
Combining Static and Dynamic
Program Analysis Techniques for
Checking Relational Properties

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Mihai Herda
aus Bras,ov, Rumänien

Tag der mündlichen Prüfung: 13.12.2019
Erster Gutachter: Prof. Dr. Bernhard Beckert
Zweiter Gutachter: Prof. Dr. Shmuel Tyszberowicz

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/287040585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Combining Static and
Dynamic Program
Analysis Techniques for
Checking Relational
Properties

Mihai Herda

Ich versichere wahrheitsgemäß, die Dissertation bis auf die dort angegebe-
nen Hilfen selbständig angefertigt, alle benutzten Hilfsmittel vollständig und
genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer und eigenen Veröffentlichungen unverändert oder mit Änderungen
entnommen wurde.

Karlsruhe,
Mihai Herda

Acknowledgements
I thank Prof. Bernhard Beckert for giving me the opportunity to pursue a
PhD in his research group and for his useful advice throughout my time as a
PhD student.

I thank Prof. Shmuel Tyszberowicz for the great collaboration that we
had, for his feedback, and for agreeing to be the second reviewer of this
thesis.

I thank my current and former colleagues, Aboubakr Achraf El Ghazi,
Thorsten Bormer, Stephan Falke, David Farago, Christoph Gladisch, Da-
niel Grahl, Sarah Grebing, Markus Iser, Michael Kirsten, Jonas Klamroth,
Vladimir Klebanov, Marko Kleine Büning, Tianhai Liu, Simone Meinhart,
Florian Merz, Jonas Schiffl, Christoph Scheben, Prof. Peter Schmitt, Prof.
Carsten Sinz, Mattias Ulbrich, and Alexander Weigl, for the great collabora-
tion and for the great discussions that we had during this time. Working
with you is and has been a pleasure.

I thank the students Etienne Brunner, Stephan Gocht, Holger Klein,
Daniel Lentzsch, Joachim Müssig, Joana Plewnia, Ulla Scheler, Chiara
Staudenmaier, Benedikt Wagner, and Pascal Zwick, for their work that I
had the pleasure to supervise.

I thank the researchers form the groups of Prof. Wolfgang Ahrendt, Prof.
Reiner Hähnle, Prof. Heiko Mantel, Prof. Ralf Reussner, and Prof. Gregor
Snelting with whom I had the pleasure to cooperate.

I thank the German Israeli Foundation (GIF), the German Research
Foundation (DFG), and the Federal Ministry of Education and Research
(BMBF) for financing my work.

Last but not least, I thank my family and friends for their continuous
moral support.

vii

Abstract

The topic of this thesis belongs to the research area of formal software
verification. It deals with checking relational properties of computer programs
(i.e., properties that consider two or more program executions). The thesis
focuses on two specific relational properties: (1) noninterference and (2)
whether a program is a correct slice of another. The noninterference property
states that running a program with the same public input values will always
produce the same public outputs, regardless of the secret inputs (e.g., a
password). This means that the secret inputs do not influence public outputs.
Program slicing is a technique to reduce a program by removing statements
from it while preserving a specified part of its behavior, such as the value of
a variable at a program location.

The thesis provides frameworks that allow the user to analyze the two
properties for a given program. The thesis advances the state of the art in
the area of formal verification of relational properties by providing novel
approaches for the analysis on the one hand and by combining existing
approaches on the other hand. The thesis contains two parts, each handling
one of the two relational properties.

Noninterference. The framework for checking noninterference provides
new approaches both for automatic test generation and program debugging,
and it combines these new approaches with approaches based on deductive
verification and dependency graphs. The first new approach provided by
this framework allows for the automatic generation of noninterference tests.
It allows the user to search for violations of the noninterference property,
and it also provides a coverage criterion for the generated test suites that is
appropriate for relational properties. The second new approach provided by
the framework is a relational debugger for analyzing noninterference coun-
terexamples. It employs well-known concepts from program debugging, and it

ix

Abstract

extends them for relational program analysis. To support the user in proving
a noninterference property, the framework combines an approach based on
dependency graphs with a logic-based approach that uses a theorem prover.
Dependency-graph-based approaches compute the dependencies between
various program parts and check whether the public output depends on the
secure input. Compared with logic-based approaches, dependency-graph-
based approaches scale better. However, because they over-approximate
the dependencies in a program, they may report false alarms. Two further
contributions of the framework are thus represented by two combinations of
the logic-based and dependency-graph-based approaches: (1) the dependency-
graph-based approach simplifies the program that is checked by logic-based
approach, and (2) the logic-based approach proves that certain dependencies
computed by the dependency-graph-based approach are over-approximations
and can be discarded from the analysis.

Program slicing. The second part of the thesis discusses a framework for
automatic program slicing. Whereas most state-of-the-art slicing approaches
only perform a syntactical analysis of the program, this framework also
considers the semantics of the program and can remove more statements
from a program. The first contribution of the slicing framework consists
of a relational verification approach that was adapted to check whether a
slice is valid, (i.e., whether it preserves the specified behavior of the original
program). The advantage of using relational verification is that it works
automatically for two similar programs—which is the case when considering a
slice candidate and an original program. Thus, unlike the few state-of-the-art
slicing approaches that consider the semantics of the program, our approach
is automatic. The second contribution of this framework is a new strategy
for generating slice candidates by refining dynamic slices (i.e., slices which
are valid for a single input) by using the counterexamples provided by the
relational verifier.

x

Zusammenfassung

Die vorliegende Dissertation ist im Bereich der formalen Verifikation von
Software angesiedelt. Sie behandelt die Überprüfung relationaler Eigenschaf-
ten von Computerprogrammen, d.h. solche Eigenschaften, die zwei oder mehr
Programmausführungen betrachten. Die Dissertation konzentriert sich auf
zwei spezifische relationale Eigenschaften: (1) Nichtinterferenz und (2) ob
ein Programm ein Slice eines anderen Programms ist. Die Nichtinterferenz-
Eigenschaft besagt, dass die Ausführung eines Programms mit den gleichen
öffentlichen Eingaben die gleichen öffentlichen Ausgaben produziert und
dies unabhängig von den geheimen Eingaben (z.B. eines Passworts) ist. Das
bedeutet, dass die geheimen Eingaben die öffentlichen Ausgaben nicht beein-
flussen. Programm-Slicing ist eine Technik zur Reduzierung eines Programms
durch das Entfernen von Programmbefehlen, sodass ein spezifizierter Teil
des Programmverhaltens erhalten bleibt, z.B. der Wert einer Variablen in
einer Instruktion in dem Programm.

Die Dissertation stellt Frameworks zur Verfügung, die es dem Nutzer
ermöglichen, die obigen zwei Eigenschaften für ein gegebenes Programm
zu analysieren. Die Dissertation erweitert den Stand der Technik in dem
Bereich der Verifikation relationaler Eigenschaften, indem sie einerseits neue
Ansätze zur Verfügung stellt und andererseits bereits existierende Ansätze
miteinander kombiniert. Die Dissertation enthält jeweils einen Teil für die
behandelten zwei relationalen Eigenschaften.

Nichtinterferenz. Das Framework zur Überprüfung der Nichtinterferenz
stellt neue Ansätze für die automatische Testgenerierung und für das De-
buggen des Programms zur Verfügung und kombiniert diese mit Ansätzen,
die auf deduktiver Verifikation und Programmabhängigkeitsgraphen basie-
ren. Der erste neue Ansatz ermöglicht die automatische Generierung von
Nichtinterferenz-Tests. Er ermöglicht dem Nutzer, nach Verletzungen der

xi

Zusammenfassung

Nichtinterferenz-Eigenschaft im Programm zu suchen und stellt zudem ein
für relationale Eigenschaften passendes Abdeckungskriterium für die gene-
rierten Test-Suites zur Verfügung. Der zweite neue Ansatz ist ein relationaler
Debugger zur Analyse von Nichtinterferenz-Gegenbeispielen. Er verwen-
det bekannte Konzepte des Programm-Debuggens und erweitert diese für
die Analyse relationaler Eigenschaften. Um den Nutzer beim Beweisen der
Nichtinterferenz-Eigenschaft zu unterstützen, kombiniert das Framework
einen auf Programmabhängigkeitsgraphen basierenden Ansatz mit einem
auf Logik basierenden Ansatz, der einen Theorembeweiser verwendet. Auf
Programmabhängigkeitsgraphen basierende Ansätze berechnen die Abhän-
gigkeiten zwischen den unterschiedlichen Programmteilen und überprüfen, ob
die öffentliche Ausgabe von der geheimen Eingabe abhängt. Im Vergleich zu
logik-basierten Ansätzen skalieren programmabhängigkeitsgraphen-basierte
Ansätze besser. Allerdings, können sie Fehlalarme melden, da sie die Pro-
grammabhängigkeiten überapproximieren. Somit bestehen zwei weitere Bei-
träge des Frameworks in Kombinationen von programmabhängigkeitsgraphen-
und logik basierten Ansätzen: (1) der programmabhängigkeitsgraphen ba-
sierte Ansatz vereinfacht das Programm, das danach vom logik basierten
Ansatz überprüft wird und (2) der logik basierte Ansatz beweist, dass einige
vom Programmabhängigkeitsgraphen-basierten Ansatz berechnete Abhän-
gigkeiten Überapproximationen sind und aus der Analyse entfernt werden
können.

Programm-Slicing. Der zweite Teil der Dissertation behandelt ein Frame-
work für das automatische Programm-Slicing. Während die meisten zum
Stand der Technik gehörenden Slicing-Ansätze nur eine syntaktische Pro-
grammanalyse durchführen, betrachtet dieses Framework auch die Programm-
semantik und kann dadurch mehr Programmbefehle entfernen. Der erste
Beitrag des Frameworks besteht aus einem Ansatz zur relationalen Veri-
fikation, der erweitert wurde, um die Korrektheit eines Programm-Slice
nachzuweisen, d.h. dass es das spezifizierte Verhalten des Originalprogramms
bewahrt. Der Vorteil der Benutzung relationaler Verifikation ist, dass sie
auf zwei ähnlichen Programmen automatisch läuft – was bei einem Slice-
Kandidaten und Originalprogramm der Fall ist. Somit, anders als bei den
wenigen zum Stand der Technik gehörenden Ansätzen, die die Programmse-
mantik betrachten, ist dieser Ansatz automatisch. Der zweite Beitrag des
Frameworks besteht aus einer neuen Strategie zur Generierung von Slice-
Kandidaten durch durch die Verfeinerung von dynamischen Slices (für eine
Eingabe gültigen Slices) mithilfe von der relationalen Verifikation gelieferte
Gegenbeispiele.

xii

Contents

Page

Abstract ix

Zusammenfassung xi

List of Figures xvii

I Introduction 1

1 Introduction 3
1.1 Goal . 4
1.2 State of the Art . 5
1.3 Contributions . 6

1.3.1 Information Flow Security 7
1.3.2 Program Slicing . 9

1.4 Relevant Publications . 9
1.5 Outline . 11

1.5.1 Part 1—Introduction 12
1.5.2 Part 2—Information Flow Security 12
1.5.3 Part 3—Program Slicing 13
1.5.4 Part 4—Related Work and Conclusion 14

xiii

Contents

2 Foundations 15
2.1 Information Flow Security . 15
2.2 JavaDL and the Theorem Prover KeY 17

2.2.1 JavaDL . 18
2.2.2 The Theorem Prover KeY 23
2.2.3 JML . 23

2.3 Proving Noninterference Properties with KeY 25
2.3.1 Proof Obligations . 25
2.3.2 Extensions to JML . 27

2.4 Automatic Test Generation with KeY 29
2.4.1 Tests and Coverage Criteria 29
2.4.2 Generating Tests with KeYTestGen 31

2.5 Program Slicing . 34
2.6 Using Dependence Graphs for Proving Noninterference 35

2.6.1 Dependence Graphs 36
2.6.2 Using the SDG to Prove Noninterference 38

2.7 Relational Verification . 41

II Information Flow Security 43

3 A Framework for Checking Noninterference 45

4 Automatic Generation of Noninterference Tests 49
4.1 Introduction . 49
4.2 Noninterference Tests and Test Suites 51
4.3 Automatic Noninterference Test Generation 52

4.3.1 Constraints Generation 53
4.3.2 Test Data Generation 54
4.3.3 Code Generation . 54
4.3.4 Example . 56

4.4 Coverage Criteria . 58
4.5 Evaluation . 61
4.6 Conclusion . 63

5 Analysis of Noninterference Counterexamples 65
5.1 Introduction . 65
5.2 Requirements of the Approach 66
5.3 Implementation . 68

5.3.1 Debugging Operations 69
5.3.2 Program Panels . 70
5.3.3 Watch Expressions and Conditional Breakpoints . . . 70

5.4 Discussion . 71
5.5 Conclusion . 73

xiv

Contents

6 Using SDGs to Assist Deductive Verification and Testing 75
6.1 Introduction . 75
6.2 Running Example . 77
6.3 Generation of the Simplified Program 78
6.4 Verification of the Simplified Program 85
6.5 Testing the Simplified Program 87
6.6 Discussion . 89
6.7 Conclusion . 91

7 Increasing the Precision of SDG-based Approaches 93
7.1 Introduction . 93
7.2 The Combined Approach . 94
7.3 Implementation . 99
7.4 Evaluation . 102
7.5 Discussion . 103
7.6 Conclusion . 107

III Program Slicing 109

8 A Framework for Automatic and Precise Program Slicing 111
8.1 Introduction . 111
8.2 Slicing Semantics . 112
8.3 Verification of Slice Candidates 116
8.4 A Framework for Automatic Slicing 120

8.4.1 Removing Instructions Using Heuristics 121
8.4.2 Counterexample Guided Slicing 121

8.5 Discussion . 124
8.6 Conclusion . 127

IV Related Work and Conclusion 129

9 Related Work 131
9.1 Noninterference . 131

9.1.1 Noninterference Testing 131
9.1.2 Noninterference Debugging 133
9.1.3 Combinations of Logic- and SDG-based Approaches . 133
9.1.4 Other Approaches for Checking Noninterference . . . 134

9.2 Program Slicing . 135

xv

Contents

10 Conclusion 139
10.1 Summary . 139
10.2 Future Work . 140

10.2.1 Improving the Noninterference Framework. 141
10.2.2 Improving the Slicing Framework 143

V Appendix 145

Example of Noninterference Test 147
A.1 Implementation . 147

Bibliography 151

Publication List 171
B.1 Peer-Reviewed Conference and Workshop Papers 171
B.2 Book Chapters . 174
B.3 Peer-Reviewed Posters . 174
B.4 Non-Peer-Reviewed Publications 174

xvi

List of Figures

Page

1.1 Contributions of this thesis 7

2.3 Original program, slice, and incorrect slice candidate 35
2.5 Summary edge for the example in Listing 2.4 38
2.6 Coupled control flow of two fully synchronized programs . . . 42

3.1 The noninterference framework 46

4.2 Steps of the test generation approach 52
4.6 Self-composed CFG . 59

5.1 The user interface of DIbugger 68

6.2 The SDG of the running example 78

7.2 SDG of the method test in Listing 7.1 98
7.4 SDG of the method identity in Listing 7.1 100

8.1 The semantics of our IR for a fixed program P 113
8.2 Examples from Figure 2.3 in our IR. 114
8.3 The CFG for the program in Figure 8.2a 117
8.4 Verification of slice candidates 118
8.5 The slicing framework . 120

xvii

Part I

Introduction

1

1
Introduction

Software plays an increasingly important role in our society, as it is used
everywhere, from transport and energy infrastructures to devices that we use
in our daily life. One effect of this is the increasing importance of software
correctness and security, as software faults can lead to dire consequences.
Another effect is the increased size and complexity of software systems, which
makes understanding the system and checking its correctness more difficult.

To check the correctness of computer programs with respect to a given
property two types of approaches are currently used. On the one hand, there
are dynamic approaches that check the program while running it. These
approaches scale relatively well with the size of the analyzed programs.
However, their coverage (i.e., the amount of inputs for which the property
was checked) is relatively low. On the other hand, static approaches, that
check the source code of the program without running it, offer high coverage
but low scalability.

Until now, most effort was put into the development of approaches that
check functional properties. These properties consider the relation of the
inputs and outputs of a single program execution. There are, however, useful
properties that consider the relation of inputs and outputs of two (relational
properties) or more (hyper-properties) program executions. Examples of such
properties are noninterference (introduced by Goguen and Meseguer [1982])
and whether a program is a valid slice of another program (program slicing
was introduced by Weiser [1981]). When checking functional properties
static approaches have a scalability problem and dynamic approaches have
a coverage problem. For checking relational properties these problems are
even more dire, because multiple program executions must be considered.

This thesis provides frameworks that allow the user to analyze two
relational properties (noninterference and slice validity) for a given program.
It advances the state of the art in the area of formal verification of relational
properties by providing novel approaches on the one hand and by combining
existing approaches in new ways on the other hand.

3

Chapter 1. Introduction

1.1 Goal

This thesis tackles the problem of analyzing relational properties of programs.
Its goal is to build frameworks that combine the advantages of both static
and dynamic program analysis techniques. The thesis focuses on two types
of relational properties and provides a framework for each of them. The
following relational properties are considered in this thesis:

1. In the research area of information flow security, it handles problem of
checking the noninterference property (i.e., whether inputs with high
security level influence outputs with low security level).

2. In the more general area of software engineering, it handles the problem
of program slicing, which is a technique to reduce a program by removing
statements from it while preserving a specified part of its behavior.

The first relational property, noninterference, addresses the confidentiality
and integrity aspects of computer security. Thus, checking a system with
respect to this property, allows us to evaluate the security of a software. The
variations of the noninterference property which are handled in this thesis
are defined in Section 2.1.

The second property, whether a program reduced by removing statements
from it preserves a specified aspect of the original program behavior, addresses
the problem of increasing size and complexity of software. The reduced
program can be easier understood by the user or easier analyzed with a
second approach. Program slicing is a powerful tool for challenges in software
engineering such as code comprehension, debugging, refactoring and fault
localization (see Binkley and Harman [2004]), as well as in information flow
security (see Hammer and Snelting [2009]). We define what constitutes a
correct program slice in Section 2.5.

The two properties which are considered in this thesis are highly rep-
resentative in the area of relational property verification. Numerous other
relational properties can be stated as a variation of one of the two properties
(e.g., program equivalence can be formulated as a noninterference property
in which all inputs have a high security level and all outputs a low security
level). Thus, being able to analyze a software system with respect to these
two properties and improvements on the state of the art in these areas
are of great benefit. Furthermore, the approaches that are part of the two
frameworks can be adapted for the analysis of other relational properties.
This is especially true for the idea of automatically identifying those parts
of the analyzed program which are irrelevant with respect to the analyzed
property and discarding them from the analysis.

The goal is realized through the contributions presented in Section 1.3.

4

1.2. State of the Art

1.2 State of the Art

Before explaining the contributions of this thesis, we present a short overview
of the state of the art in information flow security and program slicing. A
more in-depth overview of related work can be found in Chapter 9.

Information Flow Security. There exist various static approaches and
tools for checking the noninterference property (i.e., whether certain inputs
with high security level influence outputs with low security level) of a program.
Some of these approaches have a high degree of automation, yet they may
produce false alarms, since they over-approximate the dependencies within a
program. Other approaches are more precise, but require more effort and
user interaction. In what follows, we describe some of the main approaches.

Approaches (e.g., Graf et al. [2016]) that are based on system dependence
graphs (SDGs) syntactically compute the possible dependencies between the
program statements and check whether the low output depends on the high
input. Whereas they scale very well, such approaches over-approximate the
actual dependencies in the program, as they work on the syntactical level of
the program. This can result in false alerts. For a program such as “l=l+h;
l=l-h;”, where l has the security level low and h the security level high, a
syntactical approach will identify a dependency between the variables l and
h even though there is in fact no (semantical) dependency between them.

Approaches that are based on type systems (e.g., Lortz et al. [2014])
have the same scalability and precision as SDG-based approaches, as shown
by Mantel and Sudbrock [2013]. Such approaches enforce noninterference
by assigning a security type (e.g., high or low) to the program variables and
then checking, using the rules of the type system, whether the expressions in
the program conform to the type system.

Logic-based approaches (e.g., Beckert et al. [2013]), on the other hand,
have a higher precision (i.e., they produce less false alarms) because they
also consider the semantics of the program statements. However, those
approaches have a lower scalability. False alarms occur when the system
fails to find a proof in the allotted time even though the proof obligation is
valid. Proving noninterference using this approach is harder than proving
a functional property. This is because the number of execution paths for
which the property needs to be checked is quadratic when considering two
program executions.

Dynamic approaches based on runtime monitoring (e.g., Guernic [2007])
have been developed. A monitor checks every program instruction before its
execution. If it determines that the instruction reveals some high information,
then the execution of that instruction is either prevented, or the instruction
is replaced with a safe instruction which is then executed. However, the
precision of sound dynamic techniques for checking noninterference is limited,

5

Chapter 1. Introduction

and they may report more false alarms than (precise) static techniques, as
shown by Russo and Sabelfeld [2010].

Approaches for automatic test generation for the noninterference property
have also been developed (e.g., Milushev et al. [2012]). However, they do not
support heap data structures. They also provide no solution for the case in
which counterexamples could not be found due to timeouts.

Program Slicing. Most existing slicing approaches are only syntactical
(i.e., they do not take the semantics of the various program operations into
account). The problem with syntactic approaches is that the obtained slices
are too large and often not useful. The SDG plays a prominent role in
syntactic slicing; approaches based on it have been surveyed by Xu et al.
[2005] and by Tip [1994]. On the other hand, existing approaches that do
consider the program semantics are not fully automatic and require auxiliary
specifications from the user. For example, precomputed or user-provided
functional loop invariants are used in Barros et al. [2012]. Other program
slicing approaches (e.g., by Jaffar et al. [2012a]) that consider the program
semantics can automatically handle loops by using techniques like abstract
interpretations to over-approximate the values of the program variables.
However, the over-approximated values lead to larger slices.

1.3 Contributions

This thesis has two major contributions in the form of two frameworks—
one for analyzing noninterference properties (contribution C1.1) and one
for slicing programs (contribution C2.1). The two frameworks and the
contributions they provide are illustrated in Figure 1.1. Both frameworks
combine static and dynamic program analysis techniques in order to analyze
a program with respect to one of the two relational properties.

The noninterference framework assists the user in two cases. In the first
case, it handles the situation in which the program violates the specified
noninterference property. For this, the framework provides an approach
for automatic test generation for noninterference properties (contribution
C1.2) and an approach for debugging (contribution C1.3) a program with
respect to a noninterference property. These two approaches assist the user
in finding and understanding noninterference violations (i.e., noninterference
counterexamples). Furthermore, it provides an approach (contribution C1.4)
for simplifying the analyzed program that reduces the necessary effort for
generating and executing the noninterference tests.

In the second case, it handles the situation in which the program fulfills
the specified noninterference property, and the user tries to prove this. The
framework combines an SDG-based and a logic-based approach in two ways.
On the one hand, the approach for simplifying programs (contribution C1.4)

6

1.3. Contributions

C2.2
Candidate
Checker

C2.3
Candidate
Generator

C1.3
Noninterference

Debugging

C1.2
Automatic Test

Generation

C1.5
Combined
Approach

Program
Simplification

C1.4

C1.1
Noninterference Framework

C2.1 Program Slicing Framework

Prove Noninterference

Find Counterexamples

Figure 1.1: Contributions of this thesis

is used again, as it is also able to reduce the effort needed to verify a program
with respect to a noninterference property. On the other hand, as part of a
Combined Approach (contribution C1.5) a logic-based approach is used to
reduce the over-approximation of an SDG-based approach.

The framework for program slicing combines static and dynamic pro-
gram analysis techniques to automatically reduce a program by removing
statements from it such that a specified part of the program’s behavior is
preserved. The slicing framework is composed of two components which
interact with each other. The first component, the candidate checker (con-
tribution C2.2), is an adapted relational verifier (a static technique, see
Section 2.7) that checks whether a slice candidate obtained by removing
statements from a program is a valid slice (i.e., it preserves the required
behavior). The second component, the candidate generator (contribution
C2.3), uses a dynamic technique to check which program instructions con-
tributed to the preservation of the specified behavior for a single program
run. This information is then used to generate slice candidates.

In the following we present each contribution of this thesis.

1.3.1 Information Flow Security

C1.1: A framework for checking noninterference. This contribution
consists of a framework combining SDG-based and logic-based approaches for
proving noninterference. If these approaches fail, the framework provides the
user with the option of automatically generating noninterference tests. The
user can also analyze noninterference counterexamples with a noninterference
debugger. The novelty of the framework lies in the fact that it provides a set of
tools for both statically analyzing noninterference properties and for searching
and analyzing counterexamples. The framework uses the contributions C1.2,
C1.3, C1.4, and C1.5, which we describe in the following.

7

Chapter 1. Introduction

C1.2: Automatic test generation for noninterference properties.
This contribution consists of an approach for generating tests for nonin-
terference properties. Improving on the state of the art, we show how
noninterference properties with declassification for object oriented programs
can be tested, and we extend existing test coverage criteria to measure the
coverage of noninterference test suites. This contribution was previously
published in Herda et al. [2019c]. The test generation approach for non-
interference properties is an extension of the test generation approach for
functional properties which was published in Ahrendt et al. [2016b].

C1.3: An approach for analyzing noninterference violations. This
contribution consists of a novel technique for analyzing counterexamples of
noninterference properties. It employs well-known concepts from program
debugging, and it extends them for relational properties such as noninter-
ference. Furthermore, it provides novel features such as such as relational
watch expressions and relational conditional breakpoints. This contribution
was previously published in Herda et al. [2019a].

C1.4: Using dependency analysis to simplify programs. This con-
tribution consists of an approach that uses SDG-based static analysis to
create simplified programs that are noninterference equivalent to the original
program. The simplification is done by removing program statements and
branches which are irrelevant with respect to the analyzed noninterference
property. The simplified program can then be analyzed using a second
approach. We use deductive verification and automatic test generation as
a second approach. The improvement on state of the art lies in the fact
that the approach goes beyond simple program slicing—it identifies program
paths that are irrelevant to the noninterference property and can be ignored
by the second approach. This contribution was previously published in Herda
et al. [2018].

C1.5: Using theorem provers to increase the precision of SDG-
based approaches. This contribution consists of the Combined Approach,
which combines deductive verification with SDG-based static analysis and
has the goal of increasing the precision of the SDG-based static analysis. For
each possible noninterference violation reported by the SDG-based approach,
the Combined Approach automatically generates proof obligations that state
that certain reported program dependencies are not real (because they are
over-approximated). These proof obligations are then relayed to a theorem
prover, which employs a more precise analysis. The improvement on state
of the art lies in the fact that the interaction between the two approaches
is fully automated. This contribution was previously published in Beckert
et al. [2017a] and Beckert et al. [2018a].

8

1.4. Relevant Publications

1.3.2 Program Slicing

C2.1: A framework for precise and automatic programs slicing.
This contribution consists of an easily extensible framework for precise and
automatic program slicing. The framework consists of two components which
interact with each other. The first component is the candidate generation
engine, which removes statements in the program according to a given
strategy and sends the obtained slice candidate to the second component. The
second component is a relational verifier that was adapted for the verification
of the validity of slice candidates. The relational verifier transmits one of
three possible answers to the candidate generation engine: (1) the candidate
is a valid slice, (2) the candidate is not valid along with an input that leads
to a violation of the slice property, or (3) a timeout. The framework uses
the contributions C2.2 and C2.3, which we describe in the following. The
novelty of the framework lies in the fact that it allows for precise program
slicing and takes the semantics of the program into consideration without
requiring any auxiliary specification like loop invariants.

C2.2: Adapting a relational verifier to check the validity of slice
candidates. This contribution consists of an approach for verifying the
validity of a slice candidate. We adapt a relational verifier to show that a
slice candidate is a valid slice of the original program. The novelty lies in the
fact that the adaptation allows the slicing approach to be automatic while
also considering the program semantics.

C2.3: Using dynamic slicing to generate slice candidates. This
contribution consists of a novel slice candidate generation strategy that uses
a dynamic slicer to generate an initial slice candidate which is then iteratively
refined using the counterexamples provided by the relational verifier.

Contributions C2.1, C2.2, C2.3 were previously published in Beckert
et al. [2017b], Beckert et al. [2019d], and in Beckert et al. [2019c].

1.4 Relevant Publications

In this section we list for each chapter the previous publications by the
author in which the contributions of the respective chapter were presented.
An overview of these publications is shown in Table 1.2. All publications
(including the ones that do not contain any results presented in this thesis)
of the author are listed in Appendices B.1–B.4.

9

Chapter 1. Introduction

Table 1.2: Overview of relevant publications

Chapter 4 Ahrendt et al. [2016b]
Herda et al. [2019c]

Chapter 5 Herda et al. [2019a]
Chapter 6 Herda et al. [2018]
Chapter 7 Beckert et al. [2017a]

Beckert et al. [2018a]
Chapter 8 Beckert et al. [2017b]

Beckert et al. [2019d]
Beckert et al. [2019c]

Chapter 4
• Ahrendt et al. [2016b], which is a chapter in the book about the KeY

theorem prover (see Ahrendt et al. [2016a]) that was published in 2016.

• Herda et al. [2019c], which was presented at the Software Verifica-
tion and Testing track at the ACM Symposium of Applied Computing
in 2019.

In Ahrendt et al. [2016b] the extension of the KeY theorem prover
for automatic test generation for functional properties is presented. This
test generation approach is extended in Herda et al. [2019c] to support
noninterference properties. Chapter 4 is based on Herda et al. [2019c].

Chapter 5
• Herda et al. [2019a], which was presented at the Workshop on Program

Equivalence and Relational Reasoning in 2019.
Herda et al. [2019a] is a tool paper which presents DIbugger, a debugger

for relational properties. DIbugger constitutes the implementation of the
approach for analyzing noninterference counterexamples and is presented in
Chapter 5.

Chapter 6
• Herda et al. [2018], which was presented at the International Conference

on Tests and Proofs in 2018.
In Herda et al. [2018] an approach is presented that uses an SDG-based

analysis to create simplified programs with respect to a noninterference
property. The simplified programs are noninterference equivalent to the
original program and can be analyzed with respect to the noninterference
property with a second approach. As a second approach we use deductive
verification and automatic test generation. Chapter 6 is based on Herda
et al. [2018].

10

1.5. Outline

Chapter 7

• Beckert et al. [2017a], which was presented at the Workshop on Hot
Issues in Security Principles and Trust in 2017.

• Beckert et al. [2018a], which was presented at the International Con-
ference on Formal Engineering Methods in 2018.

In Beckert et al. [2017a] and in its extension, Beckert et al. [2018a], a
Combined Approach is presented which uses a deductive theorem prover
to show that certain program dependencies computed by an SDG-based
approach are over-approximations. The precision of the SDG-based approach
for proving noninterference is thus improved. Chapter 7 is based on Beckert
et al. [2018a].

Chapter 8

• Beckert et al. [2017b], which was presented at the International Con-
ference on Integrated Formal Methods in 2017.

• Beckert et al. [2019d], which is a technical report that was published
in 2019.

• Beckert et al. [2019c], which was presented at the International Con-
ference on Software Engineering and Formal Methods in 2019.

In Beckert et al. [2019c], which is an extension of Beckert et al. [2019d], a
framework that uses relational verification for automatic and precise program
slicing is presented. In Beckert et al. [2017b] the implementation of the slicing
framework, the tool SemSlice, is presented. Chapter 8 is based on Beckert
et al. [2019c].

1.5 Outline
The use cases for the analysis of the two properties (noninterference and
slice validity) are fundamentally different. In the case of noninterference, the
user wants a definitive answer on whether the program fulfills the property.
If the approaches he uses do not guarantee noninterference, the user tests
and debugs the program to find possible violations. Therefore, a framework
for the analysis of noninterference properties needs to employ highly precise,
possibly interactive, approaches as well as runtime analysis techniques such
as testing and debugging.

For program slicing, on the other hand, we know that any program is a
slice of itself. Thus, we are always guaranteed to have a correct slice. When
employing a program slicing technique, the user is far less motivated to
further investigate whether more statements can be removed, and he is more

11

Chapter 1. Introduction

likely to accept the slice that was found by the employed approach. Thus, a
framework for program slicing needs to use fully automatic techniques.

The different application scenarios lead to different approaches that need
to be used when analyzing a program with respect to the two properties.
Thus, the two applications scenarios motivate the structure of this thesis—
each of the two frameworks is presented in a different part of the thesis. In
Part II we present the framework for checking noninterference properties
which, on the one hand, provides the user with the means to analyze certain
parts of the program precisely (and even interactively if needed) and, on the
other hand, to test and debug the program in case it cannot be proved that
the property holds for the program. In Part III we present the framework
for automatic program slicing which does not require any input from the
user other than the specification with respect to the behavior that must be
preserved in the reduced program.

1.5.1 Part 1—Introduction

In Chapter 2 we introduce the notions that are needed to understand the
rest of the thesis. We start by explaining the fundamental information flow
security notions in Section 2.1. We then introduce the Dynamic Logic for Java
(JavaDL), the KeY theorem prover, and the Java Modeling Language (JML)
in in Section 2.2. We present the extensions for specifying and proving
noninterference properties with JML and KeY in Section 2.3. Then, in
Section 2.4, we introduce the extension of KeY for automatic test generation
for functional properties. We continue with an introduction to program
slicing in Section 2.5 and show in Section 2.6 how program slicing based on
the SDG is used in the JOANA tool to prove noninterference properties.
Finally, in Section 2.7 we introduce relational verification and the LLRêve
tool. Chapter 2 does not contain any contribution of this thesis.

1.5.2 Part 2—Information Flow Security

Chapter 3 presents the framework for checking noninterference that con-
stitutes contribution C1.1. The chapter presents a general overview of
the framework, which is presented throughout Part II and explains how
contributions C1.2, C1.3, C1.4, and C1.5 interact with each other.

Chapter 4 handles the problem of testing noninterference properties of
object oriented programs. We explain how noninterference tests can be used
to check four variations of the noninterference property in Section 4.2 and
then present an approach based on symbolic execution for the automatic
generation of noninterference tests in Section 4.3. We extend existing test
coverage criteria and discuss their suitability for noninterference test suites
in Section 4.4. An implementation of the approach using the KeY theorem
prover is evaluated in Section 4.5. Chapter 4 describes contribution C1.2.

12

1.5. Outline

Chapter 5 presents an approach for analyzing noninterference violations.
The requirements and assumptions made for the design of this approach
are described in Section 5.2. The approach is realized in the form of a
noninterference debugger, which is presented in Section 5.3. Its useful-
ness is demonstrated on two examples in Section 5.4. Chapter 5 describes
contribution C1.3.

Chapter 6 presents an approach that uses SDG-based program analysis to
simplify programs with respect to a noninterference property. The approach is
presented using an example that is shown in Section 6.2. Then, in Section 6.3
it is shown how possible noninterference violations reported by an SDG-
based approach are used to create simplified programs. These simplified
programs can then be handled with a second approach to prove or disprove
the reported security violation. We discuss using (1) deductive verification
(in Section 6.4) and (2) automatic test case generation (in Section 6.5) as the
second approach. The challenges of implementing the approach using JOANA
as the SDG-based approach and KeY as the theorem prover and test case
generator are discussed Section 6.6. Chapter 6 describes contribution C1.4.

Chapter 7 presents the Combined Approach, which, like the approach in
Chapter 6, also combines an SDG-based approach with a precise logic-based
approach. For every potential noninterference violations reported by the
SDG-based approach the Combined Approach, presented in Section 7.2,
automatically generates proof obligations that state that certain program
dependencies reported by the SDG-based approach are over-approximations.
Section 7.3 presents a prototypical implementation of the Combined Approach
that uses the tools JOANA and KeY as the SDG-based and logic-based
approach respectively. The Combined Approach is evaluated in Section 7.4
and possible optimizations to it are discussed in Section 7.5. Chapter 7
describes contribution C1.5.

1.5.3 Part 3—Program Slicing

Chapter 8 presents a framework for automatic program slicing which uses
relational verification. Section 8.2 formally defines the programs that are
handled by the slicing framework and what constitutes a valid slice for a
given program. In Section 8.3 a relational verifier is adapted to check whether
a slice candidate obtained by removing instructions from a program is indeed
a valid slice. Based on this, in Section 8.4, a framework for precise and
automatic program slicing is presented. As part of this framework, three
strategies for the generation of slice candidates are presented. It is shown
how dynamic slicing approaches can be used to generate slice candidates
that are then refined using the counterexample provided by the relational
verifier. Section 8.5 discusses the evaluation results and the strengths and
weaknesses of slicing approaches that are based on the framework. Chapter 8
describes contributions C2.1, C2.2, and C2.3.

13

Chapter 1. Introduction

1.5.4 Part 4—Related Work and Conclusion

Chapter 9 presents related work with respect to the contributions in both
information flow security (in Section 9.1) and program slicing (in Section 9.2).

Chapter 10 gives a summary of the thesis in Section 10.1 and discusses
in Section 10.2 possible ways in which the two frameworks can be further
developed along with research questions that should be investigated.

14

2
Foundations

2.1 Information Flow Security

This section is based on Herda et al. [2019c], and it describes the noninterfe-
rence properties that are handled in this thesis. It is needed to understand
Chapters 3, 4, 5, 6, and 7.

Information flow security addresses the problem of whether certain parts
of a program exercise an influence on other parts. The main property
analyzed is related to confidentiality, and requires the avoidance of illegal
information flows (i.e., situations where high/confidential input is leaking
to low/public output). This property is known as noninterference and was
introduced by Goguen and Meseguer [1982]. Intuitively it requires that the
high input does not interfere with the low output. Thus, by observing the
program’s low output one cannot distinguish between different high inputs
(i.e., if a program is executed twice—with different high inputs but identical
low inputs, an attacker will observe identical behaviors). Note that an
attacker can observe low information but not high information. For example,
if the credit card number is the high input, then unauthorized viewers (e.g.,
people working in the company’s warehouse) should not be able to observe
this information—directly or indirectly.

Attacker model. The attacker considered in this thesis is able to provide
low inputs and run the analyzed programs with these low inputs and observe
the low outputs of the programs. In this work we consider only sequential,
deterministic, and terminating programs. Thus, the attacker observes the
low outputs of the program executions and tries to deduce information on
the high inputs of that program.

15

Chapter 2. Foundations

Noninterference properties. In the following we formally define the
properties which are supported by the approaches in the framework for
checking noninterference properties, which is described in Chapter 3. We
introduce the low-equivalence relation (∼L) to characterize program states
that are indistinguishable for an attacker, where a program state s is an
assignment of values to variables. We assume that the input of a program is
included in the prestate and that the output of a program is included in the
poststate.

Definition 2.1 (Low-equivalent states). Two states—s1 and s2—are low-
equivalent with regard to the set of all low variables L iff they assign the
same values to low variables:

s1 ∼L s2 ⇔ ∀ v ∈ L (vs1 = vs2).

Definition 2.2 (Classical noninterference). A program P is noninterferent
iff for all prestates s1 and s2

s1 ∼L s2 ⇒ s′1 ∼L s′2

where s′1 and s′2 are poststates after executing P in the initial states s1
and s2, respectively. Note that because we only consider deterministic and
terminating programs, s′1 and s′2 are uniquely determined.

The classical noninterference property, as presented in Definition 2.2,
requires that two executions of the program that start in two states which
are indistinguishable for the attacker also terminate in two indistinguishable
states. If this holds, then the high values of the prestates do not influence the
low values of the poststates. This property, however, can be too restrictive
for the cases in which it is acceptable for the attacker to see parts of the
high data.

A classical example for this is a login system in which an attacker can try
out different combinations of user names and passwords. While the system is
not allowed to leak out a user’s password, the attacker can find out whether
these combinations are correct or not. Thus, he obtains information about
the sensitive data. To allow such a case but still forbid cases in which the
system outright leaks sensitive information to the attacker, we define (in
Definition 2.3) the notion of noninterference with declassification (i.e., the
release of part of the high information). For this, let exprs be a user-provided
expression in first order logic that is evaluated in state s and describes the
high information that an attacker is allowed to know.

Definition 2.3 (Noninterference with declassification). Considering the
declassification expression expr , a program P is noninterferent iff for all
initial states s1 and s2

s1 ∼L s2 ∧ exprs1 = exprs2 ⇒ s′1 ∼L s′2

16

2.2. JavaDL and the Theorem Prover KeY

where s′1 and s′2 are the final program states after executing P starting in
the initial states s1 and s2, respectively.

In Definition 2.3 we use the low-equivalence relation from Definition 2.1.
For the login example, assuming the user names and passwords are respec-
tively stored in two arrays—users and passwords—the expression can be, for
instance:

∃ int i ∧ users[i] .= userin ∧ passwords[i] .= passwordin,

meaning that the attacker is allowed to find out whether the user name and
password provided as input to the program match a stored combination of
user name and password.

When dealing with object-oriented programs, it is sometimes too restric-
tive to require all low variables in the two poststates to be equal. This is
the case in programs that create new object references: a program will not
necessarily create the same reference if executed twice, even for exactly the
same input. Therefore, the two poststates that are analyzed at the end of
the two program executions that started in two low-equivalent prestates will
most likely not be low-equivalent. To tackle this issue, Beckert et al. [2013]
have developed a variation of noninterference using a different semantics of
low-equivalence, based on object isomorphism.

Definition 2.4 (Low-equivalence with isomorphism). Two states s1 and s2
are low-equivalent iff

s1 ∼πL s2 ⇔ ∀ v ∈ L (π(vs1) = vs2)

with L denoting the set of all low variables in state s and π a bijective
function between states.

The idea is that an attacker cannot see the exact reference address of
an object reference and can only compare object references using the ==
operator. Thus, if the object structures in the two poststates are isomorphic,
then the attacker will obtain the same results when comparing the object
references with the == operator.

The specification and verification of the noninterference properties de-
fined in this section are supported by the program verification tool KeY
(as explained in Section 2.3). Furthermore, the properties from Defini-
tions 2.3 and 2.4 can easily be combined.

2.2 JavaDL and the Theorem Prover KeY
In this section we introduce JavaDL—a first order dynamic logic for Java—
and KeY—a deductive program verification tool for Java. This section is
needed to understand Chapters 4, 6, 7, and 3.

17

Chapter 2. Foundations

2.2.1 JavaDL

Dynamic logic, introduced by Pratt [1976] (also see Harel et al. [2002]), is
a multi-modal logic used to express properties of computer programs and
reason about them. A dynamic logic for a subset of sequential Java programs
was introduced by Beckert [2001] and extended by Schmitt et al. [2011]
to support heaps. In this section we present the syntax and semantics of
JavaDL, and then we present a calculus for it. The definitions in this section
are based on the ones presented in [Weiß, 2011, Chapter 5]. An even more
extensive description of JavaDL can be found in Beckert et al. [2016b].

JavaDL syntax. We begin by defining JavaDL signatures (Definition 2.5),
we then define program fragments (Definition 2.6), and we define the JavaDL
syntax (Definition 2.7).

Definition 2.5 (JavaDL Signature). A JavaDL signature Σ is a tuple
(τ,�, V,PV , F, Fu, P, α,Prg) consisting of:

• a set τ of types
• a partial order � on τ , called the subtype relation
• a set V of (logical) variables,
• a set PV of program variables,
• a set F of function symbols,
• a set Fu ⊆ F of unique function symbols,
• a set P of predicate symbols,
• a static typing function α such that α(v) ∈ τ for all v ∈ V ∪ PV such

that α(f) ∈ τ∗ × τ for all f ∈ F , and such that α(p) ∈ τ∗ for all p ∈ P
(where τ∗ denotes the set of arbitrarily long tuples of elements of τ),
and

• a Java program Prg.

Note that we restrict ourselves to single-threaded Java programs. All
JavaDL signatures are required to contain some function and predicate
symbols that are needed to formalize certain aspects of Java programs (e.g.,
heaps using the theory of arrays, as introduced by McCarthy [1993]). We do
not present them here, but refer to [Weiß, 2011, Chapter 5]. In the following
we define program fragments in the context of a Java program Prg that is
part of a JavaDL signature.

Definition 2.6 (Program Fragments). A program fragment p in the context
of a program Prg is a sequence of Java statements, where there are local
variables a1, . . . , an ∈ PV of Java types T1, . . . , T2 such that extending Prg
with an additional class

1 class C{
2 static void m(T1 a1, ..., Tn an){ p }
3 }

18

2.2. JavaDL and the Theorem Prover KeY

yields again a legal program.1

We can now present the syntax of JavaDL.

Definition 2.7 (JavaDL syntax). For a JavaDL signature
Σ = (τ,�, V,PV , F, Fu, P, α,Prg), the sets TermA

Σ of terms of type A,
FormulaΣ of formulas, and UpdateΣ of updates are defined by the following
grammar:

TermA
Σ ::= x | a | f(TermB′

1
Σ , . . . ,TermB′

n
Σ) | {UpdateΣ}TermA

Σ |
if (FormulaΣ) then (TermA

Σ) else (TermA
Σ)

FormulaΣ ::= true | false | r(TermB′
1

Σ , . . . ,TermB′
n

Σ) | ¬FormulaΣ |
FormulaΣ ∧ FormulaΣ | FormulaΣ ∨ FormulaΣ |
FormulaΣ → FormulaΣ | FormulaΣ ↔ FormulaΣ |
∀A x FormulaΣ | ∃A x FormulaΣ | [p]FormulaΣ |
〈p〉FormulaΣ | {UpdateΣ}FormulaΣ

UpdateΣ ::= a := TermA′
Σ |UpdateΣ ‖ UpdateΣ | {UpdateΣ}UpdateΣ

for any variable x ∈ V with α(x) = A, any program variable a ∈ PV with
α(a) = A, any function symbol f ∈ F with α(f) = (B1, B2, . . . , Bn, A),
any predicate symbol r ∈ P and α(r) = (B1, B2, . . . , Bn), where B′1 �
B1, . . . , B

′
n � Bn, any legal program fragment p in the context of Prg, and

any type A′ ∈ τ with A′ � A. The set TermΣ is defined as ∪A∈τTermA
Σ.

JavaDL semantics. JavaDL formulas are interpreted in Kripke structures,
which we define in the following.

Definition 2.8 (Kripke structure). For a JavaDL signature
Σ = (τ,�, V,PV , F, Fu, P, α,Prg), we define a Kripke structure as a tuple
(D, δ,M, S, ρ) consisting of:

• a set D of semantic values,
• a dynamic typing function δ : D → τ which gives rise to the subdomains
DA = {x ∈ D|δ(x) � A} for all types A ∈ τ ,

• an interpretation function I mapping every function symbol
f : A1, . . . , An → A ∈ F to a function I(f) : DA1 , . . . , DAn → DA and
every predicate symbol r : A1, . . . , An ∈ P to a relation
I(r) ⊆ DA1 × . . .×DAn ,

• a set S of states, which are functions s ∈ S mapping every program
variable a ∈ PV of type A to a value s(a) ∈ DA, and

1Some exceptions apply, see Definition 5.2 in [Weiß, 2011, Chapter 5] for more details.

19

Chapter 2. Foundations

• a function ρ that associates with every program fragment p a transition
relation ρ(p) ⊆ S × S such that (s1, s2) ∈ ρ(p) if and only if p, when
started in s1, terminates normally (i.e., by not throwing an exception)
in s2. We consider Java programs to be deterministic, so for all
program fragments p and all s1 ∈ S there is at most one s2 such that
(s1, s2) ∈ ρ(p).

Note that the special symbols used to formalize certain aspects of Java
have a fixed interpretation which is given in [Weiß, 2011, Chapter 5]. Also
as done in [Weiß, 2011, Chapter 5] we do not give the semantics of Java
here, but instead consider the transition function ρ to be a black box that
captures the behavior of every program fragment p. The behavior of program
fragments is explicitly formalized in the JavaDL calculus that is presented
at the end of this section.

Definition 2.9 (JavaDL semantics). Given a JavaDL signature
Σ = (τ,�, V,PV , F, Fu, P, α,Prg), a Kripke structure K = (D, δ,M, S, ρ),
a state s ∈ S, and a variable assignment β : V → D which maps every
variable x of type A to a value in DA, we evaluate every term t ∈ TermA

Σ
to a value valK,s,β(t) ∈ DA, every formula ϕ ∈ FormulaΣ to a truth value
valK,s,β(ϕ) ∈ {0,1}, and every update u ∈ UpdateΣ to a state transformer
function valK,s,β(u) : S → S such that2:

• valK,s,β([p]ϕ) = 1, iff 0 6∈ {valK,s′,β(ϕ)|(s, s′) ∈ ρ(p)},
• valK,s,β(〈p〉ϕ) = 1, iff 1 ∈ {valK,s′,β(ϕ)|(s, s′) ∈ ρ(p)},
• valK,s,β({u}ϕ) = valK,s′,β(ϕ), where s′ = valK,s,β(u)(s),

• valK,s,β(a := t)(s′)(b) =
{

valK,s,β(t), if b = a

s′(b), otherwise
for all s′ ∈ S, b ∈ PV ,

• valK,s,β(u1 ‖ u2)(s′) = valK,s,β(u2)(valK,s,β(u1)(s′)) for all s′ ∈ S, and
• valK,s,β({u1}u2) = valK,s′,β(u2) where s′ = valK,s,β(u1)(s).

JavaDL provides two modal operators: the box operator [p] and the
diamond operator 〈p〉, where p is a program fragment. The JavaDL formula
[p]ϕ is true in a state s if the formula ϕ is true in all states s′ in which p may
terminate when started in s. Because the Java programs we consider are
deterministic, they can have at most one state in which they terminate. Thus
the formula formula [p]ϕ states that the program fragment p, when executed
in state s, either (1) terminates in a state s′ in which ϕ holds, or (2) does not
terminate. The JavaDL formula 〈p〉ϕ, on the other hand, is true in a state
s if the program fragment p, when started in state s, does terminate in at
least one state s′ in which ϕ holds, and—since we only consider deterministic
programs—if the state s′ exists, it is uniquely determined by s and p.

2Purely first order terms and formulas are evaluated as in first order logic, refer to
Definition 5.5 in [Weiß, 2011, Chapter 5] for the complete semantics of JavaDL.

20

2.2. JavaDL and the Theorem Prover KeY

JavaDL also provides an update operator. Updates describe changes that
are to be applied to a state. They are similar to substitutions in purpose,
but are part of the logic. They are used to describe the changes produced by
a program statement. They are accumulated when processing the program
statement-by-statement, using the calculus rules in a process called symbolic
execution. At the end of the symbolic execution, accumulated updates can
be simplified using special calculus rules before being applied to the final
state, thus simplifying the applied substitutions.

JavaDL calculus. We present a sequent calculus (introduced by Gentzen
[1935]) that allows us to prove the validity of JavaDL formulas. In the
following we present the definition of a sequent.

Definition 2.10 (Sequent). A sequent is a pair (Γ,∆) ∈ 2FormulaΣ×2FormulaΣ

where Γ (called the antecedent) and ∆ (called the succedent) are finite sets
of formulas. We denote a sequent (Γ,∆) as Γ⇒ ∆ and also use the notation
ψ1, . . . , ψn ⇒ ϕ1, . . . , ϕm where Γ = {ψ1, . . . , ψn} and ∆ = {ϕ1, . . . , ϕm}.
The set of all sequents is denoted as SeqΣ. The semantics of a sequent is
valK,s,β(Γ⇒ ∆) = valK,s,β(

∧
Γ→

∨
∆).

The calculus is composed of rules, which we define in the following.

Definition 2.11 (Rule). A rule is a binary relation r ⊆ Seq∗Σ × SeqΣ. If(
(p1, . . . , pn), c

)
∈ r, we say that the conclusion c is derivable from the

premisses (p1, . . . , pn) using r.
A rule r is sound if the following holds for all

(
(p1, . . . , pn), c

)
∈ r: if all

premises p1, . . . , pn are logically valid, then c is also logically valid.

Starting with a single root sequent, also called proof obligation, a proof
tree is constructed by applying rules on the leaves of the proof tree. We
can apply a rule on a leaf, if the leaf matches the conclusion of the rule, by
adding the premises of the rule as children of that leaf. There are special
rules called axioms or closing rules, which have no premises. Applying a
closing rule on a leaf of the proof tree closes the proof tree branch of that
leaf. Thus, the sequent calculus proves the validity of a proof obligation by
showing that it can be derived—using sound calculus rules—from a set of
axioms. In the following we present examples of (simplified) calculus rules,
and we refer to Schmitt [2016] and Beckert et al. [2016b] for the rest.

Γ, ϕ, ψ ⇒ ∆
andLeftΓ, ϕ ∧ ψ ⇒ ∆

trueRightΓ⇒ true,∆

We present two first-order rules. The rule andLeft removes a conjunction
ϕ ∧ ψ from the antecedent and adds the two formulas—ϕ and ψ—to the
antecedent. Note that Γ and ∆ do not represent a single formula, but all

21

Chapter 2. Foundations

other formulas in the antecedent and, respectively, the succedent. The rule
trueRight is an example of a closing rule. It states that if true is present
among the formulas of the succedent, the sequent is valid.

Because JavaDL formulas can contain program fragments, special cal-
culus rules are used to symbolically execute them. During the symbolic
execution process, the program in a JavaDL formula is processed statement-
by-statement, and the statements are replaced by case distinctions and
updates. In the following we present some symbolic execution rules.

Γ⇒ {u}ϕ,∆
emptyBox

Γ⇒ {u}[]ϕ,∆
Γ⇒ {u}{v:=t}[ω]ϕ,∆ assignment
Γ⇒ {u}[v=t;ω]ϕ,∆

The emptyBox (or the similar emptyDiamond) rule can be used at the
end of the symbolic execution, when the JavaDL formula contains an empty
box (or diamond) modal operator, which can be discarded. Assignments
to a local variable v of a side-effect-free expression t are handled by the
assignment rule. This rule transforms an assignment in the Java program
into an update and then removes the assignment from the program in the
JavaDL formula, thus simplifying it.

Γ, c⇒ {u}[p1;ω]ϕ,∆ Γ⇒ c, {u}[p2;ω]ϕ,∆
ifElseSplit

Γ⇒ {u}[if(c){p1}else{p2}; ω]ϕ,∆

Another example of a rule for symbolic execution, that is used to handle
branching, is the ifElseSplit rule. Note that the condition c of the if
statement is assumed to be a boolean program variable, otherwise the
condition is unfolded and symbolically executed before the ifElseSplit rule is
applied. The rule splits the proof tree for the two cases of the if statement.
In the first case, it is assumed that the condition c is true, and the symbolic
execution continues with the program fragment p1. In the second case, it is
assumed that the condition c is false, and the symbolic execution continues
with the program fragment p2.

Γ⇒ {u}[if(c) {b; while(c) {b}};ω]ϕ,∆
loopUnwind

Γ⇒ {u}[while(c) {b}; ω]ϕ,∆

The loopUnwind rule is an example of calculus rule that is used to
symbolically execute loops. This rule—as shown here—works on loops
without any break or continue statements and unwinds a while loop once.
The rule is useful only for loops for which the number of iterations is bounded.

Γ⇒ inv,∆
Γ⇒ {u}{a}(inv ∧ c)→ [b]inv,∆

Γ⇒ {u}{a}(inv ∧ ¬c)→ [ω]inv,∆
loopInvariant

Γ⇒ {u}[while(c) {b}; ω]ϕ,∆

22

2.2. JavaDL and the Theorem Prover KeY

For unbounded loops, the loopInvariant rule must be used instead to
apply a loop invariant inv, which is provided by the user. This rule adds three
new sequents to the branch of the proof tree respectively stating that—from
top to bottom—(1) the loop invariant is true before entering the loop, (2)
the loop invariant is true after each loop iteration, and (3) the loop invariant
can be used to describe the state after the loop. The update {a} is an
anonymizing update that assigns undefined values to all variables that may
be changed by the loop. The only information about those variables, that
can be used in the rest of the proof, must be contained in the loop invariant
inv.

2.2.2 The Theorem Prover KeY

KeY (see Ahrendt et al. [2016a]) is a theorem prover that works on JavaDL
and uses the sequent calculus presented in Section 2.2.1.

For functional properties (i.e., properties that consider a single program
execution) a total correctness proof obligation has the form⇒ Pre → 〈p〉Post,
meaning that the program p, when executed in a prestate in which the
precondition Pre holds, terminates in a poststate in which the postcondition
Post will hold. On the other hand, partial correctness, as expressed by the
proof obligation =⇒ Pre →

[
p
]
Post, means that either (1) the program

terminates, and the postcondition Post holds in the poststate, or (2) the
program never terminates.

During proof construction, the program is symbolically executed using the
appropriate rules for Java programs of the JavaDL calculus (see Section 2.2.1).
Those rules are applied automatically according to a strategy provided by
KeY. After the entire program has been symbolically executed, KeY attempts
to show the validity of the remaining sequents, which contain only first order
formulas. The proof of those sequents can often be done automatically with
the automatic strategy of KeY. However, in some cases user interaction is
required (e.g., to instantiate a quantifier or perform induction). For such
cases, KeY provides a graphical user interface to assist the user.

2.2.3 JML

KeY does not take a JavaDL formula directly as an input, but instead
transforms a specified program into a JavaDL proof obligation. The properties
of the Java program that is to be verified are specified in the form of method
contracts and auxiliary specifications (e.g., loop invariants) using an extension
of the Java Modeling Language (JML), introduced by Leavens et al. [2007].
The JML specification language used by KeY is described in Huisman et al.
[2016].

We present the main features of JML using an example, shown in List-
ing 2.1. The method arrCopy copies the contents of the integer array a into

23

Chapter 2. Foundations

the array b. The method is specified with a JML method contract which
contains a precondition and a postcondition. The method contract states
that if the precondition holds when the method is called, the postcondition
holds after the execution of the method.

The JML clause normal_behaviour states that the program terminates
normally (i.e., without throwing an exception). The requires clause intro-
duces the precondition of the method contract which requires a and b to
not be aliases of each other and to have the same length. Java expressions
without side effects (which are valid in the context of the program) can be
used in the JML specification.

The ensures clause introduces the postcondition of the method contract,
which requires the two arrays—a and b—to have the same length and the
same values at each index i after the execution of the method arrCopy. In
this example the postcondition uses the JML quantifier \forall. Besides
the universal and existential ones, quantifiers for expressing the minimum,
maximum, sum, product, and number of elements of a sequence are supported.
For non-void methods the keyword \result can be used to refer to the value
returned by the method.

The method contract also contains an assignable clause which specifies
the heap locations that may be changed by the method. For the example in
Listing 2.1 the method may change the elements of array b.

1 public class ArrayUtils {
2 /*@ public normal_behavior
3 @ requires a.length == b.length && a != b;
4 @ ensures (\forall int i; 0<=i && i<a.length; a[i]==b[i

]) && a.length==b.length;
5 @ assignable b[*];
6 @*/
7 public void arrCopy(int[] a, int[] b) {
8 /*@ loop_invariant 0 <= i && i <= a.length;
9 @ loop_invariant a != b && a.length == b.length;

10 @ loop_invariant (\forall int j; 0<=j && j<i;
11 a[j]==b[j]);
12 @ decreases a.length - i;
13 @ assignable b[*];
14 @*/
15 for(int i=0; i<a.length; i++) {
16 b[i]=a[i];
17 }
18 }
19 }

Listing 2.1: Example of a specified Java program

The loop inside the method arrCopy is specified with a loop invariant.
The formulas that constitute the loop invariant are introduced with the
loop_invariant clause. The decreases clause introduces the loop variant,
which is needed to prove the termination of the loop (if the user wants to
prove total correctness). The loop variant is an integer expression whose

24

2.3. Proving Noninterference Properties with KeY

value is strictly decreased after each loop iteration, but remains nevertheless
positive. Assignable clauses can also be used in loop invariants.

2.3 Proving Noninterference Properties with KeY

KeY was extended by Beckert et al. [2013] to support the verification of nonin-
terference properties for sequential programs. In this section we give an over-
view of that extension, which is needed to understand Chapters 4, 6, and 7.
Parts of this section are based on Herda et al. [2019c]. A complete reference to
the extensions of KeY for the specification and verification of noninterference
properties can be found in Scheben [2014] and Scheben and Greiner [2016].

2.3.1 Proof Obligations

The formalization of noninterference in KeY uses an adaptation of a technique
called self-composition, which was introduced by Barthe et al. [2004]. Using
self-composition, the noninterference property of a program p is translated to
a functional property of a new program p;p’ which consists of p composed
with a renaming of itself. When proving a specified noninterference property
for a given program, KeY generates two proof obligations. Besides the
noninterference proof obligation, some functional properties, such as the
validity of class invariants, are discharged into a separate, functional proof
obligation, which we will not discuss in this section. In the following we
present the noninterference proof obligations that KeY generates for the
properties defined in Section 2.1.

Classical noninterference. The noninterference proof obligation for Def-
inition 2.2 expresses that two program runs that start in low-equivalent
states will also terminate in low-equivalent states, and it has the following
simplified form:

⇒
(

({inl := inAl }[p] outl = outAl)︸ ︷︷ ︸
Execution A

∧ ({inl := inBl }[p] outl = outBl)︸ ︷︷ ︸
Execution B

)
→
(

(inAl = inBl)→ (outAl = outBl)︸ ︷︷ ︸
Low-equivalent prestates imply

low-equivalent poststates

)

In the above proof obligation inl and outl are placeholders that respectively
represent the low input and the low output of program p. The low inputs
and outputs of a program are specified by the user, as shown Section 2.3.2.
The proof obligation contains in the left hand side of the main implication

25

Chapter 2. Foundations

two executions of p. These are execution A, which starts with the low input
inAl , and returns the low output outAl and execution B, which starts with
the low input inBl , and returns the low output outBl . On the right hand side
of the main implication the proof obligation contains a second implication
stating that if the two low inputs inAl and inBl are equal (i.e., they are
low-equivalent), then the low outputs outAl and outBl are also equal (i.e., they
are also low-equivalent). Note that for simplicity we used the placeholders
inAl , inBl , outAl , and inBl to represent the (universally quantified) inputs and
outputs of executions A and B.

The proof obligation can be handled with the JavaDL calculus presented
in Section 2.2. Optimizations have been built in KeY (see Scheben [2014]) to
avoid symbolically executing the same program twice by reusing the results
of the first symbolic execution.

Noninterference with declassification. To support declassification as
defined in Definition 2.3, the second implication of the proof obligation also
requires that the declassified expressions are equal in the prestates of the
two executions:

(inAl = inBl ∧ exprA = exprB)→ (outAl = outBl)

The proof obligation above shows that declassification expressions can be
considered as additional low inputs of the analyzed program and they can
be specified as such, as we will show in Section 2.3.2.

Low-equivalence with isomorphism. To support object isomorphism
as defined in Definition 2.4, the second implication of the proof obligation is
enhanced with the predicate newObjIso:

(inAl = inBl)→ (newObjIso(L, heapAout , heapBout)→ outAl = outBl)

The predicate newObjIso takes as arguments a list L of reference type
expressions, and the two heaps heapAout and heapBout that respectively represent
the Java heap memory in the two poststates of executions A and B. The
predicate is true under the following conditions:

1. Every expression in L is newly created after executions A and B.

2. At every position i in the list L, the type of L[i] is the same after
executions A and B.

3. If the reference expressions at two positions i and j in L are equal after
execution A then they must be equal after execution B as well.

These three requirements ensure that the reference expressions in L are
isomorphic in the two poststates. Note that the list L is provided by the
user as part of the noninterference specification.

26

2.3. Proving Noninterference Properties with KeY

2.3.2 Extensions to JML

The JML specification language (see Section 2.2.3) was extended in [Scheben,
2014, Chapter 4] to support the specification of noninterference properties.
This is done by specifying the low program parts in the prestate and poststate
of the program and requiring low program parts in the poststate to depend
at most on the low program parts in the prestate. We present the JML
extensions for noninterference using the example methods from Listing 2.2.

1 /*@ requires n >= 0;
2 @ determines \result \by low, n;
3 @*/
4 public int foo(int low, int n, int high) {
5 int l = low;
6 /*@ loop_invariant n >= 0;
7 @ determines l, n \by \itself;
8 @ decreases n;
9 @*/

10 while(n > 0) {
11 l += n*high-n*high;
12 n = n-1;
13 }
14 return l;
15 }
16
17 /*@ determines \result \by \nothing
18 @ \declassifies (h1+h2)/2;
19 @*/
20 public int avg(int h1, int h2) {
21 return (h1+h2)/2;
22 }
23
24 /*@ requires l == 0;
25 @ determines \exception, \by l
26 @ \new_objects \exception;
27 @*/
28 public int div(int h, int l){
29 return h/l;
30 }

Listing 2.2: Example programs specified with the JML extensions for
nonintereference

The methods foo, avg, and div in Listing 2.2 are specified with nonin-
terference method contracts, which refer to two program executions. This is
different than the functional method contracts presented in Section 2.2.3,
which refer to a single program execution. Similar to functional method
contracts, a requires clause (e.g., lines 1 and 24) can be used to express
a precondition. This precondition must hold at the beginning of both
executions for the contract to be applicable. A determines clause (e.g.,
lines 2, 17, and 25) consists of two lists Lout and Lin of JML expressions
which are separated by the keyword \by. The expressions Lout , which are
written before \by and represent the low output, are allowed to depend at
most on the expressions Lin , which are written after \by and represent the

27

Chapter 2. Foundations

low input. More precise, the specified method when executed in two prestates
that agree3 on the expressions in Lin terminates in a two poststates which
agree on the expressions in Lout . For example, the determines clause of the
method foo states that the return value of the method depends at most on
the parameters low and n. The keyword \nothing (e.g. at line 17) denotes
an empty list of expressions, and the keyword \itself (e.g. at line 7) can
be used to express that Lout contains the same expressions as Lin .

As shown in line 7, determines clauses can also be used in loop invariants.
Noninterference loop invariants must contain the same expressions in Lout
and Lin (i.e., Lin must be \itself), and they require that (1) the states
before entering the loop in each of the two executions agree on the expressions
in the list and on the loop condition and (2) assuming the states of the two
executions agree on the list expressions and loop condition before an iteration,
they must do so after that iteration as well. If the two requirements hold,
then the loop invariant can be used in the rest of the proof. The lists Lout and
Lin must have the same elements in order for the induction argument that
is made with the loop invariant to be valid. Note that such loop invariants
can only be used when the loop condition is low, otherwise the user must
show through functional loop invariants that all paths that depend on a high
variable lead to the same low result. See [Scheben, 2014, Chapter 7] for more
on noninterference loop invariants.

A determines clause can be extended with a list of declassification
expressions, introduced with the keyword \declassifies, as was done in
line 18. The method avg computes the average of the two high parameters
h1 and h2, and the noninterference contract states that the result declassifies
the average of h1 and h2, but otherwise provides no further information
on the two parameters. Note that the \declassifies keyword is syntactic
sugar and the declassification expressions can be written as elements of Lin .

A determines clause can be extended with a list of expressions of refer-
ence type, introduced with the keyword \new_objects which are required
to be newly created and isomorphic in the two end states (instead of be-
ing required to be equal). The method div divides the high parameter h
by the low parameter l which may result in an exception if l is 0. The
noninterference contract states that for the case in which l is 0, the thrown
exception—denoted with the keyword \exception—depends at most on l.
Because the thrown exception is an object that is created during the execu-
tion of the method, it cannot be compared using equality in the poststates
of the two executions, as the generated reference addresses may different.
Using the keyword \new_objects, we can express that the thrown exception
does not leak any information about the parameter h.

3This means that for each index i in the list, the expression at index i evaluates to the
same value in both states.

28

2.4. Automatic Test Generation with KeY

2.4 Automatic Test Generation with KeY

The KeY theorem prover was extended in Engel and Hähnle [2007] with
the ability to automatically generate tests for functional properties. In this
Section, which is needed to understand chapters 4 and 6, we give an overview
of KeYTestGen, the current extension of KeY for automatic test generation.
This section is based on Ahrendt et al. [2016b], where the test generation
features of KeY are fully documented.

2.4.1 Tests and Coverage Criteria

We present what kind of tests and test suites can be generated by KeYTestGen
along with the coverage criteria that the generated test suites achieve.

Tests and test suites. A test of a program p can formally be described
as a tuple 〈s,Or〉 consisting of a state s and an oracle Or. The state s,
also called test data or test input, serves as an input for p. The oracle is
a function Or(s′) 7→ {pass, fail}, telling for each poststate s′ obtained by
executing the program with a test input s whether those are the expected
results of respective test execution. A test suite TSp for a program p consists
of n test cases:

TSp = 〈{s1, . . . , sn}, Orp〉

where {s1, . . . , sn} is the set of test data, and Orp is the oracle for p.
The approach for automatic test generation presented in Section 2.4.2

automatically assembles a JUnit test suite from a given Java program specified
with a functional JML method contract (see Section 2.2.3). The generated
test suite is formally guaranteed to satisfy certain coverage criteria which
are explained in the following.

Test coverage criteria. To measure the adequacy of a test suite, different
types of test coverage criteria have been introduced; an overview thereof can
be found in Zhu et al. [1997]. Some of the most prominent test coverage
criteria4 are based on the control flow graph (CFG)5 of a program, which
we define in the following, by adapting the definition from Ranganath et al.
[2007].

Definition 2.12 (Control flow graph). Given a program p, a control flow
graph (CFG) G = (N,E, nstart , nend) is a labeled directed graph in which

• N is a set of nodes that represent the instructions in the program,
4CFG-based coverage criteria were introduced in White [1981].
5The CFG was introduced in Allen [1970]

29

Chapter 2. Foundations

• The set N is partitioned in two subsets NS and NP where NS are
statement nodes with each nS ∈ NS having at most one successor,
and where NP are predicate nodes with each nP ∈ NP having two
successors,

• E is a set of labeled edges that represent the control flow between
graph nodes where each np ∈ NP has two outgoing edges labeled T
and F respectively, and each node NS \ {nend} has an outgoing edge
labeled A (representing always taken),

• the end node nend ∈ NS has no successors and is reachable from all
other nodes in N , and

• the start node nstart has no incoming edges and all nodes in N are
reachable from nstart .

A path in the CFG of a program p from the start node to the end
node represents a possible execution of p. Note that not every CFG-path
corresponds to a real program execution, the CFG represents an over-
approximation of the possible program behavior. The reverse is, however,
true, each program execution has a corresponding CFG-path. Also note that
CFG-paths between predicate nodes or between nstart and nend consisting
only of statement CFG-nodes are referred to as basic blocks. We now define
the statement, branch, and label coverage of a test suite.

Definition 2.13 (Statement, branch, path coverage). For a given program
p, its CFG and a test suite TSp we define the statement, branch and path
coverages achieved by TSp as follows:

• Statement coverage: #(covered nodes)
#(nodes)

• Branch coverage: #(covered edges)
#(edges)

• Path coverage: #(covered paths)
#(paths)

A node, edge, or path in the CFG is considered covered if they are contained
(in the case of paths equal to) by at least one CFG-path that corresponds
to an execution of the program determined by TSp. Note that #(nodes),
#(edges), and #(paths) denote the number of CFG-nodes, CFG-edges, and
CFG-paths respectively.

Because the CFG can contain cycles caused by loops in the program, the
number of CFG-paths may be infinite. Since we cannot have a test suite
consisting of an infinite number of tests, we define the bounded path coverage
criterion. For this, we only consider b-paths, which are CFG-paths in which
loops are iterated up to a maximum number of b times, where b is a bound
provided by the user. Thus, the bounded path coverage criterion is defined
as follows.

30

2.4. Automatic Test Generation with KeY

Definition 2.14 (Bounded path coverage). For a given program p, its CFG,
a test suite TSp, and a bound b we define the bounded path coverage criterion
as:

#(covered b-paths)
#(b-paths)

Definition 2.15 (Path condition). Given a program p and its CFG, a path
condition of a CFG-path π is a first order formula F on the input s of p
such that s satisfies F iff π is the CFG-path corresponding to the execution
of p with input s.

Path conditions of CFG-paths can be constructed by analyzing the effects
of the statement nodes and the conditions of the predicate node. If the
program is in SSA form (see Cytron et al. [1991]), then the statements can be
treated as equalities. Then, the path condition of a path is the conjunction
of those equalities and of the conditions of the predicate nodes, which are
negated if and only if the outgoing edge with label F is on the path. If a
CFG-path cannot be executed because its path condition is unsatisfiable,
then the path is called infeasible. Otherwise, the CFG-path is feasible. Note
that it is an undecidable problem whether a CFG-path is feasible. Thus,
if a test suite achieves a certain coverage, we do not know by how much
that coverage can be improved, because the parts of the program that were
not tested may lie on infeasible paths. We define the feasible bounded path
coverage criterion in the following.

Definition 2.16 (Feasible bounded path coverage). For a given program
p, its CFG, a test suite TSp and a bound b we define the bounded path
coverage criterion as:

#(covered b-paths)
#(feasible b-paths)

Obviously, only a feasible CFG-path can be covered by the a test execu-
tion.

2.4.2 Generating Tests with KeYTestGen

Software testing involves the creation and execution of tests. While the
execution of tests is nowadays largely automatized through frameworks such
as JUnit (see Beck [2004]), approaches for the automatic test creation have
not been widely adopted yet. Nevertheless, approaches to automatic test
generation have been proposed, see Anand et al. [2013] for a survey of such
approaches. In this section we introduce KeYTestGen, which is an approach
for automatically generating a test suite for a given program. KeYTestGen
uses symbolic execution and attempts to generate a test suite that achieves
full feasible bounded path coverage.

As explained in Ahrendt et al. [2016b], approaches used for generating
test data can be divided in two main categories:

31

Chapter 2. Foundations

• White-box testing: when the generation of test data is based on analyses
of program code.

• Black-box testing: when the generation of test data is based on external
descriptions of the software (e.g., specification, design documents,
requirements, probability distributions).

KeYTestGen is a hybrid of these two categories. Its generation of the test
data is mainly white-box, with elements of black-box. It is based on a
thorough analysis of the source code, but also on the preconditions from
the specification. KeYTestGen treats the generation of oracles entirely in
black-box fashion, so that the oracles do not to inherit errors from the
implementation.

In the following we present the steps taken by KeYTestGen to automati-
cally generate tests.

Step 1: constraints generation. The input to KeYTestGen is a Java
method under test (MUT), with a specified JML method contract. In the
first step, KeYTestGen loads the proof obligation for the specified MUT
(as is done when proving the validity of the contract, see Section 2.2.2).
KeYTestGen then symbolically executes the program one statement after
the other (again, as in the case of proving the validity of the contract). Java
code is turned into updates, which are a compact representation of the effect
of the statements. The branches of the proof tree mimic the execution of
the program with symbolic values (i.e., expressions over variables). Case
distinctions (including implicit distinctions like, e.g., whether or not an
exception is thrown) in the program are reflected as branches of the proof
tree. The symbolic execution is bounded by a bound b provided by the user.
Loops in the program are handled with the loopUnwind calculus rule (see
Section 2.2.1), which can be applied a maximum of b times for each loop.
The proof tree that is obtained this way6 has as many branches as there
are b-paths in the CFG of the program, and each branch in the proof tree
represents a b-path in the CFG. At the end of symbolic execution a model
(i.e., first-order logic interpretations satisfying a formula) of a leaf of the
proof tree is also a model of the precondition and of the path condition of
the b-path determined by that proof tree branch.

Step 2: test data generation. A path condition, together with the
precondition from the specification, constitute a test data constraint, which
has to be satisfied by the test data of a test for this path. To create a
test, a concrete test input s must be generated which satisfies the test data
constraint obtained from the first step. This task is handled by the model

6Assuming only symbolic execution calculus rules were used.

32

2.4. Automatic Test Generation with KeY

generator. The challenge of model generation in the context of KeYTestGen
is to generate models for quantified formulas which may stem from the
requirement specification or from the logical modeling of the heap in JavaDL.
Currently the third party SMT solver z3 (see de Moura and Bjørner [2008]) is
used to find models for test data constraints. Constraints are translated from
KeY’s Java first-order logic (i.e., first order logic with interpreted symbols for
formalizing aspects of Java programs, see Schmitt [2016]) to the SMT-LIB 2
language (see Barrett et al. [2010]), which is supported by most SMT solvers.

The translation from Java first order logic to SMT-LIB poses two chal-
lenges. First, it must be ensured that the model found by the SMT solver is
also a model for the original Java first order logic formula. Second, it must
be ensured that the SMT solver is able to find a model within a reasonable
amount of time. Unfortunately, the current state of the art does not allow
KeYTestGen to fully address both objectives. For this reason bounded data
types (i.e., each data type can have only a bounded number of instances)
are used. As a consequence, the SMT solver can find models a lot faster,
but at the same time some models may be missed because the bounds might
be too small. For formulas which are valid on infinite domains (such as
the mathematical integers) some spurious models can be found because the
bounds are finite. This issue is discussed in [El Ghazi, 2015, Chapter 6].

Step 3: code generation In the third and final step, the tests are gen-
erated. Each test consists of a test preamble, a call of the MUT, and a call
to the test oracle. The test preamble prepares the inputs for the MUT call.
The inputs are taken from the model which was found in the previous step.
The MUT call in the test is the same as in the modal operator of the KeY
proof obligation.

The generated test oracle is a boolean method that returns true if the
test satisfies the JML specification of the MUT and false otherwise. It checks
whether the postcondition holds after the MUT was executed. The oracle
is not generated directly from the JML specification, but rather from the
proof obligation in KeY . This is because KeY may include some implicit
class invariants and termination conditions as part of the postcondition. The
precondition does not need to be checked, because it is part of the test data
constraint and is always satisfied by the process of test input data generation.
Each test suite contains only one oracle method which is used in all tests. In
each test, after running the MUT, it is asserted that the test oracle method
returns true by using the JUnit method assertTrue.

33

Chapter 2. Foundations

2.5 Program Slicing

In this section we introduce program slicing and give an informal definition
thereof. This section is based on Beckert et al. [2017b] and is needed to
understand Chapter 8 and also Section 2.6.

Program slicing, a notion coined by Weiser [1981], is a technique to reduce
the size of a program by removing statements from it such that a part of its
behavior remains the same. Different kinds of slicing approaches have been
developed since then (see e.g., the survey in De Lucia [2001]). A static slice
preserves the behavior for all inputs, while a dynamic slice preserves it only
for a single input. A backward slice keeps only those parts of the program
that influence certain variables at a certain location in the program, while a
forward slice keeps those parts which are influenced by those variables at
that location. The form of slicing introduced by Weiser is now known as
static backward slicing. This is the form of slicing which is pursued by the
framework for program slicing presented in Part III of this thesis. Slicing
techniques can be used to optimize the results of compilers (see e.g., Ferrante
et al. [1987]). Slicing is also a powerful tool for challenges in software
engineering such as code comprehension, debugging, refactoring, and fault
localization (see e.g., Binkley and Harman [2004]), as well as in information
flow security (see e.g., Hammer and Snelting [2009] and Section 2.6).

Slice candidates and slices. A slice candidate is a variant of the original
program where zero or more statements have been replaced with the side-
effect-free skip statement. A slice candidate is considered a valid slice
if, given the same input to the slice candidate and original program, the
following two conditions hold:

1. During execution of the slice candidate and the original program,
respectively, the location specified in the slicing criterion is reached for
the same number of times.

2. When the location is reached for the ith time in the original program
and for the ith time in the slice (i ≥ 1), each variable specified in the
slicing criterion has the same value in the original program’s state and
in the slice’s state.

A formal semantics of slicing is presented in Section 8.2, a syntactic approach
for program slicing which is used to prove a specified noninterference property
of a given program is shown in Section 2.6.

34

2.6. Using Dependence Graphs for Proving Noninterference

1 int f(int h, int N){
2 int i = 0;
3 int x = 0;
4 while(i < N) {
5 if(i < N - 1)
6 x = h;
7 else
8 x = 42;
9 i++;

10 }
11 return x;
12 }

(a)

1 int f(int h, int N){
2 int i = 0;
3 int x = 0;
4 while(i < N) {
5 if(i < N - 1)
6 skip;
7 else
8 x = 42;
9 i++;

10 }
11 return x;
12 }

(b)

1 int f(int h, int N){
2 int i = 0;
3 int x = 0;
4 while(i < N) {
5 if(i < N - 1)
6 skip;
7 else
8 skip;
9 i++;

10 }
11 return x;
12 }

(c)

Figure 2.3: (a) Original program, (b) Slice with respect to variable x at line 8,
(c) Incorrect slice candidate

Example. Figure 2.3 shows an example of static backward slicing. The
goal is to slice the C routine in Figure 2.3a with respect to a slicing criterion,
which requires the value of x at the statement in line 8 to be preserved. A
valid slice for this criterion is shown in Figure 2.3b: The assignment in line 6
of the program has been replaced with a side-effect-free skip statement to
keep the program similar structure to the input program. This line has no
effect on the value of x, as it is always set to 42 in the last loop iteration.

2.6 Using Dependence Graphs for Proving Nonin-
terference

In this section we present the program dependence graph (PDG), the system
dependence graph (SDG), and we show how they can be used for slicing and
proving noninterference. This section is based on [Hammer, 2009, Chapter
2] and is needed to understand Chapters 3, 6, 7, and 8.

35

Chapter 2. Foundations

2.6.1 Dependence Graphs

In the following we present the PDG (introduced by Ferrante et al. [1987]),
which is used to model possible dependencies between program statements in
intraprocedural programs and the SDG (introduced by Horwitz et al. [1990]),
which is the extension of the PDG for interprocedural programs.

The program dependence graph (PDG). The PDG is defined using
the CFG (see Definition 2.12). All CFG-nodes are also PDG-nodes, and
the PDG can contain additional nodes that represent input parameters.
Edges in the PDG represent possible dependencies between the nodes (i.e.,
an edge between nodes exists if the value or execution of a node may
depend on the outcome of the other node). There are roughly two types
of edges in a PDG: data dependency edges, which represent possible direct
dependencies and control dependencies, which represent possible indirect
dependencies. Whether an edge exists between two nodes in the PDG is
determined syntactically by analyzing the CFG of the given program. An
overview of formal definitions of the two types of dependencies can be found
in Wasserrab and Lohner [2012]. We present the standard ones here.

To define data dependencies we define for each CFG-node n the set
Def (n) that contains all variables which are defined (assigned to) in n and
the set Ref (n) that contains all variables which are referenced in n.

Definition 2.17 (Data dependency). A PDG-node y is data dependent on
a PDG-node x if

• there exists a variable v with v ∈ Def (x) and v ∈ Ref (y), and
• there exists a path π in the CFG from x to y on which the definition

of v in y is not definitely killed (i.e., v is not redefined).

To define control dependencies we need to define the post-domination
relation between two CFG-nodes.

Definition 2.18 (Post-domination). Given the CFG of a program, a CFG-
node x is post-dominated by a CFG-node y if all paths from x to nend pass
through y.

We can now define control dependencies.

Definition 2.19 (Control dependency). Given the PDG of a program, a
PDG-node y is control dependent on a PDG-node x if

• there exists a path π from x to y in the CFG such that y post-dominates
every node in π (except for x), and

• x is not post dominated by y.

36

2.6. Using Dependence Graphs for Proving Noninterference

Intuitively, a node y is control-dependent on a node x if the choice of the
outgoing edge from x in the CFG determines whether node y is reached.

Note that it is undecidable whether a CFG-path is realizable during the
execution of the program (i.e., some paths in the CFG represent executions
that cannot actually take place). Thus, the CFG is an over-approximation
of the program behavior. Since the dependencies are defined using CFG-
paths, they too are an over-approximation of the actual dependencies in
the program. Because we distinguish between actual and possible program
dependencies, we define in the following what we mean by actual (or real)
program dependencies.

Definition 2.20 (Actual dependency). Given the PDG of a program, a
PDG-node y depends on7 a PDG-node x (respectively the program part
represented by y depends on the program part represented by x) if

• the values of the variables v ∈ Def (x)∪Ref (x) determine the values of
the variables v ∈ Def (y) ∪Ref (y) (i.e., different values of the variables
in x lead to different values of the variables in y), or

• the values of the variables v ∈ Def (x) ∪ Ref (x) determine whether the
program statement corresponding to the PDG-node y is executed.

The system dependence graph (SDG). The SDG is a graph that
consists of interconnected PDGs, where each PDG represents the possible
dependencies in a single procedure of the program. A detailed discussion on
SDGs can be found in Horwitz et al. [1990].

In addition to control and data dependencies the SDG contains inter-
procedural dependencies, which represent dependencies between nodes of
different PDGs (other dependencies, which we do not discuss here, have been
introduced to support object orientation and multithreading, see Hammer
[2009]).

For each method special formal-in and formal-out SDG nodes are used.
Formal-in nodes represent direct inputs that influence the method execution.
These are the input parameters, used fields, other classes that are called
during execution, and the class in which the method is executed. The formal-
out nodes represent the program parts that are influenced by the method.
In many cases the formal-out node represents the method’s return value.
Other possibilities are that the method influences global variables, fields in
other classes, or terminates with an exception. For example, the function
f in Listing 2.4 has a formal-in node for x and a formal-out node for the
return value of f.

1 int f(int x){
2 ...
3 return y;
4 }

7We also say that node x influences node y

37

Chapter 2. Foundations

a b

x y

PDG of caller

PDG of f

Summary edge

Figure 2.5: Summary edge for the example in Listing 2.4

5
6 void caller(){
7 ...
8 b = f(a);
9 ...

10 }

Listing 2.4: Example of a method call

At each method call site, there are actual-in nodes representing the
parameters (or other inputs) of the method and actual-out nodes representing
the returned values (or other program parts influenced by the method). For a
given method call site, each actual-in node corresponds to a formal-in node of
the callee and vice versa. The same holds for actual-out and formal-out nodes.
Interprocedural dependencies connect actual-in nodes to the corresponding
formal-in nodes and formal-out nodes to the corresponding actual-out nodes,
respectively. As shown in Figure 2.5, for the call in Listing 2.4 there is
the actual-in node for a that corresponds to the formal-in node x of f.
There is also an actual-out node representing the returned value of f which
corresponds to the formal-out node of f. For every method call there are
so called summary edges in the SDG from an actual-in node to an actual-
out node of the method whenever there is a path in the PDG between the
corresponding formal-in to the formal-out node of the called method. In
Listing 2.4 there is a PDG-path in f from x to the returned value, so a
summary edge is inserted at the call site, namely from the actual-in node
representing a to the actual-out node that represents the value returned by
f.

2.6.2 Using the SDG to Prove Noninterference

While the PDG and the SDG have been developed during the eighties,
their usefulness in the context of information flow security has been first
noticed by Snelting [1996] in the nineties. Decades of research in this area
have resulted in JOANA, a tool that statically analyzes Java programs of
up to 100k lines of code for integrity and confidentiality (see Graf et al.

38

2.6. Using Dependence Graphs for Proving Noninterference

[2016]; Hammer and Snelting [2009]). We have used JOANA for a prototype
implementation of the approaches presented in Chapters 6 and 7.

We explain how SDG-based approaches to proving noninterference work
using—without loss of generality—the JOANA tool. We begin by showing
how program slicing is done using the SDG, explain how a points-to analysis
can be used to increase the precision, and then show how these techniques
can be used for proving a noninterference property for a program.

Slicing and chopping. SDG-based approaches to proving noninterference
use a special form of conditional reachability analysis that applies slicing and
chopping techniques. Program slicing, as explained in Section 2.5, removes
statements from a program in order to reduce its size and complexity while
retaining some specified aspects of the behavior of the program. Slices
are defined with respect to a slicing criterion, which usually consists of a
program location and a set of variables. In the case of SDG-based slicing,
the criterion usually consists of an SDG-node n, which represents a location
in the program and the set of variables consists of Def (n) ∪ Ref (n).

Using the SDG, we define forward slicing, which is used to compute
the program statements that are influenced by the criterion statement and
backward slicing, which finds the programs statements that influence the
criterion statement.

Definition 2.21 (Forward and backward slice). Given an SDG and a crite-
rion statement represented by a node n in the SDG, we define the forward
slice Sfw(n) and the backward slice Sbw(n) as the following sets:

• Sfw(n) = {ns | ns is reachable from n in the SDG}
• Sbw(n) = {ns | n is reachable from ns in the SDG}

As shown by Wasserrab and Lohner [2012], a node that is not contained
in the backwards slice of some node n cannot influence n (see Definition 2.20).
Similarly, a node that is not contained in the forward slice of n cannot be
influenced by n. The slice nodes also determine a sliced program, which is
constructed from the original program by removing those program statements
which are not in the slice. An important property of the backward slice is
that, for every input, the criterion statement has the same behavior in the
sliced program as in the original program. In particular, the variables in the
criterion statement have the same values as in the original program.

Definition 2.22 (Chop). Given two nodes in an SDG, nh and nl, we define
the chop of these nodes as the set C(nh, nl) = Sfw(nh) ∩ Sbw(nl).

Program chopping can be thought of as a filtered slice. In the case of
proving noninterference, it provides information on the program statements
that are on an SDG-path from a high input to a low output. Hence, chopping
provides a way of obtaining information about effect transmission through a
program, which is more condensed than a slice, see Reps and Rosay [1995].

39

Chapter 2. Foundations

Points-to analysis. For object-oriented programs, a points-to analysis
answers the question of which objects a given pointer or reference may point
to during the execution of the program. Using this analysis, relations between
two references (e.g., may-alias or must-alias) can be derived. The points-to
analysis is usually solved by generating constraints—based on the program
semantics—form the CFG of the given program. An over-approximating
solution is then found for the generated constraints. Approaches to points-to
analyses usually represent the constraints as a points-to graph in which

• there is a node for each pointer variable in the program,

• there is a node for each object creation site, and

• an edge between two nodes p and q is inserted, if p may point to q
during program execution.

An overview of different algorithms for the points-to analysis can be found
in [Hammer, 2009, Chapter 2]. The results of the points-to analysis can
show that two references will never alias during the program execution, and
this information can be used to remove some possible dependencies from the
SDG.

Proving noninterference. The first step for proving noninterference with
JOANA is the construction of the SDG for the given program. The non-
interference property which needs to hold is then specified by annotating
the SDG-nodes that correspond to the high inputs and low outputs. SDG-
based approaches, such as the one implemented by JOANA, detect possible
dependencies between high inputs and low outputs through graph analysis,
using slicing and chopping at the SDG level. JOANA reports a possible
noninterference violation whenever there exists a path from a node in the
SDG that is annotated as high to a node annotated as low (i.e., when the
chop of those two nodes is not empty).

Wasserrab and Lohner [2012] proved that no potential dependency is
missed (i.e., that JOANA is sound) and that any influence by the high
input on the low output in the program can occur only along an SDG-path
from the high SDG-node to the low SDG-node that correspond to the high
input and, respectively, low output. The noninterference property that is
proved by JOANA (for sequential, deterministic, and terminating programs)
corresponds to the one from Definition 2.2. Because the dependencies in the
SDG are an over-approximation of the actual dependencies in program, if no
SDG-path corresponding to a potential dependency between the high input
and the low output is found, the program is guaranteed to be noninterferent.
However, when there exists an SDG-path between a high input and a low
output, the program may still be noninterferent.

40

2.7. Relational Verification

2.7 Relational Verification

This section, which is based on Kiefer et al. [2018], presents the relational
verification approach on which the framework for program slicing, presented
in Chapter 8, is based on.

Relational verification is an approach for establishing a formal proof that if
a relational precondition holds on two prestates of two programs—P and Q—
then the respective poststates of P andQ will fulfill a relational postcondition.
For two complex programs that yet are similar to each other, much less effort
is required to prove that their outputs fulfill a relational property than to
prove that they both satisfy a complex functional specification. The effort for
proving equivalence mainly depends on the difference between the programs
and not on their overall size and complexity.

A predicate π is a transition predicate for a program P if for any two
states, s and s′, π(s, s′) holds if and only if program P when started in state
s terminates in state s′. Thus, the goal of relational verification is to prove
the following property for two programs, P and Q:

Pre(sP , sQ) ∧ π(sP , s′P) ∧ ρ(sQ, s′Q)→ Post(s′P , s′Q)

where π and ρ are transition predicates for P and Q respectively, and Pre
and Post are the relational precondition and postcondition respectively.

The slicing framework presented in Chapter 8 is based on the LLRêve
(see Felsing et al. [2014] and Kiefer et al. [2018]) relational verification
approach and tool. LLRêve works on programs written in the LLVM
intermediate representation (IR); see Lattner and Adve [2004]. It analyzes
the CFGs (see Definition 2.12) of the programs and reduces the program
equivalence problem to that of the satisfiability of a set of Horn-constraints
over uninterpreted predicates. The satisfiability of Horn-constraints can
be solved with state of the art SMT solvers such as Z3 (see de Moura and
Bjørner [2008]) and Eldarica (see Rümmer et al. [2013]). In Section 8.3
we present the generated constrains together with the adaptation that is
necessary for program slicing.

If the analyzed programs contain loops, their CFGs contain cycles, which
constitute a challenge for verification because their number of iterations is
unknown. LLRêve handles cycles using synchronization points, at which
the program state is abstracted by means of predicates. The paths between
synchronization points are cycle free and can be handled easily. Synchro-
nization points are defined by labeling basic blocks of the CFG with unique
numbers. The entry and the exit of a function are considered special syn-
chronization points B and, respectively, E. Additionally, the user can also
define synchronization points at any location of the analyzed programs. The
user must ensure that there is at least a synchronization point for each basic
block of the CFG of the two programs and match them appropriately.

41

Chapter 2. Foundations

B n1 n2 . . . E

B n1 n2 . . . E

CB Cn1 Cn2 CE

Figure 2.6: Coupled control flow of two fully synchronized programs, as shown
in Kiefer et al. [2018]

For two programs with a similar structure, it is expected that there exist
coupling predicates that describe the relation between the program states
at two corresponding synchronization points. For two programs P and Q
we introduce a coupling predicate Cn(sp, sq) at each synchronization point
index n, as shown in Figure 2.6. The coupling predicates CB and CE form
the relational specification for the equivalence between P and Q. If the SMT
solvers are able to find a interpretation of the coupling predicates that satisfy
the Horn-constrains generated by LLRêve, then this constitutes a proof of
the relational property specified by CB and CE .

42

Part II

Information Flow Security

43

3
A Framework for Checking

Noninterference

Part II of the thesis presents contributionC1.1, which consists of a framework
(illustrated in Figure 3.1) for checking noninterference properties. Note
that by checking we mean both proving that a given program fulfills a
specified noninterference property (as defined in Section 2.1) and—for the
case in which the program violates the noninterference property—searching
for a counterexample. The noninterference framework provides multiple
contributions (described in Chapters 4, 5, 6, and 7) to the area of information
flow security. In this chapter we give a short overview of the framework and
show how its individual contributions are integrated and work with each
other. The noninterference framework employs the following four approaches:

• A1 : Dependency analysis

• A2 : Deductive theorem proving

• A3 : Automatic test generation

• A4 : Noninterference debugging

Each of the four approaches in the framework has its their strengths
and weaknesses. By integrating the approaches, the framework uses the
strengths of the approaches to mitigate their weaknesses. The approaches
contained in the framework handle two cases. In the first, the analyzed
program does not fulfill the specified noninterference property, and the
user is searching for a counterexample that showcases the noninterference
violation and attempts to understand that counterexample. For this case,
the framework provides an approach to automatic test generation and one to
debug a program with respect to a noninterference property, with the goal
of analyzing and understanding noninterference violations. In the second
case, the analyzed program fulfills the specified noninterference property, and

45

Chapter 3. A Framework for Checking Noninterference

Dependency
Analysis

A1

Noninterference
Debugger

A4

Automatic Test
Generation

A3

Deductive
Theorem Proving

A2

Exclude
Infeasible Paths

Counterexample

Noninterference
Guarantee

Test Suite
Test Coverage

Analyzed
Counterexample

Reduce

Over-approximation

C1.5

Simplify Program
Exclude PathsC1.4

C1.2 C1.3Noninterference
 FrameworkC1.1

Program

Noninterference
Property

Figure 3.1: The noninterference framework

the user is attempting to prove this. For this case, the framework combines
deductive theorem proving and dependency analysis. In the following we
give an overview of the contributions in the context of the two cases.

Finding and analyzing noninterference counterexamples. For the
case in which the user tries to find and understand a noninterference vio-
lation, the framework provides an approach for automatic test generation
for noninterference properties and an approach for analyzing noninterference
counterexamples. The approach for automatically generating noninterference
tests constitutes contribution C1.2 and is presented in Chapter 4. It serves
two purposes. First, it can be employed to search for counterexamples of the
analyzed noninterference property. If such a counterexample is found, the
user gets two inputs that lead to a noninterference violation. The second
purpose of the test generation is to generate a noninterference test suite that
achieves a certain test coverage. This is useful when the program was neither
proved correct nor was a counterexample found. Then, the user is provided
with a test coverage value which can increase his confidence in the program’s
correctness (or—on the contrary—decrease it). The test generation approach
benefits from deductive verification (on which it is based) by using it to
remove infeasible program execution paths from the test generation and
from the computation of the achieved coverage. As shown in Chapter 6, this
approach also uses the results provided by the SDG-based analysis to remove
parts of the program which are not relevant to the analyzed noninterference
property. The framework provides an approach to analyze noninterference
counterexamples that were found by the test generation approach. This
assists the user to better understand the problem with the program and/or

46

specification. The approach for analyzing noninterference counterexamples
provides contribution C1.3 and is described in Chapter 5. It extends well-
known concepts from program debugging and supports relational properties
such as noninterference. The user can use this approach to search for the
place in the program where a variable which should be assigned a low value
is assigned a value that depends on the high input.

Proving noninterference. For the case in which the user is trying to
prove that a given program fulfills a specified noninterference property, the
framework combines two existing approaches: (1) dependency analysis (see
Section 2.6) and (2) deductive theorem proving (see Section 2.3). Dependency
analysis approaches are based on SDGs which syntactically compute the
dependencies between the various program parts and check whether the
low output depends on the high input. Whereas they scale very well, such
approaches over-approximate the actual dependencies in the program, which
results in false alerts. Logic-based approaches that use deductive theorem
provers have a higher precision (i.e., they produce less false alerts) as they
also consider the semantics of the program statements. However, they have
a lower scalability. To gain the advantages of both SDG-based and logic-
based approaches the framework combines these approaches in two ways.
The first combination constitutes contribution C1.4 and is presented in
Chapter 6. In this combination the SDG-based approach simplifies the
noninterference proof obligations for deductive verification by removing those
parts of the program which are not relevant to the analyzed property and by
excluding program execution paths which are guaranteed to have no effect
on the validity of the noninterference property from the analysis with the
deductive theorem prover. The second combination constitutes contribution
C1.5 and is presented in Chapter 7. In this combination the logic-based
approach increases the precision of dependency analysis by showing that
certain SDG dependencies are over-approximated. By soundly removing
those over-approximated dependencies, the SDG-based approach is able to
prove the noninterference property for more programs than before. The
program simplification presented in Chapter 6 can also be used to simplify
the proof obligations that are used to show that a program dependency is
over-approximated.

47

4
Automatic Generation of

Noninterference Tests

4.1 Introduction

This chapter describes the part of the noninterference framework that handles
the case in which the user cannot prove that a given program fulfills a specified
noninterference property. For the case that the program indeed violates the
property, the noninterference framework must provide the means to search
for counterexamples that showcase the violations. Testing is well suited for
this purpose, and the approach presented in this chapter can be used to
automatically generate tests that cover a large extent of the analyzed program
(a full coverage is not always theoretically achievable). However, checking
whether a program satisfies a given noninterference property is undecidable,
and there can be situations in which the verification of the noninterference
property has failed (because either the program indeed violates the property
or the verification process failed), and yet no counterexample was found. For
this, we provide a coverage criterion that allows the user to see to what extent
the program was tested and allows him to gain confidence in the analyzed
program. Thus, in this chapter we extend the approach to automatic test
generation based on KeY (see Section 2.4) such that it can be applied to
noninterference properties. This chapter is based on previous work by the
author published in Herda et al. [2019c], which is an extension of the work of
the author that was published in Ahrendt et al. [2016b]. Parts of the results
of this chapter are based on a bachelor’s thesis (see Müssig [2018]) which
was supervised by the author.

Motivation. Testing is useful for checking noninterference properties,
since it complements existing approaches in this area. There exist various
approaches to formally prove that a program fulfills a specified noninterference
property (see, e.g., the survey of Sabelfeld and Myers [2003]). However, in

49

Chapter 4. Automatic Generation of Noninterference Tests

practice they may not be enough to ensure that a program is secure. Existing
approaches check only the source code and not the underlying operating
system or the compiled program, which can both contain bugs that may
lead to noninterference violations. Testing, on the other hand, takes these
aspects into consideration. Furthermore, those approaches do not provide
good support to distinguish between cases were no proof is found for a correct
program and cases where the program indeed violates the noninterference
property (as there may be false alarms).

Testing the noninterference property can help overcome these difficulties
since it both can show the existence of a noninterference violation for some
concrete test input, and it considers the concrete program executions thus
including aspects such as the operating system. Approaches to automatically
find counterexamples and for automatic test generation for noninterference
properties have been developed (see e.g., Do et al. [2016]; Milushev et al.
[2012]). However, those approaches do not support heap data structures and
also provide no solution for the case in which counterexamples could not
be found (i.e., they assume that the user tests the program until he finds a
noninterference counterexample).

Contribution C1.2 The first contribution of this chapter is the design of
tests for checking several variations of the noninterference property. These
tests improve on those generated with existing automatic test generation
approaches for noninterference properties by supporting heap-based programs
and the declassification of user provided expressions. The second contribution
consists of an approach that employs symbolic execution for the automatic
generation of such tests. We have implemented this approach on top of the
KeY theorem prover1. The third contribution is the extension of existing test
coverage criteria such that they now are appropriate also for noninterference
test suites. We have evaluated the suitability of both the coverage criteria
and the automatic test generation approach.

Structure of the Chapter. In Section 4.2 we show how the noninter-
ference properties defined in Section 2.1 can be tested. Then we provide
in Section 4.3 a step-by-step description of the test generation approach.
Section 4.4 defines extended coverage criteria for noninterference test suites,
and in Section 4.5 we evaluate our approach on a collection of examples. We
then conclude in Section 4.6.

1The implementation is available in Herda et al. [2019e].

50

4.2. Noninterference Tests and Test Suites

4.2 Noninterference Tests and Test Suites

In this section we show how the noninterference properties defined in Sec-
tion 2.1 can be tested. For this, we adapt the definitions of functional tests
and test suites from Section 2.4.1.

A noninterference test can formally be described as a tuple 〈s1, s2, Or〉
consisting of two prestates—s1 and s2—representing two test inputs and
an oracle function Or. The two states s1 and s2 are required to be low-
equivalent (s1 ∼L s2) according to Definition 2.1 of ∼L. The oracle function
Or(s′1, s′2) 7→ {pass, fail} checks the two poststates obtained when twice
running the program—once starting in s1 and once in s2—and checks whether
the test is successful or not. In the case of noninterference testing, the oracle
checks whether the two poststates are low-equivalent.

Thus, to perform a noninterference test defined by such a tuple, we
execute the method under test (MUT) twice—with inputs in1 and in2,
respectively, as shown in Listing 4.1. For this to be a valid noninterference
test, the second input (in2) must be generated by the generateLowEqInput
function such that in1 and in2 are low-equivalent. The oracle function then
checks whether the two outputs, out1 and out2, are also low-equivalent.

1 testMUT() {
2 //Execution 1 preamble
3 in1 = generateInput();
4 // MUT call 1
5 out1 = executeMUT(in1);
6 //Execution 2 preamble
7 in2 = generateLowEqInput(in1);
8 //MUT call 2
9 out2 = executeMUT(in2);

10 //Oracle call
11 oracle(out1,out2);
12 }

Listing 4.1: Structure of a noninterference test

To test the noninterference properties defined in Section 2.1, we have
to define the semantics of the generateLowEqInput and oracle functions
(shown in Listing 4.1) for each of those properties. For the classical noninter-
ference property of Definition 2.2, generateLowEqInput generates a second
input (in2) that is low-equivalent to in1 according to the relation ∼L from
Definition 2.1, and the oracle checks whether the two outputs (out1 and
out2) are low-equivalent according to the same relation ∼L.

For the noninterference with declassification property provided in Defi-
nition 2.3, generateLowEqInput generates a second input (in2) such that
the two inputs (in1 and in2) are low-equivalent according to Definition 2.1,
and the results of evaluating the given expression in the two prestates are
identical. The oracle function still checks whether the two outputs fulfill the
low-equivalence relation ∼L.

51

Chapter 4. Automatic Generation of Noninterference Tests

For the noninterference property with isomorphism given in Definition 2.4,
generateLowEqInput generates a second input (in2) that is low-equivalent
to the first input (in1) according to ∼L while oracle is the low-equivalence
relation with isomorphism ∼πL. In practice, however, it must be ensured that
the second execution of the MUT does not interfere with the results of the
first execution. For this reason, in the implementation of the approach we
generate two isomorphic inputs which are low-equivalent according to ∼πL.

To test noninterference in a given method m, multiple tests are used,
and together they form a test suite. A test suite TSm for a method m is
defined as:

TSm = 〈{(s11, s12), . . . , (sn1, sn2)}, Orm〉

Note that for a given noninterference property all tests in a test suite
have one common oracle function.

4.3 Automatic Noninterference Test Generation

In this section we describe step-by-step our approach for generating nonin-
terference test suites for a given method under test (MUT) and a specified
noninterference property as described in Section 2.1. The steps of the
approach are illustrated in Figure 4.2.

Constraints
Generation

Test Data
Generation

Code
Generation

1 2 3

Figure 4.2: Steps of the test generation approach

In the first step, the MUT is loaded into the KeY theorem prover. A
noninterference proof obligation is obtained that constraints the prestates
and the poststates of two executions of the MUT, as explained in Section 2.3.
Still in the first step, the MUT is symbolically executed twice, resulting in
a proof tree in which each leaf contains a pair of path conditions resulting
from the two executions. In the second step, the pairs of path conditions are
extracted from the proof tree, along with the condition that the prestates
are low-equivalent. If there are declassification expressions, the condition
that requires them to evaluate to the same values is also extracted from
the proof tree. Then, the model generator—in our case the SMT solver z3
(see de Moura and Bjørner [2008])—attempts to generate two program inputs
for the MUT. The generated inputs have to fulfill the conditions extracted
from the proof tree. Finally, in the third and last step, a noninterference
test is generated using the model for the test inputs and the noninterference
specification for the test oracle.

52

4.3. Automatic Noninterference Test Generation

The automatic test generation approach offers two options that lead to
the following two scenarios:

1. The user searches for noninterference violations. In this case, the
constraints that are passed on to the model generator also require
the two poststates to be non-low-equivalent (i.e., to demonstrate a
nonintereference violation).

2. The user generates a noninterference suite with a high test coverage.
In this case the constraints do not restrict the poststates in any way.

The first option is useful when the user has failed to prove (for example
with the approaches presented in Chapters 6 and 7 or others presented
in Section 9.1) that the program is noninterferent and suspects that the
program violates the noninterference property. The second option is useful
in the case that both the verification and the counterexample generation
have failed. This may happen, as checking noninterference is an undecidable
problem. The coverage of the generated noninterference test suite can increase
the user’s confidence in the correctness of the program. Moreover, while
approaches for proving noninterference usually only check the program itself,
generating a high-coverage test suite is useful for finding noninterference
violations introduced by the operating system or by the compiler. Thus, the
second option is useful even in the case when the verification succeeded.

In the rest of this section we describe each step of our approach and also
show an example of a generated noninterference test.

4.3.1 Constraints Generation

The first step of the automatic test generation approach for a given MUT
specified with a noninterference property consists in loading the specified
MUT into KeY such that a proof obligation is created, as described in
Section 2.3.

The proof obligation for noninterference contains two modal operators
(see Section 2.2.1), each referring to one of the two program executions.
The programs inside the two modal operators are symbolically executed
by automatically applying2 the JavaDL calculus rules (see Section 2.2.1),
and test input constrains are generated similarly to how this is done for
functional properties (see Section 2.4.2). During symbolic execution we use
finite loop unwinding (up to a number provided by the user) and method
inlining. Thus, the user does not have to provide method contracts or loop
invariants. This technique is known as bounded symbolic execution. At
the end of this step, we obtain a proof tree in which each leaf is a sequent
that contains a pair of path conditions (see Definition 2.15)—one for each

2For optimizations that allow the reuse of the first symbolic execution, see Scheben
and Greiner [2016].

53

Chapter 4. Automatic Generation of Noninterference Tests

of the two program executions. After the bounded symbolic execution is
finished, the leaves of the proof tree contain no modal operators, but only
first order formulas. Thus, a model that satisfies the formulas in a leaf is
also a model for the two path conditions represented by the leaf, for the
requirement that the prestates are low-equivalent, and the poststates are not
low-equivalent. With the second option, the constraint requiring that the
poststates violate the low-equivalence requirement is ignored when searching
for a model. If the second option is active, the low-equivalence requirement
for the poststates is removed from the initial proof obligation before the
beginning of the symbolic execution. The next step of our approach consists
of finding such a model.

4.3.2 Test Data Generation

In terms of noninterference testing, a model is an assignment of concrete
values to object fields and parameters that constitute the initial states s1
and s2 of the noninterference test. After extracting the test data constraints
from the proof tree, we need to find a model that satisfies them. From this
model we can then extract the test data that is used as input for the MUT
in the test suite. If a model is found for the path conditions of execution
paths p1 and p2, the noninterference test using the input resulting from
this model takes the two paths p1 and p2 during execution. The model is
found by translating the test data constraints to the SMT-LIB language
(see Barrett et al. [2010]) and handing them to an SMT solver as described
in Section 2.4.2. Note that the translation to SMT used in our approach is
bounded (i.e., the maximal number of instances of each type is bounded;
the bound for each type is provided by the user). Our approach cannot find
models that contain more instances of a certain type than the bound set
for that type. We, however, rely on the small scope hypothesis, as stated
in Jackson [2002], which claims that most problems in computer programs
can be detected by testing the program using inputs within a small scope.
This step of the approach is also responsible for generating models that fulfill
any specified preconditions as well as the declassification expressions needed
to support noninterference with declassification (see Definition 2.3).

4.3.3 Code Generation

As shown in Listing 4.1, a noninterference test contains two calls of the
MUT. For each call an input configuration is set up and—after the second
MUT call—the test oracle is called to check whether the test was successful
or not. We begin this section by describing the preambles of the two method
calls, and then we explain how the test oracles are generated.

54

4.3. Automatic Noninterference Test Generation

Test preambles. The test preamble constructs the prestate for the MUT
call. The prestate consists of the MUT parameters, the heap locations that
are reachable from the MUT parameters, and the (implicit) this pointer.
The prestate values are obtained from the model returned by the SMT solver.
All constants (representing the values of the MUT parameters) and heap
locations of the model are declared and initialized in the first part of the test
preamble. For the two preambles, we create two input states by duplicating
the objects and values from the model. This is done to avoid the second
MUT execution affecting the results of the first execution. Note that the
current implementation does not support static fields. This limitation is only
implementation related, as support for static fields can be achieved by storing
the results (including the values of static fields) of the first MUT execution
before continuing with the second MUT execution. In the second part of
the test preamble, the fields of the created objects and the elements of the
created arrays are initialized with the values that they have in the model.
The preamble also contains some Java containers consisting of all values of all
Java types that were created in the test preamble. These containers are used
for functional test oracles that check quantified formulas. For noninterference
tests the containers are used by the oracle to check whether a reference is
newly created during the MUT execution, as required by the newObjIso
predicate (see Section 2.3.1). The test preamble can use the Objenesis library
(see Objenesis [2018]) to create objects of Java classes that do not have a
default constructor and to initialize the values of private object fields.

MUT Calls. For both calls, the MUT and its surrounding code is taken
from the JavaDL modal operator in the root node of the proof tree. Using the
surrounding code, rather than just the invocation of the MUT, is important
to ensure that the actual execution of the code has the same semantics as the
symbolic execution of the code. The surrounding code consists of a try/catch
block that catches any exception thrown during the execution of the MUT.
This allows the test oracle check whether an exception was thrown, what
type this exception is, and—based on this information—whether the test
was successful.

Test Oracle. Each test suite contains one oracle method that is used for
all tests. The oracle checks equality for low variables of primitive type and
isomorphism for reference type variables. For references created during the
MUT execution the requirements of newObjIso (see Section 2.3) are checked,
while for references created in one of the preambles only the second and
third requirements (i.e., that the references are of the same type and are
isomorphic) of newObjIso are checked.

55

Chapter 4. Automatic Generation of Noninterference Tests

4.3.4 Example

We use the example in Listing 4.3 to show how a noninterference test
generated by our approach looks like. The example consists of a Java
method, foo, which has the input parameter h. The method creates an array
of length h and returns its fifth element. The parameter h is considered
high whereas the return value of the method as well as exceptions that
may be thrown are considered low outputs. The determines clause in the
specification states that the method’s result must not depend on any part of
the prestate. The new_objects clause states that the exceptions that might
be thrown must be isomorphic in the two executions of foo. See Section 2.3.2
for the JML extensions for specifying noninterference properties.

1 public class program {
2 /*@determines \result \by \nothing
3 \new_objects \exception;@*/
4 public static int foo(int h) {
5 int [] a = new int [h];
6 return a[5];}}

Listing 4.3: Array example

The program violates the specified noninterference property, as it de-
pends on the value of h, whether an ArrayIndexOutOfBoundsException,
a NegativeArraySizeException, or no exception at all is thrown. Thus,
the exceptions implicitly reveal information about h. With our approach,
when using the noninterference property based on object isomorphism (see
Definition 2.4), we are able to generate tests that showcase these violations.

Thrown exceptions are newly created during the program execution, and
their reference addresses are unlikely to be identical in different executions.
Therefore, existing approaches that support only classical noninterference
consider a case in which the two program executions throw the same exception
as a noninterference counterexample. This, despite the fact that an attacker
would still be unable to distinguish between the two thrown exceptions.
With our approach we avoid such tests that in fact are false alarms.

The program in Listing 4.4 is an abridged version of a test gener-
ated using our approach for the program of Listing 4.3. The full im-
plementation of the test can be seen in Appendix A.1. The generated
test consists of two executions—A and B—that start in low-equivalent
states (for this example a trivial requirement, as there are no low in-
puts), but end in two states which are not low-equivalent. Executions
A and B lead respectively to an ArrayIndexOutOfBoundsException and
to a NegativeArraySizeException. The test preambles for execution A
(lines 5–12) and execution B (lines 19–26) are generated from the model that
is provided by the SMT solver, as described in Section 4.3.2. The model
contains values for constants along with the content of all heaps that appear
in the test data constraint. The goal of the test preamble is to reproduce in

56

4.3. Automatic Noninterference Test Generation

the executable environment the initial state from the model. Therefore, we
consider only the contents of the initial heap from the model.

The two calls of the MUT foo and their surrounding code are in lines 14–
17 for execution A and in lines 28–31 for execution B. The code for calling
the MUT is taken from the JavaDL proof obligation. Using the surrounding
code, and not just the invocation of the MUT, is important to ensure that the
actual execution of the code has the same semantics as the symbolic execution
of the code. The surrounding code consists of a try/catch block that catches
the thrown exception—if any—and gives it to the test oracle. The code may
contain variables that do not appear in the generated model. Therefore,
we have to declare them. Those variables are declared and initialized in
lines 2–3. In lines 32–34 some Java containers are created; they are needed by
the test oracle to check whether a reference was created during an execution
of the MUT. Finally, in line 36, the test oracle function is called.

1 public void testcode(){
2 /*@ nullable */ java.lang.Throwable exc_2_A = null;
3 /*@ nullable */ java.lang.Throwable exc_2_B = null;
4 //Test preamble for execution A
5 program _o1_A = new program();
6 java.lang.ArrayIndexOutOfBoundsException _o2_A =
7 new java.lang.ArrayIndexOutOfBoundsException();
8 int[] _o4_A = new int[0];
9 java.lang.NegativeArraySizeException _o3_A =

10 new java.lang.NegativeArraySizeException();
11 int h_2_A = (int)0;
12 int result_2_A = (int)4;
13 //Calling the method under test
14 int _h_2_A = h_2_A;
15 {exc_2_A=null;
16 try {result_2_A=program.foo(_h_2_A);}
17 catch (java.lang.Throwable e) {exc_2_A=e;}}
18 //Test preamble for execution B:
19 java.lang.ArrayIndexOutOfBoundsException _o2_B =
20 new java.lang.ArrayIndexOutOfBoundsException();
21 java.lang.NegativeArraySizeException _o3_B =
22 new java.lang.NegativeArraySizeException();
23 program _o1_B = new program();
24 int[] _o4_B = new int[0];
25 int h_2_B = (int)-16;
26 int result_2_B = (int)0;
27 //Calling the method under test
28 int _h_2_B = h_2_B;
29 {exc_2_B=null;
30 try {result_2_B=program.foo(_h_2_B);}
31 catch (java.lang.Throwable e) { exc_2_B=e; }}
32 Set<Boolean> allBools= new HashSet<Boolean>();//...
33 Set<Integer> allInts= new HashSet<Integer>();//...
34 Set<Object> allObjects= new HashSet<Object>();//...
35 //calling the test oracle
36 assertTrue(testOracle(exc_2_B, result_2_B, exc_2_A,
37 result_2_A, allBools, allInts, allObjects));}

Listing 4.4: Noninterference test for the array example in Listing 4.3

57

Chapter 4. Automatic Generation of Noninterference Tests

The test oracle for the test shown in Listing 4.4 is given in Listing 4.5,
with the full implementation being available in Appendix A.1. The arguments
of the oracle function can be seen in line 39 of Listing 4.4. To see whether
the two poststates fulfill the specified requirements (Listing 4.3), the test
oracle checks two things. First, it checks (line 2) whether the values returned
by the two executions of the MUT are equal. Second, it checks whether the
two objects corresponding to the exceptions thrown by the two execution are
isomorphic (according to Definition 2.4). This is done by the automatically
generated method sub2 (line 3), which checks whether the two post states
fulfill the newObjIso predicate (see Section 2.3.1). For this, the procedure
creates the two lists of objects3 that need to be isomorphic and checks whether
these objects are newly created (using the newObjects procedure), whether
they have the same types (using the sameTypes procedure) and whether they
are isomorphic (using the objectsAreIsomorphic function). In our example
the two thrown exceptions have different types, thus causing the sameTypes
procedure to return false. The implementation of the procedures that are
called by sub2 is common for all tests generated by our approach.

1 public boolean testOracle(...){
2 return (result_2_A == result_2_B) && sub2(...);}
3 public boolean sub2(...){
4 Object[] l1 = {exc_2_A};
5 Object[] l2 = {exc_2_B};
6 return newObjects(l1, allObjects)
7 && newObjects(l2, allObjects)
8 && sameTypes(l1, l2)
9 && objectsAreIsomoprhic(l1, l2);}

Listing 4.5: Oracle function for the noninterference test in Listing 4.4

4.4 Coverage Criteria

In this section we extend existing test coverage definitions to make them
appropriate for measuring the coverage of noninterference test suites, and
then we discuss the coverage provided by the test suites generated with
our approach. The coverage of a test suite can be used as an indicator
of how thoroughly the program was tested in the case in which neither
could it be proved that the specified noninterference property holds, nor was
a counterexample found that shows that the program does not fulfill the
specified noninterference property.

Well established coverage criteria such as statement, branch, and path
coverage are defined on the CFG (see Definition 2.12). As explained in
Section 2.4.1, full statement coverage of a test suite requires each node in
the CFG to be traversed during the execution of the test suite, full branch

3The references contained by these lists are provided by the noninterference specification
with the new_objects clause.

58

4.4. Coverage Criteria

start end

Execution A

start end

Execution B

Figure 4.6: Self-composed CFG

coverage requires each edge to be traversed, and for full path coverage each
path has to be traversed.

To extend these coverage criteria also for the noninterference test suites
defined in this chapter, we no longer use the CFG when determining the
coverage but rather a self-composed CFG. The self-composed CFG consists
of two copies of the MUT’s CFG with renamed variables (in the second copy)
and with a directed edge from the end node of the first copy to the start
node of the second copy. We illustrate the structure of a self-composed CFG
in Figure 4.6.

We define the following relational4 coverage criteria on the self-composed
CFG:

• Relational statement coverage: #(covered nodes)
#(nodes)

• Relational branch coverage: #(covered edges)
#(edges)

• Relational path coverage: #(covered paths)
#(paths)

Because a CFG may contain cycles, the number of paths may be infinite.
To handle this, we unwind loops and inline called methods up to a maximum
number of b-times (the bound b is provided by the user), and consider only
b-paths (see Section 2.4.1) on the self-composed CFG. We can then define
the relational bounded path coverage criterion as

#(covered b-paths)
#(b-paths)

4We name them relational as they can be used not only for noninterference but also
for relational properties (i.e., properties referring to two executions of the program).

59

Chapter 4. Automatic Generation of Noninterference Tests

Our approach explicitly provides the required values for this coverage
criterion—the number of generated tests represents the number of cov-
ered b-paths while the number of leaves of the proof tree represents the total
number of b-paths in the self-composed CFG.

A problem of the relational bounded path coverage criterion is that some
program execution paths may be infeasible (i.e., the path conditions for those
execution paths are unsatisfiable). It is an undecidable problem whether
a path is infeasible or not. Hence, if our test suite has a low coverage, we
cannot know whether the paths for which no test was generated are infeasible
or whether our approach would be able to generate tests for those paths,
given more time. In addition, the low-equivalence requirement for the two
inputs may cause certain paths in the self-composed CFG to be infeasible. A
more useful criterion would therefore be the relational bounded feasible path
coverage, defined as

#(covered b-paths)
#(feasible b-paths)

on the self-composed CFG. We cannot compute the number of feasible paths.
However, since our approach is based on using a theorem prover, we can
use it to show that certain paths are infeasible, and the remaining paths
that could not be proved infeasible constitute an over-approximation of the
feasible paths. This over-approximated number of feasible paths is used
to compute an under-approximation of the relational bounded feasible path
coverage for a generated test suite.

The achieved coverage can be easily measured when using our test
generation approach. The b-paths in the self-composed CFG correspond
to the paths in the proof tree obtained after the symbolic execution of the
programs inside the two modal operators is finished. We can compute the
achieved relational bounded path coverage from the number of generated
tests and the number of leaves in the KeY proof tree. Closed branches of the
proof tree correspond to infeasible paths of the self-composed CFG. Thus,
the relational bounded feasible path is approximated by using the number of
open leaves instead of the total number of leaves.

There are two indicators for how thoroughly a program was tested with
respect to a given noninterference property. On the one hand, there are
the bounds for the maximum number of instances for each type and for
the maximum number of loop unwindings and method inlinings which are
provided by the user. On the other hand, there is the achieved relational
bounded feasible path coverage (for the bound set by the user). Since we
assume the small scope hypothesis, a high relational feasible path coverage
for lower bounds is a stronger indicator of the thoroughness than a low
relational feasible path coverage achieved for higher bounds.

In the next section we evaluate our approach with respect to the relational
bounded path and relational bounded feasible path coverage criteria.

60

4.5. Evaluation

4.5 Evaluation

In this section we evaluate our test generation approach for noninterference
properties (as defined in Section 2.1) on various Java examples. We use a
subset of the IFSpec benchmark collection (see Hamann et al. [2018]) for
noninterference properties of Java programs. The purpose of this benchmark
collection is to enable the evaluation of approaches for checking noninterfe-
rence. For this evaluation we limit ourselves to programs that are supported
by KeY (i.e., single threaded programs that do not use Java standard li-
braries). For each benchmark it is specified what are the high inputs and
the low outputs, as well as whether the benchmark violates the specified
noninterference property (i.e., the ground truth). The subset of IFSpec
that we have analyzed contains 21 secure and 16 insecure benchmarks and
is published in Herda et al. [2019d]. The largest benchmark program has
44 lines of code. The benchmark programs contain different Java features
such as loops, arrays, object field access, interfaces, overloading, exceptions,
try-catch blocks, inheritance, typecasts, and arithmetic operations.

We evaluated the two options mentioned in Section 4.3 (searching for
counterexamples and generating a high-coverage test suite) on both secure
and insecure benchmarks. When applying our approach for finding coun-
terexamples on the secure benchmarks shown in Table 4.7, no test was
generated—which is the expected outcome. This serves as a good sanity
check for our approach. For the insecure benchmarks shown in Table 4.8, the
column CE provides the number of counterexamples that our approach has
found. Our approach is able to find counterexamples for every benchmark
and present them to the user as a noninterference test.

With the second option, aiming to obtain a good test coverage, we no
longer generate input pairs that are guaranteed to lead to a violation of the
noninterference property. Instead, we attempt to generate, for every b-path in
the self-composed CFG, input pairs that are low-equivalent. We use the same
benchmarks to evaluate the second option, and the results of the evaluation
are shown in Tables 4.7 and 4.8. The column Paths presents the number
of b-paths in the self-composed CFG, the column TC shows the number of
generated tests, the column RBPC contains the obtained relational bounded
path coverage, the column RBFPC contains the obtained relational bounded
feasible path coverage, and—for the insecure benchmarks—the column Failed
TC contains the number of failing tests generated with the second option.
The CE column is relevant only for the first option. As expected, for the
secure benchmarks no test failed.

The relational bounded path coverage obtained in the evaluation is quite
low for most benchmarks. However, using the theorem prover, we can easily
prove that many paths are infeasible. Thus, for almost all benchmarks we
actually obtain full relational bounded feasible path coverage. That is, for all

61

Chapter 4. Automatic Generation of Noninterference Tests

Table 4.7: Evaluation results for secure benchmarks

Benchmark Paths TC RBPC (%) RBFPC (%)
Aliasing-secure 9 1 11.1 100.0

Array1 13 1 7.7 100.0
BooleanOperations 3 1 33.3 100.0

CallContext 1 1 100.0 100.0
ExControlFlow1 20 4 20.0 100.0
ExControlFlow2 36 4 11.1 100.0
FieldsOfParams 7 1 14.2 100.0

IFLoop 21 1 4.7 100.0
IFLoop2 15 1 6.6 100.0

IfMethodContract 17 4 23.5 100.0
IFMethodContract2 4 4 100.0 100.0

interface-noleak 11 1 9.1 100.0
lostInCast 1 1 100.0 100.0

ObjectSensleak 7 1 14.3 100.0
CondAssignment 4 4 100.0 100.0

CondChecks 12 4 33.3 100.0
Webstore 17 1 5.9 100.0
Webstore2 70 3 4.0 100.0
Webstore3 9 1 11.1 100.0
Webstore4 182 14 7.7 87.5
Declass1 4 2 50.0 100.0

Table 4.8: Evaluation results for insecure benchmarks

Benchmark Paths TC RBPC (%) RBFPC (%) Failed TC CE
Aliasing 9 1 11.1 100.0 0 1
Array2 55 9 16.3 100.0 6 8

ArrayLength 24 4 16.6 100.0 2 4
DivisionByZero 20 4 20.0 100.0 1 3

Eg1 1 1 100.0 100.0 0 1
Eg2 36 25 69.4 69.4 22 25
Eg4 624 36 5.7 73.4 28 31

Exception1 20 4 20.0 100.0 1 2
Exception2 20 4 20.0 100.0 2 4
Exception3 36 4 11.1 100.0 2 2
TryCatch 20 4 20.0 100.0 2 2

FieldsOfParams 20 9 45.0 100.0 4 4
simpleTypes 12 4 33.3 100.0 2 2

typesCastingError 36 4 11.1 100.0 2 2
StaticDispatching 7 2 28.5 100.0 1 1

Declass2 4 4 100.0 100.0 2 2

62

4.6. Conclusion

b-paths in the self-composed CFG we either show that they are infeasible5 or
we generate a noninterference test for it. Moreover, when we used the option
of generating a high-coverage test suite, the generated tests for the insecure
benchmarks still were able to uncover noninterference violations for all but
one benchmark, without even requiring the poststates to be low-equivalent
when generating the test inputs. A possible reason for this is the fact that
the analyzed insecure benchmarks are specifically designed to demonstrate
certain noninterference violations and provide no functionality other than
that. All in all, the evaluation shows that the relational bounded feasible path
coverage is an appropriate coverage criterion for noninterference properties:
for high coverage values we either find no violations for secure benchmarks
or find at least one violation for most insecure benchmarks.

4.6 Conclusion
In this chapter we have shown how the noninterference properties defined
in Section 2.1 can be tested for a given program and explained the notions
of noninterference tests and test suites. We presented an approach that
is based on symbolic execution for automatic test generation for the three
noninterference properties that we consider. We extended existing definitions
of test coverage criteria such that they now are usable for noninterference
test suites. We evaluated our test generation technique on a set of noninter-
ference benchmarks and showed that the approach is capable of both finding
noninterference violations in insecure benchmarks as well as achieving a high
coverage.

Related work in the area of testing and automatic test generation for
noninterference properties is described in Section 9.1.1. In Chapter 5 we
show how a counterexamples found with our test generation approach can
be analyzed using a noninterference debugger. In Chapter 6 we show how
programs can be simplified for noninterference testing.

5This is the case when one of the pairs is infeasible or when two low-equivalent inputs
cannot satisfy both path conditions.

63

5
Analysis of Noninterference

Counterexamples

5.1 Introduction

This chapter presents the part of the noninterference framework that deals
with the situation in which the automatic test generation approach presented
in Chapter 4 has found a noninterference violation. In such a case, the user
is presented with a counterexample that consists of two low-equivalent inputs
(see Definition 2.1) that result in two outputs that are not low-equivalent.
While such a counterexample demonstrates that the program violates the
specified noninterference property, the user may find it difficult to under-
stand the specific implementation details that lead to this violation. In this
chapter we present an approach that assists the user in understanding a
noninterference counterexample, in order to help him fix the cause of the
noninterference violation. This approach was implemented as DIbugger, a
relational debugging tool, and it is available in Herda et al. [2019b]. This
chapter is based on work by the author previously published in Herda et al.
[2019a]. DIbugger was implemented during a “software development labo-
ratory” (Praxis der Softwareentwicklung) by the students Etienne Brunner,
Joana Plewnia, Ulla Scheler, Chiara Staudenmaier, Benedikt Wagner, and
Pascal Zwick under the supervision of the author.

Motivation. Software verification is a tedious process that involves the
analysis of multiple failed verification attempts and corrections of the program
or specification. Oftentimes, this is an incremental process where at first
neither the formal specification captures the informally-given requirements
nor the program adheres to its specification.

For the cases in which the verification of a given program and specified
property fails, existing verification tools such as KeY can provide program

65

Chapter 5. Analysis of Noninterference Counterexamples

inputs that constitute counterexamples. However, understanding why the
provided inputs are a counterexample is not a trivial task. Whereas this task is
already difficult for functional properties, it becomes even more challenging for
relational properties (i.e., properties that consider two program executions).
This is because the user needs to concomitantly check the values of program
variables across multiple (two in the case of noninterference) program runs.

Understanding counterexamples is, nonetheless, a very important step
that the user needs to do in order to improve the analyzed specification
and/or code. The process of verifying software is an iterative one, as stated
in Beckert et al. [2017c]: “Until the verification succeeds, (a) failed attempts
have to be inspected in order to understand the cause of failure and (b) the
next step in the proof process has to be chosen”.

Thus, an approach that assists the user in analyzing and understanding
noninterference counterexamples is necessary.

Contribution C1.3 The contribution of this chapter consists of a novel
approach for the analysis of counterexamples to noninterference properties.
This approach extends established concepts from program debugging (e.g.,
stepping and breakpoints) and makes them suitable for relational properties.
Thus, we assist the user in performing step (a) in the iterative software
verification process described in Beckert et al. [2017c]. To the best of
our knowledge the state-of-the-art approach for analyzing noninterference
counterexamples consists of running two normal debuggers side-by-side using
the two inputs provided by the counterexample. In addition to the state-of-
the-art approach, we assist the user by allowing him to control and analyze
the two executions at the same time.

Structure of the chapter. In Section 5.2 we explain the required func-
tionalities of an approach for analyzing noninterference counterexamples and
present the assumptions that motivate those functionalities. In Section 5.3
we describe the tool DIbugger, which is the implementation of our approach.
In Section 5.4 we show how our approach can be used and how it is useful
by means of examples, and we discuss which relational properties can be
handled by our approach. We then conclude in Section 5.5.

5.2 Requirements of the Approach

We begin this section by stating the assumptions which motivate the require-
ments of the approach for analyzing noninterference counterexamples. The
assumptions, which we present in the following, state what the user knows
and what he wants to find out.

1. The user knows which program variables must contain only low data.

66

5.2. Requirements of the Approach

2. For those variables which must contain only low data, the user does not
know and wants to find out whether they are assigned different values
during each of the two executions determined by the inputs provided
by the counterexample.

3. The user is provided with a counterexample that consists of two low-
equivalent inputs for a program specified with a noninterference prop-
erty.

The goal of the approach is established by the assumptions above. The
approach is meant to assist the user in finding out which low variables are
assigned different values during the executions determined by the two inputs
provided by the counterexample. Because the two inputs are low-equivalent,
it is expected that the low variables will contain the same values during the
two executions of the program the two inputs. Once the user identifies a low
variable which is assigned different values during the two executions, he can
investigate the cause of this. Moreover, it would be helpful for the user if the
approach extends familiar functionalities of program debuggers to support
noninterference properties.

Requirements of the Approach. Based on the assumptions, we iden-
tified the following requirements for which we designed the approach for
analyzing noninterference counterexamples. In the following we explain these
requirements.

Requirement 1: Side-by-side view of the two executions. The user must
view the two executions side-by-side in order to see which point both execution
have reached.

Requirement 2: Marking of low variables. The user must be able to mark
those variables that he considers to be low, and the two executions must
halt when they reach the marked locations. This allows the user to analyze
and compare the two states. Since we extend well-known functionalities of
program debuggers, this requirement should be realized using the familiar
concept of breakpoints.

Requirement 3: Debugging operations. The user must be able to have
complete control over the two executions. He must be able to perform all
classic debugging operations (i.e., step in, step out, and step over) as well as
step back in any of the two executions to a previous state.

Requirement 4: Side-by-side view of the two states. The user must be
able to see the current states of the two executions side-by-side in order
to compare the values of the variables in them. He must be able to hide
variables which are of no interest to him. This is the case for variables for
which the user does not know whether they are low.

Requirement 5: Assisted variable comparisons. The user must be assisted
in comparing variables of his interest (i.e., it must be shown whether a

67

Chapter 5. Analysis of Noninterference Counterexamples

Figure 5.1: The user interface of DIbugger

variable has the same value in the two states or not). Depending on this
comparison, the two program executions must stop automatically if the
values differ.

In the next section we present the implementation of the approach, which
fulfills these requirements.

5.3 Implementation

To implement our approach, we have built DIbugger, a relational debugger
for a subset of the C programming language. It supports sequential, inter-
procedural programs. Dynamic memory allocation programming features
are not yet supported. DIbugger consists of four components responsible
for the user interface, control, file handling, and debugging. The debugging
functionality is built on top of a C interpreter. The interpreter generates
the trace (i.e., the sequence of values of the program variables at each point
of execution) of each analyzed program with its given input. The debugger
works on those traces and executes the debugging operations. The graphical
user interface (GUI) of DIbugger is shown in Figure 5.1. We explain the
available features in the following.

68

5.3. Implementation

5.3.1 Debugging Operations

The buttons for debugging operations are located at the top right part of the
GUI (see Figure 5.1, in the highlighted area 2). They realize Requirement 3
(Debugging operations). The large Play (the grey button) and Stop (the red
button) buttons are used for switching between the debug and the edit modes.
The analyzed programs can be edited only in the edit mode. Once the user
switches into debug mode, the programs can no longer be edited but only
debugged. When switching to debug mode, the tool generates the execution
trace for each program and the inputs provided via the program panels
(program panels are explained in Section 5.3.2). To keep the generated trace
valid, editing the program is not allowed in debug mode. While debugging,
the user can switch back to the edit mode at any time. However, he needs
to start debugging the programs from the beginning with newly generated
traces, when switching back into debug mode. Below those two buttons (Play
and Stop) are the following buttons that provide the stepping functionality,
which was extended to support two program executions:

• Step: The execution of each analyzed program advances by the number
of points of execution given by the user as the step size in the program
panel (see Section 5.3.2). The user can use different step sizes for
the analyzed programs that allow him to keep the executions of the
analyzed programs synchronized and to examine loops with different
numbers of instructions. Depending on the analyzed property and
program, mutable step sizes allow the user to keep the programs in
lockstep even when some programs execute more instructions than
others.

• StepBack: The execution of each analyzed program is taken one step
back.

• StepOut: The execution of each analyzed program jumps out of current
method scope, or steps to the end of the main method.

• StepOver : The execution of each analyzed program jumps over a
method call—if any—otherwise it performs a normal step.

• Continue: The execution of each analyzed program advances in steps
of the size (i.e., the number of instructions executed in a step) provided
by the user in the program panel (see Section 5.3.2). The executions
stop when (1) each program has reached a break point set by the user
or the end of the program, or (2) a conditional breakpoint evaluates to
true (conditional breakpoints are explained in Section 5.3.3).

69

Chapter 5. Analysis of Noninterference Counterexamples

5.3.2 Program Panels

The central part of the GUI consists of a program panel for each analyzed
program (e.g., in Figure 5.1, in the highlighted area 1). The two buttons at
the top of the program panel allow the user to add a new program panel or
to remove the existing panel. For the noninterference properties considered
by us, only two program panels are used. Below these buttons, the user can
set the step size which will be used when debugging. By using the single-step
button, the user can also perform a single step (only in the program of the
panel where the button was clicked). Further down, the user provides the
inputs of the program, which will be used when debugging. The analyzed
program is in the center of the program panel, and the program statement
that is about to be executed is marked. Using two program panels side-
by-side, Requirement 1 (Side-by-side view of the two executions) is fulfilled.
The user can set breakpoints at any code line, thus realizing Requirement 2
(Marking of low variables). When clicking the Continue button, all analyzed
programs advance to the next breakpoint, unless a conditional breakpoint is
activated before. Below the analyzed program, the variable inspector shows
the values of the program variables at the current point of execution and
the return value of the main method. The user can choose to hide certain
variables. The variable inspector realizes Requirement 4 (Side-by-side view of
the two states). Note that each program panel has a unique identifier (e.g.,
the highlighted program panel in Figure 5.1 has identifier A) that is used to
refer to the program a variable belongs to when adding watch expressions
and conditional breakpoints (see Section 5.3.3).

5.3.3 Watch Expressions and Conditional Breakpoints

In order to analyze noninterference properties while debugging the program,
the user needs to constantly compare the values of the variables in the two
executions. In the context of checking noninterference, the user needs to
check whether the low variables are equal during the two executions. Doing
this in each step of the debugging process would be a tiresome task. To help
with this, watch expressions and conditional breakpoints can be inserted by
the user in the highlighted areas 3 and 4 of Figure 5.1 respectively. Watch
expressions are C expressions which can contain variable identifiers from any
of the analyzed programs. They help the user with the comparison of values
at the two points of execution. At each point of the debugging process, the
value of the expression is computed, and the result is displayed.

Conditional breakpoints are boolean C expressions which are evaluated
at every point of execution that is reached when using the step sizes set
by the user. They help the user to find the execution points of interest.
If the expression of the conditional breakpoint evaluates to true, then the
execution of the analyzed programs halts at the execution points in which

70

5.4. Discussion

this evaluation occurred. Conditional breakpoints allow the user to search for
execution points in which relational invariants (e.g., a low variable is assigned
different values during the two executions) are violated. Using the OPT
button (see Figure 5.1) for a given expression or conditional breakpoint allows
for the setup of a program scope, which consists of a starting line number
and an end line number. Then, the given watch expression or conditional
breakpoint is only evaluated when the program execution is between those
two line numbers and is otherwise ignored. Thus, if the program execution is
outside the specified scope, the value of a watch expression will be unknown,
and—in the case of conditional breakpoints—the execution will not halt
outside the scope. Watch expressions and conditional breakpoints realize
Requirement 5 (Assisted variable comparisons).

5.4 Discussion
In this section we show how the approach can be employed to analyze
counterexamples of the noninterference property (as defined in Definition 2.2),
and we also discuss the properties that are supported by DIbugger.

Examples. We show how the user can be assisted in understanding the
counterexample for two example programs, shown in Listings 5.2 and 5.3,
that respectively contain a data and a control dependency (see Section 2.6.1)
between the high input (parameter h) and the low output (the returned
value).

1 int main(int h, int l){
2 int low = 0;
3 if(l==0){
4 low = l;
5 }
6 else{
7 low = l + h;
8 }
9 return low;

10 }

Listing 5.2: Data dependency example

For the program in Listing 5.2 the approach for generating noninterference
tests presented in Chapter 4 found a counterexample containing the inputs
h = 1, l = 1 for execution A and h = 2, l = 1 for execution B. The user loads
the program in two program panels with the two respective inputs. When
entering debug mode, the user sees that execution A finished with 2 as the
return value, while execution B returns 3. Thus, the noninterference property
is violated. The user knows that the variable low must have the same value
in each of the two analyzed executions. He uses a conditional breakpoint with
“A.low != B.low” as a condition to automatically find the line in which
the variable low is assigned a different value in the two executions. For the

71

Chapter 5. Analysis of Noninterference Counterexamples

example in Listing 5.2 this conditional breakpoint automatically halts the two
executions at line 7. As an alternative, the user can set breakpoints at every
assignment to the variable low (lines 2, 4, and 7). With the Continue button,
each of the two executions advances to the next breakpoint, and the user
compares the values of low at each of those lines in the two executions. At
line 7 he sees that the variable has different values and notices the dependency
between the high input and the low output. The user can use the watch
expression “A.low == B.low” to more easily compare the value of low in
the two executions.

Now we consider the program in Listing 5.3, which contains a conditional
dependency between the high input and the low output. Depending on the
value of the high input h, the then or the else branch is taken. The test
generation approach found a counterexample containing the inputs h = 0,
l = 1 for execution A and h = 1, l = 1 for execution B. In this example the
user can proceed as in the previous example and manually set breakpoints at
every assignment to low (lines 2, 4, and 7). When running the two executions
using the Continue button, execution A will reach line 4, and execution
B will reach line 7 at the same time. The user thus notices the control
dependency. The same two execution points can be reached also by using
the conditional breakpoint with “A.low != B.low” as a condition instead
of the manual breakpoints.

1 int main(int h, int l){
2 int low = 0;
3 if(h==0){
4 low = l;
5 }
6 else{
7 low = l + 1;
8 }
9 return low;

10 }

Listing 5.3: Control dependency example

Already from those two simple examples we can see that using con-
ventional debuggers, which only allow the inspection of a single program
execution, would be more difficult. This is because in a conventional debugger
the user must guide the debugging process for each program separately. He
cannot use watch expressions and conditional breakpoints to find pairs of
execution points which violate the noninterference property.

Supported properties. The approach for analyzing relational counterex-
amples presented in this chapter supports the inspection of counterexamples
of any k-safety property (i.e., those properties that can be refuted by at
most k traces, according to Clarkson and Schneider [2010]). By far the most
researched are 2-safety properties. Besides noninterference, another such
property is program equivalence. Verification approaches that check program

72

5.5. Conclusion

equivalence for C programs (e.g., Kiefer et al. [2018]) or for PLC software
(e.g., Beckert et al. [2015]) are available and can provide counterexamples.
In the context of computational social choice, relational properties such as
monotonicity are also being verified using formal methods (e.g., in Beckert
et al. [2016a]), and counterexamples can be obtained.

5.5 Conclusion
We presented an approach for analyzing counterexamples of the noninter-
ference property and its implementation. As part of the noninterference
framework, the approach is applied on the counterexamples that are gener-
ated with the automatic test generation approach presented in Chapter 4
but can also be adapted for other k-safety properties. Related work in the
area of combining formal methods with program debugging is discussed in
Section 9.1.2.

73

6
Using SDGs to Assist Deductive

Verification and Testing

6.1 Introduction

In this chapter we describe an approach proving noninterference that com-
bines an SDG-based approach (see Section 2.6) with deductive verification
(see Section 2.3) and automatic test generation (see Chapter 4). Thus,
the approach presented in this chapter is contained in both the part of the
noninterference framework that searches for noninterference violations and
the part of the framework that attempts to prove that a given noninterference
property holds for a given program. This chapter is based on work by the au-
thor previously published in Herda et al. [2018]. Under the supervision of the
author, the student Joachim Müssig has contributed to the implementation
of the approach described in this chapter.

Motivation Various approaches and tools for checking noninterference
exist. Some have a high degree of automation, yet produce many false
alarms, as they over-approximate the dependencies in the program. Others
are more precise, but require more effort and user interaction. Approaches
that are based on SDGs (e.g., the one presented in Section 2.6) syntactically
compute the possible dependencies between the program statements and
check whether the low output depends on the high input. Whereas they scale
very well, such approaches over-approximate the actual dependencies (see
Definition 2.20) in the program, which results in false alerts. Logic-based
approaches (e.g., the one presented in Section 2.3) have a higher precision
(i.e., they produce less false alarms), as they also consider the semantics of the
program statements. However, they have a lower scalability. In logic-based
approaches the proof obligation is to show that the terminating states of
two program executions are low-equivalent, assuming that the two initial

75

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

states are low-equivalent1. False alarms only occur when the system fails to
find a proof in the allotted time even though the proof obligation is valid.
Compared to proving a functional property, proving noninterference using
this approach requires a quadratic number of program execution paths to be
checked. Approaches for test generation are also affected by this: a quadratic
number of tests is necessary to achieve the same coverage as for a functional
property.

Thus, SDG-based and logic-based approaches are complementary and
trade precision for scalability. It is therefore reasonable to assume that
these approaches can be combined in a way that program parts for which
the scalable SDG-based approach has shown that they do not affect the
noninterference property can be excluded from the more precise but less
scalable logic-based approach, thus allowing the advantages of both kinds of
approaches to be gained.

Contribution C1.4 In this chapter we describe an approach that uses
an SDG-based analysis to simplify a program for a given noninterference
property. The simplified program is then handled with deductive verification
and test generation. Note, however, that our simplification enables other
approaches (e.g., type-system based analyses) to be used together with
the SDG-based approach. These simplified programs are noninterference
equivalent (with respect to the analyzed noninterference property) to the
original program. This means that every noninterference violation in the
simplified program has a corresponding noninterference violation in the
original program and vice versa. The necessary effort for the second approach
(i.e., deductive verification and test generation) is decreased by the our
approach by: (1) excluding pairs of high inputs and low outputs and the
possible noninterference violation they represent; (2) excluding execution
paths in the program; and (3) excluding programs statements.

We have implemented our approach using the JOANA tool (see Sec-
tion 2.6) for the SDG-based analysis and the KeY system for proving nonin-
terference (see Sections 2.3) and automatic test generation (see Chapter 4).
Applying our approach on some example programs has shown that it in-
creases the scalability of the deductive verification and the test generation
techniques, allowing them to focus just on those program parts that may
cause violations of a specified noninterference property.

Structure of the chapter. In Section 6.2 we present a running example
that is used to demonstrate our ideas. Section 6.3 describes how we generate
a simplified program. In Section 6.4 we show how the simplified program
can help with verification, and in Section 6.5 we explain how the simplified
program helps with noninterference test generation. In Section 6.6 we discuss

1In this thesis we define low-equivalence using Definitions 2.1 or 2.4.

76

6.2. Running Example

theoretical and technical details of our approach, and in Section 6.7 we
conclude.

6.2 Running Example

In this chapter we use the program shown in Listing 6.1 to explain the
concepts that we introduce. It contains the method secure that has a secret
input—high—and a public output—the return value of the method secure.

1 public int secure(int high, int low) {
2 if(low == 5){
3 low = identity2(low, high);
4 }
5 else{
6 if(low == 2){
7 low = identity1(low, high);
8 }
9 else{

10 low = identity2(low, high);
11 }
12 }
13 return low;
14 }
15
16 public int identity1(int low, int high) {
17 low = low + high;
18 low = low - high;
19 return low;
20 }
21
22 public int identity2(int low, int high) {
23 return low;
24 }

Listing 6.1: Running example

The method is noninterferent, because the returned value does not depend
on the value of the parameter high. Noninterference for this program can
be proved using deductive verification. The theorem prover checks nine
symbolic execution paths: it analyzes two program executions as required
by Definition 2.2, and for each program execution it considers three cases,
namely that the input low (a) is 5, (b) is 2, or (c) has any other value.
SDG-based approaches (see Section 2.6) for checking noninterference report a
possible violation, because the called method identity1 contains a possible
dependency between its return value (that gets afterwards assigned to low)
and the parameter high. This dependency, however, only affects the path
in which the initial value of low is 2. Hence, for the other two execution
paths noninterference is guaranteed by the SDG-based approach. Thus,
noninterference is guaranteed under the condition that the program input
respects the path condition (low = 5 and low 6= 5 ∧ low 6= 2 respectively) of
those two execution paths. In Section 6.3, we explain how we can simplify the

77

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

running example program, and we show the advantages of this simplification
in proving the noninterference of the program using a logic-based approach
from Section 2.3 or testing it using the approach from Chapter 4.

6.3 Generation of the Simplified Program

In this section we explain on the running example shown in Listing 6.1 how
we simplify a program for a given noninterference property. We use the tool
JOANA (see Section 2.6) to explain the concepts related to the SDG-based
approach. However, the simplification can be implemented with other SDG-
based tools as well. Throughout this chapter we refer to a (possible) program
execution described by a CFG-path as execution path. If an SDG-path is
a sub-path of a CFG-path (i.e. the nodes of the SDG-path appear in the
same order in the CFG-path) we say that the execution path described by
the CFG-path corresponds to the SDG-path. An SDG-path has one or more
corresponding execution paths. For the approach in this chapter we consider
sequential, deterministic, and terminating programs for which there is a
CFG available. For the definitions and properties of the simplified programs
we assume that the SDG-based and logic-based approaches work on the
same language. This is not the case, however, for the implementation of
the approach, as JOANA works on Java byte code, and KeY works on Java
source code. We discuss this in Section 6.6.

Figure 6.2: The SDG of the running example

78

6.3. Generation of the Simplified Program

Figure 6.2 presents the SDG generated by JOANA for the secure method
in the running example (Listing 6.1). Note that in order to keep the graph
simple, the dependencies inside the three calls of the methods identity1
and identity2 have been hidden, and only the method call nodes are shown.
We will use this simplification also later in the chapter, when we describe
paths in the SDG. Of particular interest are node 58, which represents the
parameter high of the method secure and node 55—the exit node of the
method. These two nodes are annotated with high and low, respectively.

As shown in Section 2.6, SDG-based program analysis approaches, such
as the one implemented by JOANA, detect possible noninterference violations
through graph analysis by using a special form of conditional reachability
analysis—slicing and chopping—at the SDG level. JOANA reports a possible
noninterference violation whenever there exists a path from a node in the
SDG that is annotated as high to a node annotated as low.

Because the dependencies in the SDG are an over-approximation of the
actual dependencies (see Definition 2.20) in the program, if no SDG-path
corresponding to a possible dependency between a high input and a low
output is found, the program is guaranteed to be noninterferent. However,
when there exists an SDG-path between a high input and a low output,
the program may still be noninterferent. To check whether the violations
that are reported by the SDG-based approach are real violations of the
noninterference property, we try to either disprove them as false positives or
to generate concrete program inputs that showcase them.

Since the program can have multiple annotated high inputs and low
outputs, JOANA may show at this point that there is no dependency between
certain pairs of high inputs and low outputs. Since the SDG-based approach
is sound, the noninterference property for those pairs does not need to
be checked any further. In order to distinguish between real and false
alarms in the other SDG-paths that JOANA reports as leading to possible
noninterference violations, we use a second technique (verification or test
generation).

For the running example shown in Listing 6.1, JOANA reports a possible
violation that contains an SDG-path from the parameter high to the return
value of the method secure. JOANA successfully determines that there is
no dependency between the parameter high and the return value of the two
calls of to the method identity2. Since the edges in the SDG represent
dependencies that are defined using purely syntactical criteria, JOANA
cannot reach the same conclusion for the call of to identity1. Thus, the
SDG-path 58 → 69 → 82 → 55 is reported as a possible violation (the
numbers correspond to the node ids in Figure 6.2). Note that this path
is shortened by an operation similar to the collapse of the call nodes in
Figure 6.2. The path reported by JOANA contains in fact an actual in
node—representing an input of the method call and an actual out node—
representing an output of the method call. These two nodes are connected

79

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

by a summary edge that encodes the dependence of the actual output node
on the actual input node (see Section 2.6.1).

Despite this false alert, JOANA was still able to determine that there
is no dependency between the high input and the low output along the
two execution paths in the program where the method identity2 is called.
When we use a second, more precise approach, it makes sense to skip the
analysis of those two execution paths.

A noninterference violation reported by the SDG-based approach has a
corresponding chop (see Definition 2.22) for a high input and low output pair
represented by nodes in the SDG. This chop represents an over-approximation
of those nodes that are influenced by the high input and that at the same
time influence the low output.

The chop that was created by JOANA for the running example contains
only one path: 58 → 69 → 82 → 55. Based on this, we know that only
the statements of the nodes in this path can be relevant for the potential
dependency between the high input and the low output. Using a chop and
the analyzed program we can generate a simplified program, which we call
chop-based program that is defined as follows:

Definition 6.1 (Chop-based program). For a given program P and a chop
C(nh, nl), the chop-based program PC is constructed by removing all in-
structions from P that have no corresponding node in C(nh, nl).

Listing 6.3 shows the chop-based program generated from the chop of
our running example in Listing 6.1. Note that SDG-based program slices are
not executable in general. We discuss this aspect in Section 6.6.

1 public int secure(int high, int low) {
2 low = identity1(low, high);
3 return low;
4 }

Listing 6.3: Chop-based program for the running example

Theorem 6.1. Given a program P and a chop C(nh, nl), if the noninterfe-
rence property (according to Definition 2.2) with respect to the high input
corresponding to nh and the low output corresponding to nl holds for the
chop-based program PC , then it holds for the original program P as well.

Proof. The soundness of the SDG-based approach guarantees that the high
input can influence the low output only along the SDG-paths from the
high input to the low output and only by the program instructions whose
corresponding SDG-nodes are on those paths. All those SDG-paths make
up the chop that constitutes the reported violation. Since the chop-based
program contains—by construction—all program instructions corresponding
to the nodes in the chop, it contains the sequences of program instructions
that could allow the low output to be influenced by the high input in the

80

6.3. Generation of the Simplified Program

original program. Thus, if the noninterference property holds for the chop-
based program, then the high input does not influence the low output along
SDG-path of the chop, and the noninterference property holds for the original
program as well. / /

The chop-based program is greatly simpler than the original. This fact
can help to considerably reduce the necessary effort for deductive verification.
However, some statements that affect path conditions (see Definition 2.15)
under which the high input may affect the low output in the original program
may be lost in the chopping process. Therefore, the chop-based program
may allow executions that are not possible in the original program. For
this reason, a noninterference violation of the chop-based program does not
necessarily have a corresponding violation in the original program, since
the path conditions that need to hold for the violation to occur may be
unsatisfiable in the original program. Suppose, for example, that the method
identity1 in the running example is noninterferent only if the condition
low == 2 holds when the method is called. This condition holds in the
original program, but not in the chop-based program. In this case the
original program would be noninterferent, but the chop-based program would
violate the noninterference property. Thus, whereas the verification effort
can be significantly reduced for some programs, the missing path conditions
may cause the noninterference property to become impossible to verify for
other programs.

Furthermore, the chop-based program is of little use for automatic test
generation, since the test data for this program may take another execution
path when used to test the original program. For example, the input
parameter low in the original program must be 2 for the identity1 method
to be called, but this is not true for the chop-based program. Thus, the
coverage (see Section 4.4) achieved when testing the simplified program
does not translate to a coverage in the original program. Moreover, it may
be that a noninterference violation detected when testing the chop-based
program is not a violation in the original program. For example, to find
inputs that showcase the possible noninterference property in the running
example, when the method identity1 is called, the value of low has to be 2
in order for the noninterference violation to be observable in the original
program. Since the path condition is no longer present in the chop-based
program, the test generation approach can generate two inputs that lead to
a potential noninterference violation in the chop-based program but not in
the original program.

To overcome the problems of the chop-based programs, we introduce
a new kind of program which we call simplified program. The simplified
program is based on the backward slice (see Definition 2.21) of the low output
and has some execution paths excluded. We decide which paths to exclude
by analyzing both the SDG of the entire program and the chop, to determine

81

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

whether a predicate node (e.g., a node representing an if-statement, see
Definition 2.12) has to be true or false for noninterference violation to occur.

Definition 6.2 (Analysis of predicate nodes). Let nb ∈ Sbw be a predicate
node in the backward slice of a node nl (the node corresponding to the low
output). Let Ntrue be the set of successor nodes following the edge labeled
T of nb in the CFG, and let Nfalse be the successor nodes following the edge
labeled F in the CFG. We define nb to be a condition that must be true if
the analyzed chop C(nh, nl) contains nodes from Ntrue and no nodes from
Nfalse. Conversely, we define nb to be a condition that must be false if the
chop contains nodes from Nfalse and no nodes from Ntrue.

Now we can show which program paths may be removed from a second
program analysis.

Theorem 6.2. Given a high input and a low output corresponding, respec-
tively, to the SDG nodes nh and nl and a predicate node nb that must be true
(respectively false), any execution path of the original program along the false
(true) branch of nb will not lead a violation of the noninterference property.

Proof. This property results from the soundness of the SDG-based approach:
a dependency between nh and nl can occur only along an SDG-path in the
chop C(nh, nl). However, because the node nb must be true (respectively
false), we know that no false (true) successor of nb is in the chop, thus the
program executions determined by the chop do not include any execution
along the false (true) branch of nb. / /

Theorem 6.2 allows us to exclude the execution paths that are guaranteed
to not lead to a noninterference violation from the analysis in the second step,
thus reducing the testing and verification effort. Because both deductive
verification and automatic test generation approaches that we use are based
on symbolic execution, we exclude these paths by adding a special statement
that disrupts the symbolic execution at the beginning of a false branch for
a branching statement that must be true and at the beginning of a true
branch for a branching statement that must be false. When the program is
symbolically executed for the purpose of verification and reaches a disruptive
statement, the proof closes automatically for that branch. Test generation
also immediately halts for that path once the symbolic execution reaches a
disruptive statement.

We can now define simplified programs.

Definition 6.3 (Simplified program). Let nh and nl be two nodes in the
SDG for a program P (corresponding to a high input and a low output). We
construct the simplified program PS from P by:

1. Removing all nodes that are not in the backward slice Sbw(nl).

82

6.3. Generation of the Simplified Program

2. Analyzing the remaining predicate nodes and adding disruptive state-
ments on their true (respectively false) branches that cannot lead to a
noninterference violation according to Theorem 6.2.

We can now show that the simplified program is noninterference equivalent
to the original program.

Theorem 6.3. Given a high input and a low output in a program P with
corresponding nodes nh and nl in the SDG for P , the simplified program
constructed according to Definition 6.3 is noninterferent with respect to nh
and nl if and only if the original program is noninterferent with respect to
nh and nl.

Proof. If the simplified program is noninterferent, then along none of its
SDG-paths does the high input influence the low output. The simplified
program contains all SDG-paths from the chop C(nh, nl), therefore along
none of the chop paths does the high input influence the low output. Due
to the soundness of the SDG-based approach, a noninterference violation
can occur only along an SDG-path in the chop. Therefore also the original
program must be noninterferent.

If the original program is noninterferent, then the backward slice Sbw(nl)
of the low output is noninterferent as well, since for every input the low
output of the backward slice is identical to that of the original program. As
shown in Theorem 6.2, adding disruptive statements excludes only execution
paths on which it is guaranteed that the high input does not affect the low
output. Hence the simplified program must be noninterferent as well. / /

Next we will show that the simplified program is also useful for testing
noninterference: a counterexample for the simplified program is also a
counterexample for the original program.

Theorem 6.4. Given a high input and a low output in a program P with
corresponding nodes nh and nl in the SDG for P , two concrete high inputs
h1 and h2 for nh (with the same low input) lead to two different low outputs,
l1 and l2, in nl in the simplified program PS if and only if h1 and h2 lead to
the same two different low outputs l1 and l2 in the original program P .

Proof. The simplified program PS is a backward slice with respect to the
low output, in which some paths that are guaranteed not to lead to a
noninterference violation are excluded. The two high inputs that lead to
two different low outputs in the simplified program cannot have taken one of
the excluded paths—otherwise these paths would not have been excluded
(Theorem 6.2). Since the remaining, not excluded, execution paths of the
simplified program are those of the backward slice with respect to the low
output, the inputs that take those execution paths will lead to the same low
outputs in the original program.

83

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

If the two high inputs lead to two different low outputs in the original
program, then the simplified program will lead to the same two different low
outputs, because the simplified program is a backward slice of the original
program and because the execution paths cannot contain an excluded branch,
as on those paths the high input does influence the low output.

/ /

The chop reported by JOANA for the running example contains nodes
58, 69, 82, and 55 (see Figure 6.2). In the backward slice of the low output
(i.e., of node 55) there are two predicate nodes, 60 and 68, corresponding to
the two if-statements in the example program. Analyzing the two predicate
nodes, our approach automatically determines that the first if-statement has
to take the false branch and the second if-statement has to take the true
branch for a noninterference violation to occur.

1
2 public int secure(int high, int low) {
3 if(low == 5){
4 disruptExecution();
5 low = identity2(low, high);
6 }
7 else{
8 if(low == 2){
9 low = identity1(low, high);

10 }
11 else{
12 disruptExecution();
13 low = identity2(low, high);
14 }
15 }
16 return low;
17 }

Listing 6.4: Simplified program for the running example

The program shown in Listing 6.4 is the simplified program for the run-
ning example. While in general the backward slice of the return statement
can be much smaller that the original program, for the running example it
contains the entire program. Nevertheless, our approach is able to determine
that the paths leading to the call of the identity2 method cannot lead
to a noninterference violation, and it adds two disruptExecution() state-
ments, which stop symbolic execution when verifying the running example
or generating tests.

84

6.4. Verification of the Simplified Program

6.4 Verification of the Simplified Program

In this section we show how using the simplified program can assist in
reducing the verification effort compared to the effort needed to verify the
original program. We also discuss the noninterference properties that can
be handled by a prototypical implementation of our approach, where we
use JOANA (see Section 2.6) as the SDG-based analysis tool and KeY (see
Section 2.3) as the deductive theorem prover.

Using KeY to verify noninterference for the original version of our running
example (Listing 6.1) requires 771 rule applications. After the symbolic
execution of the programs in the two modal operators is finished, nine proof
tree branches remain to be closed. This is to be expected, as there is one
such branch for each combination of paths in the two program executions,
as explained in Section 6.2.

For the chop-based program shown in Listing 6.3, verification needs 298
rule applications, and only one proof goal remains to be closed after symbolic
execution, as there is only one possible path combination. As explained in
Section 6.3, however, noninterference of the chop-based program is a sufficient
but not a necessary condition for noninterference of the original program.

To obtain a necessary condition ensuring that noninterference is pre-
served when the program is simplified, path conditions need to be preserved,
which is the case in the simplified program (according to Definition 6.3).
The verification of the simplified program with preserved path conditions,
displayed in Listing 6.4, requires 511 rule applications. In this case, the
symbolic execution halts when one of the two program runs reaches a path
that has already been deemed secure by JOANA, and the corresponding
proof branch is closed. Thus, of the nine proof goals remaining after symbolic
execution, eight are trivially closed.

The running example showcases how the SDG-based approach can assist
verification by excluding statements and execution paths from the program.
The exclusion of execution paths is especially useful when dealing with
the noninterference property (according Definition 2.2). If the original
program has n execution paths, the verification process must prove that
the noninterference property holds for n2 execution paths. By adding a
single disruptive statement, the number of execution paths that need to
be verified in the simplified program drops to a number between (n − 1)2

and n2/4 (depending on whether the affected condition is at the top level or
not). Thus, the number of execution paths that need to be analyzed with
the theorem prover can drop to a quarter of those required for the original
program.

The statements that are removed from the original program can also
lead to a dramatic decrease in the effort for the theorem prover to prove
the noninterference property. Consider the example in Listing 6.5. The

85

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

method secure contains a call to the method sort that has no influence2

whatsoever on any potential dependency between the parameter high and
the return value of secure. The verification of the method secure would
normally be done using a verified method contract for sort. Using the
method contract in the noninterference proof of secure increases the size
of the proof. Moreover, the method sort itself needs to be specified and
verified before it can be soundly used in the proof of secure, thus increasing
the workload of the verification engineer. In an example as simple as the one
in Listing 6.5 a trivial contract for the method sort is sufficient. However,
the verification engineer still is required to look into the code, notice that
the call of the sort method has nothing to do with a potential dependency
between the high input and the low output and then to specify and verify it.
Our approach can automatically detect such statements and soundly remove
them.

1 public int[] a;
2 public int secure(int high, int low) {
3 low = high * 0;
4 sort(a);
5 return low;
6 }

Listing 6.5: Example containing a complex method call

1 public int[] a;
2 public int secure(int high, int low) {
3 low = high * 0;
4 a = new int[5];
5 for(int i = 0; i < a.length; i++){
6 a[i] = low;
7 }
8 return low;
9 }

Listing 6.6: Example for multiple low outputs

Another way in which the generation of simplified programs can help
the verification process is by analyzing each potential dependency between
a pair of high input and low output individually. Consider the program in
Listing 6.6. We regard the parameters high and low to be the high and
respectively low inputs, and both the return value of the secure method
and the potentially thrown exception of this method are regarded as low
outputs. In this case, two simplified programs will be generated—one for
the potential dependency between the parameter high and the return value
and one for the potential dependency between the parameter high and the
thrown exception. For the first pair, the array generation with new and the
loop initializing the array are removed (the chop-based program and the
simplified program are identical), thus making the absence of this dependency
trivial to verify. For the second pair, no statements are removed; however,

2We assume here that the method does not throw any exception.

86

6.5. Testing the Simplified Program

the verification engineer can verify the absence of a thrown exception by
specifying the normal termination of the method as a functional property
and doing a functional proof. Note that an SDG-based approach has false
alarms for this program because its purely syntactical analysis fails to “see”
that at line 3 there is no dependency between high and low.

Most tools support the classical noninterference property (see Defini-
tion 2.2), in which the low-equivalence relation is equality. KeY in addition
allows the noninterference property to be defined by requiring object struc-
tures in the two low-equivalent program states to be (only) isomorphic (see
Definition 2.4). This is useful for showing noninterference for methods that
create new objects, because two independent program runs will generate
different references but isomorphic structures. KeY also allows an expression
to be declassified (i.e., the attacker is allowed to know the value of the
declassified expression, but no more than that; see Definition 2.3). It is
important to note that both these extensions of the noninterference property
are relaxations. Thus, a program that fulfills the noninterference property
as defined in Definition 2.2 will automatically fulfill the extended properties
as well. Thus, we can use our approach to generate the chop-based or the
simplified program even when we are attempting to prove the extended
noninterference property.

6.5 Testing the Simplified Program

We now show how the simplified program can be used to reduce the effort
required for generating noninterference tests. Furthermore, we show that the
simplified program is more appropriate than the original when measuring
the test coverage of an noninterference test suite.

The program in the running example contains three execution paths.
Thus, the automatic test generator will attempt to generate 32 input pairs.
However, only three of these pairs are low-equivalent because—for this
program—the branch that is taken is determined by the low input. Thus,
our automatic test generator generates a test suite with three noninterference
tests. When running the automatic test generator on the simplified program,
only one test will be generated for the case in which both low inputs are 2.
This is possible due to the inserted statements in the simplified program
that disrupt symbolic execution. When the symbolic execution reaches a
disruptSymbolicExecution statement, no test is generated for that path.
For the simplified program, the test generator attempts (and succeeds) to
generate a noninterference test only once, compared to the nine attempts
for the original program. Hence, in this case eight test generation attempts
(calls to the SMT solver) that cannot lead to a noninterference violation are
soundly skipped.

87

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

Testing the simplified program can reduce the number of generated
tests also by removing program statements that are not relevant for the
computation of the low output. When testing (using tests generated with
the approach from Chapter 4) the program shown in Listing 6.5, the method
sort would be inlined during the symbolic execution phase, thus requiring
a large number of execution paths to be tested. By removing the call to
the sort method, the simplified program contains only one execution path.
Removing statements also leads to a reduction in the computational resources
that are needed to run the noninterference tests.

An additional benefit of using our two-step approach is the fact that
we treat each high input and low output pair separately, by generating a
simplified program for each pair for which the SDG-based approach reports
that a noninterference violation may occur. If a noninterference violation is
found during testing, then the user can easily identify the high input and
low output of the noninterference violation, by noticing for which simplified
program the test fails.

It is difficult to define an appropriate coverage criterion for testing
noninterference properties that provides a measure on how good a test suite
is. Ideally, we would like to have full path coverage. This, however, is not
always achievable (even ignoring the fact that loops may cause the program
to contain an infinite number of paths). In Section 4.4 we defined a relational
bounded path coverage criterion that is suitable for noninterference test
suites. However, some program paths may have unsatisfiable path conditions
(i.e., a test input taking such a path cannot be generated). Because the
inputs of the two program executions are required to be low-equivalent, many
pairs of execution paths in the two executions are incompatible. Therefore,
it is often not possible to generate two low-equivalent inputs satisfying the
path conditions of a pair of execution paths. This results in a low path
coverage even though it is not an indication for a badly designed test suite.
A higher coverage is not achievable in such cases. Considering our running
example, only for three out of the nine path pairs, a noninterference test
can be generated; this results in a relational bounded path coverage of
only 33%. The execution paths excluded from the original program are
paths where the output of the program does not depend on the high input.
Therefore, those paths are determined only by the low input and are likely
to form incompatible pairs with other paths, thus lowering the achieved path
coverage. By excluding them, the achieved path coverage becomes a more
useful indicator for the thoroughness of testing. For the simplified program
constructed from our example program, three tests achieve full relational
bounded path coverage.

88

6.6. Discussion

6.6 Discussion

The novelty of our approach is that we soundly bridge the gap between two
kinds of approaches: the scalable over-approximating SDG-based approach
and the more precise but less scalable logic-based one. This is achieved by
automatically transforming the output of the SDG-based approach into an
input of a more precise approach, thus simplifying the analyzed program.
Furthermore, the simplified program that we generate is not a mere slice of
the original program; by taking advantage of the noninterference property,
we also exclude entire program branches from the analysis with the precise
approach. We have shown that a single branch exclusion can lead the more
precise approach to handle only one quarter of the execution paths that
would otherwise need to be handled. This is a crucial advantage, as existing
precise approaches for checking noninterference suffer from an exacerbated
path explosion problem.

We defined two types of simplified programs: the chop-based program
(see Definition 6.1) and the simplified program (see Definition 6.3); both
can be useful for verification, but sometimes the chop-based program makes
verification impossible. To help the user chose between the two versions, we
devise a criterion based on the following theorem:

Theorem 6.5. Given the SDG of a program and a chop representing a
reported noninterference violation, then if every predicate node in the SDG
is also present in the chop, the chop-based program is noninterferent if the
original program is noninterferent.

Proof. All branching conditions depend on the high input, otherwise the
corresponding predicate nodes would not be in the chop. The consequence
for such a program is that all execution paths must lead to the same low
output, otherwise the low output would be conditionally dependent on a high
output. Removing statements that do not depend on the high input would
change the value of this output but the noninterference property remains
unaffected. / /

For such programs that fulfill the requirement from Theorem 6.5 the
chop-based program is better suited to assist verification, since no path can
be excluded when generating the simplified program, as the predicate nodes
have at least one true and one false successor in the chop. The simplified
program in this case is the backward slice based on the low output of the
original program, and it may contain more statements than the chop-based
program. The inputs that lead to a noninterference violation in the chop-
based program will as well lead to one in the original program. Thus, the
chop-based program can even be used for testing. We check whether the
chop fulfills the condition described in Theorem 6.5 and respectively use the
chop-based or the simplified program.

89

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

SDG-based forward and backward slicing—as done in JOANA—can
result in a program that is not executable or may incorrectly handle jump
statements, such as goto, break, or continue. This is not a problem for
JOANA, since it does not need to generate any code for its analysis. For the
second step in our approach, however, having an executable program is of
great importance. This is a problem when implementing our approach using
the slicers provided by JOANA, but our approach is nevertheless feasible,
since (as stated in [Hammer, 2009, Chapter 2]) various solutions (e.g., by Ball
and Horwitz [1993]; Choi and Ferrante [1994]; Agrawal [1994]; Harman and
Danicic [1998]; Harman et al. [2006]; Abadi et al. [2012]) have been proposed
that enhance SDG-based slicing and enable the generation of executable
program slices. For our prototype we deal with this problem by generating
an over-approximation of the chop-based program and restrict ourselves to
programs without jump statements. Thus, we obtain executable slices by not
removing lines containing certain types of statements such as constructors or
static initializers and by supporting only programs without jump statements.

While JOANA supports full Java (minus reflection), KeY handles sequen-
tial Java programs only. KeY also requires that the source code or method
contracts of library methods to be available. The implementation of our
approach using these two tools thus supports the same Java subset that KeY
does.

The scalability of our approach is bounded by the scalability of the two
tools it uses. JOANA is able to handle programs of up to 100k LOC, whereas
KeY can handle programs of up to 1000 LOC. The generation of the backward
slice and the chop that are necessary for constructing the simplified program
are anyway the operations that JOANA performs in its analysis, and the
analysis of the predicate nodes is a graph reachability problem similar to
how slicing is done in the SDG-based approach. The main bottleneck of our
approach is therefore the analysis using KeY rather than the generation of the
simplified program. Thus, the most favorable case for using our approach is
when an original program that is too large for KeY is simplified and reduced
to a size that KeY can handle. This is achievable either by removing program
parts as done for the program in Listing 6.5 or by excluding execution paths
as done for the running example.

At this point we would like to discuss some challenges related to the
implementation of our prototype using JOANA and KeY. First, the two
tools do not work on the same programming language (respective level).
While JOANA works on Java bytecode that is brought into a single static
assignment (SSA) form, KeY works on Java source code. For the soundness of
our prototype (and not for the soundness of our approach), we must assume
that the compilation of a Java program into bytecode does not change the
noninterference properties of the program. Moreover, this also raises the
issue of mapping byte code statements into source code statements. We
are able to determine the source code line (which can contain more than

90

6.7. Conclusion

one source code statement) from which a byte code statement originates.
However, a source code statement can be compiled into more than one byte
code statement and, due to the SSA form, some source code statements may
not even have a corresponding byte code statement. The chop-based and
the simplified program as defined in the previous section are thus impossible
to generate using these tools. Instead we generate an over-approximation of
the chop-based and the simplified programs by removing a line in the source
code only if:

1. The SDG contains a node corresponding to a byte code statement
originating from that line.

2. No such node is in the chop (for the chop-based program) or in the
backward slice of the low output (for the simplified program).

To avoid multiple source code statements on the same line, we preprocess
the source code program and bring it to a form that only has one statement
per line.

A second issue of combining the two tools is the fact that the analysis
performed by KeY is done modularly at a method level, and the results hold
for any prestate that fulfills the precondition. JOANA, on the other hand,
performs a whole-program analysis where the entire program is checked
starting from an entry point method—in most cases a main method. If
the goal is to verify the whole program, then the approach described in
this chapter does not need any adaptation. For proving individual program
methods, however, the SDG-based approach must analyze the given method
without any context information. This is done in our implementation by
adding a main method as an entry point for JOANA’s analysis that only
calls the method for which noninterference is to be proven. However, the
SDG-based analysis can be implemented such that any other method can
serve as an entry.

6.7 Conclusion
We have explored an approach for proving or testing the noninterference
property of a program that uses SDG-based analysis to remove irrelevant
program parts and to exclude execution paths that do not lead to a noninter-
ference violation. For each pair of high input and low output we generate a
simplified program. We have shown that the simplified program is noninter-
ference equivalent to the original program. Thus, a noninterference proof for
the simplified program is also one for the original program. The same holds
for the counterexample. The examples in the chapter show how the simplified
program assists in the verification and testing of the noninterference property.

We have discussed implementation details of our approach using JOANA
as an SDG-based analysis tool and KeY as both a theorem prover and

91

Chapter 6. Using SDGs to Assist Deductive Verification and Testing

a test case generator. Because the two tools work respectively on Java
bytecode and Java source code, our prototypical implementation generates
an over-approximation of the simplified program. This is only an engineering
challenge, our approach can be implemented using tools that work on the
same programming language.

The approach presented in this chapter can be used to simplify a pro-
gram with respect to a specified noninterference property. The simplified
program can be used in combination with the approaches presented in
Chapters 4, 5, and 7. Related work with respect to combining SDG-based
approaches with logic-based approaches and other approaches in the area of
information flow security can be found in Section 9.1.

92

7
Increasing the Precision of

SDG-based Approaches

7.1 Introduction

Like Chapter 6, this chapter presents a combination of an SDG-based ap-
proach (see Section 2.6) and a logic-based approach (see Section 2.3) with
the goal of proving a given noninterference property (according to Defini-
tion 2.2) for a given program. Thus, the approach presented in this chapter is
contained in the part of the noninterference framework that is responsible for
proving noninterference. Unlike the approach presented in Chapter 6, how-
ever, the approach presented in this chapter uses the SDG-based approach
as the main approach to prove the fulfillment of the specified noninterference
property by the program. The logic-based approach is used to increase the
precision of the SDG-based approach by showing that some dependencies
in the SDG are in fact over-approximations of the actual dependencies (see
Definition 2.20) in the program. This chapter is based on work by the author
that was previously published in Beckert et al. [2017a] and Beckert et al.
[2018a]. Under the supervision of the author, the students Marko Kleine
Büning, Holger Klein and Joachim Müssig contributed to the implementation
of the Combined Approach presented in this chapter. Parts of the results of
this chapter were obtained in a “research laboratory” (Praxis der Forschung)
project in which the student Marko Kleine Büning was supervised by the
author. The idea of showing with a theorem prover that a summary edge
is an over-approximation and of using the results of a points-to analysis to
generate preconditions was first discussed informally in the Master’s Thesis of
Simon Bischof (see Bischof [2016]), which was not supervised by the author.

Motivation. As already mentioned in the motivation of Chapter 6, ap-
proaches that are based on SDGs syntactically compute the dependencies

93

Chapter 7. Increasing the Precision of SDG-based Approaches

between the program statements and check whether the low output depends
on the high input (see Section 2.6). Whereas they scale very well, such
approaches over-approximate the actual dependencies (see Definition 2.20)
in the program, which results in false alerts. Logic-based approaches (see
Section 2.3), have a higher precision (i.e., they produce less false alarms),
as they also consider the semantics of the program statements. However,
logic-based approaches can scale to programs of a much smaller size than
those that can be handled with SDG-based approaches. Because logic-based
approaches check whether certain outputs of a program method depend on
certain inputs of that method, we can use a logic-based approach to check
dependencies at method call sites in the program. Thus, we can use a more
precise approach to check whether the possible dependencies of function calls
that are modeled in the SDG are real or over-approximated. Also, because
only some of the called functions are analyzed, the logic-based approach
needs to check a smaller part of the analyzed program.

Contribution C1.5 In this chapter we present the Combined Approach,
a novel approach for proving noninterference that combines an SDG-based
approach with a logic-based approach, and—in consequence—achieves a
higher precision than the solely SDG-based approach. The Combined Ap-
proach analyzes the dependencies from possible noninterference violations
reported by the SDG-based approach and disproves the dependencies using a
theorem prover. While the theorem prover might require user interaction, we
automatically generate its proof obligations from the reported dependencies.

Furthermore, we reduce the verification effort by enriching the generated
proof obligations with information obtained from the SDG-based approach.
The information relayed to the theorem prover consists of noninterference
contracts for the called methods, (partial) loop invariants for loops inside
the verified code, and preconditions generated by a points-to analysis.

Structure of the chapter. Section 7.2 presents the Combined Approach.
A prototypical implementation of the Combined Approach is presented in
Section 7.3. The implementation is evaluated in Section 7.4, and some
theoretical and implementation aspects of the Combined Approach are
discussed in Section 7.5. Finally, Section 7.6 concludes.

7.2 The Combined Approach

In this section we describe the Combined Approach for proving that a
given program P fulfills a specified noninterference property (according to
Definition 2.2). The first step of the Combined Approach consists of running
the SDG-based analysis to check the noninterference property for P . If there
is no possible dependency between the high input and the low output for P , we

94

7.2. The Combined Approach

need no further action, as noninterference is guaranteed to hold. If, however,
the SDG-based approach detects a possible noninterference violation, we
apply the second step of the Combined Approach in order to check whether
reported violation is a false positive or a genuine noninterference violation.
Since the SDG-based analysis is performed as the first step, the results
provided by our approach are at least as good (with respect to precision and
scalability) as those of the SDG-based analysis.

The SDG-based analysis creates an SDG that models the possible de-
pendencies between the program parts of P . However, as explained in
Section 2.6.1, these dependencies represent an over-approximation of the
actual program dependencies (see Definition 2.20). The goal of the Combined
Approach is to use a logic-based approach (see Section 2.3) to prove that
certain dependencies modeled as edges in the SDG do not represent actual
dependencies. If all modeled dependencies between the high inputs and
the low outputs reported by the SDG-based analysis are proved, using the
logic-based approach, to not exist semantically, then the specified noninter-
ference property is proved to hold for P . We assume that the SDG-nodes
corresponding to high inputs and low outputs are annotated as high and low
respectively. Let Nh denote the set of all nodes annotated as high and N`

the set of all nodes annotated as low.
The SDG-based approach then returns a set of violations. A violation

is a pair (nh, n`) of a high node nh ∈ Nh and a low node n` ∈ N` such
that there is a path from nh to nl in the SDG of P . We then call the set
c(nh, nl) of all nodes lying on a path from nh to nl the violation chop (see also
Definition 2.22). To keep the notation simple, we will also use c(nh, nl) for
the subgraph induced by those nodes. If the set of all violation chops, denoted
by CV , is empty, the SDG-based approach guarantees noninterference. If,
however, there is a false positive, CV contains at least one chop. The idea of
the Combined Approach is then to validate each violation chop c(nh, nl) ∈ CV
and attempt to prove that the possible dependencies in the chop do not
exist on the semantic level in program P . We prove this by showing that
each violation chop is interrupted (see Definition 7.1) with the help of a
logic-based approach. We interrupt a violation chop by showing that certain
summary edges (see Section 2.6.1) in it are unnecessary.

Definition 7.1 (Unnecessary summary edge, Interrupted violation chop). A
summary edge e = (ai, ao) is called unnecessary if the formal-out node fo cor-
responding to ao does not depend on to the formal-out node fi corresponding
to ai.

A violation chop c(nh, nl) is interrupted, if we find a non-empty set S of
unnecessary summary edges in this chop, such that after deleting the edges
in S from the SDG, no path exists between the source nh and the sink nl of
the violation chop.

95

Chapter 7. Increasing the Precision of SDG-based Approaches

In order to show that a summary edge e = (ai, ao) is unnecessary, a proof
obligation is generated for the theorem prover of the logic-based approach.
This proof obligation states that there is no dependency between the formal-
in node fi to the formal-out node fo corresponding to the summary edge e
(Definition 7.2 provides a more precise description of the generated specified
program that corresponds to this proof obligation). The proof is done for
all possible contexts of the called method. If the proof is successful, we
have shown that the summary edge was only inserted as a result of the
over-approximation, and we can soundly delete this edge.

Data: Set of violation chops S
Result: Noninterference guarantee or failed verification attempt
foreach Violation chop CV ∈ S do

Build queue Q of summary edges in CV , ordered by heuristics;
while CV not interrupted and Q not empty do

Pop summary edge e from Q;
Generate proof obligation PO for proving that e is unnecessary;
if PO proved with theorem prover then

Delete e from CV ;
end

end
end

Algorithm 1: The Combined Approach

The Combined Approach, shown in Algorithm 1, attempts to interrupt
each violation chop in CV . For each violation chop a summary edge is
taken, the appropriate noninterference proof obligation (see Section 2.3.1) is
generated for the method corresponding to the summary edge, and a proof
attempt is made using the theorem prover. If the proof is successful, the
summary edge can then be deleted from the SDG, based on Definition 7.1.
The order in which the summary edges are checked is established by a
heuristic which is explained in Section 7.5. Note that we only need to
consider summary edges that belong to a chop between high and low. Thus,
it is sufficient to regard only a smaller subset of all summary edges. We then
check whether this violation chop is interrupted. In this case we can proceed
to analyze the remaining violation chops until all of them are interrupted.
In case the violation chop is still not interrupted, or the proof attempt is not
successful, another summary edge from the violation chop is chosen. If we
are able to interrupt every violation chop by deleting unnecessary edges, our
approach guarantees noninterference.

Theorem 7.1 (Noninterference Combined Approach). The Combined Ap-
proach guarantees noninterference.

96

7.2. The Combined Approach

Proof. Let S be the set of unnecessary summary edges that interrupt a
violation chop c(nh, n`) ∈ CV . Using the logic-based approach, we have
shown for each summary edge e = (ai, ao) ∈ S that the actual-out node ao
does not depend on the actual-in node ai of that summary edge. Since each
path from nh to n` contains one such summary edge we have in fact shown
that the potential dependencies from nh to n`, represented by the violation
chop, do not represent actual dependencies. The soundness of the SDG-based
approach guarantees that there are no other potential dependencies from
nh to n` than the ones in the chop. Thus, proving all violation chops to be
interrupted proves that the program is noninterferent. / /

Note that each violation chop is guaranteed to contain at least one
summary edge (e.g., the one corresponding to the main method). Generating
a proof obligation for the main method, however, is equivalent to verifying the
entire program with the theorem prover. In practice, however, programs are
inter-procedural. Thus, there are plenty of summary edges for our approach
to check. Nevertheless, the verification of the main method with the theorem
prover is still the worst case of our approach and can occur in case not enough
summary edges of inner method calls can be proved to be unnecessary.

1 public int test(int high, int low) {
2 int result = identity(high, low);
3 return result;
4 }
5 public int identity(int h, int l) {
6 l = l + h;
7 l = l - h;
8 return l;
9 }

Listing 7.1: Example program

For the example in Listing 7.1, when trying to show that there is no
dependency between the parameter high to the return value of the method
test, the SDG-based approach reports a possible noninterference violation,
because the return value of the method identity depends on the parameter
h of the same method. This is, however, a mere syntactic dependency and
the reported violation is a false alarm.

The reported violation chop can be observed in Figure 7.2 which shows
the SDG of the method test from Listing 7.1. The SDG-node with the
id 50 represents the first parameter (high) of the method test, which is
annotated as high while the SDG-node with the id 47 represents the exit
node of the method test, which is annotated as low. The violation chop
contains only one path from the high node to the low node that goes through

97

Chapter 7. Increasing the Precision of SDG-based Approaches

Figure 7.2: SDG of the method test in Listing 7.1

the nodes 50 → 54 → 56 → 58 → 47 (the numbers represent the node ids
from Figure 7.2). The violation contains the actual-in SDG-node with the id
54 representing parameter h and the actual-out SDG-node with the id 56
representing the return value of identity, connected by a summary edge
(see Section 2.6). The Combined Approach automatically generates a proof
obligation for the logic-based approach which states that the return value of
identity does not depend on parameter h. By proving this, we also prove
that the return value of the method test does not depend on the parameter
high of method test. Thus, we prove the noninterference of the method.
This simple example showcases a major advantage of our approach: the
logic-based approach does not need to analyze the entire program, but only
those parts that cannot be handled with the SDG-based approach, in this
case only the method identity.

98

7.3. Implementation

7.3 Implementation

We implemented the Combined Approach using JOANA (see Section 2.6.2)
as the SDG-based tool and KeY (see Section 2.3) as the theorem prover.
The implementation is available in Beckert et al. [2019a]. In this section, we
show how we generate the proof obligations for KeY in the form of specified
Java code.

For the called method corresponding to the summary edge selected by
the heuristics, we generate a noninterference method contract such that a
successful proof that the method fulfills this contract shows that there is in
fact no actual dependency from the formal-in to the formal-out node corre-
sponding to the summary edge. Thus, in order to show that a summary edge
se(ai, ao) is unnecessary, we prove that there is no actual dependency between
the corresponding formal-in node fi and formal-out node fo. To achieve this,
we generate a JML specification for the appropriate method stating that fo
is determined by all formal-in nodes other than fi, as explained in Definition
7.2. The JML specification elements for noninterference contracts that we
use in the following definitions are explained in Section 2.3.2.

Definition 7.2 (Generation of the determines clause). Let se(ai, ao) be
the summary edge to be checked, and let fi and fo be the formal nodes
corresponding to the actual nodes ai and ao. Let Li be a list of all formal-
in nodes f ′i other than fi of the method belonging to the call site of ai
and ao. The following determines clause is added to the method contract:
determines fo \by Li.

Should the proof of this property succeed, then it would show that fo
does not depend on fi, and, therefore, ao does not depend on the actual-in
parameter ai. Since there is no dependency between ai and ao, the summary
edge can be soundly deleted from the violation chop.

As explained in Section 2.6.2, to increase its precision, JOANA uses a
points-to analysis which keeps track of the objects a reference o may point to
(i.e., the points-to set of o) during runtime. This information is useful, since
it may show that two references cannot be aliased. We use the results of
the points-to analysis to generate preconditions for the method contracts, as
shown in Definition 7.3. Thus, information about the context is transferred
from JOANA to KeY, thus increasing the likelihood of a successful proof.

Definition 7.3 (Generation of preconditions). Let o1 and o2 be references
that are also method inputs and Po1 and Po2 their respective points-to sets.
If Po1 ∩ Po2 = Φ we generate the precondition requires o1 != o2;.

Such preconditions can help the theorem prover to show that an output
of a method does not depend on an input. However, this proof is only valid
for such contexts in which the generated preconditions hold. Because the

99

Chapter 7. Increasing the Precision of SDG-based Approaches

Figure 7.4: SDG of the method identity in Listing 7.1

analysis done by JOANA is correct, we can use the preconditions to disprove
a dependency at a specific call site of a method. For other call sites, in which
the preconditions do not hold, the proof cannot be reused.

1 /*@ requires true;
2 @ determines \result \by this, l;
3 */
4 public int identity (int h , int l){
5 l = l + h ;
6 l = l - h ;
7 return l ;
8 }

Listing 7.3: Specified program generated with the Combined Approach
for the program in Listing 7.1

The program in Listing 7.3 presents the specified program which was gen-
erated when running the Combined Approach on the program in Listing 7.1.
Because JOANA finds no context information that can be useful to KeY, the
precondition is set to true. The determines clause requires that the return
value of the method identity depends at most on the parameter l and on
the implicit parameter this. These two parameters were chosen because, as
shown in Figure 7.4, the method identity has two formal-in nodes (with
the ids 67 and 69, corresponding to this and l) other than the formal-in
node with id 68 representing parameter h. If the return value of identity
depends at most on l and this, then it does not depend on h. Therefore,
the summary edge between the nodes 54 and 56 is an over-approximation of
the actual dependencies in the program.

100

7.3. Implementation

Note that the Combined Approach removes only summary edges from the
SDG. The SDG still contains paths from the high inputs to the low outputs
that pass through the called methods which correspond to the summary
edges. However, when checking whether there is a path, the SDG-based
approach only considers paths that pass through summary edges1. Thus, it
is sufficient for our analysis to only remove summary edges.

The method contracts generated this way are necessary for proving that a
summary edge that is unnecessary. However, in the general case they are not
sufficient for a successful proof. If the method contains loops, the theorem
prover needs loop invariants. The automatic generation of loop invariants is
an active research field, see for example Kapur [2006]; Rodríguez-Carbonell
and Kapur [2007]. These approaches focus on functional loop invariants and
do not consider noninterference loop invariants.

Determines clauses similar to the ones generated for method contracts, can
be used to specify the allowed dependencies inside a loop (see Section 2.3.2).
The determines clause generated for a loop invariant is similar to the one for
method contracts. Because the variables from the formal-in and formal-out
nodes may not directly occur in the loop some adjustments by the user may
be necessary. Definition 7.4 shows what determines clauses are generated for
loop invariants.

Definition 7.4 (Generation of the determines clause for loop invariants).
Let se(ai, ao) be the summary edge to be checked, and let fi and fo be the
formal nodes corresponding to the actual nodes ai and ao. Let Li be a list
of all formal-in nodes f ′i other than fi of the method belonging to the call
site of ai and ao. The following clause is added to all invariants inside the
analyzed method: determines Li \by \itself;.

Note that the loop invariants that we generate are not guaranteed to
be correct by construction—their validity must be shown with the theorem
prover. The loop invariants—if valid—show that after the execution of each
loop, the low variables (which are specified as such in the method contract)
of the state do not depend on any high variable. Thus, if the computations
done after the last loop only depend on the low variables of the state, the loop
invariant is strong enough. Still, inside the loops high and low data may be
written to other variables which can influence the output of the method. In
this case, the loop invariant will not be strong enough to prove the specified
noninterference property. We expect that in most cases it is necessary that
the user extends the generated loop invariants (especially with functional
properties) in order to be able to prove the specified noninterference property.

1This way the SDG-based approach does not consider paths that enter a method at a
call site and exit that method at a different call site. The SDG-based approach is thus
context sensitive.

101

Chapter 7. Increasing the Precision of SDG-based Approaches

Table 7.5: Evaluation of the Combined Approach

Example KeY Calls Time(s) CA RuleApps KeY RuleApps
Identity 2 8 309 424
Precondition 2 8 339 454
Excluding 2 8 723 594
Loop Override 2 9 1926 2008
Array Access 2 10 2095 2197
KeY Example 2 9 1039 1363
Single Flow 2 8 510 625
Branching 2 9 576 691
Nested 2 8 513 628
Mixture 4 17 648 823
MixtureLoops 5 24 4847 7475

7.4 Evaluation

In this section we present the results of running the Combined Approach on
a collection of examples, shown in Table 7.5. We considered eleven examples,
in the range of 5 to 30 lines of code, which cover different program structures
and reasons for false positives. The examples are available in Beckert et al.
[2019b]. Each of these examples is not solvable by SDG-based approaches
like JOANA.

The eleven examples are divided into two groups. First, there are in-
dividual methods that cause false positives. The example Identity is the
program shown in Listing 7.1. In the method Precondition there is an
if-condition that can never be true, and the method Excluding contains
two if-statements with conditions that can not both be true in the same
program execution. The example Loop Override contains a bounded loop
which overrides the low value in the last loop execution. For this example,
in the unbounded case, the noninterference loop invariant is not enough for
an automated proof, and further functional information has to be given by
the user. The example Array Access contains array handling code, and KeY
Example contains an if-statement that computes the same value on both
of its branches. The second group consists of programs that include these
problems in different program structures. Based on the possible SDG, we
regard simple calls, branching, nested summary edges and a combination of
all.

The columns KeY Calls and Time in Table 7.5 respectively show how
many times KeY was called and how long these calls lasted in total (wall
time). The experiments were conducted on a machine with a Core i7-4600MQ
CPU and 16GB RAM. The next two columns respectively show how many
JavaDL calculus rule applications were performed by KeY when proving the

102

7.5. Discussion

noninterference property for the examples as part of the Combined Approach
(column CA RuleApps) and when proving the noninterference property on
its own (column KeY RuleApps). Note that even for these small examples,
which can be proved with KeY alone, the Combined Approach requires less
rule applications than KeY on its own.

As explained in Section 2.3, KeY actually generates two proof obliga-
tions for a Java method with a noninterference property specified in JML.
Besides the noninterference proof obligation, some functional properties are
discharged in a functional proof obligation. For this reason, KeY may be
called twice when required to prove that a summary edge represents an over-
approximation. If KeY fails to prove the noninterference proof obligation for
a summary edge, then the Combined Approach does not call KeY to prove
the functional proof of that edge, as a successful proof would be useless. All
the evaluated examples could be automatically proved with the Combined
Approach. Note, however, that the loops contained in the examples were
bounded. Thus, loop unwinding could be used, and loop invariants were not
needed. When using unbounded loops, the user needs to enhance the loop
invariants in order for the proof to succeed.

Although the examples could be proved in a matter of seconds the time
needed by KeY can be improved by not starting it anew for each proof
obligation. Instead KeY should run continuously and receive the proof
obligations, because the initialization of KeY takes a significant amount of
time during each call.

7.5 Discussion

Supported properties. In the context of the Combined Approach, the
SDG-based approach is the one that delivers the noninterference guarantee,
while the logic-based approach improves the precision of the SDG-based
approach. Therefore, the noninterference guarantees that can be offered by
the Combined Approach can only be a subset of the guarantees offered by
the SDG-based approach. Furthermore, in order for the Combined Approach
to be sound, the noninterference property that is considered by the logic-
based approach when checking whether a summary edge is unnecessary
must be at least as strict as the noninterference property checked by the
SDG-based approach. Since we limit ourselves in this thesis to sequential
and deterministic programs, the noninterference property checked by both
SDG-based and logic-based approaches is the classic noninterference property
as presented in Definition 2.2. The SDG-based allows the user to designate
one or more SDG-nodes as declassification nodes in which high information
is allowed to influence the low variables. For this kind of declassification
(also called where declassification) the Combined Approach can still be used,
as the property checked by the logic-based approach is stricter.

103

Chapter 7. Increasing the Precision of SDG-based Approaches

Analysis order. Proofs with the theorem prover are often reached fully
automatically, but may sometimes need auxiliary specification and user
interaction. Therefore, we want to minimize the theorem prover usage as
much as possible. The order in which the summary edges of the violation
chops are checked has a major impact on the performance of the Combined
Approach. Ideally, we want to avoid proof attempts of methods for which
the SDG-based approach is precise enough (i.e., the program dependencies
are not over-approximated) or of very large methods that would overwhelm
the theorem prover. In order to achieve these goals, we developed several
heuristics for establishing the order in which we check the summary edges
with the logic-based approach. A first category of heuristics searches the
code for patterns that are likely to cause false positives by the SDG-based
approach. Such patterns include code that contains array handling, arith-
metic operations, or code that can throw runtime exceptions. SDG-based
approaches are particularly prone to report false positives for such code,
because they neither distinguish between the different array fields, nor do
they take the values of variables and semantics of operators into account. The
second category of heuristics attempts to identify the methods that are likely
to run through the theorem prover automatically. Earlier, we mentioned
that it is difficult to create precise loop invariants. Thus, methods without
loops are assigned a higher priority. Additionally, depending on the tools
used, we can exclude methods that contain programming language features
that are not supported by the logic-based approach, or library methods from
the analysis. A third category of heuristics tries to identify the methods
that, if proved noninterferent, would bring the greatest benefit to the goal
of proving the entire program noninterferent. We assign a high priority to
summary edges which are bridges in the SDG (i.e., an edge whose removal
from the SDG would result in two unconnected graphs). In case no bridge
exists within the SDG, we prefer the method with the highest number of
connections (i.e., the most often called method).

Modularity. Due to its low scalability, the logic-based approach is more
likely to handle methods that are deeper in the call graph (i.e., that call few
other methods) than methods which are high in the call graph. However, the
parts of the program that can disprove a reported possible noninterference
violation may be present in a high level method. In order to still be able
to handle such cases, we can automatically generate over-approximated
noninterference contracts for the method calls occurring inside the analyzed
method based on the results of the SDG-based analysis. The generated
noninterference contract for a called method states that the outputs of that
method depend at most on the inputs whose corresponding formal-in nodes
are reachable from the formal-out nodes corresponding to the outputs in
the PDG of the method. Furthermore, if the output that corresponds to

104

7.5. Discussion

the exception that may be thrown by the method does not depend on any
statement in the method we add the normal_behavior clause to the contract,
which states that the method will not throw any exception.

Due to the soundness of the SDG-based analysis, this noninterference
contract is correct-by-construction for the analyzed program. However, the
over-approximation done by the SDG-based analysis is also present in the
contracts generated this way. Moreover, as in the case of generated loop
invariants, the generated method contracts may need additional functional
specification (e.g., assignable clauses) in order to be strong enough to be
used in the proof, and the user must prove the added functional specification.
The results of the points-to analysis can be used to generate preconditions
(as explained in Definition 7.3). However, the contracts generated with
such preconditions are valid only for the call context for which they were
generated. If a method is called at multiple locations we can either (1) not
generate any preconditions and use one contract for all calls, or (2) we can
generate for each call a contract with preconditions. In the second case only
the corresponding contract may be used for a call. Thus, using such contracts
does not guarantee that the logic-based approach will successfully disprove the
reported possible noninterference violation, because the over-approximations
done by the SDG-based approach are encoded in the generated contracts.
Nevertheless, these contracts allow in some cases for an analysis of higher-level
methods without having to inline the called methods.

1 /*@ requires true;
2 @ determines \result \by this, low;
3 @*/
4 public int identity(int high , int low){
5 high = prod(low, high) ;
6 low = low + high;
7 low = low - high;
8 return low ;
9 }

10 /*@ normal_behaviour
11 @ requires true;
12 @ determines \result, \exception \by this, low, high;
13 @*/
14 private int prod(int low, int high){
15 low = low * high ;
16 return low ;
17 }

Listing 7.6: Example with generated contracts for called methods

The example program shown in Listing 7.6 was generated with the
Combined Approach to show that the return value of the method identity
does not depend on the parameter high. The method identity calls the
method prod for which the Combined Approach has automatically generated
a noninterference contract. In the PDG of the method prod the formal-
out nodes corresponding to the return value and to the exception that
may be thrown are reachable from the formal-in nodes that correspond the

105

Chapter 7. Increasing the Precision of SDG-based Approaches

parameters this, high, and low. Thus the clause determines \result,
\exception \by this, low, high is generated.

The formal-out node that corresponds to the exception does not depend,
however, on any statement in the method (it is control dependent only on
the entry node). Thus, since none of the method’s statements may raise
an exception the normal_behavior clause is added to the contract, which
states that the method prod does not throw any exceptions. The contract
for prod is strong enough to prove the specified property of the method
identity and is also correct-by-construction (as a result of the soundness of
the SDG-based approach).

Simplification of proof obligations. The Combined Approach is well
suited for programs where the part that cannot be handled by the SDG-based
approach is concentrated in a called method. If the syntactic dependencies
between the high input and low output are spread throughout the program,
then the whole program needs to be verified, and no simplification is done to
it. In such cases the approach presented in Chapter 6 can still profit from the
SDG-based analysis. Using the approach in Chapter 6, individual statements
that have no effect on a potential noninterference violation can be removed,
while the Combined Approach works on a method level of granularity.

The Combined Approach and the approach shown in Chapter 6 are
orthogonal. In fact, the program fragment analyzed with the Combined
Approach can be further reduced by applying the approach presented in
Chapter 6. By simplifying the program (according to Definition 6.3), we can
remove statements and execution paths that are not relevant with respect
to the possible dependency represented by the analyzed summary edge.
Because the program simplified this way is noninterference equivalent to the
original program fragment (see Theorem 6.3), the soundness of the Combined
Approach is not affected by the simplification.

The program in Listing 7.7 shows an example of a simplified program
that was generated by the Combined Approach. For this example JOANA
reports a possible noninterference violation, which is in fact a false alarm.
The reported noninterference violation contains a summary edge between
the parameter high and the return value of the method keYExample. The
reason for this reported violation is that JOANA cannot observe that the
value assigned to low is the same in both branches of the if-statement,
and considers the variable low to be control dependent on high. However,
JOANA can determine that in this example there is no data dependency
between low and high because the method n5 returns the value 15 no matter
the values of its arguments. Therefore, by generating the simplified program
as explained in Definition 6.3, the lines 8 and 15 can be removed from
the program, without any effect on the possible occurrence of the reported
noninterference violation.

106

7.6. Conclusion

1 /*@ requires true;
2 @ determines \result \by this, low;
3 @*/
4 public int keYExample(int high, int low){
5 if (high > 0) {
6 low = n5(high, high);
7 } else {
8 // high = -high;
9 low = n5(high + low , high);

10 }
11 return low;
12 }
13
14 public int n5(int x , int high){
15 // high = 2 * x;
16 return 15;
17 }

Listing 7.7: Simplified program generated with the Combined Approach

7.6 Conclusion
In this chapter, we introduced a novel Combined Approach to prove non-
interference with less user interaction while keeping the same precision.
Our approach combines an automated SDG-based analysis with a deductive
theorem prover. We demonstrated that the noninterference properties guar-
anteed by the two approaches are compatible. Thus, our approach is sound.
The Combined Approach has been developed tool-independently, but imple-
mented using KeY and JOANA and evaluated on a selection of examples.
Although the programs covered in our evaluation do not exceed 100 lines
of code and could—as such—also be proved without the help of SDG-based
approach, they could, however, also be embedded in much larger programs,
which—as such—may be clearly too large for the analysis with a theorem
prover. Related work with respect to combining SDG-based approaches with
logic-based approaches and other approaches in the area of information flow
security can be found in Section 9.1.

107

Part III

Program Slicing

109

8
A Framework for Automatic and

Precise Program Slicing

8.1 Introduction

Part III of this thesis deals with the question of whether a program is a valid
slice (see Section 2.5) of another program. Its main contribution (C2.1)
consists of a framework for automatic and precise program slicing which is
presented in this chapter. The slicing framework combines static (relational
verification, see Section 2.7) and dynamic (dynamic slicing, see Section 2.5)
program analysis techniques to automatically search for a slice of a given
program. The framework is implemented as the tool SemSlice.

This chapter is based on previous work by the author published in Beckert
et al. [2017b], Beckert et al. [2019d], and in Beckert et al. [2019c]. Parts of the
results of this chapter (including the implementation of the tool SemSlice,
see Beckert et al. [2019f]) were obtained in a “research laboratory” (Praxis
der Forschung) project in which the students Stephan Gocht and Daniel
Lentzsch were supervised by the author.

Motivation. All applications of slicing—from optimization to comprehen-
sion of programs—can benefit from small and precise slices. Most existing
approaches, however, are only syntactical (i.e., they do not take the semantics
of the various program instructions into account). On the other hand, many
of the existing approaches that do take the semantics into account are not
fully automatic. They require auxiliary specifications from the user, for
example precomputed or user-provided functional loop invariants are used
in Barros et al. [2012] and Jaffar et al. [2012a].

The research of relational verification approaches has progressed signif-
icantly in the last couple of years, and approaches that take the program
semantics into consideration and can automatically reason about loops have
now become available (see e.g., Kiefer et al. [2018], De Angelis et al. [2016],

111

Chapter 8. A Framework for Automatic and Precise Program Slicing

and Verdoolaege et al. [2012]). These approaches can show the equivalence of
two programs in an efficient and automatic fashion—provided that the two
analyzed programs have a similar structure. Since slices are constructed by
removing program instructions, they have a similar structure to the original
program. Thus, they constitute an ideal use case for relational verification.

Contributions (C2.1, C2.2, and C2.3) In this chapter we make the
following contributions:

1. We present an easily extensible framework for precise and automatic
program slicing (contribution C2.1) as well as the semantics of the
programs and slice properties that is supports. The slicing approaches
that use this framework need no (auxiliary) specification other than
the slicing criterion.

2. We adapt relational verification to check whether a slice candidate
obtained by removing instructions from a program is a valid slice
(contribution C2.1).

3. We adapt a dynamic slicing algorithm and use it to generate slice
candidates as part of the framework (contribution C2.3).

Structure of the chapter. In Section 8.2 we formally describe the pro-
grams which we handle and define for them what a valid slice is. We explain
how relational verification can be adapted to check slice candidates in Sec-
tion 8.3. The framework for slicing and three slicing strategies based on
it are described in Section 8.4. Section 8.5 consists of a discussion of the
evaluation results and other implementation aspects the slicing framework.
We then conclude in Section 8.6.

8.2 Slicing Semantics

Static backward slicing, introduced by Weiser [1981], reduces a program by
removing instructions from it such that a specified subset of its behavior is
preserved. The slicing criterion—the specification of the behavioral aspects
that must be retained—comprises a set of program variables and a location
within the program. Instructions which have no effect (a) on the value of
the specified program variables at the specified point and (b) on how often
the point is reached may be removed.

High level programming languages are feature rich and require an in-
creased effort to perform a program analysis. A solution for dealing with the
language complexity is to perform the analysis on a simpler, intermediate
representation (IR). In this section we formalize the notions of slice candidate,
slicing criterion, and valid slice using a model of computation based on a

112

8.2. Slicing Semantics

P [pc] = skip
(s, pc) (s, pc + 1)

pc > len(P)
(s, pc) (end, pc)

P [pc] = jnz v target s(v) = 0
(s, pc) (s, pc + 1)

P [pc] = jnz v target s(v) 6= 0
(s, pc) (s, target)

P [pc] = halt
(s, pc) (end, pc)

(end, pc) (end, pc)

P [pc] = assign v exp x = s(exp)
(s, pc) (s[v\x], pc + 1)

Figure 8.1: The semantics of our IR for a fixed program P

register machine with an unbounded number of registers. We do not have
high-level constructs such as if or while statements but instead branching
and looping are done using conditional jump instructions. The advantage of
using such a simple language is the fact that the control flow is reduced to
jumps. Furthermore, in the context of slicing, a program will always remain
executable after we remove instructions from it. Slicing on an intermediate
representation can be used to optimize the code. However, if the goal is
to debug a program, then the results of slicing must be transferred to the
high-level programming language. We discuss this in Section 8.5.

The implementation of our slicing approach (see Beckert et al. [2019f])
works on LLVM IR programs. To keep the definitions simple, we define a
similar low level language containing four instructions: skip, halt , assign,
and jnz. To obtain precise slices, we restrict expressions on the right hand
side of an assignment to only one operator.

Now we define the semantics of our IR language. Let Var be the set of
program variables, S the set of states, where a state is a function s : Var → N,
and pc ∈ N the program counter. An instruction I is an atomic operation
that can be executed by the machine. Let I be the set of all four instructions
provided by our IR language. When an instruction is executed, the system

113

Chapter 8. A Framework for Automatic and Precise Program Slicing

0 assign i 0
1 assign x 0
2 assign c1 (i >= N)
3 jnz c1 12
4 assign t1 (N - 1)
5 assign c2 (i >= t1)
6 jnz c2 9
7 assign x h
8 jnz 1 10
9 assign x 42

10 assign i (i + 1)
11 jnz 1 2
12 halt

(a)

0 assign i 0
1 assign x 0
2 assign c1 (i >= N)
3 jnz c1 12
4 assign t1 (N - 1)
5 assign c2 (i >= t1)
6 jnz c2 9
7 skip
8 jnz 1 10
9 assign x 42

10 assign i (i + 1)
11 jnz 1 2
12 halt

(b)

0 assign i 0
1 assign x 0
2 assign c1 (i >= N)
3 jnz c1 12
4 assign t1 (N - 1)
5 assign c2 (i >= t1)
6 jnz c2 9
7 skip
8 jnz 1 10
9 skip

10 assign i (i + 1)
11 jnz 1 2
12 halt

(c)

Figure 8.2: Examples from Figure 2.3 in our IR.

changes its state and program counter as determined by the transition
function ρ : S × N × I → S × N. A program P is a finite sequence of
instructions: 〈I0, I1, . . . In〉. We denote a location i of program P as P [i]
with P [i] = Ii for any i ∈ {0, 1, . . . n} with 0 ≤ i ≤ len(P)− 1, where len(P)
is the length of the program.

The semantics of the four instructions in our language is shown in
Figure 8.1. The instruction skip increments the program counter and has
no other effects. For slicing we replace instructions at some locations in
the original program with skip. To model the termination of programs
we introduce a special state—end—such that once the system reaches this
state, it will remain in this state forever. The instruction halt is used to
bring the system in the end state. The assignment instruction—assign—
takes a variable v and an integer expression exp as arguments. After the
execution of this instruction, the value of the variable v in the new state is
updated with the result x of the expression exp, and the program counter
is incremented. The conditional jump instruction—jnz—allows the register
machine to support branching and looping. The instruction gets a variable

114

8.2. Slicing Semantics

v and an integer expression target. If the variable v evaluates to zero in
the state in which jnz is executed, the program counter is incremented,
otherwise the program counter is set to the value of target. Figure 8.2 shows
the examples from Figure 2.3 written in our IR. We can now define program
traces.

Definition 8.1 (Program trace). A trace T of a program P is a possibly
infinite sequence of state and program counter pairs 〈(s0, pc0), (s1, pc1), . . .〉
such that:

1. pc0 = 0
2. For each trace index i but the last, (si, pci) (si+1, pci+1)

We use T s[i] and T pc[i] to denote the ith state and the ith program
counter of a trace respectively. Also we use len(T) ∈ N ∪ {ω} to denote the
length of trace T—note that it can be infinite. If the trace is finite, then the
last program counter of the trace points to the halt instruction. We define
F lT as a sequence of states, obtained by filtering the trace T with respect to
the program location l and projecting the resulting elements on the state.
The trace F lT contains the states of the elements from those indexes i of T
(in the same order as they appear in T) in which the instruction at location l
was executed (i.e., T pc[i] = l). We now provide formal definitions of a slicing
criterion, slice candidate and valid slice.

Definition 8.2 (Slicing Criterion). A slicing criterion C for a program P is
a pair (iC ,VarC) where iC is a location in P and VarC ⊆ Var .

Definition 8.3 (Slice Candidate). A slice candidate for a program Po is
a program PL that is constructed by replacing the instructions at some
locations in Po with the skip instruction. That is, given a set L of locations
of program Po, for every location i of Po:

PL[i] =
{

skip, i ∈ L
Po[i], i /∈ L

Definition 8.4 (Valid Slice). Given a slicing criterion (iC ,VarC), a slice
candidate Ps for a program Po is a valid slice if for any two traces Ts and
To of the respective two programs with Ts[0] = To[0] the following two
requirements hold:

1. len(F iCTo
) = len(F iCTs

)
2. F iCTo

[i](v) = F iCTs
[i](v), for every v ∈ VarC and

for every i with 0 ≤ i < len(F iCTo
)

The first requirement ensures that the criterion instruction is reached in
both original program and slice candidate the same number of times. The
second requirement ensures that the criterion variables have the same values

115

Chapter 8. A Framework for Automatic and Precise Program Slicing

every time the criterion instruction is reached in the original program and
slice candidate.

Weiser [1981] deals with the feature-richness of programming languages
by working on flow graphs, and slices are constructed by removing nodes from
the flow-graph. In his approach, however, only nodes with a single successor
can be removed while we can remove conditional jumps. Definition 8.4 is
similar to the concept of observation windows in Weiser [1981]; however,
we do not require the original program to terminate. Thus, we extend the
definition of Weiser [1981] to nonterminating programs, as opposed to many
other slicing approaches (as stated in Ranganath et al. [2007]) that are not
termination sensitive. Compared to other extensions of the definition of
Weiser [1981] (e.g., the one in Barraclough et al. [2010]), Definition 8.4 allows
for slices which are not quotients of the original program (i.e., it allows the
removal of conditional jumps while preserving the instructions which are in
the program locations between the conditional jump and the jump target).
The program

0 assign x 42
1 halt

is thus a valid slice of the program shown in Figure 2.3, according to Def-
inition 8.4. Not requiring the slice to be a quotient, allows the removal of
additional instructions. However, the structure of a slice may differ signifi-
cantly from that of the original program. When using slicing with the goal
of program optimization this is a clear advantage. If the goal is program
comprehension, however, then the slice not being a quotient of the original
program presents both advantages and disadvantages. One the one hand, a
significantly different slice structure compared to the original program may
cause the user to have difficulties to understand the behavior of the original
program. On the other hand, the fact that some conditional jump statements
are not in the slice may indicate to the user that certain program branches
are irrelevant with respect to the given slicing criterion, thus helping him
better understand the program behavior.

8.3 Verification of Slice Candidates

In this section we show how the relational verifier LLRêve (see Section 2.7)
is extended such that it can check whether a slice candidate is a valid slice
according to Definition 8.4. LLRêve generates a set M of Horn-constrains,
which we explain in the following along with the properties that result from
the satisfiability of M . As explained in Section 2.7, LLRêve automatically
assigns a synchronization point to each basic block in the CFG. Figure 8.3
shows the CFG (see Definition 2.12) for the program in Figure 8.2a, and
each basic block is labeled with the number of a synchronization point.

116

8.3. Verification of Slice Candidates

0: assign i 0
1: assign x 0

2: assign c1 (i >= N)
3: jnz c1 12

12: halt

4: assign t1 (N - 1)
5: assign c2 (i >= t1)
6: jnz c2 9

7: assign x h
8: jnz 1 10

9: assign x 42

10: assign i (i + 1)
11: jnz 1 2

B

E

1

2 3

4

5

6

7

Figure 8.3: The CFG for the program in Figure 8.2a

Finding matching synchronization points for the two analyzed programs is
difficult in the general case. For the relational verification of slice candidates,
however, we first consider the verification of the program with itself. We
construct the CFG and automatically label its basic blocks with unique
numbers, as shown in Figure 8.3. The CFG of the slice candidate is obtained
by replacing instructions in the CFG of the original program with skip.
For the example in Figure 8.2a we replace the instruction in block 5 with
skip. If the replaced instruction is a conditional jump, the CFG edge to the
target of that jump is removed, and we do not merge any basic blocks of the
CFG. Thus, we can always automatically find synchronization points for the
relational verification of slice candidates.

Because there is at least one synchronization point per basic block, the
CFG can be viewed as a set of linear paths 〈n, π,m〉, where n and m denote
the starting and end synchronization points of the path, and π(s, s′) is the
two state transition predicate between the two synchronization points, with s
and s′ being the states before and, respectively, after the transition. Because
LLRêve transforms the programs in SSA form before the analysis, the
transition predicate is the concatenation of all assignments on the linear
path.

For two programs with a similar structure, it is expected that there
exist coupling predicates that describe the relation between the program
states at two corresponding synchronization points. For two programs P
and Q we introduce an uninterpreted coupling predicate Cn(sp, sq) for each
synchronization point n. The relational precondition Pre and postcondition
Post are the coupling predicates for the special synchronization points B and
E, respectively. The set M consists of Horn-constraints over these coupling
predicates. For two linear paths between synchronization points n and m in
programs P and Q characterized by the two transition predicates π and ρ,
respectively, the following constraint is added to M :

Cn(sp, sq) ∧ π(sp, s′p) ∧ ρ(sq, s′q)→ Cm(s′p, s′q) (8.1)

To ensure that there is no divergence from lockstep, for every two paths
〈n, π,m〉 and 〈n, ρ, k〉 in programs P and Q, respectively, withm 6= k, m 6= n,

117

Chapter 8. A Framework for Automatic and Precise Program Slicing

B n1 nc . . . E

B n1 nc . . . E

CB Cn1 Cnc CE

Figure 8.4: Verification of slice candidates

and n 6= k the following constraint is added to M :

Cn(sp, sq) ∧ π(sp, s′p) ∧ ρ(sq, s′q)→ false (8.2)

Note that even though the synchronization points m and k do not appear
in Constraint 8.2, they respectively determine the transition predicates π and
ρ. Now we show that the satisfiability of the constraints generated according
to Constraints 8.1 and 8.2 implies that the two analyzed programs fulfill the
relational specification.

Theorem 8.1. Let P and Q be programs specified with the relational pre-
condition Pre and postcondition Post, for which matching synchronization
points have been found. Let M be the set of constraints generated according
to 8.1 and 8.2. If M is satisfiable, then for every pair of prestates satisfying
Pre:

1. The synchronization points are reached in the same order in P and Q,
2. If P terminates, then so does Q and Post holds for the two poststates.

Proof. For the distinct synchronization points n,m, k, the fact that Con-
straint 8.2 has a model implies that (case 1) π or ρ is false, meaning that
the execution of P or Q cannot reach respectively m or k from n, or (case 2)
Cn is false meaning that n is not reachable in P or Q, or per (chaining
of) Constraint 8.1 the prestates do not satisfy the precondition. Thus, P
and Q reach the synchronization points (including E, thus implying mutual
termination) in the same order. For two synchronization points n,m, the
fact that Constraint 8.1 has a model implies that (case 1) m cannot be
reached from n in P or Q, or (case 2) Cn is false and n is not reachable, or
the prestates do not satisfy the precondition, or (case 3) starting in n with
Cn holding, both programs reach m and Cm holds there. The constraints
generated according to 8.1 are thus interpolants that show the validity of
the relational specification. / /

Thus, for the case in which the location of the criterion location is at
the end of the program (in the example from Figure 8.2 that corresponds
to location 12) relational verification can be used to check whether a slice
candidate is a valid slice. To that end, the precondition is set to require
equal prestates, while the postcondition requires all criterion variables two
have equal values in the two poststates.

118

8.3. Verification of Slice Candidates

To check the validity of a slice candidate for the cases in which the
criterion location is in the middle of the program, we adapt the constraints
generated by the relational verifier. The relational precondition CB remains
unchanged while the relational postcondition CE is no longer used (i.e., it
will be set to true). As shown in Figure 8.4, a synchronization point nC is
added to the program and slice candidate at the location of the criterion
instruction. For the example in Figure 8.2a the coupling predicate for the
slicing criterion corresponds to basic block 5 in Figure 8.3. If the criterion
location is part of a basic block with more than one instruction, we split
that basic block up. For a program P with a slice candidate Q and a given
slicing criterion 〈iC , VC〉 with a corresponding synchronization point nC we
add the following constraint:

CnC (sP , sQ)→ ∀x ∈ VC sP (x) = sQ(x) (8.3)

Theorem 8.2. Let P be a program and Q a slice candidate specified with the
relational precondition Pre requires equal prestates and postcondition Post is
true. Let M be the set of constraints generated according to 8.1, 8.2, and
8.3. If M is satisfiable, then for every pair of prestates that fulfill Pre:

1. The criterion location is reached equally often in P and Q,
2. At the i-th time (for i ≥ 1) the criterion instruction is reached, the

criterion variables are equal in P and Q,
3. If P terminates, then so does Q.

Proof. From Theorem 8.1 it results that P and Q run in lockstep with respect
to the synchronization points. The instruction at the criterion location has its
own synchronization point. As a consequence of this, the criterion instruction
is executed in both P and Q the same number of times, and the candidate
terminates iff the original program terminates. Due to Constraint 8.3, the
coupling predicate corresponding to the criterion locations ensures that each
time the criterion location is reached, the criterion variables have the same
values. / /

Thus, for a program P with a slice candidate Q and a slicing criterion
(iC , VC), if the set M containing the Constraints 8.1, 8.2 and 8.3 for every
synchronization point is satisfiable, then Q is a valid slice according to
Definition 8.4. Moreover, if the set M is unsatisfiable, then the SMT solver
returns an unsatisfiability proof that contains a counterexample with two
concrete inputs for which the slice property is violated—provided the SMT
solver does not time out.

119

Chapter 8. A Framework for Automatic and Precise Program Slicing

Relational
Verification

Dynamic
Slicing

Heuristics

Candidate
Generation

Candidate

Counterexample
 Timeout

Valid Slice
Slicing Criterion

Program

Figure 8.5: The slicing framework

8.4 A Framework for Automatic Slicing

Being able to use relational verification to check whether a slice candidate
is valid or not, we can now construct a framework for automatic program
slicing. The framework, illustrated in Figure 8.5, consists of two components
which interact with each other. The first component—the candidate genera-
tion engine—generates the slice candidates and sends them to the second
component—the relational verifier (represented in our case by LLRêve).
The relational verifier receives the slice candidate and transmits one of three
possible answers to the candidate generation engine: (1) the candidate is
a valid slice, (2) the candidate is not valid along with an input that leads
to a violation of the slice property (see Definition 8.4), or (3) a timeout.
The candidate generation engine receives the answer and uses it to adapt its
candidate generation strategy.

An advantage of the framework is that the candidate generation en-
gine does not need to care about the correctness of the slice candidates it
generates—that is taken care of by the relational verifier. Besides the can-
didate generation strategies that we present in this chapter, the framework
can easily be extended with others. Thus, it provides a platform for slicing
based on relational verification for the software slicing community.

We distinguish between two types of candidate generation strategies.
On the one hand, there are strategies that generate candidates by replacing
program instructions with skip according to some heuristics and do not use
any information from the relational verifier other than the existence of a
counterexample. Examples for such properties are described in Section 8.4.1.
On the other hand, there are strategies that also take the values from the
counterexample into consideration when generating the next slice candi-
dates. We present one such strategy—counterexample guided slicing—in
Section 8.4.2.

120

8.4. A Framework for Automatic Slicing

8.4.1 Removing Instructions Using Heuristics

The strategy brute forcing (BF) generates all possible slice candidates. As
their number is exponential with respect to the number of instructions in
the original program, it is clear that this strategy does not scale for large
programs. Nevertheless, this strategy has the benefit of generating the
smallest possible slice with our framework. Brute forcing can be used as
part of a divide and conquer strategy to slice program parts which are small
enough. As an improvement, this strategy can start with the generation of the
candidate in which all instructions were replaced with skip and progressively
add back instructions from the original program. Once a candidate is shown
to be a valid slice, candidates that contain the instructions (other than skip)
of this slice need no longer be checked.

The strategy single statement elimination (SSE) successively replaces a
single instruction from the original program with skip, and checks whether
the program thus obtained is a valid slice. If this is the case, the strategy
attempts to remove all other instructions as well. The strategy requires
quadratically many calls to the relational verifier in the worst case, in which
in each iteration the last candidate is shown to be a valid slice. Although
this approach scales better than brute forcing, it can only find slices in which
program instructions can be removed individually. Groups of instructions
such as

0 assign x (x + 50)
1 assign x (x - 50)

where the removal of a single instruction results in an invalid slice candidate,
but removing the entire group would result in a valid slice cannot be removed.
The SSE strategy can be generalized to support the removal of groups of up
to a given number of instructions.

8.4.2 Counterexample Guided Slicing

The counterexample guided slicing (CGS) strategy uses dynamic slicing to
generate slice candidates. Dynamic slicing was first introduced in Korel
and Laski [1988], and a survey on dynamic slicing approaches can be found
in Korel and Rilling [1998]. For the CGS strategy we adapted the dynamic
slicing algorithm from Agrawal and Horgan [1990], which is a syntactic
approach based on on the PDG (see Section 2.6.1). On the most basic
level, the algorithm in Agrawal and Horgan [1990] receives the PDG and an
execution trace of the original program as inputs, and it works by computing
the subgraph of the PDG which contains only the nodes corresponding to
those instructions which have been executed in the program trace. The
dynamic slice is then computed using this subgraph (see Definition 2.21).
Further optimizations are possible, as the resulting slice has to be valid only
for a single input.

121

Chapter 8. A Framework for Automatic and Precise Program Slicing

A PDG node can depend on multiple other nodes, but some of these
dependencies are determined by the execution path of the program (e.g.,
a variable can be assigned on more than one branch, resulting in multiple
dependencies for instructions that use that variable). Unlike static slicing, for
dynamic slicing only one execution path is relevant—the one corresponding
to the input for which the dynamic slice is computed. Thus, PDG edges
representing dependencies that are relevant only for other inputs can be
removed. A similar situation arises with loops: at different loop iterations, a
node inside the loop body may have different dependencies. When performing
dynamic slicing, the number of iterations done by a loop is known (assuming
the program terminates for the input). The PDG can thus be extended with
nodes representing the body instructions at different iterations, which also
leads to an increased precision of the dynamic slice.

In Agrawal and Horgan [1990], the extended PDG is called a dynamic
dependence graph (DDG). Based on the observation that the nodes inside the
loop body can depend on only a finite number of other nodes, a new node
is added to the PDG just for those iterations in which the corresponding
instruction has different dependencies than in all previous iterations. These
optimizations give rise to the reduced dynamic dependence graph (RDDG).
Thus, by ignoring dependencies caused by other inputs than the one for
which the dynamic slice is computed, more instructions can be removed
than in the case of static slicing. To ensure compatibility with the slicing
property from Definition 8.4, we adapt this algorithm to support criterion
locations other than the end of the program. For this, when computing the
dynamic slice with the RDDG we do not mark the return statement, as is
done in Agrawal and Horgan [1990], but rather all nodes that correspond to
the criterion location. If the criterion location is inside a loop, then multiple
nodes are marked. The adapted RDDG dynamic slicing algorithm is purely
syntactical and scales much better than a semantic approach. Thus, if we
use it as part of the candidate generation strategy, the relational verification
of slice candidates remains the bottleneck of our framework.

For the CGS strategy we wish to merge several dynamic slices Pd1 , . . . , Pdn

for the respective input states s1, . . . , sn into a single dynamic slice Pu that is
a valid for all inputs s1, . . . , sn. In general, the union slice of dynamic slices
(which contains all program instructions that are in at least one dynamic
slice) is not a correct dynamic slice for all respective inputs of the given
dynamic slices. A solution to this was presented in Hall [1995] in the form
of an iterative algorithm called simultaneous dynamic slicing (SDS), which
computes a single dynamic slice valid for each input in a given set.

We can now present the CGS strategy, shown in Algorithm 2. It starts
with an initialization of the slice candidate Ps with a program Φ, in which
all instructions have been replaced with skip, of an arbitrary initial state s
(e.g., one in which all variables are set to 0), and of the variable b which is
set to true when a valid slice is found. The strategy uses the initial state s

122

8.4. A Framework for Automatic Slicing

Data: Program P , Slicing criterion (iC , VC)
Result: Program Slice Ps
Ps ← Φ; s← 0̄; b← false;
repeat

Pd ← dynamicSlice(P, s, (iC , VC));
Ps ← SDS(Ps, Pd);
(b, s)← relationalVerification(P, Ps, (iC , VC));

until b ∨ timeout;
if timeout then

Ps ← P ;
end
return Ps;

Algorithm 2: The CGS Strategy

with the criterion (iC , VC) to compute a dynamic slice Pd. The instructions
from Pd are then added—using the SDS procedure—to the slice candidate
Ps which is checked for validity by the relational verifier. If Ps is a valid
slice, the variable b is set to true and the strategy returns Ps. Otherwise,
the relational verifier delivers a counterexample, which is used as the initial
state s in the next iteration. Both the dynamic slicer and relational verifier
may timeout, in which case the strategy returns the original program P .

Theorem 8.3. Let P be a program and Pd be a dynamic slice for all initial
states s ∈ Sd, and sce be the counterexample obtained when checking whether
Pd is a valid slice of P . Then the following holds:

1. sce /∈ Sd.
2. The dynamic slice Pce for the initial state sce contains at least one

instruction which is not in Pd.

Proof. Both properties follow from the correctness of the relational verifier
and of the dynamic slicer and of the SDS algorithm. (1) If sce ∈ Sd then the
relational verifier delivered a spurious counterexample, the dynamic slicer
delivered an invalid dynamic slice, or the SDS algorithm computed a wrong
simultaneous dynamic slice. (2) If Pce contains no additional instruction
compared to Pd, then SDS(Pd, Pce) which means that Pd is a dynamic
slice for sce. This implies that the relational verifier delivered a spurious
counterexample. / /

Theorem 8.3 guarantees that the CGS strategy adds at least one instruc-
tion back after each iteration. Thus, the number of calls of the relational
verifier is linear in the number of program instructions. The SDS algorithm
is needed for this theorem to hold. The validity of the slice computed with
CGS, however, is guaranteed by the relational verifier. Thus, if the CGS
algorithm computes the simple union of dynamic slices, the relational verifier

123

Chapter 8. A Framework for Automatic and Precise Program Slicing

Table 8.6: Evaluation

Original BF SSE CGS
Example Source #stmts time (s) #stmts #calls time (s) #stmts #calls time (s) #stmts #calls

count_occurrence_error self 50 20 42 11
count_occurrence_result self 50 23 44 13
dead_code_after_ssa Ward [2009] 4 <1 2 4 <1 2 4 <1 2 1
dead_code_unused_variable self 3 <1 2 2 <1 2 3 <1 2 1
identity_not_modifying Field et al. [1995] 8 <1 3 3 <1 7 5 <1 6 1
identity_plus_minus_50 Barros et al. [2012] 5 <1 2 4 <1 5 4 <1 5 1
iflow_cyclic Ward [2009] 18 108 14 2197 <1 16 6 <1 17 1
iflow_dynfamic_override self 15 39 8 1298 <1 11 8 <1 12 1
iflow_endofloop (8.2) self 19 223 15 4065 <1 16 7 <1 18 2
intermediate self 13 7 11 129 <1 12 5 <1 12 2
requires_path_sensitivity Jaffar et al. [2012a] 20 1131 16 26894 <1 17 10 <1 18 3
single_pass_removal self 13 <1 3 7 <1 6 11 <1 8 1
unchanged_over_itteration self 20 45 9 932 1 15 14 <1 20 2
unreachable_code_nested self 10 <1 2 1 <1 9 1 <1 4 1
whole_loop_removable self 20 24 8 469 <1 17 5 <1 17 2

may return a counterexample that it already provided in a previous CGS
iteration. In this case the CGS algorithm needs to terminate and return the
original program. Given the fact that computing the union of dynamic slices
is much easier than computing the simultaneous dynamic slice, the user of
the framework must make a choice between performance and completeness.
Our implementation of CGS computes the union of dynamic slices.

Although out of all strategies presented in this chapter, the CGS strategy
has the least number of calls to the relational verifier, it comes with some
disadvantages. First, the program needs to be executed at each iteration.
Depending on the analyzed program, this can cause performance issues,
and for some inputs the program may not even terminate. Second, the
CGS strategy is vulnerable to timeouts of the relational verifier, which
for certain analyzed programs are inevitable, as the program equivalence
problem is undecidable. If a timeout occurs, then the strategy fails entirely
and must return the original program as the slice candidate, while the BF
and SSE strategies can continue their search for a valid slice candidate.
Third, the precision of CGS depends on the precision of the dynamic slicing
approach used in the candidate generation. Even though the used dynamic
slicing approach can remove more instructions than static syntactic slicing
approaches, the dynamic slices it computes are still over-approximations.

8.5 Discussion

We start the discussion by presenting the evaluation results (shown in
Table 8.6; the evaluation data is available in Beckert et al. [2019e]) of the
implementation of the framework, consisting of the tool SemSlice (which is
available in Beckert et al. [2019f]). For the evaluation, a collection of small
but intricate examples (e.g., the example of Figure 8.2 or a routine in which
the same value is first added and then subtracted) that each focus on a
particular challenge for semantics-aware slicing was used. Some examples are
taken from slicing literature (from Barros et al. [2012]; Canfora et al. [1998];

124

8.5. Discussion

Field et al. [1995]; Jaffar et al. [2012a]; Ward [2009]). The second column
indicates the source of each example, the third the number of LLVM-IR
instructions in the program. For each candidate generation method from
Section 8.4, the table lists the number of instructions in the smallest slice
found by SemSlice, the (wall) time needed by the tool, and the number
of calls to the SMT solver. The experiments were conducted on a virtual
machine with an Intel Core I7-4600MQ CPU (two cores) and 2GB RAM.
The exponential BF strategy works satisfactorily fast on functions with up
to 20 instructions. Although it requires more time than the other strategies,
it computes more precise slices. For examples with less than 10 instructions
the BF strategy takes less than one second. The other two strategies (SSE
and CGS) achieved slices of similar precision (to each other) and required
less than one second for most examples. The evaluation shows that the
framework can handle programs that require a large number of calls to the
relational verifier (e.g., the program requires_paths_sensitivity with the BF
strategy called the relational verifier almost 27000 times and needed about
18 minutes to find the slice). The BF strategy serves as a worst-case scenario
when using the slicing framework to automatically slice programs, and other
strategies need less calls. For this example the other strategies were still able
to remove some instructions with much less calls to the relational verifier,
and they can scale to larger programs. Thus, the scalability of our slicing
approach can be increased by using candidate generation strategies that do
not call relational verifier often. Another way to ensure that our approach to
slicing scales to large programs is to apply it to individual program functions
(as opposed to applying it to the entire program). Our current prototypical
implementation supports only a subset of the LLVM IR instruction set, which
is the main reason we did not evaluate it on real-life programs.

Our slicing approach works on an intermediate representation language.
This is beneficial for the implementation of the approach, as it does not
need to handle all features of a modern high level programming language.
However, one of the uses for program slicing is to help the user debug
and comprehend a program written in a high level language. It is possible
to perform relational verification of such programs—the early version of
LLRêve was in fact working on a simple while language (see Felsing et al.
[2014]). LLVM-IR was later chosen (see Kiefer et al. [2018]) to increase
the practicability of LLRêve. The current framework can be adapted for
slicing high level languages by either (1) attempting to translate back the
IR slice to the high level language, or (2) by defining the slicing candidate
in the high level language and then translating both the original program
and the slice candidate into the IR, and then using the extended relational
verifier. For the first option we expect that (similar to the simplification
approach in Chapter 6) only an over-approximation of the IR slice can be
obtained by translating it back into the high level language. As for the
second solution, the CFGs of the original program and slice candidate in

125

Chapter 8. A Framework for Automatic and Precise Program Slicing

the IR may be so different that our approach would no longer be able to
automatically find matching synchronization points. A solution to this can
be to automatically annotate the original program and its slice candidate
in the high level language, thus marking the synchronization points and
using these marks in the IR translation. A further solution for supporting
a high-level language would be to extend the work of Felsing et al. [2014]
with the ideas of this chapter. For this, Definition 8.4 of a valid slice needs
to be adapted for high-level programming languages, and the weakest liberal
precondition calculus from Felsing et al. [2014] needs to be extended to
support slicing in the case in which the criterion location is in the middle of
the program. By working on the high-level programming language we would
lose the advantages of an intermediate representation (i.e., relative language
independence and existing support for various code optimizations) but our
approach to slicing would become more suitable for program debugging and
comprehension.

The IR language that we used to present our approach is not inter-
procedural. While we could consider all programs as having been inlined
beforehand, recursive procedures would not be supported. The relational
verifier supports dealing with function calls using mutual function summaries
(see Kiefer et al. [2018]). A mutual function summary abstracts two matching
function calls using coupling predicates. In general it is difficult to find
matching function calls, but for checking the validity of slice candidates this
can be done automatically, similarly to finding matching synchronization
points. Thus, our approach can be extended to support recursive functions.
However, the function calls themselves may not be removed, otherwise the
mutual function summaries cannot be used.

In the semantics that we provided in Section 2.5 we assume that an
error (e.g., a division by zero) causes the system to transition to the end
state. An interesting question in the context of program slicing is whether
instructions which may cause errors can be removed from the program. While
some approaches (e.g., in Podgurski and Clarke [1990]; Ranganath et al.
[2007]) keep the error prone instructions in the slice, others (e.g. Léchenet
et al. [2016]) allow the removal of such instructions—at the cost of a weaker
soundness property (i.e., what constitutes a valid slice). This is nonetheless
still useful in certain application scenarios such as software verification. With
our slicing approach, we keep error prone instructions in the slice. However,
because we take the semantics of the program instructions into account, we
can remove error prone instructions which can never cause an error (e.g., a
division where the divisor can never be zero).

The completeness of our approach (i.e., whether a valid slice according to
Definition 8.4 is deemed as such) is limited in practice by two factors. First,
the relational verifier is required to automatically infer the coupling predicates
needed to verify the validity of a slice candidate. The relational verifier works
well when the needed coupling predicates are limited to linear arithmetics (as

126

8.6. Conclusion

shown in Klebanov et al. [2018]). The second factor limiting completeness
is the requirement that the original program and the slice candidate must
run in lockstep. This is needed to ensure the mutual termination and that
the criterion location is executed the same number of times. Thus, whereas
we can remove instructions from inside a loop, we are not able to remove
the loop itself (in our case the conditional jump instruction), even if it is
empty (i.e., it loops over skip instructions). A possible solution to this is to
check termination through other means and then remove empty loops that
are guaranteed to terminate.

8.6 Conclusion
In this chapter we extended a relational verification approach such that it
can check whether a slice candidate is indeed a valid slice. Based on this,
we proposed a framework for precise and automatic static slicing which
consists of a candidate generation engine and the extended relational verifier.
We presented three strategies to compute slice candidates, among them
CGS is more sophisticated. It uses the counterexample provided by the
relational verifier to refine the slice candidate with the help of a dynamic
slicer. The performance of relational verification depends on the similarity of
the compared programs. As we compare programs and their slice candidates,
close similarity is given and relational verification performs well, as shown in
our evaluation.

Related work in the area of program slicing is presented in Section 9.2.

127

Part IV

Related Work and
Conclusion

129

9
Related Work

In this chapter we present work that is related to the approaches used in
the framework for checking noninterference (presented in Part II) and the
framework for program slicing (presented in Part III). The chapter is based
on the related work sections of the publications that are relevant to this
thesis (i.e., the ones that are enumerated in Section 1.4). We present related
work for the noninterference framework in Section 9.1 and for the program
slicing framework in Section 9.2.

9.1 Noninterference

A lot of research has been done in the area of information flow security,
dating back to the works of Denning [1976]; Denning and Denning [1977]
and later Goguen and Meseguer [1982]. As already mentioned, approaches
for checking noninterference range from fully automatic with much over-
approximation to more precise interactive approaches.

9.1.1 Noninterference Testing

In the following we present work that is related to the automatic test
generation approach for noninterference properties that we presented in
Chapter 4.

Kinder [2015] proposed in a position paper the extension of automatic test
generation approaches to support k-safety properties (i.e., properties for which
at least k program executions are needed to demonstrate a counterexample).
Noninterference is given as the main example for a 2-safety property.

Milushev et al. [2012] present a tool that uses symbolic execution in
combination with self-composition in order to automate noninterference
testing of C programs. Their tool uses dynamic symbolic execution to search
for noninterference violations. The approach presented in Chapter 4 provides
the following improvements:

131

Chapter 9. Related Work

• It can declassify quantified first order expressions.

• It supports a noninterference property based on isomorphism, and can
be used for heap-based programs.

• It does not have to run until a violation is found, but only for a bounded
number of loop iterations and method calls, and provides an achieved
test coverage when it finishes.

Do et al. [2016] present a logic-based approach to find noninterference
violations. It also generates constraints that are then given to an SMT solver.
However, their translation is not bounded. Thus, the constrains given to
the SMT solver are undecidable. Violations can be presented to the user
as a test case. This approach, however, does not support a low-equivalence
relation based on isomorphism, and there is also no option to generate a test
suite for the case in which no violation was found, as we do with the second
option (see Section 4.3).

Le Guernic [2007] proposes a sound noninterference testing mechanism
based on standard testing techniques and on a combination of dynamic and
static analyses. The idea is to use existing test generation techniques (that
are used for functional properties) to generate test inputs that achieve a high
coverage. The generated inputs are then relayed to a dynamic technique that
checks at runtime (using software monitors) whether a program violates the
noninterference property. It is claimed that if full branch coverage is achieved
and no violation was found, then the program must be noninterferent.
However, sound dynamic techniques for checking noninterference are limited,
as shown in Russo and Sabelfeld [2010], and may report false alarms. This is
not the case with our technique—if a test fails, then there is a real violation
of the noninterference property.

Gruska [2013] and Hriţcu et al. [2016] also handle the problem of testing
noninterference. They, however, do not work on the programming language
level as we do, but on the level of process algebra and stack machines,
respectively.

Noninterference testing can be considered a special case of metamorphic
testing, see Chen et al. [2018]. Metamorphic testing checks whether for a set
of test inputs, which are in a given relation (called metamorphic relation)
with each other, the corresponding program outputs are also in a given
relation with each other. For more related work on automatic test generation
techniques for functional properties we refer to the surveys of Galler and
Aichernig [2014] and Anand et al. [2013].

132

9.1. Noninterference

9.1.2 Noninterference Debugging

In the following we present work that is related to the approach for analyzing
noninterference violations that was presented in Chapter 5. We are unaware of
any other debugging tools for relational properties. However, the intuitiveness
and familiarity of the program debugging operations and user interface has
been recognized and applied in the area of formal methods before. Using a
debugger interface to find out why a proof attempt has failed is also done
in Beckert et al. [2017c], but there the proof attempt itself is debugged
and not the program, as done in Chapter 5. In Hentschel et al. [2014]
and Hentschel [2016] an approach is presented that also integrates the typical
program debugging user interface with a theorem prover, in this case KeY.
Using symbolic execution, the user can debug all program execution paths
at the same time.

9.1.3 Combinations of Logic- and SDG-based Approaches

In the following we present work that also combines SDG-based and logic-
based approaches for proving noninterference and is thus related to the
approaches presented in Chapters 6 and 7.

The Hybrid Approach. The work by Küsters et al. [2015] also aims to
obtain the best of both worlds—automatic analysis and interactive techniques
for proving noninterference—by combining an automatic SDG-based analysis
and a theorem prover. This approach (called Hybrid Approach) first attempts
to prove noninterference using an SDG-based approach like JOANA. If this
fails—and the user suspects that this is a false alarm—he must identify the
possible cause of the alarm and extend the program such that the affected
low output is overwritten with a value that does not depend on the high
input. The extended program is then checked by JOANA. If the modified
program is shown to be noninterferent, then—in the next step—a logic-
based approach (using e.g., the theorem prover KeY) is used to show that
the extended program is equivalent to the original program (i.e., that the
extended program returns the same low output).

The Hybrid Approach approach improves the precision provided by
JOANA. However, the communication between tools is done manually by
the user; there is no assistance when searching for the causes of the false
alarms. This approach does not use the results provided by the SDG analysis
tool to discard the program parts that are irrelevant with respect to the
analyzed noninterference property and simplify the program that needs to be
verified. In fact, by extending it, the program that is verified in the second
step becomes even more complex.

133

Chapter 9. Related Work

Checking the Satisfiability of Path Conditions. Another way of com-
bining SDG-based approaches with logic-based is by checking the satisfiability
of the path conditions for the execution paths determined by the reported
security violation (as done e.g., in Snelting et al. [2006], Taghdiri et al. [2011],
and Hammer [2009]). If a path condition is unsatisfiable, then on the respec-
tive execution path the high input cannot influence the low output. However,
not all false alarms reported by the SDG-based approach are on infeasible
paths. For example, the program in Listing 7.1 has only one path that is
feasible and yet the SDG-based approach reports a possible noninterference
violation. With the approaches presented in Chapters 6 and 7 such cases
can be handled.

A program input that satisfies the path condition generated by those
approaches can serve as a witness for a noninterference violation. The
engineer is then required to analyze a single program execution with the input
data generated this way and to decide whether this is indeed noninterference
violation. This is not an easy task, especially for indirect dependencies. Using
the approach from Chapter 4, we can generate noninterference tests that
contain two low-equivalent program inputs that lead to outputs which are
not low-equivalent. The user can then use the relational debugger presented
in Chapter 5 to analyze the reported noninterference violation.

9.1.4 Other Approaches for Checking Noninterference

In the following we present some approaches for checking noninterference
which are not part of the noninterference framework.

A major category of approaches for checking noninterference which have
not been covered in this thesis are approaches based on type systems.
Those approaches assign a security type (e.g., high or low) to each program
variable and expression. The rules of the security type system then enforce
noninterference by not allowing high expressions to be assigned to low
variables and by not allowing any assignments to low variables in a high
context (e.g., in the body of a loop with a high guard). Volpano et al.
[1996] have shown a type-based algorithm that guarantees noninterference
(according to Definition 2.2). Other approaches based on type systems have
been developed (e.g., in Myers and Myers [1999]; Hunt and Sands [2006];
Lortz et al. [2014]). Approaches based on type systems can have the same
scalability and precision as SDG-based approaches, as shown by Mantel and
Sudbrock [2013].

Dynamic approaches based on runtime monitoring (e.g., Guernic [2007];
Shroff et al. [2007]) have also been developed. A monitor checks every program
instruction before its execution, and—if it determines that the instruction
may reveal some high information—the execution of that instruction is either
prevented, or the instruction is replaced with a safe instruction which is
then executed. Dynamic approaches that use runtime monitors can prevent

134

9.2. Program Slicing

instructions that assign high data to low variables, and they can also keep
track of the security context in which the instruction is executed (e.g., whether
the instruction is inside the body of a loop with a high guard). Dynamic
flow-insensitive approaches (i.e., approaches in which each variable is assigned
a security level which must be respected throughout the entire execution)
offer the same guarantees as static flow-insensitive approaches based on type
systems, as shown in Sabelfeld and Russo [2010]. However, for flow-sensitive
analyses (i.e., some variable are allowed to hold both high and low data during
the execution), the precision of sound dynamic techniques is limited, and
they may report more false alarms than precise static techniques, as shown
in Russo and Sabelfeld [2010]. Secure multi-execution (see e.g., Devriese and
Piessens [2010]) is another dynamic approach for enforcing noninterference.
This approach does not use software monitors but instead the program is
executed once for each security level (e.g., if there are two security levels,
high and low, then the program is executed twice). The program inputs
which are of a higher security level than that of the execution (e.g., the high
inputs for the low execution) are replaced with default values. The output
of each security level are taken form the execution of the respective security
level (e.g., the low outputs are taken from the low execution and the high
outputs from the high execution).

A survey on approaches for checking noninterference has been done
by Sabelfeld and Myers [2003].

9.2 Program Slicing

Static slicing is an active area of research and many approaches have been
developed. In the following we present other approaches that—like the
approach in Chapter 8—use the semantics of the program instructions when
computing the slice.

Assertion based slicing (see Barros et al. [2012]) is a program slicing ap-
proach that takes the semantics of the program into consideration. Programs
need to be specified with a method contract containing a precondition and
postcondition. The method contract represents the slicing criterion (i.e.,
statements are removed from the program such that the reduced program still
fulfills the contract). This approach works by combining precondition and
postcondition-based slicing. Postcondition-based slicing works by computing
the weakest precondition before every program location. If the weakest
precondition at a location i implies the weakest precondition at a location
j (with i < j), then the instructions between the locations i and j may be
removed, as they do not contribute to the truth value of the postcondition.
Precondition-based slicing works in a similar fashion by employing a strongest
postcondition calculus. Unlike in our approach, loop invariants are required

135

Chapter 9. Related Work

for every loop, and only groups of instructions that are at consecutive pro-
gram locations can be removed. This approach extends and improves older,
similar approaches (e.g., Comuzzi and Hart [1996]; Chung et al. [2001]), and
a tool implementing it also exists (see da Cruz et al. [2010]).

The approach in Liu et al. [2016] also uses a method’s contract as the
slicing criterion. Using a proof for the validity of the contract for a bounded
number of loop iterations and type instances, it finds the parts of the
program which were not needed for the proof in the bounded case, and
uses this information to construct a slice candidate. However, the program
parts that are deemed irrelevant are not removed, but replaced with an
abstraction. Thus, the slice candidate over-approximates the behavior of the
original program. If the contract is shown to be valid for the slice candidate,
then it is also valid for the original program. A counterexample to for the
validity of the contract for the slice candidate can be used to generate a
more concrete candidate, making this approach similar to the CGS strategy.
However, for proving the contract for the slice candidate, loop invariants are
needed.

Path sensitive backward slicing (see Jaffar et al. [2012a]) is another slicing
approach that takes the program’s semantics into consideration. The main
idea is to symbolically execute the program and compute the path condition
of every execution path. The paths are then checked for satisfiability, and
only the satisfiable paths are used for computing the slice. This approach
needs to deal with the path explosion problem (i.e., the number of program
paths is exponential with respect to the number of program branches). This
problem is mitigated by reusing the results of already performed satisfiability
checks. The approach handles loops by using abstract interpretation to
generate loop invariants, which can lead to an over-approximated description
of the loop behavior. Thus, while the approach offers an increased precision
when compared to syntactic approaches, it is not able slice the program in
Figure 2.3a. An implementation of this approach is available as part of the
tool Tracer (see Jaffar et al. [2012b]). The idea of discarding dependencies
that can only occur on infeasible program paths has also been explored in
other works (e.g., in Snelting et al. [2006]; Canfora et al. [1998]). For these
approaches, a compromise between the precision of path conditions and the
scalability of the approach had to be found.

Abstract program slicing (see Halder and Cortesi [2013]) is an approach
which makes use of the program’s semantics. However, a different slicing
criterion is used. Instead of preserving those instructions that affect the
exact values of the criterion variables at the criterion location, as required by
Definition 8.4, this approach preserves the statements that affect a property of
the criterion variables. The properties pursued in this approach are whether
the variables belong to a given abstract domain (e.g., the positive integers).
Based on the same principle like abstract interpretation, for some operations
the abstract domain of the output is known—provided the abstract domains

136

9.2. Program Slicing

of the inputs are also known. Thus, some dependencies modeled in the PDG
can be removed. Because of the different slicing criterion, this approach can
generate slices which are not valid according to Definition 8.4.

The Frama-C framework (see Kirchner et al. [2015]) for software analysis
provides components that support abstract interpretation and program
slicing (based on PDGs). Abstract interpretation can be used to improve the
precision of the slicing component by identifying some infeasible branches.
Abstract interpretation can automatically handle loops, but it does this by
over-approximating their effects.

In Podgurski and Clarke [1990] a different notion of semantic dependency
between program statements is defined. In that work it is assumed that each
node in the CFG of a program has an assigned function that represents the
computation performed by that node. Thus, a statement s is semantically
dependent on a statement s′ if the logical interpretation of the function
computed by s′ affects the execution behavior of s. Consider a program that
contains the statement assign x (x + 0) followed by the criterion location
and x as a criterion variable. According to the definition from Podgurski
and Clarke [1990] the assignment would be in the slice, because if the
interpretation of the + symbol changes (e.g., to multiplication), then so
would the value of x at the criterion location. In our approach, on the other
hand, we consider the semantics of the program instructions to be fix. Thus,
we can remove the statement from the program, as it leaves the value of x
unchanged.

The approach in Riesco et al. [2013] uses the formal semantics definitions
of a language to automatically generate a slicer for programs written in that
language. The approach to slicing works in two steps: first it analyzes the
formal semantics definitions and computes for every instruction the parame-
ters on which that instruction has side effects (data or control dependencies).
This information is then used in the second step in which for a set of pro-
gram variables, which constitutes the criterion, an over-approximated set of
instructions that have a direct or indirect side effect on them is computed.
This set constitutes the slice. The focus of this work lies, however, on the
automatic generation of program slicers and not on the precision of the
slices generated by them. This approach is implemented in the tool Chisel
(see Asăvoae et al. [2018]).

Other, syntactic, slicing approaches have been surveyed in Xu et al. [2005]
and Tip [1994]. A survey of dynamic slicing techniques can be found in Korel
and Rilling [1998].

137

10
Conclusion

10.1 Summary

The goal of this thesis is to advance the state-of-the-art in the analysis
of relational properties of computer programs. It focuses on two specific
relational properties: (1) noninterference and (2) whether a program is a
correct slice of another. The goal is achieved by providing frameworks—one
for each of the two properties—that combine new and existing approaches
such that the advantages from all combined approaches are gained.

Noninterference. The framework for checking noninterference (described
in Part II) provides approaches for automatic test generation (see Chapter 4)
and analysis of noninterference violations (see Chapter 5) with respect to a
given noninterference property. The approach provided for the automatic
generation of noninterference tests allows the user to search for violations
of the noninterference property, and also provides a coverage criterion for
the generated test suites that is appropriate for relational properties. This
approach is the first to support automatic test generation for noninterference
properties of heap-based programs and which supports quantified first order
declassification expressions. The approach for analyzing noninterference
violations is realized through a debugger for relational properties—the first
of its kind. It employs well known concepts from program debugging, and it
extends them for relational program analysis.

For proving noninterference, the framework combines an SDG-based
with a logic-based approach. The SDG-based approach can handle larger
programs, but reports more false alarms than the logic-based approach. The
SDG-based and logic-based approaches are combined in two ways, as follows:

1. The SDG-based approach simplifies the analyzed program, that is then
checked by logic-based approach (see Chapter 6). The program is
simplified by removing statements and certain branches in the program

139

Chapter 10. Conclusion

that are irrelevant for the given noninterference property. The simplified
program is easier to verify with the logic-based approach and also
easier to test (e.g., with the approach from the framework described in
Chapter 4).

2. The logic-based approach proves that certain dependencies computed by
the SDG-based approach are over-approximations and can be discarded
from the analysis (see Chapter 7). The logic-based approach analyzes
possible dependencies between method inputs and outputs at a call site
of that method. A proof obligation (in the form of a specified program)
is automatically generated to show that (for the called method) a
certain method output does not depend on a certain input. This proof
obligation is enhanced with auxiliary specification that is generated by
analyzing the SDG. The part of the program that needs to be handled
with the logic-based approach can be a lot smaller than the entire
program. The proof obligation can be further simplified using the
SDG-based simplification approach presented in Chapter 6.

Program slicing. The framework for automatic program slicing (described
in Part III) consists of an adapted relational verifier which can check whether
a slice candidate is a valid slice and of a candidate generation engine which
generates slice candidates according to a given strategy. The main challenge
when checking the validity of a slice candidate is the case in which the criterion
location is in the middle of the program. We adapted a relational verifier
such that it can handle this case while still maintaining the advantages
of relational verification for similar programs. Thus, the verification is
performed automatically and no auxiliary specification (e.g., loop invariants)
is needed. For the candidate generation engine we considered three strategies.
The strategy BF generates all possible candidates, and the strategy SSE
removes the instructions from the program one-by-one. A more complex
strategy is CGS, which is based on refining dynamic slices (i.e., slices which
are valid for a single input) by using the counterexamples provided by the
adapted relational verifier. Whereas most state-of-the-art slicing approaches
only perform a syntactical analysis of the program, this framework also
considers the semantics of the program and can remove more statements
from a program.

10.2 Future Work

In the following we present some ideas on how the two frameworks can
be improved along with research questions that, in our opinion, should be
pursued.

140

10.2. Future Work

10.2.1 Improving the Noninterference Framework.

Combinations with type-system-based approaches. The framework
for checking noninterference can be extended with an approach that checks
noninterference using a type system. Type-system-based approaches (e.g., the
one in Lortz et al. [2014]) handle interprocedural programs by using method
signatures, which assign a security type (i.e., high or low) to each method
parameter and to the return value of the method. A method signature
constitutes a noninterference contract which states that if the parameters
of the method have the respective security types specified in the method
signature, then the return value will also have the type that is specified in the
method signature. Such a type-system-based approach can easily be combined
with the logic-based approach presented in Section 2.3 by considering the
method signature to be a noninterference contract (and vice-versa) and
proving their validity with either one of the approaches. There already exists
work (e.g., Bauereiß et al. [2017] and [Scheben, 2014, Chapter 8]) which
provide translations from the specification of noninterference properties
between logic-based and type-system-based approaches.

The combination of logic-based and type-system-based approaches should
be compared with the combinations of logic-based and SDG-based approaches
(from Chapters 6 and 7) with respect to the reduction in effort needed to
verify a noninterference property with the logic-based approach. It has
been shown in Mantel and Sudbrock [2013] that approaches based on type
systems can have the same scalability and precision as SDG-based approaches.
However, in practice, implementations of type-system-based approaches are
often less precise but more scalable than SDG-based approaches.

A type-system-based approach would also be useful in combination with
the approach for analyzing noninterference violations form Chapter 5. An
assumption in the context of that approach is that the user knows, for some
program variables, whether they have a low or a high security level. A
type-system-based approach can help the user find out the required security
level of program variables.

Combinations with runtime monitors. Runtime software monitors
may constitute an alternative to testing for the case in which for a given
program the noninterference property was neither proved nor was a coun-
terexample found for it. For the parts of the program which may affect the
noninterference property we can generate runtime monitors which will then
prevent noninterference violations at runtime. It should be investigated,
however, how permissive the generated monitors are. Russo and Sabelfeld
[2010] have shown that for flow-sensitive analyses the precision of sound
dynamic techniques for checking noninterference is limited. Because both the
SDG-based and the logic-based approaches that are used in the framework

141

Chapter 10. Conclusion

are flow-sensitive, it could be that the generated software monitors will reject
most executions.

Further development of the Combined Approach. The Combined
Approach can be improved by using SDG-based analyses to generate addi-
tional auxiliary specifications—especially JML assignable clauses, which
can be used in the generated method contracts and loop invariants. Such
clauses increase the likelihood that the logic-based approach successfully
disproves dependencies in the SDG. Furthermore, it should be investigated
whether soundly generated JML assignable and accessible clauses (that
respectively specify which memory locations may be written on or read from)
can be useful for the verification of functional properties as well.

Another way in which the Combined Approach can be improved is by
using the logic-based approach to show that a method does not throw any
exception, which is a functional property. This can improve the precision of
the SDG-based approach. For such a proof obligation, a points-to analysis
can be especially useful, as it can show that the method inputs can never be
null, when called in a given context. This can be then used by the logic-based
approach to prove that a NullPointerException may never be raised.

The SDG-based approach can prove noninterference (according to an
extended definition, see Giffhorn and Snelting [2015]) for multi-threaded pro-
grams. An interesting research direction to pursue is whether the Combined
Approach can be used to disprove some over-approximated dependencies for
multi-threaded programs as well, despite using a logic-based approach such
as KeY that only supports sequential programs.

Further development of automatic test generation. For a better
support of the case in which neither a proof nor a counterexample for the
given program and noninterference property was found, the approach for
automatic generation of noninterference tests from Chapter 4 can be further
improved by researching additional coverage criteria. The new criteria
should also take the parts of the program into consideration for which it
was successfully shown with the SDG-based and logic-based approaches that
they may not cause any violation of the noninterference property. Those
program parts are represented by the SDG-nodes that are not in a reported
violation chop and by the closed branches of a proof tree. Some first steps
on defining and computing the coverage of a partial proof in KeY have been
taken in Beckert et al. [2018c]. Combining the coverage achieved by tests
and (partial) proofs was also done in [Omri, 2015, Chapter 5].

When generating test data, the approach from Chapter 4 searches models
for every pair of path conditions from the two analyzed executions. It should
be investigated whether an incremental SMT solver would be better suited
for this task. Incremental SMT solvers reuse parts of the results obtained

142

10.2. Future Work

when searching for a model for a similar formula. Their benefits for simple
symbolic execution (where only single path conditions are solved) have been
experimentally shown by Liu et al. [2014]. For the symbolic execution of two
JavaDL modal operators, as done in Chapter 4, the performance benefits
could be even greater.

Further development of the relational debugger. The relational de-
bugger presented in Chapter 5 can be improved by allowing it to use the
specified noninterference property to support the automatic suggestion of
useful conditional break points or watch expressions. User studies should
also be conducted in order to evaluate the usefulness of the approach for
analyzing noninterference violations. Furthermore, it should be investigated
for which other relational properties it can be used.

10.2.2 Improving the Slicing Framework

One major shortcoming of the slicing framework is that it must keep empty
loops in the slice, otherwise it can offer no guarantees with respect to the
mutual termination property of the original program and slice. The slicing
approach can be improved by using an additional analysis on empty loops to
check whether they terminate. If this is the case, then they can be removed
without violating the slice property.

Another research direction that should be pursued is to improve the
performance of the underlying relational verifier by using PDGs to simplify
the programs that need to be checked for equivalence. This can be done by
using the fact that two programs with isomorphic PDGs are equivalent, as
shown by Horwitz et al. [1988].

Furthermore, it should be investigated how the results (e.g., coupling
invariants) of the SMT solver employed by the relational verifier to check
the validity of a slice candidate can be reused when checking another slice
candidate that is constructed from the same original program. Incremental
SMT solver may also be beneficial for checking the validity of similar slice
candidates.

143

Part V

Appendix

145

Example of Noninterference Test

In Appendix A.1 we provide the full implementation of the example presented
in Section 4.3.4.

A.1 Implementation

1 //Test Case for NodeNr: 1662
2 org.junit.Test
3 public void testcode2(){
4 //Other variables
5 /*@ nullable */ java.lang.Throwable exc_2_A = null;
6 /*@ nullable */ java.lang.Throwable exc_2_B = null;
7
8 //Test preamble for execution A: creating objects and

intializing test data
9 program _o1_A = new program();

10 java.lang.ArrayIndexOutOfBoundsException _o2_A = new
java.lang.ArrayIndexOutOfBoundsException();

11 int[] _o4_A = new int[0];
12 java.lang.NegativeArraySizeException _o3_A = new java.

lang.NegativeArraySizeException();
13 int h_2_A = (int)0;
14 int result_2_A = (int)4;
15
16 //Calling the method under test
17
18 int _h_2_A = h_2_A;
19 {
20 exc_2_A=null;try {
21 result_2_A=program.foo(_h_2_A);
22 } catch (java.lang.Throwable e) {
23 exc_2_A=e;
24 }
25 }
26 //Test preamble for execution B: creating objects and

intializing test data
27 java.lang.ArrayIndexOutOfBoundsException _o2_B = new

java.lang.ArrayIndexOutOfBoundsException();
28 java.lang.NegativeArraySizeException _o3_B = new java.

lang.NegativeArraySizeException();
29 program _o1_B = new program();

147

Example of Noninterference Test

30 int[] _o4_B = new int[0];
31 int h_2_B = (int)-16;
32 int result_2_B = (int)0;
33
34 //Calling the method under test
35
36 int _h_2_B = h_2_B;
37 {
38 exc_2_B=null;try {
39 result_2_B=program.foo(_h_2_B);
40 } catch (java.lang.Throwable e) {
41 exc_2_B=e;
42 }
43 }
44
45
46 Set<Boolean> allBools= new HashSet<Boolean>();
47 allBools.add(true);
48 allBools.add(false);
49
50 Set<Integer> allInts= new HashSet<Integer>();
51 allInts.add(-16);
52 allInts.add(-15);
53 allInts.add(-14);
54 allInts.add(-13);
55 allInts.add(-12);
56 allInts.add(-11);
57 allInts.add(-10);
58 allInts.add(-9);
59 allInts.add(-8);
60 allInts.add(-7);
61 allInts.add(-6);
62 allInts.add(-5);
63 allInts.add(-4);
64 allInts.add(-3);
65 allInts.add(-2);
66 allInts.add(-1);
67 allInts.add(0);
68 allInts.add(1);
69 allInts.add(2);
70 allInts.add(3);
71 allInts.add(4);
72 allInts.add(5);
73 allInts.add(6);
74 allInts.add(7);
75 allInts.add(8);
76 allInts.add(9);
77 allInts.add(10);
78 allInts.add(11);
79 allInts.add(12);
80 allInts.add(13);
81 allInts.add(14);
82 allInts.add(15);
83
84 Set<Object> allObjects= new HashSet<Object>();
85 allObjects.add(_o2_B);
86 allObjects.add(_o3_B);
87 allObjects.add(_o1_B);
88 allObjects.add(_o4_B);

148

A.1. Implementation

89 allObjects.add(_o1_A);
90 allObjects.add(_o2_A);
91 allObjects.add(_o4_A);
92 allObjects.add(_o3_A);
93
94 //calling the test oracle
95 assertTrue(testOracle(exc_2_A, result_2_B, exc_2_B,

result_2_A, allBools, allInts, allObjects));
96 }
97
98
99 public boolean testOracle(java.lang.Throwable exc_2_A,

int result_2_B,java.lang.Throwable exc_2_B,int
result_2_A,Set<Boolean> allBools,Set<Integer>
allInts,Set<java.lang.Object> allObjects){

100 return (sub2(exc_2_A, result_2_B, exc_2_B,
result_2_A, allBools, allInts, allObjects) && (
result_2_A == result_2_B));

101 }
102
103 public boolean sameTypes(Object[] l1,Object[] l2){
104
105 for (int i = 0; i < l1.length; i++) {
106 if (l1[i] == null && l2[i] == null) return true;
107 if (l1[i] == null || l2[i] == null) return false

;
108 if (!l1[i].getClass().equals(l2[i].getClass()))

return false;
109 }
110 return true;
111 }
112
113 public boolean objectsIsIsomorphic(Object[] l1,Object

[] l2,Object o1,Object o2){
114
115 for (int i = 0; i < l1.length; i++) {
116 if ((l1[i] == o1) != (l2[i] == o2)) return

false;
117 }
118 return true;
119 }
120
121 public boolean objectsAreIsomoprhic(Object[] l1,Object

[] l2){
122
123 for (int i = 0; i < l1.length; i++) {
124 Object o1 = l1[i];
125 Object o2 = l2[i];
126 if (!objectsIsIsomorphic(l1, l2, o1, o2))

return false;
127 }
128 return true;
129 }
130
131 public boolean newObjects(Object[] l,Set<Object>

allObjects){
132
133 for (Object o1 : l) {
134 for (Object o2 : allObjects) {

149

Example of Noninterference Test

135 if (o1 == o2) return false;
136 }
137 }
138 return true;
139 }
140
141 public boolean sub2(java.lang.Throwable exc_2_A,int

result_2_B,java.lang.Throwable exc_2_B,int
result_2_A,Set<Boolean> allBools,Set<Integer>
allInts,Set<java.lang.Object> allObjects){

142
143 Object[] l1 = {exc_2_A};
144 Object[] l2 = {exc_2_B};
145 return newObjects(l1, allObjects) && newObjects(

l2, allObjects) && sameTypes(l1, l2) &&
objectsAreIsomoprhic(l1, l2);

146 }
147 }

150

Bibliography

Aharon Abadi, Ran Ettinger, and Yishai A. Feldman. Fine slicing. In Juan
de Lara and Andrea Zisman, editors, Fundamental Approaches to Software
Engineering, pages 471–485, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. ISBN 978-3-642-28872-2. doi: 10.1007/978-3-642-28872-2 32.
(Cited on page 90.)

Hiralal Agrawal. On slicing programs with jump statements. In Proceedings of
the ACM SIGPLAN 1994 Conference on Programming Language Design
and Implementation, PLDI ’94, pages 302–312, New York, NY, USA,
1994. ACM. ISBN 0-89791-662-X. doi: 10.1145/178243.178456. URL
http://doi.acm.org/10.1145/178243.178456. (Cited on page 90.)

Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. SIGPLAN
Not., 25(6):246–256, June 1990. ISSN 0362-1340. doi: 10.1145/93548.93576.
URL http://doi.acm.org/10.1145/93548.93576. (Cited on pages 121
and 122.)

Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel,
Christoph Gladisch, Sarah Grebing, Reiner Hähnle, Martin Hentschel, Mi-
hai Herda, Vladimir Klebanov, Wojciech Mostowski, Christoph Scheben,
Peter H. Schmitt, and Mattias Ulbrich. The KeY platform for verifi-
cation and analysis of Java programs. In Dimitra Giannakopoulou and
Daniel Kroening, editors, 6th Working Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE 2014), volume 8471 of Lec-
ture Notes in Computer Science, pages 1–17. Springer-Verlag, October
2014. ISBN 978-3-642-54107-0. doi: 10.1007/978-3-319-12154-3 4. URL
http://link.springer.com/chapter/10.1007/978-3-319-12154-3 4.

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Pe-
ter H. Schmitt, and Mattias Ulbrich, editors. Deductive Software Verifica-

151

http://doi.acm.org/10.1145/178243.178456
http://doi.acm.org/10.1145/93548.93576
http://link.springer.com/chapter/10.1007/978-3-319-12154-3_4

Bibliography

tion - The KeY Book: From Theory to Practice, volume 10001 of Lecture
Notes in Computer Science. Springer, December 2016a. doi: 10.1007/978-
3-319-49812-6. URL http://dx.doi.org/10.1007/978-3-319-49812-6.
(Cited on pages 10 and 23.)

Wolfgang Ahrendt, Christoph Gladisch, and Mihai Herda. Proof-based Test
Case Generation, pages 415–451. Springer International Publishing, Cham,
2016b. ISBN 978-3-319-49812-6. doi: 10.1007/978-3-319-49812-6 12. URL
https://doi.org/10.1007/978-3-319-49812-6 12. (Cited on pages 8,
10, 29, 31, and 49.)

Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, July
1970. ISSN 0362-1340. doi: 10.1145/390013.808479. URL http://doi.
acm.org/10.1145/390013.808479. (Cited on page 29.)

Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B.
Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil
McMinn, Antonia Bertolino, J. Jenny Li, and Hong Zhu. An orchestrated
survey of methodologies for automated software test case generation.
Journal of Systems and Software, 86(8):1978 – 2001, 2013. ISSN 0164-
1212. doi: https://doi.org/10.1016/j.jss.2013.02.061. URL http://www.
sciencedirect.com/science/article/pii/S0164121213000563. (Cited
on pages 31 and 132.)

Irina Măriuca Asăvoae, Mihail Asăvoae, and Adrián Riesco. Slicing from
formal semantics: Chisel—a tool for generic program slicing. International
Journal on Software Tools for Technology Transfer, 20(6):739–769, Nov
2018. ISSN 1433-2787. doi: 10.1007/s10009-018-0500-y. URL https://
doi.org/10.1007/s10009-018-0500-y. (Cited on page 137.)

Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-
flow. In Peter A. Fritzson, editor, Automated and Algorithmic Debugging,
pages 206–222, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg. ISBN
978-3-540-48141-6. doi: 10.1007/BFb0019410. URL http://dx.doi.org/
10.1007/BFb0019410. (Cited on page 90.)

Richard W. Barraclough, David Binkley, Sebastian Danicic, Mark Harman,
Robert M. Hierons, Ákos Kiss, Mike Laurence, and Lahcen Ouarbya. A
trajectory-based strict semantics for program slicing. Theoretical Computer
Science, 411(11):1372 – 1386, 2010. ISSN 0304-3975. doi: 10.1016/j.tcs.
2009.10.025. URL http://www.sciencedirect.com/science/article/
pii/S0304397509007944. (Cited on page 116.)

Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, Department of Computer Science, The Uni-
versity of Iowa, 2010. URL http://smtlib.cs.uiowa.edu/papers/smt-

152

http://dx.doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6_12
http://doi.acm.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
http://www.sciencedirect.com/science/article/pii/S0164121213000563
http://www.sciencedirect.com/science/article/pii/S0164121213000563
https://doi.org/10.1007/s10009-018-0500-y
https://doi.org/10.1007/s10009-018-0500-y
http://dx.doi.org/10.1007/BFb0019410
http://dx.doi.org/10.1007/BFb0019410
http://www.sciencedirect.com/science/article/pii/S0304397509007944
http://www.sciencedirect.com/science/article/pii/S0304397509007944
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf

Bibliography

lib-reference-v2.0-r12.09.09.pdf. Available at www.SMT-LIB.org.
(Cited on pages 33 and 54.)

José Bernardo Barros, Daniela da Cruz, Pedro Rangel Henriques, and
Jorge Sousa Pinto. Assertion-based slicing and slice graphs. Formal
Aspects of Computing, 24(2):217–248, Mar 2012. ISSN 1433-299X. doi:
10.1007/s00165-011-0196-1. URL https://doi.org/10.1007/s00165-
011-0196-1. (Cited on pages 6, 111, 124, and 135.)

G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In Proceedings. 17th IEEE Computer Security Foundations
Workshop, 2004., pages 100–114, June 2004. doi: 10.1109/CSFW.2004.
1310735. URL http://dx.doi.org/10.1109/CSFW.2004.1310735. (Cited
on page 25.)

Thomas Bauereiß, Simon Greiner, Mihai Herda, Michael Kirsten, Ximeng
Li, Heiko Mantel, Martin Mohr, Matthias Perner, David Schneider, and
Markus Tasch. Rifl 1.1: A common specification language for information-
flow requirements. Technical Report TUD-CS-2017-0225, TU Darmstadt,
August 2017. URL http://dx.doi.org/10.5445/IR/1000092713. (Cited
on page 141.)

Kent Beck. JUnit Pocket Guide: Quick Look-up and Advice. " O’Reilly
Media, Inc.", 2004. (Cited on page 31.)

Bernhard Beckert. A dynamic logic for the formal verification ofjava card
programs. In Isabelle Attali and Thomas Jensen, editors, Java on Smart
Cards:Programming and Security, pages 6–24, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. ISBN 978-3-540-45165-5. doi: 10.1007/3-540-
45165-X 2. URL http://dx.doi.org/10.1007/3-540-45165-X 2. (Cited
on page 18.)

Bernhard Beckert, Mattias Ulbrich, Birgit Vogel-Heuser, and Alexander
Weigl. Regression verification for programmable logic controller software.
In Michael Butler, Sylvain Conchon, and Fatiha Zaïdi, editors, Formal
Methods and Software Engineering, pages 234–251, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-25423-4. doi: 10.1007/978-3-319-
25423-4 15. URL http://dx.doi.org/10.1007/978-3-319-25423-4 15.
(Cited on page 73.)

Bernhard Beckert, Thorsten Bormer, Michael Kirsten, Till Neuber, and
Mattias Ulbrich. Automated verification for functional and relational
properties of voting rules. In Umberto Grandi and Jeffrey S. Rosenschein,
editors, Sixth International Workshop on Computational Social Choice
(COMSOC 2016), June 2016a. URL https://www.irit.fr/COMSOC-2016/
proceedings/BeckertEtAlCOMSOC2016.pdf. (Cited on page 73.)

153

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
https://doi.org/10.1007/s00165-011-0196-1
https://doi.org/10.1007/s00165-011-0196-1
http://dx.doi.org/10.1109/CSFW.2004.1310735
http://dx.doi.org/10.5445/IR/1000092713
http://dx.doi.org/10.1007/3-540-45165-X_2
http://dx.doi.org/10.1007/978-3-319-25423-4_15
https://www.irit.fr/COMSOC-2016/proceedings/BeckertEtAlCOMSOC2016.pdf
https://www.irit.fr/COMSOC-2016/proceedings/BeckertEtAlCOMSOC2016.pdf

Bibliography

Bernhard Beckert, Vladimir Klebanov, and Benjamin Weiß. Dynamic Logic
for Java, pages 49–106. Springer International Publishing, Cham, 2016b.
ISBN 978-3-319-49812-6. doi: 10.1007/978-3-319-49812-6 3. URL http://
dx.doi.org/10.1007/978-3-319-49812-6 3. (Cited on pages 18 and 21.)

Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten, and Marko
Kleine Büning. Combining graph-based and deduction-based information-
flow analysis. In Ralf Küsters, editor, 5th Workshop on Hot Issues in
Security Principles and Trust (HotSpot 2017) affiliated with ETAPS 2017:
European Joint Conferences on Theory and Practice of Software, pages
6–25, April 2017a. URL https://sec.informatik.uni-stuttgart.de/
media/events/hotspot2017/proceedings.pdf. (Cited on pages 8, 10,
11, and 93.)

Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda, Daniel
Lentzsch, and Mattias Ulbrich. Semslice: Exploiting relational verification
for automatic program slicing. In Nadia Polikarpova and Steve Schneider,
editors, Integrated Formal Methods, pages 312–319, Cham, 2017b. Springer
International Publishing. ISBN 978-3-319-66845-1. doi: 10.1007/978-3-319-
66845-1 20. URL http://dx.doi.org/10.1007/978-3-319-66845-1 20.
(Cited on pages 9, 10, 11, 34, and 111.)

Bernhard Beckert, Sarah Grebing, and Mattias Ulbrich. An interaction
concept for program verification systems with explicit proof object. In Ofer
Strichman and Rachel Tzoref-Brill, editors, Hardware and Software: Veri-
fication and Testing, pages 163–178, Cham, 2017c. Springer International
Publishing. ISBN 978-3-319-70389-3. doi: 10.1007/978-3-319-70389-3 11.
URL http://dx.doi.org/10.1007/978-3-319-70389-3 11. (Cited on
pages 66 and 133.)

Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten, and Marko
Kleine Büning. Using theorem provers to increase the precision of depen-
dence analysis for information flow control. In Jing Sun and Meng Sun,
editors, Formal Methods and Software Engineering, pages 284–300, Cham,
2018a. Springer International Publishing. ISBN 978-3-030-02450-5. doi:
10.1007/978-3-030-02450-5 17. URL http://dx.doi.org/10.1007/978-
3-030-02450-5 17. (Cited on pages 8, 10, 11, and 93.)

Bernhard Beckert, Mihai Herda, Michael Kirsten, and Jonas Schiffl. Formal
specification and verification of hyperledger fabric chaincode. In Guang-
dong Bai and Kamanashis Biswas, editors, 3rd Symposium on Distributed
Ledger Technology (SDLT-2018) co-located with ICFEM 2018: the 20th In-
ternational Conference on Formal Engineering Methods, November 2018b.
URL https://symposium-dlt.org/.

154

http://dx.doi.org/10.1007/978-3-319-49812-6_3
http://dx.doi.org/10.1007/978-3-319-49812-6_3
https://sec.informatik.uni-stuttgart.de/_media/events/hotspot2017/proceedings.pdf
https://sec.informatik.uni-stuttgart.de/_media/events/hotspot2017/proceedings.pdf
http://dx.doi.org/10.1007/978-3-319-66845-1_20
http://dx.doi.org/10.1007/978-3-319-70389-3_11
http://dx.doi.org/10.1007/978-3-030-02450-5_17
http://dx.doi.org/10.1007/978-3-030-02450-5_17
https://symposium-dlt.org/

Bibliography

Bernhard Beckert, Mihai Herda, Stefan Kobischke, and Mattias Ulbrich.
Towards a notion of coverage for incomplete program-correctness proofs. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation. Verification, pages 53–63,
Cham, 2018c. Springer International Publishing. ISBN 978-3-030-03421-4.
doi: 10.1007/978-3-030-03421-4 4. URL http://dx.doi.org/10.1007/
978-3-030-03421-4 4. (Cited on page 142.)

Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten,
Marko Kleine Büning, Holger Klein, and Joachim Müssig. Implemen-
tation of the combined approach, August 2019a. URL https://doi.org/
10.5281/zenodo.3359433. (Cited on page 99.)

Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten, Holger
Klein, Marko Kleine Büning, and Joachim Müssig. Evaluation data of
the combined approach, August 2019b. URL https://doi.org/10.5281/
zenodo.3359387. (Cited on page 102.)

Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda, Daniel
Lentzsch, and Mattias Ulbrich. Using relational verification for program
slicing. In Peter Ölveczky and Gwen Salaün, editors, 17th International
Conference on Software Engineering and Formal Methods (SEFM 2019),
Lecture Notes in Computer Science, September 2019c. doi: 10.1007/978-3-
030-30446-1 19. URL http://dx.doi.org/10.1007/978-3-030-30446-
1 19. to appear. (Cited on pages 9, 10, 11, and 111.)

Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda, Daniel
Lentzsch, and Mattias Ulbrich. Using relational verification for program
slicing. Technical Report 2019,5, Department of Informatics, Karlsruhe
Institute of Technology, Karlsruhe, April 2019d. URL http://dx.doi.
org/10.5445/IR/1000093895. (Cited on pages 9, 10, 11, and 111.)

Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda, Daniel
Lentzsch, and Mattias Ulbrich. Evaluation data of semslice, July 2019e.
URL https://doi.org/10.5281/zenodo.3334571. (Cited on page 124.)

Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda, Daniel
Lentzsch, and Mattias Ulbrich. Implementation of the semslice tool, July
2019f. URL https://doi.org/10.5281/zenodo.3334553. (Cited on pages
111, 113, and 124.)

Bernhard Beckert et al. Information flow in object-oriented software. In
Logic-Based Program Synthesis and Transformation (LOPSTR), pages
19–37, 2013. (Cited on pages 5, 17, and 25.)

David Binkley and Mark Harman. A survey of empirical results on
program slicing. volume 62 of Advances in Computers, pages 105

155

http://dx.doi.org/10.1007/978-3-030-03421-4_4
http://dx.doi.org/10.1007/978-3-030-03421-4_4
https://doi.org/10.5281/zenodo.3359433
https://doi.org/10.5281/zenodo.3359433
https://doi.org/10.5281/zenodo.3359387
https://doi.org/10.5281/zenodo.3359387
http://dx.doi.org/10.1007/978-3-030-30446-1_19
http://dx.doi.org/10.1007/978-3-030-30446-1_19
http://dx.doi.org/10.5445/IR/1000093895
http://dx.doi.org/10.5445/IR/1000093895
https://doi.org/10.5281/zenodo.3334571
https://doi.org/10.5281/zenodo.3334553

Bibliography

– 178. Elsevier, 2004. doi: https://doi.org/10.1016/S0065-2458(03)
62003-6. URL http://www.sciencedirect.com/science/article/pii/
S0065245803620036. (Cited on pages 4 and 34.)

Simon Bischof. Combining SDG analysis and theorem proving for information
flow control. Master thesis, Karlsruhe Institute of Technology, February
2016. (Cited on page 93.)

Daniel Bruns, Huy Quoc Do, Simon Greiner, Mihai Herda, Martin Mohr,
Enrico Scapin, Tomasz Truderung, Bernhard Beckert, Ralf Küsters, Heiko
Mantel, and Richard Gay. Poster: Security in e-voting. In Sophie Engle,
editor, 36th IEEE Symposium on Security and Privacy (S & P 2015),
Poster Session, May 2015. URL https://www.ieee-security.org/TC/
SP2015/posters/paper 10.pdf.

Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned
program slicing. Information and Software Technology, 40(11):595 – 607,
1998. ISSN 0950-5849. doi: https://doi.org/10.1016/S0950-5849(98)00086-
X. URL http://www.sciencedirect.com/science/article/pii/S0950
58499800086X. (Cited on pages 124 and 136.)

Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey,
T. H. Tse, and Zhi Quan Zhou. Metamorphic testing: A review of challenges
and opportunities. ACM Comput. Surv., 51(1):4:1–4:27, January 2018.
ISSN 0360-0300. doi: 10.1145/3143561. URL http://doi.acm.org/10.
1145/3143561. (Cited on page 132.)

Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto
statements. ACM Trans. Program. Lang. Syst., 16(4):1097–1113, July
1994. ISSN 0164-0925. doi: 10.1145/183432.183438. URL http://doi.
acm.org/10.1145/183432.183438. (Cited on page 90.)

I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon. Program slicing
based on specification. In Proceedings of the 2001 ACM Symposium
on Applied Computing, SAC ’01, pages 605–609, New York, NY, USA,
2001. ACM. ISBN 1-58113-287-5. doi: 10.1145/372202.372784. URL
http://doi.acm.org/10.1145/372202.372784. (Cited on page 136.)

Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of
Computer Security, 18(6):1157–1210, 2010. doi: 10.3233/JCS-2009-0393.
URL https://doi.org/10.3233/JCS-2009-0393. (Cited on page 72.)

Joseph J. Comuzzi and Johnson M. Hart. Program slicing using weakest
preconditions. In Marie-Claude Gaudel and James Woodcock, editors,
FME’96: Industrial Benefit and Advances in Formal Methods, pages

156

http://www.sciencedirect.com/science/article/pii/S0065245803620036
http://www.sciencedirect.com/science/article/pii/S0065245803620036
https://www.ieee-security.org/TC/SP2015/posters/paper_10.pdf
https://www.ieee-security.org/TC/SP2015/posters/paper_10.pdf
http://www.sciencedirect.com/science/article/pii/S095058499800086X
http://www.sciencedirect.com/science/article/pii/S095058499800086X
http://doi.acm.org/10.1145/3143561
http://doi.acm.org/10.1145/3143561
http://doi.acm.org/10.1145/183432.183438
http://doi.acm.org/10.1145/183432.183438
http://doi.acm.org/10.1145/372202.372784
https://doi.org/10.3233/JCS-2009-0393

Bibliography

557–575, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-
3-540-49749-3. doi: 10.1007/3-540-60973-3 107. URL http://dx.doi.org/
10.1007/3-540-60973-3 107. (Cited on page 136.)

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang. Syst., 13
(4):451–490, October 1991. ISSN 0164-0925. doi: 10.1145/115372.115320.
URL http://doi.acm.org/10.1145/115372.115320. (Cited on page 31.)

Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto. Gamaslicer:
An online laboratory for program verification and analysis. In Proceedings
of the Tenth Workshop on Language Descriptions, Tools and Applications,
LDTA ’10, pages 3:1–3:8, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0063-6. doi: 10.1145/1868281.1868284. URL http://doi.acm.org/
10.1145/1868281.1868284. (Cited on page 136.)

Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio
Proietti. Relational verification through Horn clause transformation. In
Xavier Rival, editor, Static Analysis, pages 147–169, Berlin, Heidelberg,
2016. Springer. ISBN 978-3-662-53413-7. doi: 10.1007/978-3-662-53413-
7 8. URL http://dx.doi.org/10.1007/978-3-662-53413-7 8. (Cited
on page 111.)

A. De Lucia. Program slicing: methods and applications. In Proceedings First
IEEE International Workshop on Source Code Analysis and Manipulation,
pages 142–149, Nov 2001. doi: 10.1109/SCAM.2001.972675. URL http://
dx.doi.org/10.1109/SCAM.2001.972675. (Cited on page 34.)

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.
doi: 10.1007/978-3-540-78800-3 24. URL http://dx.doi.org/10.1007/
978-3-540-78800-3 24. (Cited on pages 33, 41, and 52.)

Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, May 1976. ISSN 0001-0782. doi: 10.1145/360051.
360056. URL http://doi.acm.org/10.1145/360051.360056. (Cited on
page 131.)

Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Commun. ACM, 20(7):504–513, July 1977. ISSN
0001-0782. doi: 10.1145/359636.359712. URL http://doi.acm.org/10.
1145/359636.359712. (Cited on page 131.)

157

http://dx.doi.org/10.1007/3-540-60973-3_107
http://dx.doi.org/10.1007/3-540-60973-3_107
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/1868281.1868284
http://doi.acm.org/10.1145/1868281.1868284
http://dx.doi.org/10.1007/978-3-662-53413-7_8
http://dx.doi.org/10.1109/SCAM.2001.972675
http://dx.doi.org/10.1109/SCAM.2001.972675
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://doi.acm.org/10.1145/360051.360056
http://doi.acm.org/10.1145/359636.359712
http://doi.acm.org/10.1145/359636.359712

Bibliography

D. Devriese and F. Piessens. Noninterference through secure multi-execution.
In 2010 IEEE Symposium on Security and Privacy, pages 109–124, May
2010. doi: 10.1109/SP.2010.15. URL http://dx.doi.org/10.1109/SP.
2010.15. (Cited on page 135.)

Quoc Huy Do, Eduard Kamburjan, and Nathan Wasser. Towards fully
automatic logic-based information flow analysis: An electronic-voting case
study. In Frank Piessens and Luca Viganò, editors, Principles of Security
and Trust - (POST), Part of (ETAPS), volume 9635 of LNCS, pages
97–115. Springer, 2016. (Cited on pages 50 and 132.)

Aboubakr Achraf El Ghazi. Relational Reasoning - Constraint Solving,
Deduction, and Program Verification. PhD thesis, 2015. URL http://dx.
doi.org/10.5445/IR/1000051022. (Cited on page 33.)

Aboubakr Achraf El Ghazi, Mattias Ulbrich, Mana Taghdiri, and Mihai
Herda. Reducing the complexity of quantified formulas via variable elimi-
nation. In 11th International Workshop on Satisfiability Modulo Theories
(SMT 2013), pages 87–99, July 2013. URL http://arxiv.org/abs/1408.
0700.

Aboubakr Achraf El Ghazi, Mana Taghdiri, and Mihai Herda. First-order
transitive closure axiomatization via iterative invariant injections. In Klaus
Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA Formal
Methods, pages 143–157, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-17524-9. doi: 10.1007/978-3-319-17524-9 11. URL http:
//dx.doi.org/10.1007/978-3-319-17524-9 11.

Christian Engel and Reiner Hähnle. Generating unit tests from formal
proofs. In Yuri Gurevich and Bertrand Meyer, editors, Tests and Proofs,
pages 169–188, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN
978-3-540-73770-4. doi: 10.1007/978-3-540-73770-4 10. URL http://dx.
doi.org/10.1007/978-3-540-73770-4 10. (Cited on page 29.)

Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and
Mattias Ulbrich. Automating regression verification. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 349–360, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3013-8. doi: 10.1145/2642937.2642987. URL http://doi.
acm.org/10.1145/2642937.2642987. (Cited on pages 41, 125, and 126.)

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Trans. Program. Lang.
Syst., 9(3):319–349, July 1987. ISSN 0164-0925. doi: 10.1145/24039.24041.
URL http://doi.acm.org/10.1145/24039.24041. (Cited on pages 34
and 36.)

158

http://dx.doi.org/10.1109/SP.2010.15
http://dx.doi.org/10.1109/SP.2010.15
http://dx.doi.org/10.5445/IR/1000051022
http://dx.doi.org/10.5445/IR/1000051022
http://arxiv.org/abs/1408.0700
http://arxiv.org/abs/1408.0700
http://dx.doi.org/10.1007/978-3-319-17524-9_11
http://dx.doi.org/10.1007/978-3-319-17524-9_11
http://dx.doi.org/10.1007/978-3-540-73770-4_10
http://dx.doi.org/10.1007/978-3-540-73770-4_10
http://doi.acm.org/10.1145/2642937.2642987
http://doi.acm.org/10.1145/2642937.2642987
http://doi.acm.org/10.1145/24039.24041

Bibliography

John Field, G. Ramalingam, and Frank Tip. Parametric program slicing.
In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’95, pages 379–392, New
York, NY, USA, 1995. ACM. ISBN 0-89791-692-1. doi: 10.1145/199448.
199534. URL http://doi.acm.org/10.1145/199448.199534. (Cited on
pages 124 and 125.)

Stefan J. Galler and Bernhard K. Aichernig. Survey on test data generation
tools. International Journal on Software Tools for Technology Transfer,
16(6):727–751, Nov 2014. ISSN 1433-2787. doi: 10.1007/s10009-013-
0272-3. URL https://doi.org/10.1007/s10009-013-0272-3. (Cited on
page 132.)

Gerhard Gentzen. Untersuchungen über das logische schließen. ii. Ma-
thematische Zeitschrift, 39(1):405–431, Dec 1935. ISSN 1432-1823.
doi: 10.1007/BF01201363. URL https://doi.org/10.1007/BF01201363.
(Cited on page 21.)

Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic
security. International Journal of Information Security, 14(3):263–287,
Jun 2015. ISSN 1615-5270. doi: 10.1007/s10207-014-0257-6. URL https:
//doi.org/10.1007/s10207-014-0257-6. (Cited on page 142.)

J. A. Goguen and J. Meseguer. Security policies and security models. In
1982 IEEE Symposium on Security and Privacy, pages 11–11, April 1982.
doi: 10.1109/SP.1982.10014. URL http://dx.doi.org/10.1109/SP.1982.
10014. (Cited on pages 3, 15, and 131.)

Jürgen Graf, Martin Hecker, Martin Mohr, and Gregor Snelting. Tool
demonstration: Joana. In Frank Piessens and Luca Viganò, editors,
Principles of Security and Trust, pages 89–93, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg. ISBN 978-3-662-49635-0. doi: 10.1007/978-
3-662-49635-0 5. URL http://dx.doi.org/10.1007/978-3-662-49635-
0 5. (Cited on pages 5 and 38.)

Simon Greiner and Mihai Herda. Cocome with security. Technical Report
2017,2, Department of Informatics, Karlsruhe Institute of Technology,
Karlsruhe, April 2017. URL http://dx.doi.org/10.5445/IR/100006510
6.

Damas P Gruska. Information flow testing. Fundamenta Informaticae, 128
(1-2):81–95, 2013. doi: 10.3233/FI-2013-934. URL https://doi.org/10.
3233/FI-2013-934. (Cited on page 132.)

G. L. Guernic. Automaton-based confidentiality monitoring of concurrent
programs. In 20th IEEE Computer Security Foundations Symposium

159

http://doi.acm.org/10.1145/199448.199534
https://doi.org/10.1007/s10009-013-0272-3
https://doi.org/10.1007/BF01201363
https://doi.org/10.1007/s10207-014-0257-6
https://doi.org/10.1007/s10207-014-0257-6
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1007/978-3-662-49635-0_5
http://dx.doi.org/10.1007/978-3-662-49635-0_5
http://dx.doi.org/10.5445/IR/1000065106
http://dx.doi.org/10.5445/IR/1000065106
https://doi.org/10.3233/FI-2013-934
https://doi.org/10.3233/FI-2013-934

Bibliography

(CSF’07), pages 218–232, July 2007. doi: 10.1109/CSF.2007.10. URL
http://dx.doi.org/10.1109/CSF.2007.10. (Cited on pages 5 and 134.)

Raju Halder and Agostino Cortesi. Abstract program slicing on dependence
condition graphs. Science of Computer Programming, 78(9):1240 – 1263,
2013. ISSN 0167-6423. doi: https://doi.org/10.1016/j.scico.2012.05.00
7. URL http://www.sciencedirect.com/science/article/pii/S0167
642312001098. (Cited on page 136.)

Robert J. Hall. Automatic extraction of executable program subsets by
simultaneous dynamic program slicing. Automated Software Engineering,
2(1):33–53, Mar 1995. ISSN 1573-7535. doi: 10.1007/BF00873408. URL
http://dx.doi.org/10.1007/BF00873408. (Cited on page 122.)

Tobias Hamann, Mihai Herda, Heiko Mantel, Martin Mohr, David Schneider,
and Markus Tasch. A uniform information-flow security benchmark suite
for source code and bytecode. In Nils Gruschka, editor, Secure IT Systems,
pages 437–453, Cham, 2018. Springer International Publishing. ISBN
978-3-030-03638-6. doi: 10.1007/978-3-030-03638-6 27. URL http://dx.
doi.org/10.1007/978-3-030-03638-6 27. (Cited on page 61.)

Christian Hammer. Information flow control for Java: a comprehensive
approach based on path conditions in dependence graphs. PhD thesis,
Karlsruhe Institute of Technology, 2009. URL http://dx.doi.org/10.
5445/KSP/1000012049. (Cited on pages 35, 37, 40, 90, and 134.)

Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive,
and object-sensitive information flow control based on program dependence
graphs. International Journal of Information Security, 8(6):399–422, Dec
2009. ISSN 1615-5270. doi: 10.1007/s10207-009-0086-1. URL https://
doi.org/10.1007/s10207-009-0086-1. (Cited on pages 4, 34, and 39.)

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic, pages 99–217.
Springer Netherlands, Dordrecht, 2002. ISBN 978-94-017-0456-4. doi:
10.1007/978-94-017-0456-4 2. URL https://doi.org/10.1007/978-94-
017-0456-4 2. (Cited on page 18.)

Mark Harman and Sebastian Danicic. A new algorithm for slicing unstruc-
tured programs. Journal of Software Maintenance: Research and Practice,
10(6):415–441, 1998. doi: 10.1002/(SICI)1096-908X(199811/12)10:6<415::
AID-SMR180>3.0.CO;2-Z. URL http://dx.doi.org/10.1002/(SICI)
1096-908X(199811/12)10:6<415::AID-SMR180>3.0.CO;2-Z. (Cited on
page 90.)

Mark Harman, Arun Lakhotia, and David Binkley. Theory and algorithms for
slicing unstructured programs. Information and Software Technology, 48
(7):549 – 565, 2006. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.

160

http://dx.doi.org/10.1109/CSF.2007.10
http://www.sciencedirect.com/science/article/pii/S0167642312001098
http://www.sciencedirect.com/science/article/pii/S0167642312001098
http://dx.doi.org/10.1007/BF00873408
http://dx.doi.org/10.1007/978-3-030-03638-6_27
http://dx.doi.org/10.1007/978-3-030-03638-6_27
http://dx.doi.org/10.5445/KSP/1000012049
http://dx.doi.org/10.5445/KSP/1000012049
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/978-94-017-0456-4_2
https://doi.org/10.1007/978-94-017-0456-4_2
http://dx.doi.org/10.1002/(SICI)1096-908X(199811/12)10:6<415::AID-SMR180>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1096-908X(199811/12)10:6<415::AID-SMR180>3.0.CO;2-Z

Bibliography

2005.06.001. URL http://www.sciencedirect.com/science/article/
pii/S0950584905000881. (Cited on page 90.)

Martin Hentschel. Integrating Symbolic Execution, Debugging and Verifica-
tion. PhD thesis, Technische Universität Darmstadt, January 2016. URL
http://tuprints.ulb.tu-darmstadt.de/5399/. (Cited on page 133.)

Martin Hentschel, Richard Bubel, and Reiner Hähnle. Symbolic execution
debugger (sed). In Borzoo Bonakdarpour and Scott A. Smolka, editors,
Runtime Verification, pages 255–262, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-11164-3. doi: 10.1007/978-3-319-11164-3 21.
URL http://dx.doi.org/10.1007/978-3-319-11164-3 21. (Cited on
page 133.)

Mihai Herda, Shmuel S. Tyszberowicz, and Bernhard Beckert. Using de-
pendence graphs to assist verification and testing of information-flow
properties. In Catherine Dubois and Burkhart Wolff, editors, 12th In-
ternational Conference on Tests and Proofs (TAP 2018), volume 10889
of Lecture Notes in Computer Science, pages 83–102. Springer, June
2018. ISBN 978-3-319-92994-1. doi: 10.1007/978-3-319-92994-1 5. URL
http://dx.doi.org/10.1007/978-3-319-92994-1 5. (Cited on pages 8,
10, and 75.)

Mihai Herda, Michael Kirsten, Etienne Brunner, Joana Plewnia, Ulla Scheler,
Chiara Staudenmaier, Benedikt Wagner, Pascal Zwick, and Bernhard
Beckert. Understanding counterexamples for relational properties with
dibugger. In Emanuele De Angelis, Grigory Fedyukovich, Nikos Tzevelekos,
and Mattias Ulbrich, editors, Sixth Workshop on Horn Clauses for Verifica-
tion and Synthesis and Third Workshop on Program Equivalence and Rela-
tional Reasoning (HCVS/PERR 2019), volume 296 of EPTCS, pages 6–13.
Open Publishing Association, July 2019a. doi: 10.4204/EPTCS.296.4.
URL http://dx.doi.org/10.4204/EPTCS.296.4. (Cited on pages 8, 10,
and 65.)

Mihai Herda, Michael Kirsten, Etienne Brunner, Joana Plewnia, Ulla Scheler,
Chiara Staudenmaier, Benedikt Wagner, Pascal Zwick, and Bernhard
Beckert. Implementation of dibugger, July 2019b. URL https://doi.org/
10.5281/zenodo.3334650. (Cited on page 65.)

Mihai Herda, Shmuel Tyszberowicz, Joachim Müssig, and Bernhard Beckert.
Verification-based test case generation for information-flow properties. In
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
SAC ’19, pages 2231–2238, New York, NY, USA, 2019c. ACM. ISBN
978-1-4503-5933-7. doi: 10.1145/3297280.3297500. URL http://doi.acm.
org/10.1145/3297280.3297500. (Cited on pages 8, 10, 15, 25, and 49.)

161

http://www.sciencedirect.com/science/article/pii/S0950584905000881
http://www.sciencedirect.com/science/article/pii/S0950584905000881
http://tuprints.ulb.tu-darmstadt.de/5399/
http://dx.doi.org/10.1007/978-3-319-11164-3_21
http://dx.doi.org/10.1007/978-3-319-92994-1_5
http://dx.doi.org/10.4204/EPTCS.296.4
https://doi.org/10.5281/zenodo.3334650
https://doi.org/10.5281/zenodo.3334650
http://doi.acm.org/10.1145/3297280.3297500
http://doi.acm.org/10.1145/3297280.3297500

Bibliography

Mihai Herda, Shmuel Tyszberowicz, Joachim Müssig, and Bernhard Beckert.
Evaluation Data of the Implementation of the Approach for Automatic
Test Generation for Information-Flow Properties, July 2019d. URL https:
//doi.org/10.5281/zenodo.3334380. (Cited on page 61.)

Mihai Herda, Shmuel Tyszberowicz, Joachim Müssig, and Bernhard Beckert.
Implementation of the Approach for Automatic Test Generation for
Information-Flow Properties, July 2019e. URL https://doi.org/10.
5281/zenodo.3334532. (Cited on page 50.)

S. Horwitz, J. Prins, and T. Reps. On the adequacy of program depen-
dence graphs for representing programs. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’88, pages 146–157, New York, NY, USA, 1988. ACM. ISBN 0-
89791-252-7. doi: 10.1145/73560.73573. URL http://doi.acm.org/10.
1145/73560.73573. (Cited on page 143.)

Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing
using dependence graphs. ACM Trans. Program. Lang. Syst., 12(1):26–
60, January 1990. ISSN 0164-0925. doi: 10.1145/77606.77608. URL
http://doi.acm.org/10.1145/77606.77608. (Cited on pages 36 and 37.)

Catalin Hriţcu, Leonidas Lampropoulos, Antal Spector-Zabusky, Arthur
Azevedo de Amorim, Maxime Denes, John Hughes, Benjamin C. Pierce,
and Dimitrios Vytiniotis. Testing noninterference, quickly. Journal of
Functional Programming, 26:e4, 2016. doi: 10.1017/S09567968160000
58. URL http://dx.doi.org/10.1017/S0956796816000058. (Cited on
page 132.)

Marieke Huisman, Wolfgang Ahrendt, Daniel Grahl, and Martin Hentschel.
Formal Specification with the Java Modeling Language, pages 193–241.
Springer International Publishing, Cham, 2016. ISBN 978-3-319-49812-6.
doi: 10.1007/978-3-319-49812-6 7. URL https://doi.org/10.1007/978-
3-319-49812-6 7. (Cited on page 23.)

Sebastian Hunt and David Sands. On flow-sensitive security types. In
Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’06, pages 79–90, New York,
NY, USA, 2006. ACM. ISBN 1-59593-027-2. doi: 10.1145/1111037.
1111045. URL http://doi.acm.org/10.1145/1111037.1111045. (Cited
on page 134.)

Daniel Jackson. Alloy: A lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol., 11(2):256–290, April 2002. ISSN 1049-
331X. doi: 10.1145/505145.505149. URL http://doi.acm.org/10.1145/
505145.505149. (Cited on page 54.)

162

https://doi.org/10.5281/zenodo.3334380
https://doi.org/10.5281/zenodo.3334380
https://doi.org/10.5281/zenodo.3334532
https://doi.org/10.5281/zenodo.3334532
http://doi.acm.org/10.1145/73560.73573
http://doi.acm.org/10.1145/73560.73573
http://doi.acm.org/10.1145/77606.77608
http://dx.doi.org/10.1017/S0956796816000058
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-319-49812-6_7
http://doi.acm.org/10.1145/1111037.1111045
http://doi.acm.org/10.1145/505145.505149
http://doi.acm.org/10.1145/505145.505149

Bibliography

Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. Santosa.
Path-sensitive backward slicing. In Antoine Miné and David Schmidt,
editors, Static Analysis, pages 231–247, Berlin, Heidelberg, 2012a. Springer
Berlin Heidelberg. ISBN 978-3-642-33125-1. doi: 10.1007/978-3-642-33125-
1 17. URL http://dx.doi.org/10.1007/978-3-642-33125-1 17. (Cited
on pages 6, 111, 124, 125, and 136.)

Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas, and Andrew E. Santosa.
Tracer: A symbolic execution tool for verification. In P. Madhusudan and
Sanjit A. Seshia, editors, Computer Aided Verification, pages 758–766,
Berlin, Heidelberg, 2012b. Springer Berlin Heidelberg. ISBN 978-3-642-
31424-7. doi: 10.1007/978-3-642-31424-7 61. URL http://dx.doi.org/
10.1007/978-3-642-31424-7 61. (Cited on page 136.)

Deepak Kapur. Automatically generating loop invariants using quantifier
elimination. In Franz Baader, Peter Baumgartner, Robert Nieuwen-
huis, and Andrei Voronkov, editors, Deduction and Applications, number
05431 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2006. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany. URL http://drops.dagstuhl.de/opus/
volltexte/2006/511. (Cited on page 101.)

Moritz Kiefer, Vladimir Klebanov, and Mattias Ulbrich. Relational program
reasoning using compiler IR. Journal of Automated Reasoning, 60(3):
337–363, Mar 2018. ISSN 1573-0670. doi: 10.1007/s10817-017-9433-5.
URL https://doi.org/10.1007/s10817-017-9433-5. (Cited on pages
41, 42, 73, 111, 125, and 126.)

Johannes Kinder. Hypertesting: The case for automated testing of hyper-
properties. In 3rd Workshop on Hot Issues in Security Principles and
Trust (HotSpot 2015), 3 2015. URL https://pure.royalholloway.ac.
uk/portal/files/24051361/hotspot15.pdf. (Cited on page 131.)

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c: A software analysis perspective. Formal
Aspects of Computing, 27(3):573–609, May 2015. ISSN 1433-299X. doi:
10.1007/s00165-014-0326-7. URL http://dx.doi.org/10.1007/s00165-
014-0326-7. (Cited on page 137.)

Vladimir Klebanov, Philipp Rümmer, and Mattias Ulbrich. Automating
regression verification of pointer programs by predicate abstraction. Formal
Methods in System Design, 52(3):229–259, Jun 2018. ISSN 1572-8102. doi:
10.1007/s10703-017-0293-8. URL https://doi.org/10.1007/s10703-01
7-0293-8. (Cited on page 127.)

Bogdan Korel and Janusz Laski. Dynamic program slicing. Information
Processing Letters, 29(3):155 – 163, 1988. ISSN 0020-0190. doi: https://doi.

163

http://dx.doi.org/10.1007/978-3-642-33125-1_17
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://drops.dagstuhl.de/opus/volltexte/2006/511
http://drops.dagstuhl.de/opus/volltexte/2006/511
https://doi.org/10.1007/s10817-017-9433-5
https://pure.royalholloway.ac.uk/portal/files/24051361/hotspot15.pdf
https://pure.royalholloway.ac.uk/portal/files/24051361/hotspot15.pdf
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s10703-017-0293-8
https://doi.org/10.1007/s10703-017-0293-8

Bibliography

org/10.1016/0020-0190(88)90054-3. URL http://www.sciencedirect.
com/science/article/pii/0020019088900543. (Cited on page 121.)

Bogdan Korel and Jurgen Rilling. Dynamic program slicing methods. Infor-
mation and Software Technology, 40(11):647 – 659, 1998. ISSN 0950-5849.
doi: https://doi.org/10.1016/S0950-5849(98)00089-5. URL http://www.
sciencedirect.com/science/article/pii/S0950584998000895. (Cited
on pages 121 and 137.)

R. Küsters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and M. Mohr.
A hybrid approach for proving noninterference of java programs. In 2015
IEEE 28th Computer Security Foundations Symposium, pages 305–319,
July 2015. doi: 10.1109/CSF.2015.28. URL http://dx.doi.org/10.1109/
CSF.2015.28. (Cited on page 133.)

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and
Runtime Optimization, CGO ’04, pages 75–86, Washington, DC, USA,
2004. IEEE Computer Society. ISBN 0-7695-2102-9. URL http://dl.acm.
org/citation.cfm?id=977395.977673. (Cited on page 41.)

Gurvan Le Guernic. Information flow testing. In Iliano Cervesato, editor,
Advances in Computer Science – ASIAN 2007. Computer and Network
Security, pages 33–47, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
ISBN 978-3-540-76929-3. doi: 10.1007/978-3-540-76929-3 4. URL http://
dx.doi.org/10.1007/978-3-540-76929-3 4. (Cited on page 132.)

Gary T. Leavens, Joseph R. Kiniry, and Erik Poll. A JML tutorial: Modular
specification and verification of functional behavior for Java. In Werner
Damm and Holger Hermanns, editors, Computer Aided Verification (CAV),
volume 4590 of LNCS, page 37. Springer, 2007. (Cited on page 23.)

Jean-Christophe Léchenet, Nikolai Kosmatov, and Pascale Le Gall. Cut
branches before looking for bugs: Sound verification on relaxed slices. In
Perdita Stevens and Andrzej Wasowski, editors, Fundamental Approaches
to Software Engineering, pages 179–196, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg. ISBN 978-3-662-49665-7. doi: 10.1007/978-3-662-49665-
7 11. URL http://dx.doi.org/10.1007/978-3-662-49665-7 11. (Cited
on page 126.)

Tianhai Liu, Mateus Araújo, Marcelo d’Amorim, and Mana Taghdiri. A
comparative study of incremental constraint solving approaches in symbolic
execution. In Eran Yahav, editor, Hardware and Software: Verification and
Testing, pages 284–299, Cham, 2014. Springer International Publishing.
ISBN 978-3-319-13338-6. doi: 10.1007/978-3-319-13338-6 21. URL http:
//dx.doi.org/10.1007/978-3-319-13338-6 21. (Cited on page 143.)

164

http://www.sciencedirect.com/science/article/pii/0020019088900543
http://www.sciencedirect.com/science/article/pii/0020019088900543
http://www.sciencedirect.com/science/article/pii/S0950584998000895
http://www.sciencedirect.com/science/article/pii/S0950584998000895
http://dx.doi.org/10.1109/CSF.2015.28
http://dx.doi.org/10.1109/CSF.2015.28
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://dx.doi.org/10.1007/978-3-540-76929-3_4
http://dx.doi.org/10.1007/978-3-540-76929-3_4
http://dx.doi.org/10.1007/978-3-662-49665-7_11
http://dx.doi.org/10.1007/978-3-319-13338-6_21
http://dx.doi.org/10.1007/978-3-319-13338-6_21

Bibliography

Tianhai Liu, Shmuel Tyszberowicz, Mihai Herda, Bernhard Beckert, Daniel
Grahl, and Mana Taghdiri. Computing specification-sensitive abstrac-
tions for program verification. In Martin Fränzle, Deepak Kapur, and
Naijun Zhan, editors, Dependable Software Engineering: Theories, Tools,
and Applications, pages 101–117, Cham, 2016. Springer International
Publishing. ISBN 978-3-319-47677-3. doi: 10.1007/978-3-319-47677-3 7.
URL http://dx.doi.org/10.1007/978-3-319-47677-3 7. (Cited on
page 136.)

Steffen Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schneider,
and Alexandra Weber. Cassandra: Towards a certifying app store for
android. In Proceedings of the 4th ACM Workshop on Security and Privacy
in Smartphones & Mobile Devices, SPSM ’14, pages 93–104, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-3155-5. doi: 10.1145/
2666620.2666631. URL http://doi.acm.org/10.1145/2666620.2666631.
(Cited on pages 5, 134, and 141.)

Heiko Mantel and Henning Sudbrock. Types vs. pdgs in information flow
analysis. In Elvira Albert, editor, Logic-Based Program Synthesis and
Transformation, pages 106–121, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-38197-3. doi: 10.1007/978-3-642-38197-
3 8. URL http://dx.doi.org/10.1007/978-3-642-38197-3 8. (Cited
on pages 5, 134, and 141.)

J. McCarthy. Towards a Mathematical Science of Computation, pages 35–56.
Springer Netherlands, Dordrecht, 1993. ISBN 978-94-011-1793-7. doi:
10.1007/978-94-011-1793-7 2. URL https://doi.org/10.1007/978-94-
011-1793-7 2. (Cited on page 18.)

Dimiter Milushev, Wim Beck, and Dave Clarke. Noninterference via symbolic
execution. In Holger Giese and Grigore Rosu, editors, Formal Techniques
for Distributed Systems, pages 152–168, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-30793-5. doi: 10.1007/978-3-642-30793-
5 10. URL http://dx.doi.org/10.1007/978-3-642-30793-5 10. (Cited
on pages 6, 50, and 131.)

Joachim Müssig. Erweiterung des Theorembeweisers KeY um automatische
Testgenerierung für Informationsflusseigenschaften, March 2018. (Cited
on page 49.)

Andrew C. Myers and Andrew C. Myers. Jflow: Practical mostly-static
information flow control. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’99, pages 228–241, New York, NY, USA, 1999. ACM. ISBN 1-58113-
095-3. doi: 10.1145/292540.292561. URL http://doi.acm.org/10.1145/
292540.292561. (Cited on page 134.)

165

http://dx.doi.org/10.1007/978-3-319-47677-3_7
http://doi.acm.org/10.1145/2666620.2666631
http://dx.doi.org/10.1007/978-3-642-38197-3_8
https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.1007/978-94-011-1793-7_2
http://dx.doi.org/10.1007/978-3-642-30793-5_10
http://doi.acm.org/10.1145/292540.292561
http://doi.acm.org/10.1145/292540.292561

Bibliography

Objenesis. http://objenesis.org/, 2018. [Online; accessed 28-July-2018].
(Cited on page 55.)

Fouad ben Nasr Omri. Weighted Statistical Testing based on Active Learning
and Formal Verification Techniques for Software Reliability Assessment.
PhD thesis, 2015. URL http://dx.doi.org/10.5445/IR/1000050941.
(Cited on page 142.)

A. Podgurski and L. A. Clarke. A formal model of program dependences and
its implications for software testing, debugging, and maintenance. IEEE
Transactions on Software Engineering, 16(9):965–979, Sep. 1990. ISSN
0098-5589. doi: 10.1109/32.58784. URL http://dx.doi.org/10.1109/32.
58784. (Cited on pages 126 and 137.)

V. R. Pratt. Semantical consideration on floyo-hoare logic. In 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976), pages 109–
121, Oct 1976. doi: 10.1109/SFCS.1976.27. URL http://dx.doi.org/10.
1109/SFCS.1976.27. (Cited on page 18.)

Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John
Hatcliff, and Matthew B. Dwyer. A new foundation for control dependence
and slicing for modern program structures. ACM Trans. Program. Lang.
Syst., 29(5), August 2007. ISSN 0164-0925. doi: 10.1145/1275497.1275502.
URL http://dx.doi.org/10.1145/1275497.1275502. (Cited on pages
29, 116, and 126.)

Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. In
Proceedings of the 3rd ACM SIGSOFT Symposium on Foundations of
Software Engineering, SIGSOFT ’95, pages 41–52, New York, NY, USA,
1995. ACM. ISBN 0-89791-716-2. doi: 10.1145/222124.222138. URL
http://doi.acm.org/10.1145/222124.222138. (Cited on page 39.)

Adrián Riesco, Irina Măriuca Asăvoae, and Mihail Asăvoae. A generic pro-
gram slicing technique based on language definitions. In Narciso Martí-Oliet
and Miguel Palomino, editors, Recent Trends in Algebraic Development
Techniques, pages 248–264, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg. ISBN 978-3-642-37635-1. doi: 10.1007/978-3-642-37635-1 15.
URL http://dx.doi.org/10.1007/978-3-642-37635-1 15. (Cited on
page 137.)

E. Rodríguez-Carbonell and D. Kapur. Generating all polynomial in-
variants in simple loops. Journal of Symbolic Computation, 42(4):443
– 476, 2007. ISSN 0747-7171. doi: https://doi.org/10.1016/j.jsc.2007.
01.002. URL http://www.sciencedirect.com/science/article/pii/
S0747717107000107. (Cited on page 101.)

166

http://objenesis.org/
http://dx.doi.org/10.5445/IR/1000050941
http://dx.doi.org/10.1109/32.58784
http://dx.doi.org/10.1109/32.58784
http://dx.doi.org/10.1109/SFCS.1976.27
http://dx.doi.org/10.1109/SFCS.1976.27
http://dx.doi.org/10.1145/1275497.1275502
http://doi.acm.org/10.1145/222124.222138
http://dx.doi.org/10.1007/978-3-642-37635-1_15
http://www.sciencedirect.com/science/article/pii/S0747717107000107
http://www.sciencedirect.com/science/article/pii/S0747717107000107

Bibliography

Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Disjunctive inter-
polants for horn-clause verification. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification, pages 347–363, Berlin, Hei-
delberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-39799-8. doi:
10.1007/978-3-642-39799-8 24. URL http://dx.doi.org/10.1007/978-
3-642-39799-8 24. (Cited on page 41.)

A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis.
In 2010 23rd IEEE Computer Security Foundations Symposium, pages
186–199, July 2010. doi: 10.1109/CSF.2010.20. URL http://dx.doi.org/
10.1109/CSF.2010.20. (Cited on pages 6, 132, 135, and 141.)

A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, Jan 2003.
ISSN 0733-8716. doi: 10.1109/JSAC.2002.806121. URL http://dx.doi.
org/10.1109/JSAC.2002.806121. (Cited on pages 49 and 135.)

Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research. In Amir
Pnueli, Irina Virbitskaite, and Andrei Voronkov, editors, Perspectives of
Systems Informatics, pages 352–365, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. ISBN 978-3-642-11486-1. doi: 10.1007/978-3-642-11486-
1 30. URL http://dx.doi.org/10.1007/978-3-642-11486-1 30. (Cited
on page 135.)

Christoph Scheben. Program-level Specification and Deductive Verification
of Security Properties. PhD thesis, Karlsruhe Institute of Technology,
2014. URL http://digbib.ubka.uni-karlsruhe.de/volltexte/10000
46878. (Cited on pages 25, 26, 27, 28, and 141.)

Christoph Scheben and Simon Greiner. Information Flow Analysis, pages
453–471. Springer International Publishing, Cham, 2016. ISBN 978-3-319-
49812-6. doi: 10.1007/978-3-319-49812-6 13. URL http://dx.doi.org/
10.1007/978-3-319-49812-6 13. (Cited on pages 25 and 53.)

Peter H. Schmitt. First-Order Logic, pages 23–47. Springer International
Publishing, Cham, 2016. ISBN 978-3-319-49812-6. doi: 10.1007/978-
3-319-49812-6 2. URL http://dx.doi.org/10.1007/978-3-319-49812-
6 2. (Cited on pages 21 and 33.)

Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß. Dynamic frames
in java dynamic logic. In Bernhard Beckert and Claude Marché, editors,
Formal Verification of Object-Oriented Software, pages 138–152, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-18070-5.
doi: 10.1007/978-3-642-18070-5 10. URL http://dx.doi.org/10.1007/
978-3-642-18070-5 10. (Cited on page 18.)

167

http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1109/CSF.2010.20
http://dx.doi.org/10.1109/CSF.2010.20
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1007/978-3-642-11486-1_30
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046878
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046878
http://dx.doi.org/10.1007/978-3-319-49812-6_13
http://dx.doi.org/10.1007/978-3-319-49812-6_13
http://dx.doi.org/10.1007/978-3-319-49812-6_2
http://dx.doi.org/10.1007/978-3-319-49812-6_2
http://dx.doi.org/10.1007/978-3-642-18070-5_10
http://dx.doi.org/10.1007/978-3-642-18070-5_10

Bibliography

P. Shroff, S. Smith, and M. Thober. Dynamic dependency monitoring to
secure information flow. In 20th IEEE Computer Security Foundations
Symposium (CSF’07), pages 203–217, July 2007. doi: 10.1109/CSF.2007.
20. URL http://dx.doi.org/10.1109/CSF.2007.20. (Cited on page 134.)

Gregor Snelting. Combining slicing and constraint solving for validation of
measurement software. In Radhia Cousot and David A. Schmidt, editors,
Static Analysis, pages 332–348, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg. ISBN 978-3-540-70674-8. doi: 10.1007/3-540-61739-6 51. URL
http://dx.doi.org/10.1007/3-540-61739-6 51. (Cited on page 38.)

Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient path con-
ditions in dependence graphs for software safety analysis. ACM Trans.
Softw. Eng. Methodol., 15(4):410–457, October 2006. ISSN 1049-331X. doi:
10.1145/1178625.1178628. URL http://doi.acm.org/10.1145/1178625.
1178628. (Cited on pages 134 and 136.)

Mana Taghdiri, Gregor Snelting, and Carsten Sinz. Information flow analysis
via path condition refinement. In Pierpaolo Degano, Sandro Etalle, and
Joshua Guttman, editors, Formal Aspects of Security and Trust, pages
65–79, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-
3-642-19751-2. doi: 10.1007/978-3-642-19751-2 5. URL http://dx.doi.
org/10.1007/978-3-642-19751-2 5. (Cited on page 134.)

Frank Tip. A survey of program slicing techniques. Technical report,
Amsterdam, The Netherlands, The Netherlands, 1994. (Cited on pages 6
and 137.)

Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence
checking of static affine programs using widening to handle recurrences.
ACM Trans. Program. Lang. Syst., 34(3):11:1–11:35, November 2012. ISSN
0164-0925. doi: 10.1145/2362389.2362390. URL http://doi.acm.org/10.
1145/2362389.2362390. (Cited on page 112.)

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type
system for secure flow analysis. Journal of Computer Security, 4(2/3):
167–188, 1996. doi: 10.3233/JCS-1996-42-304. URL http://dx.doi.org/
10.3233/JCS-1996-42-304. (Cited on page 134.)

M. Ward. Properties of slicing definitions. In 2009 Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation, pages
23–32, Sep. 2009. doi: 10.1109/SCAM.2009.12. URL http://dx.doi.org/
10.1109/SCAM.2009.12. (Cited on pages 124 and 125.)

Daniel Wasserrab and Denis Lohner. Proving information flow noninterference
by reusing a machine-checked correctness proof for slicing. In Markus
Aderhold, Serge Autexier, and Heiko Mantel, editors, VERIFY-2010.

168

http://dx.doi.org/10.1109/CSF.2007.20
http://dx.doi.org/10.1007/3-540-61739-6_51
http://doi.acm.org/10.1145/1178625.1178628
http://doi.acm.org/10.1145/1178625.1178628
http://dx.doi.org/10.1007/978-3-642-19751-2_5
http://dx.doi.org/10.1007/978-3-642-19751-2_5
http://doi.acm.org/10.1145/2362389.2362390
http://doi.acm.org/10.1145/2362389.2362390
http://dx.doi.org/10.3233/JCS-1996-42-304
http://dx.doi.org/10.3233/JCS-1996-42-304
http://dx.doi.org/10.1109/SCAM.2009.12
http://dx.doi.org/10.1109/SCAM.2009.12

Bibliography

6th International Verification Workshop, volume 3 of EPiC Series in
Computing, pages 141–155. EasyChair, 2012. doi: 10.29007/nnzj. URL
https://easychair.org/publications/paper/FSk. (Cited on pages 36,
39, and 40.)

Mark Weiser. Program slicing. In Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, pages 439–449, Piscataway,
NJ, USA, 1981. IEEE Press. ISBN 0-89791-146-6. URL http://dl.
acm.org/citation.cfm?id=800078.802557. (Cited on pages 3, 34, 112,
and 116.)

Benjamin Weiß. Deductive verification of object-oriented software : dynamic
frames, dynamic logic and predicate abstraction. PhD thesis, 2011. URL
https://dx.doi.org/10.5445/KSP/1000021694. (Cited on pages 18, 19,
and 20.)

L. J. White. Basic mathematical definitions and results in testing. Computer
Program Testing, pages 13–24, 1981. (Cited on page 29.)

Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen.
A brief survey of program slicing. SIGSOFT Softw. Eng. Notes, 30
(2):1–36, March 2005. ISSN 0163-5948. doi: 10.1145/1050849.1050865.
URL http://doi.acm.org/10.1145/1050849.1050865. (Cited on pages
6 and 137.)

Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test
coverage and adequacy. ACM Comput. Surv., 29(4):366–427, December
1997. ISSN 0360-0300. doi: 10.1145/267580.267590. URL http://doi.
acm.org/10.1145/267580.267590. (Cited on page 29.)

169

https://easychair.org/publications/paper/FSk
http://dl.acm.org/citation.cfm?id=800078.802557
http://dl.acm.org/citation.cfm?id=800078.802557
https://dx.doi.org/10.5445/KSP/1000021694
http://doi.acm.org/10.1145/1050849.1050865
http://doi.acm.org/10.1145/267580.267590
http://doi.acm.org/10.1145/267580.267590

Publication List

B.1 Peer-Reviewed Conference andWorkshop Pa-
pers

1. Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda,
Daniel Lentzsch, and Mattias Ulbrich. Using relational verification
for program slicing. In Peter Ölveczky and Gwen Salaün, editors,
17th International Conference on Software Engineering and Formal
Methods (SEFM 2019), Lecture Notes in Computer Science, September
2019c. doi: 10.1007/978-3-030-30446-1 19. URL http://dx.doi.org/
10.1007/978-3-030-30446-1 19. to appear

2. Mihai Herda, Shmuel Tyszberowicz, Joachim Müssig, and Bernhard
Beckert. Verification-based test case generation for information-flow
properties. In Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, SAC ’19, pages 2231–2238, New York, NY, USA,
2019c. ACM. ISBN 978-1-4503-5933-7. doi: 10.1145/3297280.3297500.
URL http://doi.acm.org/10.1145/3297280.3297500

3. Mihai Herda, Michael Kirsten, Etienne Brunner, Joana Plewnia, Ulla
Scheler, Chiara Staudenmaier, Benedikt Wagner, Pascal Zwick, and
Bernhard Beckert. Understanding counterexamples for relational prop-
erties with dibugger. In Emanuele De Angelis, Grigory Fedyukovich,
Nikos Tzevelekos, and Mattias Ulbrich, editors, Sixth Workshop on
Horn Clauses for Verification and Synthesis and Third Workshop on
Program Equivalence and Relational Reasoning (HCVS/PERR 2019),
volume 296 of EPTCS, pages 6–13. Open Publishing Association, July
2019a. doi: 10.4204/EPTCS.296.4. URL http://dx.doi.org/10.4204/
EPTCS.296.4

4. Tobias Hamann, Mihai Herda, Heiko Mantel, Martin Mohr, David
Schneider, and Markus Tasch. A uniform information-flow security
benchmark suite for source code and bytecode. In Nils Gruschka, editor,

171

http://dx.doi.org/10.1007/978-3-030-30446-1_19
http://dx.doi.org/10.1007/978-3-030-30446-1_19
http://doi.acm.org/10.1145/3297280.3297500
http://dx.doi.org/10.4204/EPTCS.296.4
http://dx.doi.org/10.4204/EPTCS.296.4

Publication List

Secure IT Systems, pages 437–453, Cham, 2018. Springer International
Publishing. ISBN 978-3-030-03638-6. doi: 10.1007/978-3-030-03638-
6 27. URL http://dx.doi.org/10.1007/978-3-030-03638-6 27

5. Bernhard Beckert, Mihai Herda, Michael Kirsten, and Jonas Schiffl.
Formal specification and verification of hyperledger fabric chaincode.
In Guangdong Bai and Kamanashis Biswas, editors, 3rd Symposium
on Distributed Ledger Technology (SDLT-2018) co-located with ICFEM
2018: the 20th International Conference on Formal Engineering Meth-
ods, November 2018b. URL https://symposium-dlt.org/

6. Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten, and
Marko Kleine Büning. Using theorem provers to increase the precision
of dependence analysis for information flow control. In Jing Sun and
Meng Sun, editors, Formal Methods and Software Engineering, pages
284–300, Cham, 2018a. Springer International Publishing. ISBN 978-
3-030-02450-5. doi: 10.1007/978-3-030-02450-5 17. URL http://dx.
doi.org/10.1007/978-3-030-02450-5 17

7. Bernhard Beckert, Mihai Herda, Stefan Kobischke, and Mattias Ul-
brich. Towards a notion of coverage for incomplete program-correctness
proofs. In Tiziana Margaria and Bernhard Steffen, editors, Lever-
aging Applications of Formal Methods, Verification and Validation.
Verification, pages 53–63, Cham, 2018c. Springer International Pub-
lishing. ISBN 978-3-030-03421-4. doi: 10.1007/978-3-030-03421-4 4.
URL http://dx.doi.org/10.1007/978-3-030-03421-4 4

8. Mihai Herda, Shmuel S. Tyszberowicz, and Bernhard Beckert. Using
dependence graphs to assist verification and testing of information-flow
properties. In Catherine Dubois and Burkhart Wolff, editors, 12th
International Conference on Tests and Proofs (TAP 2018), volume
10889 of Lecture Notes in Computer Science, pages 83–102. Springer,
June 2018. ISBN 978-3-319-92994-1. doi: 10.1007/978-3-319-92994-1 5.
URL http://dx.doi.org/10.1007/978-3-319-92994-1 5

9. Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda,
Daniel Lentzsch, and Mattias Ulbrich. Semslice: Exploiting relational
verification for automatic program slicing. In Nadia Polikarpova and
Steve Schneider, editors, Integrated Formal Methods, pages 312–319,
Cham, 2017b. Springer International Publishing. ISBN 978-3-319-
66845-1. doi: 10.1007/978-3-319-66845-1 20. URL http://dx.doi.
org/10.1007/978-3-319-66845-1 20

10. Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten, and
Marko Kleine Büning. Combining graph-based and deduction-based
information-flow analysis. In Ralf Küsters, editor, 5th Workshop on

172

http://dx.doi.org/10.1007/978-3-030-03638-6_27
https://symposium-dlt.org/
http://dx.doi.org/10.1007/978-3-030-02450-5_17
http://dx.doi.org/10.1007/978-3-030-02450-5_17
http://dx.doi.org/10.1007/978-3-030-03421-4_4
http://dx.doi.org/10.1007/978-3-319-92994-1_5
http://dx.doi.org/10.1007/978-3-319-66845-1_20
http://dx.doi.org/10.1007/978-3-319-66845-1_20

B.1. Peer-Reviewed Conference and Workshop Papers

Hot Issues in Security Principles and Trust (HotSpot 2017) affiliated
with ETAPS 2017: European Joint Conferences on Theory and Practice
of Software, pages 6–25, April 2017a. URL https://sec.informatik.
uni-stuttgart.de/ media/events/hotspot2017/proceedings.pdf

11. Tianhai Liu, Shmuel Tyszberowicz, Mihai Herda, Bernhard Beckert,
Daniel Grahl, and Mana Taghdiri. Computing specification-sensitive
abstractions for program verification. In Martin Fränzle, Deepak
Kapur, and Naijun Zhan, editors, Dependable Software Engineering:
Theories, Tools, and Applications, pages 101–117, Cham, 2016. Springer
International Publishing. ISBN 978-3-319-47677-3. doi: 10.1007/978-3-
319-47677-3 7. URL http://dx.doi.org/10.1007/978-3-319-4767
7-3 7

12. Aboubakr Achraf El Ghazi, Mana Taghdiri, and Mihai Herda. First-
order transitive closure axiomatization via iterative invariant injections.
In Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA
Formal Methods, pages 143–157, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-17524-9. doi: 10.1007/978-3-319-17524-
9 11. URL http://dx.doi.org/10.1007/978-3-319-17524-9 11

13. Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel,
Christoph Gladisch, Sarah Grebing, Reiner Hähnle, Martin Hentschel,
Mihai Herda, Vladimir Klebanov, Wojciech Mostowski, Christoph
Scheben, Peter H. Schmitt, and Mattias Ulbrich. The KeY platform for
verification and analysis of Java programs. In Dimitra Giannakopoulou
and Daniel Kroening, editors, 6th Working Conference on Verified
Software: Theories, Tools, and Experiments (VSTTE 2014), volume
8471 of Lecture Notes in Computer Science, pages 1–17. Springer-
Verlag, October 2014. ISBN 978-3-642-54107-0. doi: 10.1007/978-3-
319-12154-3 4. URL http://link.springer.com/chapter/10.1007/
978-3-319-12154-3 4

14. Aboubakr Achraf El Ghazi, Mattias Ulbrich, Mana Taghdiri, and Mihai
Herda. Reducing the complexity of quantified formulas via variable
elimination. In 11th International Workshop on Satisfiability Modulo
Theories (SMT 2013), pages 87–99, July 2013. URL http://arxiv.
org/abs/1408.0700

173

https://sec.informatik.uni-stuttgart.de/_media/events/hotspot2017/proceedings.pdf
https://sec.informatik.uni-stuttgart.de/_media/events/hotspot2017/proceedings.pdf
http://dx.doi.org/10.1007/978-3-319-47677-3_7
http://dx.doi.org/10.1007/978-3-319-47677-3_7
http://dx.doi.org/10.1007/978-3-319-17524-9_11
http://link.springer.com/chapter/10.1007/978-3-319-12154-3_4
http://link.springer.com/chapter/10.1007/978-3-319-12154-3_4
http://arxiv.org/abs/1408.0700
http://arxiv.org/abs/1408.0700

Publication List

B.2 Book Chapters
1. Wolfgang Ahrendt, Christoph Gladisch, and Mihai Herda. Proof-

based Test Case Generation, pages 415–451. Springer International
Publishing, Cham, 2016b. ISBN 978-3-319-49812-6. doi: 10.1007/978-3-
319-49812-6 12. URL https://doi.org/10.1007/978-3-319-49812-
6 12

B.3 Peer-Reviewed Posters
1. Daniel Bruns, Huy Quoc Do, Simon Greiner, Mihai Herda, Martin

Mohr, Enrico Scapin, Tomasz Truderung, Bernhard Beckert, Ralf Küs-
ters, Heiko Mantel, and Richard Gay. Poster: Security in e-voting. In
Sophie Engle, editor, 36th IEEE Symposium on Security and Privacy
(S & P 2015), Poster Session, May 2015. URL https://www.ieee-
security.org/TC/SP2015/posters/paper 10.pdf

B.4 Non-Peer-Reviewed Publications
1. Bernhard Beckert, Thorsten Bormer, Stephan Gocht, Mihai Herda,

Daniel Lentzsch, and Mattias Ulbrich. Using relational verification for
program slicing. Technical Report 2019,5, Department of Informatics,
Karlsruhe Institute of Technology, Karlsruhe, April 2019d. URL http:
//dx.doi.org/10.5445/IR/1000093895

2. Simon Greiner and Mihai Herda. Cocome with security. Technical
Report 2017,2, Department of Informatics, Karlsruhe Institute of Tech-
nology, Karlsruhe, April 2017. URL http://dx.doi.org/10.5445/IR/
1000065106

3. Thomas Bauereiß, Simon Greiner, Mihai Herda, Michael Kirsten, Xi-
meng Li, Heiko Mantel, Martin Mohr, Matthias Perner, David Schnei-
der, and Markus Tasch. Rifl 1.1: A common specification language for
information-flow requirements. Technical Report TUD-CS-2017-0225,
TU Darmstadt, August 2017. URL http://dx.doi.org/10.5445/IR/
1000092713

174

https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_12
https://www.ieee-security.org/TC/SP2015/posters/paper_10.pdf
https://www.ieee-security.org/TC/SP2015/posters/paper_10.pdf
http://dx.doi.org/10.5445/IR/1000093895
http://dx.doi.org/10.5445/IR/1000093895
http://dx.doi.org/10.5445/IR/1000065106
http://dx.doi.org/10.5445/IR/1000065106
http://dx.doi.org/10.5445/IR/1000092713
http://dx.doi.org/10.5445/IR/1000092713

	Title
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	I Introduction
	1 Introduction
	1.1 Goal
	1.2 State of the Art
	1.3 Contributions
	1.3.1 Information Flow Security
	1.3.2 Program Slicing

	1.4 Relevant Publications
	1.5 Outline
	1.5.1 Part 1—Introduction
	1.5.2 Part 2—Information Flow Security
	1.5.3 Part 3—Program Slicing
	1.5.4 Part 4—Related Work and Conclusion

	2 Foundations
	2.1 Information Flow Security
	2.2 JavaDL and the Theorem Prover KeY
	2.2.1 JavaDL
	2.2.2 The Theorem Prover KeY
	2.2.3 JML

	2.3 Proving Noninterference Properties with KeY
	2.3.1 Proof Obligations
	2.3.2 Extensions to JML

	2.4 Automatic Test Generation with KeY
	2.4.1 Tests and Coverage Criteria
	2.4.2 Generating Tests with KeYTestGen

	2.5 Program Slicing
	2.6 Using Dependence Graphs for Proving Noninterference
	2.6.1 Dependence Graphs
	2.6.2 Using the SDG to Prove Noninterference

	2.7 Relational Verification

	II Information Flow Security
	3 A Framework for Checking Noninterference
	4 Automatic Generation of Noninterference Tests
	4.1 Introduction
	4.2 Noninterference Tests and Test Suites
	4.3 Automatic Noninterference Test Generation
	4.3.1 Constraints Generation
	4.3.2 Test Data Generation
	4.3.3 Code Generation
	4.3.4 Example

	4.4 Coverage Criteria
	4.5 Evaluation
	4.6 Conclusion

	5 Analysis of Noninterference Counterexamples
	5.1 Introduction
	5.2 Requirements of the Approach
	5.3 Implementation
	5.3.1 Debugging Operations
	5.3.2 Program Panels
	5.3.3 Watch Expressions and Conditional Breakpoints

	5.4 Discussion
	5.5 Conclusion

	6 Using SDGs to Assist Deductive Verification and Testing
	6.1 Introduction
	6.2 Running Example
	6.3 Generation of the Simplified Program
	6.4 Verification of the Simplified Program
	6.5 Testing the Simplified Program
	6.6 Discussion
	6.7 Conclusion

	7 Increasing the Precision of SDG-based Approaches
	7.1 Introduction
	7.2 The Combined Approach
	7.3 Implementation
	7.4 Evaluation
	7.5 Discussion
	7.6 Conclusion

	III Program Slicing
	8 A Framework for Automatic and Precise Program Slicing
	8.1 Introduction
	8.2 Slicing Semantics
	8.3 Verification of Slice Candidates
	8.4 A Framework for Automatic Slicing
	8.4.1 Removing Instructions Using Heuristics
	8.4.2 Counterexample Guided Slicing

	8.5 Discussion
	8.6 Conclusion

	IV Related Work and Conclusion
	9 Related Work
	9.1 Noninterference
	9.1.1 Noninterference Testing
	9.1.2 Noninterference Debugging
	9.1.3 Combinations of Logic- and SDG-based Approaches
	9.1.4 Other Approaches for Checking Noninterference

	9.2 Program Slicing

	10 Conclusion
	10.1 Summary
	10.2 Future Work
	10.2.1 Improving the Noninterference Framework.
	10.2.2 Improving the Slicing Framework

	V Appendix
	Example of Noninterference Test
	A.1 Implementation

	Bibliography
	Publication List
	B.1 Peer-Reviewed Conference and Workshop Papers
	B.2 Book Chapters
	B.3 Peer-Reviewed Posters
	B.4 Non-Peer-Reviewed Publications

