmc
model checking. In Proceedings o f ATVA, volume 4762, pages
331-346, 2007. C ited on pages 130 and 156.

Ichiro Hasuo and Yoshinobu Kawabe. Probabilistic anonymity
via coalgebraic simulations. In Proceedings of the European
Symposium on Programming, volume 4421 of LNCS, pages
379-394. Springer, 2007. C ited on pages 98 and 121.

Tingting Han, Joost-Pieter Katoen, and Berteun Damman.
Counterexample generation in probabilistic model checking.
IEEE Transactions on Software Engineering, 35(2):241-257,
2009. C ited on page 158.

Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and in­
formation hiding in multiagent systems. Journal of Computer
Security, 13(3):483-512, 2005. C ited on pages 11, 13, 96, 98
and 121.

Dominic Hughes and Vitaly Shmatikov. Information hiding,
anonymity and privacy: a modular approach. Journal of
Computer Security, 12(1):3-36, 2004. C ited on page 11.

Sardaouna Hamadou, Vladimiro Sassone, and Catuscia
Palamidessi. Reconciling belief and vulnerability in informa­
tion flow. In Proceedings of the IEEE Symposium on Security

180 Bibliography

[JFL]

[KB07]

[KNP06]

[LBB+01]

[1GM02]

[Low02]

[Ma107]

[MC08]

and Privacy, pages 79-92. IEEE Comput. Soc. Press, 2010.
C ited on page 17.

Jflap website. h ttp ://w w w .jf la p .o rg /. C ited on page 82.

Boris Köpf and David A. Basin. An information-theoretic
model for adaptive side-channel attacks. In Proc. of CCS,
pages 286-296. ACM, 2007. C ited on page 16.

Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Symmetry reduction for probabilistic model checking. In
Proceedings o f CAV, volume 4144 of LNCS, pages 234-248.
Springer, 2006. C ited on page 128.

Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar
Fehnker, Thomas S. Hune, Paul Petterson, and Judi Romijn.
As Cheap as Possible: Efficient Cost-Optimal Reachability for
Priced Timed Automata. In Proceedings of CAV, volume 2102
of LNCS, pages 493-505. Springer, 2001. C ited on page 66.

Helene le Guen and Raymond A. Marie. Visiting proba­
bilities in non-irreducible markov chains with strongly con­
nected components. In ESM, pages 548-552, 2002. C ited on
page 157.

Gavin Lowe. Quantifying information flow. In Proc. of CSFW
2002, pages 18-31. IEEE, 2002. C ited on page 16.

Pasquale Malacaria. Assessing security threats of looping con­
structs. In Proc. o f POPL, pages 225-235. ACM, 2007. C ited
on page 96.

Pasquale Malacaria and Han Chen. Lagrange multipliers and
maximum information leakage in different observational mod­
els. In Proc. of PLAS, pages 135-146. ACM, 2008. C ited on
page 96.

http://www.jflap.org/

Bibliography 181

[McL90]

[Mil89]

[Mil99]

[MNCM03]

[MNS03]

[MP91]

[MVdV04]

[Neu05]

[Pou92]

[PRI]

John McLean. Security models and information flow. In
SS P ’90, pages 180-189. IEEE, 1990. C ited on page 16.

R. Milner. Communication and Concurrency. Int. Series in
Computer Science. Prentice Hall, 1989. C ited on page 104.

Robin Milner. Communicating and mobile systems: the n-
calculus. Cambridge University Press, 1999. C ited on
page 104.

Ira S. Moskowitz, Richard E. Newman, Daniel P. Crepeau,
and Allen R. Miller. Covert channels and anonymizing net­
works. In Proc. of PES, pages 79-88. ACM, 2003. C ited on
pages 16 and 70.

Ira S. Moskowitz, Richard E. Newman, and Paul F. Syverson.
Quasi-anonymous channels. In Proc. of CNIS, pages 126-131.
IASTED, 2003. C ited on page 16.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer, 1991. C ited on
page 137.

S. Mauw, J. Verschuren, and E.P. de Vink. A formaliza­
tion of anonymity and onion routing. In Proceedings o f ES-
ORICS, volume 3193 of LNCS, pages 109-124, 2004. C ited
on pages 98 and 121.

C. Neumann. Converting deterministic finite automata
to regular expressions. 2005. http://neum annhaus.com /
christoph/papers/2005-03-16.DFA_to_RegEx.pdf. C ited
on page 82.

William Poundstone. Prisoners Dilemma. Doubleday NY,
1992. C ited on page 162.

Prism website. http://ww w .prism m odelchecker.org. C ited
on page 92.

http://neumannhaus.com/christoph/papers/2005-03-16.DFA_to_RegEx.pdf
http://neumannhaus.com/christoph/papers/2005-03-16.DFA_to_RegEx.pdf
http://www.prismmodelchecker.org

182 Bibliography

[PZ93] Amir Pnueli and Lenore D. Zuck. Probabilistic verification.
Information and Computation, 103(1):1-29, 1993. C ited on
pages 28 and 135.

[Ren60] Alfred Renyi. On Measures of Entropy and Information. In
Proceedings o f the 4th Berkeley Symposium on Mathematics,
Statistics, and Probability, pages 547-561, 1960. C ited on
page 16.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity
for Web transactions. ACM Transactions on Information and
System Security, 1(1):66-92, 1998. C ited on pages 14, 25, 76,
96 and 163.

[RS01] Peter Y. Ryan and Steve Schneider. Modelling and Analysis of
Security Protocols. Addison-Wesley, 2001. C ited on page 11.

[Rut00] Jan J.M.M. Rutten. Universal coalgebra: A theory of sys­
tems. Theoretical Computer Science, 249:3-80, 2000. C ited
on page 121.

[SA99] Frank Stajano and Ross J. Anderson. The cocaine auction
protocol: On the power of anonymous broadcast. In Informa­
tion Hiding, pages 434-447, 1999. C ited on page 162.

[SdV04] Ana Sokolova and Erik P. de Vink. Probabilistic automata:
System types, parallel composition and comparison. In Vali­
dation of Stochastic Systems: A Guide to Current Research,
volume 2925 of LNCS, pages 1-43. 2004. C ited on pages 26
and 134.

[Seg95] Roberto Segala. Modeling and Verification of Randomized
Distributed Real-Time Systems. PhD thesis, 1995. Tech. Rep.
MIT/LCS/TR-676. C ited on pages 72 and 98.

Bibliography 183

[SGR97]

[SL95]

[SM03]

[Smi09]

[SS96]

[SS99]

[SVV09]

[TM09]

[Var85]

P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous
connections and onion routing. In IEEE Symposium on Secu­
rity and Privacy, pages 44-54, 1997. C ited on page 96.

Roberto Segala and Nancy Lynch. Probabilistic simulations
for probabilistic processes. Nordic Journal o f Computing,
2(2):250-273, 1995. C ited on pages 26, 98, 103 and 134.

Andrei Sabelfeld and Andrew C. Myers. Language-based in­
formation flow security. IEEE Journal on Selected Areas in
Communications, 21(1):5-19, 2003. C ited on page 70.

Geoffrey Smith. On the foundations of quantitative informa­
tion flow. In Proc. of FOSSACS, volume 5504 of LNCS, pages
288-302. Springer, 2009. C ited on pages 16, 70, 74, 86, 88,
96, 97, 98, 100 and 115.

Steve Schneider and Abraham Sidiropoulos. CSP and ano­
nymity. In Proc. of ESORICS, volume 1146 of LNCS, pages
198-218. Springer, 1996. C ited on pages 11 and 163.

Paul F. Syverson and Stuart G. Stubblebine. Group principals
and the formalization of anonymity. In World Congress on
Formal Methods (1), pages 814-833, 1999. C ited on page 11.

Matthias Schmalz, Daniele Varacca, and Hagen Volzer. Coun­
terexamples in probabilistic ltl model checking for markov
chains. In Proceedings of CONCUR, volume 5710 of LNCS,
pages 587-602. Springer, 2009. C ited on page 157.

Sekhar Tatikonda and Sanjoy K. Mitter. The capacity of chan­
nels with feedback. IEEE Transactions on Information The­
ory, 55(1):323-349, 2009. C ited on page 161.

M.Y. Vardi. Automatic verification of probabilistic concurrent
finite-state systems. In Proc. 26th IEEE Symp. Found. Comp.
Sci., pages 327-338, 1985. C ited on pages 28 and 135.

184 Bibliography

[ZB05] Ye Zhu and Riccardo Bettati. Anonymity vs. information
leakage in anonymity systems. In Proc. of ICDCS, pages 514­
524. IEEE, 2005. C ited on pages 16 and 96.

Samenvatting

Terwijl we het digitale tijdperk ingaan zijn er immer groeiende zorgen
over de hoeveelheid digitale data die over ons verzameld wordt. Websites
houden vaak het browse-gedrag van mensen bij, ziektenkostenverzekeraars
verzamelen medische gegegevens en smartphones en navigatiesystemen ver­
sturen informatie die het mogelijk maakt de fysieke locatie van hun gebruik­
ers te bepalen. Hierdoor staan anonimiteit, en privacy in het algemeen,
steeds meer op het spel. Anonimiteitsprotocollen proberen iets tegen deze
tendens te doen door anonieme communicatie over het Internet mogelijk
te maken. Om de correctheid van dergelijke protocollen, die vaak extreem
complex zijn, te garanderen, is een degelijk framework vereist waarin anon-
imiteitseigenschappen kunnen worden uitgedrukt en geanalyseerd. Formele
methoden voorzien in een verzameling wiskundige technieken die het mo­
gelijk maken anonimiteitseigenschappen rigoreus te specificeren en te ver-
ifieren.

Dit proefschrift gaat over de grondslagen van formele methoden voor
toepassingen in computerbeveiliging en in het bijzonder anonimiteit. Con­
creet, we ontwikkelen frameworks om anonimiteitseigenschappen te specifi­
ceren en algoritmen om ze te verifieren. Omdat in de praktijk anonimiteit­
sprotocollen altijd wat informatie lekken, leggen we de focus op quanti-
tatieve eigenschappen die de mate van gelekte informatie van een protocol
beschrijven.

We beginnen het onderzoek naar anonimiteit vanuit de basis, namelijk
voorwaardelijke kansen. Dit zijn de sleutelingredienten van de meeste quan-
titatieve anonimiteitsprotocollen. In Hoofdstuk 2 prenteren we cpCTL,

185

de eerste temporele logica waarin voorwaardelijke kansen kunnen worden
uitgedrukt. We presenteren ook een algoritme om cpCTL formules te ver-
ifieren met een modelchecker. Samen met een modelchecker maakt deze
logica het mogelijk om quantitatieve anomimiteitseigenschappen van com­
plexe systemen waarin zowel probabilistisch als nondeterministisch gedrag
voorkomt te specificeren en verifieren.

Vervolgens gaan we meer de praktijk in: de constructie van algorit­
men die de mate van het lekken van informatie meten. Om preciezer te
zijn, Hoofdstuk 3 beschrijft polynomiale algoritmen om de (informatie-
theoretische) information leakage te quantificeren voor verscheidene soorten
volledig probabilistische protocllen (d.w.z., protocollen zonder nondeter­
ministisch gedrag). The technieken uit dit hoofdstuk zijn de eerste die
het mogelijk maken de informatie leakage voor interactieve protocollen te
berekenen.

In Hoofdstuk 4 behandelen we een bekend probleem in gedistribueerde
anonimiteitsprotocollen, namelijk schedulers met volledige informatie. Om
dit probleem op te lossen stellen we een alternatieve definitie van sched­
uler voor, samen met nieuwe definities voor anonomiteit (varierend met
de capaciteiten van de aanvaller) en herzien de bekende definitie van sterke
anonimiteit uit de literatuur. Bovendien laten we een techniek zien waarmee
gecontroleerd kan worden of een gedistribueerd protocol aan enkele van deze
definities voldoet.

In Hoofdstuk 5 laten we op tegenvoorbeelden gebaseerde technieken zien
die het mogelijk maken complexe systemen te debuggen. Dit maakt het mo­
gelijk fouten in security protocollen op te sporen. Tenslotte, in Hoofdstuk
6, beschrijven we kort uitbreidingen van de frameworks en technieken uit
Hoofdstukken 3 en 4.

Index

anonymity
probable innocence, 14, 26

channel matrix, 73, 102
conditional probability, 24, 30, 73

over MDPs, 29
counterexample, 9, 71, 81, 132, 140

for cpCTL, 66, 67
minimum, 143
most indicative, 143
representative, 142

information leakage, 73, 102, 117
information theory, 15

markov chain, 23, 24, 67, 138
acyclic, 145, 160

markov decision process, 26, 135
acyclic, 63

model checking, 132
cpCTL, 52
probabilistic, 132

noisy channel, 73, 102

probabilistic automata, 72, 100
tagged, 105

protocols
crowds, 14, 75
dining cryptographers, 103

rail, 144

scc, 145
scc analysis, 63, 145
scheduler, 28, 96, 101, 111, 137

admissible, 111, 112, 114
angelic, 166
demonic, 166
deterministic, 138
for tagged probabilistic automata,

106
memoryless, 138
semi history independent, 33, 34

strong anonymity, 12, 25, 120
verification, 122

temporal logic
cpCTL, 30
expressiveness, 31
LTL, 139
pCTL, 30

torrent, 144

187

Curriculum Vitae

1980 Born on 2 July, Rio Cuarto, Argentina.

1 9 9 4 -1 9 9 8 Private Institute Galileo Galilei (High School), Rio Cuarto,
Cordoba, Argentina.

1 9 9 9 -2 0 0 6 Computer Science Licentiate (equivalent to MSc.), Faculty of
Mathematics, Astronomy and Physics (Fa.M.A.F.). National Univer­
sity of Cordoba (UNC), Argentina.

2 0 0 6 -2 0 1 0 PhD student in the Digital Security Group, Radboud Univer­
sity Nijmegen, The Netherlands.

2 0 1 0 - Postdoctoral researcher in the Comete Team, Laboratory of Infor­
matics of the Ecole Polytechnique (LIX), France.

189

T itles in th e IPA D isserta tion Series since 2005

E. .Abraham. An Assertional
Proof System for Multithreaded
Java -Theory and Tool Support- .
Faculty of Mathematics and Natu­
ral Sciences, UL. 2005-01
R. R uim erm an. Modeling and
Remodeling in Bone Tissue. Fac­
ulty of Biomedical Engineering,
TU/e. 2005-02

C.N. Chong. Experiments in
Rights Control - Expression and
Enforcement. Faculty of Electrical
Engineering, Mathematics & Com­
puter Science, UT. 2005-03

H. Gao. Design and Verification
of Lock-free Parallel Algorithms.
Faculty of Mathematics and Com­
puting Sciences, RUG. 2005-04

H .M .A . van Beek. Specification
and Analysis o f Internet Applica­
tions. Faculty of Mathematics and
Computer Science, TU/e. 2005-05

M .T . Ionita. Scenario-Based Sys­
tem Architecting - A Systematic
Approach to Developing Future-
Proof System Architectures. Fac­
ulty of Mathematics and Comput­
ing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Anal­
ysis Techniques in Security and

Fault-Tolerance. Faculty of Elec­
trical Engineering, Mathematics &
Computer Science, UT. 2005-07
I. K urtev . Adaptability of Model
Transformations. Faculty of Elec­
trical Engineering, Mathematics &
Computer Science, UT. 2005-08
T. Wolle. Computational Aspects
of Treewidth - Lower Bounds and
Network Reliability. Faculty of Sci­
ence, UU. 2005-09
O. T veretina . Decision Proce­
dures for Equality Logic with Un­
interpreted Functions. Faculty of
Mathematics and Computer Sci­
ence, TU/e. 2005-10
A.M .L. Liekens. Evolution of Fi­
nite Populations in Dynamic E n­
vironments. Faculty of Biomedical
Engineering, TU/e. 2005-11
J. Eggerm ont. Data Mining us­
ing Genetic Programming: Classi­
fication and Symbolic Regression.
Faculty of Mathematics and Natu­
ral Sciences, UL. 2005-12
B .J. H eeren. Top Quality Type
Error Messages. Faculty of Sci­
ence, UU. 2005-13
G .F. Frehse. Compositional Ver­
ification of Hybrid Systems using

Simulation Relations. Faculty of
Science, Mathematics and Com­
puter Science, RU. 2005-14

M .R . M ousavi. Structuring
Structural Operational Semantics.
Faculty of Mathematics and Com­
puter Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analy­
sis of Probabilistic Systems. Fac­
ulty of Mathematics and Computer
Science, TU/e. 2005-16

T. Gelsem a. Effective Models for
the Structure of pi-Calculus Pro­
cesses with Replication. Faculty of
Mathematics and Natural Sciences,
UL. 2005-17

P. Zoeteweij. Composing Con­
straint Solvers. Faculty of Natural
Sciences, Mathematics, and Com­
puter Science, UvA. 2005-18

J .J . V inju. Analysis and Trans­
formation of Source Code by Pars­
ing and Rewriting. Faculty of Nat­
ural Sciences, Mathematics, and
Computer Science, UvA. 2005-19

M .Valero Espada. Modal Ab­
straction and Replication of Pro­
cesses with Data. Faculty of Sci­
ences, Division of Mathematics and
Computer Science, VUA. 2005-20

A. D ijkstra. Stepping through
Haskell. Faculty of Science, UU.
2005-21

Y .W . Law. Key management and
link-layer security of wireless sen­
sor networks: energy-efficient at­
tack and defense. Faculty of Elec­
trical Engineering, Mathematics &
Computer Science, UT. 2005-22

E. D olstra. The Purely Func­
tional Software Deployment Model.
Faculty of Science, UU. 2006-01

R .J. Corin. Analysis Models for
Security Protocols. Faculty of Elec­
trical Engineering, Mathematics &
Computer Science, UT. 2006-02

P.R .A . V erbaan. The Computa­
tional Complexity of Evolving Sys­
tems. Faculty of Science, UU. 2006­
03

K.L. M an and R .R .H . Schif-
felers. Formal Specification and
Analysis of Hybrid Systems. Fac­
ulty of Mathematics and Computer
Science and Faculty of Mechanical
Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifi­
cations of UML Models: Tool Sup­
port and Compositionality. Faculty
of Mathematics and Natural Sci­
ences, UL. 2006-05

M. H endriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Sci­
ence, RU. 2006-06

J. K etem a. Bohm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. B reunesse. On JML: top­
ics in tool-assisted verification of
JML programs. Faculty of Sci­
ence, Mathematics and Computer
Science, RU. 2006-08

B. M arkvoort. Towards Hybrid
Molecular Simulations. Faculty
of Biomedical Engineering, TU/e.
2006-09

S.G .R . N ijssen. Mining Struc­
tured Data. Faculty of Mathemat­
ics and Natural Sciences, UL. 2006­
10

G. Russello. Separation and
Adaptation of Concerns in a Shared
Data Space. Faculty of Mathemat­
ics and Computer Science, TU/e.
2006-11

L. Cheung. Reconciling Non-
deterministic and Probabilistic
Choices. Faculty of Science, Math­
ematics and Computer Science,
RU. 2006-12

B. B adban. Verification tech­
niques for Extensions of Equality
Logic. Faculty of Sciences, Division
of Mathematics and Computer Sci­
ence, VUA. 2006-13

A .J. M ooij. Constructive formal
methods and protocol standardiza­
tion. Faculty of Mathematics and
Computer Science, TU/e. 2006-14

T. K rilavicius. Hybrid Tech­
niques for Hybrid Systems. Faculty
of Electrical Engineering, Mathe­
matics & Computer Science, UT.
2006-15

M .E. W arnier. Language Based
Security for Java and JML. Faculty
of Science, Mathematics and Com­
puter Science, RU. 2006-16

V. Sundram oorthy . A t Home In
Service Discovery. Faculty of Elec­
trical Engineering, Mathematics &
Computer Science, UT. 2006-17

B. G ebrem ichael. Expressivity of
Timed Automata Models. Faculty
of Science, Mathematics and Com­
puter Science, RU. 2006-18

L.C .M . van Gool. Formalising
Interface Specifications. Faculty
of Mathematics and Computer Sci­
ence, TU/e. 2006-19

C .J.F . Crem ers. Scyther - Se­
mantics and Verification of Secu­
rity Protocols. Faculty of Math­
ematics and Computer Science,
TU/e. 2006-20
J .V . G u illen Scholten. Mo­
bile Channels for Exogenous Co­
ordination of Distributed Systems:
Semantics, Implementation and
Composition. Faculty of Mathe­
matics and Natural Sciences, UL.
2006-21

H .A . de Jong. Flexible Hetero­
geneous Software Systems. Faculty
of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007­
01
N .K . K ava ld jiev . A run-time
reconfigurable Network-on-Chip for
streaming DSP applications. Fac­
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-02

M . van Veelen. Considera­
tions on Modeling for Early De­
tection of Abnormalities in Locally
Autonomous Distributed Systems.
Faculty of Mathematics and Com­
puting Sciences, RUG . 2007-03

T .D . Vu. Semantics and Applica­
tions of Process and Program Alge­
bra. Faculty of Natural Sciences,

Mathematics, and Computer Sci­
ence, UvA. 2007-04

L . B rand an Briones. Theories
for Model-based Testing: Real-time
and Coverage. Faculty of Electrical
Engineering, Mathematics & Com­
puter Science, UT. 2007-05

I. Loeb. Natural Deduction: Shar­
ing by Presentation. Faculty of Sci­
ence, Mathematics and Computer
Science, RU. 2007-06

M .W .A . Streppel. Multifunc­
tional Geometric Data Structures.
Faculty of Mathematics and Com­
puter Science, TU/e. 2007-07

N . TrCka. Silent Steps in Transi­
tion Systems and Markov Chains.
Faculty of Mathematics and Com­
puter Science, TU/e. 2007-08

R . Brinkm an . Searching in en­
crypted data. Faculty of Electrical
Engineering, Mathematics & Com­
puter Science, UT. 2007-09

A . van W eelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Sci­
ence, RU. 2007-10

J.A .R . Noppen. Imperfect In­
formation in Software Development
Processes. Faculty of Electrical

Engineering, Mathematics & Com­
puter Science, UT. 2007-11

R . Boum en. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical
Engineering, TU/e. 2007-12

A .J. W ijs . What to do Next?:
Analysing and Optimising System
Behaviour in Time. Faculty of Sci­
ences, Division of Mathematics and
Computer Science, VUA. 2007-13

C .F .J. Lange. Assessing and Im ­
proving the Quality of Modeling: A
Series of Empirical Studies about
the UML. Faculty of Mathemat­
ics and Computer Science, TU/e.
2007-14

T . van der Storm . Component-
based Configuration, Integration
and Delivery. Faculty of Natural
Sciences, Mathematics, and Com­
puter Science,UvA. 2007-15

B .S . G raaf. Model-Driven Evo­
lution of Software Architectures.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci­
ence, TUD. 2007-16

A .H .J. M ath ijssen. Logical Cal­
culi for Reasoning with Binding.
Faculty of Mathematics and Com­
puter Science, TU/e. 2007-17

D . Ja rn ikov . QoS framework
for Video Streaming in Home Net­
works. Faculty of Mathematics and
Computer Science, TU/e. 2007-18
M . A . Abam . New Data Struc­
tures and Algorithms for Mobile
Data. Faculty of Mathematics and
Computer Science, TU/e. 2007-19
W . Pie ters. La Volonté Machi­
nale: Understanding the Electronic
Voting Controversy. Faculty of Sci­
ence, Mathematics and Computer
Science, RU. 2008-01
A .L . de G root. Practical Au­
tomaton Proofs in PVS. Faculty
of Science, Mathematics and Com­
puter Science, RU. 2008-02
M . B ru n tin k . Renovation of Id­
iomatic Crosscutting Concerns in
Embedded Systems. Faculty of
Electrical Engineering, Mathemat­
ics, and Computer Science, TUD.
2008-03
A .M . M arin . An Integrated Sys­
tem to Manage Crosscutting Con­
cerns in Source Code. Faculty of
Electrical Engineering, Mathemat­
ics, and Computer Science, TUD.
2008-04
N .C .W .M . Braspenning.
Model-based Integration and Test­
ing of High-tech Multi-disciplinary

Systems. Faculty of Mechanical
Engineering, TU/e. 2008-05
M . Bravenboer. Exercises in
Free Syntax: Syntax Definition,
Parsing, and Assimilation of Lan­
guage Conglomerates. Faculty of
Science, UU. 2008-06
M . Torabi Dashti. Keeping Fair­
ness Alive: Design and Formal
Verification of Optimistic Fair Ex­
change Protocols. Faculty of Sci­
ences, Division of Mathematics and
Computer Science, VUA . 2008-07
1.5.M. de Jong. Integration and
Test Strategies for Complex Manu­
facturing Machines. Faculty of Me­
chanical Engineering, TU/e. 2008­
08
I. Hasuo. Tracing Anonymity
with Coalgebras. Faculty of Sci­
ence, Mathematics and Computer
Science, RU. 2008-09
L .G .W .A . Cleophas. Tree Al­
gorithms: Two Taxonomies and
a Toolkit. Faculty of Mathemat­
ics and Computer Science, TU/e.
2008-10
1.5. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engi­
neering, Mathematics & Computer
Science, UT. 2008-11

M . Farshi. A Theoretical and Ex­
perimental Study of Geometric Net­
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12
G . Gulesir. Evolvable Behav­
ior Specifications Using Context-
Sensitive Wildcards. Faculty of
Electrical Engineering, Mathemat­
ics & Computer Science, UT. 2008­
13
F .D . G arcia. Formal and Compu­
tational Cryptography: Protocols,
Hashes and Commitments. Faculty
of Science, Mathematics and Com­
puter Science, RU . 2008-14
P. E . A . D urr. Resource-based
Verification for Robust Composi­
tion of Aspects. Faculty of Elec­
trical Engineering, Mathematics &
Computer Science, UT. 2008-15
E .M . Bo rtn ik . Formal Methods
in Support of SM C Design. Faculty
of Mechanical Engineering, TU/e.
2008-16
R .H . M ak. Design and Per­
formance Analysis of Data-
Independent Stream Processing
Systems. Faculty of Mathemat­
ics and Computer Science, TU/e.
2008-17
M . van der H orst. Scalable Block
Processing Algorithms. Faculty of

Mathematics and Computer Sci­
ence, TU/e. 2008-18
C .M . G ray. Algorithms for Fat
Objects: Decompositions and Ap­
plications. Faculty of Mathemat­
ics and Computer Science, TU/e.
2008-19
J .R . Calam e. Testing Reactive
Systems with Data - Enumerative
Methods and Constraint Solving.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-20
E . M um ford. Drawing Graphs for
Cartographic Applications. Faculty
of Mathematics and Computer Sci­
ence, TU/e. 2008-21
E .H . de G raaf. Mining Semi­
structured Data, Theoretical and
Experimental Aspects o f Pattern
Evaluation. Faculty of Mathemat­
ics and Natural Sciences, UL. 2008­
22
R . B rijd e r. Models of Natural
Computation: Gene Assembly and
Membrane Systems. Faculty of
Mathematics and Natural Sciences,
UL. 2008-23
A . Koprow ski. Termination
of Rewriting and Its Certification.
Faculty of Mathematics and Com­
puter Science, TU/e. 2008-24

U . Khadim . Process Algebras for
Hybrid Systems: Comparison and
Development. Faculty of Math­
ematics and Computer Science,
TU/e. 2008-25

J . M arkovski. Real and Stochas­
tic Time in Process Algebras for
Performance Evaluation. Faculty
of Mathematics and Computer Sci­
ence, TU/e. 2008-26
H . Kastenberg. Graph-Based
Software Specification and Verifica­
tion. Faculty of Electrical Engi­
neering, Mathematics & Computer
Science, UT. 2008-27

I.R . Buhan . Cryptographic Keys
from Noisy Data Theory and Appli­
cations. Faculty of Electrical Engi­
neering, Mathematics & Computer
Science, UT. 2008-28
R .S . M arin-Perianu . Wireless
Sensor Networks in Motion: Clus­
tering Algorithms for Service Dis­
covery and Provisioning. Faculty of
Electrical Engineering, Mathemat­
ics & Computer Science, UT. 2008­
29

M .H .G . Verhoef. Modeling and
Validating Distributed Embedded
Real-Time Control Systems. Fac­
ulty of Science, Mathematics and
Computer Science, RU. 2009-01

M . de M ol. Reasoning about
Functional Programs: Sparkle, a
proof assistant for Clean. Faculty
of Science, Mathematics and Com­
puter Science, RU. 2009-02

M . Lorm ans. Managing Require­
ments Evolution. Faculty of Elec­
trical Engineering, Mathematics,
and Computer Science, TUD. 2009­
03

M .P .W .J. van Osch. Automated,
Model-based Testing of Hybrid Sys­
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H . Sozer. Architecting Fault-
Tolerant Software Systems. Fac­
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-05

M .J. van W eerdenburg. Effi­
cient Rewriting Techniques. Fac­
ulty of Mathematics and Computer
Science, TU/e. 2009-06

H .H . Hansen. Coalgebraic Mod­
elling: Applications in Automata
Theory and Modal Logic. Faculty
of Sciences, Division of Mathemat­
ics and Computer Science, VUA.
2009-07

A . M esbah. Analysis and Testing
of Ajax-based Single-page Web Ap­

plications. Faculty of Electrical En ­
gineering, Mathematics, and Com­
puter Science, TUD. 2009-08

A .L . Rodriguez Yakushev. To­
wards Getting Generic Program­
ming Ready for Prime Time. Fac­
ulty of Science, UU. 2009-9

K .R . Olmos Jo ffre . Strate­
gies for Context Sensitive Program
Transformation. Faculty of Sci­
ence, UU. 2009-10

J.A .G .M . van den Berg . Rea­
soning about Java programs in PVS
using JML. Faculty of Science,
Mathematics and Computer Sci­
ence, RU. 2009-11

M .G . K h atib . MEMS-Based
Storage Devices. Integration in
Energy-Constrained Mobile Sys­
tems. Faculty of Electrical Engi­
neering, Mathematics & Computer
Science, UT. 2009-12

S .G .M . Cornelissen. Evaluating
Dynamic Analysis Techniques for
Program Comprehension. Faculty
of Electrical Engineering, Math­
ematics, and Computer Science,
TUD. 2009-13

D . Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical En ­

gineering, Mathematics & Com­
puter Science, UT. 2009-14

H .L . Jonker. Security Matters:
Privacy in Voting and Fairness
in Digital Exchange. Faculty of
Mathematics and Computer Sci­
ence, TU/e. 2009-15

M .R . Czenko. TuLiP - Reshap­
ing Trust Management. Faculty of
Electrical Engineering, Mathemat­
ics & Computer Science, UT. 2009­
16

T . Chen. Clocks, Dice and Pro­
cesses. Faculty of Sciences, D ivi­
sion of Mathematics and Computer
Science, VUA. 2009-17

C. Kaliszyk. Correctness and
Availability: Building Computer
Algebra on top of Proof Assistants
and making Proof Assistants avail­
able over the Web. Faculty of Sci­
ence, Mathematics and Computer
Science, RU. 2009-18

R .S .S . O ’Connor. Incomplete­
ness & Completeness: Formalizing
Logic and Analysis in Type The­
ory. Faculty of Science, Mathe­
matics and Computer Science, RU.
2009-19

B . Ploeger. Improved Verifica­
tion Methods for Concurrent Sys­

tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-20

T . H an. Diagnosis, Synthesis
and Analysis o f Probabilistic Mod­
els. Faculty of Electrical Engineer­
ing, Mathematics & Computer Sci­
ence, UT. 2009-21

R . L i. Mixed-Integer Evolution
Strategies for Parameter Optimiza­
tion and Their Applications to
Medical Image Analysis. Faculty of
Mathematics and Natural Sciences,
UL. 2009-22

J.H .P . Kw isthou t. The Compu­
tational Complexity of Probabilistic
Networks. Faculty of Science, UU.
2009-23

T .K . Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement.
Faculty of Mathematics and Natu­
ral Sciences, UL. 2009-24

A .I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M .A .C . Dekker. Flexible Access
Control for Dynamic Collaborative
Environments. Faculty of Elec­
trical Engineering, Mathematics &
Computer Science, UT. 2009-26

J . F . J . Laros. Metrics and Visual­
isation for Crime Analysis and Ge­

nomics. Faculty of Mathematics
and Natural Sciences, UL. 2009-27

C .J. Boogerd. Focusing Auto­
matic Code Inspections. Faculty of
Electrical Engineering, Mathemat­
ics, and Computer Science, TUD.
2010-01

M .R . Neuhaufier. Model Check­
ing Nondeterministic and Ran­
domly Timed Systems. Faculty of
Electrical Engineering, Mathemat­
ics & Computer Science, UT. 2010­
02

J . End ru llis . Termination and
Productivity. Faculty of Sciences,
Division of Mathematics and Com­
puter Science, VUA. 2010-03

T . Sta ijen . Graph-Based Specifi­
cation and Verification for Aspect-
Oriented Languages. Faculty of
Electrical Engineering, Mathemat­
ics & Computer Science, UT. 2010­
04

Y . W ang. Epistemic Modelling
and Protocol Dynamics. Faculty of
Science, UvA. 2010-05

J .K . Berendsen. Abstraction,
Prices and Probability in Model
Checking Timed Automata. Fac­
ulty of Science, Mathematics and
Computer Science, RU . 2010-06

A . Nugroho. The Effects of UML
Modeling on the Quality of Soft­
ware. Faculty of Mathematics and
Natural Sciences, UL. 2010-07
A . Silva. Kleene Coalgebra. Fac­
ulty of Science, Mathematics and
Computer Science, RU. 2010-08
J.S . de B ru in . Service-Oriented
Discovery of Knowledge - Founda­
tions, Implementations and Appli­
cations. Faculty of Mathematics
and Natural Sciences, UL. 2010-09
D . Costa. Formal Models for
Component Connectors. Faculty of
Sciences, Division of Mathematics
and Computer Science, VUA. 2010­
10
M .M . Jaghoori. Time at Your
Service: Schedulability Analysis
of Real-Time and Distributed Ser­
vices. Faculty of Mathematics and
Natural Sciences, UL. 2010-11
R . Bakhsh i. Gossiping Models:
Formal Analysis of Epidemic Pro­
tocols. Faculty of Sciences, Depart­
ment of Computer Science, VUA.
2011-01
B . J . Arnoldus. An Illumination
of the Template Enigma: Software
Code Generation with Templates.
Faculty of Mathematics and Com­
puter Science, TU/e. 2011-02

E . Zam bon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engi­
neering, Mathematics & Computer
Science, UT. 2011-03

L . Astefanoaei. An Executable
Theory of Multi-Agent Systems Re­
finement. Faculty of Mathematics
and Natural Sciences, UL. 2011-04

J . Proenca. Synchronous coor­
dination of distributed components.
Faculty of Mathematics and Natu­
ral Sciences, UL. 2011-05

A . M ora li. IT Architecture-
Based Confidentiality Risk Assess­
m ent in Networks of Organizations.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2011-06

M . van der B ijl. On chang­
ing models in Model-Based Testing.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2011-07

C. Krause. Reconfigurable Com­
ponent Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-08

M .E . Andres. Quantitative Anal­
ysis of Information Leakage in
Probabilistic and Nondeterminis-
tic Systems. Faculty of Science,
Mathematics and Computer Sci­
ence, RU. 2011-09

