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Abstract

The present dissertation has been produced in the context of the DFG priority
programme “Reliably Secure Software Systems” (RS3). The goal is to develop
a rigorous analysis technique for proving functional and relational correctness
of shared-memory multi-threaded object-oriented software systems—such as
programs written in the Java language—based on formal program semantics
and deductive verification. This work contains the first approach towards a
semantically precise information flow anlaysis for concurrent programs.

Verification of concurrent programs still poses one of the major challenges
in computer science. Several techniques to tackle this problem have been
proposed. However, they often are not amenable to apply to components of
open systems. Our approach is based on an adaptation of the modular rely/
guarantee methodology in dynamic logic. Rely/guarantee uses functional
specification to symbolically describe the observable behavior of concurrently
running threads: while each thread guarantees adherence to a specified
property at any point in time, all other threads can rely on this property being
established. This allows to regard threads largely in isolation—only w.r.t.
an symbolic thread environment that is constrained by these specifications.

In order to keep specifications modular and concise, we additionally need
to ensure that ‘nothing else changes.’ In sequential programs, this frame
problem has already been studied extensively. Our approach complements
functional rely/guarantee specification with respective frame clauses. Our
approach is completely modular in the sense that we prove correctness of
threads w.r.t. any thread state, not assuming an initial state in which the
environment is empty. Our framework of proof obligations does not include
postconditions (i.e., functional correctness properties) directly. This decision
is rooted in our effort to separate rely/guarantee, i.e., proof of well-behaved
thread interactions, from other program properties. This permits to apply
our approach to properties beyond postconditions, such as information flow
security.
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Abstract

The feature dimensions of high-level programing languages are largely
orthogonal. Many problems regarding object-orientation or the general rich-
ness in features of Java have been sufficiently solved before. This allows
us in this thesis to focus on the issue of concurrency. We will explain our
approach using a simple, but concurrent programing language. Besides
the usual constructs for sequential programs, it caters for dynamic thread
creation. In order to define it as a conservative extension of a previously
defined sequential language, we make interleaving points explicit in the
code, effectively disentangling ‘own’ and environment changes. We define
interleaving semantics of concurrent programs parametric w.r.t. an under-
specified deterministic scheduling function. Deterministic program semantics
yields tractable definitions, while underspecification allows to abstract from
concrete behavior.

To formally reason about programs of this language, we introduce a novel
multi-modal logic, Concurrent Dynamic Trace Logic (CDTL). It combines
the strengths of dynamic logic with those of linear temporal logic and allows
to express temporal properties about symbolic program traces. We first
develop a sound and relatively complete sequent calculus for the logic subset
that uses the sequential part of the language, based on symbolic execution
and temporal unwinding. In a second step, we extend this to a calculus
for the complete logic by adding symbolic execution rules for concurrent
interleavings and dynamic thread creation, based on the rely/guarantee
methodology. Again, this calculus is proven sound and complete; it is
suitable for automated deduction.

Besides functional properties, that assure safety of the system, we also
investigate software security in the form of confidentiality—a relational prop-
erty, i.e., a property relating multiple possible executions. The goal is to
ensure that no data must flow from confidential sources to public sinks. Lan-
guage based information flow security covers the scenario where information
is handled by software which operational behavior is known to potential
attackers. It is assumed that an attacker is aware of all vulnerabilities and
how to exploit them. The analysis therefore focuses on the program source
alone. We use the semantically defined security notion of noninterference—
including its extensions to concurrent programs, such as LSOD and SSOD,
as well as semantical declassification.

Unlike traditional static or dynamic software assurance techniques, analy-
ses based on formal logics which precisely capture program semantics readily
possess the aptitude to faithfully express semantically defined relational
properties without false positives. Based on previous results, we develop a
novel information flow security property appropriate for object-oriented and
multi-threaded programs. This includes the absence of certain timing leaks,
that are not considered in LSOD/SSOD.
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Abstract

Due to the expressivity of our logic CDTL, we can precisely formalize a
wide range of security properties. Having a sound and complete calculus for
CDTL enables us to precisely classify programs as either secure or insecure.

While the aforementioned formal definitions are given for a toy language,
the ultimate goal is to reason about programs written in the Java language.
The particular challenges lie in its object-orientation and support for multi-
threading. We discuss how our verification approach extends naturally to
multi-threaded Java and present an implementation of the rely/guarantee
approach in KeY. KeY is a mature software verification system for (sequential)
Java, based on dynamic logic theorem proving and contracts in the Design
by Contract philosophy. It is being co-developed by the author and has been
applied to several realistic verification targets. Our implementation benefits
from the generality of the KeY approach and the adaptability of the KeY
platform.

Specification is an essential part of modular software verification, both
sequential and parallel. Given appropriate specification, ‘auto-active’ ver-
ification works without any interaction between user and prover. Instead,
specification provides a convenient high-level interface to proofs. State of
the art specification languages—such as the established Java Modeling Lan-
guage (JML)—are rich in constructs for specifying functional behavior of
sequential programs. We discuss its effectiveness in the specification of
modularity properties and we propose natural extensions to JML regarding
both confidentiality properties and multi-threaded programs.

Rely/guarantee based approaches often suffer from a considerable spec-
ification overhead; we lift this burden by integrating the specifications of
rely/guarantee into JML. In this way, we develop a specification language
that includes features for both sequential (method contracts) and parallel
modularity (rely/guarantee).

We will demonstrate the effectiveness of the techniques presented in
this dissertation in a case study. The target is a simple, but distributed,
electronic voting system implemented in Java, that has been developed
together with the group of R. Küsters at the University of Trier. Voting
demands high assurances regarding information security, e.g., individual
votes are confidential. At the same time, it requires some information, i.e.,
the election result, to be publicly available. This makes voting a prime
target for the techniques developed in this work. We present a functional
verification and an information flow analysis of a sequential implementation
of the system.
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Zusammenfassung

Die vorliegende Dissertation ist im Rahmen des DFG-Schwerpunktprogram-
mes ›Zuverlässig sichere Softwaresysteme‹ entstanden. Das Ziel ist die Ent-
wicklung einer auf formaler Programmsemantik und deduktiver Verifikation
basierenden durchgreifenden Technik zum Nachweis funktionaler und rela-
tionaler Korrektheit mehrfädriger und objektorientierter Softwaresysteme –
wie etwa Programme der Sprache Java. Diese Arbeit beinhaltet den ersten
Ansatz einer semantisch präzisen Informationsflussanalyse für nebenläufige
Programme.

Die Verifikation nebenläufiger Programme stellt noch immer eine der
großen Herausforderungen der Informatik dar. Einige Techniken zur Lösung
dieses Problems sind bereits bekannt. Allerdings sind diese oft nicht geeignet,
Komponenten offener Systeme zu behandeln. Der hier vorgestellte Ansatz
basiert auf einer Adaption der modularen Annahme/Zusicherungs-Methode
(engl. rely/guarantee, RG) in dynamischer Logik. Die RG-Methode benutzt
funktionale Spezifikation, um das beobachtbare Verhalten parallel laufender
Ausführungsfäden symbolisch zu beschreiben: Solange jeder Faden die Ein-
haltung einer gewissen Eigenschaft zu jedem Zeitpunkt zusichert, können alle
anderen Fäden diese Eigenschaft annehmen. Dies erlaubt, Fäden weitgehend
isoliert – lediglich bezüglich einer symbolischen Umgebung, die durch diese
Spezifikation eingeschränkt ist – zu betrachten.

Um Spezifikationen modular und kurz zu halten, muss zusätzlich sicher-
gestellt werden, dass keine weiteren Änderungen erfolgen. Für sequentielle
Programme wurde dieses Rahmenproblem (engl. frame problem) bereits ein-
gehend studiert. Der vorliegende Ansatz komplementiert die funktionale
RG-Spezifikation mit entsprechenden Rahmenbedingungen. Er ist vollends
modular: Die Korrektheit wird von Fäden bezüglich jeglichen Ausführungszu-
standes nachgewiesen. Das Beweisverpflichtungsrahmenwerk umfasst unmit-
telbar keine Nachbedingungen (d.h. funktionale Korrektheitseigenschaften).
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Zusammenfassung

Diese Entscheidung gründet auf dem Wunsch, den Nachweis wohlverträglicher
Interaktion zwischen Fäden von sonstigen Programmeigenschaften zu sepa-
rieren. Dies erlaubt, den Ansatz auf darüber hinaus gehende Eigenschaften,
wie etwa Informationsflusssicherheit, zu erweitern.

Die Charakteristika von Programmierhochsprachen liegen weitestgehend
orthogonal zueinander. Viele Fragen hinsichtlich Objektorientierung wurden
bereits hinreichend beantwortet. Daher konzentriert sich diese Dissertation
auf das Thema der Nebenläufigkeit. Zur Erläuterung des Ansatz wird eine
simple, jedoch nebenläufige, Programmiersprache herangezogen. Neben den
für sequentielle Programme üblichen Konstrukten umfasst sie auch das dy-
namische Abzweigen neuer Fäden. Um sie als eine konservative Erweiterung
einer zuvor eingeführten sequentiellen Sprache zu definieren, werden Sprei-
zungen des Programmflusses (engl. interleaving) explizit gemacht. Dadurch
werden ›eigene‹ Schreibzugriffe von denen der Umgebung getrennt betrachtet.
Die Spreizungssemantik nebenläufiger Programme ist parametrisch bezüglich
einer unterspezifizierten, deterministischen Ablaufplanungsfunktion definiert.

Um logische Schlüsse über Programme dieser Sprache zu ermöglichen, füh-
ren wir eine neue Multimodallogik, Concurrent Dynamic Trace Logic (CDTL),
ein. Sie vereint die Stärken dynamischer und linearer Temporallogik miteinan-
der und vermag es daher, temporale Eigenschaften symbolischer Programm-
abläufe auszudrücken. Wir entwickeln zunächst – basierend auf symbolischer
Ausführung und dem Abwickeln temporaler Operatoren – einen korrekten
und relativ vollständigen Sequenzenkalkül für die Untermenge der Logik,
welche den sequentiellen Teil der Sprache betrachtet. In einem zweiten Schritt
erweitern wir diesen zu einem Kalkül für die komplette Logik durch Hinzu-
fügen von Schlussregeln für Spreizungen und Abzweigungen basierend auf
der RG-Methode. Für diesen Kalkül zeigen wir wiederum Korrektheit und
Vollständigkeit; er ist geeignet zum automatisierten Schließen.

Neben funktionalen Eigenschaften – die die Funktionssicherheit (engl.
safety) sicherstellen – untersuchen wir auch die Angriffssicherheit (engl. se-
curity) als eine relationale Eigenschaft, d.h. eine Eigenschaft, die mehrere
mögliche Programmläufe in Relation setzt. Das Ziel ist, sicher zu stellen,
dass keine Daten von vertraulichen Quellen zu öffentlichen Senken fließen.
Sprachbasierte Informationsflusssicherheit betrachtet das Szenario, in wel-
chem Information von Softwaresystemen, deren operationales Verhalten
potentiellen Angreifern bekannt ist, behandelt wird. Es ist zu erwarten, dass
Angreifer alle Schwachstellen und ihre Nutzung kennen. Die Analyse muss
daher auf das Programm als solches konzentriert sein. Wir benutzen den
semantisch definierten Begriff der Nichtinterferenz (engl. noninterference)
– einschließlich seiner Erweiterungen bezüglich nebenläufigen Programmen,
sowie semantische Deklassifikation.

Anders als traditionelle statische oder dynamische Methoden, sind auf
formalen Logiken beruhende Analysen geeignet, semantisch definierte rela-
tionale Eigenschaften getreu auszudrücken. Ausgehend von vorhergehenden
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Zusammenfassung

Resultaten entwickeln wir eine neuartige Informationsflusssicherheitseigen-
schaft, die für objektorientierte und mehrfädrige Programme geeignet ist.
Diese umfasst die Abwesenheit gewisser Terminierungslecks.

Dank der Ausdrucksmächtigkeit unserer Logik CDTL kann eine Band-
breite an Sicherheitseigenschaften präzise formalisiert werden. Der korrekte
und vollständige Kalkül für CDTL ermöglicht sodann die zuverlässige Klas-
sifikation von Programmen in ›sicher‹ und ›unsicher‹.

Während die o.g. formalen Definitionen sich nur auf eine Spielsprache
beziehen, bleibt das übergeordnete Ziel, Schlüsse über Java-Programme zu
ziehen. Die besonderen Herausforderungen liegen in der Objektorientierung
und der Unterstützung für Mehrfädrigkeit. Wir erörtern, wie sich unser An-
satz natürlich auf nebenläufiges Java erweitern lässt, und präsentieren eine
Implementierung von RG in KeY. KeY ist ein etabliertes Softwareverifikati-
onssystem für (sequentielles) Java und basiert auf einem Theorembeweiser
für dynamische Logik sowie auf Methodenverträgen. Es wird u.a. vom Autor
entwickelt und wurde bereits in einschlägigen Fallstudien eingesetzt. Die
Implementierung profitiert von der Generalität des KeY-Ansatzes und der
Modifizierbarkeit der KeY-Plattform.

Spezifikationen sind essentieller Bestandteil modularer Softwareverifikati-
on, im sequentiellen wie im parallelen Bereich. Ist eine passende Spezifikation
gebeben – können ›autoaktive‹ Werkzeuge ohne weitere Interaktion ein Er-
gebnis liefern. Stattdessen bietet Spezifikation eine komfortable Schnittstelle
zum Beweis auf höherer Ebene. Spezifikationssprachen – wie die etablierte
Java Modeling Language (JML) – bieten vielfältige Konstrukte zur Spezifika-
tion funktionalen Verhaltens sequentieller Programme. Deren Effektivität in
Bezug auf Modularitätseigenschaften wird erörtert. Natürliche Erweiterun-
gen für Vertraulichkeitseigenschaften und nebenläufige Programme werden
vorgestellt.

Ansätze, die auf RG basieren, werden oft durch einen erheblichen Spezifi-
kationsaufwand geschwächt; dieses Problem kann durch eine Integration in
JML behoben werden. Auf diesem Weg entwickeln wir eine Spezifikations-
sprache, die Elemente sowohl für sequentielle Modularität (Kontrakte) als
auch für parallele Modularität (RG) bereit hält.

Die Effektivität der in dieser Dissertation vorgestellten Techniken wird
an einer Fallstudie demonstriert. Das Ziel ist ein einfaches, aber verteiltes,
in Java implementiertes, elektronisches Wahlsystem, das zusammen mit
der Gruppe von Ralf Küsters von der Universität Trier entwickelt wurde.
Wahlen stellen hohe Anforderungen an die Informationssicherheit, z.B. die
vertrauliche Verarbeitung der abgegebenen Stimmen. Gleichzeitig müssen
bestimmte Informationen, z.B. das Wahlergebnis, öffentlich gemacht werden.
Diese Herausforderung macht Wahlsysteme zu erstklassigen Zielen der hier
entwickelten Techniken. Wir führen den Nachweis funktionaler Korrektheit
und Angriffssicherheit einer sequentiellen Implementierung des Systems vor.
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1
Introduction

At the time when the “right to privacy” was first proclaimed by Warren
and Brandeis in 1890, there was little confidential information that was
collected systematically. Today, in the 21st century, software systems are
behind almost any process of everyday life—business or private. Not only do
they manifest in ‘traditional’ personal computers, but also in mobile phones,
electricity meters, health insurance cards, etc. Many software services are
not provided by a local machine, but online in ‘the cloud.’ Typically, these
services are accessed in a web browser that runs scripts or even Java programs.
The Common Vulnerabilities and Exposures (CVE) website lists over 300
known vulnerabilities in the Java implementations that were discovered alone
within the past 3 years [CVE].

With the ever growing amount of sensitive data which software systems
handle, and the connectedness of the world, we are in need of precise and
enforcible security mechanisms. The recent discoveries of security threats
induced by badly designed software, such as the Heartbleed bug [Carvalho
et al., 2014], have demonstrated the demand for a rigorous security assess-
ment in software development. This does not only concern domains with
traditionally high assurance demands, such as banking or aeronautics, but
also private communication. Modern software is highly adaptable; bugs are
too: a simple programing error could be replicated on a billion devices.

At the same time, software systems have become more and more complex.
Established concepts for modularization or information hiding, such as
object-orientation, facilitate the designers’/implementors’ work; but raise
the complexity of analyzing such a system. It has already been several years
since concurrency had become a major paradigm in computer development.
Although the software development generally lags behind the hardware, all
modern systems are concurrent in some way or another. It is evident that
concurrent systems are much harder to comprehend than sequential ones.
Many software faults are linked to an inferior understanding of concurrent
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Chapter 1. Introduction

program semantics. It has thus become vital for analyses of safety or security
to take a leap forward from sequential to concurrent programs.

The “goto fail” bug in Apple’s iOS operating system was an infamous
programing error [Bland, 2014], that made the system vulnerable to attacks.
Through an inadvertently introduced superfluous goto statement, the final
step in the Transport Layer Security (TLS) protocol was never executed.
This made possible person-in-the-middle attacks in seemingly secure TLS
connections. We observe that ‘small’ programing errors, like Heartbleed or
“goto fail,” have an enormous impact on system security. Even though this
kind of programing error would have been very much avoidable through
traditional quality assurance techniques—like thorough code review—it re-
mained undiscovered for over one year and left several millions of devices
vulnerable during that period.

With today’s ubiquituous usage of software systems, it has even become
a question of ethics to produce software quality [Class, 2008]. For instance,
electronic voting can only be established in a democratic society if even lay
citizens can trust the system. Proving safety and security in a rigorous way is
a necessary step towards this (cf. [Ewert et al., 2003; Deutscher Bundestag]).

1.1 Sequential and Concurrent Programs

Concurrent computer systems have already existed for a long time. But since
the end of Moore’s law has been reached (i.e., the speed of single processors
does not evolve significantly anymore) in the past decade, concurrency has
become widespread—even in end-user systems. This development further
stresses the demand for high-precision analysis. While state of the art
techniques for formal specification and verification of sequential programs
have developed and matured in the past years, similar concepts that would
be appropriate for concurrent programs are still in their infancy.

Sequential programs run on single processors. In contrast, concurrent
programs can typically be modeled as a collection of processes—that may
each be described as sequential programs—and some (implicit or explicit)
communication channels. The central advantage of concurrent programs
is that they can be actually executed in parallel on physically separate
processors. This concurrency model is usually found in distributed systems,
where each processor maintains its own memory and cannot interfere directly
with the other processes. Instead, they communicate (synchronously or
asynchronously) through message passing using explicit channels.

Time share parallelism, on the other hand, runs on (one or more) shared
processors,1 with the next to-be-dispatched process to be determined by a
scheduler. Processes may be preëmpted in order for other processes to be

1The exact number of physical processors is not relevant to the design and analysis of
multi-threaded programs.
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thread 0 memory thread 1

t

write(X,5)

read(X):5

read(X):5

write(X,6)

write(Y,6)

read(Y):6

write(Y,7)

Figure 1.1: Example of two threads naïvely accessing shared memory (center),
thus interfering with each other. Thread 0 executes a program X = 5; Y =
X; and thread 1 executes a program X++; Y++; The vertical axis represents
time. With the interleaved read and write operations displayed here, neither
of both achieves the intention expressed in their respective sequential program.
Note that this is only one of many possible interleavings.

executed in between. In most systems this interleaving can occur at any
point in time during the execution. In some systems the program states in
which interleaving is possible are restricted. An example is the coöperative
scheduling paradigm using explicit release points [Dovland et al., 2005].

Typically, time share systems also share memory. While modern desktop
computers have multiple processor cores, these are not (purely) distributed,
but form a time share system that particularly shares the main memory.2
Processes that share processors and memory are also called threads, designat-
ing this kind of concurrency as multi-threading. This thesis is dedicated to
the multi-threading paradigm as it is used in the Java language [Arnold and
Gosling, 1998; Gosling et al., 2014], amongst others (cf. [Philippsen, 2000]).

Interference

Processes in shared memory systems tend to interfere with each other: one
process writes a location that another one is about to read. This means that

2Each processor may have private memory in caches, etc., though.
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the functional behavior of one process may be influenced by another one
(and the scheduler itself). As a consequence, these kind of processes cannot
be assessed independently. See Fig. 1.1 on the preceding page for an intuitive
visual example of two threads naïvely accessing the same memory locations
at the same time. While some interactions are certainly benign—otherwise
there would be little benefit in concurrency—their scope cannot be restricted
in general. Thus, the goal is to harness concurrent modifications.

Proving Correctness of Concurrent Programs

Computing all possible interleavings for concurrent systems is far from being
feasible. This is known as the global method [de Roever et al., 2001]. Its
complexity is clearly exponential in the number of concurrent processes
(with the number of local decision points in each process being the base
of that power). The technique by Owicki and Gries [1976] was the first
to consider interleavings symbolically. Its complexity is only linear in the
number of processes. It is based on traditional local correctness proofs in
Hoare [1969] logic plus additional noninterference proofs. However, it requires
a high annotation overhead. And, most importantly, we need to verify all
remote threads to establish correctness of ‘our’ thread. In the case that an
additional thread is created, all proof results need to be reestablished. Thus
the Owicki and Gries technique is not compositional in the sense that, from
the correctness of individual modules, overall correctness of the combined
system can be derived.

The compositional rely/guarantee technique [Jones, 1983; Xu et al., 1997]
completely relies on functional specification. This allows to regard the thread
under investigation (‘our’ thread) largely in isolation. The approach considers
any environment that adheres to the given specifications: Each thread is
assigned two-state invariants rely (describing environment behavior that we
can rely on) and guar (the guarantees we provide to the environment). While
it remains to be proven that the rely conditions are actually guaranteed,
assessing the correctness of a thread does not require insight into the internals
of other threads.

Modularity is another important meta-level property of analysis tech-
niques. Modularity means that analysis of a module can be based on the
module itself in isolation—without a concrete representation of its environ-
ment. This allows to adapt modules to other environments without losing
previously established guarantees. The classical rely/guarantee approach
is not modular since it considers programs that are closed under parallel
composition. For thread-based systems, it is more appropriate to apply
a verification technique that considers open programs.
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1.2 Information Flow Security

A particular concern of software quality assurance is secure information
flow. In general, information can flow both ways between a system to be
protected and external agents. Information flow security can thus be divided
into integrity and confidentiality. Integrity is concerned with preventing
unauthorized agents to manipulate the system. Conversely, confidentiality
is concerned with restricting unqualified access to confidential information.
More abstractly, the goal is to ensure that no data must flow from confidential
(i.e., high security level) sources to public (i.e., low security level) sinks.
Analyses associated with language-based information flow security [Sabelfeld
and Myers, 2003a] covers the scenario where information is handled by
software whose operational behavior is known to potential attackers. It is
assumed that an attacker knows all vulnerabilities in programs and how
to exploit them. However, attackers cannot break or circumvent the basic
mechanisms provided by the language. The analysis therefore focuses on the
program source (the ‘language’) alone.

A well-known confidentiality property is noninterference [Cohen, 1977],
which is appropriate for sequential programs. Noninterference can express
precisely the information that may legally flow. It provides security against
any attacker that provides inputs, listens to primary output channels, and
possesses unlimited deductive powers. As noninterference is an expressive,
semantically defined property, traditional analyses based on type systems
[Volpano and Smith, 1997] do not provide complete reasoning.

Formal Analysis of Secure Information Flow

Recently, theorem proving approaches to language based information flow
analysis have gained prominence. These are based on a semantical notion of
information flow and therefore bear the advantage of semantical precision
over established static techniques like type checking. Some program logics
such as dynamic logic [Harel, 1979; Beckert, 2001] are readily able to express
relational properties, i.e., properties that relate multiple program executions,
like noninterference. And at the same time, formal verification of functional
properties about software has made great progress in the past years. In
particular, the KeY prover [Beckert et al., 2007a], co-developed by the
author, for first-order dynamic logic is able to formally verify information
flow properties about sequential Java programs. One central aim of this
dissertation is to make first steps towards lifting these techniques to reasoning
about concurrent programs.

In concurrent programs, scheduling may depend on unknown parts of
the system state. We assume an attacker model where the attacker is in
control of threads, but not the scheduler. This means that an attacker cannot
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distinguish why/in which state its threads are scheduled or not—even in
case the scheduler computes schedules using confidential information. As
Cohen’s original definition of noninterference only applies to deterministic
sequential and terminating programs, several extensions have been proposed.
Low-security observational determinism (LSOD) [McLean, 1992] is a well-
known extension for concurrent programs, where schedulers are considered
nondeterministic. It requires that each public output is computed in an
observably deterministic way, thus independent of scheduler indeterminism.
However, Giffhorn and Snelting [2015] note that “several attempts to devise
program analysis algorithms for LSOD turned out to be unsound, unprecise
[sic!], or very restrictive.” Furthermore, LSOD both leaves the scheduler out
of the picture and thus rejects programs that would be secure under specific
(deterministic) schedulers, and at the same time, it does not report timing
leaks that are induced by the relative order of memory updates.

Declassification

Confidential information may be declassified, i.e., intentionally released.
Typically, this only refers to parts of the confidential information. For
instance, a password checker is expected to release the information whether
the entered string is actually the secret password or not. While this obviously
reveals partial information about the secret, this very construction enables
security on a higher level (viz. access control). Many approaches to secure
information flow ignore the challenge to precisely state what information is
released [Zdancewic, 2004], but only where in the program. The information
to be released may depend on secrets in a nontrivial way: e.g., in an election,
the public result is the sum of votes on secret ballots; precise information
flow analysis thus needs support for reasoning about sum comprehensions.
Since theorem proving approaches are founded semantically, precise subject
declassification (i.e., which information is released) already comes for free.

We additionally consider timing of declassification. Just like subject
declassification can be expressed as a relational property between states,
temporal declassification can be expressed as a relation between traces.
Controlling the temporal dimension of declassification is essential in state
based software systems. Consider, for instance, an electronic voting system,
that has different declassification policies before and after the election has
been closed: only afterwards the result (i.e., the sum of votes) may be
published.
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1.3 Formal Verification for Safety and Security

Even though a disaster like “goto fail,” that was mentioned earlier, would have
been avoidable easily (e.g., with code reviews or style checking), traditional
assurance techniques for safety and security do only provide weak assurances.
Many of the most infamous bugs were overlooked even by experts, demanding
an even more thorough and rigorous analysis.

Why Target Software?

Software is an integral component of any cyberphysical system. It is reason-
able to target certain modules separately from other software or hardware
components. Portability of software renders development more cost-effective,
but can introduce bugs more easily. An infamous example from the real
world was the maiden flight of the Ariane 5 rocket, where faulty conversion
of 64-bit floating point data to 16-bit integers finally caused the spacecraft
to self-destruct, just seconds after lift-off [Dowson, 1997; Nuseibeh, 1997].
Undoubtedly, dealing with finite numerical data types is a very common
source of programing errors. It is thus desirable to detect such errors early in
the development process and not after the system (i.e., a spacecraft in this
case) has been finally assembled. The costs for a late fix may be higher by
several orders of magnitude; a complete system failure may even cost billions
of Euros. In addition, the affected component actually had been tested when
deployed on the predecessor Ariane 4, but these test depend on particular
physical constraints. This example shows that a robust software analysis
must be based on software in isolation from physical environments.

To security, formal proofs of software correctness do matter—at the very
least as much as they do to safety. In many safety-critical environments, we
can rely on developers and users being professional by making the ‘right’
decisions and that products follow established engineering best practices.
It is thus tolerable to restrict a formal safety analysis to ‘sane’ cases, in
order to keep it simple. However, for security, we are forced to assume the
most capable attackers to do their worst. They may exploit even the tiniest
vulnerability. An effective analysis must cater even for those issues that are
hard to find. “Heartbleed, like most security vulnerabilities, only manifests
with incorrect or unexpected input.” [Wheeler, 2014]

It is known that several catastrophic safety violations were caused by
buggy software, but the effects of security vulnerabilities is largely unknown.
A particular danger lies with zero-day exploits [Bilge and Dumitras, 2012].
These are made possible by vulnerabilities that are freshly discovered, but
not yet known to the public. Zero-day exploits grant attackers a head start
before countermeasures can be mounted.
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Why Use Verification?

Formal verification based on semantics and logics is a heavy-weight approach
to software analysis, that may be resource-consuming. However, verification
is indispensable for high assurance. It is well-known that dynamic software
analyses—such as testing, debugging, or assertion checking—can only be
used to find existing bugs, but not show their absence. As mentioned above,
traditional static analysis techniques like code review can provide a baseline
confidence in correctness.3 Yet, manual inspection only scratches the surface.
More involved bugs may hide deep within the dark corners of programing
language semantics. For instance, Wheeler [2014] argues that the Heartbleed
bug could not be found by neither dynamic or static analyses that are state
of the art in software development, but “virtually any [formal] specification
would have turned up Heartbleed.”

To assure software correctness with utmost confidence, semantically-
founded techniques are required. The fundamental idea of programs having
to meet assertions has been put forward by Turing [1949]; Floyd [1967]; and
Hoare [1969]. They base formal software analysis on well-studied logical
concepts. However, it is infeasible to perform this assertional reasoning by
pen and paper. Firstly, the proof sizes are usually too large to be assessable by
humans. Secondly, humans tend to err: many proofs that had been accepted
by the community turned out to be invalid, especially for concurrent programs
[de Roever et al., 2001, Sect. 1.4].

Verification Systems

By today, machine-supported formal verification has entered the mainstream;
cf. [Beckert et al., 2006; Hinchey et al., 2008; Rushby, 2007; Filliâtre, 2011;
Beckert and Hähnle, 2014]. There exists a plethora of implementations of
verification techniques that target real-world programing languages such as C,
C++, C#, Eiffel, or Java. These differ in the generality of their approach, or
the dedicated support for particular classes of verification problems. Roughly,
the resulting tools can be divided in two groups: tools based on verification
condition generation (VCG) produce verification conditions as monolithic
formulae of pure first order logic (FOL) (possibly with additional FOL-
definable theories). The resulting formulae are to be checked with general
purpose theorem provers, typically satisfiability modulo theories (SMT)
solvers [Barrett and Tinelli, 2014]. While the theorem proving component is
a manifestation of generality and trustworthiness, the weak spot is the VCG
component, that translates programs together with high-level annotations to
logic with only little transparency. This approach may be inefficient since

3As noted by de Roever et al. [2001], all these techniques may be established for
sequential program development, but are a far cry from being applied to concurrent
programs.
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1.3. Formal Verification for Safety and Security
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Figure 1.2: The continuum of static analysis approaches

elementary features of the target programing languages, such as typing or
visibility, must be encoded in formulae. Pnueli [1977] calls these approaches
endogenous.

Another class of verification systems, that includes KeY [Ahrendt et al.,
2014] and KIV [Reif, 1995], uses specialized theories for reasoning dedicatedly
about program correctness. In these systems—which are exogenous according
to Pnueli [1977]—program semantics are transparently enshrined in the proof
rules.

Historically, verification systems build on formal logics were supposed to
be used interactively, with more or less automation support. Recently, tools
build on the so-called ‘auto-active’ verification paradigm (a term coined
by Leino [2009]) have enjoyed considerable success (see [Bormer, 2014,
Chap. 5]). Verification systems of this kind include AutoProof [Tschan-
nen et al., 2015], Dafny [Leino, 2010], KeY,4 Leon [Kuncak, 2015], VCC
[Cohen et al., 2009], VerCors [Amighi et al., 2014], Verifast [Jacobs et al.,
2011], and Why3 [Filliâtre and Paskevich, 2013]. Auto-active verifiers are still
based on general purpose theorem provers, thus being sound—in contrast

4KeY developed from an interactive prover and still allows low-level user interactions.
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Chapter 1. Introduction

to many light-weight static checkers. User interaction with the verifier is
restricted to providing auxiliary annotations. This direction of research
seems very promising. In particular, user feedback directly refers to the
program under test, not a barely legible logic representation. This is meant
to lead to a flat learning curve, thus being usable to a wider audience. For
problem sizes of the real world, proof situations are just too complex to be
understandable to interactive users.

The central question is: what guarantees do these tools actually provide?
The kind of problems that we are concerned with are undecidable, in general,
cf. [Gödel, 1931; Davis, 2004]. This includes both properties of FOL, as well as
properties about programs (that include the halting problem, among others).
This implies that there cannot be an automated analysis technique that
is sound and complete. ‘Auto-active’ verification includes interaction on a
higher level. The dividing lines are the classes of properties for which the tool
provides (theoretically) complete reasoning. Traditionally interactive systems
gradually move towards high-level interaction; KeY is a good example of this.
There is typically a trade-off between automation—and thus practicability—
and expressivity of approaches, as displayed in Fig. 1.2 on the previous
page. Finding a good balance is the major challenge in designing an effective
verification approach.

In both autoactive and real interactive verification, the essential question
is that of practical completeness. Provided a sufficiently expressible spec-
ification language,5 theoretical (relative) completeness is obviously given.
Practical completeness is about with what level of support (interaction or
annotation) the automated verifier can succeed. Auto-active tools usually
require a large amount of auxiliary annotations. Finding an appropriate
specification has become the bottleneck of verification, cf. Zeller [2011]. State
of the art specification languages like the Java Modeling Language (JML)
[Leavens et al., 2006b] are intuitively understandable and provide the means
to effectively specify program behavior. While JML is still a moving target,
it does not provide features for concurrent programs yet.

1.4 Contributions and Structure of This Thesis

The present dissertation has been produced in the scope of the “Program-level
Specification and Deductive Verification of Security Properties (DeduSec)”
project6 within DFG priority programme 1496 “Reliable Secure Software Sys-
tems (RS3).”7 It contributes to all three guiding themes of RS3: information
flow policies, information flow control, and security in the large.

5Most allow quantification over the integers or calling pure methods in specifications.
6http://www.key-project.org/DeduSec/
7http://www.spp-rs3.de/
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1.4. Contributions and Structure of This Thesis

Overall, this work describes—to the best of the author’s knowledge—
the first approach towards a semantically precise (i.e., without false-
positives) analysis of information flow in concurrent Java. To this
end, we present a precise formalization of information flow properties. When
combined with a sound and complete verification technique, we obtain a
precise information flow analysis. We present an implementation of the
rely/guarantee approach to analyze concurrent programs in a deductive
verification framework. It requires little specification overhead and is well
suited for automation. We argue that it can be adapted easily to reason
about concurrent Java programs. Our approach to concurrency verification
primarily targets the application to secure information flow, but can be
applied to verify safety properties as well. This work is supposed to be a
starting point for adapting the KeY verification system to target concurrent
Java programs.

The most discerning contributions that are provided to the scientific
community in this dissertation are:

• Deterministic denotational semantics for a concurrent language with
multi-threading, that uses underspecification instead of the more com-
mon nondeterministic semantics.

• Dynamic logic calculus, that is proven sound and complete

• Extension of the rely/guarantee approach with frame conditions and
to open programs

• Adaptation of the rely/guarantee approach in a deductive calculus for
dynamic logic

• Generic definition of noninterference, that can be instantiated with a
large class of indistinguishability relations (e.g., to include declassifica-
tion or for object-oriented systems)

• Precise formalization of trace-based noninterference for concurrent
programs in dynamic logic

• Extension of JML regarding concurrency and translation to dynamic
logic proof obligations

• Implementation in a prototype version of the KeY verification system

• Verification of an electronic voting system

For most of the work, preliminary material has been published (or is at
least due to be published), as noted below. In cases, in which results or text
fragments from these works are used in this thesis, this is clearly marked. In
any case, the author has held a significant stake in their production.

11



Chapter 1. Introduction

Structure

This dissertation is divided into 11 chapters. It encompasses two interwoven
major parts, dedicated to concurrent programs and information flow security,
respectively. Readers who are only interested in functional verification of
concurrent programs may skip Chaps. 2 and 6; while in Chap. 8, Sect. 8.3
is the interesting section. Readers who are only interested in information
flow analysis may read Chap. 3 only briefly and skip Chaps. 5 and 7; the
interesting section in Chap. 8 is Sect. 8.4. Chapter 10 on related work is also
divided into related work on concurrency on one side and on information
flow on the other side.

Chapter 2 covers the basic notions of software security. We introduce
the concept confidentiality and classification systems (i.e., security lattices)
in Sect. 2.2. Security policies, particularly including noninterference, are
covered in Sect. 2.3. We provide an overview over the state of the art in
information flow analysis in Sect. 2.4, with foci on both approaches based on
theorem proving and approaches targeting concurrent programs.

Chapter 3 is devoted to the concurrent language deterministic While-
Release-Fork (dWRF), that we will be using as the target of our investigations
throughout most parts of this dissertation. dWRF is ‘Java-like’ in the sense
that it distinguishes between global and local memory and caters for dynamic
thread creation. Other features of Java, such as objects, are mostly orthogonal
to concurrency and thus are left out for simplicity. Languages such as Dafny
[Leino, 2010] or Chalice [Leino et al., 2009] are well known examples of this
approach to study a particular programing language feature in a dedicated,
but simplified language. The basic design decisions are discussed in Sect. 3.1.

We introduce the syntax of dWRF in Sect. 3.2. After defining a semantical
modeling of heap memory in Sect. 3.3, we define the semantics of dWRF
in Sect. 3.4: first for sequential programs locally (Sect. 3.4) and, on top
of that, for concurrent programs (Sect. 3.5.2), which are defined as finite
sets of sequential programs. Many approaches to analysis of concurrent
languages view semantics as entirely indeterministic. This makes definitions
and theoretical results based on this semantics less tractable. We define
the semantics of concurrent programs parametric w.r.t. a deterministic, but
underspecified scheduler. This semantics is agnostic concerning analysis
techniques. Previous work: [Beckert and Bruns, 2012b, 2013; Bruns,
2015a]

Chapter 4 introduces Concurrent Dynamic Trace Logic (CDTL), a novel
dynamic logic (DL) to reason deductively about multi-threaded programs
of dWRF. Its semantics is based on symbolic traces—as opposed to single
states—in order to reason about temporal properties of programs. CDTL

12



1.4. Contributions and Structure of This Thesis

combines concepts from both dynamic logic and temporal logic. It is a
conservative extension of the previously introduced Dynamic Trace Logic
(DTL). Section 4.1 reviews the preliminaries. CDTL is introduced by syntax
and semantics in Sects. 4.2 and 4.3, respectively. In Sect. 4.4, we present
a sequent calculus for the fragment of the logic that is concerned with the
sequential fragment of dWRF. This calculus is proven sound and complete
(Sect. 4.5). Concurrent programs are to be covered in more detail in the
following chapter. Section 4.6 contains a discussion on the covered logic
fragment, including a full proof example. Previous work: [Beckert and
Bruns, 2012b, 2013]

Chapter 5 forms the centerpiece in the ‘concurrency part’ of this disser-
tation. In that chapter, we discuss an extension of the above DL calculus
to multi-threaded programs. We follow a symbolic approach to represent
interleavings based on the rely/guarantee methodology [Jones, 1983]. We
introduce an adaptation to CDTL in our framework in Sect. 5.2, that extends
the classical rely/guarantee approach. In addition to functional specification,
our approach uses frame conditions to describe non-behavior. The approach
is entirely thread-modular.

We present the remaining calculus rules in Sect. 5.4: for interleavings
in Sect. 5.4.1 and for thread creation in Sect. 5.4.2. We develop a final
soundness theorem (Thm. 5.22) in a bottom-up fashion throughout Sect. 5.3.
Section 5.5 contains larger examples of proof obligations arising from rely/
guarantee specifications. In Sect. 5.6, we provide an outlook on future
work to incorporate synchronization primitives into the language. While
synchronization is essential to developing meaningful concurrent programs, it
further increases the complexity of definitions and the verification approach.
Previous work: [Bruns, 2015a]

Chapter 6 is the other central chapter of this dissertation, covering infor-
mation flow in multi-threaded programs. In the introduction (Sect. 6.1), we
present several program examples that are intuitively secure or insecure. In
Sect. 6.2, we review the state of the art in security properties for sequential
programs such as noninterference. We develop a flexible meta-level frame-
work in which different notions of noninterference, including preconditions
and semantical ‘what’ declassification, can be expressed. We show how these
properties can be formalized in DL faithfully.

In Sect. 6.3, we leverage these properties to multi-threaded programs,
additionally taking the scheduler into consideration. We show that system-
wide security can be reduced to single threads in order to obtain modular
security guarantees. In Sect. 6.4, we further extend this framework using a
trace-based notion of noninterference. Behind this redefinition lies a stronger
attacker model, that is more appropriate for concurrent programs as it
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permits an attacker to observe intermediate events. In Sect. 6.4.2 we show
how it can be formalized in the logic of Chap. 4. Furthermore, we compare
it to the well-known notions of LSOD [Zdancewic and Myers, 2003].

Section 6.5 introduces a notion of object-sensitive noninterference suitable
for Java programs, while only sketching the underlying formal definitions.
We argue how this can be synthesized with the above to yield an effective
analysis technique for information flow in concurrent and object-oriented
software systems (Sect. 6.6). Previous work: [Beckert et al., 2013a,b, 2014;
Bruns, 2014b, 2015b]

Chapter 7 reports on an implementation of the calculus and the spec-
ification in the KeY verification system. While in the previous chapters,
we considered only a simple target programing language, in Chaps. 7f., we
discuss how we can use these results to reason about multi-threaded Java
programs. We briefly introduce KeY in Sect. 7.1. In Sect. 7.2, we discuss
several issues related to multi-threaded Java that have not been considered
before in the context of KeY. Section 7.3 provides an account on the imple-
mentation, in particular the instantiation of the rules in the taclet framework
of KeY and a formalization of trace properties in standard dynamic logic.

Chapter 8 reviews the established techniques to modular specification
and verification of Java programs. While these concepts have been developed
to reason about sequential programs, modularity and encapsulation also play
an important role in the analysis of concurrent systems. In particular, our
approach to frame the effect of concurrent interleavings in Chap. 5 is heavily
inspired by framing for procedure calls in sequential programs. The chapter
centers around the widely-known Java Modeling Language (JML). Basic
specification features of JML are introduced in Sect. 8.1. In the subsequent
section, we discuss the fundamental concepts of (sequential) modularity
(Sect. 8.2.1) and abstraction (Sect. 8.2.2), including the frame problem in
sequential programs (Sect. 8.2.3).

The remainder of the chapter is dedicated to extensions that were de-
veloped within the DeduSec project. We present an extension to JML to
accommodate rely/guarantee specifications in Sect. 8.3, that takes into ac-
count the considerations on Java concurrency from Sect. 7.2. Section 8.4
explains the approach by Scheben [2014] to specification of secure informa-
tion flow, that is being used in the KeY system. We also briefly mention
the Requirements for Information Flow Language (RIFL), that has been
developed in RS3. Previous work: [Beckert and Bruns, 2012a; Huisman
et al., 2014; Grahl et al., 2016]
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Chapter 9 reports on a case study in the verification of an implementation
of an electronic voting system designed by Küsters et al. [2011]. We describe
the system in Sect. 9.2. Section 9.3 describes a functional verification of a
sequential implementation with KeY. This implementation is amenable to
parallelization. The companion work on information flow analysis of the
system was presented by Scheben [2014]. We also explain steps for a hybrid
approach that combines the KeY approach with an automated analysis.
Previous work: [Beckert et al., 2012b; Bruns, 2014a; Bruns et al., 2015a;
Grahl and Scheben, 2016; Küsters et al., 2013, 2015]

Chapter 10 contains a discussion of related work. Sections 10.1 and 10.2
cover related work regarding logics and specification in general. Section 10.3
covers work related to our verification approach to concurrent programs.
Sections 10.4–10.8 cover work related to our approach to secure information
flow.

Chapter 11 concludes this dissertation. We summarize the results in
Sect. 11.1 and discuss them in Sect. 11.2. We close with an outlook on future
work (Sect. 11.3).

Other publications and unpublished material by the author that do not
directly relate to this thesis are [Beckert et al., 2012a; Bruns, 2011; Beckert
and Bruns, 2011; Bruns et al., 2011; Bruns, 2012; Bruns et al., 2015b; Ahrendt
et al., 2014; Grahl and Ulbrich, 2016].

1.5 General Notational Conventions

Throughout this dissertation, we will use the following notations:
• The set of natural numbers N always includes 0. N>0 := N \ {0}.
• The ordering < on natural numbers is extended to N ∪ {∞}, where
n < ∞ for all n ∈ N.

• For subsets of N, we use the interval notations [i, j) = {n ∈ N | i ≤
n < j} (half-open interval) and (i, j) = {n ∈ N | i < n < j} (open
interval), both were j ∈ N ∪ {∞}.

• By abuse of notation, we usually write types in logic as the domain
they represent in the intuitive semantics, e.g., ∀i:Z. φ means ‘for all
integers i.’ E.g., the domain DZ of integer objects (‘type Z’) is the set
of mathematical integers Z.

• For sets S ⊆ S0, we denote the complement of S in S0 by S∁, i.e., S∁
is the unique set satisfying S ∪ S∁ = S0 and S ∩ S∁ = ∅. We omit
reference to the superset S0 when it is clear from the context.

• For a set S, we denote the power set by 2S . The set of finite, nonempty
subsets of S is denoted by 2Sfin.
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Chapter 1. Introduction

• We frequently abuse set notation and write S ∪ e instead of S ∪ {e}
and S \ e instead of S \ {e}.

• The standard equality symbol = always means equality on the meta-
level to distinguish it from the equality predicate in logic, written as .=.
For instance, for terms denoted symbolically by t and t′, we express
syntactical equality trough t = t′, while t .= t′ is a formula (that is
true if and only if the semantical value of t is the same as for t′). The
equivalent holds for the semantical set operations ∈, ∩, ∪, etc. and
their logical counterparts ∈̇, ∩̇, ∪̇, etc.

• The formula ¬t .= t′ is frequently written t ̸ .= t′ for readability.
• Whenever an equation is meant to define an item, we use the symbol :=

to emphasize this.
• A relation R over sets A1, . . . , An is identified with the set of ordered

tuples {(a1, . . . , an) | R(a1, . . . , an)} ⊆ A1 × · · · × An. A function or
partial function (i.e., functional relation) f : A → B is sometimes
identified with the set of ordered pairs {(a, b) ∈ A×B | f(a) = b}. We
write partial functions as sets with elements of the shape a ↦→ b.

• A (possibly partial) function f : A → B can be updated to the function
f ′ := f{a ↦→ b} with a ∈ A, b ∈ B that is defined as

f ′(x) =
{
b if x = a
f(x) otherwise .

• Sequences, i.e., ordered multi-sets, are written with angle delimiters ⟨·⟩.
We use comprehension notation akin to set comprehension: ⟨x ∈ S | φ⟩
denotes the multi-set {x ∈ S | φ} with the same ordering as S.

• Modalities of dynamic logic (see Sect. 4.1) are displayed with bold
delimiters [π] and ⟨π⟩ to distinguish them from other notations (such
as sequences).

• Program syntax is set in typewriter font. In particular, in formulae,
we use the typewriter font to distinguish program variables from logical
objects, which are set in standard math font.
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2
Software Security

In this chapter, we review the basic concepts of software security and how
to enforce it. After an introduction in Sect. 2.1, we introduce the notion
of security classification (and declassification) in Sect. 2.2. In Sect. 2.3, we
present an introduction to language-based information security. Later, in
Chap. 6, we will build on the notions that are introduced here. Section 2.4
reviews the state of the art in information flow analysis and control. software
and hardware security certification.

2.1 Information Security

This section introduces the general concepts in computer security. For a
standard textbook on the topic, see for instance [Anderson, 2008]. While
safety is a family of properties stated about a system in isolation, security
is a family of properties about the interaction of a system with external
agents. Since this may be any agent, we rather use the terms attacker (or
adversary) to denote an agent that tries to exploit the system and to do the
most possible harm against the system. These interactions are known as
attacks. Systems may have vulnerabilities that allow attacks. Attackers may
be smart—any vulnerability must be expected to lead to a successful attack.

In principle, ‘systems’ in this context can be physical, software, hardware,
cyber-physical, etc. Depending on the system, attackers can be human,
computer programs, humans using computers, etc. Security properties can
be broken down into the following four categories:

• Confidentiality: secret information must not be disclosed to unautho-
rized agents.

• Integrity: unauthorized agents must not interfere with the system.

• Authenticity: the system must not be forged.
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Chapter 2. Software Security

• Availability (or, robustness): the system must be working as specified
at any time.

In this dissertation, we consider software systems on the code level and
confidentiality properties thereof, i.e., we investigate language-based security.1
Attackers in this scenario may know the code, run it (on input of their choice),
and observe its effect. In particular, attackers are expected to have knowledge
of all security measures.2 The design of security provisions always needs to
be designed under this regard. Thus security can be seen as a game between
security engineers, developing measurements against particular attacks, and
attackers, mounting attacks against particular measurements. Integrity can
be seen as the dual property to confidentiality, with communication channels
and security levels inverted [Biba, 1977]. The results that we describe
therefore can be applied to integrity as well.

In general, we expect an attacker’s deductive powers not to be compu-
tationally bounded; they can apply any function on public information to
obtain all corollaries. For instance, if the attacker knows that the value of
secret a is 5 and that the sum a+ b is 12, then they also know that b is 7.
Information may be partial: the knowledge that a is a positive value or that
a is not 7 is less than the complete knowledge of its value.

On the other hand, cryptographic security works under the assumption
that attackers can only compute functions of polynomial complexity. This is
called a Dolev/Yao attacker [Dolev and Yao, 1983]; see also Sect. 9.2.1. If
decryption requires solving exponential complexity problems, such as prime
number tests, then this encryption is considered secure.3 To symbolically
assess security under cryptographic guarantees with unbounded adversary ap-
proaches, cryptography is considered a secure black box component [Küsters
et al., 2012].

1Of course, language-based security can only form one piece of the puzzle of entire
security of the system. For instance, we cannot consider attackers that have access to
hardware. Even on the software side, language-based security leaves gaps since it only
considers program source code. The goal that also compiled programs are at least as secure
as the source code it was produced from can be achieved with so-called fully abstract
compilers [Abadi, 1998].

2However, they may not change the code nor have control of the underlying hardware
or middleware (i.e., they are passive attackers).

3As an aside, secrecy against this class of attackers can only be given under the
assumption that the P ≠ N P conjecture [Cook, 1971; Levin, 1973] is valid and usable
quantum computers [Deutsch, 1985] do not yet exist.

18



2.2. Classification

Figure 2.1: This slide is part of a presentation by the National Security Agency
(NSA), leaked to the public by Edward Snowden and first published by The
Washington Post. It contains information with different security classifications.
Most lines, including the head line, are marked U, i.e., unclassified. The
information that the system may be used by terrorists is marked ‘secret’ S.
The combination S//SI further restricts access to personnel in the ‘special
intelligence’ compartment. The additional mark REL means that secret infor-
mation may be shared to (appropriate personnel in) other countries (in this
case Australia, Canada, the UK, and New Zealand as stated in the footer).

2.2 Classification

When considering confidentiality, all information is assumed to be assigned a
security level, i.e., it is classified. Information on the lowest security level is
called unclassified. In general, some information is ‘more confidential’ than
other, meaning it is assigned a higher classification. We formally describe that
by the binary relation ≺. When an information is assigned a classification C,
only parties with a clearance of C ′ with C ⪯ C ′ may access this information.

Classification systems can grow into complex hierarchies. A classical
system, that had been used by public administrations long before the age
of computers, uses the 5 levels ‘unclassified’ ≺ ‘confidential’ ≺ ‘secret’ ≺
‘restricted’ ≺ ‘top secret’ (sometimes with only 4 levels, lacking ‘restricted’).
This particular hierarchy is linear, but in general, a hierarchy can be any
finite lattice.4 For this reason, the term security lattice [Denning, 1976] is
often used in place of ‘classification system.’

4A lattice (L, ≺) is a partially ordered set in which any two elements have both a
unique least upper and greatest lower bound (i.e., supremum and infimum). Bounded
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For instance, the classification system used by the United States gov-
ernment [US Government] uses the 4 basic levels as described above, but
adds further restrictions or overrides. The classification S//NOFORN (secret,
no foreign nationals (even if they have ‘secret’ clearance)) is strictly above
S (secret) in the hierarchy, but incomparable to TS (top secret). On the
other hand, TS//REL TO AUS means that the information is ‘top secret’
in principle, but may be shared to (appropriate government personnel in)
Australia—it is strictly below TS, but incomparable to S. An example of an
originally classified document from the real world can be seen in Fig. 2.1 on
the preceding page.5

An excerpt from this security lattice can be seen in Fig. 2.2. It contains
distinct top ⊤ and ⊥ bottom elements. To prove that the confidentiality
property holds for a given lattice, we need to show that no information with
a classification C ′ is leaked to a party with clearance C ≺ C ′. Due to the
nature of the ≺ relation of being transitive, it suffices to prove this property
for every pair of immediately related levels; cf. [Scheben, 2014, Lemma 7],
for instance. Thus, the general problem can always be reduced to a number
of problems each regarding a two-element lattice. In the remainder of this
dissertation, we will use this result and restrict our considerations to two-
element lattices without loss of generality. The elements will conventionally
be called ‘high’ and ‘low.’

TS//NOFORN

TS

TS//REL

S

S//NOFORN

S//REL

U

TS//NOFORN//REL

Figure 2.2: In this excerpt from the US Government classification system, the
base security levels TS, S, and U are refined with NOFORN or REL annotations,
which respectively raise or decrease the baseline security level.

lattices have unique least and greatest elements ⊥ and ⊤. Note that we do not require
lattices to be complete.

5Another example, immediately related to this thesis, is the paper by McLean [1992]
introducing the notion of low-security observational determinism (LSOD) (see Sect. 2.3
below). While the rest of the paper is public, the central theorem is classified NOINT (‘no
international use’).
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2.3. Secure Information Flow

Declassification is the deliberate release of otherwise classified informa-
tion (also known as downgrading). It is usually not included in the declaration
of a security classification, but is defined as an override to it. For instance,
the document in Fig. 2.1 is classified as ‘top secret’ in general, but the
individual text fragments displayed there are classified as ‘secure’ or are
even unclassified. Using the taxonomy of Sabelfeld and Sands [2009], it can
include the dimensions 1. what information is released (subjective dimension)
2. by whom to whom 3. where in the system (spatial dimension) and 4. when
(temporal dimension). Declassification is often essential to the functionality
of the system. A typical example is access control through password checking:
a user is prompted for an input string and will be granted access to the
restricted subsystem if and only if the input equals their password. The
password is considered secret, yet the system does release some information
about it, namely whether it is equal to the entered string.

In our setting, where we use a semantical notion of information flow, we
are mostly concerned with what information is released. Other items, like
who releases to whom, can be considered if they are appropriately represented
in the semantical model. The spatial dimension can be further divided into
level locality and code locality. The code-local dimension is important to many
syntax-based analysis techniques (see below), but cannot be represented in a
semantical model.6 In concurrent programs, we also consider the temporal
dimension since several internal program states may be observable. In general,
the temporal dimension can also refer to complexity classes or even physical
time, but we only consider the relative order of publicly observable events
(cf. [Sabelfeld and Sands, 2009, Sect. 2.4]).

2.3 Secure Information Flow

In language-based information flow security [Sabelfeld and Myers, 2003a], we
regard software systems at the source code level. In this model, attackers can
use the present code (i.e., run it or read from memory) as the programing
language permits it. Attackers can not change the code or have access
other than through defined language constructs.7 In particular, this notion
of software security is hardware independent. Attacks are carried out on
idealized machines.

Sources and Sinks

In shared-memory systems, on the language level, information sources (or
‘inputs’) and sinks (‘outputs’) usually are just memory locations. For a

6The dynamic classification approach by Scheben and Schmitt [2012a] achieves a similar
goal, though.

7For instance, in high level languages like Java, an attacker can not observe the raw
memory location of a variable.
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modular analysis of programs, method calls have to be considered sources or
sinks, too. Whether a location is regarded as a source or as a sink depends
on the mode of access, i.e., read or write. In contrast to this traditional
view of memory locations as sources and sinks, Scheben and Schmitt [2012a]
introduce a more flexible notion of observation expressions; see also Sect. 8.4.
Arbitrary complex expressions of first order logic (FOL) can act as sources
or sinks. This includes, in particular, method parameters and return values;
thus allowing the approach to be method-modular. This is a generalization
of the aforementioned definition and unifies it with the—otherwise separately
considered—concept of declassification. The intuition behind this is that a
passive attacker does not ‘sit in the machine,’ but observes its behavior by
posting queries to it.

2.3.1 Channels

Sources and sinks are connected through channels. Channels are commonly
categorized in direct and covert channels [Lampson, 1973]. A direct channel
is primarily intended for information passing, while information flow through
covert channels is unintentional in general. On the language level, a direct
channel can manifest as an assignment or the return of a method call, etc.
This results in an explicit information flow. Listing 2.3 on the facing page
shows a minimal example of a direct information flow in a Java-like language—
even though only parts of the original confidential information flow to the
public sink.

Covert channels include the following kinds according to Sabelfeld and
Myers [2003a]:

• “Implicit flows signal information through the control structure of a
program.

• Termination channels signal information through the termination or
nontermination of a computation.

• Timing channels signal information through the time at which an
action occurs [. . . ]

• Probabilistic channels signal information by changing the probability
distribution of observable data. [. . . ]

• Resource exhaustion channels signal information by the possible ex-
haustion of a finite, shared resource, such as memory or disk space.

• Power channels embed information in the power consumed by the
computer [. . . ]”

Attacks on covert channels are particularly common if direct channels
are (practically) secure. For instance, sophisticated attacks on cryptographic
protocols do not use brute force, but often timing or power channels (cf.
[Kocher, 1996]), because the resource consumption is observable in practice,
e.g., multiplication takes more processor cycles than addition.
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We do not consider resource or power channels in this work since they can
only be regarded in combined cyberphysical systems. Instead, in language-
based security analysis, we assume idealized hardware (both functionally and
security-wise). For instance, as explained in Chap. 3, our program model
assumes an infinite memory. Likewise, probabilistic leaks do not appear in
our model, where program execution—even for concurrent executions—is
defined as being strictly deterministic.8

The remaining covert channels, implicit flows and termination—and
also timing to some extend—exist in our computational model. Since we
follow a semantical approach to analysis—i.e., we actually consider the flow
of information itself, not just the potential existence of a channel—such
channels are naturally considered. A minimal example for an implicit flow
is shown in Listing 2.4: there is no direct assignment to a low sink, yet
the value of low depends on high. Listing 2.5 shows a termination channel:
there is no flow to a low sink at all, but termination of the program depends
on a high source. It is sometimes argued—cf. Zdancewic and Myers [2003],
for instance—that termination channels were negligible as they would ‘only’
leak 1 bit of information. Askarov et al. [2008] disagree and showed that this
leakage can be larger in general.

low = high % 5;

Listing 2.3: Direct flow
if (high) low = 23;

Listing 2.4: Implicit flow

while (high) {}

Listing 2.5: Termination
channel

while (low < high)
{ low = low+1; }

Listing 2.6: Timing channel

Zdancewic and Myers [2003] further distinguish between ‘internal’ and
‘external’ observations of a system. External observations can be made by
observers outside the system, such as measuring responses against wall-clock
time. Internal observations are those by other components within the same
system, that may make use of mechanisms internal to the system. An example
would be the order of memory accesses. Listing 2.6 shows a leak through
an internal timing channel: the number of assignments to low depends on a
secret.

Quantitative information flow security [McIver and Morgan, 2003;
Mu, 2008] is a generalization of the above concept of security. Instead of
considering whether a channel is secure or not, it is the quantity of information
that flows through. There are multiple concrete definitions, each based

8As we explain below, our approach would be able to detect probabilistic leaks if they
were modeled.
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Figure 2.7: Two instances of a program π are run with the same low input,
but possibly different high inputs. If the respective low outputs are again the
same, then π is noninterferent.

on information theory, that use different entropy metrics. A quantitative
notion of security obsoletes declassification by setting a maximum threshold
of information to be allowed to leak. This is particularly important for
cryptography, which is difficult to assess with qualitative analyses.

2.3.2 Security policies

Policies are concrete definitions of a system being secure against some class
of attackers. They are sometimes stated in an informal manner, or only
implicitly through an associated analysis technique. But at least with the
development of semantically precise analysis techniques (see Sect. 2.4.3 below),
there is a need for formal definitions. Noninterference is a semantically defined
policy, that was first mentioned by Cohen in 1977 and later popularized by
Goguen and Meseguer [1982]. Intuitively, it means that “the value of public
outputs does not depend on the value of secret inputs” [Barthe et al., 2004].

To test whether a given program π is noninterferent, it is executed twice:
both executions start with the same low input L1, but possibly different high
inputs H and H ′. Regarding two respective outputs L2 and L′

2, they do not
depend on the respective high input if and only if they are equivalent again.
A graphical rendition of this principle is displayed in Fig. 2.7.

Cohen’s original definition only targets terminating, sequential, and
deterministic systems. Sabelfeld and Myers [2003a] define several extensions
of noninterference for different classes of nondeterministic systems. The
generalized noninterference (GNI) policy by McCullough [1988] defines a
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nondeterministic system as secure if there exists at least one choice that
is secure. This definition is very liberal. As Zdancewic and Myers [2003]
point out, under this definition, many concurrent programs are classified as
‘possibly secure’ that are intuitively considered insecure—for instance the
following program with three threads:

L = true; || L = false; || L = H;

For every value of the secret location H and a scheduler that selects the
leaking thread last, there is a scheduler such that it selects one of the other
threads that does reveal the same value. This class of attacker is not able
to distinguish between the secret value and the same value of a constant.
Security under this definition means that it is possible that the attacker does
not learn the secret.

Low-security observational determinism (LSOD) conversely defines
a nondeterministic system as secure if all choices are secure [McLean, 1992].
These definitions of noninterference for nondeterministic systems are largely
applied to concurrent systems, as scheduling is often modeled as a kind
of nondeterminism. Since multi-threaded systems are expected to output
information throughout their execution, LSOD is defined on an execution
trace, rather than a single final system state. As proven by Huisman, Worah,
and Sunesen [2006], LSOD implies the absence of probabilistic leaks, even
though probabilities are not modeled explicitly.

As for basic noninterference, there are many variations of the definition
of LSOD [Roscoe, 1995; Roscoe et al., 1996; Zdancewic and Myers, 2003;
Huisman et al., 2006; Terauchi, 2008]. While both Zdancewic and Myers and
Huisman et al. consider traces of values of individual variables, in Terauchi’s
work, traces consist of low state partitions. On the other hand, Huisman et al.
always consider a complete trace (up to stuttering), while both Zdancewic
and Myers and Terauchi relax trace equivalence to prefixes, which permits
flows that occur later in the program execution.

LSOD considers scheduling to be completely indeterministic. This raises
the issue that both interference from high variables and benign indeterminism
on low variables needs to be considered, which is overly strict. To overcome
this, Huisman and Ngô [2012] introduce scheduler-specific observational
determinism (SSOD). It extends the weaker property that is proven by the
type system of Zdancewic and Myers [2003]—named SSOD-1 here—with
a second property (SSOD-2) that requires that there exists a scheduler for
which traces are stutter-equivalent. Giffhorn and Snelting [2015] introduce
relaxed low-security observational determinism (RLSOD) with the same goal
in mind. Giffhorn and Snelting use a different notion of ‘trace’ than the
aforementioned authors: a trace is a sequence of observable program events
(e.g., read, write, fork, etc.)
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Amtoft, Bandhakavi, and Banerjee [2006] first proposed an extension of
noninterference that is appropriate for object-oriented systems. In Sect. 6.5,
we present a formalization of object-sensitive noninterference in dynamic
logic, as introduced by Beckert, Bruns, Klebanov, Scheben, Schmitt, and
Ulbrich [2014].

GNI, LSOD, and SSOD are kinds of possibilistic security properties
[McLean, 1996]. They classify concurrent programs into ‘secure’ and ‘possibly
insecure.’ Attacks that are additionally possible through possible interleaving
are called refinement attacks [Zdancewic and Myers, 2003]. Probabilistic
noninterference [Sabelfeld and Sands, 2000; Smith, 2003; Snelting, 2015] is
a generalization of possibilistic noninterference, considering probabilities of
schedules. Programs are considered secure if the probability of any possible
program trace being followed is the same for any public input. As mentioned
by Snelting, attacks on probabilistic channels can also be (internal) timing
attacks. This allows computational models without probabilities, but a
notion of time, to describe a some of these attacks. LSOD considers the order
of individual variables and strictly implies probabilistic noninterference.

For an overview over security policies other than those based on nonin-
terference, cf. the survey paper by Zakinthinos and Lee [1997]. It includes
noninference [O’Halloran, 1990] (which is weaker than noninterference) and
separability [McLean, 1994] (which is stronger). Zdancewic and Myers [2001]
introduce the concept of robustness. This is similar to noninterference, but
allows flows to low sinks as long as the adversary cannot control what infor-
mation flows. Thus, robustness is a combination of a confidentiality property
and an integrity property, both of which can be represented through non-
interference. Popescu, Hölzl, and Nipkow [2012] present additional policies
self-isomorphism and discreeteness to discuss secure information flow in
concurrent programs. We do not further discuss those policies here as they
are not as frequently used in the literature as noninterference.

2.4 Information Flow Analysis and Control

Above, we have introduced notions of security itself. In this section, we review
the state of the art in techniques to analyze and enforce security. These
techniques can be categorized into dynamic and static analyses. A particular
subclass of static analyses includes approaches based on formal semantics,
such as our own. Those are discussed in Sect. 2.4.3.

Important characterizations of analyses are soundness and completeness.
An analysis is sound if it detects every forbidden flow that would be possible.
A sound analysis classifies every insecure program as such. A missed leak
is called a false negative error. An analysis is complete (or precise) if every
secure program can be classified as secure. The failure of recognizing a secure
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program (by reporting a spurious leak or no result at all) is called a false
positive error.

2.4.1 Dynamic Analysis and Control

The earliest approaches to secure information flow analysis and control were
based on runtime checking. In the context of information flow control, i.e.,
enforcing secure information flow, we usually speak of runtime monitoring.
A well known example of a monitoring approach is the one by Bell and
LaPadula [1973]. These analysis techniques check at runtime whether there
is an assignment from a high variable to a low variable. But they fail to detect
implicit flows, although they use security labels attached to each statement
to distinguish high contexts such as the conditional statement depending
on a high variable as in Listing 2.4. They will report the case where high
is true as being insecure, but fail to detect the implicit flow in the opposite
case. These dynamic analyses are always unsound: they may miss a possible
security violation that does not appear in the particular run.

Implicit flows can only be detected entirely by comparing all possible
execution paths, which is not possible at runtime. Dynamic analyses can be
made sound by considering the remaining program after the high conditional
as a high context, too. This effect is known as label creep and yields a
very restrictive, highly incomplete analysis. For instance, later erasure of
low variables will not be recognized as lowering the security context. In an
extreme case, any program would be considered as insecure. Declassification
can only be considered so far that from a given point in the execution on (i.e.,
‘where’ declassification), any information will be permitted to flow. These
points are marked by escape hatches [Sabelfeld and Myers, 2003b]. Despite
these major weaknesses, dynamic analysis has seen a revival as noted by
Sabelfeld and Russo [2009].

2.4.2 Static Analyses

Static analyses allow to consider multiple execution paths and therefore do
not suffer from the problems of dynamic analyses. Analyses based on type
systems [Denning and Denning, 1977; Volpano et al., 1996; Volpano and
Smith, 1997] have been the predominant information flow analysis technique
until recently. In type-based approaches, program elements do not only
have the usual types (such as int), but also a security type. If a program is
type-safe (which can be checked at compile time) then it respects the given
confidentiality property.
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Type system approaches are usually sound; i.e., they are guaranteed to
find all security violations. But they are incomplete w.r.t. sophisticated
policies such as noninterference. This means that they tend to report false
positives by rejecting (semantically) secure programs. Some type systems
are highly incomplete: For instance, the type system by Smith and Volpano
[1998] completely rejects loops with ‘high’ guards.

There exists a plethora of type systems for different programing languages
using different extensions to narrow the incompleteness gap; e.g., decentralized
labels [Myers and Liskov, 1998], floating types [Hunt and Sands, 2006], or
gradual types [Fennell and Thiemann, 2015]. In particular, floating types
allow for flow-sensitive analyses, which has become the standard for type
systems. First ideas to extend type checking to multi-threaded languages
have been published by McCullough [1987]; Smith and Volpano [1998]; and
Boudol and Castellani [2002]. A widely used implementation of type-based
analysis for sequential Java programs is the Java with Information Flow (JIF)
compiler [Myers, 1999], that however requires a specialized dialect of Java.
Other type systems for sequential Java include [Strecker, 2003; Banerjee and
Naumann, 2005; Barthe et al., 2013c].

A related technique is explicit dependency tracking of variables. Pan
[2005]; Bubel et al. [2009]; van Delft [2011] present approaches—built on
symbolic execution—in which for each variable a set of variables it is stored
on which its value depends at most.

Program dependence graphs (PDGs) provide an alternative static
technique [Hammer, 2009; Hammer and Snelting, 2009]. In this approach,
secure information flow is reduced to a property of graph-theoretical reacha-
bility. It is based on the fundamental insight that many implicit flows are
linked to program control dependencies. In a PDG, nodes represent sources
and sinks while directed edges represent dependencies between them, like
an assignment or a branch condition. The PDG approach is implemented
for Java bytecode in the JOANA tool [Graf et al., 2013]. Snelting, Giffhorn,
Graf, Hammer, Hecker, Mohr, and Wasserrab [2014] extended this technique
to concurrent Java, checking for RLSOD. Although they provide a more
precise treatment of implicit flows, program dependence analyses are still
incomplete in general. Several approach to further narrow the completeness
gap exist, for instance by Gocht [2014]. For a comparison between the type
system and PDG approaches, see [Mantel and Sudbrock, 2012].
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2.4.3 Semantical Approaches

A faithful formal semantics for a programing language allows analyses that
are both sound and complete, combining the strengths of both dynamic
and static worlds. In the safety community, this semantical principle has
already been established for some time. Joshi and Leino [2000] and Amtoft
and Banerjee [2004] were the first to formalize information flow properties
in a program logic. They use dedicated relational extensions of Hoare logic
[Benton, 2004].

The self-composition approach by Barthe, D’Argenio, and Rezk [2004]
works with an off-the-shelf program logic but uses program transformations
to express relational properties. Thus a security problem can be reduced to
an equivalent safety problem [Terauchi and Aiken, 2005]. Self-composition
is appealing, due to being easy to implement. For instance, the Fährmann
system [Beuter et al., 2013] is an undergraduate student project that uses
self-composition and a weakest precondition calculus to prove the nonin-
terference property in a simple imperative language. Imprecise analysis
techniques can only overapproximate semantical information flow properties
like noninterference. Product programs [Barthe et al., 2011] are similar to
self-composed programs, but again use a dedicated program logic.

Darvas, Hähnle, and Sands [2005] and Scheben and Schmitt [2012a]
present formalizations of noninterference in dynamic logic. These require
neither a dedicated logic nor program instrumentation. In contrast to
Hoare logics, sentences of dynamic logic are freely composable, thus allowing
to express relational properties naturally. If specification languages are
expressive enough—such as the first order dynamic logic used in the latter
named approaches—we can also express full semantical declassification (i.e.,
subjective declassification) [Banerjee et al., 2008b].

Taking these advantages into account, semantical information flow analy-
sis is a much stronger technique than dynamic or traditional static approaches.
Many of the research questions that are still open or currently discussed in
the context of type-based or PDG-based approaches are already solved by
construction. On the downside, security properties like noninterference are
theoretically undecidable—at least, they are expensive to prove in practice.
In general, they are not provable in a fully automated fashion.

2.4.4 Comparison of Dynamic and Static Analysis

There is a kind of dualism between dynamic and static analyses (cf. [Russo
and Sabelfeld, 2010]). This is not particular to security analysis, but also
well known in the safety world; cf. [Ernst, 2003]. On the one hand, dynamic
analyses are semantically precise since they execute the actual code. Static
analyses operate on a model of the system. Type systems and PDGs (as
well as so-called extended static checking (ESC) [Detlefs et al., 1998] for
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safety) use an abstracted state model and are therefore incomplete, but very
efficient.

Logic-based approaches are usually precise because they are built on
a semantical model that captures all possible program states symbolically.
Given this advantage, logic-based approaches appear in both worlds. The
particular challenge is to lift these techniques that were primarily designed
for functional analysis to the relational setting. Chudnov et al. [2014] regard
runtime monitoring as a kind of abstract interpretation for a relational logic.
On the other hand, dynamic analyses can effectively never be sound.9 But
this possibly requires an infinite number of test cases. Static analyses are
usually conservative in order to be sound.10 Even logic-based techniques,
that are theoretically precise, can lack practical completeness. As they are
concerned with problems that are undecidable in general, they have to rely
on ‘good’ specifications provided by a user.

Considering these techniques as complementary, it is possible for them
to work together in a hybrid approach like the one proposed by Küsters,
Truderung, Beckert, Bruns, Graf, and Scheben [2013]; Küsters, Truderung,
Beckert, Bruns, Kirsten, and Mohr [2015] and discussed in Sect. 9.3.3 of this
dissertation.

9In theory, they could—by exhaustively covering every possible execution path.
10A notable exception is the ESC/Java tool [Flanagan et al., 2002], that implements

the above named extended static checking technique.
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Concurrent Programs

In this chapter, we introduce our target concurrent language. Besides the
usual constructs for sequential execution, it features a fork statement to
spawn a fresh thread. We will develop denotational semantics for sequential
programs and subsequently for concurrent programs. Concurrent programs
consist of a set of threads, where each thread executes a sequential pro-
gram that is interleaved by the environment. Concurrent changes to the
shared memory are modeled explicitly in the program code through explicit
release points and an explicit—yet underspecified—scheduling function. The
statement release syntactically represents a release point in the code.

The semantics defined in this chapter is agnostic concerning analysis
techniques. This will serve as the foundation for the dynamic logic to
be introduced in Chap. 4 as well as for Chap. 5 on modular reasoning
about concurrent programs using rely/guarantee. We start by reviewing the
established concepts of concurrency and by explaining the foundations of our
approach.

3.1 Approach Overview

All kinds of programs can be described by their observable behavior. For
sequential programs it suffices to describe the relation between initial and
terminal system states (or between a multitude of possible states). Even
for sequential programs, the exact definitions of observable behavior widely
diverge, e.g., regarding termination, exceptions, heap structures, or side
effects, etc. Modules of sequential programs are (public) procedures. The
techniques for modular reasoning about sequential programs are design by
contract, behavioral subtyping, etc. (cf. [Grahl et al., 2016]).

Concurrent programs may allow even more observations. “The key to
formulating compositional proof methods for concurrent processes is the
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realisation that one has to specify not only their initial-final state behaviour,
but also their interaction at intermediate points.” [de Roever et al., 2001].

Devising a minimal programing language is the key to verifiable pro-
grams, as frequently advocated by Hoare [1981]: “You include only those
features which you know to be needed for every single application of the lan-
guage [. . . ]. Then extensions can be specially designed where necessary [. . . ].”
In this thesis, we consider a simple concurrent imperative language, that we
call deterministic While-Release-Fork (dWRF). It extends the sequential lan-
guage presented by Beckert and Bruns [2013] with interleavings and dynamic
thread creation. It is ‘Java-like’ in the sense that it uses both local and global
variables (aka. fields) and that an arbitrary number of sequential program
fragments1 can be executed concurrently. dWRF distinguishes between local
variables with atomic assignments and global variables with assignments
inducing (local) state transitions. The rationale behind this is that, in a
concurrent setting, only global memory can be observed by the environment.
Expressions do not have side effects. New threads can be spawned in a simple
fork statement, that includes the program of the thread to create, but does
not have parameters. Synchronization is not considered at the moment and
will be left to future work. We introduce the syntax of dWRF in Sect. 3.2.

Other Java features such as objects, arrays, types, or exceptions are not
of relevance to our discourse. These features are largely orthogonal to each
other (cf., e.g., [Stärk et al., 2001]) and could be added without invalidating
the central results.2 All such features can be added in principle, but we
keep the programing language simple for the presentation in this chapter.
In Sect. 7.3, we discuss how to extend dWRF to full Java, which will lead
to the development of an extension of the KeY verification system [Ahrendt
et al., 2014] to concurrent Java.

We assume that write actions are immediately visible to the environment,
i.e., we assume sequential consistency of the memory.3 On the other hand,
concurrent changes induced by the environment only appear in the seman-
tics when they actually may have an effect, namely upon read actions or
termination.

1Throughout this thesis, we will use the term ‘program’ for sequential program frag-
ments (or, ‘blocks’ in Java). This is the usual notion of programs in the context of dynamic
logics. We will sometimes use ‘system of (sequential) programs’ to denote entities that are
considered ‘programs’ in other contexts. Since we do not introduce method calls in our
simple language, this distinction is not essential.

2As Jones [1996] argues, object-orientation is even helpful to constrain concurrent
interleavings.

3Unfortunately, the Java memory model (JMM) does not guarantee this property; see
Sect. 7.2 for details.
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3.1.1 Explicit Thread Release

The common approach to define an interleaving semantics of concurrent
programs is to alter the semantics of read actions to encompass additional
havocking of values. In order to extend the language defined by Beckert and
Bruns [2013] in a conservative manner, we refrain from this idea. Instead, we
introduce explicit release points [Dovland et al., 2005], a concept borrowed
from the Abstract Behavioral Specification (ABS) language [Johnsen et al.,
2010; Hähnle et al., 2011]. Release points denote in the code that a thread
voluntarily releases control and the scheduler may select another thread.
We represent this through explicit release statements, whose semantics is
defined through the local semantics of the environment threads. All other
program statements are not affected by the environment. Even though in
real concurrent programs interleavings may occur at any point in time, this
setup is sufficient to model such systems, while it greatly reduces the number
of program states in which we must expect interleavings.

For most of this chapter, we just assume that release statements may
or may not appear in the code. In Sect. 3.6, we discuss how this can be used
to model actual concurrency. A purely sequential program can be explicitly
instrumented with release statements at the relevant program points to
model interleaving behavior. Conversely, atomic blocks (if present in the
target language) can be represented through the absence of release.

Determinism

While unconventional, we define the semantics of concurrent programs in a
deterministic way. Many models of concurrent program executions regard
programs as indeterministic. For instance, Zdancewic and Myers [2003]
postulate that reasoning about confidentiality in “concurrent languages is
problematic because these languages are naturally nondeterministic; the order
of execution of concurrent threads is not specified by the language semantics.”
We deliberately do not follow this paradigm. There is both a practical and
a theoretical rationale behind this decision. Firstly, nondeterminism is just
a model for unknown behavior; it is not ‘natural.’ In the physical world,
there is no such thing as nondeterminism. Secondly, many definitions are
much easier to give in terms of deterministic programs. E.g., the effect of a
program should be the same when run twice from the same initial state under
the same scheduler. This allows us to talk about exactly one computation
trace, which greatly improves tractability of reasoning—in particular for
relational properties. Zdancewic and Myers are right about the execution
order not being completely determined by program semantics. But instead
of nondeterminism, we prefer to view this as a kind of parametricism. We
model unknown behavior on the language through underspecification [Gries
and Schneider, 1995]; cf. Sect. 3.1.2 below. As explained by Hähnle [2005],
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the underspecification approach is the most viable option to model undefined
or partially defined behavior.

The semantics of dWRF is meant to extend the semantics of the sequential
language by Beckert and Bruns [2013] in a conservative way. However, in
contrast to Beckert and Bruns [2013], we model global memory using an
explicit (ghost) program variable heap, as explained in Sect. 3.3. The
semantics of heap is a mapping from global variable names to values. This
modeling caters both for abstract anonymization (i.e., havocking) on (possibly
underspecified) parts of the heap and for a convenient comparisons of the
entire memory, that we need for the techniques presented in Chaps. 5f.
Program semantics with explicit heap representations have been used in [Weiß,
2011], for instance. We extend Weiß’s approach with a second variable heap’
to denote the heap in the previous state, that we use to represent two-state
invariants in the rely/guarantee approach in Chap. 5.

3.1.2 Scheduler Assumptions

Our approach is widely scheduler agnostic. Validity of program properties
will be defined in Sect. 3.4 w.r.t. (almost) any scheduler; we only make the
following six fundamental assumptions. A formalization of these properties
will appear in Defs. 3.12 and 3.16 on pages 45ff. A general framework to
formalize scheduler policies is not part of this work.

1. The number of active threads is always finite.

2. The scheduler selects an active thread in any state in which at
least one thread is active, i.e., a thread that is not yet terminated.4 Without
loss of generality, we assume that there is always an active thread. This
assumption could be realized with a synthetic ‘idle’ thread that infinitely
loops with ineffective global write actions.

3. The schedule only depends on the heap state. This implies that
a scheduler is deterministic. This should not impose a loss of generality since
a nondeterministic scheduler can be simulated through a set of deterministic
schedulers. There already exist formalizations of concurrent program seman-
tics using deterministic schedulers in the literature, e.g., by Beckert and
Klebanov [2013]. In fact, indeterminism does not offer more expressiveness as
we only consider properties that are valid w.r.t. any deterministic scheduler.

Typically, there will be a special thread that manages the schedule,
remembers its history, book-keeps the active threads, and performs the
necessary computations. We assume that this particular thread does not

4Thread suspension is not considered in this work.
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get stuck in an infinite loop. Even though all other threads may not be
advancing to a different global state, we can assume that this thread will.

4. No state is reached twice. We assume that a management thread
as described in item 3 is present, without modeling it explicitly; it shall at
least keep a global program counter. Given this assumption, a deterministic
scheduler is not less capable than a nondeterministic one.

5. The scheduling does not change the global heap state. Under
‘scheduling’ we understand solely the process of selecting an active thread. It
does not have side effects. In combination with item 3, this means that the
scheduler can be modeled as a mathematical function on the global state.

6. The scheduler is fair. By ‘fair’ we understand the property that every
thread will be chosen sufficiently often to terminate—or infinitely often—cf.
[Francez, 1986]. Given the finiteness assumption from above, an equivalent
phrasing is that any thread is selected at least once within a finite time frame.
Similar assumptions are, for instance, made by Stølen [1991]. This does
not seem to bar us from modeling real world schedulers. As mentioned by
Beckert and Klebanov [2013], Java schedulers are “statistically fair,” which
means effectively fair in almost any practical situation. From a theoretical
point, the fairness assumption makes validity definitions simpler and more
consistent. Taking the possibility into account that an interleaving may not
return, would effectively introduce a kind of indeterminism.5

3.2 Target Programing Language

In this section, we introduce our target programing language deterministic
While-Release-Fork (dWRF).6 The sequential language constructs are assign-
ments, conditional branching, and conditional loop statements. Additional
constructs for concurrency are forking and release statements. Programs are
sequences of statements. The (mathematical) integers and boolean are the
only data type for program variables. Expressions can be of types integer
or boolean; they do not have side effects. Integer operators are unary mi-
nus, addition, multiplication, division and modulo. The program language
does not contain features such as functions and arrays; and there are no

5Dropping fairness would require to relax the semantics of properties on programs,
leading only to partial correctness. An approach would be to introduce a special program
‘state’ that is unreachable and in which any formula is vacuously true. Such a definition
would be very disturbing to our logic as there cannot be a regular program state with this
properties. It would have to be treated explicitly in every definition. The logic of Beckert
and Bruns [2013] is particularly well-behaved because of the (one) modality being dual to
itself (i.e., it is invariant under negation). Such a property would be lost.

6It is pronounced [dwO:ôf].
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object-oriented features. The only special feature is the distinction between
local variables (written in lowercase letters) and global variables (written in
uppercase). We assume that local variable names are unique; in particular,
there are no name clashes between threads.

Program expressions are typed. We use pairwise disjoint types Z (integers)
and B (boolean). We assume disjoint infinite sets LVar of local program
variables and GVar of global program variables to be given. These sets are
universal; programs cannot declare variables.

Definition 3.1 (Program expressions). Program expressions of type Z are
constructed as usual over integer literals, local and global variables, and the
operators +, -, *, /, and %. Program expressions of type B are constructed
using the relations ==, >, and < on integer expressions, the boolean literals
true and false, and the logical operators &&, ||, and !. A program
expression is simple if it does not contain global variables.

As will be explained in Sect. 3.4, we consider assignments to global
variables to be the only program statements that (locally) lead to a new
observable state. To ensure that there cannot be a program that gets stuck
in an infinite loop without ever progressing to a new observable state, we
demand that every loop contains an assignment to a global variable. This
technical restriction can easily be fulfilled by adding ineffective assignments
to an unused global variable; we use the special statement skip as syntactic
sugar for this. Expressions on the right hand side of global assignments and
conditions for if or while statements must be simple. The right hand side
of local assignments may refer to at most one global variable.7

We extend the core language introduced by Beckert and Bruns [2013]
with two additional statements release and fork that represent explicit
thread release and thread creation, respectively. By instrumenting a se-
quential program with the release statement, we simulate interleavings
in a concurrent program, as explained in Sect. 3.6. A fork itself does not
introduce interleavings, it merely updates the thread pool.

Definition 3.2 (dWRF syntax). A statement is one of the following:

• local assignment: v = x; where v is a local variable and x is an
expression of the same type not containing reference to more than one
global variable

• global assignment: F = x; where F is a global variable and x is a
simple expression of the same type

• conditional: if (b) {π0} else {π1} where b is a simple boolean
expression and π0, π1 are programs

7A similar requirement is imposed in the system by Manna and Pnueli [1995].
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• loop: while (b) {π} where b is a simple boolean expression and π is
a program containing at least one global assignment

• thread release: release;

• thread creation: fork {π};

Definition 3.3. A sequential program, or just ‘program’ for short, is a finite
sequence of statements. The set of sequential programs is denoted by Prg.
Programs not containing release are called noninterleaved. A concurrent
program Π is a finite set of sequential programs, Π ∈ 2Prg

fin .

Programs are static entities, that must not be confused with threads, that
only exist at runtime. Sequential programs serve as templates for threads and,
conversely, threads have associated sequential programs. Different threads
may be associated to sequential programs that are equivalent up to variable
renaming.

Table 3.1 summarizes the syntax of sequential programs. The language
of Beckert and Bruns [2013] is not strictly included in this, as it permits
nonsimple expressions to appear as guards or the right hand side of global
assignments. Nevertheless, any Beckert and Bruns [2013] program can be
transformed into an equivalent program in the intersection of the languages
by adding local assignments; see Lemma 3.9.

Table 3.1: Syntax of sequential dWRF programs. Local and global program
variables are represented by rules v and G, respectively.

z ::= z+z | z-z | z*z | z/z | z%z | v | G | 0 | 1 | . . .
b ::= true | false | b && b | b || b | !b | z == z |

z > z | z < z | v | G
x ::= z | b
π ::= G = x | v = x | π;π | if (b) {π} else {π} |

while (b) {π} | release | fork {π} | skip

Example 3.4. The following line shows a small (noninterleaved) program,
that reads two integers from global variables A and B and writes the minimum
to a third global variable C.

x = A; y = B; if (x < y) { C = x; } else { C = y; }

The following, shorter, line is not a valid dWRF program since the statements
in the conditional and on the right hand side of the global assignments to C
are not simple. Yet, both are equivalent in the language presented by Beckert
and Bruns [2013].

if (A < B) { C = A; } else { C = y; }
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3.3 Representing Memory and Threads

We now lay the foundations for defining a semantics for dWRF. There are
essentially two possibilities of representing computer memory in semantics
and logic:8 1. to represent each memory location by a function symbol9
or 2. to use a dedicated theory of storage and update a special variable
representing the current memory state [McCarthy, 1962].

While Hoare logic and classical dynamic logic [Harel, 1979] pursue the
former approach and use function symbols for each memory location,10 the
concept of having just one mathematical object to represent the whole
memory of a computer system has been proven to be more convenient in
may regards. It does allow to specify dynamically allocated memory—in
particular recursively defined data structures—in a modular way; and it allows
to specify information flow properties conveniently [Scheben and Schmitt,
2012a]. Instead of enumerating all the locations that are unchanged, we can
just quantify over them. In Chap. 5, we show that with an explicit heap we
can express two-state invariants conveniently. Such explicit heap modeling
appears in [Poetzsch-Heffter and Müller, 1999; Stenzel, 2005; Barnett et al.,
2005; Smans et al., 2008; Leino, 2010; Leino and Rümmer, 2010; Schmitt
et al., 2011]. Specifications based on explicit heap notions are particularly
valuable when reasoning about object-based structures, as the above reference
suggest, but can also be applied to a setting with only global variables and
no notion of objects.

To represent the heap on the semantical level, we introduce special
program variables heap and heap’, that represent the current heap and the
previous heap, respectively. These variables must not appear in programs.11

Their semantics is a partial function from global variables to values. Upon
every state change, induced by a write action, the values of heap and heap’
are updated.

Reasoning about heaps is provided through the explicit heap theory of
Schmitt et al. [2011]; Weiß [2011], that is already implemented in the KeY
verification system from version 2.0 onwards. It compromises of the three
data types Field (representing the syntactical entity of the same name in
program code, denoted by F), LocSet (representing finite sets of locations,
denoted by L), and Heap (representing a mapping from the set of all locations

8The reader may excuse that this section anticipates logic to some extend, that is
meant to appear in Chap. 4. On the other hand, the logic representation is strongly related
to the modeling issues that are discussed here.

9Although it may sound confusing, program variables are considered (nonrigid) con-
stants, i.e., 0-ary functions, in this context.

10This approach was also taken in earlier versions of the KeY system, see [Beckert, 2001;
Beckert et al., 2007b].

11They can be described as ghost variables, thus.
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to values, denoted by H). For most of this dissertation, we identify the terms
‘location’ and ‘field’ with each other, since we do not have the notion of
objects.12

The field data type contains only a finite number of constants. The
signature of the location set data type is the same as for standard (finite)
sets; it includes the constructors empty set ∅̇ and singleton {ℓ} (with a
location ℓ), the binary set operators ∪̇ (union), ∩̇ (intersection), and \ (set
minus); as well as the unary set operator ·∁ representing the complement
in the set of all locations.13 The predicate ∈̇ indicates whether a field is in
a location set. For convenience, we write {x0, x1, . . . , xn} as shorthand for
{x0} ∪̇ {x1} ∪̇ . . . ∪̇ {xn}.

The heap data type is a coälgebraic data type14 with a single observer (or,
‘destructor’) select and two elementary mutator functions store and anon
whose semantics is given in terms of selects on them. This modeling is based
on the theory of arrays by McCarthy [1962], that is widely used to represent
memory in logic or functional programing.

(i) select(h, ℓ) of type ⊤, where h is term of type H and ℓ (‘location’) of
type F, representing value retrieval from a location;

(ii) store(h, ℓ, v) of type H, where v is a term of any value type (e.g., integer)
and h, ℓ as above, representing a state change; and

(iii) anon(h, L) of type H, represents a heap that is havocked on all location
in the location set L, but agrees on h otherwise.

We do not give formal semantics for the LocSet and Heap theories here
as they are part of common folklore and should be intuitively clear. The
nevertheless interested reader is pointed to [Weiß, 2011, Chap. 5]. By abuse of
notation, we write logic symbols and their semantical counterpart functions
alike. See also Sect. 8.2.2 on the role of the location set data type in Java
Modeling Language (JML) specifications.

Threads are also represented by semantical objects. The state of currently
active threads is recorded in a special variable threads. Like heap, it must
not appear in programs. It is updated whenever a fresh thread is forked. It
is of type T, which elements are to be understood as finite, nonempty sets
of threads. We assume set theoretical operators present, equivalent to the
ones for L introduced above, that we denote with the same symbols. Like

12 Weiß [2011] defines a location as a pair of a receiver object and a field (which is just
an identifier). We will adopt the latter definition temporarily for Sect. 6.5, where we deal
with object-sensitive information flow.

13The set of all locations is a welldefined finite set in this setting since there are only
finitely many field constants. In general, the set of locations may not be finite.

14See the introduction in Sect. 8.2.2.
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for the above theories, we refrain from overloading this section with formal
semantics.

3.4 Trace Semantics for Sequential Programs

In this section, we develop semantics for noninterleaved sequential dWRF
programs without dynamic thread creation. Instead of defining semantics
as a relation between initial and final states of an abstract execution of the
program (like by Beckert [2001], for instance), we use complete traces of
intermediate program states. This will be extended to noninterleaved pro-
grams containing fork in Sect. 3.5.1 and to interleaved sequential programs
in Sect. 3.5.2.

Expressions and formulae are evaluated over traces of states (that give
meaning to program variables) and variable assignments (that give meaning
to logical variables). The domain, denoted by D, contains all semantical
values to which an expression can evaluate. It does not depend on the
program state (i.e., a constant domain). The domain can be partitioned into
DT for a type T .15 All theories have the usual semantics. In particular the
domain of integer expressions is Z and the domain of location set expressions
consists of sets of locations: DL ⊆ 2DF .

In addition to the sets LVar and GVar , we introduce the disjoint set of
‘special variables’ SVar := {heap, heap’, estp, threads} that do not appear
in programs, but only in semantics. We refer to non-special variables as
‘proper’ variables. The variables heap, heap’, and threads have been intro-
duced in the previous section, representing the current and previous global
memory as well as the current thread pool. The fourth special variable estp
of type boolean is used to distinguish between steps of the thread under
investigation and environment steps (in interleaved programs). It is explicitly
set on every step: to true for an environment step and to false for a local
step.

Definition 3.5. A program state—or simply state for short—is a function
s : LVar ∪ SVar → D assigning values to program variables. It assigns integer
or boolean values to all proper local variables of the appropriate type (i.e.,
s|LVar : LVar → DZ ∪ DB), a heap function to the special variables heap
and heap’(i.e., s|{heap,heap’} : SVar → DH), a boolean value to the special
variable estp (i.e., s|{estp} : SVar → DB), and a set of threads to the special
variable threads (i.e., s|{threads} : SVar → DT).

Instead of the usual mathematical notation s(x) for function application,
we will frequently use the notation xs, that is common in logic texts. We
use the notation s{x ↦→ d} to denote the state that is identical to s except
that the variable x is assigned the value d ∈ D, formally s{x ↦→ d} = {x ↦→

15Remember that we do not have subtypes in dWRF.
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d} ∪ {y ↦→ s(y) | y ∈ LVar ∪ SVar \ x}. Likewise, we write τ{x ↦→ d} (where
τ is a trace, see below) with the obvious semantics. For global program
variables, the special variable heap is updated to a new function using the
(higher order) function store, see Sect. 3.3.

Definition 3.6 (Traces). A computation trace, or just trace for short, τ is
a non-empty, finite or infinite sequence of (not necessarily different) states.
The set of traces is denoted by S∗.

We use the following notations related to traces:

• |τ | ∈ N ∪ {∞} is the length of a trace τ . If τ = ⟨s0, . . . sk⟩, then
|τ | = k + 1.

• τ1 · τ2 is the concatenation of traces:

– If |τ1| = ∞, then τ1 · τ2 = τ1.
– If τ1 = ⟨s0, . . . , sk⟩ (finite) and τ2 = ⟨t0, . . . ⟩ (possibly infinite),

then τ1 · τ2 = ⟨s0, . . . , sk, t0, . . . ⟩.

• τ [i, j) for i, j ∈ N ∪ {∞} is the subtrace beginning in the i-th state
(inclusive) and ending before the j-th state:

– If i ≥ |τ | or i ≥ j, then τ [i, j) = τ

– If i < |τ | < j, then τ [i, j) = τ [i, |τ |)
– If τ = ⟨s0, . . . , si, si+1, . . . , sj−1, sj , . . . ⟩,

then τ [i, j) = ⟨si, si+1, . . . , sj−1⟩ for j < ∞
and τ [i,∞) = ⟨si, si+1, . . . ⟩.

• τ [i] for i ∈ N is the state at position i in τ (with τ [i] := τ [0] for i ≥ |τ |).
For convenience, we identify singleton traces with their sole element.

Computation traces of programs are defined through small step de-
notational semantics on observable states (cf. [Scott and Strachey, 1971;
Reynolds, 1998]). As mentioned above, we consider assignments to global
variables to be the only sequential statements that lead to a new observable
state. By specifying which variables are local and which are global, the user
can thus determine which states are ‘interesting’ and are to be included in a
trace. For the feasibility of proving properties about dWRF programs, it is
important that not too many irrelevant intermediate states are included in a
trace.

Definition 3.7 (Trace of a noninterleaved program (without fork)).
Given an initial state s, the trace of a noninterleaved program π, denoted
trcΣ(s, π), is defined by (the greatest fixpoint of) the following equations:

41



Chapter 3. Concurrent Programs

trcΣ(s, ϵ) := ⟨s⟩
trcΣ(s, x = a; ω) := trcΣ(s{x ↦→ as}, ω)

trcΣ(s, X = a; ω) := ⟨s⟩ · trcΣ

⎛⎜⎝s
⎧⎪⎨⎪⎩

estp ↦→ false,
heap’ ↦→ heaps,
heap ↦→ heaps{X ↦→ as}

⎫⎪⎬⎪⎭ , ω
⎞⎟⎠

trcΣ

(
s,

if (a) {π1}
else {π2} ω

)
:=

{
trcΣ(s, π1 ω) if s ⊨ a
trcΣ(s, π2 ω) if s ⊭ a

trcΣ(s, while (a) {π} ω) :=
{

trcΣ(s, π while (a) {π} ω) if s ⊨ a
trcΣ(s, ω) if s ⊭ a

where ϵ is the empty program and ω is a program.

The scheduling function Σ (see Sect. 3.5.2 below) does not have an
effect on this definition. We will omit Σ whenever it is not relevant to the
context. The definition of a program trace for noninterleaved programs will
be completed with Def. 3.10 below. See also Example 3.8.
Remark. Typically, program semantics are defined inductively in terms of
(sets of) reachable terminal states (i.e., big step semantics), cf. Beckert et al.
[2007b, Sect. 3.3]. Opposed to this, our definition is coïnductive. It is based
on traces of all reachable states (i.e., small step semantics). Traces may be
of infinite length. To cater for this, the semantics is defined through the
greatest fixpoint of trcΣ instead of the least fixpoint. The coïnductive notion
is motivated by our goal to express trace properties about nonterminating
programs.
Example 3.8. We look again on the program from Example 3.4. It reads
integers from two global variables and writes the minimum to another global
variable.

x = A; y = B; if (x < y) { C = x; } else { C = y; }

Let s be a state with heaps = {A ↦→ 5, B ↦→ 7, C ↦→ −1}. Figure 3.2 on the
next page shows the concrete intermediate states that the execution passes
through when started in s. Not all these states are included in the trace
of the program, but only the two states before the global assignment (3)
and the terminal state (5). All other states are equivalent to one of them
regarding the value of heap.

The following lemma states that the syntactical restrictions regarding
global variables imposed on programs (see Def. 3.2) do not lessen expressivity.
Further, it allows us to view dWRF as a conservative extension [Shoenfield,
1967; Kaufmann and Moore, 1999] to sequential programs.

Lemma 3.9. Let π be a noninterleaved ‘program’ without fork and with
the restrictions on global variables waved, i.e., a program of Beckert and
Bruns [2013]. 1. There is a proper dWRF program π′ that is semantically
equivalent to π, i.e., trc(s, π) = trc(s, π′) for all s ∈ S, where trc is the
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heap ↦→ {A ↦→ 5, B ↦→ 7, C ↦→ −1} (0)
x = A;

heap ↦→ {A ↦→ 5, B ↦→ 7, C ↦→ −1}, x ↦→ 5 (1)
y = B;

heap ↦→ {A ↦→ 5, B ↦→ 7, C ↦→ −1}, x ↦→ 5, y ↦→ 7 (2)
if (x < y) {

heap ↦→ {A ↦→ 5, B ↦→ 7, C ↦→ −1}, x ↦→ 5, y ↦→ 7 (3)
C = x;

heap ↦→ {A ↦→ 5, B ↦→ 7, C ↦→ 5}, x ↦→ 5, y ↦→ 7, estp ↦→ false (4)
} else {

C = y; }
heap ↦→ {A ↦→ 5, B ↦→ 7, C ↦→ 5}, x ↦→ 5, y ↦→ 7, estp ↦→ false (5)

Figure 3.2: The intermediate states of a program execution are shown on the
right. The states shown in red are included in the program trace.

function introduced in [Beckert and Bruns, 2013, Def. 8]. 2. The definitions
of traces trc and trcΣ restricted to local and global variables are equivalent.

Proof. Ad 1: We show the lemma by structural induction over π. The base
case is the empty program. For the step case, assume that for any proper
subprogram πi of π, there is an equivalent dWRF program π′

i. We have to
distinguish between the different kinds of statements:

• π = v = x; π2: Let x be representable as a function fx(G1, . . . , Gn)
where Gj are the global variables in x for some n ∈ N. Let π̃x :=
v1 = G1; . . . vn = Gn; where the vj ∈ LVar are fresh. Then we define
π′ := π̃x v = fx(v1, . . . , vn); π′

2. Let s̃ := s{vj ↦→ Gsj | 0 < j ≤ n}.
Since the vj are fresh, for all expressions y that do not contain any vj ,
it is ys = ys̃. It is obvious to see that it follows from the definition of
trc for local assignments that the traces of π and π′ are the same.

• π = F = x; π2: as above.
• π = if (b) {π0} else {π1} π2: Let b be representable as a function
fb(G1, . . . , Gn). Then π′ := π̃b if(fb(v1, . . . , vn)){π′

0} else {π′
1}π′

2,
where π̃b uses the ‘tilde’ notation from above. Again, the trace equality
is obvious.

• π = while (b) {π0} π2: Let everything be as above. Then π′ :=
π̃b while(fb(v1, . . . , vn)){π′

0 π̃b}π
′
2. We prove the trace equality; it

is trc(s, π′) = trc(s̃, while(fb(. . . )) . . . ) and bs = (fb(⃗v))s̃. If s ⊨ b,
then trc(s, π′) = trc(s̃, π′

2) and we are done. If s ⊭ b, then trcΣ(s, π′) =
trc(s̃, π′

0π̃b while . . . ). Assume trc(s̃, π′
0) = trc(s, π′

0) is finite with final
state s̄. Then trc(s, π′) = trc(s̄, π̃b while . . . ) = trc(˜̄s, while . . . ) and
the fixpoint theorem closes the proof.
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Ad 2: The only item to differ between [Beckert and Bruns, 2013, Def. 8]
and Def. 3.7 is the global assignment. The ‘old’ trc can be emulated by trcΣ
through restriction to heap and mapping to global variables. ◁

3.5 Semantics of Concurrent Programs

Above in Def. 3.7, we have given a semantics for the purely sequential part of
dWRF. In this section, we define semantics for interleaved programs and in
turn for concurrent dWRF programs. Remember that interleavings are made
explicit in the program code. We first extend our definition of program traces
for noninterleaved programs, from Def. 3.7 above, to programs that contain
fork statements, but not release, in Sect. 3.5.1. Then, in Sect. 3.5.2, we
develop a semantical model of interleavings, which gives rise to a semantics
of release.

At runtime, a concurrent program Π is identified with a set T of threads
that can be created and a (fair) scheduling function Σ. Every thread t ∈ T
has an associated sequential program πt, which syntactically is one of the
members of the concurrent program Π, modulo renaming of local variables.
Without loss of generality, we assume that local variables are unique to
one thread. This means, in particular, that no two threads have the same
program. It is reasonable to define that T contains an infinite number of
isomorphic copies of each sequential programs as a reservoir. We can think
of the syntactical appearance of sequential programs as templates for these
copies. Keeping a reservoir from which fresh objects can be selected, instead
of actually ‘creating’ new ones through an extension of the state, is a common
modeling technique in the context of dynamic logic (cf. [Beckert et al., 2007b,
Sect. 3.6.6]). It permits us to work with the constant domain assumption.16

We refer to the pair (T ,Σ) as a concurrent system.

3.5.1 Dynamic Thread Creation

Besides the memory state as introduced above, concurrent programs also
have a thread state. We will refer to the set T ⊆ T of currently alive threads
as the thread pool. Through dynamic thread creation, the thread pool may
change throughout program execution. In any reachable program state, a
thread pool is finite and nonempty. Syntactically, we represent the thread
pool by the special variable threads ∈ SVar .

Definition 3.10 (Computation trace of a noninterleaved program).
Let everything be as in Def. 3.7. Additionally, we define the following:

trcΣ(s, fork {π}; ω) := trcΣ(s{threads ↦→ threadss ∪ t}, ω)
16For an alternative model of object creation with a nonconstant domain, see [Ahrendt

et al., 2009].
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where t ∈ T is a fresh thread with program π (modulo renaming of local
variables).

Example 3.11. Consider the following simple, forking program:
A = 4; fork { A = 7; }

The trace consists of two states: an initial state s and a final state s′ with
heap ↦→ heaps{A ↦→ 4} and threads ↦→ threadss ∪ {t} where t is a fresh
thread with the program A = 7; The effect of the forked thread t is not
included in this trace as it only contains the local changes.

We will complete the definition of program traces for interleaved programs
in Def. 3.17 below, where we add the definition of trcΣ applied to a release
statement, after having developed a semantics for interleavings.

3.5.2 Interleaved Programs

Following our assumptions in Sect. 3.1.2, the scheduler Σ is a mathematical
function—deterministic and without side effects. Depending on the state,
it chooses a thread from the thread pool. Without loss of generality, we
assume that any run of a concurrent program never reaches the exact same
state s twice,17 except for the special case that all threads in threadss have
terminated. The axiom of choice [Zermelo, 1904] guarantees that schedulers
do actually exist.

Definition 3.12. A scheduler is a function Σ : S → T such that Σ(s) ∈
threadss for any state s.

To define the big step semantics of concurrent programs, we need to define
a total state transition function σ, that also takes into account dynamic
thread creation. The thread-local transition function σt is equivalent to the
computation trace of the noninterleaved program πt. We can safely assume
exactly one, definite trace here since a sequential program is deterministic.

Definition 3.13. Let t be a thread with noninterleaved sequential pro-
gram πt. Let the trace for πt be given as ⟨s0, s1, . . . ⟩. The thread-local state
transition function σt : S → S maps any nonterminal state si to its successor
si+1 and a terminal state to itself in a single step.

The definition of σ is welldefined since we assume that no state is visited
twice. We now take the environment into consideration; we assume that it is
also deterministic (i.e., it contains other deterministic sequential programs
that are executed according to a deterministic scheduler).

Definition 3.14.
17Otherwise, we would have to model a program counter. So far, we assume that it is

encoded in the state.
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1. For a concurrent system (T ,Σ) the system state transition function
σΣ : S → S denotes a single step of the concurrent system, with
σΣ(s) := σt(s) where t = Σ(s).

2. The iterated extension of the transition function σΣ with n ∈ N is
defined inductively as σ0

Σ(s) := s and σn+1
Σ (s) := σΣ (σnΣ(s)).

3. The set Ωt ⊆ S contains the terminal states for thread t, i.e., Ωt is the
set of fixpoints of σt.18 ΩT denotes the set of terminal states for all
threads t in a thread pool T , i.e., ΩT = ⋂

t∈T Ωt.

The following definitions are only welldefined for fair schedulers, following
our assumptions in Sect. 3.1.2. We define fairness as the property that for
every point in time, every alive and not yet terminated thread is scheduled
within finite time. For nonterminating threads this means being scheduled
infinitely often. In case all threads have terminated, any thread may be
chosen ad infinitum.

Definition 3.15 (Fairness). A scheduler Σ is fair if for every thread pool T
and every thread t ∈ T there is exists an n ∈ N such that Σ (σnΣ(s)) = t, for
any nonterminal state s ∈ S \ Ωt.

Definition 3.16 (Macro step). Let Σ be a fair scheduler. The state transition
function σ∗

Σ : S × T → S describes the macro step between two states in
which either there exists a thread t ∈ threadss that is active or all threads
have terminated. Formally: σ∗

Σ(s, t) := σnΣ(s) where n is the smallest natural
number such that Σ (σnΣ(s)) = t, or σnΣ(s) ∈ ΩT with T = threadsσ

n
Σ(s).

The state transition function σ∗
Σ(s, t) describes the state change induced

by the environment, that occurs in between atomic steps of a thread t under
investigation. Within the transition σ∗

Σ(t), there is no transition of thread t.
But in the final state of σ∗

Σ(s, t), the scheduler selects t again, as displayed
in the example in Fig. 3.3 on the facing page. The fairness assumption
guarantees that this minimum actually exists. In the special case that all
threads have terminated, the scheduler may select any thread. In this case,
σ∗

Σ(t) is the identity function for any thread t. Note that we do not need
to specify program pointers/active statements in the other threads; this is
already encoded in the program state s.

Following these definitions, the thread pool T has an influence on the
computation trace of a program, and thus on the definition of validity. We
extend Defs. 3.7 and 3.10 with the release statement, defined through
the macro step function σ∗

Σ; thereby effectively providing a semantics for
interleaved sequential programs. The release statement is the second
statement (the other being global assignment) that induces a step in the trace,

18This is sufficient for termination since we assume no state to be repeated.
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σt0

σt1

σt2

σt0

σt1

σ∗
Σ(t0)

σ∗
Σ(t0)

Figure 3.3: A system trace for three threads t0, t1, t2. Two atomic steps σt1

and σt2 are combined into a macro step σ∗
Σ(t0). Another macro step points to

the terminal state represented by the dark node on the right.

following our fundamental idea of having a step when ‘something interesting’
happens. To further distinguish steps of the thread under investigation (i.e.,
induced by an assignment statement in its program) and environment steps
induced by release statements, we encode this in the special variable estp.
The previous heap state is stored in the special variable heap’. This is
established by the update to the result of σ∗

Σ.

Definition 3.17 (Computation trace of an interleaved program).
Let everything be as in Defs. 3.7 and 3.10, but let additionally Σ be a fair
scheduler. We additionally define

trcΣ(s, release; ω) := ⟨s⟩ · trcΣ

(
σ∗

Σ(s,Σ(s))
{

heap’ ↦→ heaps,
estp ↦→ true

}
, ω

)
.

Note that the macrostep σ∗
Σ is defined through local transitions of the

environment, and thus only affects heap, but not heap’ or estp. This
definition of a trace is similar to what Xu et al. [1997] call a “computation,”
that distinguishes between component and environment state transitions, on
the one hand. On the other hand, they model concurrency as indeterminism,
allowing any enabled transition to be taken, while our definition is based on
deterministic program semantics.
Example 3.18. We consider the program from Example 3.11 again, this time
with added release statements.

s0 A = 4; s1 fork { A = 7; release; } release; s2

The trace of the local thread t now consists of three states—as opposed
to only two in Example 3.11. Given an initial state s0, the intermediate
state s1 is produced by the assignment to A and includes the valuations
heap ↦→ heaps0{A ↦→ 4} and estp ↦→ false as before. The state reached after
the fork statement is not on the trace. Finally, there is a terminal state s2
on the trace that is induced by the final release statement. Assuming that
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the environment is empty in the beginning, s2 holds the following mappings:
heap ↦→ heaps0{A ↦→ 7}, threads ↦→ {t, t′} (where t′ is the thread that is
being forked), and estp ↦→ true. In this case, the final release of the
local thread brings in exactly the heap update of the forked thread t′. The
release in the program of t′ has no effect since there is no further local
transition of t.

3.5.3 Properties of Program Traces

The above definition of program traces establishes that the special variable
heap’ refers to the previous state heap and estp faithfully indicates that an
environment step occurred or not (in a non-trivial trace produced by a valid
program):19

Lemma 3.19. Let π be a sequential program with a trace τ = trcΣ(s, π) of
length |τ | ≥ 2. Then for all i ∈ (0, |τ |), the following hold:

1. heap’τ [i] = heapτ [i−1] and

2. estpτ [i] = true if and only if τ [i] = σ∗
Σ(τ [i− 1],Σ(τ [i− 1])).

Proof. Follows from Defs. 3.7, 3.10, and 3.17 by structural induction over
programs. ◁

The following definitions and lemmas are required for reasoning about
single threads in a concurrent system.

Definition 3.20 (System trace; projection). Let (T ,Σ) be a concurrent
system. Let s ∈ S be a state. 1. The system trace trcΣ(s) is the smallest
repetition-free prefix of the sequence ⟨σiΣ(s)⟩i∈N. 2. If τ = trcΣ(s) is a system
trace and t ∈ threadsσ

∗
Σ(s) is a thread, then τ↓t denotes the projection to t:⟨

τ [i]
⏐⏐ i ∈ [0, |τ |) ∧ s′ = σiΣ(s) ∧ T ′ = threadss

′ ∧
(
Σ(s′) = t ∨ s′ ∈ ΩT ′

)⟩
The projection function is not the inverse to the system trace construction.

The projection of the system trace trcΣ(s)↓t to a thread t is similar to the
local interleaved trace of the thread trcΣ(s, πt), as it includes local steps
and the effects of interleavings, but not the steps induced by interleavings.
Another way to express this is, that the interleaved trace trcΣ(s, πt) is a
contraction of the system trace, fusing all (zero or more) environment steps
into one release step. This leads us to the following lemma:

19This statement is not valid for all traces, since there are traces that are not induced
by a program.
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Lemma 3.21. Let (T ,Σ) be a concurrent system. Let s be a state and
t ∈ threadss. The projection trcΣ(s)↓t of the system trace to t contains
all states si of trcΣ(s, πt) for which estpsi = true or si ∈ Ωt holds in the
original order.

Proof. For the first case on si: according to Lemma 3.19, the condition
estpsi = true is a precise characterization of the ‘own’ steps of t. For the
second case, si ∈ Ωt follows from si ∈ ΩT ′ according to Def. 3.14. The
preservation of order follows from Def. 3.20. ◁

If a concurrent system terminates, i.e., all threads terminate, including
those created during the run, then there is a unique ‘idle’ state that is the
terminal state for all threads. This is enshrined in the following lemma.

Lemma 3.22. Let (T ,Σ) be a concurrent system. Let s be a state. If
τ = trcΣ(s) is finite with length n+1, then τ [n] is the final state in trcΣ(s, πt)
for every t ∈ threadsσ

n
Σ(s).

Proof. Definition 3.20(1) defines the system trace as finite if and only if there
is a terminal state for the system. The definition of transition functions
state that a terminal state s′ is a fixpoint.20 From Def. 3.16 it follows that is
also a fixpoint for σ∗

Σ: If it were not, then there must be an active thread t′
with σt′(s′) = σn+1

Σ (s). Since s′ is already final, it must be σn+1
Σ (s) = s′. By

Def. 3.20(2), s′ is included in the projection τ↓t. By Lemma 3.21, the final
state is also included in the local trace trcΣ(s, πt). ◁

3.6 Modeling Concurrent Programs

In this section, we discuss how the dWRF language, that was introduced in
this chapter, can model ‘real’ concurrency as in the Java language. Basically,
we follow the usual approach in which the execution of concurrent programs
is mimicked by interleaved sequential programs (cf. [de Roever et al., 2001,
Chap. 3]). However, we refrain from introducing parallel composition opera-
tors in favor of fork and release constructs. As mentioned above, the idea
of explicit thread release points is borrowed from the Creol [Dovland et al.,
2005] and ABS [Johnsen et al., 2010] languages. The release statements
indicates a program point where the environment, i.e., concurrently running
threads, may change the global memory, while it must not do elsewhere.
This paradigm is helpful to define the language of concurrent programs
as a conservative extension to sequential programs: the semantics of read
actions from the global memory can be retained; all concurrent changes are
encapsulated in release. Creol and ABS additionally feature a conditional
release statement await b, that we do not incorporate into dWRF.

20Note that Σ(s′) = t is not necessarily true, however.
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Explicit release does not follow the usual concurrency paradigm, where
environment changes may occur at any program point (except in atomic
blocks).21 Of course, we do not expect a programmer to type out release;
we only consider it an instrument to conveniently define semantics. The
transformation of a program without explicit release, but in the usual in-
terleaving semantics, to a program with explicit release is straightforward:
a release is to be inserted at any point where an interleaving may occur.
In this way, we construct sequential programs that simulate the observable
runtime behavior of concurrent programs. Although in a real concurrent
program the environment may be active at any point in time, with this
definition, we restrict it to fewer states. The rationale behind this is to
already keep to model simple enough to efficiently reason about. This is
justified—on the meta level—by the observation that only some interleavings
are actually observable to the thread under investigation.

An interleaving is only observable if has an effect on 1. the control or
data flow in the program or 2. an assertion stated about the program. In our
language, control statements are atomic and free of side effects. Furthermore,
we separate read and write actions from/to the global memory; there is no
atomic update of the heap. This coïncides with the interleaving model in
Java [Gosling et al., 2014] where compound statements such as X++ are not
atomic, but can be broken up into a read and write action each.22

Item 1 in this setup means that concurrent changes only affect read
actions. Therefore, it suffices to insert one release immediately before such
statements. Note that write actions and control statements are never directly
influenced by environment actions. This is obvious, given our restrictions
in Def. 3.2 on the occurrence of global variables. In the actual concurrent
behavior that is to be modeled, the order of writes may technically be
different, but the observable effect of a write action is always the same. Any
concurrent write action that is not modeled by our interleaving semantics is
eventually shadowed by a write action of ‘our’ thread.

To simulate the concurrent behavior, we can instrument noninter-
leaved sequential programs with release statements and amend the invariant
rules. Basically, a noninterleaved program is instrumented in a way such
that environment actions appear before every heap read and the termination
action as follows.

21Note that the concept of an atomic block is not present in the Java language.
22We consider Java at the source code level with the operational semantics provided

by Gosling et al. [2014], in comparison to Bytecode. A strict correspondence of dWRF
statements to Java Bytecode instructions is coïncidental. The number and order of Bytecode
instruction corresponding to source code statement is not fixed either, as compilers enjoy
certain degrees of freedom.
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Definition 3.23 (Instrumented program). Let π = ⟨stm1, . . . , stmn⟩ be
a noninterleaved program. The corresponding instrumented program π is
constructed following: For each statement stmi with i ∈ (0, n],

• if stmi is a local assignment with a nonsimple expression on the right
hand side, the statement release; is inserted before stmi,

• if stmi = while (b) {π′}, it is replaced by while (b) {π′}
• if stmi = if (b) {π1} else {π2}, it is replaced by

if (b) {π1} else {π2},
• and the statement release; is inserted after stmn.

Please note that this instrumentation is purely syntactic and independent
of a thread pool. Later, we expect that programs under investigation are
already instrumented.

Item 2 of the postulate above is more intricate. First of all, ‘assertions’
refers to the trace properties that appear after program modalities in formulae
(see the following chapter). As terminal execution states are always included
in traces, it demands that an interleaving after the (locally) final state of a
trace has an effect. A particular class of these properties are postconditions.
But secondly, interleavings also affect any property stated on subtraces.
Fortunately, the calculus we present in the following chapters, does not allow
arbitrary trace decompositions, since program rules for dynamic logic do
(usually) focus on active statements. This is in contrast to other program
logics, in particular Hoare [1969] logics, that have sequential decomposition
rules.23

The only exception are the invariant rules (see Tab. 4.7 on page 73), that
state properties about the subtrace induced by the loop body. While the
original invariant rules are technically sound w.r.t. the semantics defined
in this chapter, they are inappropriate to model symbolic execution of
concurrent programs. The reason is that the loop invariant may depend on
shared locations that are modified by the environment. We present slightly
modified invariant rules, that only differ in additional instrumentation, in
Tab. 4.11 on page 84.

23Confer to [Beckert et al., 2007b, p. 115] for a discussion on this.
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4
Concurrent Dynamic Trace Logic

Dynamic logic is an established instrument for program verification and
for reasoning about the semantics of programs and programing languages.
It benefits from a high flexibility—in particular, dynamic logic can readily
express relational properties such as noninterference. Most dynamic logics,
however, consider only sequential programs. In this chapter, we develop a
novel dynamic logic that targets threads of concurrent programs. Although,
we define our logic for the simple language dWRF, which was introduced
above, we argue that it can be extended to full Java in a natural way.

In contrast to standard dynamic logic, which is entirely state-based,
we use a notion of program semantics based on traces of program states.
In the previous chapter, we have introduced dWRF, a simple programing
language with basic support for multithreading. We have defined a trace-
based semantics for dWRF, including an interleaving semantics w.r.t. a
deterministic scheduler. In prior work [Beckert and Bruns, 2013], we have
defined Dynamic Trace Logic (DTL), that combines the expressiveness of
program logics such as first order dynamic logic with that of temporal logic.
In this chapter, we define a dynamic logic for dWRF, extending DTL to
Concurrent Dynamic Trace Logic (CDTL). We recapitulate the base calculus
for DTL from Beckert and Bruns [2013], to be extended to full CDTL in
Chap. 5.

The KeY verification system (co-developed by the author; see also
Sect. 7.1) is built on a calculus for Java dynamic logic (JavaDL), a dy-
namic logic for sequential Java [Beckert, 2001; Beckert et al., 2007b]. As
these features are mostly orthogonal to those discussed in this chapter, the
JavaDL calculus can be used as a basis to extend CDTL to Java. We have
implemented the CDTL calculus for Java prototypically in KeY. Additional
rules needed to handle full (sequential) Java can be derived from the KeY
rules for the [·] modality by analogy. Since a language like Java incorporates
a lot of features, in particular object-orientation, and various syntactic sugars,
the rule set is quite voluminous (c. 1600 rules) in comparison to simple while
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languages. These special cases can, however, be reduced to a smaller set of
base cases. For instance, the assignment x=y++ containing a postincrement
operator is transformed into two consecutive assignments x=y and y=y+1
during symbolic execution.1 This becomes particularly relevant as soon as
we take interleavings into consideration. See also Chap. 7 for details on rule
implementations in the KeY prover.

Chapter Overview

In this chapter, we conservatively extend the logic of our prior work—that
only considers sequential programs—with concurrent dWRF programs as
defined in Chap. 3. In this way, we produce CDTL, a dynamic logic with
program modalities that still contain sequential programs, but which actually
represent threads of concurrent programs. We present a sound and (relatively)
complete sequent calculus for proving validity of core DTL formulae. Later,
in Chap. 5, we show that this calculus can be extended to a sound calculus
for full CDTL, based on the rely/guarantee formalism. In Chap. 7, we discuss
how this calculus can be implemented in the KeY system in order to verify
programs in the Java language.

Section 4.1 covers the state of the art in the areas of mathematical
logic that is being used in this chapter—in particular regarding program
logics (that include dynamic logic). This is a prerequisite for defining syntax
(Sect. 4.2) and semantics (Sect. 4.3) of CDTL. The remainder of the chapter
is dedicated to proving valid propositions of sequential DTL as presented
previously [Beckert and Bruns, 2013]. We present a calculus in Sect. 4.4
and prove it sound and complete in Sect. 4.5. The concluding discussion in
Sect. 4.6 contains an example proof and an outlook to the following chapters.

4.1 Logic Background

In this chapter, we define a variation of first order dynamic logic that can be
used to express properties about the concurrent programing language defined
in Sect. 3.2 above. We start by reviewing the foundations of mathematical
logic.

First Order Logic

First order predicate logic, or just FOL for short, is a very expressive logic that
features quantifiers; see, e.g., [Hilbert and Ackermann, 1949] for a historical
or [Ebbinghaus et al., 1994; Fitting, 1996] for a modern overview. A famous
example is the axiomatization of set theory by Zermelo and Fraenkel [1908],
which uses only plain FOL plus a defining ‘element-of’ operator. Models of

1This is what actually happens inside the Java Virtual Machine, cf. [Lindholm et al.,
2014, Sect. 3.11].
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FOL consist of variable assignments and interpretations of predicates and
functions. Church and Turing [1936] have proven that it is undecidable in
general whether sentences of FOL are valid.2 This effectively means that a
sound procedure that decides validity automatically and completely cannot
exist. There are, however, sound and complete calculi for FOL that are not
automatic and require interaction. This property is sometimes called semi-
decidability to distinguish FOL from higher order logics (HOLs), which is even
‘more undecidable’ not having a sound and complete calculus. Still, some
common properties cannot be expressed in FOL, such as a binary relation
being the transitive closure of another. Traditional definitions of predicate
logic are built on a homogeneous universe of elements and characterize
elements through predicates. For more practical considerations, it is helpful
to have types in the logic [Schmitt and Ulbrich, 2014], e.g., integers, in
particular when reasoning with certain theories.

4.1.1 Modal Logic

Modal logics (cf. [Stirling, 1992] for an overview) introduce the concept of a
state (or ‘world’). Models for modal logics consist of multiple states, that
all hold a characteristic interpretation and variable assignment. A state
itself is a propositional logic or FOL structure. These states are connected
through transitions, forming Kripke structures [Kripke, 1963]. There are many
different modal logics; but they all have two basic modal operators □ (‘box’)
and ♢ (‘diamond’) in common, that intuitively mean ‘for all transitions’ or
‘for some transition.’ Although (propositional or first-order) modal logics
can be encoded in first-order logic by axiomatizing the transitions, it is
convenient to use these intuitive constructs. One important aspect is that
many propositional modal logics are decidable.

Temporal Logic

Temporal logics are a particular class of modal logics, where Kripke structures
usually form directed acyclic graphs, representing time. Probably the most
well known temporal logic is Linear Temporal Logic (LTL) [Manna and Pnueli,
1995], where the Kripke structure forms a single linear trace of infinite length.
Modalities have the meaning ‘always in the future’ (□) or ‘eventually’ (♢),
but the binary modal operator U (‘until’), that is more expressive than □
and ♢, is also frequently used. The additional binary operators R (‘release’)
and W (‘weak until’) can be derived from U. In many definitions, LTL is
further extended with a ‘next’ operator • (sometimes X). These temporal
operators are concerned with future states. There are extensions of LTL using
past operators, such as ‘once’ or ‘since.’ However, they do not introduce any

2Decidable fragments are identified, for instance, by Davis [2004] or van Benthem
[2005].
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additional expressive power (cf. [Benedetti and Cimatti, 2003]). Lichtenstein
et al. [1985] define a variant of LTL with finite structures.

Validity in propositional LTL is decidable (in exponential time).3 The
most common verification technique associated with LTL is model checking
[Clarke et al., 1986]. LTL model checkers construct a Büchi automaton
[Büchi, 1962] that is equivalent to the formula’s model (treating variable
assignments as words of an alphabet). Büchi automata accept ω-regular
languages.

However, not every ω-regular language has an accepting LTL formula.
A well known example of a property that is not expressible in LTL is the
‘two-step’ property: a formula φ holds in every second state of a temporal
temporal structure,4 cf. [Wolper, 1981, Corollary 4.2]. The Interval Temporal
Logic (ITL) by Moszkowski [1985]; Cau, Moszkowski, and Zedan [2002]
has this kind of expressiveness. A framework to enrich LTL with arbitrary
temporal operators has been presented by Wolper [1981].

The temporal logics Computation Tree Logic (CTL) [Clarke and Emerson,
1981] and CTL∗ [Emerson and Sistla, 1984] are based on branching structures
and feature quantification over paths. The Alternating Time Logic (ATL)
[Alur et al., 2002] subsumes CTL∗ and features explicit actors (or strategies)
that determine certain paths. The modal µ-calculus by Kozen [1983] is
even more expressive. It uses the higher-order concept of explicit fixpoint
operators. Modal µ-calculus subsumes CTL∗ [Dam, 1994]. Hodkinson and
Reynolds [2007] provide a comprehensive overview over temporal logics.

4.1.2 Dynamic Logic

Dynamic logic (DL) [Fischer and Ladner, 1979; Harel, 1979, 1984] is a family
of multi-modal logics where each legal sequential program fragment π of a
given language gives rise to modal operators [π] (‘box’) and ⟨π⟩ (‘diamond’).
The formula [π]φ expresses ‘in any state in which π terminates, φ holds,’
while the dual ⟨π⟩φ expresses ‘there is a state in which π terminates and φ
holds in that one.’ In this context, the formula φ is called a postcondition.
Modal tautologies like ¬ [π]φ ↔ ⟨π⟩ ¬φ are still valid. If programs are
deterministic—i.e., there is at most one final state—the modality ⟨·⟩ is
a variant of [·] that demands termination. Programs in languages like
Java are deterministic in the sense that, under some assumptions about the
environment (e.g., the presence of unlimited memory), the program represents
a partial function from one system state to another. Postconditions including
termination of programs are known as total correctness properties, as opposed
to partial correctness.

Propositional dynamic logic of regular languages (PDL) is decidable (in
exponential time) [Fischer and Ladner, 1979], but not PDL with parallel

3First order LTL is obviously in the same class of decidability as classical FOL.
4The related ‘φ holds exactly in every second state’ property is expressible.
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composition [Balbani and Tinchev, 2014]. Since we consider a first-order
version of dynamic logic—and programs are structured, i.e., using determin-
istic looping, instead of regular programs—the logic becomes as undecidable
as FOL (plus arithmetic) itself. In particular, the halting problem is a
proposition of first-order dynamic logic.

The above mentioned early works on dynamic logic are based on elemen-
tary notions of programs, usually involving (non-deterministic) unconditional
branching and looping. In contrast, the dynamic logics used in practice in
program verification are much more involved as they capture the semantics of
real-world languages. JavaDL is an instance of dynamic logic [Beckert, 2000,
2001], that is tailored to a substantial subset of sequential Java.5 In partic-
ular, it involves deterministic program semantics. One drawback, however,
is the sheer size of the rule base that is necessary. The implementation of
JavaDL in the KeY system involves some 1,600 rules. Furthermore, there is
no formal official semantics for Java, that would ultimately justify soundness
of these rules.

Dynamic logic formulae are related to the weakest precondition calculus
[Dijkstra, 1975] and Hoare logic [Hoare, 1969, 1972]. For a FOL formula φ,
the DL formula ⟨π⟩φ represents the weakest precondition of π w.r.t. the
postcondition φ. A Hoare triple {ψ}π{φ} (under total correctness semantics)
is equivalent to the DL formula ψ → ⟨π⟩φ. This formula is valid if and
only if ψ is not stronger than the weakest precondition ⟨π⟩φ. However,
dynamic logic is more expressive than Hoare logic in that programs are
part of formulae. This allows universal or existential quantification to range
over the state transition induced by the program and to have formulae have
multiple modalities. This allows to express relational properties on programs,
e.g., noninterference [Scheben and Schmitt, 2012a].

In other regards, however, standard dynamic logic lacks expressiveness:
The semantics of a program is a relation between states; formulae can only
describe the input/output behavior of programs. Standard dynamic logic
cannot be used to reason about program behavior not manifested in the
input/output relation. It is inadequate for reasoning about nonterminating
programs and for verifying temporal properties.

Updates

State updates are explicit state transition operators (i.e., a third class of
modalities) in an extension of dynamic logic [Rümmer, 2006] [Beckert et al.,
2007b]. Updates allow symbolic forward execution [King, 1976] starting from
an initial state—in contrast to weakest precondition where one starts with a
postcondition and works in a backwards manner. In order to capture the state

5This original definition by Beckert [2001] captures JavaCard, a minimal dialect of
Java that is used on smart cards. The JavaCard language is covered completely by the
logic [Mostowski, 2006, 2007b].
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transitions in between, we use state updates. One way to intuitively think
of updates is to regard them as ‘delayed substitutions,’ i.e., a substitution
takes place once the program has been completely eliminated. For instance,
{v := 4} and {v := v+ 1} are (elementary) updates. Applying these updates
sequentially (i.e., after each other, from right to left) to the formula v .= 5
yields 4 + 1 .= 5. In general, the parallel composition operator || allows
swapping of variables without the use of intermediate variables. For instance,
{x := y || y := x}x .= y+ 1 simplifies to y .= x+ 1. The update simplification
calculus by Rümmer [2006] brings dynamic logic formulae into a normal form:
program modalities are prefixed with only one non-clashing parallel update.6
This normal form corresponds to the well-known static single assingment
(SSA) form [Cytron et al., 1989], that is used in program transformations.

4.1.3 Dynamic Trace Logic

Dynamic Trace Logic (DTL) [Beckert and Bruns, 2013] is a marriage of
dynamic and temporal logic. It allows to express temporal properties about
programs. There is only one program modal operator, called trace modality J·K.
We distinguish between state formulae and trace formulae. A state formula
consists of the usual propositional and first order constructs plus subformulae
of the form UJπKφ where U is a sequence of updates, π is a program, and φ is a
trace formula (that may contain temporal operators and further subformulae
of the same form). Intuitively, UJπKφ expresses that φ holds when evaluated
over all traces τ such that the initial state of τ is (partially) described by U
and the further states of τ are constructed by running the program π. Since
we have deterministic programs, traces are determined by their initial states.
However, states are symbolic (i.e., possibly underspecified), and thus are
traces.

In addition to propositional operators and quantification, trace formulae
may contain temporal operators similar those in LTL: unary operators □
(‘always’) and ♢ (‘eventually’), and binary operators U (‘until’), W (‘weak
until’), and R (‘release’) with the obvious semantics. Since traces may be
finite or infinite, there are weak (•) and strong ‘next’ (◦) operators, that
are dual to each other (cf. [Lichtenstein et al., 1985]). For example, the
formula •false (with ‘weak next’) holds exactly in the final state of a trace
and never else. The formula ♢•false then expresses termination. ‘Strong
next’ additionally mandates the existence of a next state. The addition of a
‘strong next’ operator is the only difference to LTL operators. A formula is
called nontemporal if it neither contains a temporal operator nor a program
modality JπK.

Since programs are included in formulae of DTL, we can have both
state and trace formulae in a sequent at the same time—and even formulae

6The semantics of parallel updates that do clash is defined as ‘last wins.’
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expressing how different traces of programs relate to each other. This allows
to express information flow properties by stating that the traces of some
program π that result from different secret inputs are sufficiently similar in
order to keep secret information inobservable during program execution.

Standard dynamic logic is covered by DTL because the semantics of the
standard [·] and ⟨·⟩ modalities can be expressed in DTL: The formula •false
holds exactly on a trace with only one (remaining) state, thus characterizing
termination. We are therefore able to represent [π]φ (‘if π terminates, then φ
holds’) by JπK□(•false → φ) and ⟨π⟩φ (‘π terminates and then φ holds’) by
JπK♢(•false ∧ φ). Yet, both can still coëxist and we will use the [·] notation
later.

Theories

First order defineable theories can be used to write down concise and in-
tuitively understandable properties. First order dynamic logic with unin-
terpreted functions is already very expressive. However, it is convenient to
add dedicated theories to lift the burden of axiomatizing commonly used
functions over and over again. Even though theories usually encode higher
order properties, they are axiomatizable in first order logic. In the following,
we use theories for finite sequences [Beckert et al., 2013b, Appendix A] and
heap memory (cf. Sect. 3.3).

4.2 Syntax of Concurrent Dynamic Trace Logic

In this section, we define the syntax of formulae in our target logic, Concurrent
Dynamic Trace Logic (CDTL). It is a typed first order dynamic logic with
dedicated theories that extends Dynamic Trace Logic (DTL) [Beckert and
Bruns, 2012b, 2013]. Programs of the deterministic While-Release-Fork
(dWRF) language, which we introduced in Chap. 3, give rise to modalities
in CDTL.

Signatures and Expressions

In addition to program variables (cf. Sect. 3.2), there is a separate set V of
logical variables. Logical variables are rigid, i.e., they cannot be changed
by programs and—in contrast to program variables—are assigned the same
value in all states of a program trace.7 Logical variables must not occur in
programs. Quantifiers can only range over logical variables and not over
program variables.

7Rigid variables are essential to the expressiveness of the logic. Without them it would
be impossible to compare values in different states. E.g., expressing ‘X has increased by 1’
requires to introduce a rigid variable u which in every state evaluates to the prestate value
of X.
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Expressions are typed. We use pairwise disjoint types Z (integers),
B (boolean), H (heaps), L (location sets), F (fields), T (thread pools), and
S (sequences); cf. Sect. 3.3. There is a common supertype ⊤. Quantified
formulae have the shape ∀x:U. φ where U is one of the above types. If U is
the supertype ⊤, it is omitted. For an expression x, its type is denoted by
type(x).8 Both local and global program variables always have types Z or B.

Functions have signatures A1 × · · · × An → B where all Ai and B are
types. A 0-ary function is called a constant. Predicates have signatures
A1 × · · · × An, where n = 0 is allowed. Both functions and predicates
are rigid. The sets of functions and predicates are denoted by F and P,
respectively. The set S = LVar ∪ GVar ∪ SVar ∪ V ∪ F ∪ P is called the
signature of the logic.

In this chapter, the sets of function and predicate symbols are fixed.
They contain the usual integer and boolean operators with their standard
semantics and the theories of heaps (see Sect. 3.3) and final sequences.

Final sequences (i.e., tuples of arbitrary size) are represented by the
algebraic data type S. The constructors are ⟨⟩ (empty), ⟨·⟩ (singleton) and
⊕ (concatenation). We use the two observer functions | · | (length) and
·[i] (random access at position i, where i is an expression of type Z; postfix
operator). For longer sequences, we write ⟨x0, x1, . . . , xn⟩ as shorthand for
⟨x0⟩ ⊕ ⟨x1⟩ ⊕ · · · ⊕ ⟨xn⟩. Cf. Sect. 8.2.2 for a short introduction to algebraic
data types.

Definition 4.1 (Logic expressions). Logic expressions of type Z are con-
structed as usual over integer literals, program variables, logical variables,
and the operators +, −, ∗, /, %. Expressions of type B are constructed using
the relations .=, >, < on integer expressions, the boolean literals true and
false, the special variable estp, and the logical operators ∧, ∨, ¬.

Expressions of type S are constructed using the operators ⟨·⟩, ⊕, | · |,
and ·[·]. Expressions of types F, L, H, and T are constructed using the special
variables heap and heap’; and the operators ∅̇, {·}, ∈̇, ∩̇, ∪̇, \, ·∁, select,
store, and anon as described above in Sect. 3.3. The ternary operator ite
(‘if-then-else’) can be used with any type.

Integer and boolean logic expressions are constructed similar to their
program expression counterparts (cf. Def. 3.1). They may additionally
contain logical variables and ‘special’ variables. They must contain not
global program variables. Instead, they may refer to the special program
variable heap. The special variable threads does not appear in expressions.
For a concise representation, we pairwise identify the literals and operators
of program and logic expressions, e.g., the symbols && and ∧ denote the same
operator. We display them in program style (using typewriter font) when
they appear inside of programs and in math style when appearing outside.

8Later, we overload the function type to map semantical objects to their type.
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Our logic uses updates [Rümmer, 2006] (as introduced above in Sect. 4.1)
to keep track of the state of symbolic execution.

Definition 4.2 (State updates). For i ∈ [0, n], let xi be a local program
variable, and let ai be an expression. Then, {x0 := a0 || . . . || xn := an} is a
parallel update. Let U0, . . . ,Um be parallel updates, then the juxtaposition
U0 . . .Um is a sequential update. Update means parallel or sequential update.

Formulae

CDTL formulae have the general appearance UJπKφ where U is an update,
π is a sequential dWRF program, and φ is a formula (that may or may
not contain temporal operators and further sub-formulae of the same form).
Intuitively, UJπKφ expresses that φ holds when evaluated over all traces τ
such that the initial state of τ is (partially) described by U and the further
states of τ are constructed by running the program π.

Definition 4.3 (Formula). State formulae and trace formulae are inductively
defined as follows:

0. All boolean expressions (Def. 4.1) are state formulae.

1. All state formulae are also trace formulae.

2. If φ and ψ are (state or trace) formulae, then the following are trace
formulae: □φ (‘always’), •φ (‘weak next’), φ U ψ (‘until’).

3. If U is an update and φ a state formula, then Uφ is a state formula.

4. If π is a sequential program (Def. 3.2) and φ a trace formula, then
JπKφ is a state formulae.

5. The sets of state and trace formulae are closed under the logical opera-
tors ¬ (negation), ∧ (conjunction), and ∀ (universal quantification).

In addition, we use the following abbreviations as syntactical sugars:

φ ∨ ψ := ¬(¬φ ∧ ¬ψ) (disjunction),
φ → ψ := ¬φ ∨ ψ (implication),

∃x.φ := ¬∀x.¬φ (existential quantification)
◦φ := ¬•¬φ (‘strong next’),
♢φ := ¬□¬φ (‘eventually’),

φW ψ := φ U ψ ∨□φ (‘weak until’),
φ R ψ := ¬(¬φ U ¬ψ) (‘release’).

A formula is called non-temporal if it neither contains a temporal operator
nor a program modality JπK. A formula is a strict DTL formula if it contains
only program modalities with noninterleaved programs.
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Table 4.1: Syntax of Concurrent Dynamic Trace Logic. The program syntax
(production rule π) can be found in Tab. 3.1 on page 37.

φ ::= ¬φ | φ ∧ φ | φ ∨ φ | ∀x:T.φ | ∃x:T.φ | Uφ | JπKψ | b
ψ ::= •ψ | ◦ψ | □ψ | ♢ψ | ψ U ψ | ψ W ψ | ψ R ψ | φ
U ::= {v := e}
T ::= B | Z | H | F | L | T | S
b ::= true | false | estp | e

.= e | z < z | . . .
e ::= x | select(h, G) | ite(b, e, e) | ⊥ | m(e) | S[z] | z | h | L | S
z ::= z + z | z ∗ z | − z | |S| | 0 | 1 | 2 | . . .
h ::= heap | heap’ | store(h, G, e) | anon(h, L)
L ::= ∅̇ | {G} | L ∪̇ L | L ∩̇ L | L \ L | L−1

S ::= ⟨e⟩ | S ⊕ S

A complete syntactical schema of the logic used in this work can be found
in Tab. 4.1, while the program syntax appears in Tab. 3.1 on page 37.

4.3 Semantics of Concurrent DTL

To devise a semantics for CDTL, we extend our prior work on DTL to cater
for concurrent dWRF programs. We use modalities of the shape JπtK where
πt the program associated with a thread t ∈ T under investigation, where T
is the current thread pool state. The semantics of expressions—including the
theories of sequences, location sets, and heaps—is standard. For the semantics
of formulae, we incorporate the trace semantics of dWRF programs from
Sect. 3.4 to obtain a semantics for program modalities. Below in Lemma 4.8,
we will prove that these extensions to DTL are indeed conservative.

We consider assignments to global variables to be the only statements
that lead to a new observable state on the trace. All other statements are
atomic in this sense. For the feasibility of proving CDTL formulae, it is
important that not too many irrelevant intermediate states are included
in a trace. For instance, if a formula such as JπK□φ is to be proven valid,
intermediate states require sub-proofs showing that φ holds in each of them.

Expression Semantics

As usual, the semantics of CDTL expressions is given through a variable
assignment and an interpretation.

Definition 4.4 (Variable assignments). A variable assignment β is a function
assigning integer values to all logical variables, i.e., β : V → D. Similar to
the notion for states, we write β{x ↦→ d} for the updated variable assignment.
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Definition 4.5 (Interpretation). An interpretation I is a mapping of function
symbols f ∈ F with signature A1 × · · · ×An → B to a semantical function
I(f) : DA1 × · · · × DAn → DB and of predicate symbols p ∈ P with signature
A1 × · · · ×An to a relation I(p) ⊆ DA1 × · · · × DAn .

In the following, ‘interpretation’ refers to the standard interpretation
for all aforementioned functions—following the definitions by Weiß [2011,
Def. 5.4] (for dynamic logic with an explicit heap) and Beckert et al. [2013b,
Appendix A] (for the theory of finite sequences), as well as the obvious
interpretation for arithmetic functions.

Semantical functions are always total. Possible gaps, such as division
or modulo by zero, are left underspecified [Gries and Schneider, 1995]. For
instance, the expression 5/0 has some fixed determined value, but we cannot
draw any further conclusions from this, apart from the fact that the value is an
integer (i.e., the domain of the total function represented by the / operator).
For instance, 5/0 .= 5/0 is universally valid, but 5/0 .= 3/0 can neither be
proved nor disproved. Underspecification is considered the prime choice to
model undefinedness in logic [Hähnle, 2005], in particular because it allows to
extend pure FOL conservatively.9 The concurrent dynamic logic of Beckert
and Klebanov [2013] also defines semantics through underspecification.
Remark. The tuple (D, I, s) consisting of the domain, an interpretation, and a
state forms a first-order structure. In most works on classical first-order logic
(and also mostly in general modal logics), the program variable assignment s
forms part of the interpretation, with program variables being 0-ary functions.
In the dynamic logic literature (cf. [Weiß, 2011]), however, it has recently
become customary to separate those in order to distinguish between nonrigid
(i.e., functions and predicates) and rigid (i.e., program variables) entities.

Definition 4.6 (Semantics of expressions). Given a state s and a variable
assignment β, the value aI,s,β of an expression a of type A in a state s is
the value d ∈ DA resulting from interpreting program variables x by xs,
logical variables u by uβ , and using the interpretation I for all functions and
relations.

Since the interpretation I is assumed to be fixed in a structure, with
the standard interpretations for usual function symbols, we usually omit I.
Program expressions that do not contain logical variables are independent
of β, and we write as instead of aI,s,β. If a is a boolean expression, we
write I, s, β |= a resp. s |= a to denote that aI,s,β resp. as is true.

Since the heap and sequence theories are built on (co)algebraic data types,
it is trivial to give standard interpretations, yet not very instructive here.
For reference, we provide an incomplete list of defining axioms in Tab. 4.2
on the next page. Complete accounts are provided by Weiß [2011] (on heaps,

9Other possibilities include 3-valued logics or partial logics [Schmitt, 2011, Sect. 2].
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based on McCarthy [1962] theory) or Beckert et al. [2013b, Appendix A] (on
sequences), respectively.

Table 4.2: Defining axioms for location set, heap, and sequence theories

select(store(h,X, a), Y ) .= ite(X .= Y, a, select(h, Y )) (4.1)
select(anon(h, L), X) .= ite(X ∈̇ L, sk, select(h,X))

where sk is a fresh symbol
(4.2)

̸= x ∈̇ ∅̇ (4.3)
x ∈̇ {x} (4.4)

x ∈̇ L0 ∩̇ L1 ↔ x ∈̇ L0 ∧ x ∈̇ L1 (4.5)
x ∈̇ L0 ∪̇ L1 ↔ x ∈̇ L0 ∨ x ∈̇ L1 (4.6)
x ∈̇ L0 \ L1 ↔ x ∈̇ L0 ∧ x ̸ ∈̇L1 (4.7)

x ∈̇ L∁ ↔ x ̸ ∈̇L (4.8)
|⟨⟩| .= 0 (4.9)

|s0 ⊕ s1| .= |s0| + |s1| (4.10)
0 ≤ i < |s0| → (s0 ⊕ s1)[i] .= s0[i] (4.11)

|s0| ≤ i < |s0| + |s1| → (s0 ⊕ s1)[i] .= s1[i] (4.12)

CDTL Formula Semantics

In Sects. 3.4f., we have defined semantics for dWRF programs based on
traces of program states. States (Def. 3.5) are functions mapping program
variables to values. Local variables are directly mapped to values of their re-
spective type, the ‘special’ variables heap and heap’ are mapped to functions
themselves, mapping global variables to values. The function trcΣ (Defs. 3.7,
3.10 and 3.17) assigns a trace to an initial state and a sequential program,
w.r.t. a deterministic fair scheduler Σ (cf. Def. 3.15).
Remark. The tuple (D, I,S, ρ) with a transition relation ρ = {(s, π, s′) ∈
S × Prg × S | |trcΣ(s, π)| > 1 ∧ trcΣ(s, π)[1] = s′} forms a standard Kripke
structure [Kripke, 1963]. We do not use this notation here since it only
relates initial and final states of an execution, but we are interested in all
intermediate states.

We have now everything at hand needed to define the semantics of
CDTL formulae in a straightforward way. The valuation of a state formula
is given w.r.t. a state s and a variable assignment β; and the valuation of a
trace formula is given w.r.t. a trace τ and a variable assignment β. This is
expressed by the validity relation, denoted by ⊨. For the sake of uniformity,
we do not distinguish between state and trace formulae here.
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Definition 4.7 (Validity in CDTL). Given a computation trace τ , variable
assignment β, and fair scheduler Σ; the validity relation ⊨ is the smallest
relation satisfying the following.

τ, β,Σ ⊨ a iff aτ [0],β = true
τ, β,Σ ⊨ ¬φ iff τ, β,Σ ⊭ φ
τ, β,Σ ⊨ φ ∧ ψ iff τ, β,Σ ⊨ φ and τ, β,Σ ⊨ ψ
τ, β,Σ ⊨ ∀u:U.φ iff for every d ∈ DU : τ, β{u ↦→ d},Σ ⊨ φ
τ, β,Σ ⊨ □φ iff τ [i,∞), β,Σ ⊨ φ for every i ∈ [0, |τ |)
τ, β,Σ ⊨ φ U ψ iff τ [j, i), β,Σ ⊨ φ and τ [i,∞), β,Σ ⊨ ψ

for some i ∈ [0, |τ |) and all j ∈ [0, i)
τ, β,Σ ⊨ •φ iff τ [1,∞), β,Σ ⊨ φ or |τ | = 1
τ, β,Σ ⊨{x1 := a1 || . . .

|| xn := an}φ
iff τ{x1 ↦→ a

τ [0]
1 } . . . {xn ↦→ a

τ [0]
n }, β,Σ ⊨ φ

τ, β,Σ ⊨ JπKφ iff trcΣ(τ [0], π), β,Σ ⊨ φ

A formula φ is valid, written ⊨ φ, if τ, β,Σ ⊨ φ for all τ , β, and Σ.

In this definition, the scheduler Σ forms part of the validity relation. It
entails an implicit universal quantification over all (fair) schedulers on the
semantical level. A result of that is that our logic still uses only one kind of
modality, that speaks about the deterministic trace. An alternative definition
would be to introduce two modalities, that universally or existentially range
over schedulers,10 respectively.

Remark. Assume that the scheduler is not part of the validity relation, but
the semantics of J·K is defined w.r.t. all schedulers. Let us consider a dual
modality ⟨⟨·⟩⟩ that is defined w.r.t. some scheduler. Consider a concurrent
program with thread pool T = {t0, t1} and πt0 = X=0; and πt1 = X=1;.
Depending on the concrete scheduler, the final value of X can be either 0
or 1. Thus the formulae ⟨⟨πt0⟩⟩◦X .= 0 and ⟨⟨πt0⟩⟩◦X .= 1 are both valid, while
neither Jπt0K◦X .= 0 nor Jπt0K◦X .= 1 is valid.

On first sight, our approach entails the obvious disadvantage that the
semantics of a formula is defined in terms of concrete parallel programs. As a
result, this definition is not modular. However, as we will see in Sect. 5.4.1, the
rely/guarantee approach allows us to reason about interleavings symbolically,
i.e., w.r.t. any environment.

On the other hand, our single modality is dual to itself and therefore
exhibits some good properties. For instance, the formulae ¬JπKφ ↔ JπK¬φ
or JπK(φ1 ∨ φ2) ↔ (JπKφ1 ∨ JπKφ2) are tautologies.11 This allows to give a
smaller and more efficient calculus compared to a calculus that would have

10or traces, equivalently
11Another example of a modality with this property is the update operator of dynamic

logic, if viewed as a modality.
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to deal with two kinds of modalities,12 as the results of Jeannin and Platzer
[2014] suggest, for instance.

Remark. In this definition, formulae are always of the shape JπKφ. This
formula is valid if and only if φ is valid on any trace of π under any determin-
istic scheduler Σ. This is equivalent to φ being valid on any trace under any
indeterministic scheduler. The reason is that any indeterministic scheduler
can be simulated by a set of deterministic schedulers.

The logic CDTL presented here is a semantical conservative extension
[Shoenfield, 1967; Bubel and Schmitt, 2016] of the base DTL logic presented
by Beckert and Bruns [2013]. This allows us to adapt the base DTL calculus to
a sound calculus for the sequential part of CDTL. It follows from Lemma 3.9
that the replacement of program modalities is welldefined.

Lemma 4.8 (Semantical conservative extension). Let φ be a valid formula
according to [Beckert and Bruns, 2013, Def. 9]. Let φ′ be the CDTL formula
obtained from replacing all quantifiers by their ⊤-typed equivalent and all pro-
gram modalities by a CDTL equivalent (i.e., restricting to simple expressions).
Then φ′ is a valid CDTL formula.

Proof. The definitions of validity only differ in the additional scheduler
parameter Σ, that affects solely the validity of program modalities. Lemma 3.9
shows that legal programs π of [Beckert and Bruns, 2013] have an equivalent
trace in both definitions. Thus a modal formula JπKφ is valid in one definition
if and only if it is valid in the other one. ◁

4.4 A Sequent Calculus for DTL

In this section, we describe the calculus for DTL with noninterleaved sequen-
tial programs as introduced in [Beckert and Bruns, 2013]. All the given rules
extend naturally to interleaved programs. In Chap. 5, we extend the calculus
to a calculus for CDTL, including rules to reason about environment actions
and thread creation.

We present a sequent calculus [Gentzen, 1935; Hähnle, 2001]. We denote
the calculus for DTL by CDTL. It is sound and relatively complete, i.e.,
complete up to the handling of arithmetic (see Sect. 4.5). The rules are
numbered as in [Beckert and Bruns, 2013]. The calculus consists of the
following rule classes:

Classical logic rules These rules simplify formulae whose top-level opera-
tor is a quantifier or a propositional operator (Sect. 4.4.1).

12As already discussed in Sect. 3.1.2, the possibility of an environment macro step of
infinite length would require such a change.
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Simplification and normalization rules Rules for simplifying formulae
of the form UJπKφ, where the top-level operator in φ is not temporal
(Sect. 4.4.2).

Rules for temporal operators Rules that apply to formulae UJπKφ with
a top-level temporal operator in φ, and that do not change the pro-
gram π (Sect. 4.4.3).

Program rules Rules that apply to formulae of the form UJπKφ, and that
analyze and/or simplify the program π. Not surprisingly, this class has
the most complex rules, including invariant rules for loops (Sect. 4.4.4).

Rules for data structures Since our focus in this chapter is not on how
to handle dedicated theories, we use oracle rules for these (Sect. 4.4.5).

Other rules This category includes the closure and the cut rule (Sect. 4.4.6).
Most rules of the calculus are analytic and therefore can be applied

automatically. The rules that require user interaction are: (a) the rules for
handling while loops (where a loop invariant has to be provided), (b) the cut
rule (where the right case distinction has to be used), and (c) the quantifier
rules (where the right instantiation has to be found).

Traces are uniquely determined by symbolic program executions of the
deterministic programing language. The general idea behind our calculus
is to explore a trace until it terminates or it reaches a fixpoint (induced
by a non-terminating loop). Thus, proofs usually consist of alternating
applications of temporal logic rules (that decompose trace formulae, e.g.,
□φ to •□φ ∧ φ) and program rules (that let us step forward in the trace).
These steps are explicitly given through assignments in the program. Since
traces are defined through program semantics, and they are of infinite length
if and only if we go through an infinite loop, we either reach the end of the
program or a computational fixpoint.

In the rule schemata, Γ,∆ denote arbitrary, possibly empty multi-sets of
formulae, φ,ψ denote arbitrary formulae, U stands for a (possibly empty)
update, π, ω for programs, γ is a state formula, x and X are local and global
program variables, n and u are logical variables, a is an expression of type
integer, and b is an expression of type boolean.
Definition 4.9 (Sequent). A sequent is a pair of multi-sets of (state) for-
mulae written as γ1, . . . , γm =⇒ δ1, . . . , δn. The multi-set {γ1, . . . , γm} of
formulae on the left hand side of the sequent arrow =⇒ is called the an-
tecedent, the set {δ1, . . . , δn} is called the succedent of the sequent. We use
capital greek letters to denote subsets of formula, e.g., the sequent notion
Γ, φ =⇒ ψ,∆ means that formulae φ and ψ occur in the antecedent or
succedent and the sets of remaining formulae are Γ and ∆, respectively.

A sequent Γ =⇒ ∆ is valid (in state s and under variable assignment β)
if and only if the formulae ⋀γ∈Γ γ →

⋁
δ∈∆ δ is valid (w.r.t. s, β).
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As usual, we write rules with schematic sequents above a horizontal line in
a schema (its premisses) and a single schematic sequent below the horizontal
line (its conclusion). Note, that in practice the rules are applied from bottom
to top. Proof construction starts with the original proof obligation at the
bottom. Therefore, if a constraint is attached to a rule that requires a
variable to be ‘new,’ it has to be new w.r.t. the conclusion.

Definition 4.10 (Rule). A rule consists of a finite set of schematic sequents
Γi =⇒ ∆i called premisses and a sequent Γ′ =⇒ ∆′ called conclusion. It is a
closing rule if it has zero premisses. A rule is commonly written vertically
with the premisses above the conclusion:

Γ1 =⇒ ∆1 . . . Γn =⇒ ∆n

Γ′ =⇒ ∆′

The calculus CDTL consists of the rules R1 to R35 shown in Tabs. 4.3
to 4.9 on pages 69–76.

Definition 4.11. A rule is sound if the conclusion is valid whenever all
premisses are valid.

The following lemma helps proving soundness of rules. It states that the
environments Γ and ∆ do not need to be considered in most cases.

Lemma 4.12 (Omission of environments). A rule of the shape

Γ,Φ1 ⊢ Ψ1,∆ · · · Γ,Φk ⊢ Ψk,∆
Γ,Φ ⊢ Ψ,∆

(4.13)

is sound if and only if the following rule is sound:

Φ1 ⊢ Ψ1 · · · Φk ⊢ Ψk

Φ ⊢ Ψ (4.14)

Proof. The one proof direction, from sequent (4.13) to (4.14), is trivial since
it is a weakening. For the other direction, assume the sequents Γ,Φi ⊢ Ψi,∆
valid for all i. This means that Γ ∧ Φi → Ψi ∨ ∆ is valid. Assume Γ → ∆
invalid. (Otherwise the conclusion would be trivially valid.) This means
that Φi ⊢ Ψi is valid and from (4.14) it follows that Φ ⊢ Ψ is valid. Since
Γ is invalid and ∆ is valid, the conclusion of (4.13) is a weakening of that
sequent. ◁

An instance of a rule is called a rule application. Subsequent (finitely
many) rule applications induce a graph, called proof , where each rule appli-
cation is a node. The way we define rules in this dissertation provides that
proofs are always finite trees with a determined root. We use the terminology
proof tree synonymously with ‘proof.’ Proof branches are subtrees. A branch
(or tree) is closed if all leaves (excluding the root) are instances of closing
rules.

68



4.4. A Sequent Calculus for DTL

Definition 4.13. A sequent is derivable (with CDTL) if it is an instance of the
conclusion of a rule schema and all corresponding instances of the premisses
of that rule schema are derivable sequents. In particular, all sequents are
derivable that are instances of the conclusion of a rule that has no premisses
(rules R22, R31, and R34).

4.4.1 Classical Logic

The first-order rules, i.e., rules for quantifiers and propositional operators are
shown in Table 4.3. Note that the expressions that are used to instantiate
universal quantifiers in rule R5 must be chosen in such a way that the
substitution is admissible:

Definition 4.14 (Admissible substitution). A substitution u/a of a logical
variable u ∈ V with an expression a is admissible w.r.t. a formula φ if
there is no variable v in a such that u is free in φ and, after replacing a for
some free occurrence of u in φ, the occurrence of v in a is (i) bound by a
quantifier in φ[u/a] (in case v is a logical variable) or is (ii) in the scope
of a program modality JπK that contains an assignment to v (in case v is a
program variable).

Γ =⇒ φ,∆
Γ,¬φ =⇒ ∆

R1 Γ, φ =⇒ ∆
Γ =⇒ ¬φ,∆

R2

Γ, φ, ψ =⇒ ∆
Γ, φ ∧ ψ =⇒ ∆

R3 Γ =⇒ φ,∆ Γ =⇒ ψ,∆
Γ =⇒ φ ∧ ψ,∆

R4

Γ, φ[u/a], ∀u.φ =⇒ ∆
Γ, ∀u.φ =⇒ ∆

R5 Γ =⇒ φ[u/u′],∆
Γ =⇒ ∀u.φ,∆

R6

Table 4.3: Rules for quantifiers and propositional operators. In rule R5, the
substitution needs to be admissible; rule R6 introduces a fresh variable u′.

For example, using X to instantiate the universal quantifier in the DTL
formula ∀u.(u .= 0 → JX = 1;K□u .= 0) is not admissible. Indeed the re-
sult would be incorrect as the original formula is valid while the formula
X

.= 0 → JX = 1;K□X .= 0 is not even satisfiable.
We do not give rules for update simplification here. The reason is that

they constitute an elaborate calculus on their own [Rümmer, 2006]. For
the treatment in this dissertation it is sufficient to think of updates as
substitutions that can only be applied once a program modality has been
removed. In [Beckert and Bruns, 2013], we have given a simplified version of
this calculus for the subcategory of sequential updates.
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4.4.2 Simplification and Normalization Rules

As said above, our calculus contains simplification rules that apply to formulae
of the form UJπKφ, where the top level operator in φ is not temporal. They are
shown in Tab. 4.4 on the next page. In particular, they include normalization
rules that deal with negated trace formulae through replacement by the
respective dual formula.

Rule R12 for negated until avoids introducing the dual R into the sequent.
Therefore, no rules for R are required in the calculus. Soundness of R12
follows from the well-known equivalence φ R ψ ↔ ψ W (φ ∧ ψ) in LTL and
the definitions of R and W, that applies to finite traces as well (cf. [Bauer,
Leucker, and Schallhart, 2010]).

Lemma 4.15 ([Beckert and Bruns, 2012b, Appendix A, Lemma 7]). Rule
R12 (‘negation until’) is sound.

Proof. Assume the following sequent valid:

=⇒ UJπK□¬ψ,UJπK(¬ψ U (¬φ ∧ ¬ψ))

Let τ := trc(sU , π), where sU denotes the state derived from s through
the effects of U . We make the following case distinction: (i) Assume
τ ⊨ ¬ψ U (¬φ ∧ ¬ψ). By the definition of U, there is an j ∈ N such that
τ [j,∞) ⊨ ¬φ ∧ ¬ψ and τ [i, j) ⊨ ¬ψ for every i < j. Now assume that
τ ⊨ φU ψ; it requires some k ∈ N such that τ [k,∞) ⊨ ψ, but from the above
it follows that k > j and τ [j, k) ⊭ φ. (ii) Assume τ ⊨ □¬ψ; it immediately
follows that there is no subtrace τ ′ of τ such that τ ′ ⊨ ψ. It follows that the
sequent =⇒ UJπK¬(φ U ψ) is valid. ◁

Since (for conciseness of the calculus) we only include program and
temporal logic rules for the right hand side of a sequent, we need rule R13
that allows to move a formula with a modality from the left of a sequent to
the right.

In case φ is a state formula, rule R16 can be used to remove the program
modality (as a state formula is evaluated in the initial state of a trace).
Further simplification rules are applied to split formulae such as JπK(□φ∧ψ).

4.4.3 Rules for Temporal Operators

Table 4.5 on the facing page shows the rules that handle temporal operators
without changing the program. Rules R19 to R21 ‘unwind’ temporal formulae
by splitting them into a ‘future’ part and a ‘present’ part. Rules R22 and R23
handle the case of an empty program (i.e., empty remaining trace) for weak
and strong next, respectively. Rule R22 also closes a proof branch. Rule R23
is not necessary for a complete calculus, but we include it here in order to
have rules for any kind of formula.
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Chapter 4. Concurrent Dynamic Trace Logic

4.4.4 Program Rules

The program rules are shown in Tab. 4.6 on the next page. Assignments to
local and global variables are handled by the rules R24 and R25, respectively.
The only rules that work on both the program and the temporal logic part
of a formula are the rules for global assignments. As a reminder, traces have
been defined in Def. 3.7 such that only assignments to the global state induce
a transition. As a result, rule R25 is only applicable where the program
modality contains an assignment and the trace formula begins with a ‘next’
operator (either weak or strong), that is ‘consumed’ by this rule. The actual
state change is preserved in the update in front of the program modality.
This rule has been changed compared with the original DTL definition in
[Beckert and Bruns, 2013]: it now uses heap structures instead of global
variables.

An if statement is handled by splitting the formula in two parts, each
containing the alternative program and the remaining program code as shown
in rule R26. Similarly, loops can be handled by unwinding, as shown in
rule R27. In the case in which the loop condition holds, the loop body is
symbolically executed and then again the whole loop. In the second case
where the loop condition does not hold, the loop is simply skipped. However,
the number of loop iterations may not be known in advance, or the loop may
not even terminate. In those cases, we need invariants.

Invariant rules are an established technique for handling loops in calculi
for program logics. The basic idea is to have a state formula γ (the invariant)
that holds in all states before and—if it terminates—after an execution of
the loop body. If we can show that preservation, it only remains to show
that φ holds on the remaining trace. The rules are shown in Table 4.7 on
the facing page.

For a trace formula of the shape □φ, the four premisses of R28 intuitively
state that (i) γ holds in the beginning; (ii) it is preserved by each loop
iteration (i.e., it actually is an invariant), here a possible post-π state is
characterized by the temporal formula •false; (iii) if the loop terminates,
indicated by the negated loop condition b, then □φ holds on the remaining
trace; and (iv) for every loop iteration, φ holds throughout, i.e., for the
remaining trace from every state during loop iterations. As an invariant
abstracts from concrete loop iterations, the context Γ,∆ must be discarded
in all but the first premiss.

Note that—in contrast to invariant rules in state based dynamic logic—it
is not sound in premiss (iv), to decompose the program trace and to only
regard the subtrace induced by π in isolation, i.e., just proving JπK□φ is
not sound. This has been pointed out by Wagner [2013]. As an example,
consider the formula Jwhile (X>0) {X = X-1;}K□••false, that is not valid, but
the formula JX = X-1;K□••false, containing the loop body, obviously is. This
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Chapter 4. Concurrent Dynamic Trace Logic

means for a sound rule, that we have to consider the remaining trace as well.
However, we are only interested in those traces that begin in the subtrace
induced by the loop body π.

For this reason, we introduced another, two-place program modality:
Jπ | ωKφ means that for any state in the subtrace induced by π, trace
formula φ holds for the remaining trace including ω. More formally, we
define Jπ | ωKφ as a short-hand for Jx = 0;π x = 1;ωK(φW x

.= 1) where local
program variable x does not occur in π, ω, or φ.13 Even though the resulting
formula is syntactically longer here, it is easier to prove in the sense that
there are fewer states in which φ has to hold.

Lemma 4.16 (Soundness of invariant rule for □). Rule R28 is sound.

Proof. Assume the premisses to be valid. What is to be shown is that the
sequent =⇒ UJwhile (b) {π} ωK□φ is valid, i.e., it holds in any state. Let
us fix some state s. Let sU be the state that differs from s through the effects
of update U .

1. Assume that the loop executed in state sU does not terminate. This
means the trace of the complete program is equal to an infinite concatenation
of the traces yielded by the loop body π. Let the states in which the loop
condition is evaluated be denoted by si for i ∈ N, i.e., s0 = sU and si+1
is the last state in trc(si, π) (if such exists). It remains to show that for
every state si, φ holds on the remaining trace beginning in si. This follows
from premiss (iv) for every state in which ψ and b hold. Obviously, si ⊨ b
(otherwise the loop would terminate). From the validity of (i) follows that
s0 ⊨ γ and from (ii) follows that if si ⊨ γ then si+1 ⊨ γ since the formula
•false is true exactly in the final state of a trace. By induction over i, this
closes the case where the loop does not terminate.

2. Let us now assume that the loop takes exactly n ∈ N iterations. Let
s0, . . . , sn be as above. The proof follows an induction over n.

IH If the loop executed in a state si with si ⊨ γ takes at most n iterations,
then si ⊨ ζ, where ζ := Jwhile (b) {π} ωK□φ.

IA n = 0, which means that si ⊨ ¬b because otherwise there would be
another loop iteration. The trace of the complete program therefore
is equal to the trace of ω when started in si and it remains to show
si ⊨ JωK□φ, which follows from premiss (iii).

13An alternative definition of its semantics would be τ ⊨ Jπ | ωKφ iff for all i ∈ [0, |ρ|):
σ[i, ∞) ⊨ φ where σ := trc(τ [0], π ω) and ρ := trc(τ [0], π).
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4.4. A Sequent Calculus for DTL

IS n > 0: Assume si ⊨ b (otherwise the proof would conclude trivally). As
we have shown above, for the successor state si+1 of si, si+1 ⊨ γ holds
and from the induction hypothesis we get si+1 ⊨ ζ. By the definition
of successors it follows si ⊨ Jπ while (b) {π} ωK□φ. Since the loop
condition holds in si and we know si ⊨ Jπ | while (b) {π}ωKφ from
premiss (iv), this is equivalent to si ⊨ ζ.

From premiss (i) follows that the induction hypothesis holds for the initial
state sU in particular. ◁

In the case of R29 (‘diamond’) and R30 (‘until’), the invariant is ac-
companied by an update Vu with an integer expression u, that describes
the progress made through each loop iteration. The general shape of Vu is
{x1 := f1(u)} · · · {xk := fk(u)} where x1, . . . , xk are variables appearing in γ
and f1, . . . , fk are functions. The intuition behind it is that V0γ describes
either a state in which the loop terminates immediately or a fixpoint of
the loop. Such a state must be reached in a finite number of iterations,
which is guaranteed since n is decreasing in every iteration. For this reason,
premiss (ii) requires executions of the loop body to terminate. In Rule R30,
there is a fourth premiss stating that φ1 holds throughout the loop body for
every iteration where n > 0.

These invariant rules are only sound for purely sequential programs. In a
concurrent setting it may be that the invariant does not hold at the end of
the loop body because of concurrent modifications. In Sect. 4.6.3, we will
introduce slightly modified invariant rules, involving further instrumentation
in the loop body code, that are sound for concurrent programs.

4.4.5 Rules for Data Structures

Our calculus is basically independent of the domain of computation resp. data
structures that are used. We therefore abstract from the problem of handling
the data structures and just assume that an oracle is available that can decide
the validity of nontemporal formulas in the domain of computation Note
that the oracle only decides propositions about integers, sequences, heaps,
etc., that are pure first order formulas. The oracle is represented by rule R31
in Tab. 4.8 on the next page. Rule R32 is an alternative formalization of the
oracle that is often more useful.

Of course, the nontemporal formulae that are valid in arithmetic are
not even enumerable (cf. Gödel [1931]). Therefore, in practice, the oracle
can only be approximated, and rules R31 and R32 must be replaced by
a rule (or set of rules) for computing resp. enumerating a subset of all
valid nontemporal formulas (in particular, these rules must include equality
handling). This is not harmful to ‘practical completeness.’ Rule sets for
arithmetic are available, that—as experience shows—allow to derive all valid
nontemporal formulae that occur during the verification of actual programs.
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Chapter 4. Concurrent Dynamic Trace Logic

if ⋀Γ →
⋁∆ is a valid nontemporal formula: Γ =⇒ ∆ R31

if ⋀Γ1 →
⋀Γ′

1 is a valid nontemporal formula: Γ′
1,Γ2 =⇒ ∆

Γ1,Γ2 =⇒ ∆
R32

Γ =⇒ φ(0),∆ Γ, φ(u) =⇒ φ(u+ 1),∆
Γ =⇒ ∀u.φ(u),∆

R33

Table 4.8: Oracle rules and induction rule for handling arithmetic (n is fresh)

Using powerful satisfiability modulo theories (SMT) solvers or dedicated
computer algebra systems, this can be done fully automatically in many
cases. A rule set for types are provided by Schmitt and Ulbrich [2014], a rule
set for heaps and related theories by Weiß [2011], and a rule set for finite
sequences by Bubel and Schmitt [2016].

Typically, an approximation of the computation domain oracle contains
a rule for structural induction. In the case of arithmetic, that is rule R33.
This rule, however, not only applies to nontemporal formulae but also to
DTL formulae containing programs.

4.4.6 Other Rules

The remaining rules, that are shown in Tab. 4.9, are the cut rule R35 (with
an arbitrary cut formula φ) and the closure rule R34 that closes a proof
branch.

Γ, φ =⇒ φ,∆ R34 Γ, φ =⇒ ∆ Γ =⇒ φ,∆
Γ =⇒ ∆

R35

Table 4.9: The closure and the cut rule

4.5 Soundness and Completeness

We now show that our calculus is sound and complete. Soundness is the prop-
erty that only valid formulae can be derived. The dual property completeness
means that every valid formula is derivable. Soundness of the calculus CDTL
(Corollary 4.18) is based on the following theorem, which states that all rules
preserve validity of the derived sequents.

Theorem 4.17. For all rule schemata of the calculus CDTL, R1 to R35, the
following holds: If all premisses of a rule schema instance are valid sequents,
then its conclusion is a valid sequent.
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Proving Thm. 4.17 is not difficult. The proof is, however, quite large as
soundness has to be shown separately for each rule. For most rules, the proofs
are given in a technical report [Beckert and Bruns, 2012b, Appendix A], that
contains a preliminary version of this chapter. However, the invariant rules
for □ and U (Rules R28 and R30) as presented by Beckert and Bruns [2012b]
are erroneous. The revised rules presented in this thesis first appeared in
[Beckert and Bruns, 2013]. A revised soundness statement for Rule R28 is
given in Lemma 4.16 on page 74. Soundness of Rule R30 can be proven in
the same spirit.

Corollary 4.18. If a sequent Γ =⇒ ∆ is derivable with the calculus CDTL,
then it is valid, i.e.,

⋀Γ →
⋁∆ is a valid formula.

Completeness

The calculus CDTL is relatively complete [Cook, 1978; Wand, 1978]; that is,
it is complete up to the handling of the domain of computation (the data
structures). It is complete if an oracle rule for the domain is available—in
our case one of the oracle rules R31 and R32. If the domain is extended
conservatively with other data types, CDTL remains relatively complete; and
it is still complete if rules for handling the extended domain of computation
are added.

Theorem 4.19. If a sequent is valid, then it is derivable with CDTL.

Corollary 4.20. If φ is a valid DTL formula, then the sequent =⇒ φ is
derivable.

The proof of Thm. 4.19 will not be presented here in detail, as it is quite
voluminous. The basic idea of this proof is the same as that used by Harel
[1979] to prove relative completeness of his sequent calculus for first order
dynamic logic. An extensive proof sketch can be found in the technical report
[Beckert and Bruns, 2012b, Appendix B]. The following lemma is central to
the completeness proof.

Lemma 4.21. For every DTL formula φDTL there is an (arithmetical)
nontemporal first-order formula φFOL that is logically equivalent to φDTL,
i.e., for all traces τ and variable assignments β:

τ, β ⊨ φDTL iff τ, β ⊨ φFOL .

The above lemma states that DTL is not more expressive than FOL
plus arithmetic. This holds as arithmetic—our domain of computation—is
expressive enough to encode the behavior of programs. In particular, using
gödelization, arithmetic allows to encode program states (i.e., the values of
all the variables occurring in a program) and finite (sub-)traces into a single
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number. Our TR, Sect. B.1 describes such an encoding, following the ideas
by Harel [1979] and Platzer [2004]. Furthermore, these results imply the
existence of a strongest invariant for any loop (albeit not in a constructive
way).

It is then possible to construct, for every DTL formula ψ, state s, pro-
gram π, and n ∈ N, a FOL formula φψ,s,π,n encoding that trc(s, π)[n,∞) ⊨ ψ.
This is shown in [TR, Sect. B.2], effectively proving Lemma 4.21. Temporal
operators are thereby substituted by quantification over the integers. Note
that Lemma 4.21 states a property of the logic DTL that is independent of
any calculus.

Although Lemma 4.21 shows that to every DTL formula there is a
logically equivalent FOL formula, we still need to prove that our calculus
can actually derive them. The proof essentially amounts to showing that,
for every valid formula, there exists a possible rule application that ‘brings
the proof forward.’ This is not obvious since our calculus does not have the
subformula property, i.e., every formula in a premiss is a subformula of a
formula in the conclusion. To formalize proof progress, we first introduce a
metric on formulae [TR, Sect. B.3]. We prove that, for every rule, the values
for the premisses are strictly smaller than for the conclusion. Finally, we
prove that for every DTL formula φ, there is exists a calculus rule with φ in
the conclusion, that has the above progression property. It follows Thm. 4.19.

Practical Completeness

Lemma 4.21 implies that a DTL formula could be decided by constructing
an equivalent nontemporal formula and then invoking the computation
domain oracle—if such an oracle were actually available. But even with a
good approximation of an arithmetic oracle, this is not practical (the non-
temporal first-order formula would be too complex to prove automatically or
interactively). And, indeed, the calculus CDTL does not work that way.

The (relative) completeness of CDTL requires an expressive computation
domain and is lost if a simpler domain and less expressive data structures
are used. The reason is that in a simpler domain it may not be possible to
express the required invariants for all possible while loops.

4.6 Discussion

In this chapter, we have defined Dynamic Trace Logic (DTL) and its extension
to concurrent dWRF programs, CDTL, that stem from a novel combination
of dynamic logic and first order temporal logic. In contrast to earlier work
by Beckert and Schlager [2001] and Platzer [2007], there is no restriction on
the shape of trace formulae. Through this, we have got an expressive logic
allowing to describe complex temporal properties of programs. Symbolic
execution rules for the fork and release statements will be presented in the
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following chapter. A discussion on how dWRF models actual concurrency
can be found in Sect. 3.6.

4.6.1 Example

We present a proof of a nontrivial DTL formula below; other (smaller) proofs
can be found in the thesis by Wagner [2013]. Consider the (nonterminating)
noninterleaved program

while (true) {π} with π := a = X; X = a - a/2;

(where a is a local variable and X is a global variable). Remember that the
slash symbol is interpreted as integer division without remainder,14 i.e., X
is assigned X − ⌊X/2⌋ = ⌈X/2⌉ on each iteration, where ⌊·⌋ and ⌈·⌉ denote
the floor and ceiling function, respectively. This program obviously does
not terminate for any value of X. However, for positive values of X, any
execution trace eventually stabilizes in a state where X .= 1 and maintains
this property. This property cannot be expressed using standard dynamic
logics. In our logic DTL, it can be expressed as J. . .K♢□(X .= 1).

Figure 4.10 on the following double page (pages 80f.) shows a complete
proof tree (in four parts). The proof starts in the lower-most part (recto
page). In order to keep it readable, we hide all sequent formulae that are
not involved in the further proof. We also omit explicit heap objects and
simply write ‘X’ for a select operations on location X.

The overall structure of the proof is as follows: first, we apply the invariant
rule for ♢. In the use case branch branch (shown in the upper half of the
recto page), the ♢ operator can be unwound, and we apply the invariant rule
for □. The ‘invariant preservation’ and use case branches are shown in the
lower and upper part of the verso page, respectively. All of these branches
require one or more unwinding of temporal operators.

In detail, the first rule application is the invariant rule for diamond,
R29, where the invariant is y .= X − 1 and the accompanying update is just
{y := u}. The branch on the left (i.e., there exists an integer u such that the
invariant is initially valid) can be closed within a few steps. In the center
branch, we have to prove the ‘step case:’ If y is strictly greater than zero, then
it is greater or equal to zero after one loop iteration. Temporal properties (in
the more narrow sense) do not appear here, but the ‘postcondition pattern’
♢(•false ∧φ) where the formula φ is called postcondition. We abbreviate the
antecedent by Γ and the postcondition by φ1. The ♢ operator is unwound for
a first time (rule R21), where we are only interested in the ‘future’ part, which
allows us to produce the empty program (rule R25). Then, the remaining
♢ operator is unwound for a second time. This time, the ‘present’ formula

14Euclidian and Java integer division coïncide on nonnegative operands, therefore we
do not distinguish them here.
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Chapter 4. Concurrent Dynamic Trace Logic

•false ∧ φ1 is of interest to us. Splitting the conjunction, both branches can
be closed with either rule R22 or arithmetic.

The third branch (use case) of the initial invariant rule application is
shown above. In the invariant y is now exactly zero, meaning that X .= 1
holds. It remains to prove that this property is preserved throughout the
remaining trace. We apply rule R21 and hide the ‘future’ part, leaving
only the □ operator. Now we can apply the invariant rule for □ with the
invariant X .= 1. Please note that this is not an invariant for the loop in
general, but only for states in which this property already holds. The first
premiss closes immediately. In the fourth branch (use case), we unwind the
□ operator once (rule R20); both resulting branches can be closed easily. The
remaining premisses, the formula X .= 1 is indeed an invariant and X

.= 1
holds throughout the subtrace induced by the loop body, are shown in the
lower and upper part of the verso page, respectively.

In the former branch, we have the ‘invariant pattern’ □(•false → X
.= 1).

Unwinding the □ operator through rule R20 yields two branches, that can
be closed without much effort. In the ‘future’ branch, we have to apply the
unwind rule once more to produce a sequent X .= 1 =⇒ ⌈X/2⌉ .= 1, which
can be closed by arithmetic.

The latter branch, shown above, we have the auxiliary modality J· | ·K,
that represents the property of X .= 1 being preserved throughout the
subtrace induced by the loop body π. As defined on page 74, it is just a
shorthand for a modality with a ‘weak until’ temporal formula, where φW ψ
is again a shorthand for φ U ψ ∨□φ; this is why ‘weak until’ is replaced by
‘until’ through rule R9 (and we hide the ‘box’ formula). Then, we unwind the
‘until’ operator (rule R19), yielding two branches, one of which can be closed
easily. In the other branch, we can apply the assignment rule R25, such that
only the loop remains in the program modality. The ‘until’ operator in the
temporal formula is unwound onece more; we hide the ‘future’ part. It only
remains a nontemporal formula, which can be simplified to 1 .= 1 through
update simplification. Here, the update can be applied to the nonmodal
formula as a substitution. This closes the proof.

4.6.2 Trace Decomposition Rules

State based dynamic logics, both for deterministic and indeterministic lan-
guages, have the well-known property of compositionality. For example, the
formulae [π ω]φ and [π] [ω]φ are logically equivalent. This is important since
program complexity imports much to the overall complexity of a DL formula.
This does not apply to our situation as traces may not be decomposed in
general.

For purposes like loop invariants (see Tab. 4.7), however, program de-
compositions are indispensable. This has lead us to the auxiliary notation
Jπ | ωKφ, that talks about all traces beginning in π but extending into ω.
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4.6. Discussion

In some sense, this modality has similar semantics to the ‘chop’ operator ;
in ITL [Cau et al., 2002], that divides a temporal interval. The difference
is that the chop operator denotes some point in time to split, whereas our
modality explicitly states the final state of trcΣ(·, π).

Another possibility to make proofs more tractable would be to introduce
additional rules for special, commonly used patterns of trace formulae—such
as □♢γ where γ is a state formula—for which we know that decompositions
are sound. For instance, the related dTL2 logic by Jeannin and Platzer [2014]
(cf. Sect. 10.1) does only apply rules on temporal formulae of such patterns.

The following rule is an invariant rule for the special case that the
temporal formula is of the shape □φ, where φ is a nontemporal formula.

Γ =⇒ Uγ,∆ γ, b =⇒ JπK□(φ ∧ (•false → γ)) γ =⇒ b, JωK□φ
Γ =⇒ UJwhile (b) {π} ωK□φ,∆

R36

It lacks the fourth branch involving the auxiliary modality; instead the
‘invariant preservation’ branch contains the throughout property. With this
rule, the above example proof would be shorter, essentially lacking the left
branch in the uppermost subtree.

4.6.3 Loop Invariants for Concurrent Programs

Like the control flow, invariants can depend on shared locations (cf. Sect. 3.6).
This means that the original invariant rules shown in Tab. 4.7—while being
sound w.r.t. the given semantics—are not appropriate for modeling con-
current programs. The reason is that they introduce a kind of program
decomposition that is affected by interleavings. A concurrently executed
thread may influence whether the invariant γ holds. For this reason, we
slightly adapt the invariant rules as shown in Tab. 4.11 on the next page.
They only differ from the original ones by additional instrumentation. In all
rules, in the first premiss the invariant γ is replaced by J Kγ (i.e., a program
modality with the instrumentation of the empty program). This adds exactly
one interleaving point at the end of the empty program. In the second
and the last premiss of all rules, the loop body π is instrumented, which
effectively adds an interleaving point at the end of π.

Further instrumentations (i.e., on the trailing program ω or the complete
loop) are not necessary since the programs are either already properly
instrumented or the same invariant rules apply. The principle extends to all
rules that perform case distinctions during symbolic execution. Yet, loop
invariants are the only rules of this kind in our calculus. The JML specification
language (see Chap. 8) knows more auxiliary specification elements that are
evaluated within a program. In extending the calculus to cater for those,
one has to take great care to apply the appropriate instrumentations.
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4.6. Discussion

4.6.4 Implementation

The sequent calculus CDTL for the sequential subset of the language has
been prototypically implemented on top of the legacy version 2.2 of the
interactive KeY prover.15 Instead of the simple language introduced in
this paper, the implemented calculus works on actual Java programs. The
implementation benefits from the fact that most complex statement in Java
can be transformed into a sequence of simple statements. This is a key
element of the symbolic execution in the JavaDL calculus of the KeY system
[Beckert, 2001; Beckert, Klebanov, and Schlager, 2007b]; see also Chap. 7.
Most calculus rules dealing with this kind of program normalization can
be adapted straight away from the present rules for the [·] modality in the
JavaDL calculus.

4.6.5 Proof Search for DTL

Beyond completeness, another desirable feature of a calculus would be that
many proofs can be found automatically. Of course, the general problem
is undecidable and therefore there cannot be a decision procedure for all
problems. Yet, work with the KeY system has revealed that for many
‘sensible’ examples, heuristical proof search provides automated proofs.

Proof confluent calculi are amenable to automation. Confluence means
the property that if a proof node is reachable (through finitely many appli-
cations of valid rules), then it is still reachable after a valid rule application.
In particular, for a valid formula φ, the empty sequent must be reachable on
any branch after any sequence of rule applications. This avoids the necessity
of backtracking. Unfortunately, neither the JavaDL calculus of Beckert et al.
[2007b] nor CDTL is proof confluent. The lack of confluence in CDTL arises
from the intricate interplay of temporal and program rule applications.

Nevertheless, adequate heuristics can still provide good support for
automation. In standard dynamic logic calculi (for deterministic languages),
program transformation rules usually have a high priority since most of them
do not split the proof while there are few rules that rewrite subformulas below
modalities. This is different for our calculus. The temporal unwinding rules
R20 and R19 lead to situations where we have multiple program modalities
on the trace. This causes confusion to the strategies and leads to significantly
larger proofs, in particular if the programs are complex. Therefore, it becomes
an issue of proof complexity whether first to symbolically execute the program
or to rewrite the formula below the program modality. An efficient strategy
for DTL needs to decide which formula containing a program modality is
‘the interesting one’ heuristically.

15This version is no longer maintained and only available on request.
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4.6.6 Outlook on the Following Chapters

So far, we only presented the calculus for basic DTL, i.e., containing only
noninterleaved programs. Since concurrent interleavings are made explicit
in dWRF, the calculus is largely identical to the calculus for sequential
programs presented in [Beckert and Bruns, 2013]. The main difference is that
validity is defined w.r.t. a scheduler. In the following chapter, we develop
the missing calculus rules for interleavings and thread creation based on the
rely/guarantee technique. The correspondence of actual concurrent programs
to sequential interleaved programs is discussed in that chapter.

In Sect. 6.4, we use an extension of CDTL to specify strong noninter-
ference. Noninterference is a relational property that compares two traces
produced by the same program. Unfortunately, this property cannot be
expressed using the LTL-like temporal operators of CDTL. To solve this
issue, we will introduce an extension to CDTL that allows to count states in
the trace through the operator •n, where •nφ intuitively means ‘in exactly
n steps, φ holds.’

Another extension to express (absence of) information flow has been
presented by the author [Bruns, 2014b]. It employs explicit temporal in-
formation flow operators H (‘hide until’) and L (‘leak while’), based on the
work by Dimitrova et al. [2012], to express strong noninterference, including
temporal declassification.

In Sect. 7.3, we discuss how reasoning about concurrent programs along
the lines of Chap. 5 can be implemented in the KeY verification system. One
challenge is to provide an implementation that is minimally invasive to the
core system of KeY. The implementation presented on the preceding page
is not suitable as it involves many core changes. The other challenge is to
devise a calculus for the full Java language. As already discussed in this
chapter, extending the DTL calculus to Java does not pose any conceptual
obstacles, but is rather laborious.
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5
Deductive Verification of

Concurrent Programs

In the previous chapter, we have introduced a calculus for DTL, based on
symbolic execution of programs in the sequential fragment of dWRF. In this
chapter, we extend this symbolic execution to the full multi-threaded lan-
guage, including interleavings and thread creation, as introduced in Chap. 3.
The result is a calculus for the full CDTL. Our goal is to allow modular
reasoning in open programs, that can be extended with further threads.
The distant goal is to enable information flow analysis for multi-threaded
programs, as explained in the following chapter. We do not aim for a full-
fledged methodology to verify parallel algorithms. In Chap. 7, we describe
an implementation of this approach in the KeY verification system.

The rely/guarantee approach allows to reason compositionally about the
behavior of shared memory concurrent programs. We investigate on a single
thread (executing a sequential interleaved program—as defined in Sect. 3.2)
in isolation, with possible spontaneous state transitions induced by the envi-
ronment. This means that we still have a deterministic program semantics,
with underspecified (i.e., havocked) heap states. Rely/guarantee uses func-
tional specification to restrict the effect of these environment transitions.
In this sense, reasoning about interleavings is similar to reasoning about
sequential method invocations through contracts. We present a calculus for
CDTL based on rely/guarantee, that is amenable to automation. It contains
a rule for release statements that havocs the heap state, while it adds a
rely condition to the assumptions. Proof obligations that ensure soundness
of this rule are generated. We only consider these proof obligations here
(i.e., proof of well-behaved concurrency according to specification) in order
to keep proof obligations modular and reusable.
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5.1 Concurrent Verification

Besides the obvious soundness, it is attainable for analysis techniques to be
compositional and modular. Compositionality means that single components
can be composed together in a way such that any result on the compound
can be derived from results on the components. This derivation is provided
by an ‘adaptation rule’ [de Roever et al., 2001, Sect. 1.6]. Compositionality
is essential to a bottom-up approach to verification of a complex system.
Modularity means that modules can be assessed in isolation, i.e., without
concrete knowledge of the environment. This way, modules can be deployed
in different environments without invalidating previously obtained results.
Modularity is essential to a top-down approach to a complex system. Both
compositionality and modularity are obviously related, but neither does
subsume the other. There are approaches that are compositional, but not
modular, and vice versa. The overview monograph by de Roever et al. [2001]
discusses the concept of compositionality extensively, while modularity is
mentioned only marginally. Yet, both are linked by the requirement for
assertional reasoning.

Several approaches to formally reason about shared memory concurrent
programs have been developed since the mid-1970s, such as [Ashcroft and
Manna, 1971; Ashcroft, 1975; Keller, 1976; Hoare, 1978; Lamport, 1980].
Widely known is the one by Owicki and Gries [1976], that is considered
the first practical approach to concurrency verification.1 They define an
extension to Hoare logic for programs with parallel composition. The major
issue with this approach is that the rule for parallel composition requires
isolated threads. This means that, in addition to proving local correctness of
programs, one needs to prove noninterference of parallel executions. This
technique has some limitations: 1. the number of concurrent threads is fixed;2
2. noninterference proofs tend to be complicated;3 3. it is not compositional;
and 4. it requires a considerable specification overhead (every program point
where an interleaving may occur needs to be annotated). Given all these
issues, applying the Owicki and Gries method is not practical.

The rely/guarantee approach [Jones, 1983; Stirling, 1988; Stølen, 1991]
(sometimes also called “assume/guarantee”) attempts to overcome these
issues. Based on an earlier idea by Francez and Pnueli [1978], it abstracts
away from concrete interferences to only consider the effects of possible
interleavings. The main idea is similar to the concepts of contracts for
sequential modules (see Sect. 8.2), though not on the level of a public
interface, but of atomic program steps. This allows to modularly reason
about one single thread in isolation, while there may be an unbounded

1See also the discussion in Sect. 10.3.
2The generalization by Prensa Nieto [2001] is parametric in the number of threads.
3The proofs grows exponentially with the number of threads.
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5.1. Concurrent Verification

number of other threads in an only partially specified environment. It is,
in particular, not of any interest which sequential program other threads
execute or in which (thread local) state they are. Sequential programs (i.e.,
single threads) are evaluated over traces of states.

The original paper by Jones sketches this fundamental idea—as a means
of developing correct programs by design. But we note that it may be
applied to ex post factō verification as well. A comprehensive account on
the rely/guarantee approach can be found in the article by Xu, de Roever,
and He [1997], that includes a Hoare style calculus and proofs of soundness
and completeness for a fixed number of threads. A completeness proof
for a system that is parametric in the number of threads can be found in
[Prensa Nieto, 2002]. Xu et al. further “observe that the rely-guarantee
method is [. . . ] a reformulation of the classical non-compositional Owicki &
Gries method.” A technique for distributed systems with message passing,
that is similar to rely/guarantee, is called assumption/commitment [Misra
and Chandy, 1981]. We present an overview over related work in Sect. 10.3.1.

Functional specifications, like preconditions or assumptions, help to
describe behavior that must be established by a module. Conversely, we
also need to ensure that “nothing else changes” in order to provide modular
specification. In sequential programs, this frame problem [McCarthy and
Hayes, 1969; Borgida et al., 1993] is well known; see Sect. 8.2.3.

We present an implementation in dynamic logic with ‘contracts’ for each
heap read access. To reduce the specification overhead, we complement
functional rely/guarantee specifications with framing, that restricts havoc
to defined partitions of the heap. Our framework of proof obligations does
not include postconditions (i.e., functional correctness properties) directly.
This decision is rooted in our effort to separate rely/guarantee, i.e., proof of
benevolent thread interactions, from other program properties. This permits
future extensions of our approach to apply rely/guarantee to properties
beyond postconditions, such as information flow security.

Chapter Overview

In this chapter, we describe how rely/guarantee can be integrated into our
logical framework. Section 5.2 gives some fundamental definitions regarding
our rely/guarantee approach and the kind of programs that we consider. We
describe the differences to Jones [1983] and other related work shortly there.
A more comprehensive treatise of related work can be found in Sects. 10.3ff.

In Sect. 5.3, we develop correctness conditions, that are partly thread-
local, partly on the system level. If they hold, then they assure soundness
of a calculus rule to deal with environment interleavings. This calculus rule
is to be introduced in Sect. 5.4.1. We give a proof of soundness relative to
specification for this rule. The overall proof structure develops bottom-up
and follows the same lines as Coleman and Jones [2007]. Central to this is
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Thm. 5.13, which states that a valid thread specification is sufficient for rely
conditions describing interleavings.

A rule for dynamic thread creation is introduced in Sect. 5.4.2. While it
is trivially sound, the verification challenge lies in proving that the soundness
criteria of the interleaving rule are maintained. We argue that the resulting
calculus is relatively complete w.r.t. a modular analysis of the proposed
target programing language dWRF.

We provide two minimal examples to show how rely/guarantee proofs
work (Sect. 5.5). It is only natural to include rely/guarantee specifications
in JML contracts. A proposal, introducing a few new keywords, will be
presented in Sect. 8.3 as part of the chapter on JML specification. We
conclude this chapter with a discussion on future work in Sect. 5.6. It
concerns the addition of synchronization primitives to dWRF. While we do
not provide a formal underpinning, we sketch the idea of how synchronized
threads can achieve a common task coöperatively.

5.2 Rely/Guarantee Reasoning

The central idea of rely/guarantee is to describe concurrent program behavior
symbolically through specification. If specifications are sufficiently abstract,
then they can describe any concurrent behavior that is possible. We specify
both the result of ‘own’ atomic steps and the combined effect of environment
interference. Recall the transition functions from Sect. 3.5.2, σt (of the
thread t under investigation / our ‘own’ thread) and σ∗

Σ(t) (of the environment
/ ‘them’). We use formulas rely and guar to describe those. Those are two-
state invariants, i.e., they are preserved throughout the execution and are
evaluated over two succeeding states. The formula rely describes σ∗

Σ(t), i.e.,
it defines on which properties the execution of t may rely upon. The formula
guar describes σt, i.e., it defines which properties the execution of t has to
guarantee.

Obviously, there always are strongest formulae satisfying these conditions
(if the environment is perfectly known): The strongest rely relation is the
reflexive/transitive closure of the union of guarantee relations. However, the
transitive closure of guarantees is not expressible in first order logic.

In practice, this strongest condition will not be necessary. It is sufficient
that rely is strong enough to imply the overall goal (e.g., a postcondition)
and that guar is strong enough—in disjunction with the guar specification
of other threads—to imply the rely conditions of a third party thread. Since
they describe the behavior of zero or more atomic environment transitions,
rely conditions have to be always reflexive and transitive. Jones [1983]
additionally requires guarantees to be reflexive and transitive. But this
restricts the possible specifications and requires an additional proof obligation,
while it does not provide any advantages since the union of transitive relations
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is not necessarily transitive again. Prensa Nieto [2003] also requires reflexive
guarantees. This is motivated by the fact that in her formalization, there
may be component steps that do not lead to a different global state, e.g.,
evaluation of expressions. This effect does not occur in our semantical
framework as only write actions to global memory induce a local step. Xu
et al. [1997] do not require rely conditions to be transitive. Instead, they
require that pre- and postconditions are maintained through environment
transitions. While this is more liberal on the shape of rely conditions, it
severely restricts pre- and postconditions in practice.

Extensions to ‘Classical’ Rely/Guarantee

In typical situations, the memory partitions to which different threads write
are strongly separated and only a few locations are actually shared. Therefore
we combine the well-known two state invariant specification of threads with
framing, to specify what locations a thread writes to at most (and what
locations it can rely on not to be changed). Frame specifications alone can
be very expressive, in the dynamic frames approach [Kassios, 2011; Weiß,
2011], location sets describing frames can depend on the program state and
can be constructed through comprehensions (see Sect. 8.2.3).

Through framing, we take the burden of specifying the ‘nonbehavior’ of
threads in addition to its behavior. This allows us to formulate the functional
guarantees and rely conditions in a more concise and focussed way. Otherwise,
a typical specification would consist of many statements of equality of variable
values between states. In the corner case in which the memory accessed by
threads is perfectly separated, the thread specification can consist of frame
conditions only (with the functional specification declared as true). Our
approach is thus similar to rely/guarantee combined with separation logic
[Vafeiadis and Parkinson, 2007]; cf. Sect. 10.3.3. A difference is that our
proof obligations are expressed in a dynamic logic that builds on classical
FOL.

In modular specification and verification for sequential programs, the
concept of method contracts is well known (see Sect. 8.2). We borrow precon-
ditions from the contract methodology to restrict the states in which fresh
threads can be created. Like framing, this does not increase the expressive-
ness of the approach, but it is very effective in reducing the specification
overhead. Following the approach by Weiß [2011], we do not include implicit
class invariants in this framework, but leave it to the specifier to refer to
invariants explicitly in specifications.

Dynamic Thread Creation vs. Parallel Composition

Most works on rely/guarantee, including [Jones, 1983; Prensa Nieto, 2002],
define concurrent programs as one syntactical entity, involving parallel com-
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position operators. This way, programs are closed: there is no further
environment beyond its syntactical representation. This is motivated by the
fact that Jones proposed rely/guarantee as a technique to develop programs,
where the developer has perfect knowledge of the environment (because it is
part of the development process). However, this is in contrast to our concept
(cf. Chap. 3) of having open programs consisting of a set of threads, where
the ‘own’ thread runs in an underspecified environment. This environment
does not manifest syntactically and it can be expanded dynamically (through
fork statements).

This idea of open programs is essential to modular proofs: a correctness
proof about a thread should be valid under any environment. For sequential
verification, this concept is well established and enshrined in the methodology
of contracts.4 In particular, it allows to evolve programs in a natural way
without invalidating previous verification results.

It is one of our goals in this thesis to establish modular proofs in the sense
that they must not be invalidated by the addition of threads. For reasoning
about such programs, we observe that we cannot assume a ‘top-level entry
point’ or ‘master thread’ from which all others are forked. This bars us from
the assumption by Coleman and Jones [2007] “that whole programs are run
without external interference.” In particular, we allow any thread to fork
new threads (i.e., we consider nested concurrency), whereas Prensa Nieto
[2002] assumes a single master thread, which is the only thread that may
fork others.

5.3 Proof Obligations

A thread specification is a tuple (pret, relyt, guar t, Rt,Mt) where pret is a
state formula, relyt and guar t are two-state formulae, and Rt and Mt are
terms of type L. The intuitive understanding is that the active thread can
rely on the relation relyt to hold between state transitions induced by the
environment, while the locations in Rt never change due to the environment,
and at the same time, it guarantees to write only to the locations in Mt and to
maintain the relation guar t between all own atomic steps. The precondition
pret restricts the states in which fresh threads may be created.

A formal definition of a thread specification being valid is given in Def. 5.11
on page 99. The formulas rely and guar are still state formulae in the sense
that they must not include temporal operators, but they are expected to
refer to the built-in heap variables heap and heap’, for that we justify it
as ‘two-state.’ Just like the semantics of state formulae can be represented

4The approach by Beckert et al. [2007a] to verification of object-oriented programs
includes a concept of openness, too: there proofs must be valid w.r.t. extensions of the
subtype relation.
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as the set of states in which it is valid, two-state formulae represent binary
relations on states.

The location set expressions can be nontrivial, e.g., depending on the
state or including if-then-else operators. This makes location set expressions
as expressive as the logic itself.

Thread specifications relate only to one thread, not to a complete concur-
rent program. This is important in order to have modular specifications for
reasoning about open systems. The choice of a set Rt of locations that must
not change, instead of the set of locations that may change, may seem coun-
terintuitive at first sight. But in a strictly modular setting, we (consequently)
cannot name the locations that are allowed to change.

Auxiliary Definitions and Lemmas

We use the following definitions to express unchanged behavior on the
semantical level.

Definition 5.1. Let L be a location set. Two heap mappings h and h′ ∈
DH are L-equivalent, written as h ≈L h′, if h(F ) = h′(F ) for all global
variables F ∈ L. Two states s and s′ are L-equivalent, written as s ≈L s

′, if
heaps ≈L heaps

′ . A binary relation A ∈ S2 respects L if A ⊆ ≈L.

Note that a relation that respects equivalence is not necessarily reflexive
nor transitive. For the following definitions and lemmas, we take the liberty
of identifying a state s with its heap state heaps. The following two lemmas
follow immediately from the definition.

Lemma 5.2. ≈L is an equivalence relation.

Lemma 5.3. Let L1 ⊂ L2 be location sets. We have ≈L1 ⊃ ≈L2.

The last lemma states that ≈ is strictly antimonotonic in its location set
parameter. For a location set expression L, we write ≈L as shorthand for
‘≈Ls for all s ∈ S.’ We will use this style of relations included in one another
throughout the proofs below.

Lemma 5.4. Let φ be a formula and L a location set. We say L is
φ-invariant if for all states s with s ⊨ φ and s′ with s ≈L s

′, it holds s′ ⊨ φ.

1. Let φ be a formula and let L be a φ-invariant location set. Let s be a
state with s ⊨ φ and L a location set expression with Ls = L. Then it
holds that s ⊨ {heap := anon(heap, L∁)}φ.

2. Let L ⊆ L′ be location sets. If L is φ-invariant for some formula φ,
then L′ is φ-invariant.
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Note the two inversions in the above lemma: in 1, we use the comple-
ment L∁ of the location set expression L, while in 2, we describe an inverse
monotonicity relation. The lemma intuitively states that anonymization is
ineffective to the validity of a formula if the formula does not depend on the
locations that we anonymize. There is also an upper bound on ineffective
anonymization;5 when we know that anonymization is ineffective for some
location set, it is also ineffective for a smaller location set. We will use this
lemma to prove Thm. 5.16.

Proof. Ad 1: This is a logic representation of the semantical property de-
scribed by the definition of anon (cf. Sect. 3.3). Ad 2: This follows from the
(inverse) L-monotonicity of the L-equivalence relation. ◁

We define the notion of states that are reachable (through some transition
function) from a state in which a precondition holds and relations that are
constrained to reachable states. We use this definition to develop a thread
specification that is not universally valid, but valid in all reachable states.

Definition 5.5 (Reachability from precondition). The set of reachable
states w.r.t. a transition function σ : S → S and a formula φ, written
reach(σ, φ), is defined recursively: reach(σ, φ) := ⋃

k∈N reach(σ, φ, k) where
reach(σ, φ, 0) := {s ∈ S | s ⊨ φ} and reach(σ, φ, k + 1) := {σ(s) | s ∈
reach(σ, φ, k)}. The restriction σ↓φ of σ to precondition φ is defined as
{(s1, s2) ∈ σ | s1 ∈ reach(σ, φ)}.

Note that reach(σ, true) = S and σ↓true = σ for any σ.

5.3.1 Guarantees

In order to establish that a thread t of a concurrent system (T ,Σ) satisfies a
thread specification (pret, relyt, guar t, Rt,Mt), we need to prove that—under
the assumption that environment steps are constrained by rely condition
relyt and Rt—for its own steps, it only writes to locations specified in Mt

and that it fulfills the two state invariant guar t. This relation needs to be
proven for any two succeeding states in the trace. The precondition pret will
be used to relax the ‘guarantee’ proof obligation in a way such that it only
needs to hold for states resulting from the creation of new threads; see below
in Sect. 5.4.2.

The property that only locations in Mt may be changed throughout the
program execution is also known as a strict modifies clause, which is essential
to concurrency verification. This is in contrast to weak modifies properties

5In the literature on framing (cf. [Grahl et al., 2016]; Sect. 8.2.3), often the notion
of a footprint of an expression is used. A footprint denotes the set of locations that the
expression depends on, thus the footprint of a formula φ is the smallest φ-invariant location
set.
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as imposed in standard JavaDL [Beckert et al., 2007a; Weiß, 2011], that still
allow locations outside Mt to be changed temporarily. We use the special
boolean variable estp to distinguish between environment steps and ‘own’
steps of the thread under investigation, as introduced in Sect. 3.4. I.e., on a
program trace, estp is true if and only if an environment step was performed
last (cf. Lemma 3.19). A proof obligation can be formulated in CDTL using
the trace modality as

{hpre := heap}JπtK•□(estp ∨ (framet ∧ guar t)) (5.1)

where framet stands for the following formula:

∀F :F. (F ∈̇ {heap := hpre}Mt ∨ select(heap, F ) .= select(heap’, F )) (5.2)

The formula framet is similar to the one used by Weiß [2011, Sect. 6.4.1] to
formalize weak modifies properties. The values of the location set expressions
are state dependent, but evaluate in the initial state of the trace. This is
assured through the updates, that store the initial heap hpre. A difference is
that not only the very first and the final state are in relation, but every pair
of consecutive states that are produced by ‘own’ write actions.6 The second
part of the formula entails the two state invariant property. Note that the
proof obligation of (5.1) could be written as two separate ones, since the
formula JπK•□(ψ∨ (φ1 ∧φ2)) is equivalent to JπK•□(ψ∨φ1)∧ JπK•□(ψ∨φ2).

Lemma 5.6. Let s0 be a state; let t be a thread with a thread specifi-
cation (pret, relyt, guar t, Rt,Mt). Let τ = trcΣ(s0{hpre ↦→ heaps}, πt). If
τ ⊨ •□(estp ∨ (framet ∧ guar t)) (as in (5.1)), then

1. guar t describes a binary relation γt ⊇ σt and

2. σt respects (M∁
t )s0.

Proof. Ad 1: The trace of an interleaved program contains both environment
steps (i.e., σ∗

Σ-steps) and ‘own’ steps (i.e., σt-steps). Without loss of generality,
assume |τ | > 1. According to Lemma 3.19, for all i > 0 with τ [i] ⊭ estp, the
step from τ [i− 1] to τ [i] is induced by an ‘own’ step. It further follows from
Lemma 3.19 that γt is a binary relation on consecutive heaps in the trace
(projected to σt and heaps).
Ad 2: The two-state formula framet formalizes s′ ≈L s

′′ with L =
(
M∁
t

)s′′′

for all states s′, s′′, s′′′ ∈ S with heap’s
′ = heaps

′′ and (hpre)s′ = heaps
′′′

(cf. Def. 5.1). From the assumption, framet is valid for s′′′ = s0 (notice
the update to Mt in the formula) and s′ = si for any i ∈ [1, |τ |) and

6Note that we do not have to use a temporal construct to refer to the previous state
(there are no past operators in our logic, anyways), but through the variable heap’ since
we do not need the complete state, but just the heap state.
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τ [i] ⊭ estp. Lemma 3.19 then gives s′′ = si−1. Thus it is si−1 ≈(M∁
t )s0 si

and τ [i] = σt(τ [i− 1]), for all i ∈ [1, |τ |). By reflexivity and transitivity of ≈
(Lemma 5.2), it follows si ≈(M∁

t )s0 sj . ◁

Remark. A slight alteration (i.e., removing ‘next’ and setting an initial value
for heap’) of Formula 5.1 to

{heap’ := heap || hpre := heap || estp := false}JπtK□(estp∨(framet∧guar t))

requires guar t to describe a reflexive relation. (The formula guar t is true in
the initial state of τ . The only restriction on τ is that heap’τ [0] = heapτ [0],
thus the result is universally valid.)

The above formula considers all possible initial states, which is impractical.
To restrict the possible initial states in formula (5.1), we relax this formula
using a precondition. The following formula is valid in all states in which (5.1)
is valid or the formula pret is not valid. Hence, guar t describes a relation γ
on the restricted transition relation, as stated by the ensuing lemma.

pret → {hpre := heap}JπtK•□(estp ∨ (∀F : Field. (F ∈̇ {heap := hpre}Mt

∨select(heap, F ) .= select(heap’, F )) ∧ guar t))
(5.3)

Lemma 5.7. Let everything be as in Lemma 5.6. If Formula (5.3) is valid,
then σt↓pret

⊆ γt and σt↓pret
respects M s0

t ; where γt ⊆ S2 is the relation
described by guar t.

Proof. Assume (5.3) valid, fix some state s ∈ S. If s ⊭ pret, then s ̸∈
dom σ↓pret

. If s ⊨ pret, then (5.1) must be valid in s, and Lemma 5.6 applies
with σt replaced by σt↓pret

applies. ◁

5.3.2 Rely Conditions

The idea of rely conditions is that they impose an upper bound on environment
actions. This entails two items: 1. Since a release denotes an environment
macro step (i.e., zero or more atomic environment steps), rely conditions
must describe reflexive and transitive relations. 2. They must not be stronger
than the combined guarantees that the environment provides. These items
are formalized in (5.4) and (5.6) below, respectively. While (5.4) is a ‘local’
property—i.e., it is a property of one rely condition alone—property (5.6) is
concerned with the relation of rely conditions to guarantee conditions in the
combined system.
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∀h1, h2, h3:H. ( {heap’ := h1 || heap := h1}relyt
∧ ( {heap’ := h1 || heap := h2}relyt

∧{heap’ := h2 || heap := h3}relyt )
→ {heap’ := h1 || heap := h3}relyt )

(5.4)

Lemma 5.8 (Reflexivity/transitivity of rely). Let φ be the formula in (5.4).
It is a valid formula if and only if relyt describes a binary relation ρt ⊆ S2

that is reflexive and transitive.

Proving the lemma is trivial since (5.4) is a direct formalization of the
property. Note that, in general, guarantees are allowed to describe relations
that are neither reflexive nor transitive—while this is required by Jones. The
essential point is that rely conditions are reflexive/transitive, as mentioned
above. Since the union of transitive relations is not necessarily transitive
again, we still need (5.4) as a proof obligation anyway.

Of course, there is always a strongest rely condition to fulfill obligations
(5.4) and (5.6). It is the reflexive/transitive closure of the union of guarantee
conditions. Since, however, transitive closure cannot be expressed in plain
first order logic, see, e.g., [Ebbinghaus and Flum, 1995], we require these
conditions here explicitly and charge the responsibility on the specifier.

System Properties

Similar to the functional rely condition, also the frame conditions for threads
of a system need to be aligned. The following formula states that the locations
that t relies on not being changed are disjoint with the locations changed by
any other thread t′.

⎛⎝ ⋃̇
t′∈T\t

Mt′

⎞⎠ ∩̇Rt
.= ∅̇ (5.5)

Lemma 5.9. Let T be a thread pool. Formula (5.5) is valid if and only if,
for all threads t ̸= t′ ∈ T , it is ≈(M∁

t′ )s ⊆ ≈Rs
t
, for any state s ∈ S.

Proof. Formula (5.5) formalizes that the sets M s
t′ and Rst are disjoint for

any s ∈ S. Since (5.5) is universally valid, it is a direct formalization of the
disjointness property (cf. location set theory by Weiß [2011]) for all s ∈ S.
Equivalence of the latter two follows from elementary set theory. Standard
set theory gives us that disjointness is equivalent to (M∁

t′)s ⊇ Rst , which is
equivalent to ≈(M∁

t′ )s ⊆ ≈Rs
t
, according to Lemma 5.3. ◁
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σ∗
Σ≈R

⋃
γ̃

ρ̃

⋃
γ ρ

Figure 5.1: Inclusion and intersection of the relations used in this chapter if
the proof obligations are valid

As already mentioned above, rely conditions must not be stronger than
the combined guarantees of the system. This is formalized in (5.6) below.
However, we relax the proof obligation by restricting the pairs of states that
we look at to only those that respect R. The resulting condition is weaker,
but still sufficient, since our overall goal includes proving R-invariance of any
interleaving, anyhow. We define the ‘tilde’ version α̃ of a relation α ⊆ S2

as a shorthand for α ∩ ≈Rt where t ∈ T should be clear from the context.
Figure 5.1 displays how these relations are meant to intersect with each
other.

{heap’ := heap || heap := anon(heap, R∁t )}

⎛⎝⎛⎝ ⋁
t′∈T\t

guar t′

⎞⎠ → relyt

⎞⎠
(5.6)

Lemma 5.10. Let γt, ρt ⊆ S2 be the relations introduced in Lemmas 5.6
and 5.8 for some t ∈ T . If formula (5.6) is valid, then it is

⋃
t′∈T\t γ̃t′ ⊆ ρ̃t.

Proof. The part of the formula on the right hand side (without the up-
date) is a straightforward formalization of the property ⋃t′∈T\t γt′ ⊆ ρt (cf.
Lemmas 5.6 and 5.8). The update weakens this result as it restricts the
pairs of states that are related to ≈Rt , according to Lemma 5.4. Thus it is
((⋃t′ γt′) ∩ ≈Rt) ⊆ (ρ̃t ∩ ≈Rt). ◁
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5.3.3 Valid Thread Specifications

For the correctness of the rely/guarantee method, we need to establish the
notion of valid thread specifications w.r.t. a particular thread pool. The
rule for reasoning about interleavings can then be defined in a thread pool
agnostic way. We use three different levels of validity: 1. universal validity,
2. validity modulo precondition (VMP), and 3. local validity; where each one
includes the subsequent item.

Definition 5.11 (Valid thread specification). Let t ∈ T be a thread.

1. A thread specification (pret, relyt, guar t, Rt,Mt) is universally valid for
a thread pool T ∈ 2T

fin if the formulae (5.1), (5.4), (5.5), and (5.6) are
universally valid.

2. A thread specification is valid modulo precondition (VMP) if the
formulae (5.1), (5.4), (5.5), and (5.6) are valid for all states s ∈
reach(σt, pret).

3. A thread specification is locally valid if only formulae (5.3) and (5.4)
are valid, i.e., t fulfils its guarantees (assuming the precondition) and
the rely condition is reflexive and transitive.

4. We call the set {(pret, relyt, guar t, Rt,Mt) | t ∈ T} a univerally valid/
VMP thread specification for T if all (pret, relyt, guar t, Rt,Mt) are
universally valid/VMP thread specifications w.r.t. T .

We use the simpler term ‘valid’ in contexts which apply to both universal
valid and VMP thread specifications. Note that the semantical thread pool T
is independent of the state of evaluation of the formulae.

In another point, the properties denoted by formulae (5.1), its deriva-
tive (5.3), and (5.4) are thread-local, i.e., if they are valid for a particular
environment, then they are also valid for any environment. This is the
reason to introduce local validity. The properties denoted by formulae (5.6)
and (5.5) refer to the concrete, complete concurrent system instead. But
they do not contain any program, only first order formulas over the theories
of location sets and heaps.

Lemma 5.12. A VMP thread specification is also locally valid.

In contrast to the proof obligations by Jones [1983]; Stirling [1988]; Xu
et al. [1997], we do not include a postcondition in our specification framework.
The reason is to decouple the proof of well-behaved concurrency from proofs
for other properties, like functional correctness or information flow security.

Theorem 5.13. Let (T ,Σ) be a concurrent system and t ∈ T some thread.
If there is a universally valid thread specification for T , then 1. we have
σ∗

Σ(t) ⊆ ρt, where ρt is the semantical relation represented by relyt; and
2. σ∗

Σ(t) respects Rt.
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Proof. According to its definition, σ∗
Σ(t) consists of atomic environment

transitions σ∗
Σ(t) = σt1 ◦ · · · ◦ σtk with (not necessarily different) threads

ti ∈ T \ {t} and k ∈ N as determined by Σ. We start showing the ‘respect
part’ (2) of the theorem. Ad part 2: Lemma 5.7 gives us σti ⊆ ≈M∁

ti

.
From Lemma 5.9, it follows σti ⊆ ≈Rt . Since ≈ is an equivalence relation
(Lemma 5.2), we obtain σ∗

Σ(t) ⊆ ≈Rt . Ad part 1: Let γ̃ and ρ̃ be the relations
introduced in Lemma 5.10. According to Lemma 5.7, it is σti ⊆ γti and thus
σ∗

Σ(t) ⊆ γt1 ◦ · · · ◦ γtk . We may further widen this inclusion by replacing any
concrete γti by the union ⋃t′ ̸=t γt′ , i.e.,

σ∗
Σ(t) ⊆

⎛⎝⋃
t′ ̸=t

γt′

⎞⎠k .

Lemma 5.10 provides ⋃t′ γ̃t′ ⊆ ρ̃t ⊆ ρt. Since we already proved σ∗
Σ(t) ⊆ ≈Rt ,

it follows σ∗
Σ(t) ⊆ ρ̃kt . Since ρt is reflexive and transitive (Lemma 5.8), i.e.,

ρt = ρkt for any k ∈ N, we conclude σ∗
Σ(t) ⊆ ρt. ◁

Corollary 5.14. Let (T ,Σ) be a concurrent system and t ∈ T some thread.
If there is a VMP thread specification for T , then 1. we have (σ∗

Σ(t))↓pret
⊆

ρt↓pret
and 2. (σ∗

Σ(t))↓pret
respects Rt, where pret is the precondition in the

thread specification for t.

5.4 A Calculus for Concurrent DTL

We present the calculus CCDTL for the full CDTL. It consists of most of the
rules of the calculus CDTL for DTL as defined in Sect. 4.4 (and originally by
Beckert and Bruns [2013]). The only exceptions are that the original invariant
rules R28–R30 are replaced with those defined in Tab. 4.11 on page 84. As
explained in Sects. 3.6 and 4.6.3, the original invariant rules are sound w.r.t.
the semantics provided, but are inappropriate to model concurrent behavior.
We additionally define rules R37 and R38 for the symbolic execution of
interleavings and dynamic thread creation, to be introduced in the following
subsections.

5.4.1 Reasoning About Interleavings

We now define a calculus rule that can be applied on a program modality
where release is the active statement, performing symbolic execution. This
rule R37, shown below, is the centerpiece of our CDTL calculus. By assigning
a calculus rule to the synthetic release statement, we can establish that it is
sufficient for a sequential program π to be correct w.r.t. a given specification
in a concurrent setting if the instrumented program π is, as described in
Sect. 3.6. We use the results of the previous section (in particular Thm. 5.13)
to prove soundness of this rule.
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5.4. A Calculus for Concurrent DTL

Γ,UVrelyt =⇒ UVJωtKφ,∆ R37Γ =⇒ UJrelease; ωtK•
◦φ,∆

where V = {heap’ := heap || heap := anon(heap, R∁t ) || threads :=
threads ∪̇ T || estp := true}, T is a fresh symbol of type T, and t is
the thread whose program appears in the modality.7 The symbol •

◦ stands
for either ‘weak next’ (•) or ‘strong next’ (◦).

The effect of the above rule is that the release statement in the conclu-
sion is symbolically executed in a scheduler-independent way. (Recall that
universal validity is defined as validity under any scheduler, cf. Def. 4.7.)
As release denotes a step, the ‘next’ operator is removed in the premiss.
Since there is a remaining trace (induced by ωt), this applies to both ‘weak
next’ and ‘strong next.’ In the premiss, the effect of release on the heap
and the thread pool is described through the ‘havoc’ update V. For both
heap and thread pool, we have some partial knowledge: the heap is updated
to another heap that coïncides with the old heap on Rt; the thread pool can
only increase—only the additional part, represented by T , is unknown. To
compensate the havoc, the relyt formula is inserted on the left hand side of
the premiss sequent. It functionally specifies the environment changes.

We follow the usual approach in software verification that specifications
live as background theories and therefore are not part of formulae or sequents.
This has been pursued by, e.g., Beckert et al. [2007a]; Weiß [2011] for method
contracts in sequential programs. For concurrent programs, there is a
similar situation with rely conditions. This means that we cannot assess
the soundness of rule R37 on grounds of the rule itself, but only w.r.t. the
specification framework of thread specifications.

Theorem 5.15 (Conditional soundness of R37). Assume that the premiss
of rule R37 is valid. Let s ∈ S be some state that includes the effects of
the update U . If there exists a VMP thread specification for threadss and
s ∈ reach(σt, pret), then the conclusion is valid.

Proof. For the general case, this proof is extensive. Without loss of generality,
we apply some simplifications. We prove the claim for the ‘strong next’
operator; the proof for the ‘weak next’ operator follows the same lines.
Assume the sequent UVrelyt =⇒ UVJωtKφ valid. According to Lemma 4.12,
it suffices to prove validity of the sequent =⇒ UJrelease; ωtK◦φ. As the
update U appears as prefix to all formulae involved, we may also disregard
it. Fix a state s ∈ reach(σt, pret) with s ⊨ Vrelyt and s ⊨ VJωtKφ as in the
claim. Since we already have assumed reachability from the precondition,
we omit the restriction notation ↓pret

from Def. 5.5 in the following for the
sake of readability.

7We assume that this is derivable from the program context.
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Chapter 5. Deductive Verification of Concurrent Programs

Let s′ be the state which coïncides with s, except for the effect of
update V , i.e., s′ = s{heap’ ↦→ heaps, heap ↦→ hanon , threads ↦→ threadss∪
T s, estp ↦→ true} where hanon ∈ DH is an arbitrary, but fixed, heap mapping
such that hanon ≈Rs

t
heaps. We represent the fact that s′ ⊨ relyt through

the relation ρt(s, s′′) where it exists some state s′′ such that s ≈Rs
t
s′′ (i.e.,

s′′ is described through the function anon).
Given that we have a valid thread specification for thread pool T :=

threadss and following Thm. 5.13 and Corollary 5.14, we may choose s′′ =
σ∗

Σ(s, t), where t = Σ(s) and Σ is some scheduler. It follows that s′ ⊨ JωtKφ
is equivalent to s′′′ ⊨ JωtKφ with s′′′ := s′′{heap’ ↦→ heaps, estp ↦→ true}.
This is equivalent (cf. Def. 4.7) to trcΣ(s′′′, ω) ⊨ φ. It follows that ⟨s⟩ ·
trcΣ(s′′′, ω) ⊨ ◦φ is also valid, which is equivalent to trcΣ(s, release; ω) ⊨
◦φ (cf. Def. 3.17), which concludes the proof. ◁

Abadi and Lamport [1995]; Gotsman et al. [2009] point out that the clas-
sical rely/guarantee approach—using two-state rely conditions—is unsound
for reasoning about global liveness properties. This does not apply to our
CDTL calculus, as we only consider temporal properties that are local to
a thread. All environment transitions are modeled as a single step in the
trace of the local thread (cf. Def. 3.17). Since we assume a fair scheduler
(cf. Def. 3.15), the number of atomic environment transitions represented by
one release is always finite. Furthermore, given the absence of locks (and
thus deadlocks) in our model, it is obvious that there is always progress in a
concurrent execution. A relaxation of our concurrency model to allow unfair
schedulers would incorporate the possibility of livelocks. An interleaving
semantics (along with the appropriate reasoning) in the presence of livelocks
and deadlocks will be part of future work.

Note that soundness of Rule R37 is independent of the kind of modality
and the formula φ. This means that a derived rule using the [·] (‘box’) or
the ⟨·⟩ (‘diamond’) modality from standard dynamic logic is also sound as
those modalities can be expressed using trace formulae.

The program instrumentation with the synthetic release statement (cf.
Sect. 3.6) and this corresponding calculus rule allow to extend the present
calculus for purely sequential DTL in a conservative manner. As explicit
releases do not appear in mainstream real-world programing languages, it
is naturally desirable to overcome this instrumentation. In Sect. 7.3, we
devise calculus rules to be implemented for Java, in the KeY prover. These
do not involve explicit releases, but instead anonymization at any reading
assignment or assertion. Obviously, a formal proof of conservatism for that
calculus would involve considerably more effort.
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5.4.2 Reasoning About Thread Creation

In this section, we define the second additional rule for our calculus, dealing
with dynamic thread creation. Below, we will introduce a symbolic execution
rule R38 that can be applied on a program modality where fork is the
active statement. Proving soundness of this rule is trivial. However, an
interesting property for overall soundness of the calculus is preservation of
thread specification validity, thus enabling validity of R37 (cf. Thm. 5.15).
As we have defined it in Def. 5.11, a thread specification is only valid for
some thread pool. When we expand the thread pool through executing fork,
we have to maintain validity for the expanded pool.

The following theorem states which conditions are necessary to extend a
thread pool while preserving validity of thread specifications. This frees us
from unwieldy proof obligations that are stated in terms of ‘for all threads.’

Theorem 5.16 (Thread pool expansion). Let T be a thread pool and let
ST = {(pret, relyt, guar t, Rt,Mt) | t ∈ T} be a valid thread specification
for T . Let t′′ ̸∈ T be another thread with locally valid specification St′′ =
(pret′′ , relyt′′ , guar t′′ , Rt′′ ,Mt′′). If the following formulae are valid for any t ∈
T , then ST ∪ {St′′} is a valid thread specification for T ∪ {t′′}.

(a) {heap’ := heap || heap := anon(heap, R∁t ∪̇Mt)}((relyt∨guar t) → relyt′′)

(b) {heap’ := heap || heap := anon(heap, R∁t )}(guar t′′ → relyt)

(c) (R∁t ∪̇Mt) ∩̇Rt′′
.= ∅̇

(d) Mt′′ ∩̇ (M∁
t ∪̇Rt)

.= ∅̇

Following this theorem, we can expand a purely symbolic thread specifi-
cation system. The original thread pool T does not appear in the formulae
to be proven, but only one single thread t.

Proof. Fix some t ∈ T . St is locally valid by construction (i.e., the proof
obligations do not depend on T , cf. Def. 5.11). As St and St′′ are locally valid,
it remains to show that formulae (5.5) and (5.6)—expressing disjointness of
frames and that rely conditions are not stronger than guarantees—are valid
for t and t′′ w.r.t. the expanded thread pool T ∪ {t′′}.

Ad (5.5): From t having a valid thread specification w.r.t. T , we get ⊨⋃̇
t′∈T\tMt′ ⊆ R∁t and ⊨ ⋃̇t′∈T\tRt′ ⊆ M∁

t (cf. Lemma 5.9). Replacing
R∁t and M∁

t in formulae (c) and (d), respectively, gives us ⊨ ⋃̇t′∈T Mt′ ∩̇
Rt′′

.= ∅ and ⊨ Mt′′ ∩̇
⋃̇
t′∈T Rt′

.= ∅, that are equivalent to (5.5) for t
or t′′, respectively.
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Ad (5.6): For t, this immediately follows from (b). For t′′, the formula (a)
can be weakened according to Lemma 5.4(2). Let VL stand for the
update {heap’ := heap || heap := anon(heap, L)}. We obtain ⊨
(VR∁

t
relyt ∨ VR∁

t ∪̇Mt
guar t) → VR∁

t ∪̇Mt
relyt′′ by update distributivity and

Lemma 5.4(2) applied on relyt. From the valid thread specification for
t w.r.t. T , we obtain ⊨ VR∁

t
(guar t′ → relyt) for all t′ ∈ T . From (c),

it follows that this is equivalent to ⊨ VR∁
t ∪̇Mt

guar t′ → VR∁
t
relyt. We

then replace VR∁
t
relyt by VR∁

t ∪̇Mt
guar t′ in the above formula to obtain ⊨

(VR∁
t ∪̇Mt

guar t′ ∨ VR∁
t ∪̇Mt

guar t) → VR∁
t ∪̇Mt

relyt′′ . Pulling out the update
and applying Lemma 5.4(2) with formula (c) finally leads us to ⊨
VR∁

t′′
((guar t′ ∨ guar t) → relyt′′ , that is what we needed to prove. ◁

We use this result to cast it into a symbolic execution rule for fork. The
following calculus rule deals with the creation of new threads in the program
modality through symbolic execution.

(a) Γ =⇒ UWJωtKφ,∆
(b) =⇒ V1(guar t′ → relyt)

(c) =⇒ V0((relyt ∨ guar t) → relyt′)

(d) Γ =⇒ Upret′ ,∆
(e) =⇒ Mt′ ∩̇ (Rt ∪̇M∁

t ) .= ∅̇
(f) =⇒ (R∁t ∪̇Mt) ∩̇Rt′

.= ∅̇
Γ =⇒ UJfork {π}; ωtKφ,∆

R38

where t is the current thread, t′ ∈ T is a fresh thread with program π
(modulo renaming of local variables), V0 stands for the update {heap’ :=
heap || heap := anon(heap, R∁t ∪̇Mt)}, V1 stands for the update {heap’ :=
heap || heap := anon(heap, R∁t )}, and W stands for the update {threads :=
threads ∪̇ {t′}}; and (pret, relyt, guar t, Rt,Mt) is a (not necessarily valid)
thread specification for t (respectively for t′).

Since the fork statement does not induce a step, Rule R38 can be applied
to any formula φ. It includes 6 premisses, where premiss (a) captures the
(local) effect of forking a new thread, namely the thread pool expansion
expressed by update W. The other premisses represent additional proof
obligations that the fresh thread does not destroy thread specification validity.
Premiss (d) has the precondition for the fresh thread on the right hand side.
In this branch, the sequent environment Γ, ∆ is still present, i.e., we prove
the precondition for the (symbolic) state in which the thread is forked. The
remaining premisses correspond to the formulae of Thm. 5.16. For this
theorem, they need to be universally valid; for this reason, the sequent
environment is not present.

Lemma 5.17. Rule R38 is sound.

Proof. Let premiss (a) be valid, then the conclusion follows from Def. 3.10. ◁
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Since soundness of Rule R38 does not depend on premisses (c)–(f), we
could devise a simpler sound rule with only premiss (a). But the interesting
property is the propagation of thread specification validity. It ensures that
subsequent applications of R37 are actually sound (cf. Thm. 5.15)—otherwise
we could not close a proof except for trivial postconditions. This propagation
is expressed through the premisses (b), (c), (e), and (f). As these premisses
contain exactly the formulae of Thm. 5.16, the following lemma follows
directly from the theorem.

Lemma 5.18 (Propagation of thread specification validity). Let T be a
thread pool for some concurrent system. Let S be a valid thread specification
for T . If the premisses (b), (c), (e), and (f) in R38 are valid, and if
formulae (5.3) and (5.4) are valid, then S ∪ (pret′ , relyt′ , guar t′ , Rt′ ,Mt′) is
a valid thread specification for T ∪ {t′}.

Finally, through premiss (d), a closed proof includes validity of a precon-
dition pret′ . This allows the ‘guarantee’ proof obligation for thread t to be
relaxed to states reachable from pret′ (cf. (5.3)). In the following section, we
use this property to prove that the calculus is relatively sound.

5.4.3 Soundness

We first observe the rules for the purely sequential DTL, as presented in
Chap. 4, are also sound for the concurrent setting.

Lemma 5.19. The CDTL rules R1–R35, including the modified invariant
rules R28′, R29′, and R30′ from Tab. 4.11 on page 84, are sound w.r.t. CDTL.

Proof. According to Lemma 4.8, CDTL is a semantical conservative extension
[Shoenfield, 1967] of DTL. This means that the soundness result of Thm. 4.17
also applies to CDTL. The modified invariant differs from the original one only
in the additional instrumentation. Further instrumentation with release
statements does not affect soundness negatively: in case the program is
already sufficiently instrumented, then the σ∗

Σ-step denoted by an additional
release is just an identity step. ◁

Together with the rules R37 and R38, the aforementioned rules constitute
the calculus CCDTL. We have already observed that R37 cannot be considered
sound per se, but only relative to a valid thread specification. The overall
(relative) soundness of the calculus depends on the interplay of rules R38
(i.e., showing that the thread specification can be expanded) and R37 (i.e.,
requiring a valid thread specification to be sound). Thus, proving overall
soundness requires a structural analysis over the complete proof tree.

The following definition formalizes the intuitive notion of thread pools
‘in a sequent.’ Like rule schemata, the resulting set T (Seq) is to be seen
schematic, i.e., it corresponds to a rule or a symbolic rule application.
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Chapter 5. Deductive Verification of Concurrent Programs

Definition 5.20. Let Seq be a sequent. Let {ψi} be the set of subformulae
with a program modality as top level operator, with each ψi appearing in the
scope of a sequential update Ui. By T (Seq) ⊆ 2T

fin we denote the set of thread
pools Ti such that Ti represents the equivalence class {s ↦→ threadss·Ui},
where s · U denotes the state that coïncides with s except for the effect of
the update U . For a rule application (Seqj)

Seq , we define T
( (Seqj)

Seq

)
= T (Seq).

Lemma 5.21. Let Γ =⇒ ∆ be a sequent that is derivable in CCDTL through
applications A1, . . . , An of rule R37. If there is a valid thread specification
for every T ∈

⋃
i T (Ai), then Γ =⇒ ∆ is valid.

Proof. The lemma depends on all rules appearing in the proof tree for
Γ =⇒ ∆ being sound. All rules except R37 are sound without further
prerequisites. This follows from Lemmas 5.17 and 5.19. Since there is a
valid thread specification for the (symbolic) thread pool appearing in the
conclusion, following Thm. 5.15, every application Ai of rule R37 is sound in
its respective context, too. ◁

Note that we make no assumption about the location of the modalities
within the sequent; they may appear on both sides of the sequent and may be
nested. Following this intermediate result, we develop the following theorem,
that states that it is sufficient for the thread pools ‘in the root’ to have a
valid specification.

Theorem 5.22 (Relative soundness of CCDTL). Let Γ =⇒ ∆ be a derivable
sequent. If there is a valid thread specification for every T ∈ T (Γ =⇒ ∆),
then Γ =⇒ ∆ is valid.

Proof. We show by structural induction over the proof tree (starting in the
root Γ =⇒ ∆) that all thread pools appearing in a sequent have a valid
specification, and thus the result of Lemma 5.21 applies. For most rules,
the induction step is trivial since they do not touch the thread pool. (This
means that, if thread pool appears in one of the premisses, it is also present
in the conclusion.) Rule R38 is the only rule to introduce additional threads
to the pool in a premiss. Since the root is derivable, i.e., the proof tree is
closed, it follows from Lemma 5.18 that the new thread pool has a valid
specification. ◁
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5.4.4 Completeness

We believe that our calculus is almost complete, although we do not provide
a formal definition of this notion of completeness or a formal proof of this
property here. An argument in favor are the respective proofs by Stølen [1990]
and Prensa Nieto [2002] that the original calculus by Jones [1983] is relatively
complete8 w.r.t. the concurrent program semantics by Owicki and Gries
[1976]. As expected, their proofs are extensive and rich in technical detail.
The proof by Stølen [1990, Chap. 18] constructs strongest rely/guarantee
specifications and postconditions (w.r.t. a closed concurrent system) and
uses auxiliary history variables to describe local progress. An essential
intermediate result states that strongest specifications are always expressible.

However, there are some subtle differences in their and our approaches
that bars us from an immediate adaptation of their results. One particular
issue is the concrete definitions of schedulers; another one is the fact that
our approach is completely thread-modular, whereas the aforementioned
approaches regard programs that are closed under the parallel composition
operator (see Sect. 5.2). We have made the fundamental assumptions that
schedulers are fair (see Sect. 3.1.2). A particular result that follows from this
assumption is Lemma 3.22, that states that if all threads terminate, then
there is a unique final state. The rely/guarantee methodology is incomplete
w.r.t. this semantics; cf. [Stølen, 1990, Sect. 19.8]. Even with strongest rely
conditions, it cannot be proven that all threads have reached their final state.

Our addition of frame conditions to the approach is not an issue, since
frame conditions are theoretically redundant and may be replaced by func-
tional specifications.

Finding the appropriate notion of ‘relative’ completeness can be challeng-
ing itself as Stølen [1991] notes—his system is complete w.r.t. a very particular
notion of fairness. Developing an appropriate notion of completeness and a
formal proof thereof is left to future work. We admit that the discussion on
completeness is more a theoretical argument. It seems more promising to
focus future work on practical completeness, thus making the approach more
effective in practice. In particular, this would include providing appropriate,
sufficiently abstract specification means. A first step towards this goal is
presented in Sect. 8.3, where we integrate rely/guarantee-style specifications
into the JML specification framework. Other possible developments towards
more effectiveness include more specialized rules and proof strategies that
are dedicated to the goals described in this chapter.

8Completeness w.r.t. postconditions requires ghost variables that are updated atomi-
cally, as explained in Sect. 5.6 below.
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5.5 Examples

We will discuss two examples involving two threads each. In the first example,
both threads operate on disjoint heap locations. Framing specifications make
it easy to prove that the threads do not interfere. In the second example, both
threads read and write to a common location. The rely/guarantee conditions
as well as postconditions are of the kind that this inference is well behaved.
As can be seen from the examples, even for these small programs, proof sizes
tend to explode (even though the proofs are displayed in a simplified way).
The given examples can be seen as the limit that is manageable with pen
and paper. More elaborate proofs will require appropriate tool support (see
Chap. 7 and the concluding remarks in Sect. 11.3). A third (small) example
is provided in Sect. 5.6 below, that includes an extension to the present
approach, regarding synchronization and ghost variables.

5.5.1 Noninterfering Threads: Guarantee

In this example, we show a formal proof of the guarantee condition for a
thread being satisfied, using the calculus that has been introduced above.
We have two threads r and s with the uninstrumented programs πr =
t = X; X = t+1; and πs = t = Z; Z = t+1; that each increment a differ-
ent global variable (with intermediate storage in local variable t). For the
sake of brevity in the presentation, we use rules for update simplification,
that have not been introduced before. One replaces sequential updates by
parallel in the obvious way. The other one simplifies select on anonymized
heaps. We also simplify away logical constants true and false. See [Rümmer,
2006; Beckert et al., 2007b] for details on update simplification. We also
hide formulae from the sequent that are not relevant to the remainder of the
proof.

Let the following thread specification be given for thread r: relyr =
guarr = prer = true and Rr = Mr = {X}. Conversely, for thread s, we
specify relys = guars = pres = true and Rs = Ms = {Z}. Since the
respective heap partitions on which the threads work are perfectly separated,
it suffices to set the functional rely/guarantee specifications to a trivial value.
The separation is conveniently expressed in the frame specification.

We show the proof for (the instrumentation of) r satisfying its guarantee
condition in Fig. 5.2 on the next page. As usual in tableau-like calculi, it is to
be read bottom up. The trivial guarantee condition is simplified away in the
beginning. In step (1), the first release statement is symbolically executed
(R37). The effect is that all locations except X are anonymized. Then, the
value of X is read from the heap (R25). Note that the fresh update in step (2)
has select(heap, X) on the right hand side, not an anonymized heap. The
reason is that this update appears sequentially after the anonymizing update
that was produced by (1). Only in the following step, that simplifies updates,
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Chapter 5. Deductive Verification of Concurrent Programs

a single parallel update is produced, in which select has the anonymized heap
as parameter. Unwinding the ‘box’ operator leads to a branch (a), which
can be closed in two steps: estp is true, indicating an environment step, in
which case, the guarantee condition is not to be proven.

Staying on the main proof branch, in step (3), the update is simplified
again: the access to X on a heap that is anonymized on all locations but X,
can be replaced by an access to X on the original heap. In the following
step, the assignment to X is symbolically executed. This leaves only the
final release statement in the program modality. The leading sequential
update is simplied to a parallel update subsequently. The ‘box’ operator is
unwound once again to yield a branch (b). Branch (b) closes easily—similar
to branch (a)—with estp being true. However, this requires unwinding the
‘box’ operator for a third time, branch (c) closes with rule R22.

Back on the main branch, there is no temporal operator left in the
sequent. Rule R16 removes the program modality in (4); estp is simplified
away. The proof is finally closed through simplifications of the heap terms in
the formula frame. For any location F0 that is not X, its value is the same
on the anonymized heap and the heap obtained from it by updating X.

5.5.2 Interfering Threads: Postcondition

The above example showed how two threads behave that are perfectly
separated. Let us change the setup such that both threads work on a common
location. We consider two threads concurrently increasing a variable X by 1:
πr = πs = t = X; X = t+1; It is clear to the naked eye that, in this program,
there is a data race without proper synchronization. For this example, we
let the data race happen and provide arguably very weak specifications. We
declare thread specifications as follows:

relyr = relys = guarr = guars = select(heap, X) ≥ select(heap’, X)

Rr = Rs = ∅ and Mr = Ms = {X}

The proof obligations that the thread specifications are valid are trivial
again (or at least similar to the first example above). We now prove a
functional contract for πs: given that it is non-negative in the beginning,
the final value of X is strictly greater than zero; i.e., under precondition
select(heap, X) ≥ 0, the postcondition select(heap, X) > 0 holds.

Figure 5.3 on the facing page shows a proof tree with rule R37 applied.
For the sake of readability, we apply some simplifications: 1. We use the
‘box’ modality [·] from classical dynamic logic here, since it can be embedded
in CDTL. The rules presented for the J·K modality would applied accordingly,
apart from some additional branches (from unwinding the postcondition
embedding) that are closed instantaneously. 2. We indicate the release
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statement through underlining. 3. We use the symbol ∗ as a shorthand for
the constant location set expression ∅̇∁ (‘all locations’).

In this example, the anonymization upon symbolically executing an
(implicit) interleaving point affects the entire heap This first occurs in step (1).
Each subsequent select on an anonymized heap results in a Skolem term sk0,
etc.; cf. step (2). All knowledge required to prove the postcondition is
enclosed in the rely condition. In particular, the effect of the assignment
to X, performed in step (3), is immediately ‘lost.’ The symbolic execution of
the terminal release in step (4) again havocs the entire heap. Nevertheless,
selecting the value of X on the same heap results in the same value, represented
by sk2 in the proof, as seen in step (5). Finally, the proof can be closed
with the fact that—independent of their concrete values—the value of sk2 is
greater or equal than the value of sk0 plus 1; and thus the value of sk2 is
always greater than zero.

5.6 Synchronization

So far, we have considered programs that work either on separated parts
of the memory or involve (possibly malicious) data races. In both cases,
multi-threading has not brought a benefit. To actually use multi-threading
in a sensible way, threads need to work in concert. This can only be achieved
through synchronization and specifications using ghost variables. We have
not yet considered synchronization in this thesis because it would further
complicate the presentation. In particular, our programing language dWRF
would need to be extended (in a nonconservative way). A careful integration
of synchronization primitives into our approach will be part of future work.
In this outlook section, we sketch the fundamental ideas and demonstrate
them using an example consisting of a program and its specification.

Mutual exclusion locks form the simplest kind of synchronization pat-
tern. Locks can be acquired by one thread at a time and released again
later (both without external interference). This is represented by lock; and
unlock; statements. If the lock is already taken by another thread, the
current thread waits for it to become available again. Locks (as well as other
synchronization means) can not be modeled using the basic constructs defined
in Sect. 3.2. For this reason, we introduce lock; and unlock; as additional
statements with their intuitive semantics. Be aware that actions performed
while holding a lock are not atomic: other threads may still write to variables.
A working, race-free, implementation has to rely on all participating threads
adhering to the protocol, i.e., not touching shared variables when they are
not in their critical region.

The dark side of locking is the possibility of deadlocks. If two threads each
hold a lock and wait for the other lock to become available, then progress is
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impossible. While this may not be a considerable problem in practice, many
of our definitions in the present and the preceding chapters rely on progress
and would be subject to changes.

Ghost variables are important to specify concerted behavior of threads.
Ghost variables are similar to regular variables, but exist only in specifications.
Ghost variables are folklore in formal specification; see also Sect. 8.2.2 on
their role in JML. They are meant to form a conservative extension to the
original program [Filliâtre et al., 2014].

Stølen [1990, 1991]; Jones [2003] mention the particular importance of
ghost variables in rely/guarantee specifications to track progress. Without
them, the rely/guarantee approach is “hopelessly incomplete” [Stølen, 1990,
Sect. 6.3]. In order to make use of ghost variables, we assume them to be
thread-local, which allows them to be usable in specifications while being
accessible (i.e., read or written) atomically. Atomicity is essential to describe
progress without external interference.9 In order to establish guarantees that
mention both global and ghost variables, the write effect of ghost variables
must occur simultaneously with the write effect of the global variable which
it describes. This will become clearer through the example below.

Unfortunately, this atomicity assumption can not be proven within the
system since it is not sound in general.10 To cater for this different semantics
of ghost variables, would require to change language semantics and the heap
theory. We do not introduce this change formally, but believe that it is
intuitively clear how it should be done.

A lock can be represented by an implicit ghost variable of integer type,
where a positive value designates the thread holding the lock and any other
value means the lock is available. To that end, each thread is assigned a
numerical identifier greater than zero. This is an exception to the above
premiss, where we postulated that ghost variables are thread-local. It should
be obvious that atomicity of lock acquisition is necessary. This modeling
through ghost variables is not sound in general, as we assume the variable L
not to be written, even though it may be written as other threads acquire
the lock. This setup suffices in this example if all participants adhere to the
mutual exclusion scheme.

Example

We pick up the program example from Sect. 5.5.2. It considers two threads
each trying to increase the value of a shared variable simultaneously, thus

9In Stølen’s system, ghost variables are specified in rely conditions to not being changed,
alike global variables. This is not necessary in our setup.

10Note that we make this assumption only here in the context of the rely/guarantee
approach; traditionally, ghost variables do not have different semantics from regular
variables.
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competing in a data race. Now, we add synchronization to the picture. It
allows the threads to read the shared variable X without interference before
writing it. This way, an unbounded number of threads can work together.

We use one ghost variable Ci per thread to account whether thread i has
committed its update yet. There is only one lock, the lock holder is given
through the implicit ghost variable L. We regard the program for thread i
as follows:
πi : lock; release; t = X; Ci = true; X = t+1; unlock; release;

In contrast to the weak postcondition in Sect. 5.5.2, we now specify that
the value of X has increased by the number of threads that have completed
their operation. Here, ghost variables are essential to track which threads
have finished yet. Note that the postcondition is weak: it does not prescribe
that all threads have terminated. As discussed above in Sect. 5.4.4, this
property cannot be proven with the rely/guarantee approach. We use the
following specifications (where the sum comprehension operator can be
defined as usual). Ghost variables are not included in the sets Ri and Mi as
we assume them not to be changed as explained above.

prei = ¬select(heap, Ci) ∧ ¬select(heap, L) .= i
posti = select(heap, X) .= select(hpre, X)

+∑j ite(select(heap, Cj), 1, 0)
relyi = posti ∧ (select(heap, L) .= i → select(heap, X) .= select(heap’, X))

guar i = select(heap, L) ̸ .= i →
(select(heap, X) .= select(heap’, X) + 1 ∧ select(heap, Ci))

Ri = ∅̇
Mi = {X}

The proof of the postcondition for thread k is displayed in Fig. 5.4 on
the next page. We use the same simplifications to the presentation as in
Sect. 5.5 above (with release indicated through underlining). In step (1),
R37 is applied. It introduces an update including heap := anon(heap, ∗). As
we have explained above, in this section we do consider this not to havoc the
complete heap, but ghost variables are implicitly not affected. Yet, the rely
condition states that the value of X is still the same.

In step (2), the implication in the rely condition on the left-hand side is
split. In the left branch, we have to show that k indeed holds the lock. In
the right branch, we can use the equation for the rely condition, representing
preservation of the value of X, and apply it to the update on the right-hand
side. (The sequential update is simplified to a parallel update.)

The intermediate update to the heap, induced by the write to X, is
destroyed again by the final release. However, it is sufficient that the rely
condition implies the postcondition as shown in (3).
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6
Information Flow Analysis in

Concurrent Programs

While analysis of secure information flow has been an active topic of research
for some time, most approaches are deliberately incomplete for the sake of a
speedy analysis (or, at least, automation itself). Incomplete analyses only
overapproximate semantically defined information flow properties such as
noninterference. This lack of precision not only leads to many innocuous
programs being rejected, it also impedes analyses that consider subject
declassification. Approaches based on theorem proving are able to cater
for the necessary precision. They build on a faithful representation of the
semantical property in logic and (interactive or auto-active) verification of
the ensuing formulae. In previous work, these techniques have been brought
to maturity, being applied to sequential Java and implemented in the KeY
system. However, lifting the approach from sequential to concurrent programs
is not trivial.

In this chapter, we introduce the concepts of secure information flow.
Intuitively, security means that information may only flow to an information
sink that has a security level higher or equal than its source. There are
different concrete instantiations of security policies (cf. Chap. 2). We first
review the traditional notion of noninterference for sequential programs.
Since there are many variations to it, our definition is kept most general, in
order to accomodate all of these variations. The general intuition behind
noninterference is that low output must not depend on high input.

Similar to the functional verification approach in Chap. 5, we analyze
concurrent programs in a modular way. Following this, we regard sequential
programs, executed by a thread, in isolation. Concurrent write actions can
be dealt with using the rely/guarantee approach. Regarding information
flow, however, leakage may occur already during program execution. This
requires us to additionally take read actions into account.
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Chapter 6. Information Flow Analysis in Concurrent Programs

6.1 Introduction and Overview

Joshi and Leino [2000]; Amtoft and Banerjee [2004]; Barthe, D’Argenio, and
Rezk [2004]; Darvas, Hähnle, and Sands [2005] introduced theorem proving
approaches to language based information flow analysis. These are based
on a semantical notion of information flow and therefore bear the advantage
of semantical precision over established static techniques like type checking
(see Sect. 2.4). Through this kind of formalization, confidentiality is reduced
to a safety problem (cf. [Terauchi and Aiken, 2005]), that is checkable with
off-the-shelf theorem provers. Some program logics such as dynamic logic
are—unlike Hoare logic [Hoare, 1972]—readily able to express relational
properties like information flow.1 In particular, the KeY system is capable to
formally verify information flow properties about sequential Java programs
[Scheben and Schmitt, 2012a; Scheben, 2014]. The goal of this chapter is to
present a first step on how these techniques can be lifted to reasoning about
concurrent programs.

6.1.1 Information Flow in Concurrent Programs

Scheduling in concurrent programs may depend on unknown parts of
the system state. Many models of concurrent program executions regard
programs as indeterministic. For instance, Zdancewic and Myers [2003]
postulate that reasoning about confidentiality in “concurrent languages is
problematic because these languages are naturally nondeterministic; the
order of execution of concurrent threads is not specified by the language
semantics.” We deliberately do not follow this paradigm (cf. Chap. 3). There
is both a practical and a theoretical rationale behind this decision. Firstly,
nondeterminism is just a model for unknown behavior. In the physical world,
there is no such thing as nondeterminism (save for subatomic processes).
Secondly, many definitions are much easier to give in terms of deterministic
programs. E.g., the effect of a program should be the same if it is run twice
from the same initial state under the same scheduler. This allows us to talk
about exactly one computation trace, which greatly improves tractability
of reasoning. We agree with Zdancewic and Myers about the execution
order not being entirely determined by program semantics. But instead of
nondeterminism, we prefer to view this as a kind of parametricism. We
therefore model unknown behavior through underspecification.

As Cohen’s original definition of noninterference only applies to deter-
ministic sequential and terminating programs, several extensions have been
proposed. Low-security observational determinism (LSOD) [McLean, 1992]
is a well-known extension for concurrent programs, where schedulers are
considered nondeterministic. It requires that each public output is computed

1Relational properties are sometimes known as “hyper-properties” [Clarkson and
Schneider, 2010].
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6.1. Introduction and Overview

in an observably deterministic way, thus independent of scheduler indeter-
minism. However, LSOD both leaves the scheduler out of the picture and
thus rejects programs that would be secure under specific (deterministic)
schedulers, and at the same time, it does not report timing leaks that are
induced by the relative order of memory updates, i.e., internal timing leaks.

The scenario that we investigate is concerned with a sequential program
(i.e., thread) π in a deterministic language runs on shared memory with a
possibly hostile environment. The control and information flow of thread π
can be influenced by the environment. The attacker is able to observe low
locations at any time and to observe the order of changes. This is different
from the purely sequential setting—where the attacker can only observe
initial and final values—and from distributed systems, where information
does not flow through the memory, but only through declared channels.
Attackers are not able to mount external timing attacks (i.e., attacks w.r.t.
wall clock time or abstractions thereof). Thread-local information and control
flows are expected to be instantaneous and are not observable.

We allow confidential information to be declassified. Since theorem prov-
ing approaches are founded semantically, precise subject declassification (i.e.,
what information is released) already comes for free. In this chapter, we
additionally consider timing of declassification. Just like subject declassifi-
cation can be expressed as a relational property between states, temporal
declassification can be expressed as a relation between traces. In our logic, we
formalize this through temporal operators. Controlling the temporal dimen-
sion of declassification is essential in state based software systems. Consider,
for instance, an electronic voting system, that has different declassification
policies before and after the election has been closed: only afterwards the
result (i.e., the sum of votes) may be published.

6.1.2 Motivating Examples

To later evaluate our formal definitions against them, we present some
small examples that can be classified intuitively into ‘secure’ or ‘insecure’
w.r.t. different capability classes of attackers. Consider the (uninstrumented)
one-liner dWRF programs in Listing 6.1 on the following page. L is a low
global variable of type Z, H etc. are high global variables of type B, b is a
local variable of type B, and x, y are local variables of type Z. Let us so
far assume that the above mentioned global variables are not written by
concurrently running threads (if they were, we could not even consider the
empty sequential program as secure, in general).

Programs 1 to 3 on the next page are both secure in purely sequential
execution, as well as in a concurrent environment,2 since, in any state, the

2Here, the assumption of no external interference is essential. An execution in which
some environment thread writes the secret back after erase would not be considered secure.
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1 { x = H; L = x * 0; }
2 { H = 0; x = H; L = x; }
3 { b = H==0; if (b) { x = L; y = H; L = x+y; } else {} }
4 { x = H; L = x; L = 23; }
5 { b = H0>0; if (b) { x = L; H1 = x; H2 = x; } else {} }
6 { while (b) { x = H; H = x-1; b = H>0; } }
7 { while (b) { x = L; L = x-1; b = H>0; } }
8 { b = H>0; if (b) {/* bubble sort */}
9 else {/* quick sort */} L = 1; }

Listing 6.1: Intuitively secure or insecure programs

value of L does not depend on the initial value of H. However, proving
that these programs are secure can only be achieved with precise program
semantics: In each case, there is a syntactical assignment for H to L present.
They are rejected by most security type systems or PDG-based approaches
(cf. Sect. 2.4). For 2, we have to consider that H has been erased and no
secret value is leaked. In both 1 and 3, precise security analysis requires to
consider the exact values and the semantics of addition and multiplication.

Program 4 is considered secure in the sequential setting, as the inter-
mediate flow to L is erased in the final assignment. This is not true in a
concurrent setting where an attacker may read low locations intermediately:
There may be an interleaving between the two assignments in which the
confidential information (temporally) stored in L is leaked to other threads.

Programs 5–8 contain control structures with high conditions. They
possibly have different run time on low equivalent runs and thus expose
timing channels. They are thus insecure if an attacker can compare traces
component-wise. Programs 5 and 6 are secure if stuttering on the ‘high’
partition is tolerated. Their respective traces only differ in high component
values; there is no assignment to L. In Program 7, the value of L obviously
depends on high values; even with stuttering, it is insecure. Finally, if we
would lift the restriction that L must not be modified concurrently, i.e.,
instrumenting the program with release statements, then neither program
could be proven secure. The reason is that other threads could write secret
information at any time, in particular at the end of these programs.

In the scope of this thesis, we only consider timing channels in so far
that the number and order of global write events is an observable figure,
i.e., internal timing channels. Program 8 exposes another kind of timing
channel, an external timing channel. While there is only one global write
event, the program branches on a high value and performs local computations
of different complexity classes. A stronger attacker, that can observe run
time in terms of computational complexity (or even in wall clock time) would
be able to deduce the secret here. Table 6.2 on the facing page summarizes
the different kinds of leaks in the examples of this section.
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Table 6.2: Summary of information leaks in the examples in this section

program 1 2 3 4 5 6 7 8

direct leak (sequential) % % % % % % % %

direct leak (concurrent) % % % ! % % % %

timing leak w/o stuttering % % % % ! ! ! %

timing leak w/ stuttering % % % % % % ! %

timing leak (complexity) % % % % % % % !

6.1.3 Approach

In this chapter, we will use CDTL as introduced in Chap. 4 to express
information flow properties, in particular noninterference with declassification,
for single threads of concurrent programs as explained above. We follow a
precise logic-based semantic approach to information flow analysis along the
lines of Scheben and Schmitt [2012a]. This allows to faithfully formalize the
semantical security properties to be introduced in this chapter. We benefit
from the power of our logic to express relational properties about programs
readily. A formalization of noninterference for sequential Java programs in
dynamic logic has already been presented by Scheben and Schmitt [2012a,
2014]; Scheben [2014]. We review the basic concept of noninterference in
Sect. 6.2. It includes a formalization in Sect. 6.2.5. This presentation is
simplified in contrast to the one by Scheben and Schmitt since we only cover
the dWRF language.

As explained in Sect. 2.2, it suffices to prove this property for every pair
of direct sub and super levels in the hierarchy. Without loss of generality, we
will restrict the considerations made in this chapter to a two-element lattice
with elements named ‘high’ and ‘low.’ This can be extended to any security
lattice in a natural way.

Formalizing noninterference in a program logic essentially reduces the
relational property to a safety property. Theorem provers can be employed to
discharge the ensuing proof obligations, as Scheben and Schmitt pursue with
KeY. Given a sound and complete calculus, this enables sound and complete
analysis of direct and indirect flows as well as full semantical declassification.
For purely sequential program, such a calculus has been presented in Sect. 4.4.
For concurrent programs, we can use the rely/guarantee approach to restrict
environment changes,3 as explained in Chap. 5. The rely/guarantee approach
allows to abstract away from concrete interleavings (w.r.t. a specific scheduler).

3In many situations, there may be even stronger guarantee conditions like perfect
separation that could be checked with other methodologies, like type checking or runtime
checking, that are less precise but more efficient.
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This is proven to be sound. We are also convinced that the approach is
complete relative to the interleaving semantics defined in Chap. 3.

In Sect. 6.3, we discuss how the basic notion of noninterference for
sequential programs from Sect. 6.2 is transferable to multi-threaded programs.
We develop a scheduler-independent notion of security in Sect. 6.3.1, which
can be reduced to single threads in order to obtain a thread-modular security
property (Sect. 6.3.2). The final Corollary 6.15 states that it is sufficient to
prove noninterference for each sequential program (that is to be executed by
some thread) in isolation.

In Sect. 6.4, we discuss even stronger security properties for concurrent
programs. There are several possibilities to extend noninterference to a trace-
based notion; we introduce a natural notion, based on pairwise equivalence,
in Sect. 6.4.1, that can be formalized in an extension to CDTL as described
in Sect. 6.4.2. We discuss how this notion of trace-based noninterference can
be relaxed through equivalence up to stuttering (Sect. 6.4.3) or temporal
declassification (Sect. 6.4.4). We compare our notion to others from the
literature in Sect. 6.4.5.

Object-orientation and concurrency constitute largely independent di-
mensions of features of the Java language. For this reason, the considerations
so far did not involve objects. Yet, objects play a central role in the Java
language. In Sect. 6.5, we refine our notion of noninterference in a way such
that it is appropriate to reason about information flows in Java programs. In
contrast to the numerical pointers of C/C++, object references in Java are
opaque. They only reveal identity of objects when directly compared, but not
more information, like internal memory addresses. The presentation follows
the structure of the work by Beckert, Bruns, Klebanov, Scheben, Schmitt,
and Ulbrich [2014], leading to a notion of object-sensitive noninterference in
Sect. 6.5.5. Section 6.5.6 explains how this property again can be formalized
in dynamic logic.

We conclude this chapter with a discussion in Sect. 6.6 on how the re-
sults of this dissertation can be combined to obtain a usable and precise
information flow analysis for concurrent Java. As mentioned above, there is
an implementation of noninterference proof obligations for sequential Java
programs in the KeY verification system. Furthermore, below in Chap. 7, we
describe how verification of concurrent programs—based on rely/guarantee—
can be added to KeY. Since KeY has been designed for the verification of
(sequential) Java programs, there is relatively little overhead in lifting the
techniques presented in this thesis from the dWRF language to Java. In
principle, an extension to the calculus presented in this thesis should be real-
izable without much effort. We expect, however, that several optimizations
will be necessary in order to efficiently prove information flow properties
about nontrivial programs.
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6.2 Noninterference

The most well known security policies for sequential programs is noninterfe-
rence [Cohen, 1977; Goguen and Meseguer, 1982] (also known as absence of
strong dependency). Intuitively, it means that “the value of public outputs
does not depend on the value of secret inputs” [Barthe et al., 2004].4 This
means that a program that satisfies noninterference is secure against an
attacker with unbounded deductive powers that may set low inputs and
observe low outputs (and compare inputs with outputs; cf. Sect. 2.1). This
includes information flows through both direct or indirect channels. The
extension to termination sensitivity also includes termination channels. For
a graphical rendition of the noninterference property, see Fig. 2.7 on page 24.

In language-based information flow security, sources and sinks are program
constructs. Since our language introduced in Sect. 3.2 does not have method
calls, the only program entities to which this applies are memory locations.
A location may be both a source and a sink depending on the context, i.e.,
it is a source when it is read from and a sink when it is written.5 For other
programing languages, there may be other kinds of sources and sinks. For
instance, Scheben and Schmitt [2012a] consider method parameters as sources
in Java programs, as well as the method return value and the exception
raised during execution as additional sinks.

6.2.1 Indistinguishability

To formalize noninterference, we first introduce the notion of agreement
relations on states, or equivalently, indistinguishability to an adversary.

Definition 6.1. An agreement is a relation R ⊆ DL × S2 on a location
set and two states, common written RL ⊆ S2 in infix style for a fixed
L ∈ DL, that 1. is reflexive and symmetric (in S2), 2. (weakly) antimonotonic
in DL (i.e., L1 ⊂ L2 implies RL1 ⊇ RL2), and 3. has the property that
heaps = heaps

′ implies (s, s′) ∈ R.

The final condition states that only the global memory, represented by the
variable heap, has an influence of the relation. Typically, agreement relations
are also equivalence relations. Since we only require weak monotonicity, in
general, the requirement of item 2 is fulfilled by any constant. We denote

4Other prose definitions include: “One group of users [. . . ] is noninterfering with
another group of users if what the first group does [. . . ] has no effect on what the second
group of users can see.” [Goguen and Meseguer, 1982]
“Observations of the initial and final values of k do not provide any information about the
initial value of h.” [Joshi and Leino, 2000]
“If two input states share the same low values, then the behaviors of the program executed
on these states are indistinguishable by the attacker.” [Sabelfeld and Myers, 2003a]

5Since this distinction does not matter in the following, we do not use the terms ‘source’
or ‘sink,’ but only speak of equivalences in the memory.
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the universal agreement relation by ⋇. In Chap. 5, we already encountered
the L-equivalence relation ≈L, where L is a set of global variables. It relates
states that agree on the L partition of the heap. While in Chap. 5, we use
this relation to express that there is no change in a single run, in this chapter,
we use it to express that the respective changes of two runs are equivalent.

Lemma 6.2. The relation ≈L from Def. 5.1 on page 93 is an agreement.

Lemma 5.2 states that ≈L is an equivalence relation; and according to
Lemma 5.3, it is L-antimonotonic. In particular, ≈∅ is the universal relation
and ≈DL is the empty relation. We will call ≈L the low-equivalence relation
when L denotes the set of low locations in a given security context. This
relation can be considered very strict in some contexts. Other possibilities
include the object-sensitive equivalence relation ≈ρ, which is introduced
below in Sect. 6.5.

We say that two states s, s′ are R-insdistinguishable, or just indistinguish-
able for short, if (s, s′) ∈ R for an agreement R ⊆ S2. It is important that
the notion of ‘observable’ means that an attacker does not only know the
anonymous values of variables, but knows their evaluation, i.e., the function
from syntactic identifiers to values.

6.2.2 Basic Noninterference

We are now able to give a first definition of noninterference—for nonin-
terleaved dWRF programs. It compares two possible runs of a program,
starting from indistinguishable initial states (i.e., input), for indistinguishable
terminal states (i.e., output). We give two variants of noninterference that
especially consider nontermination.

We use the symbol π
⇝ for the big-step state transition relation, i.e.,

relating initial and terminal states, denoted by a noninterleaved sequential
program π (cf. Sect. 3.4):

π
⇝ := {(s, s′) ∈ S2 | ∃n ∈ N. (n = |trc(s, π)| ∧ s′ = trc(s, π)[n])} (6.1)

Note that this relation is actually a partial function, due to deterministic
program semantics. It is empty in case of nontermination.6

Our definition of noninterference below is parametric in the sense that it
can be instantiated with arbitrary agreement relations ≃I (for input) and
⋍O (for output). This notion is very flexible and can be used to express many
information flow security policies based on input/output, that otherwise
would be considered extensions, e.g., declassification.

6We prefer a definition of a partial function over a total function, since the latter would
force us to include a notion of a synthetic ‘non-state,’ that would have to be considered in
all definitions.
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Definition 6.3 (Noninterference). Let two agreement relations ≃I and ⋍O,
and two ≃I -indistinguishable states s1, s

′
1 ∈ S (i.e., s1 ≃I s

′
1) be given.

A program π is termination-insensitive ≃I/⋍O-noninterferent (TINI) if,
started in s1 or s′

1 and there are respective terminal states s2 and s′
2, then

these final states are ⋍O-indistinguishable (i.e., s2 ⋍O s′
2):

∀s1, s
′
1, s2, s

′
2. (s1 ≃I s

′
1 ∧ s1

π
⇝ s2 ∧ s′

1
π
⇝ s′

2 → s2 ⋍O s
′
2)

A program π is termination-sensitive ≃I/⋍O-noninterferent (TSNI) if, start-
ing π in s1 or s′

1, then it either does not terminate in both cases or it
terminates in s2 or s′

2, respectively, and s2, s′
2 are ⋍O-indistinguishable:

∀s1, s
′
1, s2, s

′
2. ( (s1 ≃I s

′
1 ∧ s1

π
⇝ s2 ∧ s′

1
π
⇝ s′

2 → s2 ⋍O s
′
2)

∧ (s1 ≃I s
′
1 → (∃s3. s1

π
⇝ s3 ↔ ∃s′

3. s
′
1
π
⇝ s′

3) ))

Please note that the above definition of noninterference is not a formula
in our logic, but a meta-level property. We will present a formalization in
Sect. 6.2.5 below.

Meta-properties of Noninterference

Both definitions capture the intuition that terminal states must agree on ⋍O.
The difference lies in the issue of termination, which is captured in the
respective second line. In the formalization of TSNI, we additionally use
the equivalent statement7 that a run must terminate if and only if the other
one does. TINI, on the other hand, allows either one (or both) to diverge.
Thus TSNI is a strictly stronger policy than TINI (i.e., the set of programs
satisfying it is a subset of programs satisfying TINI); see also the lemma
below. Cohen’s original definition of noninterference can be obtained from
TINI through changing universal quantification over the terminal states by
existential quantification.

Both versions are strictly monotonic in both input and output agreement:
weakening the input agreement ≃I or strengthening the output agreement ⋍O
yields a stronger noninterference property. If the input agreement ≃I is the
same as the output agreement ⋍O, we write ≃-noninterference for short.
This is the most common notion of noninterference, cf. [Sabelfeld and Myers,
2003a].
Remark. Another common pattern appears when a third security type is
used, which means that variables of this type are neither considered high
sources, nor low sinks. This ‘don’t care’ type can be modeled through an
output agreement that is weaker than the input agreement, i.e., initial states
must aditionally agree on ‘don’t care’ variables.

7This equivalence only holds for deterministic program semantics, i.e., where the
relation π

⇝ is actually a (partial) function.
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The following (folklore) lemma states that the question of termination
(i.e., whether the termination channel is secure) can be decoupled from the
remaining policy specification.

Lemma 6.4. A program is ≃I/⋍O-TSNI if and only if it is ≃I/⋍O-TINI
and ≃I/⋇-TSNI (where ⋇ denotes the universal agreement relation).

Noninterference is sequentially compositional. Our definition allows to
declare the legal and illegal flows precisely. This allows composition without
losing any precision. Scheben [2014] exploits this to define ‘information flow
contracts’ for components such as loops or methods in Java.

Theorem 6.5 (Compositionality of noninterference). Let π1 be a ≃1/≃2-
TINI program. Let π2 be a ≃2/≃3-TINI program. Then the sequential
composition π1π2 is ≃1/≃3-TINI. The analogous holds for TSNI.

Proof. Ad TINI: Let s1, s
′
1 ∈ S with s1 ≃1 s′

1. If π1 diverges from one
of them, then π1π2 diverges and the claim is trivially fulfilled. Otherwise,
the two runs of π1 terminate in states s2, s

′
2, respectively, with s2 ≃2 s

′
2,

as assumed. Again, if π2 diverges from either s2 or s′
2, then the claim is

trivially true. Otherwise, from the assumption, both runs of π2 terminate in
states s3, s

′
3, respectively, with s3 ≃3 s

′
3.

Ad TSNI: The case that the composed program π1π2 does terminate
has been covered above. Assume π1 diverges from s1. According to the
assumption, it diverges from s′

1 as well. Hence, π1π2 diverges from both s1
and s′

1. Now, assume π1 terminates, for the compositum to diverge from s1,
this means that π2 diverges from a state s2, which is determined by the
initial state s1. Again, by the assumption, π2 also diverges from s′

2. ◁

Noninterference vs. Stricter Policies

Noninterference is a semantical information flow policy. It is defined in
terms of values of locations, not syntactical entities as assignments or control
flow statements. The definition is independent of a particular analysis or
enforcement technique. It means absence of both direct and implicit flows,
but allows intermediate write actions to low locations that are erased at a
later point.

Noninterferent programs may be considered insecure under stronger crite-
ria. For instance the simple program low = high * 0; is obviously ≈{low}-
TSNI, but will be reported as insecure by most type systems8 as they just
check for the syntactical occurrence of the direct assignment, but not for the
actual value. Another example is if (high) low = p(); else low = p();

8It should be noted that type systems target semantical information flow policies such
as noninterference, but cannot decide whether a program is noninteferent due to their
inherent incompleteness; cf. Sect. 2.4. For instance, Sabelfeld and Myers use the weaker
terminology of “noninterference-style” type systems.
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where we branch on a high variable, but the programs executed on both
branches are the same. In principle, it does not even have to be the same
computation, but only within the given agreement relation. Consider, for
instance, a program that sorts an array of integers, but choses between quick
sort and bubble sort depending on a high variable (cf. Listing 6.1).

6.2.3 Semantical Declassification

Declassification means the deliberate release of otherwise confidential infor-
mation. We consider semantical declassification, i.e., we precisely describe
the released information qualitative. Declassification can be expressed in
our noninterference framework through a variation of the input agreement
relation. Declassification policies describe security against attackers that
cannot observe memory locations directly, but rather have some public view
on the system. This formulation is more natural, as explained by Scheben
and Schmitt [2012a].

Given a baseline input agreement relation ≃I and a local-variable-free
expression x to be declassified, the relation ≃∆x

I := {(s, s′) ∈ S2 | s ≃I

s′ ∧ xs = xs
′} reduces the space of ≃I -equivalent input states to those that

agree on the value of x. Strengthening the input agreement intuitively
corresponds to increasing the knowledge of the attacker. This principle
can be lifted to any finite set of expressions. We write ≃∆X

I for a set of
expressions X.

Lemma 6.6. Let ≃I be an agreement and X a set of expressions. The
declassification relation ≃∆X

I is again an agreement; it is an equivalence
relation if ≃I is an equivalence relation.

The dual to declassification is called erasure (or ‘killing’). Through
erasing an otherwise revealed secret, the overall security is increased. It can
be expressed through strengthening the output agreement relation in the
same fashion.

Sabelfeld and Sands [2009] formulate some desirable meta-properties for
declassification policies: 1. semantic consistency, 2. conservativity, 3. mono-
tonicity of release, and 4. nonocclusion. A policy is semantically consistent
if security is invariant under semantics-preserving program transformations.
A policy is conservative if the empty set of declassification expressions cor-
responds to the original noninterference policy. A policy is monotonic if
the set of secure programs is weakly monotonic w.r.t. the set of declassi-
fication expressions, i.e., declassification may only be a weakening to the
baseline policy. A policy is nonocclusive if declassification does not mask
other information leaks. Since our definition of declassification is semantical,
both consistency and non-occlusion are given trivially. From the concrete
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definition, it is also obvious to see that declassification is conservative (i.e.,
≃∆∅
I = ≃I) and monotonic (i.e., ≃∆X0

I ⊆ ≃∆X1
I for X0 ⊇ X1).9

6.2.4 Conditional Noninterference

Another possible relaxation of noninterference is to include a functional
precondition, that has to be established on both runs. This relaxed property
is called conditional noninterference [Scheben and Schmitt, 2012a]. It helps
to restrict the set of possible execution states. Typical cases are system
invariants that are proven to hold by other means or by construction. This
particularily includes system properties that are already established by the
programing language design and need to be modeled in logic (i.e., free
preconditions), e.g., the property that the heap is well-typed.10

Given a baseline input agreement relation ≃I and a state formula pre,
the relation ≃Γpre

I := {(s, s′) ∈ S2 | s ≃I s
′ ∧ s ⊨ pre ∧ s′ ⊨ pre} reduces the

space of ≃I -equivalent input states to those that agree on pre to hold. As
above, this can be combined into a relaxed definition of noninterference.
Lemma 6.7. Let ≃I be an agreement and pre a state formula. The rela-
tion ≃Γpre

I is again an agreement; it is an equivalence relation if ≃I is an
equivalence relation.

6.2.5 Formalizing Noninterference

In this section, we explain how noninterferece (both TINI and TSNI) can
be formalized in CDTL and its standard DL subset. Formalizations of
noninterference in state-based dynamic logic have been first presented by
Darvas et al. [2005]; Scheben and Schmitt [2012a] extend this formalization
with dynamic classification. These formalizations use a ‘box’ modality on the
left hand side of the implication, which means that nonterminating programs
are always insecure. This is in line with Cohen’s original definition, that
considers program transition as a total function. Beckert, Bruns, Küsters,
Scheben, Schmitt, and Truderung [2012b] present a revised version with a
‘diamond’ modality, which corresponds to TINI. For a formalization of TSNI,
we add a simple formula that checks termination.

Related techniques to a direct formalization would be self-composition—
that is based on program transformations—or the use of product programs,
which would require a completely new calculus. The direct formalization
technique is sometimes referred to as “self-composition of formulae” [Scheben,
2014]; nevertheless, we use the term ‘self-composition’ exclusively to refer to
the program transformation technique by Barthe et al. [2004]. See Sect. 2.4
for a discussion of these techniques.

9Note the reversed set inclusion here. A larger declassification set means a stricter
input agreement, which again is equivalent to a more relaxed noninterference policy.

10See [Grahl and Ulbrich, 2016] on free preconditions in JavaDL proof obligations.
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Formalizing agreements

We first investigate whether and how agreements can be formalized.

Definition 6.8. An agreement relation ∼ is formalizable if there is a CDTL
state formula φ containing two free logical variables h and h′ such that for
all states s, s′ ∈ S and all variable assignments β with β(h) = heaps and
β(h′) = heaps

′ , it is s ∼ s′ if and only if s∗, β ⊨ φ is valid for any s∗ ∈ S.

The condition placed on the variable assignment β can be achieved by
using a formula φ that explicitly updates the heap variable to one of the
logical variables. This extends the above definition to any variable assignment
and state s∗.

The limits of formalizability essentially are the usual limits of FOL
expressivity.11 Informalizable agreements could be defined on the meta level,
but we consider them pathological. The simple low-equivalence relation ≈L
of Def. 5.1 is formalizable according to Lemma 5.6(2).

Lemma 6.9. If ∼ is a formalizable agreement and X is a finite set of expres-
sions, then the declassification/erasure agreement ∼∆X is also formalizable.

Proof. Let φ be a formula formalizing ∼ with free variables h and h′. Let ψ
be the formula φ∧

⋀
x∈X ({heap := h}x .= {heap := h′}x). Since any x is free

of local variables, it is xs{heap↦→heaps′ } = xs
′ . Hence, ψ formalizes ∼∆X . ◁

Formalizing noninterference

The program transition relation π
⇝ (see (6.1) on page 124), that relates initial

with terminal states, can be formalized in CDTL using the ‘postcondition’
pattern in a program modality: As mentioned in Sect. 4.1.3 on page 58,
the temporal formula ♢•false, containing a ‘weak next’ operator, expresses
finiteness of a trace. Considering a sequential program π, it follows that the
formula JπK♢(•false ∧ φ), including a nontemporal formula φ, is valid in a
state s1 if and only if there is a state s2 with s2 ⊨ φ and s1

π
⇝ s2. Since

this is a nontemporal formula, we use the standard DL modality ⟨·⟩ as a
shorthand: we write ⟨π⟩φ instead of JπK♢(•false ∧ φ).

Lemma 6.10. Let π be a noninterleaved sequential program, φ a formula,
and s1 ∈ S. We have s1 ⊨ JπK♢(•false ∧φ) if and only if there exists a s2 ∈ S
with s1

π
⇝ s2 and s2 ⊨ φ.

Proof. Let s1 ⊨ JπK♢(•false ∧ φ); as already mentioned, this is equivalent
to trcΣ(s, π) being finite with the φ being valid in the final state. This is
exactly the definition of π

⇝ in (6.1). ◁

11The expressivity of CDTL is the same as FOL with arithmetic, cf. [Beckert and Bruns,
2012b, Lemma 21].
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As explained in Sect. 3.3, the program heap is a first-class citizen in our
logic. Therefore, the formula h .= heap with a free logical variable h can be
used to ‘remember’ a heap state. This allows us to refer to the post-execution
heap outside the scope of a program modality.

We are now able to formalize ∼I/∽O-TINI (assuming formalizable ∼I

and ∽O) in (6.2) below. We use the shorthand expressions h ∼̇I h
′ and

h ∽̇O h′ with heap expressions h and h′ to denote formalizations of the
semantical relations ∼I and ∽O. The formula is a simplified version of the
formalization by Beckert et al. [2012b] and uses universal quantification over
instances of the heap data type H. Note that in this formalization, it is
not necessary to formalize possible divergence. It is already captured in the
semantics of the ⟨·⟩ modality, that prescribes existence of a final state.

∀h1, h
′
1, h2, h

′
2:H.

(
h1 ∼̇I h

′
1

∧ {heap := h1} ⟨π⟩h2
.= heap ∧ {heap := h′

1} ⟨π⟩h′
2
.= heap → h2 ∽̇O h

′
2
)

(6.2)
The formalization of TSNI below in (6.3) results from applying Lemma 6.4.

It includes an additional termination argument. It means that it does not
depend on high input whether π terminates. Again, termination itself can
be expressed with the ⟨·⟩ modality alone, without the need for existential
quantification. Overall, the formula includes 4 program modalities.

∀h1, h
′
1, h2, h

′
2:H.

(
(h1 ∼̇I h

′
1

∧ {heap := h1} ⟨π⟩h2
.= heap ∧ {heap := h′

1} ⟨π⟩h′
2
.= heap → h2 ∽̇O h

′
2)

∧(h1 ∼̇I h
′
1 → {heap := h1} ⟨π⟩ true ↔ {heap := h1} ⟨π⟩ true)

)
(6.3)

Theorem 6.11. Let ∼I and ∽O be formalizable agreements. A sequen-
tial program π is ∼I/∽O-TINI if and only if Formula (6.2) is valid; it is
∼I/∽O-TSNI if and only if Formula (6.3) is valid.

Proof. The present formulae are direct adaptations of the definitions of TINI
and TSNI on the abstract level. The first part of the theorem follows directly
from Def. 6.3 in combination with Lemma 6.10 and the formalizability of
∼I and ∽O. For the second part of the theorem, the goal is to prove that
the additional conjuction in (6.3) is a formalization of ∼I/⋇-TSNI. This is
actually a special case of Lemma 6.10 where φ = true. Finally, Lemma 6.4
provides that the overall formula corresponds to TSNI. ◁

In combination with the soundness (Corollary 4.18) and completeness
(Thm. 4.19) results on the DTL calculus in Chap. 4, this theorem ensures
that proving the above formalizations is a sound and precise information
flow analysis:
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Corollary 6.12. Let ∼I and ∽O be formalizable agreements. A sequential
program π is ∼I/∽O-TINI if and only if Formula (6.2) is provable in CCDTL;
it is ∼I/∽O-TSNI if and only if Formula (6.3) is provable.

6.3 Noninterference for Concurrent Programs

Cohen’s original definition of noninterference only covers deterministic, se-
quential, and terminating programs. Depending on the exact formalization,
the definition extends differently to indeterministic, parallel, or nonterminat-
ing programs. In this thesis, the program semantics is defined as deterministic
(see Sect. 3.4). The case of indeterminism will not be considered; see the
aside remark on the next page. The issue of termination has been covered
above.

This leaves the question of how noninterference extends to concur-
rent programs. Recall the uninstrumented program 2 from Listing 6.1,
{ H = 0; x = H; L = x;}, that first erases high data, and then assigns
high to low. We have already discussed that it is secure in a purely sequential
setting. As Sabelfeld and Myers [2003a] point out, it may be insecure in a
multi-threaded setting if another thread assigns a secret to H in between the
two assignments. Whether this program is secure depends on the functional
behavior of the environment. And indeed, using our approach, we can prove
that it is noninterferent if and only if it has a valid thread specification that
provides that the environment does not change H to a value that depends on
(other) high information.

Outline of This Section

In Sect. 6.3.1, we first investigate how the definition of noninterference from
above can be applied to concurrent programs. In Sect. 6.3.2, we show how
this property can be reduced to threads again. As a result, noninterference for
concurrent programs can be analyzed using the technique introduced above
in Sect. 6.2. In Sect. 6.3.3, we evaluate our definition against some program
examples and discuss the relation to other extensions of noninterference to
concurrent programs.

6.3.1 Adapting the Noninterference Definition

For a closer inspection of what noninterference means for concurrent programs,
let us first recognize that the π

⇝ relation on sequential programs extends
naturally to a concurrent system (T ,Σ). We define a similar transition
relation T,Σ

⇝, that denotes the transition to a state that is terminal for all
threads.

T,Σ
⇝ :=

{
(s, s′) ∈ S2

⏐⏐⏐ ∃n ∈ N. (σnΣ(s) = s′ ∧ s′ ∈ Ωthreadss′ )
}

(6.4)
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Again, the relation is empty if there is at least one thread that does not
terminate. Otherwise—since we are using deterministic program semantics
and the transition from terminal states is the identity function—the relation
T,Σ
⇝ is a function. In the special case that threadss only contains one element,
this is equivalent to π

⇝. We redefine noninterference as of Def. 6.3 using the
T,Σ
⇝ relation instead of π

⇝.
Remark. As many models for concurrent programs use indeterministic pro-
gram semantics, it is worthwhile to investigate how our definition extends to
indeterministic transition relations. So far, we have relied on the fact that
the π
⇝ relation is a partial function. Extending to indeterministic programs,

i.e., a more general relation, would only allow programs to be ≃I/⋍O-
noninterferent w.r.t. a trivial output agreement relation ⋍O. Our definition
demands that all possible terminal states are within the same ⋍O-equivalence
class. See also [Sabelfeld and Myers, 2003a, Sect. IV B] for an overview over
extensions of noninterference to different classes of indeterministic programs.
See also our discussion on determinism in Sect. 3.6.

Definition 6.13 (Noninterference for concurrent programs). ♡
Let two agreement relations ≃I and ⋍O, and two ≃I -indistinguishable states
s1, s

′
1 ∈ S (i.e., s1 ≃I s

′
1) be given. A concurrent system (T ,Σ) is termination-

insensitive ≃I/⋍O-noninterferent (TINI) if, started in s1 or s′
1 and termi-

nating in s2 and s′
2, respectively, then s2 and s′

2 are ⋍O-indistinguishable:

∀s1, s
′
1, s2, s

′
2. (s1 ≃I s

′
1 ∧ s1

T,Σ
⇝ s2 ∧ s′

1
T,Σ
⇝ s′

2 → s2 ⋍O s
′
2)

A concurrent program Π is ≃I/⋍O-TINI if, for any fair scheduler Σ,
the system (T ,Σ) is ≃I/⋍O-TINI, where T is some set of threads for the
program Π. We define termination-sensitive ≃I/⋍O-noninterferent (TSNI)
systems and programs analogously.

Following our fundamental assumptions in Sect. 3.1.2, only fair schedulers
are considered in this thesis.

In the attacker model that is implicitly behind the definition of concur-
rent noninterference, we assume that an attacker has knowledge about the
scheduler and is able to exploit this. However, attackers are still passive and
cannot control the scheduling (apart from providing low input). The attacker
is not able to provide a scheduler on their own; such an attacker would
be able to deduce just anything. This means that we always compare two
program runs under the same scheduler. In our language-based approach, we
assess the security of programs independently of the runtime environment.
This particularily includes the scheduler. Thus, for a concurrent program
to be secure it requires that it is secure when executed under any (fair)
scheduler.
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6.3.2 Reducing Noninterference to Threads

The above definition of noninterference for concurrent programs is not directly
applicable to our approach, where we consider sequential programs w.r.t.
some environment, not complete concurrent systems. In particular, our
goal is to obtain a result that implies noninterference for any environment,
i.e., independently of thread pool or scheduler. This result is provided by
Thm. 6.14 below.

For a thread t and a state s, we use the shorthand s ▷ t that stands for
t ∈ threadss. We use the following notation to express the strengthening of
an agreement ≃ ∈ S2 that requires that in both states a thread t is in the
thread pool.

≃▷t := {(s, s′) ∈ ≃ | s ▷ t ∧ s′ ▷ t} (6.5)

Obviously, the resulting relation ≃▷t is again an agreement (it is a special
case of Lemma 6.7). Following Def. 3.12 on schedulers, s ▷ t is an implicit
invariant of the trace of πt for all states s in which t has been created. It
holds in every state that is reachable through program steps. This means
that the agreement in (6.5) must not be seen as a restriction in practice, but
rather as a sanity assumption.

Theorem 6.14. Let Π be a concurrent program; fix a concurrent system
(T ,Σ). If there is some t ∈ T for which the sequential program πt is ≃▷t

I /⋍O-
TINI, then (T ,Σ) is ≃▷t

I /⋍O-TINI. We have ≃▷t
I /⋍O-TSNI if additionally

one of the following holds: 1. for every t′ ∈ T , πt′ terminates for any initial
state s ▷ t′ or 2. there is a t′ ∈ T such that πt′ never terminates.

Proof. Let us consider two states s ≃I s
′. Let t ∈ threadss∩ threadss

′ be a
thread with program πt that is ≃▷t

I /⋍O-TINI. We have to distinguish three
cases:

(i) If there is one thread that never terminates, then so does the concurrent
program and it is vacuously TSNI.

(ii) If all threads always terminate, then Lemma 3.22 states that all threads
have the same final state, i.e., T,Σ

⇝ ⊆
πt′
⇝ for any thread t′. This means

that in this case the original definition of noninterference for sequential
programs (Def. 6.3) is equivalent to the concurrent extension. Since πt
terminates, it is TSNI by Lemma 6.4. It follows that the concurrent
program is TSNI.

(iii) In any other case—by the same argument as in case (ii)—the concurrent
program is TINI (but not TSNI). ◁

This result greatly reduces the effort to prove noninterference for multi-
threaded programs. In restricting the input relation to states that agree on a
thread t being in the thread pool (i.e., using the agreement in (6.5)), it suffices
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to prove TINI for t alone. Moreover, the proof obligations are independent
of the scheduler Σ. In combination with the rely/guarantee approach of
Chap. 5, it also offers to prove noninterference in a thread-modular way.
A sufficiently strong rely condition allows us to prove noninterference for any
environment.

However, the result is still restricted to states agreeing on the thread pool.
In a completely modular setting, we do not know of the value of threads.
To get rid of the restriction, we have to prove noninterference for all threads
that may be in the thread pool, i.e., all threads that correspond to the
concurrent program Π. Recall that T consists of copies of the sequential
programs in Π that are equal up to renaming of local variables. This means
that we only need to prove noninterference for each π ∈ Π, everything else is
given through symmetry. For TSNI, additional termination arguments are
required. This leads us to the following corollary.
Corollary 6.15. Let Π be a concurrent program. Let all π ∈ Π be ≃I/⋍O-
TINI. Then Π is ≃I/⋍O-TINI. It is ≃I/⋍O-TSNI if additionally one the
following holds: 1. all π ∈ Π terminate or 2. there is a π′ ∈ Π that never
terminates.

With this result in hand, we can conclude that proving the formalization
of (6.2) suffices to show noninterference in concurrent programs. While the
condition for TINI seems to be obvious, the additional condition for TSNI is
sufficient, but probably not necessary. Further investigation will be left to
future work.

Compositionality

Note that Corollary 6.15 is not a result on parallel compositionality of non-
interference. We are often interested in such properties as: if the sequential
programs π and π′ are noninterferent w.r.t. thread-local agreements, then the
concurrent program consisting of threads executing π and π′ is noninterferent
again (w.r.t. some combined agreement). This is not the case with Def. 6.13.
Consider the following uninstrumeted programs:

π : { H = 0; x = H; L = x; }
π′ : { y = H; H = y; }

Both sequential programs π and π′ are noninterferent (w.r.t. an empty
environment): π erases high data before writing to a low sink (cf. Listing 6.1),
while in π′ high data is written to a high sink. However, a combined system
with both programs being executed concurrently is insecure. There exists
a schedule in which the erasure on H in π is overwritten by the assignment
in π′ and thus the final assignment of π leaks the initial value of H to L. Such
compositionality results are hard to obtain and are outside the scope of this
thesis. In particular, we do not have a notion of ‘local’ agreements, but every
thread must conform to the system-wide policy.
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6.3.3 Discussion

We have presented a natural extension of the definition of noninterference to
concurrent programs. Our notion of security includes indistinguishability of
final execution states under the same deterministic scheduler. A program
is secure if the output is indinstinguishable for any scheduler. Our security
property is strong enough to reject programs with probabilistic leaks—even
though probabilities are not modeled. In this regard, our property can be
compared to low-security observational determinism (LSOD) [McLean, 1992].
However, it is not comparable to LSOD in other regards, since we consider
terminal system states, as opposed to traces of variable values in LSOD.12

Program Examples

We review some well-known program examples from the literature and
compare the security assessment by the respective authors to our own. All
examples have been adapted to (approximately) match the syntax and
semantics of dWRF.

Example 6.16. Zdancewic and Myers [2003, p. 3] motivate their definition of
LSOD with the following program example.

fork { L = 0; release; }
fork { L = 1; release; }
fork { release; x = H; L = x; release; }

Zdancewic and Myers reject this program because there exists an interleaving
such that the value of H is directly leaked to L. For the same reason, our
property classifies this program as insecure, too. Earlier, weaker information
flow properties, such as GNI [McCullough, 1988], would classify it secure,
because there exists an interleaving such that the value of H is not leaked.

Example 6.17. The following concurrent program appeared in the work by
Terauchi [2008]. We assume that there is no external interference to L (i.e.,
from outside the two threads that run the program below).

fork { L = 0; release; } L = 1; release;

According to our definition, it is not secure, even though no high variable is
syntactically involved. The reason is that we have to consider all possible
interleavings between the two threads (i.e., the one considered and the one
forked by it). A scheduler may encode secrets in the schedule, thus leading
to different results. Depending on the particular scheduler and the unknown
part of the heap (including secrets) on which the scheduler depends, the final
value of L is either 0 or 1.

12In Sect. 6.4 below, we introduce a trace-based notion of noninterference ourselves. We
compare the role of program traces with LSOD once more in Sect. 6.4.5.
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In general, we cannot exclude the possibility that a schedule depends
on secrets, thus we have to consider this program as insecure. The same
argument applies to the example by Snelting [2015, Fig. 4 middle], which we
consider insecure as well. Some researchers, such as Snelting, argue that this
is a kind of benign indeterminism and therefore should be considered secure.
However, it remains unclear how to enforce a schedule that does not depend
on secrets. On the other hand, from a practical viewpoint, the difference is
small. It does only appear with programs that contain data races, which
could be avoided altogether.
Example 6.18. The example by Snelting [2015, Fig. 3 right], that is displayed
below, is secure according to our definition. This is because, for any possible
interleaving, the terminal state is always the same. The relative order of
updates to the two variables may be different, though.

fork { X = 0; release; } fork { Y = 1; release; }

Example 6.19. Considering termination channels, the following example by
Huisman et al. [2006, p. 4] is rejected by their security property. However, it
is TSNI according to our definition, since—under any scheduler—termination
does not depend on high values (i.e., it never terminates).

fork { L = 7; }
while (true) { skip; }

6.4 Trace-based Notions of Noninterference

If programs are themselves concurrent, “the idea that a program terminates
with a single result is less appropriate for a concurrent language, where
programs may produce observable effects while continuing to run.” [Zdancewic
and Myers, 2003] Moreover, noninterference for sequential programs centers
around terminating programs—the original definition by Cohen [1977] did
only consider those—while concurrent programs are often designed to run
forever. This would render the notion of noninterference w.r.t. input/output
effectively vacuous. These issues motivate us to revise our attacker model.
Above, we assumed an attacker that can set the public part of the initial
memory, read the public part of the final memory, compare them, and
produce arbitrary deductions from the result.

In the following, we assume that a more powerful attacker, can read the
public memory at any time—and again, that they can deduce any corollary
from that knowledge. To be more precise, by the colloquial ‘at any time,’
we understand all intermediate program states that are reached throughout
execution. This means than an attacker can observe and compare complete
program traces. This observation includes the entire low-observable part of
each state, but also state changes in which the low-observable part does not
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change; i.e., an attacker can observe that changes to the ‘high’ part occur,
yet they cannot observe the change itself. This kind of attacker is able to
listen to internal timing channels. For instance, they can distinguish traces
in which write actions are permuted. Obviously, this attacker is strictly
more capable that the one we assumed above in Sect. 6.2. In Sect. 6.4.3,
we further refine this attacker model by restricting observations strictly to
the ‘low’ part, i.e., that refined attacker cannot distinguish traces that are
equivalent up to stuttering on the ‘low’ part.

6.4.1 Strong Noninterference

The above noninterference properties from Sect. 6.2 can be lifted to a property
on program traces. The use of trace-based semantics for security properties
was already suggested by McCullough in 1987. Similar to the sequential set-
ting, we first define indistinguishability of traces. We provide two definitions,
one based on strong equivalence requiring that two traces run simultaneously,
the other based on weak equivalence allowing stuttering on the low security
projection of the state (Sect. 6.4.3). By abuse of notation, we use the same
symbols for agreement of states and the resulting notion of equivalence of
traces. The notion of strong noninterference of traces will again be parametric
in the input relation and output relation.

Definition 6.20. Let ∽ be an agreement relation. Program traces τ and τ ′

are strongly ∽-equivalent, again denoted τ ∽ τ ′, if they are of same length
and ∽-equivalent on every position:

τ ∽ τ ′ :⇔ |τ | = |τ ′| ∧ ∀i ∈ [0, |τ |). τ [i] ∽ τ ′[i]

We do not strictly require the agreement ∽ to be an equivalence relation,
even though we expect this to be the typical case. Therefore, we will
call the relation on traces ‘equivalence’ irregardless whether it is actually
an equivalence relation. Note that strong equivalence already includes
termination sensitivity.

Definition 6.21 (Strong Noninterference). Let ∼I and ∽O be agreement
relations. 1. A sequential program π is strongly ∼I/∽O-noninterferent if for
any fair scheduler Σ,

∀s, s′ ∈ S. s ∼I s
′ ⇒ trcΣ(s, π) ∽O trcΣ(s′, π) .

2. A concurrent system (T ,Σ) is strongly ∼I/∽O-noninterferent if

∀s, s′ ∈ S. s ∼I s
′ ⇒ trcΣ(s) ∽O trcΣ(s′) .

Here, the function trcΣ is the system trace from Def 3.20. 3. A concurrent
program Π is strongly ∼I/∽O-noninterferent if all concurrent systems (T ,Σ)
for Π are strongly ∼I/∽O-noninterferent.
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This definition is similar to the well known notion of low-security obser-
vational determinism (LSOD) [McLean, 1992] for completely indeterministic
systems, in the sense that programs are only considered secure if they produce
indistinguishable outputs for any run. We have already discussed this rela-
tionship in the context of input/output noninterference above in Sect. 6.3.3.
For a comparison with different variants of LSOD regarding the role of the
trace in the definitions, see Sect. 6.4.5 below.

By analogy to simple noninterference for concurrent programs, strong
noninterference can be reduced to single threads (and thus sequential pro-
grams) as in Sect. 6.3.2. The proof for the following lemma follows by analogy
from Thm. 6.14 and Corollary 6.15.

Lemma 6.22. Let Π be a concurrent program. Let all π ∈ Π be strongly
≃I/⋍O-noninterferent. Then Π is strongly ≃I/⋍O-noninterferent.

6.4.2 A Formalization of Strong Noninterference

Strong noninterference can be formalized directly using a conservative ex-
tension to CDTL. This extension consists of a ‘n-th next’ state operator,
where n is an expression of type Z. It allows us to count states in a trace,
which is not expressible using LTL-like operators. This is necessary since, in
strong noninterference, we compare two traces induced by different program
runs. Since CDTL already extends FOL, this extension is harmless. In
particular, reasoning about the ‘n-th next’ operator can be delegated to the
induction rule R33. This approach is less invasive than the other possibilities
to compare runs, that use either program instrumentation following the
selfcomposition approach [Barthe et al., 2004] or dedicated product program
logics [Barthe et al., 2011; Scheben and Schmitt, 2012b]. A preliminary ver-
sion of this formalization appeared in [Bruns, 2014b], which did not use finite
sequences as the ‘storage’ data type, but maps (i.e., a data type representing
partial functions, cf. [Wallisch, 2014]). We believe that reasoning about finite
sequences is more tractable and that the sequence theory calculus by Beckert
et al. [2013b, Appendix A] is sufficiently complete.

Thanks to the expressiveness of CDTL, simple noninterference (input/
output determinism) can be formalized directly as demonstrated in Sect. 6.2.5.
In our formalization using explicit heaps, this means that heaps must equal
on the partition induced by a set L of low locations. There, it is sufficient to
compare the respective heaps in the poststates of each run (if they exist).

For strong noninterference, a crucial point is that we need to pairwise
compare an unbounded (possibly infinite) number of heaps. A first step
towards this goal is the fact that it is sufficient to regard finite prefixes,
provided by the well-known principle of natural induction. Note that this
prefixing has no effect on finite traces.
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Lemma 6.23. Let τ , τ ′ be traces of infinite length. τ and τ ′ are strongly
equivalent if and only if all finite subtraces of are pairwise equivalent:

τ ∽ τ ′ ⇔ ∀k ∈ N>0. τ [0, k) ∽ τ ′[0, k)

For a pairwise comparison of finite prefixes, we need to ‘record’ the heap
state of the trace through a temporal formula. Although this number of
heaps is finite, it is still unbounded. We use the data type of finite sequence
(see Sect. 8.2.2; [Beckert et al., 2013b, Appendix A]) to store these heaps.

Extending CDTL With a Counting Operator

We add a unary temporal ‘n-th next’ operator •n to CDTL to count the
number of states in a finite prefix of a trace. Intuitively, •n corresponds to
n consecutive ‘weak next’ operators. However, it is not syntactical sugar
since the value of n is not static. For simplicity, we require that n is a rigid
term, i.e., it does not contain any program variables. Formally, we define its
semantics through an extension of the validity relation ⊨ (Def. 4.7):

τ, β,Σ ⊨ •n φ iff τ [nτ [0],β,∞), β,Σ ⊨ φ or |τ | ≤ nτ [0],β (6.6)

It is easy to see that this definition generalizes the definition of validity for
the ‘weak next’ operator •, which can be seen as syntactic sugar for •1. Since
n is a rigid term, we may omit the state of evaluation and instead write
nβ for its value. The addition of this operator increases the expressivity
of the temporal logic part of CDTL. We did not include it in the logic
directly because the set of temporal operators that are inspired by LTL is
standard and intuitive. The operator does not increase the expressivity of
the overall logic since that already extends FOL with arithmetic and all
temporal operators could be modeled using the natural numbers.

To reason about the extended logic, we provide a rule for temporal
unwinding the •n operator, as shown below. Since the rule focusses only
on the trace formula and does not depend on the program π, it does not
affect any of the results of Chap. 5. Since they should be obvious, we do not
provide formal proofs of soundness and completeness.

Γ, n > 0 =⇒ UJπK••n−1φ,∆ Γ, n ≤ 0 =⇒ UJπKφ,∆
Γ =⇒ UJπK•nφ,∆

R39

The following temporal formula η containing a free logical variable heaps
of type S captures the property that heaps contains all the heaps of a trace
on which it is valid.

η(heaps) := ∀n:Z. (0 ≤ n < |heaps| → •nheaps[n] .= heap) (6.7)
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Lemma 6.24. Let τ be a trace. Let η(heaps) be the formula (6.7). Further let
ℓ ∈ N be the minimum of |heaps|τ [0] and |τ |.13 Then it holds that τ ⊨ η(heaps)
is valid if and only if heapsτ [0][0, ℓ) = ⟨heapτ [0], heapτ [1], . . . , heapτ [ℓ−1]⟩.

Proof. We show one implication direction. Assume that τ ⊨ η is valid. That
is forall z ∈

[
0, |heaps|τ [0]

)
, τ ⊨ •nheaps[n] .= heap where nτ [0] = z. The

semantics of the •n operator gives us that τ [z,∞) ⊨ heaps[n] .= heap or
|τ | ≤ z. The subtrace τ [z,∞) can be replaced by the state τ [z] due to the
lack of temporal operators in the formula. This disjunction is then equivalent
to the combined τ [z] ⊨ heaps[n] .= heap for all z in the restricted range [0, ℓ)
with ℓ = min

(
|τ |, |heaps|τ [0]

)
. This means heapsτ [z][z] = heapτ [z] and, since

heaps is rigid, heapsτ [0][z] = heapτ [z] for all z ∈ [0, ℓ), which is what we
wanted to prove. The opposite implication direction follows in the same
spirit. ◁

Formalizing Strong Noninterference

We are now ready to formalize strong noninterference. Let π be a sequential
program and ∼I and ∽O formalizable agreement relations. Let η be the
formula from (6.7). We use the shorthand expressions h ∼̇I h

′ and h ∽̇O h′

with heap expressions h and h′ to denote formalizations of the semantical
input and output agreement relations ∼I and ∽O similar to how we did
in (6.2) on page 130. If the formula below (6.8) is valid, then π is strongly
∼I/∽O-noninterferent.

∀h, h∗:H. ∀heaps, heaps∗:S. (
|heaps| .= |heaps∗| ∧ h ∼̇I h

∗

∧ {heap := h }JπK η(heaps)
∧ {heap := h∗}JπK η(heaps∗)

→ ∀i : Z.(0 ≤ i < |heaps| → heaps[i] ∽̇O heaps∗[i]))

(6.8)

The formalization follows the same basic pattern as for simple nonin-
terference in (6.2). Given initial heaps that agree through ∼̇I , we ‘record’
the resulting heap traces in variables heaps and heaps∗ as explained above
in Lemma 6.24. These are then compared pairwise to each other through
the output agreement ∽̇O (on the right hand side of the implication). The
sequence data type S represents only finite sequences; the natural induction
principle is enshrined in the universal quantification over all sequences that
record the trace (up to their common length). This ensures that we consider
every finite prefix as stated in Lemma 6.23. In the corner case that each run

13The length of the trace may be infinite, but the length of a sequence is always a finite
number.
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has a different runtime, the formula is not valid because of this universal
quantification. A formal proof of this formalization being sound and complete
is left to future work.

6.4.3 Stutter Tolerant Noninterference

The above definition of strong noninterference gives a security condition
against an attacker that can observe any intermediate state. This is a rather
strong condition in that purely high computations can be insecure. Stuttering
is important since it is more realistic that the attacker can only observe (low)
changes to locations instead of states of the trace. Traces that are equivalent
up to stuttering may include subsequent states that are low-equivalent. We
generalize the above relation ∽ to a equivalence up to stuttering relation ∽ζ ,
that permits low-inobservable stuttering. This property provides security
against an attacker that cannot distinguish succeeding ∽-equivalent states.
We define ∽ζ recursively for a pair of finite traces and through the least
fixpoint if traces are possibly of infinite length.

Definition 6.25. Let ∽ ⊆ S2 be an agreement. Two traces τ and τ ′ are
∽-equivalent up to stuttering, written as τ ∽ζ τ ′ if

• |τ |, |τ ′| < ∞ and τ [0] ∽ τ ′[0] and
– τ [1,∞) ∽ζ τ ′[1,∞) (if |τ |, |τ ′| > 1),
– τ [1,∞) ∽ζ τ ′ (if |τ | > 1), or
– τ ∽ζ τ ′[1,∞) (if |τ ′| > 1);

• or for all k ∈ N>0: τ [0, k) ∽ζ τ ′[0, k).

It is easy to see that ∽ζ is again an equivalence relation if ∽ is an
equivalence relation. Note that this relation is not termination-sensitive:
for an infinite trace τ and a finite trace τ ′, τ ∽ζ τ ′ means that τ has a tail
consisting of only the final state of τ ′. We define a variant ∽ζ⊥ that includes
termination as the relation {(τ, τ ′) ∈ ∽ζ | |τ | = ∞ ⇔ |τ ′| = ∞}.
Example 6.26. An alternative, graph-theoretical, view is that a transition
relation and an agreement form strongly connected components. In general,
this is a many to many relation between both traces. If we now contract
each trace such that the strongly connected components merge into a single
node, then these contracted traces are strongly equivalent if and only if the
original traces are equivalent up to stuttering. Figure 6.3 on the next page
depicts an example of two traces τ and τ ′ that are not strictly low-equivalent
(as in Def. 6.20), but low equivalent up to stuttering.

Definition 6.27. Strong ∼I/∽ζO-noninterference is called termination-insen-
sitive semi-strong ∼I/∽O-noninterference (TIS2NI). Strong ∼I/∽ζ⊥

O -nonin-
terference is called termination-sensitive semi-strong ∼I/∽O-noninterference
(TS3NI).
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τ :

τ ′:

s0 s1 s2 s3 s4 s5

s′
0 s′

1 s′
2 s′

3 s′
4 s′

5

Figure 6.3: Graph-theoretical representation of low-equivalent traces up to
stuttering. States connected with dashed green or dotted red edges are in a
common equivalence class w.r.t. ≈L. There is a stuttering step from s′

2 to s′
3,

while s′
3 is not equivalent to s3. The dashed green edges constitute strongly

connected components of the intersection of the ≈L relation with the successor
relation in traces (solid black edges).

Lemma 6.28. Let ∽ ⊆ S2 be an agreement. Let τ, τ ′ be finite traces with
respective lengths ℓ and ℓ′. If τ ∽ζ τ ′, then τ [ℓ− 1] ∽ τ ′[ℓ′ − 1].

Proof. This follows by induction over ℓ and ℓ′ from Def. 6.25. ◁

Our different notions of noninterference can be organized in a hierarchy
(cf. Fig. 6.6 on page 147):

Theorem 6.29 (Hierarchy of security policies). The following strict inclu-
sions hold:

1. Programs that have the strong noninterference property also have the
TS3NI property, but not vice versa.

2. Programs that have the TS3NI property also have the TSNI property,
but not vice versa.

3. Programs that have the TIS2NI property also have the TINI property,
but not vice versa.

4. Programs that have the TIS2NI property also have the TIS2NI property,
but not vice versa.

5. Programs that have the TSNI property also have the TINI property,
but not vice versa.

Proof. The security policies mentioned here do not differ in the way that
input agreements are involved in them. The differences lie only in termination
and output agreements/trace properties. Ad 1: Let an agreement ∽O be
given. If τ ∽O τ ′ holds, it obviously fulfills the first condition in Def. 6.25
Thus we have ∽O ⊆ ∽ζO. For the opposite direction, proving that the
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property is exclusive, program 6 from Listing 6.1 on page 120 has the semi-
strong ≈{L}-noninterference property, but not strong noninterference since
the number of states depends on H.
Ad 2: The cases in which one or both traces are infinite are trivial. Assume
both traces are finite with lengths ℓ, ℓ′. Then, the first direction of the
claim follows through Lemma 6.28. The other direction is obvious since the
trace-based notion includes the comparison of more states.
Ad 3: This follows by the same argument as in item 2.
Ad 4: For any agreement ∽O, it is ∽ζ⊥

O ⊊ ∽ζO by definition.
Ad 5: This follows from Lemma 6.4. ◁

Formalizing and constructing proof obligations for stutter-invariant non-
interference will be part of future work.

6.4.4 Temporal Declassification

In some situations, it is desirable to release information at a certain point
in time in spite of the general confidentiality policy. This is known as the
temporal dimension of declassification. Consider, for instance, an election.
The individual votes are to be kept secret, but the result, i.e., the sums
of votes for each candidate, is published. The result is the subject of the
declassification here. But if the result is published every time that a voter
casts their vote, then an attacker can deduce all individual votes. The
solution is that the result only should be published after the election process
is finished.

Noninterference with temporal declassification can be expressed by relax-
ing the output relation on traces. One possibility is to restrict a relation ∽
to subtraces. For instance the following relation ∽φ contains pairs of traces
that are ∽-equivalent until the (temporal) formula φ holds on either one.
Let ∽φ be the commutative closure of the following relation.{

(τ, τ ′) ∈ (S∗)2
⏐⏐⏐⏐⏐ τ [i,∞) ⊨ φ and τ [0, i) ∽ τ ′[0, i) for some i ∈ [0, |τ |)

or (τ ⊨ □¬φ and τ ∽ τ ′)

}
(6.9)

This ‘weak until’ construction is a common pattern (cf. [Chong and
Myers, 2004]). In [Bruns, 2014b], the author presented a relational version
of DTL that has an explicit operator representing the above relation on the
formula level. Other relations can be defined along the same lines. Note that
not all meta-level properties on linear traces are expressible using LTL-style
temporal operators.
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6.4.5 Comparison to Other Trace-based Notions

Sabelfeld and Myers [2003a] introduce a notion of timing-sensitive nonin-
terference: in addition to the final states of two terminating runs being
low-equivalent, the number of execution states must be the same (or both
runs do not terminate). This can be formalized in our framework as follows:

∀s, s′ ∈ S. s ≈ s′

→ ∃t ∈ N ∪ ∞.
(
t = |trcΣ(s, π)| ∧ t = |trcΣ(s′, π)|

∧(t < ∞ → trcΣ(s, π)[t] ≈ trcΣ(s′, π)[t])
) (6.10)

Note that our formalization requires deterministic program semantics and
that the length of a trace is the number of write events in one single thread.

It is easy to see that this property implies TSNI as defined above. In
addition to the final value of each trace, it additionally considers the length
of the trace. On the other hand, there are programs that are termination-
sensitive, but not timing-sensitive noninterferent; see the example below.
Obviously, termination-sensitive semi-strong noninterference implies timing-
sensitive noninterference.

Example 6.30. An example of a program that is TSNI, but not Sabelfeld and
Myers timing-sensitive is program 3 from Listing 6.1 on page 120:

b = H==0; if (b) { x = L; y = H; L = x+y; } else {}

The first branch is taken whenever H holds the value zero. But in this case
the assignment to L is vacuous. For any high input, there is only one possible
final state. However, the traces leading to the final state may have different
lengthes: length 3 for the former case, and 1 for the latter case.

Low-security Observational Determinism

Our definition of strong noninterference in Def. 6.21 is related to the well
known notion of LSOD [McLean, 1992; Roscoe, 1995; Roscoe, Woodcock,
and Wulf, 1996; Zdancewic and Myers, 2003; Huisman, Worah, and Sunesen,
2006; Terauchi, 2008]. These references differ in the exact definition; we
mainly consider the version by Zdancewic and Myers, that is probably the
most widely used one. In both our notion and LSOD, programs are only
considered secure if they produce indistinguishable outputs for any run.

There are still some major differences—besides our programs being de-
terministic and the general flexibility of our notion of agreements. The main
difference is that Zdancewic and Myers [2003] only require that traces are
equivalent up to prefixing and stuttering. Huisman et al. [2006] also consider
stuttering, but drop the prefixing relaxation. They point out that it would
permit programs that are insecure under standard TINI to be classified
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Table 6.4: Comparison of different notions of LSOD trace equivalence

[Zdancewic and Myers, 2003] ∀ℓ ∈ L. ∃k ∈ N>0. τ⇃ℓ[0, k) =ζ τ ′⇃ℓ
∨ τ⇃ℓ =ζ τ ′⇃ℓ[0, k)

[Huisman et al., 2006] ∀ℓ ∈ L. τ⇃ℓ =ζ τ ′⇃ℓ
[Terauchi, 2008] ∃k ∈ N>0. τ [0, k) ≈ζ

L τ
′ ∨ τ ≈ζ

L τ
′[0, k)

as secure.14 However, we allow arbitrary finite numbers of non-observable
operations (i.e., local assignments and control statements) to be taken in
between observable global assignments, while the languages of Zdancewic and
Myers and Huisman et al. only have global variables. Above in Sect. 6.4.3,
we presented a relaxation of our security notion to allow stuttering. A precise
logic formalization is left to future work.

Neither Zdancewic and Myers nor Huisman et al. consider traces of the
complete memory, but for projections to each low variable on its own. This
still allows internal timing attacks where the order of assignments to low
variables is reversed under a high condition. Zdancewic and Myers point
out that this only occurs with programs that have data races, which they
exclude from the input set of their analysis.
Example 6.31. Consider the following program. It branches on a high value
and assigns the same values to the low variables in different order in each
branch. The program is secure according to Zdancewic and Myers and
Huisman et al. An attacker who is able to observe intermediate states will
deduce the value of H from the observation of which low variable is updated
first.

b = H; if (b) { L1= 3; L2= 7; } else { L2= 7; L1= 3; }

To formally represent LSOD considering single values, we introduce a
notion of projection from a trace τ to a value trace τ⇃ℓ ∈ U∗, that contains
the values of a global variable ℓ for each state on the trace. By abuse of
notation, we use the same operations on value traces as on traces without
given a formal definition.

Another possible weakening of our definition of strong noninterference
would be to allow one trace to be equivalent to a prefix of the other one,
as in the definitions by Zdancewic and Myers [2003]; Huisman et al. [2006].
Terauchi [2008] also defines LSOD for prefixes, but considers the complete
‘low’ partion of the heap for equivalence, instead of just value traces. We do
not consider prefixing per se, as we assume the attacker to always observe
changes to the global state. In particular, noninterference relaxed to prefixes
is ignorant to termination leaks. While Zdancewic and Myers argue that ter-
mination leaks would ‘only’ reveal 1 bit of information, the following example
shows that arbitrary information is leaked. Nevertheless, prefixing can be

14Nevertheless, the type system by Zdancewic and Myers rejects these programs.
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modeled through the temporal declassification relation ∽φ (see Sect. 6.4.4)
with the formula false inserted for φ in (6.9).

Example 6.32. Consider the program example in Listing 6.5, that is originally
by Giffhorn and Snelting [2015]. The program does not terminate for any
input, but writes all values that are less than the secret value of H to the
low location L. An attacker who is able to observe nontermination, can
deduce the secret entirely from this. Yet, this program is secure according
to Zdancewic and Myers and Terauchi since the trace prefixes are always
equivalent (i.e., the secret value only appears in the longer trace).

i = 0;
while (true) {

while (H == i) { skip; }
L = i;
i = i+1;

}

Listing 6.5: Termination leak that reveals the entire secret

Table 6.4 on the preceding page compares the trace equivalence relation
in different notions of LSOD for a ‘low’ location set L, using our notation.
It is easy to see that our definition of ≈L-equivalence implies all of these
notions. Figure 6.6 on the next page displays the hierarchy of all information
flow properties that have been introduced so far.

6.5 Object-sensitive Noninterference

In this section, we show how our notion of noninterference can be refined
such that it is adequate to reason about information flows in Java programs.
Object-oriented programing languages, like Java, do not expose internal
information of object structures, such as memory addresses—in contrast
to pointers and data structures in C/C++. This reduces the range of
possible attacks in a language based scenario. Therefore, the definition
of low-equivalence needs to be widened to allow that, between different
equivalent runs, semantical objects may appear that may not be identical in
the mathematical meaning. Instead, they have to be considered equivalent
w.r.t. observable behavior as permitted by the language.15 Objects can still
be compared for identity for each run locally; but a comparison between
different runs is meaningless. One particular implication from that is that
object creation does not depend on secrets.

15This equivalence is what Java’s equals() method is supposed to implement; however,
we cannot rely on equals() being implemented this way.
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strong noninterference

TS3NI

TIS2NI [Huisman et al., 2006]

[Terauchi, 2008]

[Zdancewic and Myers, 2003]

TSNI

[Cohen, 1977]

TINI

[Sabelfeld and Myers, 2003a]

Figure 6.6: Hierarchy of information flow properties

This section is based on a complete revision of the paper by Beckert,
Bruns, Klebanov, Scheben, Schmitt, and Ulbrich [2014]. The idea of this
revision is to concentrate on the particularities of object-oriented programs
here in this thesis, and to simplify everything else. This includes using a
more traditional style of noninterference specification using ‘high’ and ‘low’
variables (plus declassification, etc.) as above, instead of the more involved
concept of observation expressions [Scheben and Schmitt, 2012a]. In order
to not having to introduce the complete JavaDL of Beckert et al. [2007a],
our discourse here will mainly take place on the semantical level, but not in
the logic itself.

6.5.1 Overview

In imperative languages, sources and sinks are of primitive type. In an object
oriented context, it is natural to consider sources and sinks of object type,
too. In this case, the usual definition of secure information flow—if a system
is started in two low-equivalent states s1, s2 with all publicly observable
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values equal, then it terminates in states s′
1, s′

2 where all observable values
are mathematically equal—is too strong to be sensible. The reason is that
in object-oriented languages with opaque pointers, such as Java, object
references do not hold much information themselves. The language only
allows to compare object references pairwise and to ask for their runtime
type.16

Banerjee and Naumann [2002] were the first to introduce a formal notion
of object-sensitive secure information flow, that has a modified notion of
low-equivalence of states: if a system is started in two states s1, s2 such
that the observable values are related by a partial isomorphism ρ1, then
it terminates in states s′

1, s′
2 where all observable values are related by a

partial isomorphism ρ2 extending ρ1. As proven by Beckert et al. [2014], the
partial isomorphism in the prestate ρ1 can be chosen as the identity function,
without loss of generality.

For a more precise formalization of object-sensitive noninterference, it is
reasonable to encode the partial isomorphisms explicitly in logic. However,
this holds the disadvantage that a naïve encoding either increases the burden
on the analysis or the burden on the user, the latter by requiring additional
annotations (cf. [Naumann, 2006]). We show that additionally restricting
the partial isomorphism in the poststate to newly created objects leads to a
property that is sufficient for object-sensitive secure information flow and
can be proven efficiently.

6.5.2 Information Flow in Java Programs by Example

In Listings 6.7 to 6.11 on pages 149–150 we reproduce typical examples of
(secure or insecure) information flow in Java programs. This is to motivate
our attacker model and the ensuing notion of object-sensitive noninterference
(OSNI). Some examples are intuitively secure, but the standard notion
of low-equivalence will lead to a classification as insecure. Table 6.12 on
page 151 at the end of this section contains a summary of the examples.

The static fields x, y, and z of a (final) reference type C are low, as is
the instance field a, and the static boolean field h is the only high source.
Note that we consider semantical locations (i.e., pairs of semantical objects17

and field identifiers) as sources/sinks, not just the syntactical field identifier.
When we speak of an instance field being a source, more precisely we mean
the set of locations belonging to any possible receiver object.

In method newC() in Listing 6.7, a fresh object is allocated and assigned
to a low location. Even though there is no confidential source involved at all,
this program is not secure w.r.t. to standard low-equivalence (cf. Lemma 6.2).
The reason is that the values of x in different program runs depend on the

16The ability to see the runtime type arises from the fact that Java is type-safe. This
information would not be derivable in type-unsafe languages.

17For static fields, the location lacks a receiver object.

148



6.5. Object-sensitive Noninterference

static C x, y, z; // low locations
int a; // low location
static boolean h; // high location

static void newC() {
x = new C();

}

Listing 6.7: This method is insecure w.r.t. standard noninterference
definitions.

behavior of the virtual machine which chooses the freshly created objects.
The Java Virtual Machine Specification does not impose any restrictions
on the choice of new object references apart from the fact that they are
not already in use. This is usually modeled through underspecification (cf.
[Beckert et al., 2007b, Sect. 3.6.6]).

Therefore, we cannot ensure that the values xs and xs
′ for respective

terminal states s and s′ are identical (nor that they are different). This proof
would require that the initial states are identical—even with the deterministic
program semantics that we assume. On the other hand, method newC
obviously does not leak information as it does not involve high components
at all. Thus, a standard noninterference condition based on object identity
is too strict in an object-sensitive setting.18

For method newHigh() of Listing 6.8, the observation of an attacker
depends on the value of the secret variable h. Since the allocation process
always returns an object that is different from all previously existing objects,
the attacker can deduce that h is true if and only if the value of x changes.
Information is leaked here.

static void newHigh() {
if (h) { x = new C(); }

}

Listing 6.8: Information leakage through a fresh object

In contrast, method order() in Listing 6.9 intuitively does not leak any
information. Here, the concrete values of x and y may also depend on the
value of h (because of the permutated order). But an attacker can only
compare the two references through == (object identity) and deduce that
they are different in any run. They cannot deduce the order in which the
objects were allocated.

18Note that in any case, the fresh object must be assigned to a low location; a program
that allocates objects, but does not store the reference is vacuously secure.
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static void order() {
if (h) {

x = new C();
y = new C();

} else {
y = new C();
x = new C();

}
}

Listing 6.9: The order of object creation is not observable.

In method swap() in Listing 6.10, it is important to notice that the
attacker does not only observe the (unordered set of) values of expressions,
but knows the evaluation function itself. The sets of values {xs, ys, zs}
and {xs

′
, ys

′
, zs

′} are equal in any case. However, the change made to x is
observable since it can be compared to both y and z.

static void swap() {
if (h) { x = y; }
else { x = z; }

}

Listing 6.10: Information flow through swapping observable locations

The last example involves nontrivial heap structures. In method deref()
in Listing 6.11 both the values of x and y and of x.a and y.a are swapped
under a high condition. This means that the values of the compound
expression x.a (and likewise y.a) is equal in any two runs. But since we
do regard locations, not expressions, it is distinguishable between the value
of the location (o, a) in two runs with different high input, where o is the
prestate value of x. Table 6.12 on the next page provides a summary of the
examples in this section.

static void deref() {
if (h) {

C c = x; x = y; y = c;
int a = x.a; x.a = y.a; y.a = a;

} }

Listing 6.11: Complex value changes in object structures
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Table 6.12: Summary on the examples in this section

newC() newHigh() order() swap() deref()

intuitively secure ! % ! % %

noninterferent % % % % %

6.5.3 Attacker Model

We describe publicly (and thus attacker) visible parts of the program state
as sets of semantical locations, i.e., pairs of semantical objects and field
identifiers. The attacker can evaluate primitive type expressions in the initial
and final states of any program run and can compare the values between
any two runs. This includes declassification. The attacker is able to provide
low security input. Further, we assume that they know the program code.
This allows them to trace back the observed differences in low sources in the
poststate to high sinks in the prestate. By the phrase ‘can compare,’ we
understand that an attacker

• can compare observed values that are of a primitive type to each other
and to literals (of that type) as by using ==;

• can compare observed values of object reference type to each other
and to null as by using the == operator, observe their (runtime) type
through the instanceof operator, and the length attribute for array
references;

• cannot learn more than object identity from object references (e.g., the
order in which objects have been generated cannot be learned).

In the Java language, object references are treated as opaque values. as
specified in the Java Language Specification (JLS). This is, references can only
be compared using the equality operators == (equality) and != (inequality),
cf. JLS, Sect. 15.21.3, as well as the type predicate operator instanceof.
In constrast, in programing languages where references have more structure
(e.g., numeric pointers in C/C++, cf. [Banahan et al., 1991, Sect. 5.3.4]),
stronger attackers are possible. For instance, if a particular memory manager
happens to allocate memory in ascending order, an attacker on a C++
program analogous to order() could deduce that hs is true if and only if the
numerical value of x is less than the value of y. Such inference is not possible
in the Java language itself. Implementations of native methods, however,
may provide some loopholes which leak structural information on references.
Most notably, the native method Object#hashCode() returns the (encoded)
memory address of a reference, as pointed out by Hedin and Sands [2006].
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Similar exploits can be found with the class sun.misc.Unsafe, that is part
of Oracle’s Java Development Kit (JDK), but not of the official application
programming interface (API) and its usage is officially ‘discouraged.’ This
leakage potential can be dealt with by assigning a high security level to the
output of native methods.

The examples show that information may flow through references, but
nonidentical behavior is not a sufficient indication of a leak. Executions need
not behave identically for different high inputs, but they must behave congru-
ently with respect to reference comparison. This means that the poststates
may be different as long as there is a kind of one-to-one correspondence
between their references that is compatible with the identity comparison
operation. In particular, the values of two locations storing references need
to coïncide in one poststate exactly if they do in the other.

6.5.4 Object Isomorphisms

Our formalization of dWRF programs from Chap. 3 can be extended naturally
to accommodate objects and fields instead of global variables. This sufficiently
captures the essentials of Java-like object-orientation that are required for
this section. We introduce a new type O representing objects. It may have
subtypes, as declared by the program, that are commonly called reference
types. All reference types have a common subtype containing only the special
element null and are disjoint otherwise. The exact type hierarchy is not
important for our discourse.

Locations are redefined to be pairs of semantical objects of types O
and F as originally defined by Weiß [2011], i.e., (o, f) ∈ DO × DF is a
location; the semantics of location set expressions is changed accordingly,
in particular DL ⊆ 2DO×DF . For all instances of non-null subtypes of DO,
there is a special boolean field created, that indicates whether an object
has been completely initialized (as defined by the JLS). For all instances
of array types, there is a field for every index in range and a special field
length. For any reference type A, there is a special A-typed static field
A::nextToCreate. This field indicates the next object of type A to be
allocated, i.e., the value of its created field will be set to true in a call to
new A().19 The signatures of select and store (cf. Sect. 3.3 on page 38) are
changed accordingly. For uniformity of notation we will frequently write
f(o) instead of select(heap, o, f). In addition, there is a unary syntactical
predicate exactInstanceA for each type A to express that an object is of that
type: s ⊨ exactInstanceA(o) if and only if type(os) = A.

19This is the usual way to represent object creation in constant domain program logics
(cf. [Beckert et al., 2007b, Sect. 3.6.6]).
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Definition 6.33. By Ω(Ls) we denote the set of objects observable by a
location set expression L in state s, that is, Ω(Ls) = {o ∈ DO | ∃ℓ ∈ Ls. (ℓ ↦→
o) ∈ heaps}.

In an object-oriented setting, the set of observable objects may depend
on the state. For example, if o.next.val is observable, then it depends on
the state what object o.next evaluates to. Moreover, if all locations in a
linked list are observed, for instance, then the number of observable locations
may depend on the state, since the list length does. We cater for this
because location set expressions are rich in their expressivity, including both
conditional and reachability operators.20

Isomorphism

We assume that the reader is familiar with the concept of isomorphism
for typed structures and function extensions, as treated, e.g., by Mitchell
[1990]. We introduce the notion of object isomorphisms on the computation
domain D. We use the notation (D, s) for a first-order structure where the
interpretation I is clear from the context (see Sect. 4.3).

Definition 6.34. Let ρ : D → D be a bijection. We extend ρ to a bijection
on states ρ : S → S through vρ(s) := ρ(vs) for a state s ∈ S and a variable v.
We write ρ : (D, s1) ↦→ (D, s2) if ρ(s1) = s2.

We call ρ an automorphism of D if for any state s, expression x, and
first-order formula φ it holds that x(I,s,β) = x(I,ρ(s),β) and (I, s, β) ⊨ φ ⇔
(I, ρ(s), β) ⊨ φ (w.r.t. a fixed first-order structure (D, I, s) and variable
assignment β).

Lemma 6.35 ([Beckert et al., 2014, Lemma 2]). Let D be a domain and
ρ′ : X → Y be a bijection for finite subsets X,Y ∈ 2DO

fin with

1. if null ∈ X then ρ′(null) = null and null ∈ Y implies null ∈ X,

2. ρ′ preserves types, i.e., for all expressions h, o, f of types H,O,F, we
have type ((select(h, o, f))s) = type

(
(select(h, o, f))ρ(s)

)
,

3. ρ′ preserves the length of array objects, i.e., for all expressions h, o we
have (select(h, o, length))s = (select(h, o, length))ρ(s),

Then there is a total automorphism ρ of the complete domain D that ex-
tends ρ′.

Definition 6.36 (Partial isomorphism w.r.t. L). Let L be a location set
expression and s1, s2 be two states. A partial isomorphism with respect to
L from s1 to s2 is a partial function ρ : D ↦→ D such that

20For the sake of brevity, we have not introduced reachability in this work; cf. the
comprehensive theory of location sets by Weiß [2011].
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1. for all primitive values w ∈ D \ DO, it is ρ(w) = w,

2. ρ |Ls1 is a total bijection from Ls1 to Ls2 ,

3. ρ |Ω(Ls1 ) is a total bijection from Ω(Ls1) to Ω(Ls2), and

4. the requirements of Lemma 6.35 hold for the bijection ρ |Ω(Ls1 ).

Condition 2 amounts to the usual requirements on isomorphisms on
mathematical structures. If p ∈ L for all program variables p, every auto-
morphism extending a partial isomorphism ρ with respect to L according to
Def. 6.34 is a total isomorphism from (D, s1) onto (D, s2) since ρ(ps1) = ps2

by requirement 2. Not every partial isomorphism can be extended to a total
isomorphism, on the other hand. If q is a program variable such that q does
not appear as a subterm in L, then ρ(qs1) = qs2 is not required.

6.5.5 Defining Object-sensitive Noninterference

As mentioned above, we treat object references as opaque. This means in
particular that the behavior of a Java program cannot depend on the values
of references up to comparison through ==. Hence, if a program π is started
in two isomorphic states, then π also terminates in isomorphic states (if π
terminates at all.) Though this assumption is not always made explicit, it
is widely used in literature, cf., e.g., Myers [1999]; Banerjee and Naumann
[2002]; Naumann [2006]. Opaqueness of references can be formalized in our
setting as follows:

Lemma 6.37 (Beckert et al. [2014, Postulate 1]). Let s1, s2 be states. Let π
be a program which started in s1 terminates in s2, and let ρ : D → D be an
automorphism.

Then π started in ρ(s1) terminates in ρ′(s2), where ρ′ : D → D is an
automorphism that coïncides with ρ on all objects existing in state s1, i.e.
for all o ∈ DO with createds1(o) = true we know ρ(o) = ρ′(o).

The reason why we cannot assume ρ = ρ′ directly, is that π may generate
new objects and there is no reason why a new element o′ generated in the run
starting in state ρ(s1) should be the ρ-image of the new element o generated
in the run of π starting in state s1.

We now define the notion of the object-sensitive low-equivalence rela-
tion ≈Ω. It will form the basis of the object-sensitive noninterference (OSNI)
property for Java. Apart from the more flexible assignment of security levels,
that is introduced through location set expressions, this property does not
yet exceed the state of the art in object-sensitive non-interference [Banerjee
and Naumann, 2002]. We consider here the termination-insensitive case.
Extensions taking termination into account (cf. Sect. 6.2.5), as well as differ-
entiating between normal and abnormal termination, are straightforward (cf.
Scheben and Schmitt [2012a]).
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Definition 6.38 (Object-sensitive low-equivalence). Let L be a location
set expression. We say that two states s, s′ are object-sensitive L-equivalent
w.r.t. ρ, denoted by s ≈ΩρL s′ iff there exists a partial isomorphism ρ :
Ω(Ls) → Ω(Ls′) with respect to L. The partial isomorphism ρ is uniquely
determined by L, s and s′. We use the notation s ≈ΩL s′ to indicate that
there exists an isomorphism ρ such that s ≈ΩρL s′.

Notice that because of our tacit definition of partial isomorphisms on
primitive values, s ≈ΩρL s′ entails xs = xs

′ , if x is an expression of primitive
type. It is easy to see that the relation ≈Ω is a generalization of the relation ≈
in Def. 5.1, as stated by the following lemma. In particular, ≈Ωid

L = ≈Ls for
the identity isomorphism id.

Lemma 6.39. The relation ≈ΩρL is an agreement and an equivalence relation.

We refer to (termination-insensitive/termination-sensitive) ≈Ωρ1
L1

/ ≈Ωρ2
L2

-
noninterference as (termination-insensitive/termination-sensitive) object-
sensitive noninterference. The intuition behind this definition is that L1
describes the low locations in the prestate and L2 describes the low locations
in the poststate. Thus, the values of the variables and locations in L2 in the
poststate may depend at most—up to isomorphism of states—on the values
of the variables and locations in L1 in the prestate and not on anything else.
Beckert et al. [2014, Lemma 4] prove that, without loss of generality, the
identity isomorphism id can be used in the input agreement to yield ≈Ωid

L1
,

while the output agreement is ≈Ωρ2
L2

for some isomorphism ρ2. Termination-
insensitive object-sensitive noninterference is called the “flow property” by
Beckert et al. [2014].

In the most common case, the low locations before program execution
will be the same as the low locations after program execution, i.e., L1 = L2.
Declassification can be added by strengthening the input agreement as
described above in Sect. 6.2 on page 123.

6.5.6 Formalizing Object-sensitive Noninterference

Partial object isomorphisms can be difficult to formalize. Beckert et al.
[2014] present a formalization of termination-insensitive object-sensitive
noninterference in Java Dynamic Logic [ibid., Sect. 6]; as well as a similar,
sufficient property, that is provable more efficiently [ibid., Sect. 7]—and
more readable. In the following, we present a simplified formalization of this
sufficient property, which is called the “flow∗∗ property” by Beckert et al.
and strong object-sensitive noninterference by Scheben [2014]. As described
by Scheben, these proof obligations are implemented in the KeY system to
formally verify information flow in sequential Java programs.

We use the shorthand h ≈̇L h
′ to denote—similar to Formula (6.2) on

page 130, but with location set expressions—the syntactical equivalent to
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the (formalizable) semantical low-equivalence relation s ≈Ls s′ (cf. Def. 5.1
on page 93) with h = heaps and h′ = heaps

′ . More formally, it stands for
the formula

{heap := h}L .= {heap := h′}L
∧ ∀ℓ ∈ {heap := h}L. select(h, ℓ) .= select(h′, ℓ) .

(6.11)

The formalization of strong OSNI follows the same pattern as in Sect. 6.2.5
above: the formula describes the relation of the four heap objects h1, h′

1,
h2, and h′

2, where h1 and h′
1 are two low-equivalent heaps in the prestate

and h2 and h′
2 are the heaps reached through the execution of a sequential

program π. The formalization is displayed in (6.12) below. Following the
result of Beckert et al. [2014, Lemma 4], the input agreement can be chosen
with the identity isomorphism.

∀h1, h
′
1, h2, h

′
2:H. {heap := h1} ⟨π⟩ heap .= h2

∧ {heap := h′
1} ⟨π⟩ heap .= h′

2

∧ h1 ≈̇L1 h
′
1

→ (newIso ∧ (h2 ≈̇N h′
2 → h2 ≈̇L2 h

′
2))

(6.12)

The difference to the formalization of TINI in (6.2) is the weaker output
agreement. In strong OSNI, the observable objects that are freshly allocated
in the post-state are named explicitly in set N . The poststate isomorphism
only differs from the identity function on these new objects. There is no proof
obligation that it extends the identity; it does by construction. Yet, it is to
be proven that these objects are actually fresh. This is what is formalized in
the formula newIso, that is displayed in (6.13) below.

newIso := ∀o ∈ N.
(

select(h1, select(h2, o), created) .= false
∧select(h′

1, select(h′
2, o), created) .= false

∧
⋀

A∈Types
exactInstanceA(select(h2, o))

↔ exactInstanceA(select(h′
2, o))

∧∀o′ ∈ N. (select(h2, o
′) .= select(h2, o)

↔ select(h′
2, o

′) .= select(h′
2, o))

)
(6.13)

The following theorem states that formula (6.12) formalizes an implicant
of object-sensitive noninterference.

Theorem 6.40. Let π be a program and let L1, L2, N be location set
expressions, where all elements of N are of type O. If the formula in (6.12)
is valid, then π is termination-insensitive ≈ΩL1

/ ≈ΩL2
-noninterferent.
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Proof. The theorem follows from [Beckert et al., 2014, Thm. 2] in combination
with [ibid., Lemma 6]. ◁

6.5.7 Conclusion

The definition of object-sensitive low-equivalence introduced in this section
is a simplified version of the one introduced by Beckert et al. [2014]. The
main difference is that Beckert et al. do not use the traditional concept to
secure information flow specification where sets of locations (i.e., sources) are
classified—modulo declassification. Instead, they allow arbitrary expressions
to be classified. This framework unifies location classification and declassifica-
tion. Location sets are replaced by so-called observation expressions [Scheben
and Schmitt, 2012a; Scheben, 2014]. See also Sect. 8.4 on specification using
observation expressions. The motivation behind this assumes a different
attacker model, that is meant to better reflect an observer of the system: The
attacker sees an expression and the corresponding evaluation in the prestate
and poststate of a method as if they were printed on a screen. A discussion
on these different attacker models can be found in Sect. 2.3.

We avoid introducing observation expressions here, as it does not increase
expressivity, but incorporates a kind of higher order concept: The semantics
of an observation expression is a sequence of syntactical expressions again.
This construction is wellfounded, because the set of welldefined expressions
is fixed a priori, but still poses a significant extension to the present logic
framework. Locations, on the other hand, are well understood semantical
entities (cf. the theory of heaps by Weiß [2011]).

Furthermore, since there is more than one expression that has the same
semantics, observation expressions have fixed orderings. For instance, in
method swap() of Listing 6.10 on page 150, it is important to notice that
the attacker does not only observe the unordered set of values of expressions,
but knows the evaluation function itself. The sets of values {xs, ys, zs}
and {xs

′
, ys

′
, zs

′} are equal in any case. However, the change made to x is
observable. The usual way to account for this is to impose an ordering on the
references that are regarded, i.e., using sequences instead of sets. Imposing
some ordering in specification is not intuitive.

Observation expressions are defined as sequences of finite, but not
necessarily a priori fixed, length. This means that to any Scheben and
Schmitt style noninterference specification, there is an equivalent defini-
tion of noninterference (in the sense of Def. 6.3): Scheben and Schmitt
noninterference with prestate observation X and poststate observation X ′

is equivalent to ⋇∆(X)s

I /⋇∆(X′)s

O -noninterference with declassification and
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erasure (cf. Sect. 6.2.3). However, not all of them can be represented syntacti-
cally in our logic, since observation expressions correspond to an unbounded
number of declassification expressions.

Discussion

We have not formalized object-sensitive noninterference (OSNI) directly. It
can be found in [Beckert et al., 2014, Sect. 6]. Instead, we presented a slightly
stronger property, called strong object-sensitive noninterference, which is a
sufficient criterion. The main difference between (original) OSNI and strong
OSNI is that strong OSNI also guarantees security against an attacker that
possesses the ability to distinguish between newly created objects and objects
which already existed in the prestate.
Example 6.41. Consider the program if (h) { new C(); }. It is similar
to Listing 6.8 in that a fresh object is allocated depending on high data.
The difference here is that the fresh object is not referenced in any way.
According to the original definition of OSNI, the program is secure since the
mere object allocation is not observable. However, it is insecure under strong
OSNI since we additionally permit the attacker to observe allocation.

Beckert et al. [2014] further show that strong OSNI is sequentially com-
positional. Compositionality is considered an indispensable prerequisite for
modular verification of information flow properties. For the original OSNI
property, it holds only under certain conditions.

6.6 Fusing Together A Semantically Precise Infor-
mation Flow Analysis for Concurrent Java

Above, in Sects. 6.3f., we have defined what secure information flow means
for concurrent dWRF programs. These definitions are purposely introduced
in an abstract notion, in order to instantiate them later in a uniform way.
This is provided through the notion of agreement (or trace equivalence,
respectively). This particularly allows to ‘plug in’ semantical declassification
or preconditions into the security property, as explained in Sects. 6.2.3f.
Furthermore, it allows to relax the indistinguishablity relation such that it is
appropriate for the observation of opaque object references (Sect. 6.5).

We have mainly described information flow analysis for dWRF programs.
There is no fundamental barrier to lift the results of this chapter to the
full Java language. The work by Scheben and Schmitt [2012a] regards
(sequential) Java programs all the way. They present a formalization of
nonintereference in JavaDL. A particular challenge in their work was to
consider that data in memory is structured through objects. Low-equivalence
is expressed with the help of explicit location set and heap expressions, that
are evaluated dynamically, as introduced by Schmitt et al. [2011]. We have
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acknowledged this in the present dissertation: even though dWRF only
features global variables of primitive types, we have defined its semantics in
Sect. 3.4 in terms of an explicit heap representation. Also, our formalizations
of noninterference feature location set expressions, thus incorporating the
flexibility of a dynamic security classification.

Information Flow Through Exceptions

Another aspect to consider for an extension to full Java are exceptions. In
method-modular Java, sinks can be either the memory, the return value of
a non-void method, or the exception that is raised during execution. For
instance, the program { L = H/H; } terminates normally and writes the
constant value 1 to L for all initial states where the value of H is not 0. In
the single case in which H holds the 0 value a NullPointerException is
raised. This case appears to be a termination channel, but we can obviously
construct other examples that leak more than 1 bit of secret information.
Although mentioned by Scheben [2014], he does not further explain how
(absence of) information flow through the occurrence of exceptions can be
expressed. Adding a check for exceptions in the above formalization of
noninterference should not pose a major difficulty. As explained by Beckert
et al. [2007b], programs can be wrapped with catch statements to isolate a
raised exception; absence of an exception can be modeled through a null
value.21

Semantically Precise Analysis

Above, we have introduced a state-based and a trace-based notion of non-
interference. These notions are semantical; analysis techniques based on
syntax can never be precise—by design. In this dissertation, we pursue a
logic-based approach, which aims at providing ultimate precision. Ideally,
it entails two components: (i) a precise formalization of the semantical
property and (ii) a sound and complete deduction system for the ensuing
formula.

Ad (i): according to Thm. 6.11 on page 130, the formalizations in CDTL
in (6.2) and (6.3) faithfully capture (state-based) noninterference. We expect
a similar result from the formalization of strong noninterference in (6.8),
although we do not provide a proof here. The result of Thm. 6.11 is restricted
by ▷t, though it seems that this restriction may be lifted, given that we
defined schedulers as fair.

Ad (ii): We have presented a calculus for CDTL in Sects. 4.4 and 5.4. The
calculus is proven sound under the condition that all thread specifications
that are used are actually valid. Hence—given that we already proved thread

21Java does not allow null to be raised. An attempt to do so will raise a fresh
NullPointerException instead.
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specification validity—a closed proof of one of the formulae above means
that the program under investigation is actually noninterferent. Furthermore,
we believe that the calculus is complete relative to the defined interleaving
semantics.22 To this end, in the rely/guarantee approach, a guarantee
condition is a complete functional description of environment steps. Under
that assumption, any secure program can be proven as such.

We should note, however, that this approach is not per se suitable to
detect insecure programs: a failed proof attempt can arise because the prover
was not able to find a solution to the theoretically undecidable problem within
a given time frame. A graphical representation of the approach overview is
given in Fig. 11.1.

Tool Support

We aim at providing tool support for this analysis in the KeY system, as
it will be described in detail in Chap. 7. Following the work by Scheben
and Schmitt [2012a], the KeY system can formally verify noninterference
in sequential Java programs. Furthermore, an extension of KeY to reason
about multi-threaded Java following the rely/guarantee approach described
in Chap. 5 has been implemented prototypically. In combination, this allows
us to verify secure information flow in multi-threaded Java programs with
KeY. Through high-level annotations in JML, the user can provide the
necessary specification in a convenient way. JML and its extensions for
information flow and concurrency will be introduced in Chap. 8.

22Actual reliable completeness proofs w.r.t. program behavior are hard—if not practically
impossible—to attain.
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7
A Verification System for

Multi-threaded Java

In this chapter, we present an implementation of the rely/guarantee approach
to compositional verification of shared memory concurrent programs pre-
sented in Chap. 5. We use an extension of the Java dynamic logic (JavaDL)
and the KeY verification system. KeY is a seasoned verification system for
sequential Java. At its core lies an interactive theorem prover for JavaDL.
We extend the proof system of Chap. 5 to a rich subset of the Java language
by incorporating the rules into JavaDL. In Sect. 7.1, we first introduce
JavaDL and the KeY system briefly. In Sect. 7.2, we discuss particularities
and issues with concurrent Java, that were not considered in the context
of the simple language of Chaps. 4–5. Finally, in Sect. 7.3 we elaborate on
design decisions and implementation details related to the rely/guarantee
approach. Section 7.4 describes the proof obligations for secure information
flow in concurrent Java programs.

7.1 The KeY Platform for Verification of
Java Programs

The KeY system offers a wide platform of tools for verification and analysis
of sequential Java programs. KeY has been developed through the time of
more than one decade (cf. [Ahrendt et al., 2005]), thus having achieved a
mature state. While the system evolved around an interactive theorem prover
for JavaDL [Beckert, 2001], proofs can often be found without interaction—
provided an appropriate specification. Specification for Java programs can
be given in the Java Modeling Language (JML), which will be introduced
in detail in the following chapter. By today, the KeY platform incorporates
support for different input languages (such as ABS); functional, relational,
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Figure 7.1: Multiple facets of analysis in the KeY framework joined together
by the symbolic execution engine

and nonfunctional properties to be proven; and it combines several comple-
mentary analysis techniques. A comprehensive, but slightly dated, account
on KeY is provided by Beckert, Hähnle, and Schmitt [2007a]. A follow-up
[Ahrendt et al., 2016] is currently in preparation to be published in 2016.
The most recent up-to-date overview over KeY is provided by Ahrendt et al.
[2014].

The kinds of properties that can be proven about programs include
1. functional properties such as correctness w.r.t. preconditions and post-
conditions or framing (i.e., write effect correctness; cf., e.g., [Bruns et al.,
2015b]), 2. relational properties such as secure information flow [Scheben
and Schmitt, 2012a] or absence of code regression [Beckert et al., 2015],
and 3. nonfunctional properties such as memory consumption or worst case
execution time [Albert et al., 2011]. The target language is a rich subset
of the Java language [Gosling et al., 2014], including objects, inheritance,
exceptions, static initialization, unbounded recursion [Bubel, 2007], enhanced
for loops [Ulbrich, 2007], strings, etc. Floating point data types and generic
types are currently not considered.1

KeY also supports the JavaCard language, which is not a strict subset of
Java. JavaCard is covered entirely [Mostowski, 2006, 2007b], which includes
features for abortable transactions. Din [2014] describes a variant of the
KeY system that considers the concurrent ABS language as the target. It
uses a variant of the rely/guarantee approach to reason about interleavings.
KeY-ABS currently is being integrated into the master development branch

1See [Ulbrich, 2007] on extending JavaDL with generic types.
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of KeY. The flexibility of KeY even allows components of the system to
be applied to non-classical reasoning: the successful KeYmaera system by
Platzer and Quesel [2008] for the verification of hybrid programs is a derivate
of KeY.

As displayed in Fig. 7.1 on the preceding page, the KeY platform ac-
commodates a range of techniques to prove or disprove that a program
satisfies given properties: 1. interactive theorem proving, 2. counter example
generation, 3. test case generation, and 4. visual debugging. KeY provides
two graphical interfaces: 1. The stand-alone graphical user interface, that is
displayed in Fig. 7.2, is intended for interactive proofs.2 2. The integration
into the Eclipse platform is intended for code-level interactions and hides
the underlying prover architecture [Hentschel et al., 2014].

Figure 7.2: The main window of KeY’s graphical user interface (GUI). On the
left hand side, the proof tree shows open goals. The sequent belonging to the
currently selected goal is shown on the right hand side. We selected a formula
to show the applicable rules in a context menu, including a preview in the tool
tip (the blueish overlay).

Secure information flow for sequential Java can be analyzed precisely
with KeY as already mentioned in Sect. 2.4.3. Java programs along with a
JML specification are translated to proof obligations of dynamic logic, using
the approach in Sect. 6.2.5. This feature is already implemented in the stable
2.4 release of KeY. Implementation details are provided by Scheben [2014].

2However, proofs can often be found without interaction.
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The KeY Prover

The common basis for all of this is a rule-based symbolic execution engine.
In fact, symbolic execution is performed through applying proof rules for
dynamic logic. Most rules are expressed using KeY’s taclet language [Beckert
et al., 2004; Rümmer, 2007]. Some rules—dealing with methods or loops in
programs—are hard-coded, however. The base system uses c. 1,600 rules,
of which a large part is used to reason about programs or arithmetic. In
contrast to proof obligation generators, that produce usually very large
FOL problems from programs/specification and try to discharge them using
fully automated off-the-shelf theorem provers, all reasoning is completely
integrated in the KeY prover. On the other hand, program annotations—like
contracts or invariants—are not encoded as part of the proof obligation, but
exist as background theories. This allows them to be entered during the
proof process when needed. All rule applications (automatic or interactive)
are recorded and saved as an explicit proof object. This allows the proof to
be replayed for later inspection.

Dedicated strategies allow to apply rules automatically. Yet, in general,
we are considering undecidable problems. Automated prover runs may
time out without providing a positive or negative result. For this reason,
KeY features a GUI allowing proof goals or intermediate proof steps to
be investigated, rules to be applied interactively, or strategy settings to
changed. See Fig. 7.2 for an interactive rule application. However, interactive
application of single rules does not scale well to larger problems.

Instead, we employ proof macros to guide an automated strategy towards
a particular goal. Macros have their own subset of rules, strategy options, and
stop conditions. For instance, the macro “Finish Symbolic Execution” only
applies rules as long as there is a program in the goal. The “Full Autopilot”
macro performs symbolic execution first, then splits up all postconditions—
something that is usually regarded bad in proofs—and finally tries to close
all resulting goals within a given number of steps, but reverts rule application
if a goal could not be closed automatically. This leaves the interactive user
with the proof goals that are ‘interesting’ in some sense.

Additionally, KeY provides translation of problems to the SMT-LIB
language Barrett et al. [2010]; Barrett and Tinelli [2014], allowing powerful
SMT solvers to be invoked as a back end on goals without program modalities,
i.e., goals of FOL plus arithmetic. SMT solvers can be used for both proving
validity and constructing a counter example (in case of goals that are not
valid). Supported SMT solvers are CVC3 [Barrett and Tinelli, 2007], CVC4
[Barrett et al., 2011], Simplify (which is part of ESC/Java2), Yices [Dutertre
and de Moura, 2006], and Z3 [de Moura and Bjørner, 2008].
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Figure 7.3: In the KeY approach, the user provides a set of Java source files
that are specified with JML annotations. KeY parses these files and translates
JML specification to JavaDL formulae. The prover may return with a negative
result because the formula to prove is not valid or a timeout occurred. In
this situation, the user can further interact with the prover or provide fresh
Java/JML input. User interaction is possible at any point in time throughout
the prover run.

Java Front-End

Atop the prover layer, KeY features a proof management system, that relates
Java source files to proofs. The basic work flow is displayed in Fig. 7.3. The
user provides a set of Java source files that are specified with JML annotations.
KeY parses these files and translates JML specification to JavaDL formulae.
After parsing, the system presents a list of proof obligations e.g., for functional
correctness method contracts, in an intermediate representation for the user
to select. These proof obligations relate to only a part of the Java input,
typically to a single method.

The proof management system keeps track of the proof obligations that
have been proven so far. Proofs can be ‘conditionally closed’: they contain
rule applications of which the soundness relies on other, open, proofs. For
instance, a user may add an assumption as a lemma, that can be proven
separately. For the verification of non-trivial Java programs, a method call is
usually abstracted through a contract.3 The application of a method contract
rule is only sound if the corresponding proof obligation is valid. See Sect. 8.2

3Alternatively, the implementation code can be inlined—but only if the concrete
implementation is known.
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on details regarding the concept of method contracts in modular program
verification.

Deployment

KeY has been successfully applied to a large number of case studies [Bubel,
2007; Mostowski, 2007a,c; Schmitt and Tonin, 2007; Bormer et al., 2012;
Filliâtre et al., 2012; Klebanov et al., 2011; Bruns et al., 2015b; de Gouw
et al., 2014, 2015]. Third-party reviews of KeY and comparisons with other
tools are provided by Stump [2005]; Feinerer and Salzer [2009]; Garavel and
Graf [2013]; Saeed and Hamid [2015].

The KeY system is being developed by the KeY project, a joint effort be-
tween Karlsruhe Institute of Technology, Technical University of Darmstadt,
and Chalmers University of Technology in Gothenburg, ongoing since 1999.
Version 2.4 is the latest available stable release at the time of writing. KeY is
free/libre/open source software (FLOSS) and can be downloaded in source or
compiled form from http://key-project.org/download/. The Java Web-
start technology allows KeY to be started directly from the browser, provided
that a Java Runtime Environment (JRE) version 6 or later is installed.

7.2 Issues with Concurrent Java

In comparison to the simplified language dWRF that we have used in Chaps. 4
and 5, the actual Java language contains some additional caveats concerning
concurrency. We discuss how we cater for these particularities in our KeY
implementation—or why leave them unresolved.

Threads

In Java, threads are identified objects, more precisely, instances of class
Thread. They have object identities and are subject to the usual object
lifecycle. After creation, a thread first remains suspended. Each thread has
an associated instance of the interface Runnable, called the thread’s target,4
that declares a method run(). It contains the code to be run, while the
thread is identified with the instance of class Thread.

When the Thread#start() method is called, a fresh thread is created,
that starts executing its target’s run() method concurrently. In Java, the
dynamic thread creation statement fork {π}; from Chap. 4 corresponds
to creating an instance of (an anonymous) Runnable and to start it as
follows: (new Thread(new Runnable(){run(){π}})).start();. Threads
may only be started once; an IllegalThreadStateException is raised if
start() is called on an already running thread.

4Thread implements Runnable; so it is common that a thread’s target is itself.
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Thread execution may be interrupted through Thread#interrupt() or
Thread#yield(). Stopping threads is still supported by Java, but considered
inherently unsafe, and thus marked as deprecated in the API. For our
implementation, we do not consider any of these operations.

It is a common pattern to create an anonymous subclass from the
Runnable interface. However, anonymous classes cannot be specified with
JML since there is no class declaration. This effectively prevents the possi-
bility to formally verify such Java programs. In the following, we assume all
classes to be named.

The Java Memory Model

The current Java memory model (JMM) was introduced with Java 1.5
[Manson et al., 2005]. It is a weak memory model. It does not assure
sequential consistency [Lamport, 1979] of the memory per se. The sequential
consistency property states that, at runtime, read and write actions appear
in the order defined by the source code. The Java virtual machine (JVM)
specification [Lindholm et al., 2014] allows implementations of the JVM
to relax this order for efficiency reasons. In particular, this means that
concurrent writes may not be immediately visible to other threads. JVM
implementations are only required to ensure consistency for fields declared as
volatile (see Java Language Specification (JLS), Sect. 8.3.1.4). Huisman
and Petri [2007] provide a precise formalization of JMM taking into account
so-called happens-before relations [Lamport, 1978] and values coming ‘out of
thin air.’

In general, sequential consistency is only assured if the threads do not
compete in data races. Lochbihler [2014] provides a comprehensive formaliza-
tion of Java, including JMM, using the Jinja formalization [Nipkow and von
Oheimb, 1998] of Java in Isabelle. He provides a formal proof of sequential
consistency being guaranteed under race freedom. An analysis for data race
freedom can, for instance, be found in [Klebanov, 2009, Sect. 7.3].

For the more dedicated property of noninterference, there are definitions
of stronger conditions, that imply noninterference for multiple classes of weak
memory models [Mantel et al., 2014]. These are sufficient, but not necessary;
i.e., they do not give rise a complete reasoning. Mantel et al. also present a
program transformation technique that allows to construct programs that
enforce a memory model independent operational semantics.

In this thesis, we are not further concerned with JMM. We assume
sequential consistency without any further requirements. While this assump-
tion is not necessarily sound, it is a sensible prerequisite for both devising
denotational semantics based on interleavings as in Chap. 3 and effective
reasoning. Assuming sequential consistency is the only sensible option in the
context of full functional verification on the source code level without losing
completeness.
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Final Fields

Fields that are declared final may not be changed “under normal circum-
stances” [JLS, Sect. 17.5]. Final fields must be initialized or assigned to in
the receiver’s constructor. These two are the only two permitted modes of
direct assignment. This effectively means that the field does never change
after the receiver has been completely initialized.5 Since only completely
initialized objects are accessible to other threads, we may safely assume that
final fields are never changed, effectively.

Synchronization

Synchronized blocks [JLS, Sect. 14.19] and the related concept of synchronized
methods are the only means for synchronization directly supported by the
language. A synchronized statement represents a block with a mutual
exclusion lock on an object (cf. Sect. 5.6). Each object and class type is
associated with a monitor that can be locked for exactly one thread. Only
this thread may enter the block, all other are delayed until the monitor
becomes unlocked again. Threads may lock monitors multiple times (given
that it has not been locked by another thread); complete unlocking requires
releasing the same number of locks again.

Be aware that a synchronized block is not the same as an atomic block
in other languages. Even while a thread holds a lock on an object, other
threads may write to fields of that object or call unsychronized methods on
it. In fact, there is no support for atomic blocks in the Java language at all.
Atomicity can only be achieved if all involved threads adhere to the mutual
exclusion scheme.6

A thread executing synchronized (a) {π} first tries to obtain a lock
on the monitor of the object represented by a. It is blocked while the monitor
is locked by some other thread. It then executes the contents of the block π,
and finally unlocks the monitor again. If the block terminates abruptly—i.e.,
either through a break, continue, or return statement; or the throw of an
exception—the lock is released as well and the program execution continues
as prescribed by the kind of abrupt termination. A synchronized method
can be thought of the method body being surrounded by synchronization on
this (for instance methods) or the class (for static methods).

5Reflection can be seen as a back door to assign final fields nonetheless, but here we
ignore that possibility as usually in Java verification (cf. [Beckert et al., 2007b, Sect. 3.6.6]).

6The results by Abadi et al. [2006] show that even in Java’s standard API implementa-
tion the synchronization regime is violated, leading to race conditions.
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Nonatomic Compound Statements

The assignment statement F = G; where both F and G are fields is not
atomic. It contains a read action first and then a write action. This common
one-liner is functionally equivalent to the fragment x = G; F = x; using a
local variable for intermediate storage, where both statements are atomic.7
There can be an arbitrary number of read and write actions in any expression.
For instance, the statement F /= G++ * --H; contains three read and write
actions each. The final write to F does not occur if there is a division by
zero. It can be rewritten into

x = F; y = G; G = y+1; z = H-1; H = z; w = x/(y*z); F = w;

The exact order of evaluation is crucial here. The operands are evaluated
from left to right; if the evaluation has side effects, then these apply; finally
the operation is applied. The division operation itself is also not atomic—
even though it only operates on local variables—but it may include raising an
exception, that entails further actions on the heap. The symbolic execution
embedded in Java Dynamic Logic performs these kinds of transformations
lazily and produces a normal form.

However, this not quite enough for reasoning about concurrent programs.
A particular issue is that in Java, non-volatile fields of type long (64 bit
integer) are not written in one atomic step, but in one for each 32 bit half
(cf. JLS, Sect. 17.7). Writing to a long field L can thus be imagined of as
applying two consecutive atomic writes:

L = x & 0xFFFFFFFF00000000L + L & 0x00000000FFFFFFFFL;
L = L & 0xFFFFFFFF00000000L + x & 0x00000000FFFFFFFFL;

Native Support for Atomic Operations

API implementations may provide additional methods with atomic com-
pound operations. In the following, we investigate on the OpenJDK imple-
mentation as it is freely available under the GPL. For instance, the class
java.util.concurrent.atomic.AtomicInteger encapsulates a 32 bit inte-
ger value that can be manipulated atomically. Listing 7.4 on the following
page shows the implementation of method getAndAdd(), that adds an integer
delta to the encapsulated value. It contains a loop, in which first the current
encapsulated value is retrieved (Line 3). The implementation then tries to
update this value atomically in Line 5. This update may fail—indicated
through a returned false value—if the value has changed in between. In this
case, the loop starts from the beginning. Otherwise, the method terminates
with returning the value before the update (which may be different to the
encapsulated value in the prestate).

7Except for the case where we have 64 bit data types, see below.
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1 public final int getAndAdd(int delta) {
2 for (;;) {
3 int current = get();
4 int next = current + delta;
5 if (compareAndSet(current, next))
6 return current;
7 }
8 }

Listing 7.4: The OpenJDK implementation of the getAndAdd() method
in class AtomicInteger provides lock-free atomic addition

This implementation is lock-free [Massalin and Pu, 1991], which means
that it will eventually terminate successfully under the condition that the
encapsulated value is not changed perpetually (and the scheduler returns
control to the executing thread). The implementation relies on the compare-
and-swap (CAS) primitive operation [Herlihy, 1991], implemented in Java as
compareAndSet().8 CAS is a standard hardware operation implemented on
most processors. It checks a memory address for some value and returns a
failure if the address does not hold that value. Otherwise, it sets a replacement
value. It constitutes the most basic atomic operation on many computer
systems.

7.3 Extending KeY to Reason About Concurrent
Java

The ultimate goal of constructing a usable verification system for concur-
rent Java involves many facets. In this thesis, we focus on the aspect of
concurrency, while KeY is already a mature and usable verification system
for (a substantial subset of) Java—accompanied by a considerable collection
of proofs supporting this claim. Not to invalidate previous results must be
the prime maxim, thus the implementation should be minimally invasive.
This means in particular that the signature of JavaDL must not be changed.
This is necessary to keep the implementation effectively maintainable. The
development of the KeY system is a large project with several developers
implementing new features in parallel. Besides adding concurrency, we do
not touch KeY’s coverage of Java, i.e., we still target Java 1.4 plus some
extensions.

8In the OpenJDK implementation, compareAndSet() calls the native method
sun.misc.Unsafe#compareAndSwapInt(), that provides the actual functionality. How-
ever, the class Unsafe is implementation-dependent, while the compareAndSet() method
is supposed to be present in any API implementation.
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Even though the original DTL calculus of [Beckert and Bruns, 2013] has
been implemented on the basis of an earlier development version of KeY
(see Sect 4.6), it has proved not to be very maintainable. The reason is
that it introduced several changes to the core of the system. In particular,
the invariant rule is hard coded in KeY. Of the invariant rules R28–R30,
none is currently implemented since it is difficult to keep them in the same
infrastructure as the invariant rule form standard JavaDL. Given this context,
we have decided to discontinue the implementation described by Beckert
and Bruns [2013] and to develop the new prototype closer to the main
development branch of KeY. While this approach may increase the effort for
a prototype; in the long run, it increases the chances that the change will
eventually find its way into a stable release version.

In the following, we describe how trace properties can be expressed
without the need to introduce the trace modality or temporal operators of
DTL. We develop an experimental version of KeY on the basis of the upcoming
release 2.6. A prototype implementation9 can be downloaded from http:
//formal.iti.kit.edu/~grahl/keyrg/. Running the development version
requires JRE 7 or later. It is best to use the Java Webstart version. It
runs with one click from the browser and immediately opens the example
browser, which allows to load some well-documented examples conveniently—
including adaptations of the examples from Sect. 5.5 to Java. Not every
feature mentioned in this dissertation is implemented at the moment of
writing. Please refer to the change log on the website for an up-to-date
status.

7.3.1 Trace Properties in JavaDL

Trace properties can be expressed in the ‘diamond’ modality of standard
JavaDL with changes to the symbolic execution rules. It is well known
that temporal formulae can be expressed in first order logic with arithmetic.
The states need to be encoded and indexed. In general, this can result in
complex formulas, that are infeasible to reason about in practice.10 Here in
this particular situation, we are only interested in the global program state
induced by write actions of the thread under investigation. This is already
modeled in our system using the special variable heap.

The proposed solution is that—in addition to heap, representing the
current heap—we add a second special variable heaps of type S. It represents
the (finite) trace of heaps up to the current state of execution, starting from
the initial heap. All symbolic execution rules that include changes to the
heap in their premisses would have to be changed to not only update the
heap variable, but also to append it to the trace. Currently, we are only
considering assignments; thus excluding method contracts, loop invariants,

9Most of the actual programing has been carried out by Michael Kirsten.
10For instance, in the proof of Lemma 4.21 on page 77 we use such an encoding.
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etc. We also introduce a variable eStep to distinguish environment steps
from ‘own’ steps, as discussed in Sect. 3.4. Different to the variable estp
from above, eStep is also of type S, because we cannot represent temporal
changes, but only store values in a sequence. The sequences represented by
heaps and eStep are meant to have equal lengths.

We introduce a new symbolic execution rule for global assignment (i.e.,
heap storage). Still using the global variable syntax of Chap. 4, but the
standard JavaDL ⟨·⟩ modality (‘diamond’), the new assignment rule would
resemble the following. We translate this abstract notion into the concrete
taclet language syntax of KeY below in Sect. 7.3.4.

Γ =⇒ U{eStep := eStep ⊕ ⟨false⟩}{heap := store(heap, X, v)}
{heaps := heaps ⊕ ⟨heap⟩} ⟨ω⟩φ,∆

Γ =⇒ U ⟨X = v; ω⟩φ,∆

This is the only change to the rule base since it is the only rule that includes a
local step in the trace. Assuming that the variables heaps and eStep did not
appear in formulas before, this extension is also semantically conservative,
i.e., formulas being universally valid before are still valid. Invariant rules are
not changed. It is expected that invariants instead mention the variables
heaps and eStep.

In place of temporal operators, we have quantifiers ranging over natural
numbers and range restrictions. For example, let φ be a state formula
that only contains the special variable heap, but no other (local) program
variables. Then, the DTL formula JπK□φ can be (incompletely) represented
by the pure JavaDL formula

{heaps :=⟨heap⟩} ⟨π⟩ (7.1)
(∀i : Z.(0 ≤ i < |heaps| → {heap := heaps[i]}φ) .

Likewise, the ♢ operator can be represented using existential quantification
and combinations of temporal operators through iterated applications of this
transformation. We assume that it is clear how to extend this schema to the
general case.

Two-state formulae are similar: remember Formula 5.1, JπK•□(frame ∧
guar), where both frame and guar are formulae referring to the special
program variables heap and heap’. A corresponding JavaDL formula that is
an implicant of the above DTL formula is

{heaps :=⟨heap⟩ || eStep := ⟨true⟩} ⟨π⟩ (7.2)
(∀i : Z.(0 < i < |heaps| ∧ eStep[i] .= false
→ {heap’ := heaps[i− 1] || heap := heaps[i]}(frame ∧ guar)) .

This embedding of trace properties in JavaDL is significantly less invasive
when compared to the DTL implementation, where a new modality was
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introduced and all rules had to be adapted. Overall, this approach is sound,
but incomplete.11 The source for this incompleteness is that we require the
program π to terminate, thus obtaining a finite trace. For instance, the DTL
formula Jwhile (true) {. . . }K□true is obviously valid, but it cannot be
proven using the above construction. In fact, there is no sound and complete
construction in this spirit in the presence of nonterminating programs.12

This would require to introduce complex invariant rules in the spirit
of R28–R30 and to use infinite data structures (such as maps [Wallisch,
2014]) instead of sequences. This comes with a high implementation cost.
From a practical perspective, it seems reasonable to restrict ourselves to
terminating programs since most meaningful sequential programs terminate.

On the other hand, this construction may be not as efficient to reason
about as the dedicated temporal operators of (the provable fragment of) DTL.
In particular, eventualities in DTL can be checked on the fly, while here
it requires quantifier instantiation. For practical considerations, it does
not seem to pose a severe issue as the proof obligations always have the
very special shape □φ where φ is a state formula. That means that the
transformed formula contains just one universal quantifier.

7.3.2 Changes to the Verifier Core

In sequential KeY, the execution context specifies the method and receiver
scope of the current symbolic execution. We extend it to include 1. the
method in whose scope code is executed, as identified through its name
and the class in which it is implemented, 2. an object to which the this
reference points to, 3. the thread class which executes the code, 4. and an
appropriate instance of Thread. The syntactical form of an execution context
is source=m@C, this=o, threadClass=T, thread=t.

The KeY system comes with a limited collection of Java API classes,
that are known to exist in most Java implementations. Originally, these
were the classes included in the JavaCard API. In the meantime, other
widely used classes that are not part of JavaCard have been added, e.g.,
String. For a base support of Java concurrency, we have added the interface
java.lang.Runnable and the implementing class java.lang.Thread. The
latter always contains a public ghost field target, that refers to the target
Runnable of a thread.

We introduce two more special program variables, variable thread of type
Thread ⊏ O (representing the current ‘own’ thread) and threads of type S
(representing the current thread pool). We use the already implemented
sequence type S instead of introducing another special purpose data type.

11More formally, given a change in assignment rules as given above, the JavaDL calculus
is not a complete calculus for DTL.

12Replacing the ‘diamond’ program modality in Formula 7.2 by ‘box,’ i.e., dropping
termination, would allow us prove the invalid DTL formula Jwhile (true) {. . . }K□false.
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This creates another issue: sequences are not type-parametric. We have to
ensure that for every reachable state, the elements of threads are of type
Thread.

7.3.3 Contract Infrastructure and Proof Management

The additional artifacts that are added to KeY’s contract infrastructure
are thread specifications as introduced in Sect. 5.3. They are represented
similar to contracts, but with the difference that contracts refer to methods
and thread specifications refer to classes—more precisely, to subclasses
of Thread. In the concrete implementation, we represent this through a
class ThreadSpecification in package de.uka.ilkd.key.speclang, that
implements the interface DisplayableSpecificationElement, which is also
extended by the interface Contract.

These specification elements generate proof obligations. For thread speci-
fications, we generate one proof obligation. It includes both the conditions
that a thread meets its guarantee (cf. (5.3)) and that its rely condition is
reflexive and transitive (cf. (5.4)). In the concrete implementation, this proof
obligation is represented by the class GuaranteePO. The decision to combine
both conditions into a single proof obligation is to be consistent with the
present contract infrastructure in KeY, where any specification element yields
exactly one proof obligation (cf. [Grahl and Ulbrich, 2016]).

As mentioned in Sect. 5.3, of the four conditions of a thread specification
being valid, two are local to a thread while the other two are global (i.e.,
system-wide). Since our approach targets a modular analysis, proving global
criteria makes little sense: for an entirely symbolic environment there would
be no way to prove nontrivial thread specifications.

Instead, we treat these criteria similar to contracts or invariants in
the established contract-based verification of sequential programs: at any
point in time, we assume the thread specification of the system to be valid
w.r.t. the currently alive threads. Only upon the dynamic creation of new
threads, we prove that thread specification validity is preserved. In the
modular verification of sequential programs, we assume the precondition at
the beginning of a method and, for any method called in that context, we
prove the precondition of the callee. However, it may still be that we assume
an unsatisfiable precondition or thread specification. On the meta-level, this
is justified because any client to the module in question must establish its
specification.13

13While this approach is modular, a bootstrapping makes limited sense and it is usually
not considered. If needed, one could think of the main() method of the Java project under
investigation being verified with an assumption on a one-element thread pool. However,
even this setting would not be fully appropriate in practice since the JVM usually creates
several threads before main() is executed by one of them.
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In Java new threads are forked through calling Thread#start(). There-
fore, we plan to implement the ‘fork’ rule as a special case of the built-in
method contract rule for start().

KeY’s proof management system [Roth, 2006] marks proofs as ‘condition-
ally closed’ if they are closed, but rely on rules which are only conditionally
sound and this condition has not been proven yet. Method contracts are
a typical case of that. For a proof with method contract rule applications
to be considered closed, all used contracts must be proven as well. For
thread specifications, we demand a similar mechanism. If a proof contains
the symbolic execution rule for dispatching a new thread of type T , then the
proof obligation must be proven for T . In contrast to method contracts, we
explicitly allow circularities on the meta-level: if a thread of type T forks
another thread of type T , then nothing is to be done.

7.3.4 Instantiating the Rules

The schematic rules as presented in Chaps. 4 and 5 are instantiated with the
concrete syntax of the KeY taclet language [Beckert et al., 2004]. Depending
on the target, there are multiple read or write rules. For full Java, we need
to distinguish between instance fields, static fields, and array elements. The
special length reference in arrays can be treated like a local variable since
it is always read-only. This means that there is no anonymization before
reading length in our rules. We assume the same for fields declared as
final as discussed above. This means that we can keep the present symbolic
execution read rules (i.e., for sequential Java) for length and all final fields.
This requires a further distinction between final and nonfinal fields.

Write Action Rules as Taclets

Listing 7.5 on the following page shows a taclet rule for symbolically executing
a global write action. It matches any program modality in which the active
statement is an assignment of a simple expression to a nonstatic field with
receiver this. This is expressed in the find clause (Lines 2f.) and the
additional variable conditions (varcond, Line 4). The two dots represent an
inactive program prefix, i.e., a sequence of opening braces, labels, etc. The
three dots represent the remainder of the program. The rule can only be
applied on the right hand side of the sequent; the sequent arrow is represented
by ==>. The replacewith clause in Lines 5ff. indicates that this is a rewrite
rule, i.e., there are no formulae added to the premiss sequent.

In the premiss formula, the active statement in the modality is removed.
There are three new updates in front of the modality: the first one (in
Line 6) states that the current heap is updated such that the value #se is
stored in field #a. This update appears as well in the version of the rule for
sequential Java. The second one (Line 7) updates the trace variable heaps
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such that the current heap (i.e., the heap updated as above) is appended.
The third update (in parallel with the previous one) appends the constant
FALSE to eStep, indicating a non-environment step. These two lines are the
only ones that are different from the rule set for sequential Java. Finally, the
heuristics clause (Line 10; named this way for historical reasons) assigns
this rule to rule sets. The rule is almost identical to the rule of the same
name in the calculus for sequential Java. The difference is the additional
update in Lines 7f.

1 assignment_write_attribute_this {
2 \find (==> \modality{#allmodal}{.. #v.#a=#se; ...}
3 \endmodality(post))
4 \varcond(\not \static(#a), \isThisReference(#v))
5 \replacewith( ==>
6 {heap:=store(heap,#v,#memberPVToField(#a),#se)}
7 {heaps:=seqConcat(heaps,seqSingleton(heap))
8 || eStep:=seqConcat(eStep,seqSingleton(FALSE))}
9 \modality{#allmodal}{.. ...}\endmodality(post))

10 \heuristics(simplify_prog, simplify_prog_subset)
11 \displayname "assignmentThis"
12 };

Listing 7.5: Symbolic execution rule for write access in the taclet language

Rely Rules

To avoid extending the program language, environment actions are not made
explicit here. Instead, the necessary anonymizations occur directly upon
application of read or program termination rules.

This requires all targets of rule applications, i.e., active statements in
program modalities, to be of the shape of the simple language introduced in
Sect. 3.2. This means that expressions in control structures must be simple
and there must only be one heap access (either read or write) per assignment
statement. While Java is very rich in the variety of assignment state-
ments (e.g., compound assignment operators like *= or pre/post-increment/
decrement operators), the symbolic execution concept embedded in KeY per-
forms the necessary normalization through (lazy) program transformations.
The symbolic execution rules guarantee that assignments from heap locations
to local variables have the strict shape that the expression on the right
hand side of the assignment consists solely of the location. Fig. 7.6 on the
next page shows a simplified example proof involving a complex compound
statement in sequential Java. Of the approx. 1600 rules available in KeY,
there are only 5 symbolic execution rules dealing with reads from the heap.
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=⇒ {heap := store(heap, _a, f, select(heap, a, f) · select(heap, a, f))} [ ]φ
=⇒{_a := a || x := select(heap, a, f) · select(heap, a, f)

|| heap := store(heap, a, f, select(heap, a, f) + 1)}
[_a.f = x;]φ

=⇒{_a := a || x_2 := select(heap, a, f) || x_3 := select(heap, a, f)
|| heap := store(heap, a, f, select(heap, a, f) + 1)}

[x = x_2 * x_3; _a.f = x;]φ
=⇒{_a := a || x_2 := select(heap, a, f) || x_3 := select(heap, a, f)

|| x_4 := select(heap, a, f) + 1}
[_a.f = x_4; x = x_2 * x_3; _a.f = x;]φ

=⇒{_a := a || x_2 := select(heap, a, f) || x_3 := select(heap, a, f)}
[int x_4 = _a.f+1; _a.f = x_4; x = x_2 * x_3; _a.f = x;]φ

=⇒{_a := a || x_2 := select(heap, a, f) || x_3 := select(heap, a, f)}
[_a.f = _a.f+1; x = x_2 * x_3; _a.f = x;]φ

=⇒{_a := a || x_2 := select(heap, a, f)}
[x_3 = _a.f; _a.f = _a.f+1; x = x_2 * x_3; _a.f = x;]φ

=⇒{_a := a || x_2 := select(heap, a, f)}
[int x_3 = _a.f++; x = x_2 * x_3; _a.f = x;]φ

=⇒ {_a := a} [int x_2 = _a.f; int x_3 = _a.f++;

x = x_2 * x_3; _a.f = x; ]φ
=⇒ {_a := a} [x = _a.f * _a.f++; _a.f = x;]φ

=⇒ {_a := a} [int x; x = _a.f * _a.f++; _a.f = x;]φ
=⇒ {_a := a} [int x = _a.f * _a.f++; _a.f = x;]φ

=⇒ {_a := a} [_a.f = _a.f * _a.f++;]φ
=⇒ [A _a = a; _a.f = _a.f * _a.f++;]φ

=⇒ [a.f *= a.f++;]φ

Figure 7.6: Example proof involving symbolic execution of a complex com-
pound statement in sequential Java. For a simplified presentation, variable
declarations and update simplification steps are omitted. a is a local variable
of type A and f is a field of type int in A. The postcondition φ is not relevant
here since we only show the part of the proof related to symbolic execution.
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Of these rules exist different variations depending on the semantics of
implicit runtime exceptions. KeY offers three possible semantics allow (i.e.,
strictly follow Java semantics and raise exceptions as defined in the JLS,
which is sound and complete, but inefficient), ban (i.e., prove that exceptions
cannot be raised, which is sound, but incomplete), and ignore (i.e., ignore the
possibilities of implicit exceptions, which is neither sound nor complete, but
most efficient). This is controlled through so-called taclet options. Neither
rule is applicable when the JavaCard taclet option is active—obviously, since
JavaCard does not feature concurrency. Of some of the heap-reading rules
there exist variants for final fields that do not include anonymization (see
Sect. 7.2 above).

All rules are valid for both ‘box’ and ‘diamond’ modalities, but only on
the right hand side of the sequent, while some of the rules for sequential
programs are applicable on both sides.

Generating Read Rules

For technical reasons, the read rules are not written in the taclet language
directly, but are generated programmatically from the specification. As dis-
cussed above in Sect. 5.4.1, rely/guarantee specifications are not represented
explicitly as formulae on the sequence, but are kept as background axioms.
These background axioms cannot be imported schematically in the taclet
language. Instead KeY generates taclets on the fly, inserting the concrete
rely condition of the thread under investigation into a rule template. In the
original calculus there are 6 different rules dealing with writing to the heap
and one rule for program termination. Each of them serves as a template for
a generated rely rule, resulting in 7 generated rules per thread type.

Rule Management

These changed rules effectively constitute a new calculus, while reusing
many of the present calculus rules. The above added/changed rules are
available through the taclet option concurrency:RG, while the original rules
for sequential Java are still available through the taclet option concurrency:off.

For future versions of KeY, the concept of so-called profiles has been
considered. The goal is to make the KeY system more modular and more
adaptable to new target languages. Profiles refer to both the target language
and the target property. For instance, there would be a profile for each of the
four combinations functional/relational verification of sequential/concurrent
Java. A profile determines a set of rules (both taclet and built-in) that form
the calculus to achieve the task at hand. In the future, we plan to adopt the
concept of profiles in favor over taclet options.
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Soundness

The final calculus, adapted to JavaDL, ought to be sound. Platzer [2004]
provides soundness proofs for a simplified dynamic logic, that is similar to the
original JavaDL [Beckert, 2000]. A soundness proof for the method contract
rule in JavaDL can be found in [Weiß, 2011, Appendix A.7]. As discussed by
Beckert and Klebanov [2006], it is practically infeasible to entirely prove the
soundness of a program verification calculus for a complex language like Java.
A theoretical obstacle is the lack of an official formal semantics. The JLS
still leaves some detail questions unanswered. While some formalizations of
Java exist (cf. [Stärk et al., 2001; Nipkow and von Oheimb, 1998]), there is
no guarantee that those actually represent the informal semantics of the JLS.
A practical argument against a meta-verification of the approach is the labor
it takes. Beckert and Klebanov argue that the effort is better spent on
improving practical applicability and usability.

7.4 Reasoning About Information Flow in Concur-
rent Programs with KeY

Scheben and Schmitt [2012a] showed how to formalize state-based non-
interference for sequential Java programs in JavaDL. In principle, their
formalization is similar to the one that we have shown in Sect. 6.2, but in-
stantiated concretely in JavaDL and implemented as a proof obligation in the
KeY system. These proof obligations are referred to as “non-interference con-
tracts.” As explained in Sect. 6.3, the very same proof obligations can be used
to refer to concurrent programs (at least for state-based noninterference).

We leave it as future work to extend upon this infrastructure to include
proof obligations for trace-based noninterference. As explained above in
Sect. 7.3.1, we are able to (incompletely) embed CDTL into JavaDL using
the ⟨·⟩ modality. Through a similar construction, this would also allow us
to express strong noninterference in standard dynamic logic—restricted to
programs that always terminate. The idea is to ‘store’ the heaps of two runs,
filtered to those that are produced by ‘own’ steps, and to compare them
component-wise.
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8
Modular Specification of

Concurrent Java Programs

As software systems grow bigger and get more complex, verification tech-
niques have to account for that, too. In particular, the paradigm of object-
orientation is targeted towards programing in the large, supporting reusability
and extendability. For this reason, specifications and proofs thereof need
to be modular and sufficiently abstract to cater for variability in the target
software. Achieving complete functional verification of a complex piece of
software—and the above goals in particular—still poses a grand challenge
to current research (cf. [Leino, 1995; Hoare and Misra, 2005; Leavens et al.,
2006a, 2007; Klebanov et al., 2011; Huisman et al., 2013, 2015]).

While this chapter is mostly concerned with sequential modularity, the
concepts leading to modular analysis of sequential programs can well be
applied to the concurrent scenario as well. Modular sequential analysis is
concerned with interference that arises from method calls. It is well marked
in the program code at what point in time during execution this interference
occurs. Modular analysis of concurrent programs is also concerned with
interference. However, this kind of interference is more difficult to assess or
to harness. It may occur virtually anywhere in the program; and the severity
of their effect lies within a vast range. Since the problem at hand is definitely
harder, solutions for sequential modularity certainly cannot be solutions to
concurrent modularity, but at least they can form a basis for further efforts.

The key to modularity is abstraction. The fundamental idea, to abstract
away from concrete interference to a contract between a client and a provider,
can be applied to both sequential and concurrent scenarios. For sequential
programs, Design by Contract (DbC) [Meyer, 1992] is an established philoso-
phy. A client is represented through a caller method and a provider through
a callee method. This concept of method contracts is well supported in spec-
ification languages like the Java Modeling Language (JML). For concurrent
programs, the fundamental idea manifests in the rely/guarantee methodology

181



Chapter 8. Modular Specification of Concurrent Java Programs

(see Chap. 5). Here, the situation is more symmetrical: contracts are formed
between all threads, without a particular hierarchy or order. But still, it is
a game of providing a guarantee under the assumption that all others do
as well.

Just as DbC is the cornerstone of programing in the large, analogously,
it also enables verification in the large. As a result, we are able to define
when a complex piece of software is not only a collection of individually
verified components, but is considered entirely correct as a whole system.
Given a concrete implementatation of sequential modules, we can still resort
to a non-modular analysis, i.e., using method inlining. This is not so for
concurrent programs. Here, abstraction is vital for an effective analysis (cf.
[de Roever et al., 2001]).

It is only natural to combine techniques for the analysis of concurrent
programs with those for object-oriented programs. Firstly, most object-
oriented languages are also concurrent, e.g., Java. Secondly, as Jones [1996]
argues, encapsulation techniques of object-oriented languages are particularly
helpful to restrict the space of concurrent interleavings by design.

In modular verification, we may only have partial knowledge on changes
applied to the heap. While the functional properties of contracts have been
discussed before, meaning what an implementation must achieve, framing
is roughly its dual: A method’s frame specifies what implementations may
at most do; and dependencies of state observers such as invariants or model
fields define what information may be relied upon. We will come back to the
explicit heap data type introduced in Chap. 4 and show how it can be used
in modular verification. There is a long history of verification techniques
that deal with the frame problem. A fairly new technique, called dynamic
frames (see Sect. 8.2.3) aims at providing modular reasoning in the presence
of abstraction that occurs in object oriented programs.

Chapter Overview

We introduce JML in Sect. 8.1 and provide a quick guide to basic JML
specifications. A more thorough account is provided by Huisman, Ahrendt,
Bruns, and Hentschel [2014], on which these sections are based. Parts
of Sect. 8.2 are adapted from currently unpublished material by Grahl
and Ulbrich [2016]; Grahl, Bubel, Mostowski, Ulbrich, and Weiß [2016]1
and provide a discussion on the specification and verification approach for
modularized sequential Java, as part of the KeY approach [Beckert et al.,
2007a]. After providing this overview of the state of the art, we present
two extensions to JML. In Sect. 8.3, we introduce a new extension that
caters for thread specifications following the rely/guarantee approach as
introduced in Chap. 5. In Sect. 8.4, we review the extension by Scheben

1The material by Grahl, Bubel, Mostowski, Ulbrich, and Weiß [2016] is itself based the
thesis by Weiß [2011]. Phrases that already appeared there verbatim are clearly marked.
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[2014] for information flow contracts, that was developed in the Program-level
Specification and Deductive Verification of Security Properties (DeduSec)
project, as well as the more abstract Requirements for Information Flow
Language (RIFL) [Ereth et al., 2014].

8.1 The Java Modeling Language

The Java Modeling Language (JML) is an increasingly popular and powerful
specification language for Java software, that has been developed as a com-
munity effort since 1999. The main concepts are class invariants and method
contracts. JML integrates seamlessly into Java as it is embedded inside
comments in Java source code and JML expressions extend Java expressions
in a natural way. By now, JML has become the de facto standard in formal
specification of Java source code.

The nature of such a project entails that language details change, some-
times rapidly, over time and there is no ultimate reference for JML. Fortu-
nately, for the items that we address in this introduction, the syntax and
semantics are for the greatest part already settled by Leavens et al. [2013].
Basic design decisions have been described by Leavens, Baker, and Ruby
[2006b],2 who outline these three overall goals:

• “JML must be able to document the interfaces and behavior
of existing software, regardless of the analyses and design
methods to create it. [. . . ]

• The notation used in JML should be readily understandable
by Java programmers, including those with only standard
mathematical training. [. . . ]

• The language must be capable of being given a rigorous for-
mal semantics, and must also be amenable to tool support.”

This essentially means two things to the specification language: Firstly, it
needs to express properties about the special aspects of the Java language,
e.g., inheritance, object initialization, or abrupt termination. Secondly, the
specification language itself heavily relies on Java; its syntax extends Java’s
syntax and its semantics extend Java’s semantics. The former makes it
convenient to talk about such features in a natural way instead of defining
auxiliary constructs or instrumenting the code as in other specification
methodologies. The latter can also come in handy since, with a reasonable
knowledge of Java, little theoretical background is needed in order to use JML.
This has been one of the major aims in the design of JML. It however bears
the problem that reasoning about specifications in a formal and abstract way

2This 2006b journal publication is a revised version of a technical report that first
appeared in 1998.
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becomes more difficult as even simple expressions are evaluated w.r.t. the
complex semantics of Java.

Ever since, the community has worked on adopting a single JML language,
with a single semantics—and this is still an ongoing process. Over the years,
JML has become a very large language, containing many different specification
constructs, some of which are only sensible in a single analysis technique.
Because of the language being so large, not for all constructs the semantics
is actually understood and agreed upon, and moreover all tools that support
JML in fact only support a subset of it. There have been several suggestions
of providing a formal semantics—including the author’s own [Bruns, 2009]—
but as of today, there is no final consensus.3 Moreover, JML suffers from the
lack of support for current Java versions; currently there are no specifications
for Java 5 features, such as enums or generic types. Dedicated expressions
to deal with enhanced foreach loops have been proposed by Cok [2008].

8.1.1 A Short Introduction to JML Specification

In this section, we provide a quick intuitive introduction to basic JML
specifications. Huisman, Ahrendt, Bruns, and Hentschel [2014] present a
longer introduction, including several examples. We essentially introduce the
syntax. Semantics can only barely be touched here; we refer to Bruns [2009];
Grahl and Ulbrich [2016] for more thorough accounts. JML is designed for
the specification of 1. methods, where JML specifies the effect of a single
method invocation; 2. classes and interfaces, where JML specifies invariants
of an object; and 3. code blocks (including loops), where JML serves as
auxiliary annotation. JML specifications are written as special comments
in the Java code, starting with /*@ (block style) or //@ (end of line style).
The @ symbol allows parsers to recognize that the comment contains a JML
specification.

Expressions

Annotations are basically just Java expressions (of boolean type). This is
done on purpose: JML extends Java’s syntax; almost every side-effect-free
Java expression (i.e., that does not modify the state and has no observable
interaction with the outside world) is also a valid JML expression.

In addition, JML defines several specification-specific special constructs,
to be used in expressions. These are prefixed with a backslash symbol (\)
to distinguish them from regular Java expressions. The keywords \result
and \old may appear in postconditions. The \result expression represents

3The Lorentz Center in Leiden hosted a workshop entitled “JML: Advancing Spec-
ification Language Methodologies” in March 2015, that was organized by M. Huisman,
G. T. Leavens, W. Mostowski, and the author. The participants did agree on a joint en-
deavor to develop a common semantics. A follow-up workshop is anticipated for early 2016.
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the value a method returns. JML allows to mark any expression e in a
postcondition with \old(e), which means that e is not evaluated in the
current (post)state of the method, but in its prestate. In most cases, \old(e)
is a subexpression of some bigger expression, and it is important to be aware
that all parts of the expression not included in \old(. . .) construct are
evaluated in the current (post)state.

The official language specification contains a few more of these. Besides
Java’s logical operators, such as conjunction &, disjunction |, and negation !,
also other logical operators are allowed in JML specifications, e.g., implication
==>, and logical equivalence <==>. Since expressions are not supposed to have
side effects or terminate exceptionally, in JML in many cases the difference
between logical operators such as & and |, and short circuit operators, such as
&&, and || is not important. However, sometimes the short circuit operators
have to be used to ensure an expression is welldefined [Kirsten, 2013]. For
instance, y != 0 & x/y == 5 may not be a welldefined expression, while
y != 0 && x/y == 5 is.

JML features quantified expressions of the following shapes:

• (\forall T x; a; b)
‘For all x of type T (excluding null) fulfilling a, b holds.’

• (\exists T x; a; b)
‘There exists an x of type T (excluding null) fulfilling a, such that b
holds.’

Here, T is a Java (primitive or reference) type, x is any name (hereby
declared to be of type T ), and the range a and body b are boolean JML
expressions. The range is optional, as (\forall T x; a; b) is equivalent
to (\forall T x; a ==> b) and (\exists T x; a; b) is equivalent to
(\exists T x; a && b).

In addition to the boolean quantified expressions, JML offers so called
generalized quantifiers \sum, \product, \min, \max, and \num_of, that can
be seen as higher order functions with bound variables. The following
expression represents the maximum over the elements of an int array:

(\max int i; 0 <= i && i < arr.length; arr[i]);

Notice that this is syntactically similar to a quantified formula: the \max
operator binds a variable i, and a boolean guard expression restricts it to be
within the range of the array’s indices. The type of the \max expression is
the type of its body; here it is the type of arr[i]. The intuitive semantics
is obviously that the result is the maximum of all arr[i] where i is in the
array range. However, the \max construct is not total, i.e., it is not always
a welldefined expression. In case arr has zero length, for instance, there is
no maximum. A similar case appears with a noncompact range, e.g., the
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set of all mathematical integers (represented by the JML type \bigint):
(\max \bigint i; true; i).

Another comprehension operator is the summation operator \sum. Sum
comprehensions in JML can have several bound variables that range over
sets of values. The general pattern is (\sum T x; P; Q) where T is a
type, P a boolean expression and Q an integer expression corresponds to∑
x∈{y∈T |P}Q. Likewise the \product operator is used to express product

comprehensions. Since addition (as multiplication) is commutative and
associative, there is no particular order in which elements are summed up.
Sums with empty ranges have the value 0 by definition, empty products have
value 1.

Method Contracts

Contracts of methods are an agreement between the caller of the method
and the callee, describing what guarantees they provide to each other; see
also Sect. 8.2 below. More specifically, it describes what is expected from
the code that calls the method, and it provides guarantees about what the
method will actually do. While in our terminology, ‘contract’ refers to the
complete behavioral specification, written JML specifications usually consist
of specification cases. These specification cases are made up of several clauses.

The expectations on the caller are called the preconditions of the method.
Typically, these will be conditions on the method’s parameters, e.g., an
argument should be a nonnull reference, but the precondition can also
describe that the method should only be called when the object is in a
particular state. In JML, each precondition is preceded by the keyword
requires, and the conjunction of all requires clauses forms the method’s
precondition. A missing requires clause defaults to true.

The guarantees provided by the method are called the postcondition of the
method. They describe how the object’s state is changed by the method, or
what the expected return value of the method is. A method only guarantees
its postcondition to hold whenever it is called in a state that respects the
precondition. If it is called in a state that does not satisfy the precondition,
then no guarantee is made at all. In JML, every postcondition expression is
preceded by the keyword ensures, and the conjunction of all ensures clauses
forms the method’s postcondition. A missing ensures clause defaults to
true.

The signals and signals_only clauses specify exceptional postcondi-
tions. Exceptional postconditions have the form signals (E e) P , where
E is a subtype of Throwable, and the following meaning: if the method
terminates because of an exception that is an instance of type E, then
the predicate P has to hold. The variable name e can be used to refer to
the exception in the predicate. Note the implication direction: a signals
clause does not specify under which condition an exception may occur by
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itself, neither that it must occur. Such specification patterns can only be
obtained in combination with requires and ensures clauses. A missing
signals clause defaults to true. In addition, one can specify a method with
exceptional_behavior. It expresses that a method must terminate with
an exception (if it terminates at all).

The signals_only clause is optional in a method specification. Its syntax
is signals_only E1, E2, . . ., En; meaning that if the method terminates
because of an exception, the dynamic type of the exception has to be a
subclass of E1, E2, . . . , or En. If signals_only is left out, only unchecked
exceptions, i.e., instances of Error and RuntimeException, and the exception
types declared in the method’s throws clause are permitted.

Termination is specified with the diverges clause. It provides a necessary
condition for nontermination, evaluated in the prestate. In contrast to the
above clauses, the default for a missing diverges clause is false, meaning a
method is supposed to terminate (normally or exceptionally). The semantics
of a basic specification case—consisting of one of each requires, ensures,
signals, and diverges clause—can be described as follows.4 Consider the
following specification case to be attached to a method:

/*@ requires α;
@ ensures β;
@ signals (Throwable e) γ;
@ diverges δ;
@*/

It intuitively means that, under the condition that α holds in the prestate,
1. if the method terminates normally, then β holds in the poststate, 2. if it
terminates through the throw of an exception, then γ holds in the poststate,
and 3. if the method does not terminate, then δ holds in the prestate.

Further clauses include assignable and accessible clauses for frame
specifications (for write and read effects, respectively). We will discuss
framing in more detail below in Sect. 8.2.3. Finally, the measured_by
clause provides a termination witness to recursive method implementations.
Table 8.1 provides an overview over JML contract clauses.

Specification cases can be prefixed with the keyword normal_behavior.
It states that, implicitly, the method has to terminate normally (if at all).
Similarly, JML also has an exceptional_behavior method specification.
This specifies that the method has to terminate, because of an exception. The
general behavior specification may well contain a signals or signals_only
clause, whereas a normal behavior specification may not contain these, and
an exceptional behavior specification may not contain an ensures clause.

4Everything else can be considered as syntactical sugar for the basic case; see [Raghavan
and Leavens, 2005; Grahl and Ulbrich, 2016].
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Table 8.1: JML contract clauses

clause meaning
requires precondition
ensures (normal) postcondition
signals exceptional postcondition
signals_only expected exceptions
diverges requirement for nontermination
assignable write frame
accessible read frame
measured_by termination witness

Class and Interface Specification

JML provides class level specifications, such as invariants, history constraints
[Liskov and Wing, 1993], and initially clauses. These specify properties over
the internal state of an object, and how the state can evolve during the
object’s lifetime. One of the most important and widely-used specification
elements in object-orientation are type invariants. These can be seen as
conditions to constrain the state an instance can be in. This means that any
method, when invoked from a state in which the invariant holds, must reach
a poststate (normally or exceptionally) in which the invariant holds again.
In addition, any constructor has to ensure that the invariant is established.
Although invariants are always specified within a class or interface, their
effective scope is global. E.g., a method m in a class C is obliged to respect
invariants of class D. Declaring a method helper avoids this obligation.

8.2 Modular Verification Using Contracts

The concept of modules in programing languages can be traced back to early
examples such as Simula 67 [Nygaard and Dahl, 1981] or Modula [Wirth,
1977]; see also [Hoare, 1981]. Single modules (i.e., method implementations
or classes containing them) may be added, removed, or changed with only
minimal changes to their clients; programs can be reused or evolved in a
reliable way. These ideas were put forth with the development of object-
oriented programing: “The cornerstone of object-oriented technology is reuse.”
[Meyer, 1997] In object-oriented programing (OOP), methods (or procedures)
consist of declarations and implementations. Declarations are visible to
clients while implementations are hidden. One important addition in OOP
to the base concept of modularity is that classes (i.e., modules) are meant to
define types—and subclasses define subtypes. And, in particular, different
classes may implement a method in different ways (overriding), including
covariant and contravariant type refinement. A client never knows which
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implementation is actually used. Any call to a (non-private) method is
subject to dynamic dispatch, i.e., the appropriate implementation is chosen
at runtime from the context. This concept is also known as virtual method
invocation.

The concept of method contracts was first mentioned by Lamport [1983]
and later popularized by Meyer [1992] under the name Design by Contract
(DbC). It allows to abstract from those concrete implementations and to
approximately predict module behavior statically.5 The metaphor of a legal
contract gives an intuition: A client (method caller) and a provider (method
implementer) agree on a contract that states that, under given resources
(preconditions), a product with certain properties (postconditions) is provided.
This is a separation of duties; the provider can rely on the preconditions,
otherwise they are free to do anything. Given the preconditions, they are
only obliged to ensure the postconditions, no matter how they are established.
On the other hand, the client is obliged to ensure the preconditions and
can only assume a product to the given specifications. In the basic setup, a
method contract just consists of such a pair of pre- and postcondition. As it
has already been explained above, state of the art specification languages
as JML feature contracts with several clauses (of which all can be seen as
specialized, functional or non-functional pre- or postconditions).

Contracts do not only play an important role in software design, but
also in verification. In verifying a method that calls another one, there are
two possibilities to deal with that case. Either, the implementation can be
inserted or a contract can be used. The former is intriguingly simple; this is
what would happen in an actual execution. But it carries three disadvantages:

1. It transgresses the concept of information hiding.

2. The concrete implementation must be known. This is not always
guaranteed in static verification techniques; in many cases there is only
information on static types, but not runtime types.6 Not even doing
a case distinction over all possible types would work here, since we
consider open programs, where there is only partial knowledge about
the type hierarchy.

3. In the case of recursive implementations (with an unbounded recursion
depth), inserting the same implementation again would let the proof
run in circles.

This leaves contracts as the only choice to deal with method calls in most
cases.

5Note that contracts give semantical properties about modules and are in some sense
orthogonal to design documents such as class diagrams, that are mostly syntactical.

6A notable exception are final classes in Java, that may not have any subclasses. This
means that an instance of a final class C also has runtime type C.
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8.2.1 Behavioral Subtyping

In a completely modular context, the concrete method implementations
generally are not known. Nevertheless, a client will assume that all imple-
mentations of a common public interface (i.e., a method declaration) behave
in a uniform way. This concept is known as behavioral subtyping, Liskov’s
substitution principle, or the Liskov-Leavens-Wing principle [Liskov, 1988;
Leavens, 1988; Liskov and Wing, 1993, 1994].78 It can be formulated as
follows: A type T ′ is a behavioral subtype of a type T if instances of T ′ can
be used in any context where an instance of T is expected by an observer. In
other words, behavioral “subtyping prevents surprising behavior” [Leavens,
1988]. Note that this notion of a ‘type’ is different to both types in logic (cf.
Sect. 4.2) and types in Java (i.e., classes and interfaces).

Behavioral subtyping is a semantical property of implementations. Al-
though the concept is tightly associated with design by contract, it cannot
be statically enforced by programing languages. It is not uncommon to see—
especially in undergraduate exercises—that subclasses in object-oriented
programs are misused in a non-behavioral way. Imagine, for instance, a
class Rectangle being implemented as a subclass of Square because it adds
a length to Square’s width. This kind of data-centric reuse is a typical
pattern for modular programing languages without inheritance. Not all
rectangles are squares, so intuitively, this should not define a behavioral
subtype. But whether it actually does, depends on the public interface (i.e.,
the possible observations). If the class signature of Square allows to set the
width to a and to observe the area as a2, then the subclass Rectangle is not
a behavioral subtype.

For modular reasoning about programs, we may only assume contracts
for a dynamically dispatched method that are associated with the receiver’s
static type, since the precise dynamic type depends on the context. This
technique is known as supertype abstraction [Leavens and Weihl, 1995]. Be-
havioral subtyping is essential to sound supertype abstraction.9 To (partially)
enforce it, in the Java Modeling Language, method contracts are inherited
to overriding implementations [Leavens and Dhara, 2000]. We can provide
additional specifications in subclasses, which are conjoined with the inherited
specification. This means, whatever the subclass specification states locally,
it can only refine the superclass specification, effectively. This leads us to
a slightly relaxed version of behavioral subtyping: instead of congruency
w.r.t. any observable behavior, we restrict it to the specified behavior.10 This

7Liskov and Wing themselves use the term “constraint rule.”
8Despite first appearing in Leavens’s thesis, it has been attributed to Liskov because

of her widely influencial keynote talk at the OOPSLA conference 1988.
9Leavens and Naumann [2006] present a language-independent formalization of behav-

ioral subtyping and prove that it is actually equivalent to supertype abstraction.
10Still, it is possible to explicitly specify all observable behavior.
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# tail

«interface»
List

+ add (elem: int)
+ remFirst ()
+ empty (): bool
+ size (): int
+ get (idx: int): int

LinkedList

LinkedListNonEmpty

- head: int

ArrayList

- a: int[]

Figure 8.2: A list interface and its implementations

relaxation renders behavioral subtyping more feasible in practise, as it allows
more freedom in implementing unspecified behavior, in particular regarding
exceptional cases. Consider, for instance, a class that implements a collection
of integers. Is a collection of non-negative integers a behavioral subtype?—
The correct answer is ‘maybe;’ it depends on whether the operations that
add members to the collection are sufficiently abstract to be implemented
differently.

This notion of behavioral subtyping w.r.t. specified behavior also en-
ables us to regard interfaces and abstract classes as behavioral supertypes of
their implementations. While they do not provide a (complete) implemen-
tation themselves, they can be given a specification that is inherited to the
implementing classes.

Example: Implementing a List

Consider we want to implement a list of integers in Java. It should support
the following operations: (i) adding an element at the front, (ii) removing
the first entry, (iii) indicating whether it is empty, (iv) returning its size,
(v) retrieving an element at a given position (random access). A typical
choice to implement a mutable list is using a linked list, where each entry is
encapsulated in an object (usually called the head of the list) with a link to
the remaining list (called tail).11 Figure 8.2 shows a typical object-oriented
design. An interface List provides the signature for some public methods.
This interface is implemented twice: firstly simply as an ArrayList and
secondly using the composite design pattern, by the classes LinkedList and

11Clearly, this is not the only possible way to implement a list. For instance, the
elements could be saved in a more elaborate data structure (like a doublely linked list).
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LinkedListNonEmpty. Note how the empty list is represented: through the
so called sentinel pattern no null reference is exposed.

Before looking at an implementation, let us briefly discuss contracts in
natural language. The operation ‘removing the first element’ only makes
sense when there is at least one element—this would make a precondition.
Similarly, ‘retrieving an element at position n’ only makes sense if n is non-
negative and there at least n elements in the list. Again, implementations are
free to do anything if they are called in a context where these preconditions
do not hold. Listing 8.3 on the next page shows an implementation of class
LinkedList. Here, we see two different styles of method implementations.
In Lines 12ff., method remFirst() silently returns directly if it is called on
an empty list, i.e., the precondition is violated. Alternatively, we could first
check for such violations and then throw a more precise exception explicitly.
This programing style is known as defensive implementation, where the
implementing code checks for and handles abnormal situations. This is the
style advocated by Meyer [1992].

In contrast, in Lines 25ff., method get() is implemented in an offensive
manner. It does not check for abnormal situations, but optimistically calls
the method tail.get(idx) where tail may be a null reference. In case
the precondition is violated, an instance of NullPointerException will be
thrown. This is the programing style advocated by Abrial [1996]. Design
by contract itself does not advertise either style, but in practise the latter is
usually preferred.

Another thing to notice about this implementation is the class hierar-
chy: most of the methods in LinkedList delegate to an element of the
subclass LinkedListNonEmpty. The reason is that LinkedListNonEmpty is
a linked list implementation that always contains at least one element, while
LinkedList represents the supertype—a possibly empty list. This ensures
that we have a behavioral subtype relation here. A non-empty linked list
exposes at least the expected behavior of a possibly empty linked list. This
allows for a maximum of reuse in class LinkedListNonEmpty, which is shown
in Listing 8.4 on page 194; only three methods need to be overridden.12 Note
that the default constructor of LinkedList returns a (non-unique) empty
list. Throughout the main part of this chapter, we will use the list example
to explain how it can be specified in a modular fashion.

12An alternative common pattern for linked lists uses two classes Nil and Cons,
where Nil is a singleton representing the empty list and Cons takes the same role as
LinkedListNonEmpty in our example. This pattern can be used to implement immutable
list objects. The disadvantage is that Nil and Cons are not (behavioral) subtypes of one
or another.

192



8.2. Modular Verification Using Contracts

1 public class LinkedList implements List {
2

3 protected LinkedListNonEmpty tail;
4

5 public void add (int elem) {
6 LinkedListNonEmpty tmp =
7 new LinkedListNonEmpty(elem);
8 tmp.tail = this.tail;
9 this.tail = tmp;

10 }
11

12 public void remFirst () {
13 if (empty()) return;
14 else tail = tail.tail;
15 }
16

17 public boolean empty () {
18 return tail == null;
19 }
20

21 public int size () {
22 return empty()? 0: tail.size();
23 }
24

25 public int get (int idx) {
26 return tail.get(idx);
27 }
28 }

Listing 8.3: An implementation to the List interface using a linked
datastructure
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1 class LinkedListNonEmpty extends LinkedList {
2

3 private int head;
4

5 LinkedListNonEmpty (int elem) { head = elem; }
6

7 public boolean empty () { return false; }
8

9 public int size () {
10 return 1+(tail==null? 0: tail.size());
11 }
12

13 public int get (int idx) {
14 if (idx == 0) return head;
15 else return tail.get(idx-1);
16 }
17 }

Listing 8.4: Non-empty lists is a behavioral subtype to lists.

8.2.2 Abstract Specification13

Even if programs are specified at the source code level, abstraction and
modularization are indispensable for handling real world programs. In the
interface List above, we have not yet given any contracts to the methods
declared there. In fact, it is not possible to give implementation-independent
specifications to all methods. Obviously, we could specify the behavior of
empty() using size() as in Listing 8.5 on the next page—provided that we
know that it is a pure method. Alternatively, we could give the following
(recursive) postcondition to size():

ensures \result == empty()? 0: get(0).size()+1;

Any way will lead us to a bootstrapping problem. In the concrete imple-
menting classes, we can give contracts that refer to the internals, such as
the private field LinkedList#tail, which can be declared as spec_public
to refer to in specifications. However, this kind of implementation exposure
trangresses the fundamental concepts of modularity. To solve this dilemma,
we have to abstract away from the concrete Java program.

JML offers model fields [Leino and Nelson, 2002] (and the more advanced
model methods) as specification-only representations of concrete implementa-
tion data. This enables implementation hiding: the requirement specification
only refers to model fields while the abstraction relation is part of the (hidden)
implementation details. For a detailed discussion of model fields, refer to

13This section is based on a preliminary and extended version of [Grahl et al., 2016].
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1 public interface List {
2

3 //@ public invariant size() >= 0;
4

5 /*@ public normal_behavior
6 @ requires size() < Integer.MAX_VALUE;
7 @ ensures size() == \old(size()) + 1;
8 @ ensures get(size()-1) == elem;
9 @ ensures (\forall int i; 0 <= i && i < size()-1;

10 @ get(i) == \old(get(i)));
11 @*/
12 public void add (int elem);
13

14 /*@ public normal_behavior
15 @ requires !empty();
16 @ ensures size() == \old(size()) - 1;
17 @ ensures (\forall int i; 0 <= i && i < size();
18 @ get(i) == \old(get(i+1)));
19 @*/
20 public void remFirst ();
21

22 /*@ public normal_behavior
23 @ ensures \result == (size() == 0);
24 @*/
25 public /*@ pure @*/ boolean empty ();
26

27 /*@ public normal_behavior
28 @ ensures \result == size();
29 @*/
30 public /*@ pure @*/ int size ();
31

32 /*@ public normal_behavior
33 @ requires 0 <= idx && idx < size();
34 @ ensures \result == get(idx);
35 @*/
36 public /*@ pure @*/ int get (int idx);
37 }

Listing 8.5: Java interface List specified using pure methods
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[Grahl et al., 2016]. Both concepts are deliberately still close to actual Java—
not only because they syntactically resemble their respective counterparts,
but also because in standard JML they can only be of a Java-defined type
(either primitive or reference), but not a more structured abstract data type.
Using model fields of reference type is problematic since we then conjecture
that such an object exists (and is created) in the current heap. This means
there still is a lack of abstraction.

JML additionally features abstract data types (ADTs) [Reynolds, 1975] at
the language level. These include the type of finite sequences, referred to as
type \seq, and the type of location sets, referred to as \locSet. These types
are primitive in Java lingo, alike the other specification-only type \bigint.
Reasoning about the underlying theory of finite sequences is well supported
in KeY (cf. [Beckert et al., 2013b, Appendix A]). We will cover the \seq
type below after a short general introduction to the concept of ADTs. The
\locSet type will be introduced in Sect. 8.2.3, where we use it to express
frame conditions. As already explained in Chaps. 3ff., both types play an
important role in our approach to verification of concurrent programs.

Abstract Data Types

The category of ADTs has two interesting subcategories: the dual categories
of algebraic and coälgebraic data types. In mathematics, the concept of an
algebra has been known for a long time, while coälgebras appear in a lot
of situations in computer science. A common example for an algebra are
the natural numbers N. The set N is defined as the smallest set such that
0 ∈ N and, for all n ∈ N, it is s(n) ∈ N where s is the successor function.14

We say that natural numbers are constructed using the constructors 0 :→ N
and s : N → N, or: the data type ‘natural numbers’ is defined by construction.
Having those constructors, we can define additional functions on N such as
addition:15 (0 + n) := n and (s(m) + n) := s(m+ n).

In a similar way, we can construct the algebraic data type of (finite)
sequences A∗ over a set of members A. We have the constructors nil :→ A∗

for the empty sequence and cons : A×A∗ → A∗ for appending. Again, we can
define other functions on A∗, such the length of a sequence, length(nil) := 0
and length(cons(a, s)) := 1 + length(s). In general, algebraic data types may
have more than two constructors; imagine a data type of finite trees that
has one constructor for each possible number of branches from a node (that
makes an infinite number of constructors). However, all algebraic data types
have at least a unit constructor (i.e., a constant) like 0 or nil.

14A well known formalization by von Neumann, based on set theory, defines 0 := ∅ and
s(n) := n ∪ {n}, cf. [Levy, 1979].

15Strictly speaking, the set N is only the carrier set, of which and a category theoretical
functor the actual algebra consists. For the purpose of this work, we allow us to identify
algebras with their carrier sets.
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We have already seen some additionally defined functions. Common to
all of them is that they are defined inductively, i.e., their definition consists
of a definition for each constructor. This kind of recursive definition is both
well-founded and total due to the inductive nature of initial algebras, that
entails that every element of the carrier set can be uniquely described using
a finite number of constructor applications (i.e., construction is invertible).16

As an example, in the List example above, we can model each state of
the list using only these constructors. But this also allows to do proofs
by induction. In order to prove the conjecture that for all sequences the
length is non-negative, we only have to prove that the length of nil is non-
negative and, for all a ∈ A and all sequences s with a non-negative length,
length(cons(a, s)) is non-negative; both of which follow directly from the
definition of length above. Currently, KeY only supports induction over the
natural numbers. However, this can be lifted to any discreet structure by
indexing its members appropriately. For sequences, we perform induction
over the length.

While algebras are defined through constructors, dually, coälgebras are
defined through observers, also known as destructors. A common coälgebraic
data type is the type A∞ of infinite lists over a set of members A, that
can be defined using the two observers head : A∞ → A and tail : A∞ →
A∞. As for algebras, we can define additional functions. For instance, a
function prepend that adds a new element to the list has the following two
definitions: head(prepend(a, ℓ)) := a and tail(prepend(a, ℓ)) := ℓ. This is
now a coïnductive definition, that consists of several observations about one
function value. Dual to the totality property in inductive definitions, this
function is uniquely described through all observers. And, of course, there is
a dual to proof by induction, that is co-induction through invariants: given
that a list ℓ contains an element a, then also the list prepend(b, ℓ) contains
an element a. Invariants are sometimes also called copredicates.

Actual coälgebraic data types mainly appear in functional programing.17

But also in imperative programs, where all concrete data structures are finite,
we can make use of coälgebraic specifications: They can describe invariants
of data structures irregardless of how they are constructed. However, since
these structures are finite, we need to add preconditions to when coälgebraic
definitions are actually welldefined. For instance, in the List example, we
would require the list size not to have reached the limit of Java’s int type as
a precondition for the addition operation. For further reading on coälgebras

16An example for an algebra that is not initial and therefore does not allow this
principle of induction would be the natural numbers with addition as a third constructor,
the element 5 (= s(s(s(s(s(0)))))) could then be represented as either 4 + 1, 2 + 3, 0 + 5,
etc.

17Coälgebraic data types are for instance used in the Dafny language [Leino and Moskal,
2013].
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Table 8.6: Defined operations on the \seq ADT in JML

syntax signature
empty sequence \seq_empty → S
singleton sequence \seq_singleton(e) T → S
concatenation \seq_concat(s1, s2) S2 → S
subsequence s[i..j] S × Z2 → S
comprehension (\seq_def \bigint x; i; j; t) Z2 × T → S
access (T)s[i] S × Z → T
length s.length S → Z

and their application, we refer to, e.g., [Barwise and Moss, 1996; Jacobs and
Rutten, 1997].

KeY’s extension to JML introduces dedicated location set expressions.
For some of them, a translation is straight-forward as they have been designed
to correspond to respective predicates and functions in JavaDL and have the
obvious meaning, e.g., \intersect(s,t). But location set expressions also
replace reference set expressions from standard JML. These are faithfully
translated to terms in JavaDL, taking into account that JML only considers
locations which belong to already allocated objects. Please note that the
special keyword \strictly_nothing is not an expression in this sense, but
can be used to form a nonstandard assignable clause.

The binary union operator is called \set_union in JML for techni-
cal reasons. In addition, JML also features a set comprehension operator
\infinite_union, that binds a variable of any type and has a location set
expression in the body. Optionally, a guard can be given.

The algebraic data type \seq of finite sequences is predefined in KeY’s
extension to JML, with the additional subsequence and random access
operations as displayed in Tab. 8.6. These operators are directly translated
to their counterparts in JavaDL. Beckert, Bruns, Klebanov, Scheben, Schmitt,
and Ulbrich [2013b, Appendix A] present the underlying theory of finite
sequences. In particular, we have a comprehension operator \seq_def where
(\seq_def \bigint x; i; j; t) denotes the sequence ⟨t[x/i], . . . , t[x/j]⟩.
Please note that \seq is not a parametric type; its elements are not typed.
For this reason, sequence access always needs to be preceeded by a type
cast.18

The type \seq counts as a primitive type in the Java sense. This means
that all operations are side effect free (i.e., corresponding to mathematical
functions), instances do not need to be created, and can be compared using
equality (==). This particularly allows us to quantify over all (infinitely
many) sequences. Abstract data types therefore are to be distinguished from

18In JavaDL, the access function itself is type parametric. An access in JML (prefixed
with a type cast) is translated to the appropriate typed access.
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the concept of model types [Leavens et al., 2006b, Sect. 2.3] in standard JML.
These model types—like JMLObjectSequence—still are Java reference types,
that may be used in specifications.

Given these prerequisites, it is only natural to represent the concrete list
implementation of Sect. 8.2.1 using the \seq ADT. Assume that theList
refers to a \seq representation of the list. Then, we can describe the addition
(prepending) of an element as a concatenation of a singleton sequence and
the prestate sequence:

/*@ public normal_behavior
@ ensures theList ==
@ \seq_concat(\seq_singleton(elem),\old(theList));
@*/

public void add (int elem);

Analogously, the removal method can be specified using subsequence
operation. The remaining question is: what program entity exactly is
theList in this example? One solution would be to use a ghost field, as
explained in the following, or model fields, as explained by Grahl et al. [2016].

Ghost Variables and Fields

Sometimes the information needed in specifications is not provided by the
source code itself. This additional knowledge can be modeled with ghost
variables and ghost fields. A ghost variable in JML can be defined as a
class/instance member or as a local variable. In both cases, it is declared as
a normal Java variable, but inside a JML comment preceded by the keyword
ghost. It is important to know that the used type might be a specification-
only type, such as \bigint or \seq. The initial value of a ghost variable can
be directly assigned during its declaration. Its value can be updated during
method execution by a set statement. As explained in Sect. 5.6, ghost fields
are essential to model locking and to record progress in the rely/guarantee
approach to verification of concurrent programs.

Ghost variables extend the system state. In particular ghost fields live
on the heap as other fields do. Verifying a program with code ghost is
not strictly the same as verifying the original program. It is the task of
the specifier to ensure that this extension is conservative, i.e., the concrete
program state and the ghost state converge (cf. [Filliâtre et al., 2014]).

199



Chapter 8. Modular Specification of Concurrent Java Programs

8.2.3 Dynamic Frames

For modular static verification, where the goal is to check the correctness of
individual program parts locally—that is, without considering the program
as a whole—the demands both on specifications and on the specification
language itself are higher than for approaches working under a closed program
assumption, e.g., for runtime checking.

The fundamental idea behind JML is to satisfy the additional demands
of modular (sequential) verification, but the support for frame annotations
in vanilla JML (i.e., assignable and accessible clauses) falls short of this
goal. Schmitt, Ulbrich, and Weiß [2011]; Weiß [2011] present a solution
to these issues with their extension to JML, based on the dynamic frames
approach by Kassios [2006, 2011]. Dynamic frames is a flexible approach for
framing in the presence of dynamic data structures and data abstraction.

As described in this section, the concept of frame annotation has been
developed as an instrument for verification of sequential programs. However,
in Chap. 5, we have found out that they are as well beneficial for concurrency
verification. While in this dissertation, we use dynamic frames in rely/
guarantee specifications, they fit into other approaches as well, as discussed
in Sect. 10.3.2.

Consider our running example considering lists. In Listing 8.7, we add a
simple client to the List class. A client object holds references to two list
instances. Method m() adds an element to one of them. The question is how
to prove the postcondition that states that the other list has not changed
in size. We have to add the precondition that a and b do not alias, under
which the postcondition could never be valid.

class Client {
List a, b;

//@ requires a != b;
//@ ensures b.size() == \old(b.size());
void m() { a.add(23); }

}

Listing 8.7: Client code using two instances of the List interface from
Fig. 8.2

As we have seen above in Sect. 8.2.1, a correct implementation of add()
must satisfy the postcondition that the passed element has been added to
the list. This is an impartial description of the method’s behavior. For our
particular situation here, however, we aim for the property that a.add() does
not do anything harmful to b—that, besides the given functional property,
“nothing else changes” [Borgida et al., 1993]. Such a property is usually
expressed as set of locations to which the method may write at most, called
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the frame of the method and a set of locations on which the result of a query
depends at most, called the footprint. The dynamic frame theory [Kassios,
2011] aims at solving the frame problem in the presence of data abstraction.
As Weiß [2011, Sect. 3.2] explains,

“the essence of the dynamic frames approach is to leverage the
ubiquitous location sets [. . . ] to first class citizens of the speci-
fication language: specification expressions are enabled to talk
about such location sets directly. In particular, this allows us to
explicitly specify that two such sets do not overlap [. . . ]. This
is an important property [for pointer-based programs], which is
called the absence of abstract aliasing [Leino and Nelson, 2002;
Kassios, 2006].”

Abstract aliasing is also known as deep aliasing. Its absence is the prop-
erty that we needed in the specification of our example in Listing 8.7 on
the preceding page. The knowledge that the location sets represented by
a.footprint and b.footprint are disjoint allows us to conclude that the
postcondition is actually satisfied. A dynamic frame is an abstract set of
locations. It is ‘dynamic’ in the sense that the set of locations to which
it evaluates depends on the current state. It can change during program
execution.

Dynamic Frames in JML

Schmitt et al. [2011]; Weiß [2011] present an implementation of the dynamic
frames approach in KeY, using an extension of JML, that includes high-level
specification elements for location set expressions. The type \locset has
already been briefly introduced above in Sect. 8.2.2, with the underlying
theory mentioned in Sect. 3.3. Semantically, expressions of type \locset
stand for sets of memory locations. These expressions are used to write
assignable and accessible clauses. Weiß [2011, Sect. 3.3] defines the
language extension in the following way:

“The singleton set consisting of the (Java or ghost) field f of the
reference expression o can be denoted [. . . ] as \singleton(o.f),
and the singleton set consisting of the i-th component of the
array reference a as \singleton(a[i]). Like in [vanilla] JML,
the set consisting of a range of array components and the set
consisting of all components of an array are written as a[i..j]
and a[*], and the set of all fields of an object is written as o.*.”

In addition, the extension by Weiß features the following basic set operations
on expressions of type \locset, with the standard mathematical meaning:
the set intersection \intersect, the set difference \set_minus, the set union
\set_union, the subset predicate \subset, and the disjointness predicate
\disjoint.
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8.3 Concurrent Thread Specification in JML

Given sufficient background in the previous sections, we now develop an
extension to JML for rely/guarantee-style specifications, that is appropri-
ate to specify the behavior of multi-threaded Java. Thread specifications
consist of both functional specifications and frame specifications based on
the dynamic frame approach. Our approach to deductive verification of
concurrent programs based on the rely/guarantee approach [Jones, 1983]
has been explained in detail in Chap. 5. In Chap. 7, we have sketched the
fundamental ideas of an implementation in the KeY system. This includes
a discussion on specific features and issues regarding multi-threaded Java
(as opposed to the simpler dWRF) in Sect. 7.2. Integrating rely/guarantee
specification into JML is vital to the implementation since JML constitutes
the main specification frontend of KeY. Constructing the proof obligation
formulae by hand would be infeasible.

As discussed in Sect. 7.2, in Java, threads are identified with instances
of the class java.lang.Thread. The actual program to be executed by
the thread is contained in an implementation of the run() method that
is declared in the interface java.lang.Runnable. From this observation
and our design decisions in Sect. 7.3, we draw two conclusions regarding
specification: 1. It must be possible to refer to the thread that is running in
the current context. To this end, we introduce the keyword \me, that refers
to the ‘own’ thread—similar to this referring to the method receiver in the
given context. 2. Thread specifications are realized as class-level specifications
in subclasses of Thread. However, we expect thread specifications to delegate
to the actual running code, can be referred to through the field target, while
the runner can refer to the thread as \me. As a minor issue, this requires us
to use properly named subclasses of Thread since anonymous classes cannot
be annotated in JML.

Following the basic principles of JML, thread specifications are inherited
in subclasses. This means that a thread implementation must satisfy all
thread specifications imposed on superclasses. The more general question
whether a ‘Liskov principle for threads’ based on rely/guarantee makes sense
will be left to future work.

As usual in the KeY approach, we do not consider dedicated constructs
for other API services. We expect a specifier to annotate API methods
appropriately when needed.

Thread Specification

As mentioned above, a thread specification appears as a class-level specifica-
tion element, like an invariant. It may consist of several clauses, that are
preceded by the keyword concurrent_behavior. We use the five clauses
requires, relies_on, guarantees, assignable, and not_assigned; that
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directly correspond to the elements of a thread specification as introduced
in Sect. 5.3. An example is shown in Listing 8.8, that corresponds to the
example in Sect. 5.5.2.

class MyThread extends Thread {
private int x;

/*@ concurrent_behavior
@ requires x >= 0;
@ guarantees x >= 0 && x > \prev(x);
@ relies_on x >= \prev(x);
@ assignable x;
@*/

}

Listing 8.8: JML thread specification

On the ‘guarantee’ side, we use the well known assignable clause and
introduce a new guarantees clause. The assignable clause is standard JML;
it is followed by a list of heap locations (global variables) and intuitively means
that only those may be assigned throughout the execution, or equivalently,
the value of all other locations must not be changed in any state reached
throughout the execution. The described property is exactly ‘strict modifies’
as mentioned in Sect. 5.3. The guarantees clause is new. Here, \prev
denotes the previous intermediate state on the trace. Thus, it describes a
two state property on the trace. For missing clauses, the defaults are the set
of all locations or true, respectively. This thread specification is a kind of
class level specification, that may only be given to subtypes of Thread and
is indicated by the keyword concurrent_behavior.

On the ‘rely’ side, the relies_on clause gives a functional rely condition
through a boolean expression, that may use the new special operator \prev,
which allows to refer to a previous state. It is similar to the \old operator,
that refers to the prestate in postconditions of method contracts. It may
use the \prev operator. A missing relies_on clause defaults to true. The
not_assigned clause lists locations on which we can rely on not to be
changed by the environment. A missing not_assigned clause defaults to
the empty set.

To retain sequential modularity, thread specifications can also be given
to method contracts, as displayed in the example in Listing 8.9 on the next
page, which is an adaptation of the example from Sect. 5.5.1. This can
be used to prove the postcondition of a method w.r.t. concurrency. Note,
however, that we have not yet developed a concept for using rely/guarantee
contracts in sequential composition.

Our previous work [Bruns, 2015a] contained an additional competing
clause to specify the set of concurrently running thread types in a non-
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/*@ normal_behavior
@ relies_on true;
@ not_assigned z;
@ ensures z == \old(z)+1;
@*/

public void inc() { this.z++; }

Listing 8.9: JML method contract with relies_on and not_assigned
clauses

modular way. This is not necessary in the approach as any environment
can be specified in its effect as described above. In particular, the empty
environment satisfies not_assigned \everything, which is sufficient to
prove that all properties that are valid for sequential executions are also
valid in the concurrent setting.

Ghost Fields With Atomic Updates

As mentioned in Sect. 5.6, ghost fields play an important role in specifying
synchronization and progress in concurrent programs. In general, ghost fields
in JML extend the system state, but are semantically equivalent to regular
Java fields (cf. Sect. 8.2.2). In Sect. 5.6, however, we have assumed that
ghost fields can be accessed atomically for both reading and writing. This
constitutes a novel kind of ghost fields, that we represent in our extension
to JML through an additional modifier atomic. Since ghost fields extend
the regular system state, they may introduce inconsistencies into a proof.
Additional proof obligations will be necessary to ensure consistency of ghost
state and ‘regular’ state.

8.4 Information Flow Specifiation

Scheben and Schmitt [2012a]; Scheben [2014] present an extension to JML
that allows to specify confidentiality properties for Java methods, extend-
ing JML’s established contract framework. This extension is already im-
plemented in the 2.4 stable release of the KeY verification system. The
approach—though unconventional—allows fine-grained, flexible, and com-
positional security specifications as well as a convenient way to declare
multi-level security. It includes declassification and erasure policies.

These information flow specifications use a knowledge-based notion of
low-equivalence, that does not explicitly involve security levels (of a security
lattice; cf. Sect. 2.2). Scheben and Schmitt argue that it is unnatural for a
developer to devise a security lattice a priori and to assign locations to its
levels. Producing an appropriate lattice can be nontrivial. Knowledge-based
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specification, on the other hand, is expected to be easier to derive from
high-level requirements.

Similar to the general frame problem in object-oriented programs, security
specifications need to refer to sets of locations that are determined only
dynamically. This requires a flexible and expressive specification language.
The present specification approach builds on the flexible approach to framing
presented above in Sect. 8.2.3.

8.4.1 Actors and Views

The specification approach by Scheben and Schmitt [2012a] is motivated by
the actor model by Poetzsch-Heffter et al. [2011]. Each actor in a system
is associated with a view they have on the system. A view describes an
upper bound for the information that an actor is permitted have. Technically,
a view is an ordered set of observations of the system. An observation
is a statement about the system, i.e., a logical term or formula. Typical
atomic observations are heap locations or method parameters, but compound
observations can be, e.g., ‘a+ b’ or ‘a > 0.’ Secure information flow between
observation x to y means that x is contained in every view in which y is
contained. As observations can be arbitrary complex statements, as opposed
to mere memory locations, this definition readily includes declassification
policies.

Consider, for instance, a multi-user system with authentification. The
actors are 1. an administrator and 2. an arbitrary number of regular users.
Each user holds a view on their user name and password, while the adminis-
trator holds a view on all user names, but no passwords. The user names
are shared between multiple views. For n users, we have the following views:
user i = ⟨namei, pwi⟩ for each i ∈ [0, n) and admin = ⟨name0, . . . ,namen−1⟩.
In this example, a security lattice is implicitly given through the lattice of
intersections and unions of the views (that are subsets of the set of observa-
tions). However, in general, a view-based specification cannot be translated
to a lattice notion directly since observations may not correspond to locations
(cf. Scheben [2014, Sect. 4.2]).

8.4.2 Information Flow Specification in JML

Information flow is specified per method in a Java, extending the established
concept of method contracts in JML. This allows to define views locally,
without further knowledge of the complete program, finally enabling modular
specification. Views are determined dynamically. Syntactically, they are
represented by observation expressions [Scheben, 2014, Sect. 3.1]; see also
the discussion in Sect. 6.5.7. This allows a flexible means of specification
that caters for the special requirements of modular, object-oriented software,
in particular dynamically allocated data structures. For instance, it allows
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public class LogIn {
private String[] user, pw;

/*@ requires user.length == pw.length;
@ determines \everything, \result, \exception
@ \by \nothing
@ \declassifies
@ (\exists int i; 0 <= i && i < pw.length;
@ user[i] == c_user && pw[i] == c_pw);
@*/

public boolean checkPw (String c_user, String c_pw)
{. . .}

}

Listing 8.10: The class LogIn implements a password checker. The
JML information flow specification consists of a precondition and a
determines clause. It states that the result of the checkPw method
(public output) does not depend on any secrets, except for—as stated
in the \declassifies clause—the fact whether there is an entry in the
password file that fits the input.

to specify security in the above example for any value of n (that represents
the size of an array or the length of a linked list, etc.).

The information flow method specification by Scheben [2014] uses a
novel kind of method contract clause, the determines clause, as the cen-
tral construct.19 Listing 8.10 displays an example specification, using the
authentification example from above. Clauses basically are of the shape
determines Obs1 \by Obs0; where Obs0 and Obs1 are observation expres-
sions. These are simply written as a list of expressions, separated by commas;
any sequence expressions are flattened. These expressions may use standard
JML keywords, such as \result to refer to a method result. Likewise, the
newly introduced keyword \exception refers to the exception being raised
(or not) [Scheben, 2014, Sect. 8.2.3]. The empty view is represented by the
keyword \nothing.

Observations expressions are evaluated in the poststate and prestate,
respectively. Let Vi be the semantical view represented by observation ex-
pression Obsi in some state. Intuitively, the above clause means that V1 is
completely determined by the information provided by V0—or equivalently,
that the values of the elements of V1 must not depend on any information
outside V0.20 See [Scheben, 2014, Def. 3] for a formal definition of noninter-

19The earlier [Scheben and Schmitt, 2012a] features a separates clause, also known as
respects, that has slightly different semantics. However, both translate to the same kind
of proof obligations.

20Remember that the elements of Vi are themselves syntactical expressions of the
language, not values. For an even more intuitive understanding, observation expressions
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ference w.r.t. observation expressions. Security policies involving multiple
views—and thus multiple security levels—can be expressed through multiple
determines clauses.

Typically, both prestate and poststate observation expressions are the
same.21 As a shorthand notation for this case, Obs0 can be the keyword
\itself. Scheben’s specification approach features some syntical sugar to
emulate traditional specification styles: determines clauses can be amended
with subclauses headed by the keywords \declassifies and \erases, that
are being followed by a list of expressions. This allows the specifier to follow
the traditional lines of source/sink annotation, i.e., only to write locations in
the main clause and declassify (or erase) certain expressions retroactively.
The specification further includes standard requires clauses (precondition)
to express conditional noninterference (cf. Sect. 6.2.4).

To analyze object-oriented programs, the \new_objects subclause speci-
fies a list of expressions. These are meant to point to the freshly allocated
objects in the poststate. This translates to the set N in (6.12), following the
approach in Sect. 6.5.6.

To make verification more feasible, Scheben further extends other JML
specification elements with determines clauses in the same spirit, namely
loop invariants, block contracts [Wacker, 2012], and class invariants.

8.4.3 The Requirements for Information Flow Language

For many real world problems, a semantically precise information flow analysis
is just too expensive in practice. These problems can be solved by more
lightweight automated techniques. To facilitate coöperation between different
techniques and tools, in particular within the Reliable Secure Software
Systems (RS3) project, Ereth, Mantel, and Perner [2014] proposed a common
specification language called Requirements for Information Flow Language
(RIFL). The main motivation is to provide an intuitively understandable,
light-weight exchange format. RIFL specifies programs and possible flows on
an abstract level. By design, there is no common formal semantics. The idea
is that the intuitive security properties expressed in RIFL are translated in a
language- and tool-dependent way. The specific adaptation for Java as target
language has been co-developed by the author as part of the RS3 project.

RIFL is split into language-independent and language-dependent modules.
The generic, language-independent part allows to specify an information flow
security policy w.r.t. abstract classes (called categories) of sources and sinks.
Categories are assigned to hierarchical security levels (called domains). As
of RIFL 1.0, only standard (Cohen-style) noninterference (see Sect. 6.2) is
supported, but the specification may involve arbitrary lattices. Means for

can typically be thought of lists of locations, as in classical low-equivalence definitions
(cf. Sect. 6.2).

21Their value in the prestate and poststate may still be different.
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declassification or more refined notions of noninterference are to be added in
a later release. Apart from secure information flow, also functional properties
can be expressed in RIFL.

RIFL for Java

The language-dependent part of RIFL identifies the kinds of sources and
sinks that exist in the language. For Java, sources are fields, the parameters
of the method under investigation, and the return values of called methods.
Conversely, sinks are fields, the return value of the method under investigation,
and the parameters of called methods. It also possible to refine general
policies to account for language-specific security requirements. This includes
declaring default categories and domains, that are common to all programs.
For Java, this could include the relaxation to object-sensitive noninterference
as in Sect. 6.5 or to assign standard API methods to categories.

The upcoming 2.6 release of KeY provides experimental support for
RIFL specifications, implemented by the author. In our approach, we do
not generate proof obligations directly from RIFL specifications, instead
we translate them to the JML extension for information flow, that has
been introduced in Sect. 8.4. This intermediate step bears two advantages.
Firstly, the resulting JML specification can be shared with other tools that
understand JML (at least the functional part). Secondly, proofs typically
require additional user input, such as loop invariants, that have to be added
manually. As loop invariants are tool-specific specifications, they are not
part of RIFL specifications.

In the current state, there are some limitations: 1. The parser does not
accept the final syntax of RIFL 1.0, but only the preliminary syntax of
RIFL alpha, defined in a previous proposal. 2. We assume that programs
provide proper encapsulation, i.e., methods only access fields of this. 3. Only
a two-point security lattice (per method) is supported. Since the security
lattice is only implicit in our notion, categories are ignored in the translation.
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9
Verification of an

Electronic Voting System

Electronic voting (e-voting) systems that are used in public elections need
to fulfil a broad range of strong requirements concerning both safety and
security. Among these requirements are reliability, robustness, privacy of
votes, coercion resistance and universal verifiability. Bugs in or manipulations
of an e-voting system may have considerable influence on society—and thus
the life of the humans living in a country—where such a system is used.
Hence, e-voting systems are an obvious target for software verification.

In this chapter, we report on an implementation of such a system in Java
and the formal verification of functional properties thereof on the source level.
We prove these properties using the KeY verification system (see Chap. 7).
Even though the actual components are clearly modularized, the challenge
lies in the fact that we need to prove a highly nonlocal property: After all
voters have cast their ballots, the server calculates the correct votes for each
candidate w.r.t. the original ballots. This kind of trace property is difficult
to prove with static techniques like verification and typically yields a large
specification overhead. In the approach that we follow, we cater for that by
first verifying a basic implementation of the system. The basic system is
refined on later iterations, such that previously obtained proof artifacts are
still valid.

9.1 Electronic Voting

Elections form a part of everyday life that has not (yet) been fully conquered
by computerized systems. This is partly due to the relatively high effort—
elections do not occur often—and partly due to little public trust in security.
The public discussion of this issue—in Germany at least [Deutscher Bun-
destag, p. 101]—has revealed a high demand for secure systems and in turn
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a projection of high costs to construct those, that lead to the introduction
of electronic voting being suspended. Systems for electronic casting and
tallying of votes that are in the field in other countries (e.g., the Netherlands
(cf. [Jacobs and Pieters, 2009]), the USA) are known to expose severe vul-
nerabilities. Apart from vote casting, computers are actually used in other
activities related to elections such as voter registration or seat allocation.

A general goal is that electronic voting is at least as secure as voting
on paper ballots. This includes confidentiality of the individual ballots/
votes. In particular they must not be attributed to a voter. But there is
also an integrity issue: the final election result must reproduce the original
voter intention; no vote must be lost, none must be manipulated. In paper-
based elections, this mostly depends on trust in the election authorities.
In electronic voting, the idea is to issue a receipt to the voter, a so-called
audit trail, for casting their vote. After the votes have been tallied, the
voters can then check on a public bulletin board whether their vote has
actually been counted. This is called verifiability of the vote. To achieve
verifiability and confidentiality of individual votes at the same time appears
to be contradictory. The proposed solution is cryptography—that allows
trails to be readable only to the voter. Some electronic voting systems also
try to rule out voter coercion (by threatening or bribe). The idea is that trail
and bulletin board are of a shape such that an attacker cannot distinguish
the vote even under the circumstance that the coerced voter is trying to
reveal it. This way, electronic voting may be even more secure than voting
using paper ballots.

Due to the nature of requiring highest security guarantees, electronic
voting has been frequently designated as a natural target for verification,
e.g., by Clarkson, Chong, and Myers [2008]; Cortier [2014].

Yet, proving security is only a necessary step in establishing electronic
voting. Systems must gain the trust of the public in order to be a democratic
instrument. An important practical aspect of elections is fairness. As argued
by Bruns [2008], fairness requires a profound understanding of verifiability
and confidentiality not only to security experts, but to any eligible voter—
who may be a layperson to formal security analysis. This issue is usually
not considered with the present, complex systems. It is known that this
very complexity is a prime reason why e-voting is not accepted by the public
[Deutscher Bundestag, Sect. 2.4].

9.2 System Setup

We consider parts of the electronic voting system sElect described by Küsters,
Truderung, and Vogt [2011]; Küsters and Truderung [2014]; Bruns et al.
[2015a], that was developed in the RS3 priority program. In this system, a
remote voter can cast one single vote for some candidate. This vote is sent

210



9.2. System Setup

through a secure channel to a tallying server. The secure channel is used
to guarantee that voter clients are properly identified and cannot cast their
vote twice. The server only publishes a result—the sum of all votes for each
candidate—once all voters have cast their vote.

9.2.1 Verification Approach

As described by Beckert, Bruns, Küsters, Scheben, Schmitt, and Truderung
[2012b], the distant goal is to show that no confidential information (i.e.,
votes) are leaked to the public. Obviously, the result—a public information—
does depend on confidential information. This is a desired situation. In order
to allow this, the strong information flow property needs to be weakened, or
parts of the confidential information need to be declassified. Beckert et al.
describe how such a property can be formalized using Java Dynamic Logic
and proven in the KeY verification system.

Declassification —in the sense that parts of the secret information are
purposely released1—is essentially a functional property.2 In an election, the
public result is the sum of votes, that result from secret ballots. In general,
this cannot be dealt with using lightweight static analyses, such as type
systems or program dependency graphs, that are still predominant in the
information flow analysis world. Instead, the problem demands semantically
precise information flow analyses as provided by the direct formalization of
noninterference in dynamic logic [Scheben and Schmitt, 2012a]. In fact, this
functional verification can be decoupled from the verification of information
flow properties. Here, we report on functional verification only.

There are two approaches to verify information flow properties in this
system. The first one, described in [Scheben, 2014, Chap. 9], is based on
dynamic logic formalization of noninterference and theorem proving in KeY
as layed out by Scheben and Schmitt. Scheben’s proof heavily relies on
functional correctness established by the proofs described in Sect. 9.3.2
below. The accounts given in this chapter and by Scheben [2014, Chap. 9]
are companions to each other as they both report on different facets of the
same problem.

Another approach combines functional correctness proofs in KeY with
lightweight static information flow analysis as proposed by [Küsters, Tru-
derung, Beckert, Bruns, Graf, and Scheben, 2013]. The target program is
transformed in such a way that there is no declassification of information.
We then prove that this transformation preserves the original functional be-
havior. This is discussed in Sect. 9.3.3. It allows the static analyzer JOANA

1This understanding is opposed to other uses of the term ‘declassification’ that denote
the release of any information under certain constraints.

2We restrict ourselves to functional declassification here. As mentioned in Sect. 6.4.4,
the temporal dimension of declassification would also be of interest in the election scenario.
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[Hammer, 2009; Graf et al., 2013]—which is sound, but incomplete—to report
the absence of information flow.

Verification of Cryptographic Implementations

The system uses cryptography and other security mechanisms. From a
functional point of view, cryptography is extremely complex and it seems
largely infeasible to reason about it formally. In particular, the usual as-
sumption in cryptography that an attacker’s deductive power is polynomially
bounded—this is called a Dolev/Yao attacker [Dolev and Yao, 1983]—can not
be reasonably formalized. As a matter of fact, even encrypted transmission
does leak information and therefore strong secrecy of votes—which can be
expressed as noninterference—is not fulfilled: the messages sent over the
network depend on the votes and could theoretically be decrypted by an
adversary with unbounded computational power. As a consequence, infor-
mation flow analysis techniques—like the ones presented in Sect. 2.4—would
classify the sElect system insecure, although it is secure from a cryptographic
point of view.

Küsters et al. [2011]; Küsters et al. [2012] proposed a solution to this
problem: the authors showed that the real encryption of the system can
be replaced by an implementation of ideal encryption. Ideal encryption
completely decouples the sent message from the secret. Even an adversary
with unbounded computational power cannot decrypt the message. The
receiver can decrypt the message through some extra information sent over a
secret channel which is not observable by adversaries. Küsters et al. showed
that if—in the system with ideal encryption—votes do not interfere with
the output to the public channel, then the system with real encryption
guarantees privacy of votes. Hence, it is sufficient to analyze the system with
ideal encryption.

9.2.2 System Overview

The implementation is not build on distributed software systems, but is
rather a simulation of several components involved. The basic protocol works
as follows: First, voters register their respective client (represented by a class
Voter here) to the server, obtaining a unique identifier. Then, they can send
their vote along with their identifier (once). Meanwhile, the server waits for
a call to either receive one message (containing a voter identifier and a vote)
or to close the election and post the result. In the former case, it fetches a
message from the network. If the identifier is invalid (i.e., it does not belong
to a registered voter) or the (uniquely identified) voter has already voted,
it silently aborts the call. In any other case, the vote is counted for the
respective candidate. In the latter case, the server first checks whether a
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sufficient condition to close the election holds3, and only then a result (i.e.,
the number of votes per candidate) is presented. This is illustrated in the
sequence diagram in Fig. 9.1 on the next page.

This simplified representation hides many aspects essential to real systems.
We assume both a working identification and that identities cannot be forged.
We assume that the network does not leak any information about the ballot
(i.e., voter identifier and vote). This is meant to be assured through means of
cryptography. The network may leak—and probably will in practice—other
information such as networking credentials. We do not need to assume
that the network communication is lossless or must not produce spurious
messages.

9.2.3 Verification of a Nonmodular Software System

The particular challenge in this case study is that we prove a highly nonlocal
(both spatial and temporal) property: after the election is closed, the original
votes of all voters who are marked as voted in the server are counted to the
result. This property is spatially nonlocal since it refers to the server and all
voters simultaneously. It is temporally nonlocal since it refers to a particular
state. This is very much countering the idea of Design by Contract (DbC)
[Meyer, 1992], where properties are local to method call (and return) events.
Instead, we have a kind of a trace property, that needs to be proven for every
run of the protocol.

To verify this in the implementation, runs of the protocol are simulated
through Java code again. Then we can annotate the synthetic main method
with the desired property. As we will see, a simulation in Java brings with
it the whole ‘clutter’ of a real-world language, such as object identities,
createdness, heap separation, etc. Many of the specification items intended
for the main method need to ‘tracked’ through the program stack trace. This
approach comes with some major disadvantages. Firstly, the resulting speci-
fications are strongly specialized and probably cannot be reused. Secondly, it
produces a high specification overhead and thus also a verification overhead.
Finally, reasoning about Java programs is far more expensive than reasoning
on an abstract level. For KeY, though performing symbolic execution is not
a bottleneck, reasoning about heap allocated data definitely is.

Example 9.1. Consider the following problem: The entries of two integer
vectors (of fixed length) are nonnegative, prove that the vector resulting from
pairwise addition again contains only nonnegative entries. This is more or less
obvious; and a formalization in first order logic can be proven in KeY in less
than 100 rule applications, taking 0.1 s time on a standard desktop computer.
Now we implement this in Java, using arrays as vector representation, as

3In the present implementation, this is when all voters have cast their votes.
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shown in Listing 9.2.4 The first thing to notice is the outright specification
overhead, including a loop invariant and frame annotations. The shown
method can be proven correct w.r.t. the given specification automatically in
KeY. But the proof size is considerably larger than for the FOL version. It
now takes over 6500 rule applications and 11.5 s time.

1 class VectorAdd {
2 int[] a, b;
3

4 /*@ requires a.length == b.length;
5 @ requires (\forall int j; 0 <= j && j < a.length;
6 @ a[j] >= 0 && b[j] >= 0);
7 @ ensures (\forall int j; 0 <= j && j < a.length;
8 @ \result[j] >= 0);
9 @ ensures \fresh(\result);

10 @ pure
11 @*/
12 int[] add() {
13 int[] c = new int[a.length];
14 /*@ maintaining 0 <= i && i <= a.length;
15 @ maintaining (\forall int j; 0 <= j && j < i;
16 @ c[j] == a[j] + b[j]);
17 @ maintaining \fresh(c);
18 @ assignable c[*];
19 @ decreasing a.length-i;
20 @*/
21 for (int i=0; i<a.length; i++)
22 c[i] = a[i]+b[i];
23 return c;
24 }
25 }

Listing 9.2: A simple Java program implementing vector addition

Our approach to tackle the complexity of the system is to verify a heavily
reduced version first, then to refine it stepwise. This way, only smaller
components are changed and the modular verification paradigm enshrined
in the KeY system allows us to reuse many of the already obtained proofs
while we only verify the changed components. The versions of the system
produced in this way were developed by ourselves, in contrast to the actual
sElect system implemented by Küsters et al.

4We added (weak) purity and freshness of the result to the postcondition to make the
method ‘more functional.’
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9.3 Implementations and Verification

As described above, the goal is to verify a simple implementation of a
distributed e-voting system. The design is based on the sElect system
developed by Küsters et al., but reduced to its essential functionality. We start
with a very basic version and incrementally add functionality or modeling
aspects. Each step includes formal specification in JML and a full functional
verification using a development version of KeY (pre-2.2).

For some of the proofs, we have given figures on the number of proof
steps and the computation time for automated rule application. Automated
rule application in KeY is supposed to be deterministic. Therefore, given
the same version of KeY and the same options, the figure for proof steps
should be verifiable in new experiments. Time measurements have been
taken on a standard laptop computer (1 processor core, 1.5 GHz, 4 GiB of
RAM, Debian/Linux). Another version of KeY, in particular the 2.2 release,
may yield other figures. Please note that it is difficult to give figures for
manual proofs. Firstly, the human interaction is necessary and therefore
cannot be compared against computation time. Secondly, the time for the
remaining automated rule application is not reliable as it may include time
for rules applied automatically, but reverted by the user.

In any implementation, there is a class Setup that contains the main loop,
that contains all global actions. The overall functional property to prove is
that—after all votes have been cast (and collected by the server)—the server
posts the correct number of votes per candidate. More precisely, the ‘correct
number’ corresponds to the sum of votes for each candidate as on the ballots
filled in by the voters.

9.3.1 Basic System

In the basic implementation, there are classes Server and Voter (clients) as
well as a Message encapsulation class. Voters cast their votes in the order in
which they are defined (and exactly once). Messages are passed directly to
the server (through a method call).

The main method along with JML specifications is shown in Listing 9.3
on the next page. In the preconditions, we assume that no voter has cast
their vote yet (or more precisely, the server has not yet marked the vote as
cast) and all candidates have zero votes (in the server). The postcondition
states that the number of votes for each candidate is exactly the number of
voters who voted for them. This is expressed using the generalized quantifier
\num_of (see Sect. 8.1.1). The explicit diverges clause allows this method
to not terminate.5

5The actual sElect implementation does terminate, but since the implementations
shown below do not terminate, we only require partial correctness for the sake of consistent
properties.
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1 /*@ normal_behavior
2 @ requires (\forall int j;
3 @ 0 <= j && j < numberOfVoters;
4 @ !server.ballotCast[j]);
5 @ requires (\forall int i;
6 @ 0 <= i && i < numberOfCandidates;
7 @ server.votesForCandidates[i]==0);
8 @ ensures (\forall int i;
9 @ 0 <= i && i < numberOfCandidates;

10 @ server.votesForCandidates[i] ==
11 @ (\num_of int j;
12 @ 0 <= j && j < voters.length;
13 @ \old(voters[j].vote) == i));
14 @ diverges true;
15 @*/
16 public void main () {
17 /*@ maintaining \invariant_for(this);
18 @ maintaining 0 <= k && k <= numberOfVoters;
19 @ maintaining (\forall int j;
20 @ 0 <= j && j < numberOfVoters;
21 @ j < k <==> server.ballotCast[j]);
22 @ maintaining (\forall int i;
23 @ 0 <= i && i < numberOfCandidates;
24 @ server.votesForCandidates[i] ==
25 @ (\num_of int j;
26 @ 0 <= j && j < k;
27 @ voters[j].vote == i));
28 @ assignable server.ballotCast[*],
29 @ server.votesForCandidates[*];
30 @*/
31 for (int k= 0; k < voters.length; k++) {
32 server.onCollectBallot(voters[k].onSendBallot());
33 }
34 server.onSendResult();
35 }

Listing 9.3: The main loop in the basic setup
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Since the loop is based on simple linear traversal of an array, the invariant
is essentially an abstraction from the contract. The server entries for ballots
cast and votes for candidates are the only changed locations here.

In this version, there are 4 methods to be verified with a total of 18 single
lines of (executable) code and approximately 80 lines of specification.6 The
specification includes class invariants, method contracts, and loop invariants.
Given our overall experience in formal specification, a 1:4 ratio of code against
specification seems reasonable. As a positive result, the implementation can
be verified without further user interaction. The downside is the proof size
for the main method. It contains over 27,000 proof steps and took 210 s of
computation time.

9.3.2 Adding a Network Component

To model a more realistic system, in the second implementation, we allow
the adversary to decide on the order of events (i.e., voter submits a ballot,
server collects a ballot, election ends). We now have an explicit modeling
of a network component, through which messages are sent. However, the
implementation is based on synchronous communication as the server imme-
diately fetches a message that has been sent. This is the version on which
Scheben [2014] reports.

The main loop is changed such that the order in that voters cast their
votes is decided by the environment (low input). We have an additional class
Environment that models all global sources and sinks. The untrusted input
from the environment needs to be sanitized, but still the main loop may
not terminate and voters are requested to cast their votes for an arbitrary
number of times. The classes NetworkClient and SMT (for ‘secure message
transfer’) model the network component. In the implementation, they mainly
encapsulate a single message. Except for these additional classes, the size of
the system is about the same as above in Sect. 9.3.1.

public void main () {
while ( !server.resultReady() ) { // possibly infinite loop

// let adversary decide send order
final int k = Environment.untrustedInput(voters.length);
final Voter v = voters[k];
v.onSendBallot(server);

}
publishResult();

}

Listing 9.4: Implementation of the main method.

6Since there is no canonical representation, specification cannot be quantified objec-
tively.
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public interface Environment {
//@ public static ghost \seq envState;

//@ public static model \locset rep;
//@ public static represents rep = \locset(envState);
//@ accessible rep : \locset(envState);

/*@ normal_behavior
@ ensures true;
@ assignable rep;
@ determines Environment.envState, \result
@ \by Environment.envState;
@*/

//@ helper
public static int untrustedInput();

/*@ normal_behavior
@ ensures true;
@ assignable rep;
@ determines Environment.envState
@ \by Environment.envState, x;
@*/

//@ helper
public static void untrustedOutput(int x);

/*@ normal_behavior
@ ensures 0 <= \result && \result < x;
@ assignable rep;
@ determines Environment.envState, \result
@ \by Environment.envState, x;
@*/

//@ helper
public static int untrustedInput(int x);

}

Listing 9.5: Declaration of the interface Environment.
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Listing 9.4 shows the implementation of Setup#main(). The adversary
decides in the loop which client should send its vote next, until the server
signals that the result of the election is ready. More precisely, the adversary
is modeled through a call to the method Environment.untrustedInput(),
that decides which client should send its vote. When subsequently the
method onSendBallot() is called on the corresponding Voter object, the
client sends its secret vote (stored in the attribute vote) to the server
(synchronously), with the help of an implementation of ideal encryption. In
its onCollectBallot() method, the server immediately counts the vote—
provided that the voter did not vote before. Finally, the server is asked by
a call to the method resultReady() whether the result of the election is
ready. If so, the loop terminates and the result is published by a call to the
method publishResult().

We have a class Environment that models all global sources and sinks (see
Listing 9.5 on the preceding page). The state of the environment is abstracted
by a (ghost) field of type sequence. Because any computable information
can be encoded into a sequence of integers, this is a valid abstraction. Each
method of the Environment has a contract which, in essence, guarantees
that the environment cannot access any other part of the evoting system.
More precisely, each method is required to meet the following restrictions:
(1) the final state of the environment depends at most on its initial state and
the parameters of the method, (2) if the method has a result value, then also
the result depends at most on the initial state of the environment and the
parameters of the method, and (3) at most the state of the environment is
modified.

The untrusted input from the environment needs to be sanitized, but
still the main loop may not terminate and voters are requested to cast their
votes for an arbitrary number of times. The classes NetworkClient and
SMT (for ‘secure message transfer’) model the network component. In the
implementation, they mainly encapsulate a single message.

The functional contract for the main method in this version is identical
to the one shown in Listing 9.3. In the preconditions, we assume that no
voter has cast their vote yet (or more precisely, the server has not yet marked
the vote as cast) and all candidates have zero votes (in the server). The
postcondition states that the number of votes for each candidate is exactly
the number of voters who voted for them. This is expressed using the
generalized quantifier \num_of in Line 11. The explicit diverges clause
allows this method to not terminate.

The method Voter#onSendBallot() generates a new message containing
the vote of the voter and sends it over the network, see Listing 9.6 on the
next page. Setup#onSendBallot() has two contracts. Both require that the
invariant of the server holds and ensure that the final state of the environment
depends at most on its initial value. They differ in the functional part: the
first contract requires additionally that the voter has not voted yet. In
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/*@ normal_behavior
@ requires ! server.ballotCast[id];
@ requires \invariant_for(server);
@ ensures server.votesForCandidates[vote]
@ == \old(server.votesForCandidates[vote])+1;
@ ensures server.ballotCast[id];
@ assignable server.votesForCandidates[vote],
@ server.ballotCast[id], Environment.rep;
@ determines Environment.envState \by \itself;
@ also normal_behavior
@ requires server.ballotCast[id];
@ requires \invariant_for(server);
@ ensures \old(server.votesForCandidates[vote])
@ == server.votesForCandidates[vote];
@ ensures \old(server.ballotCast[id])
@ == server.ballotCast[id];
@ assignable Environment.rep;
@ determines Environment.envState \by \itself;
@*/

public void onSendBallot(Server server) {
Message message = new Message(id, vote);
//@ set message.source = this;
SMT.send(message, id, server);

}

Listing 9.6: Contract of Voter#onSendBallot()

this case the contract ensures that the server counted the vote correctly by
incrementing the value of server#votesForCandidates[vote]. The second
contract requires that the voter did already vote and guarantees in this case
that the server does not count the vote again.

The counting takes place in the method Server#onCollectBallot().
It is called indirectly by SMT.send(). Because onCollectBallot() has a
purely functional contract, it will not be considered in detail here. The same
holds for the method resultReady() which simply returns true if all voters
voted. In total, this implementation consists of 11 methods with 150 SLoC.

For the specification effort, this means that we need refined contracts
that take into account the situation that voters have already cast votes.
In the loop invariant—which is still the one displayed in Listing 9.3—we
talk about a bounded sum (indicated by the keyword \num_of in Line 11)
that is defined through a nontrivial induction scheme: the elements are not
added linearly, but only under stuttering and permutation. This makes
it—at least with the current machinery—impossible to prove the invariant
automatically. To prove equality of sums, we had to apply the ‘split sum’
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rule several times interactively. This rule rewrites a sum comprehension into
two comprehensions over split ranges. In addition, we have added some rules
representing lemmas dealing with bounded sums to the rule base of KeY
and we have proven their soundness. The proof for main finally took about
63,000 proof steps, of which only 10 were applied by hand. The computation
time for the automated parts of the proofs was 580 s.

The specification of the Voter#onSendBallot() method has changed in
comparison to Sect. 9.3.1. Its proof is slightly larger—from 600 proof steps
and 1.3 s in the basic version to 2400 proof steps and 6 s—but the KeY prover
was still able to find the proof without further user interaction. All other
methods were not touched; and their respective proof is still valid.

9.3.3 Hybrid Approach Setup

Küsters, Truderung, Beckert, Bruns, Graf, and Scheben [2013]; Küsters
et al. [2015]; Bruns et al. [2015a] describe a hybrid approach7 that combines
functional verification in KeY with lightweight information flow analysis
based on program dependency graphs [Hammer, 2009]. In order to leverage
the JOANA tool [Graf et al., 2013] to accept declassification, the original
program is transformed such that it does not have any illegal information
flow by construction.

1 private Setup () {
2 final int n = numberOfVoters;
3 final int m = numberOfCandidates;
4

5 // let adversary create fake voters
6 Voter[] v1 = createFakeVoters();
7 Voter[] v2 = createFakeVoters();
8 int[] r1 = computeResult(v1);
9 int[] r2 = computeResult(v2);

10 if (equalResult(r1,r2)) {
11 // store correct result
12 out = r1;
13 // select voters according to secret
14 voters = secret? v1: v2;
15 server = new Server(n, m);
16 } else
17 // abort if not equal
18 throw new Throwable();
19 }

Listing 9.7: The ‘hybrid approach’ setup

7This is a broader notion of ‘hybrid’ than in [Russo and Sabelfeld, 2010], where it
refers to combinations of static and dynamic information flow analyses.
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This technique is based on a simulation of noninterference in the Java code.
The secret here is only a single bit (stored in the static field Setup.secret).
In the setup, two arrays of voter objects are created according to the envi-
ronment to simulate two possible high inputs. The program aborts in case
they yield nonequivalent results. At this point in the program execution,
both high inputs are incomparable modulo the declassified property (i.e., the
result of the election). Then one array is chosen, depending on the secret,
to be used in the main loop. This setup can be seen in Listing 9.7 on the
facing page.

Since the functional property and the actual implementation did not
change in comparison to Sect. 9.3.2, there are only new verification targets,
namely 1. the Setup() constructor, that establishes the above described setup
and 2. the so-called “conservative extension” method shown in Listing 9.8,
that is called after the election has terminated. The extension effectively
eliminates the declassification through overwriting the result, as computed by
the actual implementation, with a precomputed correct result. The central
goal was to prove that this extension is really ineffective (which is an even
stronger property than conservatism).

Both required significant interaction in proving, while having the auto-
mated prover apply several thousands of rules in between each interactive
step. Interestingly, this is mainly due to the sheer size of the code under
investigation, but not to any particularly pattern that is hard to prove. By
‘size,’ we do not only understand single lines of code, as often in software
analysis, but rather the lack of proper modularization. After all, the proof
for main consists of over 200,000 proof steps, of which some 100 were applied
by hand. The labor invested in verifying it approximately amounts to three
weeks full time.

/*@ requires out == computeResult(voters);
@ requires
@ (\forall int i; 0 <= i && i < numberOfCandidates;
@ server.votesForCandidates[i] ==
@ (\num_of int j; 0 <= j && j < numberOfVoters;
@ voters[j].vote == i));
@ ensures equalResult(out,\old(out));
@*/

private void conservativeExtension () {
out = server.votesForCandidates;

}

Listing 9.8: “Conservative extension” in the hybrid approach setup
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9.4 Discussion

In the course of this chapter, we presented an approach to functionally verify
a Java implementation of an electronic voting system, that is to be deployed
in the field. The work by Scheben [2014, Chap. 9] serves as a companion text,
describing verification of secure information flow in this system with KeY. An
important element of this information flow analysis is the refined definition
of noninterference in the presence of objects, as introduced in Sect. 6.5.

Scheben [2014] claims that his work marks the “first time that preservation
of privacy of votes could be shown on the code level.” In fact, there are other
implementations of electronic voting, that are much more elaborate [Adida,
2008; Clarkson et al., 2008; Bohli et al., 2009; Chaum et al., 2009]. But for
these systems only design level properties have been proven, in particular,
fine-grained information flow properties on the source level have not been
considered yet.

Furthermore, the modifications in Sect. 9.3.3 lay the foundations of a
hybrid approach combining KeY and the automatic analyzer JOANA. The
results by Küsters et al. [2013, 2015]; Bruns et al. [2015a] show that effort can
be considerably reduced through the use of automatic tools while maintaining
the ultimate precision of logic-based approaches.

Lessons Learned

As Scheben [2014] states, analyses of such systems mostly target the design
or the system level. Even a system like the one presented here—which can
be considered small if measured in lines of code—poses a major challenge
to formal verification at code level. Therefore, it is not surprising that the
proofs were laborious.

Actually, far more effort than in conducting the interactive proofs needed
to be put into understanding the system and developing an appropriate
specification. Apart from representing the high level design, an appropriate
specification needs to be correct w.r.t. the program. This in turn requires
early proof attempts with prototype implementations. Our approach to first
verify a very basic version and to refine it later has turned out to be helpful
in this regard. It provided clear, reachable milestones.

An interesting point is that the main complexity resides in the synthetic
setup that is used to model a deployed system and not in the components that
are actually used. It is well-known that tools intended for code verification do
not perform well at system level verification. As already noted by Woodcock,
Stepney, Cooper, Clark, and Jacob [2008], verifying software that was not
originally produced for the purpose of verification almost always constitutes
an ill-fated endeavor. While not the size of system described by Woodcock
et al., we experienced this phenomenon in the system by Küsters et al. The
starting point of our verification was a final piece of software, incorporating
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a considerable number of wellknown software engineering antipatterns. The
program was produced without any formal development process behind it.
In particular, specifications had to be conceived by ourselves, using only the
present source code and informal descriptions of the components’ behavior.
Although there are no guidelines to produce well-verifiable programs, we
believe that adherence to common software engineering guidelines would
render formal specification and verification more feasible.

Nevertheless, this case study serves as a benchmark and has pushed
forward several performance improvements in the KeY system. This includes
both improvements in the strategy (i.e., moving to a more tractable complex-
ity class) and practical implementation changes. In particular, some proofs
forced KeY to consume a lot of memory. In the past, memory has never been
the limiting force in proofs, but here KeY used up to 40 GiB of RAM. Later
improvements in the implementation found by the author reduced memory
consumption by 30–40% on proofs of this size. These improvements have
played a large part in the development of the previous milestone release
KeY 2.2 in April 2014.

Outlook

This case study clarified the boundaries to which verification scales with
the KeY prover. Going even further, we performed first experiments with
replacing synchronous by asynchronous message transfer. Again, the client
and server components can be verified with reasonable effort, but the setup
is barely tractable. One reason for that is that the votes are counted in an
unorthodox way as there may be any order in which voters cast their votes.
The proof thus strongly relies on reasoning about permutions. Increased
support for abstraction seems to be necessary for further results.

The presented version of the system works strictly sequential. A natural
next step would be to parallelize parts of the system and to verify it using the
techniques developed in this dissertation. Through the client/server design,
the system is obviously amenable to parallelization. In particular, there is an
unbounded number of clients that each perform the same task (i.e., sending
the ballot). The version with asynchronous communication would be good
starting point for a parallel version.

225





10
Related Work

In this chapter, we review some of the work by others that is related to
the topics of this thesis. For both of the two main themes—verification of
concurrent programs and information flow analysis—there exist extensive
bodies of research. Not everything of that can be discussed here in detail.

Overview

Temporal reasoning as well as verification of concurrent programs has tradi-
tionally been the domain of model checkers or other fully automated analysis
systems. Analysis based on these systems is never complete, and sometimes
not even sound. For concurrent Java, the tools Java PathFinder [Havelund
and Pressburger, 2000] or Bogor [Robby et al., 2006] are available. There are
several others for C and derived languages; see [Rinard, 2001; D’Silva et al.,
2008; Beyer, 2015] for recent overviews. Like all model checking approaches,
these suffer from the state explosion problem. Many analyses are specialized
towards particular properties about concurrent programs, such as data race
freedom [Abadi et al., 2006] or lock freedom (cf. [Gotsman et al., 2009]).

Noninterference is undecidable. This means that there cannot be a sound,
precise, and automated analysis—at least one of them needs to be sacrificed.
Most state of the art approaches are based on a preference of automation
over precision. In particular, analyses based on type systems have been the
predominant information flow analysis technique; cf. [Volpano and Smith,
1997].

This chapter is structured into several sections addressing particular
topics. Section 10.1 discusses work on modal logics that is related to our
logic CDTL and its calculus from Chap. 4. Concepts for modular specification
and analysis of sequential programs are very much related to the established
concepts for concurrent programs, where modularity is essential. This
includes work on dynamic frames and separation logic. We discuss work on
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modularity in Sect. 10.2. In Sect. 10.3, we discuss work that is concerned
with formal analysis of concurrent programs—and as such related to our
approach in Chap. 5. In particular, work on the rely/guarantee approach
is covered in Sect. 10.3.1. Other approaches are based on separation logic
(Sect. 10.3.2) or a combination of both approaches (Sect. 10.3.3).

The second half of this chapter is dedicated to work that is related
to our analysis of secure information flow. Section 10.4 discusses other
semantical approaches. Information flow in concurrent programs is a well-
studied area of research. However, the approaches in this area are usually
incomplete. Therefore, we treat it in a separate section (Sect. 10.5). A similar
argument holds for object-sensitive analyses (Sect. 10.6). Section 10.7 covers
specification of information flow policies. Section 10.8 contains work that is
related to the electronic voting case study in Chap. 9, including approaches
to verify systems that use cryptography.

10.1 Modal Logics

Henriksen and Thiagarajan [1999] describe a dynamic logic where programs
are ω-regular languages, thus traces are infinite words. This logic is not
branching, but instead, implicitly, traces are existentially quantified. The
authors remark that evaluation over traces defined by programs is a strength-
ening of the until operator (the only temporal operator here). One major
difference to our work is, that there is a trace which is part of the model
and all traces in the specification are just subtraces of this; thus it is not
possible to talk about multiple traces. On the other hand this logic is more
expressive than propositional LTL in that temporal properties such as ‘in
every even state’ can be expressed.

Beckert and Schlager [2001] extended Dynamic Logic with a modality
also written J·K, where JπKφ stands for ‘φ holds throughout the execution
of π.’ This can be seen as a special case of DTL because the same property
can be expressed in DTL as JπK□φ. That is, in our earlier work, the temporal
formula was restricted to the form □φ with φ not containing further temporal
operators. Platzer [2007] introduced Temporal Dynamic Logic (dTL) where
programs are hybrid programs; in particular, they are indeterministic, and
therefore, traces are branching. It features formulae of the shapes JπK□φ (‘for
all traces, φ always holds’) and ⟨⟨π⟩⟩♢φ (‘there is a trace such that eventually
φ holds’) where φ is a state formula. There is no further combination of
temporal operators. Similar to our setting in Chap. 4 of this dissertation,
traces can be of finite or infinite length.

Platzer presents a sequent calculus for dTL, which, however, is incomplete,
much due to the continuous state space of hybrid programs. In a follow up
work, Jeannin and Platzer [2014] present dTL2 that allows a restricted set
of combinations of temporal operators such as □♢φ, but no ‘until’ operator.
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They also present a calculus that is relatively complete when only repetition-
free programs are allowed in modalities.

Dynamic logic with temporal assertions is related to Alternating Time
Logic (ATL) [Alur et al., 2002], that extends CTL by featuring explicit
agents that can choose paths. Thus, a program can be seen as an explicit
representation of an actor.

Hybrid logics [Blackburn, 2000] are a family of multi-modal logics that
can explicitly refer to worlds of the underlying Kripke structure. Hybrid
logics feature a ‘satisfaction operator’ @i where i denotes a set of worlds W .
A formula @iφ is valid if and only if there is a w ∈ W such that w ⊨ φ. Note
that validity of the modal formula in this case is independent of a world.
In the special case, that the Kripke structure is linear, we may write @n
where n ∈ N identifies a state. In combination with quantification over the
integers, this allows to embed LTL—plus stronger temporal operators like •n
introduced in Sect. 6.4.2. For this particular application, the use of hybrid
logic is thus similar to our embedding of CDTL into JavaDL in Sect. 7.3.1.

10.1.1 Deductive Verification of Temporal Properties

Reasoning about temporal properties is traditionally the domain of model
checking. Nevertheless, there is some work on deductive techniques (tableaux,
sequent calculi, resolution etc.) applied to temporal logics. Good sources
on the topic of theorem proving for propositional linear time logics are the
articles by Wolper [1985]; Goré et al. [2011] and the textbook chapters by
Goré [1999] and Reynolds and Dixon [2005].

The work by Wolper introduces a tableau method for propositional LTL.
A similar approach can be found in work by Abadi and Manna [1985], which
is then extended to a first order version of LTL [Abadi and Manna, 1990].
It is known that, although LTL is decidable, there does not always exist
a finite proof tree. The proof graph may contain cycles in the presence
of eventualities (i.e., formulas with a positive occurrence of U). There are
different techniques to deal with this. In the calculus presented in this paper,
we use program invariants. The above approaches are two-pass systems: first,
a (cyclic) proof graph is constructed, then, strongly connected components
are identified. Schwendimann [1998] uses additional bookkeeping and on the
fly checks for a one-pass calculus. The sequent calculus for LTL presented by
Brünnler and Lange [2008] uses history annotations on formulae to ensure a
finite proof tree.

Thums, Schellhorn, Ortmeier, and Reif [2004] present a sequent caculus
for Interval Temporal Logic (ITL) [Cau et al., 2002] in order to verify state
charts [Harel et al., 1990] against ITL specifications.
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10.1.2 Temporal Behavior of Programs

Bandera [Corbett et al., 2000] was one of the first projects to aim at software
model checking. It is of particular interest that it employs an implementation-
aware temporal specification language called Bandera specification language
(BSL). The major goal of BSL was to avoid formalisms such as LTL, which
are deemed to be not comprehesible to software developers. Therefore, a set
of particular specification patterns [Dwyer et al., 1999] was selected to form
the essential syntactical entities. In contrast to other specification languages,
it is both state and event based. The language is two-tiered: First the
linear and infinite timeline is divided into scopes which are indicated through
either states or events: global, before Q, after Q, between Q and R, and
after Q until R (i.e., weak until). Within scopes, state- or event-based oc-
curence patterns describe temporal properties: absence, (bounded) existence,
universality, precedence, response. For instance, to express that between any
occurence of Q and R, B occurs always preceeded by A, it can be stated as:
‘after Q until R A precedes B,’ which could be expressed in LTL with weak
until as □ (Q → ((¬B W A) W R)).1 The authors argue that for most prop-
erties to be specified, LTL formulae were to complicated. However, Dwyer
et al. own experimental results show that over 80 % of specifications use the
‘global’ scope, thus giving a property which can be easily expressed through
LTL’s □ operator. Bandera specifications form a subset of expressions from
the intersection of LTL and CTL (if we added bounded operators). There
are some LTL properties which are not expressible in BSL, such as □♢Q,
meaning ‘Q occurs infinitely often’.

Inspired by the Bandera specification language, Trentelman and Huisman
[2002] define an extension to JML with events and temporal properties. The
set of permitted expressions is reduced compared to Bandera; particularily,
scopes can only be triggered by events. Statements not expressible include,
for instance, ‘if φ holds, then eventually m is called’, or φ → ♢callm in LTL,
where φ is a state property. State properties are regular JML expressions
enriched by the ‘enabled’ statement providing whether a method invoked
in that state would terminate normally. Events in this context are calls to
methods and returns from calls (either normal or exceptional). The semantics
for an event to ‘hold’ in a state si of a sequence s̄ is that it represents a
transition from si−1 to si. It is however not clarified in the paper, what is
exactly meant by a ‘state,’ in particular, whether they only consider visible or
observed states. There is a runtime checker implementation for this language
called temporaljmlc [Hussain and Leavens, 2010]. Wagner [2013] provides a
translation from temporalJML style specifications to DTL.

The Competition on Software Verification (SV-COMP) defines a common
input language for a wide range of tools [Beyer, 2015]. It uses ‘globally’
and ‘eventually’ operators to express simple patterns, e.g., G !call(foo)

1There’s actually an error in the original translation provided by Dwyer et al. [1999].
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expresses that a method foo is never called throughout a run. These
specification patterns are restricted to some nonfunctional safety properties
as well as termination.

Gotsman, Cook, Parkinson, and Vafeiadis [2009] use LTL-like temporal
operators to describe the temporal behavior of programs in a C-like language.
Traces can be finite or infinite. This specification is used in an extension
to the rely/guarantee approach for verification of concurrent programs (see
Sect. 10.3.3 below).

Programs of concrete programing languages like Java are usually reasoned
about in a state based manner. There are a few runtime checking approaches
that check for trace properties using LTL-like specification [Bartetzko et al.,
2001; Stolz and Bodden, 2006]. Hussain and Leavens also check assertions at
runtime, but in addition, they use temporalJML as an extension to the JML
specification language, that allows to write high level temporal properties,
but is not as expressive as LTL.

10.2 Modular Specification and Verification

Together with the annotation language of the ESC/Java tool [Flanagan et al.,
2002], the JML language has been a pioneer in the area of annotation based
specification languages dedicated to a single programing language. JML has
a number of similarities to the Object Constraint Language (OCL) [Warmer
and Kleppe, 1999], a language for annotating Unified Modeling Language
(UML) class diagrams with constraints on object states. It is used for both
meta modeling and application modeling. In the latter case, annotations
are added to the fine design of the implementation, much like class and
method specifications in JML. But unlike JML, OCL does not subscribe to
any programing language, and therefore does not address language-specific
concerns (like, e.g., exceptions).

JML has been an inspiration for many other program annotation lan-
guages that have emerged over the last years, such as the ANSI/ISO C Spec-
ification Language (ACSL) [Baudin et al., 2010], and the language of the
VCC tool [Cohen et al., 2009], Spec# for C# [Barnett et al., 2005], as well
as Dafny [Leino, 2009, 2010] and Abstract Behavioral Specification (ABS)
[Clarke et al., 2010; Johnsen et al., 2010; Hähnle, 2012], that are integrated
annotation and programing languages.

Cohen, Moskal, Schulte, and Tobies [2010] consider global invariants and
history constraints in concurrent programs. They present sufficient conditions
for local checking of these invariants being sound, leading to additional proof
obligations. This technique is implemented in VCC [Schulte et al., 2008;
Cohen et al., 2009]. It is not complete, as invariants that are not admissible
according to their definition cannot be proven.
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Numerous case studies covering object-based data structures, such as
single linked lists, can be found in the literature. See, for instance, [Zee
et al., 2008; Gladisch and Tyszberowicz, 2013]. In [Bruns, 2011], the author
presents a specification of maps using model fields and dynamic frames
together with an implementation of maps based on red/black trees, which
is one of the challenges named by Leino and Moskal [2010]. Bormer [2014,
Chap. 8] compares the usage of ADTs in VCC and KeY.

10.2.1 Separation Logic and Region Logic

Separation logic [Reynolds, 2002; O’Hearn et al., 2001, 2009] is a nonclassical
extension to Hoare logic. Similar to the dynamic frames approach, it allows
explicit reasoning about the heap, which makes it suitable for reasoning
about pointer programs and about concurrent programs. In contrast to
the dynamic frames approach, separation logic deviates from classical logic.
While reasoning about dynamic frames is based on classical set theory, sepa-
ration properties are not made explicit. Instead, separation logic introduces
the operator ∗ (‘separating and’).2 It simultaneously acts as a classical
conjunction and mandates the existence of a heap separation between both
operands. Separation logic is nonclassical in the sense that formulae can be
‘used,’ which invalidates them when used twice. Like Hoare logic, separation
logic is not closed under FOL operators.

As pointed out by Smans, Vanoverberghe, Devriese, Jacobs, and Piessens
[2014], plain separation logic does not provide complete reasoning w.r.t. con-
current programs. They present the example program shown in Listing 10.1
on the facing page (adapted to Java by the author) where one thread infinitely
increases a shared variable and an arbitrary number of threads observe that
this variable is monotonically increasing. The assertion in Line 17 cannot
be proven since no thread can claim exclusive ownership over the shared
variable.

There are a few tools for separation logic verification, such those by Tuerk
[2009]; Jacobs et al. [2011]; Amighi et al. [2012]. The VeriFast system [Jacobs
et al., 2011] for verification of Java and C programs proves separation logic
properties. It performs symbolic execution like KeY, but does not offer user
interaction. It employs a combination of separation logic and rely/guarantee
to reason about concurrency (see Sect. 10.3.2 below).

Region logic [Banerjee et al., 2013] is a kind of Hoare logic with concepts
from separation logic. It is comparable to JavaDL in a sense that it features
a notion of location sets (named ‘regions’ here) as first-class citizens of the

2There is a second operator −∗ (‘separating implication’ or ‘magic wand’), that can be
intuitively percieved as the dual to ∗.
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1 class Example {
2 static int C = 0;
3

4 void test() {
5 (new Inc()).start();
6 while (true) (new Test()).start();
7 }
8

9 class Inc extends Thread() {
10 public void run() { C++; }
11 }
12

13 class Test extends Thread() {
14 public void run() {
15 int m = C;
16 int n = C;
17 assert m <= n;
18 }
19 }
20 }

Listing 10.1: Example by Smans et al. [2014], that cannot be verified
with separation logic

logic. Banerjee et al. [2008a]; Rosenberg et al. [2012] present systems for
automated reasoning about region logic.

10.3 Deductive Reasoning About Concurrent
Programs

Abrahamson [1979] presents one of the first works on the issues of dynamic
logic, combining program analysis with temporal properties, and concurrency.
Here an unstructured programing language with parallel composition and
explicit labels gives rise to a branching time temporal structure. Trace
formulae are implicitly evaluated over all possible traces. They resemble LTL
formulae, but modalities may contain path conditions (typically sequences
over labels). The paper does not contain formal semantics or a calculus.

Peleg [1987] introduces Concurrent Dynamic Logic (CDL)—based on
Harel’s original notion—where program modalities contain a parallel com-
position operator ∩. The programs here are linear programs; there is no
shared memory. As Peleg himself acknowledges “processes of CDL are totally
independent and mutually ignorant.” For this reason, the formula ⟨π1 ∩ π2⟩φ
with π1 and π2 executed in parallel is just equivalent to ⟨π1⟩φ ∧ ⟨π2⟩φ.
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The book by de Roever et al. [2001] provides a good overview over early
(both compositional and noncompositional) approaches to verification of
shared memory concurrent programs.

Another approach using a dynamic logic—named multi-threaded object-
oriented dynamic logic (MODL)—is taken by Klebanov [2009]; Beckert and
Klebanov [2013], that uses a realistic Java-like programing language and
explicitly constructs interleaved programs. Concurrent programs are com-
posed sequentially into a single program with multiple program pointers, that
represent the state of all threads simultaneously. During symbolic execution
of threads, these pointers are moved in the (unmodified) program code. This
is different to our dynamic logic where we consider sequential programs exe-
cuted by some thread; and program statements are deleted and the program
pointer is implicitly at the beginning of the remainder. The (deterministic)
scheduler is explicitly axiomatized in MODL. They use a Java-like language,
but impose the rather strong requirement that all loops are atomic. It also
includes atomic blocks that are symbolically executed in another kind of
DL modality. Like our calculus, theirs is implemented in the KeY system,
too. Through the vast possibilities of interleaved executions—it can be seen
as an instance of what de Roever et al. [2001] call the global method for
concurrency verification—this approach suffers from a high complexity (i.e.,
the number of possible program states grows exponentially with the number
of program statements). The authors mention that the complexity can be
reduced practically by making stronger assumptions about the scheduling
process, which has not been constrained so far.

Ábrahám et al. [2005, 2008]; de Boer [2007] describe a deductive verifica-
tion system for a subset of Java based on the Owicki and Gries approach.
This subset particularly includes Java-style synchronization and dynamic
thread creation. It does not feature inheritance, which is an essential feature
of object-oriented languages and thus a central concern of the KeY verifica-
tion approach. Programs are specified in the classical style of Hoare [1969].
Ábrahám et al. use the Prototype Verification System (PVS) to discharge
the resulting higher-order proof obligations. They describe a tool called
Verger, which is “the only implemented deductive verification system for
multi-threaded Java,” according to Klebanov [2009]. However, it does not
seem to be available anymore at the time of writing.

10.3.1 Rely/Guarantee

The rely/guarantee approach was introduced by Jones [1981, 1983] and
later rephrased by many authors, including Xu et al. [1997] and de Roever
et al. [2001]. Proofs of soundness appear in the works by Jones [1981];
Stirling [1988]; Stølen [1990]; Prensa Nieto [2002]; Coleman and Jones [2007].
These use different definitions of rely/guarantee; a comparison is provided by
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Coleman and Jones [2007]. Id. and Collette and Jones [2000] present some
practical improvements to the rules of the original rely/guarantee calculus.

Prensa Nieto [2002] presents the first thorough formalization of rely/
guarantee that can be machine-checked (in Isabelle/HOL [Paulson, 1994]),
and probably the first formalization of any shared-variable verification tech-
nique. She assumes a single master thread that dispatches all other threads,
which must not further fork. It is proven that rely/guarantee is complete
w.r.t. the concurrency semantics by Owicki and Gries [1976]. This approach
requires a considerable amount of interaction as it uses a general purpose
HOL theorem prover.

Flanagan, Freund, Qadeer, and Seshia [2005] present a static analysis
system for modular programs with indeterministic parallel composition.
The discerning point of this approach is that it is modular in both the
sequential and concurrent dimension of the program, meaning that method-
modular proofs can be reused—as usual in sequential program verification.
Although they present only a minimal target language, the authors claim
that this technique can be extended to Java. However—as they acknowledge
themselves—their approach is unsound.

Miné [2014] combines the rely/guarantee approach with abstract inter-
pretation.3 While rely/guarantee heavily relies on specifications, the idea
is to derive them automatically because of the more simple domains. This
proof technique is implemented in the automatic static analyzer Astrée for
concurrent C [Blanchet et al., 2003]. Astrée checks for a predefined class
of programing errors and does not consider dynamic memory allocation
nor recursion. The analysis is sound, but highly incomplete. Miné [2014]
introduces several dedicated abstractions tailored to verify specific programs
more precisely. This includes a lock state analysis.

The work by Schellhorn et al. [2011]; Schellhorn, Tofan, Ernst, Pfähler,
and Reif [2014] is closely related to ours. They extend ITL with interleaved
programs and HOL. ‘Programs’ in this setting are represented by higher
order temporal formulae that describe a trace of symbolic states. Their
concurrency semantics is similar to ours in that traces contain alternations
of steps of the own thread and the environment. A difference is that they
consider indeterministic parallel decomposition instead of multi-threading.
Building on the earlier ideas of Thums et al. [2004], Schellhorn et al. [2014]
present a calculus based on symbolic execution and rely/guarantee, that is
implemented in the KIV interactive theorem prover. The symbolic execution
rules are similar to ours: a program is sequentially decomposed to produce a
‘step form’ formula, i.e., a formula on which the rule for a temporal step (cf.

3In the abstract interpretation approach [Cousot and Cousot, 1977], concrete value
domains, e.g., the integers, are overapproximated with abstract domains. For instance,
the domain {<, 0, >} intuitively represents any negative number, zero, and any positive
number; that can be refined to the integers. Typically, abstract domains can be described
through linear inequations.
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our rule R25) can be applied. Like in our approach, environment steps are
not visible locally, but collapsed into a macrostep; they also assume fairness.
However, rely/guarantee is not fundamental in their approach, but rather an
advanced proof technique. They have encoded the complete proof system
by Xu et al. [1997], but do not indicate to what extend reasoning can be
automated. It appears that considerable interactive effort is necessary to
conduct a proof, in particular since it regards higher order logic and the
calculus does not feature an invariant rule.

Ahrendt and Dylla [2009, 2012] describe a verification system for concur-
rent programs written in the Creol language. Creol [Johnsen et al., 2006] is
an experimental object-oriented language that features different concurrency
paradigms. On an outer layer, it features distributed objects (i.e., distrib-
uted components that are class instances), which execute truly in parallel.
Distributed objects communicate through asynchronous message passing.
Conversely, intra-object execution is multi-threaded with a shared memory.

Ahrendt and Dylla apply a rely/guarantee approach to reason about this
kind of concurrency. An important difference to our work is that Creol follows
a coöperative scheduling philosophy [Dovland et al., 2005], in which sequential
executions are not arbitrarily interleaved, but threads actively release control
at explicit release points programmatically. Creol features unconditional
release statements release, as we do, as well as conditional releases through
the await statement. Their semantics is based on the technique by Zwiers
[1989] to construct histories of interactions by nondeterministically ‘guessing’
environment actions. These interactions include ‘yield’ and ‘resume’ events
that capture the memory state upon a release, thus bearing a similarity to
our state traces. Since shared memory is strictly internal to an object, there
is no need for complex (dynamic) framing annotations.

Ahrendt and Dylla present a symbolic execution calculus for a dynamic
logic for Creol with an implementation in an experimental version of KeY.
The calculus rule dealing with release uses a special kind of update that
anonymizes the state, through a (deterministic) ε assignment [Hilbert and
Bernays, 1939], such that the rely condition holds in this state. Since they
make no fairness assumptions regarding the scheduler, there cannot be a
sound rule for release appearing in a ‘diamond’ modality. This leaves the
calculus incomplete. They neither provide a proof of soundness.

The ABS language [Johnsen et al., 2010; Hähnle et al., 2011] borrows
many concepts, in particular regarding concurrency, from Creol. Din et al.
[2012] and Din [2014] describe a verification system, similar to the one of
Ahrendt and Dylla [2009], and an implementation in KeY. It uses a variant
of the rely/guarantee approach with a high degree of automation to reason
about interleavings. For the same reasons as above, their logic does not
feature a ‘diamond’ modality, which makes the calculus inherently incomplete.
KeY-ABS currently is being integrated into the master development branch
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of KeY. Threads in both Creol and ABS cannot be created dynamically. The
scope of their shared memory is restricted to class boundaries.

Mansky and Gunter [2012] devise a propositional temporal logic with
agents, which essentially is a reformulation of ATL∗. It features a modal
operator ⇛, where φ⇛A ψ intuitively means ‘if agent A guarantees φ, then
all other agents guarantee ψ.’ As mentioned above in Sect. 10.1, programs
can be interpreted as representations of agents. Thus, this logic can be
applied to program verification, theoretically. However, Mansky and Gunter
do not present concrete programs. It is unclear how the approach can be
applied in practice. In particular, all proof obligations of the rely/guarantee
approach are packed into a single formula. Furthermore, the logic is not
very expressive: it is strictly propositional and it cannot express relations
between two states.

10.3.2 Concurrent Separation Logic and Related Methods

While separation logic has been conceived for modular analysis of sequential
programs (see Sect. 10.2.1 above), it is rather obvious that it can be applied
to concurrent programs as well. The concurrent separation logic by O’Hearn
[2007] features a parallel decomposition rule and explicit shared resources
(i.e., heap partitions). But it is too restrictive to be used effectively as it
requires the heap to be completely separated between parallel executions.
The basic idea is similar to the original Owicki and Gries approach: to verify
a thread in isolation—as if it were a purely sequential program—and to
provide an additional proof of interference-freedom (that does not result in a
higher proof complexity).

Most approaches mentioned in this section work under the premiss that
the heap can be partitioned into globally shared and thread-local partitions.
A correct partitioning is usually expressed through permissions. This allows
to view access to the thread-local part as in a sequential program. In contrast
to our approach, where we consider any concurrent interference, approaches
based on concurrent separation logic assume that there is no (effective)
interference at all, except where permissions are explicitly transferred.

Fractional permissions [Boyland, 2003; Heule et al., 2013] is a technique
that allows that either a single thread holds a write permission on a location
(i.e., it holds the full permission 1) or an unbounded number of threads hold
read permissions (i.e., they hold a fraction p < 1). To gain write access, all
fractional permissions must be transferred to the potential writer to gain full
permission. Still, programs with benign data races cannot be verified using
this approach since more than one thread may write to the heap within a
given time scope. Bornat et al. [2005]; Jacobs and Piessens [2011] extend
concurrent separation logic with permission accounting. In order to avoid
the need to specify concrete permissions, Huisman and Mostowski [2015]
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introduce symbolic permissions. Here, permissions are described qualitatively
through specifications, rather than quantitatively. They introduce a dedicated
data type to model permissions.

Concurrent Separation Logic for Java

The aforementioned approaches only target toy languages, while the following
claim ‘Java-like’ languages as their goal. Both Haack and Hurlin [2008] and
Amighi, Blom, Darabi, Huisman, Mostowski, and Zaharieva-Stojanovski
[2014] present calculi for fork/join concurrency, based on concurrent sepa-
ration logic, that allow for concurrent read actions. The goal is to model
the multi-threading architecture of Java. In their methodology, there is no
notion of a ‘shared’ memory; all memory accesses (read or write) must be
explicitly permitted. Changes to the heap can be specified upon permission
transfer. A complete soundness proof is provided by Hurlin [2009].

Building on the work of Haack and Hurlin [2008]; Haack et al. [2015], the
VerCors system by Amighi et al. further features a high-level specification
language, inspired by JML. It features separating conjunctions and ‘magic
wands’ as in separation logic, a built-in permission predicate, and abstract
specification predicates [Parkinson and Bierman, 2005] (which are similar to
boolean model methods). Programs and specifications are translated to the
Chalice tool [Leino et al., 2009] for verification. VerCors further provides
an intermediate layer where programs and specification are expressed in
an intermediate language, called Common Object Language (COL). This
is meant to enable VerCors to be applied to other input languages and to
support other back-ends in the future. The VeriFast system by Jacobs, Smans,
Philippaerts, Vogels, Penninckx, and Piessens [2011] is based on concurrent
separation logic and provides verification of concurrent C and Java, but
allows shared resources (see Sect. 10.3.3 below). Both the specification styles
of Chalice and VeriFast, which are inherently incompatible, can be emulated
in the VerCors language [Amighi et al., 2014].

Other Approaches Based on Permissions

Mostowski [2015] combines symbolic permissions with explicit dynamic
frames. In principle, this approach is similar to approaches based on separa-
tion logic, but it makes frames explicit using the framing approach described
in Sect. 8.2.3. This allows to extend the verification approach of the KeY
system in a natural way. To model permissions, Mostowski extends program
semantics by introducing a second heap (cf. [Mostowski, 2013]), that maps
each location to a permission (‘none,’ ‘read,’ ‘write’). Permissions can be
transferred upon synchronization points. Specifications must be self-framing,
i.e., only those assertions are well-defined that state at least a read permission
on the locations on which the assertion depends.
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The approach is implemented in the KeY system. A high-level specifica-
tion interface is provided through an extension to JML, that is intriguingly
simple. It only introduces predicates to refer to the state of permissions to be
used in method contracts. No additional thread specifications or intra-code
annotations on permission transfer are required.

Other common techniques to analyze the behavior of concurrent programs
are permission systems and ownership annotations, that are checked at
runtime. Notable approaches are described by Zaharieva-Stojanovski and
Huisman [2014]; Zaharieva-Stojanovski [2015]; Dinsdale-Young et al. [2010].
The experimental programing languages Spec# [Barnett et al., 2005] and
Dafny [Leino and Müller, 2009] also feature ownership annotations.

Discussion

Dynamic or static verification systems based on permissions are easy to imple-
ment and local checking of permissions is efficient, because concurrent actions
can be ignored safely. Yet, they require annotations inside the program code,
thus breaking modularity. Also, they rarely provide complete reasoning,
which makes the approach less general as the rely/guarantee approach. In
particular, permissions require that programs are synchronized to work well.
Threads require exclusive access to resources. While a working synchroniza-
tion is definitely a best practice in the development of functionally correct
software, for a security assessment, we are forced to consider unsynchronized
programs, in general.

10.3.3 Combining Rely/Guarantee and Separation Logic

Vafeiadis and Parkinson [2007] introduce RGSep, an extension to separation
logic that includes rely/guarantee reasoning. Rely/guarantee does not only
provide functional specifications for threads, but also separates the memory
on which threads work. The central idea is similar to our approach to
frame possible write effects and thus to reduce the overhead for functional
specification. The main difference is that we make our frame annotations
explicit, while in separation logic it is enshrined in the ‘star’ operator.
There is no notion of local variables in RGSep, but annotations are used to
dynamically separate the heap into a shared partition and local partitions for
each thread. Rely/guarantee specifications only apply to the shared partition.
Feng et al. [2007] describe a similar approach and provide a comparison
between concurrent separation logic and rely/guarantee.

Gotsman et al. [2009] present a verification system for RGSep, which
they use to verify lock freedom in implementations. In their work, rely and
guarantee conditions are LTL-like temporal formulae (cf. Sect. 10.1.2). A rely
condition describes the subtrace produced by executing the environment steps.
This allows reasoning about global liveness properties under possibly unfair
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schedulers. Using the traditional two-state properties would be unsound in
this case, since guarantees specify atomic steps, but not progress [Abadi and
Lamport, 1995]. This issue does not apply to CDTL, as we only consider
liveness properties that are local to a thread while assuming a fair scheduler.

Dodds, Feng, Parkinson, and Vafeiadis [2009] discuss the inability of rely/
guarantee to specify the behavior of programs that use forking and joining
of threads, as opposed to parallel composition (on which rely/guarantee is
traditionally defined). Forking and synchronization (of which joining is a
special case) are the mechanisms used in real world programing languages.
With those, the lifetime of a thread is controlled dynamically. To deal with
programs of this shape, they propose an approach called “deny/guarantee,”
building on the work by Vafeiadis and Parkinson, in which nonbehavior of
environments is specified using separation logic. These specifications are also
dynamic, unlike the statically defined invariants of rely/guarantee.

The VCC system [Cohen et al., 2009, 2010] presents a practical approach
to functional verification of concurrent C programs. Since the C language
is even less tractable than Java, their approach makes several assumptions
about the underlying hardware and operation system layers, such as the
accessibility of non-volatile memory.

VCC heavily relies on permission annotations to clearly separate the heap
into global and thread-local partitions. This enables reasoning about thread-
local memory to resemble reasoning about sequential programs; concurrent
changes need only be considered at certain synchronization points, namely
when entering an atomic block [Cohen and Schirmer, 2010]. Keeping in
mind that there is no language support for atomic blocks in Java, their
result is similar to our argument on observability of environment actions in
Sect. 3.6, where we postulate that release may only appear before reading
from global memory. The VCC methodology uses a kind of rely/guarantee
specification where environment changes are effective: before entering an
atomic block, a two-state invariant can be assumed, otherwise the shared
memory is havocked. This invariant must be established after the atomic
block. Here, rely conditions and guarantees collapse into a single invariant.

As a product by Microsoft Research, VCC targets applicability in industry-
sized software projects by software engineers. Programs and user-provided
annotations are translated to large monolithic FOL formulae through weakest
precondition computation, which can then be proven by an automated SMT
solver. The overall approach is carefully engineered—it has been successfully
applied to very large case studies—but lacks documentation on the core
theory. In particular, no formal soundness proof is available.

The VeriFast system [Jacobs et al., 2011] follows a similar approach to
VCC. It provides verification of concurrent C and Java programs, based
on automated theorem proving for concurrent separation logic, whereas
VCC relies on classical logic. Smans, Vanoverberghe, Devriese, Jacobs, and
Piessens [2014] extend concurrent separation logic by introducing shared
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boxes, that encapsulate shared variables with a two-state invariant (i.e., a
rely condition). This invariant must hold whenever a thread accesses the
shared variable, similar to the invariant semantics for atomic blocks above.
Box annotations tend to be verbose. In addition to the declaration of a box,
it requires a considerable number of annotations in the running code.

The “Concurrent Views Framework” by Dinsdale-Young et al. [2013]
is a metatheory of reasoning principles for shared-memory concurrent pro-
grams. In the framework, both rely/guarantee, the Owicki and Gries method,
concurrent separation logic, and other approaches can be expressed.

10.4 Semantic Information Flow Analysis

Joshi and Leino [2000]; Amtoft and Banerjee [2004] were among the first to
encode noninterference in a program logic and therefore to lay the foundation
for sound and complete reasoning about information flows. Joshi and Leino
use classical (i.e., non-relational) Hoare logic with explicit havoc statements
in programs to express the low value indpendence.

This is a different approach to formalization that we take in Sect. 6.2.5:
we use a relational property, viz. the equivalence of two runs starting in
low-equivalent initial states. Darvas, Hähnle, and Sands [2005] continue
the idea by Joshi and Leino and apply it to Java, also considering leakage
through nontermination and abnormal termination. They use JavaDL instead
of Hoare logic, which allows to express this independence property through
existential quantification. The resulting formulae can be proven in KeY
with some interaction. This approach has still some drawbacks: Firstly, the
formalization using existential quantification is not amenable to automation.
Secondly, the formalization uses the ‘old’ memory modeling of KeY (cf.
[Beckert et al., 2007b]), that considers each memory location as a single
nonrigid 0-ary function. As discussed in Sect. 3.3, this modeling is unhandy
when applied to dynamic data structures and does not cater for modular
specification.

Scheben and Schmitt [2012a]; Scheben [2014] present several practical
improvements to the approach by Darvas et al. [2005] and an implementation
in KeY. In particular, they formalize the usual property that two runs
starting in low-equivalent states must produce low-equivalent outputs (cf.
Sect. 6.2). Secure information flow can be formalized in HOL, and higher
order theorem provers like Coq can be used for checking secure information
flow [Nanevski et al., 2013]. This approach seems to be very expressive,
but comes at the price of more and more complex interactions with the
proof system. Reasoning about HOL formulae is harder than FOL reasoning:
a sound and complete calculus is even theoretically not possible.

Since classical Hoare logic cannot express noninterference, Amtoft and
Banerjee [2004] employed a dedicated relational extension of region logic
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[Amtoft and Banerjee, 2007]. Self-composition [Barthe et al., 2004] works
with an off-the-shelf program logic but uses program transformations to
express relational properties. Product programs [Barthe et al., 2011, 2013a]
are similar to self-composed programs, but again use a dedicated program
logic. There is unpublished work by Scheben and Schmitt [2012b] that
sketches an adaptation of dynamic logic to product programs.

Balliu, Dam, and Le Guernic [2011] explicitly model knowledge of attack-
ers (and trusted agents) through epistemic temporal logic. Epistemic logic is
a multi-modal logic (cf. [Harel, 1984]) that features a modal operator KA for
each agent A, where KAφ intuitively means ‘A knows φ.’ To reason about
epistemic properties of programs, Balliu et al. first construct a model of the
program through symbolic exploration using Java Pathfinder. The result
is a “symbolic output trace,” that consists of path conditions and concrete
execution states. An epistemic formula can then be checked against this
model with the model checker MCMS. Like all model checking approaches,
it suffers from state explosion. Moore, Askarov, and Chong [2015] extend
this logic by an ‘effect’ operator EA to model integrity, where EAφ intuitively
means ‘A can change φ.’

10.4.1 Semantic Declassification

Declassification is not included right away in many definitions of nonin-
terference from the literature, cf. [Sabelfeld and Myers, 2003a]. In these
definitions, input and output agreement are the same relation. Declassifi-
cation is considered inducing a different security policy, frequently named
relaxed noninterference [Li and Zdancewic, 2005]. Mantel [2001] explicitly dis-
tinguishes between security policies and declassification relations. Sabelfeld
and Sands [2009] provide a good overview over declassification policies. A
considerable body of work considers partial equivalence relations (PERs)
[Abadi et al., 1999; Sabelfeld and Sands, 2001] to model declassification.
Another significant direction of research is concerned with quantitative infor-
mation flow [Clark et al., 2001]. Provided a finite state space, the worst case
entropy of released expressions can be quantified using information theory.
Klebanov [2014] presents a tool chain for automated quantitative information
flow analysis, that uses KeY to compute a precise denotational semantics
from a program.

Scheben and Schmitt [2012a] present a unified notation of low-equivalence
and declassification of terms. They use higher order terms called views, later
renamed to observation expressions [Beckert et al., 2014, Sect. 3], which
semantics is a sequence of terms again. Low-equivalence of states is defined
as equality of the values of the component terms. The common notion of
low security locations is subsumed by this. However, the authors do not
provide a formal semantics of observation expressions. Greiner, Birnstill,
and Krempel [2013] present a case study that uses this approach and the
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implementation by Scheben [2014]. Whether information is considered secret
or public depends on the internal state of the system; i.e., it is classified
dynamically. Therefore, the information flow specifications of Greiner et al.
make use of conditional observation expressions. Nevertheless, the modeled
attacker of Scheben [2014] is equally capable as the one considered in this
work.

10.4.2 Combining Precise and Other Analyses

While semantical approaches are ultimately precise, there are frequent pat-
terns in which this precision is not required to prove the presence or absence
of information flows, as this is clear from syntax alone. One would like to
reason about these patterns in an approximate way, i.e., being able to deduce
information flow security of the whole program from the premiss that both
branches are secure and the branch condition does not have an effect on
security. In this way, this kind of reasoning is similar to flow sensitive type
systems and be performed efficiently. Similar approximation calculi based on
dynamic logic have presented by Ruch [2013] and Scheben [2014, Chap. 7],
both as additions to the calculus of Scheben and Schmitt [2012a]. While
Ruch uses a relational dynamic logic dedicated to detecting the absence of
information flows, Scheben [2014] introduces relational predicates on the
formula level.

In both approaches, the price for this is, of course, losing completeness.
For instance, the secure Program 3 from Listing 6.1 on page 120 could not
be dealt with since the branch condition does actually depend on a high
location, and there is a direct assignment from high to low in one branch.
Still, in both approaches, it is possible to resort to the original, complete
calculus.

Hähnle, Pan, Rümmer, and Walter [2007],2008 and Popescu, Hölzl, and
Nipkow [2012, 2013a] embed traditional type systems into first/higher order
logic. Even though reasoning is done using a theorem prover (KeY or Isabelle,
respectively), it still suffers from the inherent incompleteness of type systems
and only checks for sufficient conditions for secure information flow. For
instance, it is not able to verify program 3 in Listing 6.1 on page 120.

Static information flow analysis can be combined with abstract interpre-
tation [Cousot and Cousot, 1977] to obtain an automated approach based
on theorem proving. The obvious drawback is losing precision due to the
abstraction. Approaches based on this idea have been published by Jacobs,
Pieters, and Warnier [2005] and Giacobazzi and Mastroeni [2010]. Further-
more, Bubel, Do, Hähnle, and Wasser [2014]; Wasser [2015] suggested to
combine information flow analysis in KeY with abstract interpretation.
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10.5 Information Flow Analysis for Shared-
Memory Concurrent Programs

In one of the first works on noninterference for concurrent programs, Smith
and Volpano [1998] show that classical (i.e., Cohen-style) noninterference
can be proven using type systems for multi-threaded programs with a purely
indeterministic scheduler if noninterference holds for sequential programs
and there are no loops which execution depend on high input. This is a
very strong restriction and seems to be induced by both the complexity
of indeterministic program semantics and the inability of type systems to
recognize a secure program. For a general overview over information flow
policies for concurrent programs, cf. [Giffhorn and Snelting, 2015, Sect. 8].

JOANA is a static analysis tool [Graf et al., 2013] based on PDGs
[Hammer, 2009; Hammer and Snelting, 2009], that targets concurrent Java
programs. It supports program analysis for either sequential noninterference
or relaxed low-security observational determinism (RLSOD), a weaker version
of LSOD that permits indeterminism on low variables [Giffhorn and Snelting,
2015].4 Despite being a static analysis, the PDG approach works on non-
abstract system states, in particular, it includes book-keeping of all running
threads. A generalization to a thread-modular analysis is not considered so
far. While providing a practically better precision than approaches based on
type systems, the PDG approach does not consider values and thus it is not
complete.

Garg, Franklin, Kaynar, and Datta [2010] describe an approach to compo-
sitional formal information flow analysis of multi-threaded programs. Unlike
most approaches, that consider parallel composition, but alike ourselves, they
consider threads in an underspecified environment. A difference, however, is
that Garg et al. do not consider communication—and thus information flow—
through shared memory, but only through prescribed interfaces. Attackers
are confined to those. Thread and environment behaviors are specified in
a temporal logic fragment of hybrid logic (see Sect. 10.1), that can express
temporal intervals. Atop hybrid logic, they develop a program logic, that
is similar to dynamic logic. It features two program modalities: one for
termination within a time frame and one for exceeding a time frame. To
reason about concurrent effects, Garg et al. employ a variant of the rely/
guarantee approach, where rely conditions and guarantees describe traces
of actions. Overall, their framework is very abstract and does not feature
concrete program semantics. It is unclear how complete their approach is
and how it can be automated.

4As there is no formal definition of RLSOD yet—only an algorithm to check it—we
cannot compare it to other properties.
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10.5.1 The Role of Scheduling

The effect of schedulers on information flow security is discussed controver-
sially in the literature. Many security policies are only valid for a particu-
lar scheduler. For instance, the approaches by Smith and Volpano [1998];
Sabelfeld [2001]; Barthe et al. [2004]; Mantel et al. [2006] assume a completely
indeterministic scheduling, while Volpano and Smith [1999]; Smith [2003]
use uniform indeterministic scheduling, and round-robin scheduling (i.e.,
deterministic uniform scheduling) is assumed by Russo et al. [2006]; Russo
and Sabelfeld [2006]. In contrast, the strong security policy by Sabelfeld and
Sands [2000] is scheduler independent for a “natural” class of schedulers. As
the name suggests, strong security is a very restrictive property. On the other
hand, this comes not with a surprise: Sabelfeld [2003] proves that this is the
weakest possible information flow policy in the presence of this class of sched-
ulers, that is thread-compositional. Mantel and Sudbrock [2010] present a
weaker, yet compositional, policy called flexible scheduler-independent (FSI)
security. Concurrent programs composed from FSI-secure threads are secure
w.r.t. a probabilistic extension of noninterference for a restricted class of
probabilistic schedulers, the robust schedulers.

Huisman, Worah, and Sunesen [2006] consider information flow in finite
state programs with parallel composition. They present two faithful formal-
izations of LSOD in CTL∗ and the polyadic µ calculus [Andersen, 1994].
This allows automated analysis using model checking. While the security
property itself is formalized in logic, the program under investigation forms a
complicated model—based on product programs—against which the formula
is checked. Instead of the commonly used definition of LSOD by Zdancewic
and Myers [2003], that relaxes equivalence to finite prefixes, Huisman et al.
present their own property that considers the complete (location) trace, while
still tolerating stuttering. They argue that LSOD under prefixing does not
consider certain indirect information flows. Given the immense state space
of concurrent programs, this approach does not scale well.

Noninterfering Schedulers

As mentioned above, LSOD has been criticized for being overly strict by
disallowing ‘benign indeterminism.’ Example 6.17 on page 135 displays an
example of a program that is considered insecure under LSOD, even though
no high variable does syntactically occur. This is due to the possibility that
the scheduler itself may leak secret information encoded in the schedule.
An interesting direction of research is thus to analyze (and prevent) this kind
of leakage. Surprisingly, there is little literature on this topic.

Popescu, Hölzl, and Nipkow [2013b] introduce a notion of “noninterfering
schedulers.” However, they deviate from the language-based scenario in that
they do not consider confidential information in the memory, but classify the
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threads into ‘visible’ and ‘invisible.’ According to their definition, a scheduler
is noninterfering if the schedule when projected to visible threads is the same
as a schedule for visible threads alone. As a result, possibilistic [McLean,
1996] and probabilistic noninterference [Sabelfeld and Sands, 2000] collapse
for this class of schedulers. However, this result only applies to threads that
operate on strictly separated memory; e.g., it is not applicable to Ex. 6.17.

Russo and Sabelfeld [2006] explicitly construct a round-robin scheduler
that is aware of security levels. The thread pool is partitioned into ‘low,’
‘high,’ and ‘temporarily high’ threads, which are treated differently, depending
on the current system state. This dynamic security classification of threads
has to be provided in the code. The resulting scheduler does not leak
high information. Under Russo and Sabelfeld’s scheduler-specific notion of
noninterference, the program from Ex. 6.17 is secure.

10.5.2 Compositionality

By ‘compositionality’ we understand that two concurrent systems that each
are secure for themselves can be composed into a secure system again. While
most security properties are closed under sequential composition, parallel
compositionality requires severe restrictions on intermediate execution states.

Mantel, Sands, and Sudbrock [2011] introduce a weaker notion of com-
positionality, which they claim to be effective in practice. The goal is to
develop a thread-compositional analysis for Cohen-style noninterference (i.e.,
regarding only final states as output, in contrast to LSOD). Mantel et al.
target a smaller completeness gap compared to the type-checking approaches
by Volpano and Smith [1999]; Sabelfeld and Sands [2000]; etc. They present
a framework that considers for each thread the sets of variables that are
(i) assumed not to be read by the environment, (ii) assumed not to be written
by the environment, (iii) guaranteed not to be read by us, and (iv) guaranteed
not to be written by us. Membership in these sets can change throughout
program execution. Mantel et al. [2011] develop a variant of noninterfe-
rence, called secure information flow using modes (SIFUM), in which the
low-equivalence relation is weaked by considering only those low-security
locations that are possibly read by the environment. The idea is to allow
intermediate information flow to low locations as long as they are not read
during that period. In the final state, the values stored in low locations must
not be secret, however.

Mantel et al. present a type system to check for security violations. The
analysis relies on permission accounting in code annotations (cf. Sect. 10.3.2
above). While the type system ensures that guarantees are ideed fulfilled, it
is not clear how assumptions on the environment are backed by guarantees.
On the semantical level, the approach by Mantel et al. is similar to our rely/
guarantee framework in Chap. 5, where sets are specified that are assumed
not to be written by the environment and at most written by us. However,
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only to specify location sets is too coarse-grained, in general. It may be
appropriate for an analysis based on a type system since that is incomplete
anyway. For a complete analysis, that considers actual variable values, a full
functional rely/guarantee specification is necessary.

10.5.3 Analysis of Timing Channels

Sabelfeld and Myers [2003a] introduce a notion of timing-sensitive nonin-
terference: in addition to the final states of two terminating runs being
low-equivalent, the number of execution states must be the same (or both
runs do not terminate). There are several type system approaches that give
sufficient conditions for the absence of timing leaks, e.g., by Volpano and
Smith [1999], as well as program transformation algorithms that remove
timing channels, e.g., by Agat [2000].

Huisman and Ngô [2012] introduce scheduler-specific observational de-
terminism (SSOD). It extends the weaker property that is proven by the
type system of Zdancewic and Myers [2003] (that implies LSOD), named
SSOD-1 here, with a second property (SSOD-2) that requires that there
exists a scheduler for which traces are stutter-equivalent. They provide a
partial formalization in CTL, based on self-composition of programs. that
can be model checked efficiently. Ngô [2014]; Ngô, Stoelinga, and Huisman
[2014] present an approach to verify programs against SSOD, based on a
dedicated model checking algorithm. In this system, the security policy is
directly encoded in the model to check.

All the above approaches do not consider temporal declassification. We
are not aware of any (semantically) precise analyses of timing channels.
Dimitrova, Finkbeiner, Kovács, Rabe, and Seidl [2012] introduce a relational
extension to LTL, called SecLTL, that includes explicit temporal operators
for information flow. Their goal is to reason about deterministic interactive
programs [Clark and Hunt, 2009]. There are operators H (‘hide until’) and
its dual L (‘leak while’), which are indexed with location sets. The intuition
behind the formula HH,Lφ is that no information (evaluated in the current
state) flows from the locations in H to the locations in L (i.e., H is hidden
from L) as long as φ does not hold (i.e., until φ becomes true, but this does
not necessarily happen). The formula φ can be seen as a release condition
that includes the timing of declassification. The dual formula LH,Lφ means
that a flow from H to L releases φ. In this context, the location sets H
and L are static, but generalizations with expressions of type L are also
possible. Dimitrova et al. [2012] employ a model checking algorithm to prove
relational properties of SecLTL.

The author of this dissertation shows [Bruns, 2014b], using the techniques
from Sect. 6.4.2, that any property of the form HH,Lφ can be expressed in
the temporal logic fragment of DTL. This technique is complete, i.e., it does
not report false positives or unknown results, but not very efficient. The
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author presents additional rules that are applicable to a certain subset of
formulae, local reasoning in the style of Ruch [2013] can be applied to the
H operator.

10.6 Object-sensitive Secure Information Flow

The work closest to ours in Sect. 6.5 is the one by Amtoft, Bandhakavi, and
Banerjee [2006]. The authors build on region logic (see Sect. 10.2.1 above) and
use a similar definition of object-sensitive secure information flow. However,
instead of providing verification conditions which can be discharged with an
established calculus, as we do with KeY, they introduce a more specialized,
but incomplete, calculus to show object-sensitive secure information flow.
This specialized calculus uses approximate rules which avoid an explicit
modeling of isomorphisms, but comes at the price of imprecision.

Precision and a mature tool integration further distinguishes our ap-
proach from other approaches. This particularly includes JIF, which already
presented an incomplete treatment of object-sensitive secure information flow
for Java by Myers [1999]. JIF is a practical approach to the analysis of secure
information flow, that covers a broad range of language features, but it has
not been formally proven to enforce noninterference. JIF itself is a dialect
of Java, that includes features for information flow specification. Nikolov
[2014] presents a translation from the JIF specification to JML extension
introduced in Sect. 8.4.

Similar to JIF, Barthe, Pichardie, and Rezk [2013c]; Banerjee and Nau-
mann [2002] use type systems for the verification of object-oriented secure
information flow. They treat a smaller set of language features, but prove
that their type systems indeed enforce noninterference. A closely related
approach is presented by Beringer and Hofmann [2007]. Here, only the
information flow analysis is based on type systems; the verification task is
separated from the analysis and based on program logics.

The static analyzer JOANA (see Sect. 10.5 above) targets Java and
Android programs. This approach has a notion of heap and objects, but
there is no dedicated information flow property implemented, that considers
leaks through object references. The analysis carried out by JOANA works on
compiled bytecode. Application of the approach to Android requires another
analysis [Mohr et al., 2015], despite the common source code language. The
approach by Barthe et al., already mentioned above, and the approaches
by Hansen and Probst [2006] and Hedin and Sands [2005], too, target Java
Bytecode in contrast to source code, as the other approaches do. The
latter is based on type systems, whereas Hansen and Probst use abstract
interpretation in combination with classical static analysis for the verification
of secure information flow.
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To the best of our knowledge, the only approach which models object
isomorphisms explicitly is by Naumann [2006]. He uses self-composition
and program instrumentation to analyze the program in the static checker
ESC/Java2 [Cok and Kiniry, 2005].5 The central drawback of Naumann’s
approach is that the specifier needs to track the isomorphism manually with
the help of additional ghost code annotations. This increases the burden on
the specifier, whereas our approach detects the isomorphism automatically.

10.7 Information Flow Property Specification

In Sect. 8.4, we have used an extension to the Java Modeling Language (JML)
by Scheben and Schmitt [2012a]; Scheben [2014]. to specify noninterference
and declassification. Dörre and Klebanov [2015] further extend their specifi-
cation to express the presence of information flows, rather than the absence.
Their goal is to prove that Android’s implementation of a pseudo-random
number generator does not lose any initial entropy.

Dufay, Felty, and Matwin [2005] devise their own JML extension with
new keywords which directly define relations between the program variables
of two self-composed executions. In particular, two keywords to distinguish
the variables of the two runs are defined. The approach uses ghost code to
store the return value and the values of parameters of the first run in order
to use those values during the application of non-interference contracts in
the second run. The approach is limited to primitive types. In contrast to
dedicated extensions, Warnier [2006] and Haack, Poll, and Schubert [2008]
describe techniques to specify properties in vanilla JML.

In our approach, security is specified on the code level. Other approaches
are model-based. The UMLSec language by Jürjens [2005] adds high level
security properties to UML design models. Both static and dynamic UML
diagrams can be annotated with c. 30 predefined stereotypes, such as «secret»
on a class, «encrypted» on a message, which denote some inherent property.
Requirements are also denoted by steoretypes (on whole subsystems). Jürjens
outlines how a secure Java program can be refined from the design model.
The behavior of both systems and attackers is modeled by means of “UML-
machines,” which are introduced for this purpose. The given stereotypes are
translated to constraints on those machines, that can be model-checked.

Kramer, Hergenröder, Hecker, Greiner, and Bao [2014] extend the Palladio
component model [Becker et al., 2009] with security annotations. In contrast
to the work by Jürjens [2005], the goal is derive verification conditions for
software artifacts. The approach by Kramer et al. contains a complete
refinement chain, down to information flow proof obligations for KeY and
JOANA.

5ESC/Java2 offers neither sound nor complete analysis, which makes the overall
approach unsound, unfortunately.
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10.8 Implementation-Level Analysis of Electronic
Voting Systems

Bär [2008] specifies functional properties of a Java implementation of the
Bingo Voting system by Bohli et al. [2009] with the Java Modeling Language.
These specifications have been partially checked with the (unsound and
incomplete) ESC/Java2 tool by Beck [2010]. Kiniry, Morkan, Cochran,
Fairmichael, Chalin, Oostdijk, and Hubbers [2006] report on the Dutch
Kiezen op Afstand (KOA) remote voting system, that has been used in the
European Parliament election in 2004 for a small group of voters. In order
to specify the (offline) vote counting module with JML and subsequently
analyze it with ESC/Java2, they reïmplemented the KOA system in Java.

Clarkson, Chong, and Myers [2008] mention that their Civitas system
has been checked for information flows with JIF [Myers, 1999]. For the
system described in Sect. 9.3.2 of this thesis, Scheben [2014] formally proved
noninterference and declassification in the KeY system.

10.8.1 Verification of Cryptographic Implementations

Symbolic approaches, using ideal cryptographic functionality, can be seen
as state of the art. There are other approaches that include formal rea-
soning about cryptographic guarantees [Stern, 2003] in the code analysis.
This is usually named the computational approach. Barthe, Grégoire, and
Zanella Béguelin [2009], von Gleissenthall et al. [2014] present a framework
in which adversaries can be modeled as probabilistic polynomially bounded
while programs. A probabilistic relational Hoare logic—extending Ben-
ton’s logic [2004]—allows to formally reason about these adversaries, that is
implemented in the EasyCrypt system [Barthe et al., 2013b].

Fournet et al. [2011]; Barthe et al. [2014] present a functional programing
language with dependent types based on relational assertions. Information
flow analysis for this language is provided through typing, where the function-
al/relational analysis required to evaluate dependent types is delegated to
an SMT solver through verification condition generation (VCG). This allows
for automated proofs, while not reaching the expressivity of EasyCrypt, that
relies on interactive proofs.

Our analysis strictly targets the code level. In contrast, there is a large
area of research dedicated to the (formal) analysis of security protocols. These
analyses work on an abstract level and do not consider the particular issues
of implementations. See, for instance, the textbook by Anderson [2008] or
the overview articles by Cortier et al. [2010]; Cortier and Kremer [2014].
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Conclusion

In this dissertation, we have introduced a logic-based approach to the func-
tional and relational verification of concurrent Java programs. It includes
two major parts: 1. We have developed a deterministic interleaving semantics
for shared-memory multi-threaded programs, on which we have build a trace-
based dynamic logic based on symbolic execution and rely/guarantee. 2. We
have developed a semantically precise analysis technique for noninterference
in concurrent programs. In this concluding chapter, we shortly summarize
the contributions that we have made and draw conclusions from them. We
finish with an outlook on future work in Sect. 11.3.

11.1 Summary

Concurrent programing has been state of the art for some time. Still,
formal verification of programs is yet in an early stage. Chapters 3–5, 7,
and 8 are the result of the author’s contribution to this challenge. We have
introduced a simple, but multithreaded, programing language in Chap. 3
with a deterministic semantics, that is scheduler-parametric. Concurrent
programs, according to our definition, are collections of sequential programs,
that may have provisions for dynamic thread creation. We first define
semantics of sequential programs in Sect. 3.4 and then develop a semantics
for interleavings on top of this in Sect. 3.5.

We have demonstrated how to define a concurrent language as a con-
servative extension to a sequential language. This allows to reuse several
important results. In particular, a central goal of this work is to enable the
KeY verification to reason about concurrent Java programs. In Sects. 3.6
and 7.2, we argue that our model of concurrency can, in principle, be lifted
to concurrent Java. There is a remaining gap, that is mostly induced by our
decision to assume sequential consistency and to not model the JMM. We
expect this gap to be negligible in practice.
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To formally reason about concurrent programs, we adapted the rely/
guarantee approach in Chap. 5. In order to make this approach entirely
thread-modular, we leave out global proof obligations. Instead, we introduce
a proof correctness framework in which we assume initial validity of all thread
specifications and prove its preservation upon thread creation. A further
extension of the classical rely/guarantee approach, that is based on functional
specification, is the introduction of frame clauses. They are essential to specify
nonbehavior and thus reduce specification verbosity.

The rely/guarantee framework is embedded in a sequent calculus for
a novel dynamic logic, CDTL. CDTL is a conservative extension of the
previously defined DTL, which introduced a marriage of a program logic and
a temporal logic. By extending the sequential language that DTL targets,
we also extend the logic. Additionally, we include some first-order definable
theories, which do not raise the expressive power, but they are convenient
to represent program effects. The extension paradigm also applies to the
calculus: In Sect. 4.4, we introduced a sequent calculus, based on symbolic
execution of sequential programs, for the base DTL. We proved this calculus
sound and complete in Sect. 4.5.

The extension to a calculus for interleaved dWRF programs, and thus to
full CDTL, is minimal. It only consists of symbolic execution rules for thread
creation and for interleavings, which forms the core of the rely/guarantee
approach. Proving soundness of this rule is far from trivial (see Thm. 5.13
and Thm. 5.15). However, the central soundness result in Thm. 5.22 for the
overall calculus is not difficult to prove, given that it only depends on the
soundness of two additional rules.

Secure information flow for concurrent programs has been studied in-
tensively. This includes both the development of dedicated security policies,
such as LSOD or SSOD, and of analysis systems thereof. However, syntax-
directed static analyses like type systems—to which the vast majority of
analyses belong—or PDG analysis are incomplete w.r.t. such semantically
defined policies, by design. These approaches are fundamentally restricted
to overapproximate and possibly yield false-positive results.

In this dissertation, we presented the first semantically precise approach to
analyze secure information flow in shared-memory concurrent programs. This
analysis is thread-modular and appropriate to be applied to Java programs.
Furthermore, it includes semantical declassification. This allows to precisely
state what information is at most revealed. For instance, in an election, the
final result is public information, even though it depends on the otherwise
secret information about individual ballots. Overall, our framework is flexible
enough to support extension like declassification in a natural way.

Our approach builds on a faithful formalization of state-based (see
Sect. 6.2) or trace-based notions (see Sect. 6.4) of indistinguishability and
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the respective notion of noninterference arising from them. These proof
obligations can then be discharged with the KeY prover. Given that we use a
sound and complete calculus, such a proof represents a sound and complete
information flow analysis. The overall work flow of an analysis of secure
information in Java programs is depicted in Fig. 11.1.

Prover JavaDL rules

R/G rules

JavaDL proof obligation

guarantee postconditionnoninterference

—proof obligation templates—

annotated Java source

source

selectJML annotation

proved

not proved

Figure 11.1: Work flow for information flow analysis

Considering a concrete real-world target language like concurrent Java
imports further complications to the scene. Firstly, Java is a very feature-rich
language in general. However, most of these features can be seen as syntactic
sugars or as instances of more general principles that can be mapped to
more tractable languages like dWRF. Many of these issues are discussed
in Sects. 6.6 and 7.2. Our overall approach benefits from the already high
coverage of Java in the KeY verification system.

Secondly, not all dependencies on the semantical level actually relate
to an insecure information flow on the language level. We have to take
into account security that is established by the language definition itself.
A particular instance of this situation is the pointer opacity in Java. As a
result, the scenarios in which information is actually leaked through object
identities are limited. We describe an approach to represent this fact in

253



Chapter 11. Conclusion

the semantical information flow properties and the analysis technique in
Sect. 6.5.

Specification on a higher level of abstraction is a significant relief for logic-
based analysis of complex systems. The development of modular analysis
techniques even for sequential programs is still a major challenge (cf. [Hoare
and Misra, 2005; Leavens et al., 2007]). The features for modularization in
JML and its extensions are a key to this as described in Chap. 8. We build on
these features to develop thread specifications based on the rely/guarantee
methodology that are appropriate for a modular analysis of concurrent Java.
The results have been presented in Sect. 8.3. Likewise, specification of
information flow properties shares many elements (see Sect. 8.4).

We apply our extension to JML to the specification of an electronic voting
system in Chap. 9. The system has been developed in the RS3 project, with
the concrete implementation under investigation produced by the author.
The functional verification of this case study is part of a hybrid approach
involving JOANA as a tool for information flow analysis [Bruns et al., 2015a;
Küsters et al., 2015].

11.2 Concluding Remarks

In this dissertation, we have described important steps to develop a usable
verification system for multi-threaded Java programs. The extension to con-
currency is a paradigm shift for a verification system like KeY, that has been
originally developed for sequential programs. This change is fundamental
and the quest for concurrency verification methods is definitely not concluded
yet. Jones [2003] “[. . . ] recognises that there are also quite general problems
to be faced before a satisfactory compositional approach to the development
of concurrent programs can be claimed.” The author regards this work—and
the resulting implementation in KeY—as a step towards this. As mentioned
before, the implementation is yet in an early stage. However, we have at least
sketched the central ideas in Chap. 7. Our implementation described there is
not just meant as a proof of concept, but it is planned to find its way into a
future stable version of KeY. We expect that it reaches maturity eventually
with more case studies to be completed and the approach being evaluated
critically against other approaches, such as permissions [Mostowski, 2015]
(cf. Sect. 10.3.2).

Although it may seem as a detour, the introduction of the toy language
dWRF proved to be beneficial for developing a sound and complete analysis.
The structural simplicity of the language enables us to provide formal meta-
level proofs about the approach. Instead, including actual Java syntax and
semantics already at this stage would render definitions and proofs much more
complicated, while it would not reveal any significant new insight. Attaining
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an entirely complete analysis technique for Java is arguably not realistic. This
is already indicated by our long-standing experience in sequential verification
with KeY.

The rely/guarantee methodology allows for sound and complete mod-
ular analysis of concurrent programs. In contrast to classical definitions,
that are based on closed programs with parallel composition, our variant
of rely/guarantee targets the modular analysis of threads. We prove thread
properties independently of the actual runtime environment. This enables
truly modular analysis, in the sense that we may consider thread executions
w.r.t. any number or type of already concurrently running threads.

Rely/guarantee seems to be an appropriate technique for possibly unsyn-
chronized programs, i.e., threads that may interfere with each other. In the
rely/guarantee approach, we precisely describe the interference on our ‘own’
thread by the environment. On the semantical level, we make this interleaved
interference explicit. In contrast, the approaches by Owicki and Gries [1976]
as well as those based on concurrent separation logic (see Sect. 10.3.2) do
not consider interleavings, but treat concurrent programs like sequential.

Our approach is in a sense similar to the combination of rely/guarantee
and separation logic by Vafeiadis and Parkinson [2007]. Both combine the
advantages of classical, i.e., purely functional, rely/guarantee with those of
techniques for memory separation. Both allow to dynamically determine the
parts of the heap that are specified to be separated. In place of the implicit
separation properties of concurrent separation logic and related approaches,
we use explicit frame annotations based on the dynamic frame approach.
This offers more flexibility and verbosity (cf. [Weiß, 2011; Mostowski, 2015]).

Information flow analysis based on theorem proving is still a heavy-
weight approach and can be time-consuming, especially for the human effort
provided by a proof engineer, since they describe theoretically undecidable
problems. This effectively limits the ability to apply the approach to larger
programs or programs that are hard to specify on the code level. The latter
category particularly includes programs that use cryptography. Analyzing
such programs can only be made feasible through a combination of com-
plementary techniques, as discussed in Chap. 9. A symbolic approach to
cryptography, using ideal functionalities, can be used to prove cryptographic
indistinguishability.

In developing an information flow analysis for concurrent programs, the
biggest challenge turned out to be the definition of an appropriate concurrency
model and a programing language supporting it. Surprisingly, the definition
of security in sequential programs can be leveraged to concurrent programs in
a natural way. The only difference is that the security of concurrent programs
can depend on the scheduler. This forces us to classify some programs as

255



Chapter 11. Conclusion

insecure even though high variables do not even occur in the program context.
The reason for this is that we cannot exclude the case in which a scheduler
encodes secrets in a schedule. This issue is not particular to our approach,
but also appears in LSOD as mentioned by Snelting [2015]. One solution to
this would be to specify that the program is only executed under schedulers
that do not depend on secrets.

Quantitative analyses based on our framework can be developed.
The tool chain described by Klebanov [2014] combines a qualitative infor-
mation flow analyzer with model generation and model counting. A precise
analysis is necessary to generate models. Incomplete analyzers cannot be
used to produce reliable results.

Certificates allow the results of security analyses to be archived per-
sistently. The Common Criteria (CC) is an established scheme for software
and hardware security certification [CC]. Software certification is commonly
seen as a powerful means to achieve high quality software—particularly if it
is employed in a security critical context. Improved availability of compre-
hensive product certification in software engineering would have considerable
advantages. In particular, software engineers have been promoting a par-
adigm shift from process to product oriented certification for a long time
(cf. [Voas, 1998; Meyer, 2003]). However, the CC are not directly concerned
with software verification. Whether the program code actually conforms to
the specified security functionality described in the documentation is never
proven formally. Beckert, Bruns, and Grebing [2012a] showed that it is
possible in principle to use code level specifications as development models
in the CC. Since they are not required, adequacy in real world certification
will depend on the evaluator. The standard itself tends to be very vague on
how formal methods are used.

Formal verification is no “silver bullet” in quality software develop-
ment [Brooks, 1987]. Firstly, verification only proves correctness w.r.t. a
given specification, which may or may not reflect the actual intention. Ver-
ification must be considered as just one piece of the puzzle. Testing—as
the dual to verification—is still necessary (cf. Knuth’s famous quote from
1977). Secondly, software itself needs to comply with analysis techniques,
too. Software needs to meet at least the quality standards to be accessible at
all. In this regard, high-level languages with strict structuring and dedicated
features are more amenable to verification.

Much work in proving secure information flow is dedicated to establish-
ing fundamental global invariants in order to verify local information flow
properties. Dynamic analysis techniques, such as runtime checking or testing,
can be added to the setup. Gladisch [2010] has demonstrated how unit test
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cases can be derived from open proof goals. Complete analysis techniques
allow for counter example generation.

We have experienced that concrete proof obligations (for both thread
specification validity and secure information flow) tend to be large and
possibly incomprehensible to a user of the verification system. It is thus
highly important to provide a specification interface as we did with the JML
extensions, that were presented in Chap. 8. JML has the advantage that it
is already tuned towards specifying sequential Java. Since it does not yet
contain any provisions for neither concurrency nor secure information flow,
our proposals are candidates for inclusion in the official reference.

11.3 Outlook on Future Work

Completeness of reasoning about concurrent programs is hard to attain.
While the original rely/guarantee approach has been proven complete by
Stølen [1990], we did not provide a completeness proof. Even worse, our
calculus definitely is incomplete w.r.t. the semantics defined in Sect. 3.5: it is
not possible to assert that all threads have terminated. Given this situation,
there are two possible future directions: 1. reïnforcing our verification frame-
work to make it complete or 2. dropping the fairness assumption in Sect. 3.1.2
and relaxing proof obligations appropriately. The latter option seems more
promising. On the one hand, as already discussed in Sect. 5.4.4, formally
attaining completeness is a futile endeavour. On the other hand, we have
introduced fairness into concurrent program semantics only as an auxiliary
feature, that ensures that thread executions terminate if the corresponding
sequential program terminates locally. While this premiss helps to keep
definitions relatively simple, it is not entirely realistic to assume it. Further
investigations into this area should be driven by practical applications, e.g.,
the example in Sect. 5.6 should be provable w.r.t. a stronger postcondition
that prescribes the termination of all involved threads.

Synchronization of concurrent threads is an essential means to develop
programs that make use of concurrency in a sensible way. In Sect. 7.2, we
discuss the instruments that are specific to Java. As explained in Sect. 5.6,
incorporating synchronization means would require some modifications both
to the theoretical definitions in this dissertation and to the implementation in
KeY. Stølen [1991] extends the basic rely/guarantee approach by introducing
‘wait conditions’ to specify program behavior at synchronization points.
These conditional wait statements with atomic evaluation are similar to loop
invariants since they describe what is maintained while waiting. A related
issue are liveness properties of a concurrent systems as a whole. Since
classical rely/guarantee lacks a notion of progress, Gotsman et al. [2009]
replace the two-state assertions with temporal formulae in guarantees and
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rely conditions. By incorporating a way to reason about progress, we could
also relax the fairness assumption imposed on schedulers.

Effective concurrency verification can be established in a combination
of the rely/guarantee approach with approaches that establish a stricter
separation. The approach in Chap. 5 is appropriate for a general case, where
fine-grained separation properties are needed. In Java, there is no language
support for atomic blocks. If we could identify such blocks that may be
treated as if they were atomic, then we could reduce the proof complexity.
More effective approaches rely on a broader separation of memory, such as
the approaches based on separation logic (cf. Sect. 10.3.2) or the approach
by Mostowski [2015]. This allows that concurrent changes only need to be
considered at certain places, in which we can apply rely/guarantee. Since
Mostowski’s approach is based on KeY, too, it appears natural to combine it
with ours.

The implementation in KeY of the rely/guarantee approach for multi-
threaded Java is still in a prototype state. It seems very promising to bring
it forward. So far, proof obligations for guarantees as well as rules for
interleavings have been implemented. The next steps include: 1. support
for dynamic thread creation; 2. support for synchronization; 3. reïntegrating
loop invariant and method contract rules; 4. adapting the rules and proof
obligations to Java-specific issues, e.g., exceptions; and 5. generating proof
obligations for secure information flow. We expect that more case studies
will be available while the implementation develops. In particular, we aim to
verify a version of the e-voting system described in Chap. 9 that includes
parallel vote tallying. Once we have come to a more stable system, we
may also consider the practical improvements to information flow analysis
described by Scheben [2014]. Finally, we also need to consider practical
aspects like scalability and usability.

Combining different techniques for secure information flow is vital in
order to analyze more realistic programs. Formally proving secure information
flow has a high specification overhead and a slow performance in practice. On
the other hand, the success of imprecise static or dynamic analysis techniques
(for both functional and relational properties) in practice reveals that there
are many ‘typical’ situations in which these properties are efficiently provable.
For this reason, it is promising to combine approaches from both worlds. A
first idea has been described by Küsters et al. [2015], that combines functional
verification with less precise static information flow analysis.

The collaboration of different techniques and tools needs to be placed
upon a sound foundation. A remaining goal will be to develop a framework
to combine the KeY and JOANA tools for a more tractable information flow
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analysis. The basic idea is to analyze information flow with KeY only in
modules that cannot be analyzed precisely with JOANA. We are aiming at a
meta-level theorem that establishes the overall soundness and completeness of
the approach. A further technical challenge lies in defining the exact interface
between both tools. The development of RIFL and the collaboration so far
within the RS3 project have pointed out some starting points.

Going in the opposite direction of the tool chain, JOANA provides static
program slicing. The knowledge obtained about a target program could be
used to simplify the proof obligation by (virtually) slicing away unrelated
program parts. While this approach breaks modularity of the analysis, the
slicing criteria guarantee that it is sound. As a variation, static slicing
could be replaced by semantic slicing [Liu et al., 2015], which combines the
strengths of static and dynamic slicing.

The influence of schedulers on security is still an open issue. Our
own security property from Sect. 6.3 considers programs insecure in which
the ‘low’ output depends on the scheduler. This can be seen as restrictive
(cf. [Snelting, 2015]). Yet, there is no satisfactory modular analysis approach
that is tolerant to this situation. Explicit modeling of a scheduler (as by
Russo and Sabelfeld [2006]) is not an acceptable solution since it breaks
modularity. A possible direction of future research could include a relaxation
of the rely/guarantee framework to include free rely conditions, that can
be assumed, but need not to be proven. We would then encode scheduler
properties in those. The overall soundness of such an approach could be
established on the meta level, possibly in a hybrid approach.

Assuming noninterfering schedulers would also be an important step
towards a parallel compositional notion of secure information flow. Even
with strong requirements on intermediate data flows, we need to ensure that
the composition is secure. We expect that the analysis of compositional
properties can be easier than the current approach, in which we consider the
entire functional effect of interleavings. This may not be necessary in every
case, as the approach by Mantel et al. [2011] shows.

Relational rely/guarantee specifications are a possibility to achieve a
precise and compositional analysis technique for secure information flow in
concurrent programs. The basic idea is to consider interleavings as we did
in Chap. 5, but instead of functional (and frame) specification, we specify
thread behavior in terms of information flow. These specification statements
are of the shape ‘on every atomic step, no information flows from H to L.’
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