2,655 research outputs found

    Combining Static and Dynamic Program Analysis Techniques for Checking Relational Properties

    Get PDF
    Die vorliegende Dissertation ist im Bereich der formalen Verifikation von Software angesiedelt. Sie behandelt die Überprüfung relationaler Eigenschaften von Computerprogrammen, d.h. solche Eigenschaften, die zwei oder mehr Programmausführungen betrachten. Die Dissertation konzentriert sich auf zwei spezifische relationale Eigenschaften: (1) Nichtinterferenz und (2) ob ein Programm ein Slice eines anderen Programms ist. Die Nichtinterferenz-Eigenschaft besagt, dass die Ausführung eines Programms mit den gleichen öffentlichen Eingaben die gleichen öffentlichen Ausgaben produziert und dies unabhängig von den geheimen Eingaben (z.B. eines Passworts) ist. Das bedeutet, dass die geheimen Eingaben die öffentlichen Ausgaben nicht beeinflussen. Programm-Slicing ist eine Technik zur Reduzierung eines Programms durch das Entfernen von Programmbefehlen, sodass ein spezifizierter Teil des Programmverhaltens erhalten bleibt, z.B. der Wert einer Variablen in einer Instruktion in dem Programm. Die Dissertation stellt Frameworks zur Verfügung, die es dem Nutzer ermöglichen, die obigen zwei Eigenschaften für ein gegebenes Programm zu analysieren. Die Dissertation erweitert den Stand der Technik in dem Bereich der Verifikation relationaler Eigenschaften, indem sie einerseits neue Ansätze zur Verfügung stellt und andererseits bereits existierende Ansätze miteinander kombiniert. Die Dissertation enthält jeweils einen Teil für die behandelten zwei relationalen Eigenschaften. Nichtinterferenz.\textbf{Nichtinterferenz.} Das Framework zur Überprüfung der Nichtinterferenz stellt neue Ansätze für die automatische Testgenerierung und für das Debuggen des Programms zur Verfügung und kombiniert diese mit Ansätzen, die auf deduktiver Verifikation und Programmabhängigkeitsgraphen basieren. Der erste neue Ansatz ermöglicht die automatische Generierung von Nichtinterferenz-Tests. Er ermöglicht dem Nutzer, nach Verletzungen der Nichtinterferenz-Eigenschaft im Programm zu suchen und stellt zudem ein für relationale Eigenschaften passendes Abdeckungskriterium für die generierten Test-Suites zur Verfügung. Der zweite neue Ansatz ist ein relationaler Debugger zur Analyse von Nichtinterferenz-Gegenbeispielen. Er verwendet bekannte Konzepte des Programm-Debuggens und erweitert diese für die Analyse relationaler Eigenschaften. Um den Nutzer beim Beweisen der Nichtinterferenz-Eigenschaft zu unterstützen, kombiniert das Framework einen auf Programmabhängigkeitsgraphen basierenden Ansatz mit einem auf Logik basierenden Ansatz, der einen Theorembeweiser verwendet. Auf Programmabhängigkeitsgraphen basierende Ansätze berechnen die Abhängigkeiten zwischen den unterschiedlichen Programmteilen und überprüfen, ob die öffentliche Ausgabe von der geheimen Eingabe abhängt. Im Vergleich zu logik-basierten Ansätzen skalieren programmabhängigkeitsgraphen-basierte Ansätze besser. Allerdings, können sie Fehlalarme melden, da sie die Programmabhängigkeiten überapproximieren. Somit bestehen zwei weitere Beiträge des Frameworks in Kombinationen von programmabhängigkeitsgraphen- und logik basierten Ansätzen: (1) der programmabhängigkeitsgraphen basierte Ansatz vereinfacht das Programm, das danach vom logik basierten Ansatz überprüft wird und (2) der logik basierte Ansatz beweist, dass einige vom Programmabhängigkeitsgraphen-basierten Ansatz berechnete Abhängigkeiten Überapproximationen sind und aus der Analyse entfernt werden können. Programm-Slicing.\textbf{Programm-Slicing.} Der zweite Teil der Dissertation behandelt ein Framework für das automatische Programm-Slicing. Während die meisten zum Stand der Technik gehörenden Slicing-Ansätze nur eine syntaktische Programmanalyse durchführen, betrachtet dieses Framework auch die Programmsemantik und kann dadurch mehr Programmbefehle entfernen. Der erste Beitrag des Frameworks besteht aus einem Ansatz zur relationalen Verifikation, der erweitert wurde, um die Korrektheit eines Programm-Slice nachzuweisen, d.h. dass es das spezifizierte Verhalten des Originalprogramms bewahrt. Der Vorteil der Benutzung relationaler Verifikation ist, dass sie auf zwei ähnlichen Programmen automatisch läuft -- was bei einem Slice-Kandidaten und Originalprogramm der Fall ist. Somit, anders als bei den wenigen zum Stand der Technik gehörenden Ansätzen, die die Programmsemantik betrachten, ist dieser Ansatz automatisch. Der zweite Beitrag des Frameworks besteht aus einer neuen Strategie zur Generierung von Slice-Kandidaten durch durch die Verfeinerung von dynamischen Slices (für eine Eingabe gültigen Slices) mithilfe von der relationalen Verifikation gelieferte Gegenbeispiele

    Verification-based software-fault detection

    Get PDF
    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this work new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way

    Verification-based Software-fault Detection

    Get PDF
    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this dissertation new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way

    Dynamic Logic for an Intermediate Language: Verification, Interaction and Refinement

    Get PDF
    This thesis is about ensuring that software behaves as it is supposed to behave. More precisely, it is concerned with the deductive verification of the compliance of software implementations with their formal specification. Two successful ideas in program verification are integrated into a new approach: dynamic logic and intermediate verification language. The well-established technique of refinement is used to decompose the difficult task of program verification into two easier tasks

    Deductive Verification of Concurrent Programs and its Application to Secure Information Flow for Java

    Get PDF
    Formal verification of concurrent programs still poses a major challenge in computer science. Our approach is an adaptation of the modular rely/guarantee methodology in dynamic logic. Besides functional properties, we investigate language-based security. Our verification approach extends naturally to multi-threaded Java and we present an implementation in the KeY verification system. We propose natural extensions to JML regarding both confidentiality properties and multi-threaded programs

    Deductive verification of object-oriented software : dynamic frames, dynamic logic and predicate abstraction

    Get PDF
    Software systems play a central role in modern society, and their correctness is often crucially important. Formal specification and verification are promising approaches for ensuring correctness more rigorously than just by testing. This work presents an approach for deductively verifying design-by-contract specifications of object-oriented programs. The approach is based on dynamic logic, and addresses the challenges of modularity and automation using dynamic frames and predicate abstraction

    Naming and sharing resources across administrative boundaries

    Get PDF
    I tackle the problem of naming and sharing resources across administrative boundaries. Conventional systems manifest the hierarchy of typical administrative structure in the structure of their own mechanism. While natural for communication that follows hierarchical patterns, such systems interfere with naming and sharing that cross administrative boundaries, and therefore cause headaches for both users and administrators. I propose to organize resource naming and security, not around administrative domains, but around the sharing patterns of users. The dissertation is organized into four main parts. First, I discuss the challenges and tradeoffs involved in naming resources and consider a variety of existing approaches to naming. Second, I consider the architectural requirements for user-centric sharing. I evaluate existing systems with respect to these requirements. Third, to support the sharing architecture, I develop a formal logic of sharing that captures the notion of restricted delegation. Restricted delegation ensures that users can use the same mechanisms to share resources consistently, regardless of the origin of the resource, or with whom the user wishes to share the resource next. A formal semantics gives unambiguous meaning to the logic. I apply the formalism to the Simple Public Key Infrastructure and discuss how the formalism either supports or discourages potential extensions to such a system. Finally, I use the formalism to drive a user-centric sharing implementation for distributed systems. I show how this implementation enables end-to-end authorization, a feature that makes heterogeneous distributed systems more secure and easier to audit. Conventionally, gateway services that bridge administrative domains, add abstraction, or translate protocols typically impede the flow of authorization information from client to server. In contrast, end-to-end authorization enables us to build gateway services that preserve authorization information, hence we reduce the size of the trusted computing base and enable more effective auditing. I demonstrate my implementation and show how it enables end-to-end authorization across various boundaries. I measure my implementation and argue that its performance tracks that of similar authorization mechanisms without end-to-end structure. I conclude that my user-centric philosophy of naming and sharing benefits both users and administrators

    Verifying Relational Properties using Trace Logic

    Full text link
    We present a logical framework for the verification of relational properties in imperative programs. Our work is motivated by relational properties which come from security applications and often require reasoning about formulas with quantifier-alternations. Our framework reduces verification of relational properties of imperative programs to a validity problem into trace logic, an expressive instance of first-order predicate logic. Trace logic draws its expressiveness from its syntax, which allows expressing properties over computation traces. Its axiomatization supports fine-grained reasoning about intermediate steps in program execution, notably loop iterations. We present an algorithm to encode the semantics of programs as well as their relational properties in trace logic, and then show how first-order theorem proving can be used to reason about the resulting trace logic formulas. Our work is implemented in the tool Rapid and evaluated with examples coming from the security field
    corecore