3,067 research outputs found

    An approach to relate business and application services using ISDL

    Get PDF
    This paper presents a service-oriented design approach that allows one to relate services modelled at different levels of granularity during a design process, such as business and application services. To relate these service models we claim that a 'concept gap' and an 'abstraction gap' need to be bridged. The concept gap represents the difference between the conceptual models used to construct service models by different stakeholders involved in the design process. The abstraction gap represents the difference in abstraction level at which service models are defined. Two techniques are presented that bridge these gaps. Both techniques are based on the Interaction System Design Language (ISDL). The paper illustrates the use of both techniques through an example

    Deep Modeling through Structural Decomposition

    Get PDF
    In some applications, traditional metamodeling in two levels gets to its limits when model elements of a domain should be described as instances of other model elements. In architecture description languages, components may be instances of their component types. Although workarounds exist, these require many validation constraints and imply a cumbersome interface. To obtain more elegant metamodels that require less constraints, deep modeling seeks ways to represent non-transitive instantiation chains. However, these concepts often make existing techniques for model transformation and analysis obsolete as these languages have to be adapted. In this paper, we present an approach to realize deep modeling only through structural decomposition, which can be implemented as a non-invasive extension to meta-metamodels similar to Ecore. As a consequence, existing tools need not be adapted. We validate our concept by creating a deep modeling architecture description language and demonstrate its advantages by modeling a synthetic web application

    Towards Method Component Contextualization

    No full text
    International audienceMethod Engineering (ME) is a discipline which aims to bring effective solutions to the construction, improvement and modification of the methods used to develop Information Systems (IS). Situational Method Engineering (SME) promotes the idea of retrieving, adapting and tailoring components, rather than complete methodologies, to the specific context. Existing SME approaches use the notion of context for characterizing situations of IS development projects and for guiding the method components selection from a repository. However, in the reviewed literature, there is no proposed approach to specify the specific context of method components. This paper provides a detailed vision of context and a process for contextualizing methods in the IS domain. This proposal is illustrated with three case studies: scenario conceptualization, project portfolio management, and decision-making

    SAGA: A project to automate the management of software production systems

    Get PDF
    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management

    Building Specifications in the Event-B Institution

    Get PDF
    This paper describes a formal semantics for the Event-B specification language using the theory of institutions. We define an institution for Event-B, EVT, and prove that it meets the validity requirements for satisfaction preservation and model amalgamation. We also present a series of functions that show how the constructs of the Event-B specification language can be mapped into our institution. Our semantics sheds new light on the structure of the Event-B language, allowing us to clearly delineate three constituent sub-languages: the superstructure, infrastructure and mathematical languages. One of the principal goals of our semantics is to provide access to the generic modularisation constructs available in institutions, including specification-building operators for parameterisation and refinement. We demonstrate how these features subsume and enhance the corresponding features already present in Event-B through a detailed study of their use in a worked example. We have implemented our approach via a parser and translator for Event-B specifications, EBtoEVT, which also provides a gateway to the Hets toolkit for heterogeneous specification.Comment: 54 pages, 25 figure

    Event-B in the Institutional Framework: Defining a Semantics, Modularisation Constructs and Interoperability for a Specification Language

    Get PDF
    Event-B is an industrial-strength specification language for verifying the properties of a given system’s specification. It is supported by its Eclipse-based IDE, Rodin, and uses the process of refinement to model systems at different levels of abstraction. Although a mature formalism, Event-B has a number of limitations. In this thesis, we demonstrate that Event-B lacks formally defined modularisation constructs. Additionally, interoperability between Event-B and other formalisms has been achieved in an ad hoc manner. Moreover, although a formal language, Event-B does not have a formal semantics. We address each of these limitations in this thesis using the theory of institutions. The theory of institutions provides a category-theoretic way of representing a formalism. Formalisms that have been represented as institutions gain access to an array of generic specification-building operators that can be used to modularise specifications in a formalismindependent manner. In the theory of institutions, there are constructs (known as institution (co)morphisms) that provide us with the facility to create interoperability between formalisms in a mathematically sound way. The main contribution of this thesis is the definition of an institution for Event-B, EVT, which allows us to address its identified limitations. To this end, we formally define a translational semantics from Event- B to EVT. We show how specification-building operators can provide a unified set of modularisation constructs for Event-B. In fact, the institutional framework that we have incorporated Event-B into is more accommodating to modularisation than the current state-of-the-art for Rodin. Furthermore, we present institution morphisms that facilitate interoperability between the respective institutions for Event-B and UML. This approach is more generic than the current approach to interoperability for Event-B and in fact, allows access to any formalism or logic that has already been defined as an institution. Finally, by defining EVT, we have outlined the steps required in order to include similar formalisms into the institutional framework. Hence, this thesis acts as a template for defining an institution for a specification language
    • …
    corecore