

 Karlsruhe Reports in Informatics 2016,11
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Deep Modeling through Structural
Decomposition

Georg Hinkel

 2016

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Deep Modeling through Structural Decomposition

Georg Hinkel
FZI Research Center of Information Technologies

Haid-und-Neu-Straße 10-14
76131 Karlsruhe, Germany

hinkel@fzi.de

ABSTRACT
In some applications, traditional metamodeling in two levels
gets to its limits when model elements of a domain should be
described as instances of other model elements. In architec-
ture description languages, components may be instances of
their component types. Although workarounds exist, these
require many validation constraints and imply a cumber-
some interface. To obtain more elegant metamodels that re-
quire less constraints, deep modeling seeks ways to represent
non-transitive instantiation chains. However, these concepts
often make existing techniques for model transformation and
analysis obsolete as these languages have to be adapted. In
this paper, we present an approach to realize deep modeling
only through structural decomposition, which can be imple-
mented as a non-invasive extension to meta-metamodels sim-
ilar to Ecore. As a consequence, existing tools need not be
adapted. We validate our concept by creating a deep mod-
eling architecture description language and demonstrate its
advantages by modeling a synthetic web application.

CCS Concepts
•Software and its engineering → Model-driven soft-
ware engineering; Architecture description languages;
Abstraction, modeling and modularity; •Computer systems
organization → n-tier architectures;

Keywords
Deep Modeling; Structural Decomposition; Refinements; NMeta;
Modeling Language;

1. INTRODUCTION
When working with model-based or model-centered ap-

proaches such as Model Driven Engineering (MDE), mod-els
always conform to a metamodel defining their structure. Since
the metamodel itself conforms to a meta-metamodel and
therefore the structure of the models is well-defined, models
conforming to a metamodel can be automatically

processed by model transformations to other artifacts such
as code, documentation, or other models. As a consequence,
any complexity in the metamodel also implies a higher com-
plexity in dependent artifacts such as model transformations.
It is therefore desirable to keep metamodels as simple as pos-
sible in order to minimize accidental complexity.

However, many of the most often used modeling formalisms
such as Ecore usually do not allow a direct representation of
the relation that a model element is an instance of another,
except that all model elements are instances of their class [1].
This leads to accidental complexity, as metamodels must be
aided by helper constructs. Instantiation relations must be
described using references, for example using some kind of
connector classes. The semantics of instantiation is then re-
stored by introducing OCL constraints that ensure a valid
usage to mimic instantiation relations. While this solves the
modeling problem in the first place, it makes automated tool
support difficult as such tool support has to analyze the OCL
constraints to reconstruct the original intention.

At the same time, tool support is one of the main reasons
that hinders MDE from a wider acceptance in the industry,
as studies from Mohaghegi and Staron suggest [2], [3].

Approaches that aim to directly support instantiation re-
lations between model elements are referred to as Deep Mod-
eling or Multi-Level Modeling concepts. The latter term orig-
inates from the idea that such approaches not only support
the usual two levels of metamodels and models, but that a
model repository may contain non-transitive instantiation
chains of arbitrary length. This means that a model element
A can be an instance of another model element B which is
an instance of model element C. However, unlike inheritance,
instantiation is not transitive so that A is not an instance of
C.

Most existing approaches to describe these instantiation
chains use radically new concepts to describe these instanti-
ations and thus yield the risk that developers may not use
them but try to stay with the technologies they are used
to as far as they can. Such mentality was shown for general
purpose languages by Meyerovich [4], and we suspect that
this is also true for modeling languages.

A further potential disadvantage is that all the subsequent
tools such as model transformations have to be adjusted for
Deep Modeling, as e.g. done by Atkinson [5] with an adjusted
version of ATL called DeepATL. Given the plethora of
model transformation languages, where even the most com-
monly used ones have much smaller user bases than most
general purpose languages, we think that few transformation
languages will be adopted and maintained for Deep Model-

ing.
In this paper, we propose a pragmatic approach how Deep

Modeling, i.e., instantiation chains of arbitrary length, can
be realized using only two non-invasive extensions to meta-
metamodels aligned with EMOF, such as Ecore. The crucial
advantage of this approach is that all the tools available for
such a meta-metamodel can be reused and existing meta-
models do not have to be changed. Thus, Deep Modeling
can be introduced in a stepwise evolution process and only
where it is beneficial.

The rest of the paper is structured also in multiple lev-
els. In a first level, we present our notion of constraints and
refinements in Section 2, explain how we use it for Deep Mod-
eling in Section 3 and present our implementation in Section
4. As an instance of these concepts, we apply them to cre-
ate a deep modeling architecture description language based
on the Palladio Component Model [6] in Section 5. We in-
stantiate this language for validation to model a simple web
application serving media files in Section 6. Finally, we show
related work in Section 7 and conclude the paper in Section
8.

2. STRUCTURAL DECOMPOSITION
In this section, we formally define our notion of structural

decomposition that we use in this paper.
In a metamodel, the structural properties of a metaclass

are determined by attributes and references, in Ecore re-
ferred to as structural features. The goal of our structural de-
composition approach is to be able to decompose this struc-
ture as we specialize the metaclasses.

For example, consider a metamodel of vehicles. Vehicles
may have wheels. However, for a car we can actually decom-
pose this set of wheels into front wheels and rear wheels, and
know more about the types of wheels that can be put to a
car. If we tried to take a wheel off a bicycle and were to put it
to a car, we would actually want the modelling environment
to tell us that this is not possible, as soon as possible.

To describe this effect, we use a formal syntax close to the
OCL standard. Types, denoted with capital letters, are or-
dered with a partial order relation � describing inheritance,
i.e. A � B if B is an anchestor of A. The instances of a type
A are denoted as I(A). We denote collections of type A with
its Kleene closure A∗.

A feature f : A→ B of a class A is a pair of two functions:
The getter function f.get : I(A)× Ω→ I(B) maps a model
element of type A to a type B (either also a metaclass or a
primitive type), depending on the global state ω ∈ Ω. This
state space Ω is adapted from stochastics and models that
the model elements are mutable. The partial setter function
f.set : I(A) × I(B) × Ω ⇀ Ω modifies the global model
state to set the feature of a given model element. Its domain
describes the set of valid model states. In particular, we say
the feature f has a valid value for a model element a in state
ω if (a, f.get(a, ω), ω) ∈ D(f.set). The getter and setter of a
feature have to comply with a SetGet-law specifying that
the getter should return what the setter stores. In particular,
if (a, b, ω) ∈ D(f.set), we have that

f.get(a, f.set(a, b, ω)) = b. (SetGet)

The SetGet-law is inspired by and closely related to
the PutGet-law from Lenses [7], but is made for mutable
model elements.

Definition 1 (Structural decomposition).
Let A and B be types. A set of features f1, . . . , fn : A→ B∗
for types A and B and an n ∈ N is a structural decomposi-
tion of a feature f : A→ B∗ if we have that for each global
state ω ∈ Ω and a ∈ A that

f.get(a, ω) = f1.get(a, ω); f2.get(a, ω); . . . ; fn.get(a, ω); .

We say that f is made of f1, . . . , fn and call the fi com-
ponents of a composition f .

Since there is an embedding from A×Ω→ B into A×Ω→
B∗, we will also allow the features used for decomposition to
be single-valued where we depict an element null ∈ B that
corresponds to an empty string in B∗. Likewise, we allow
compositions to be single-valued. In this case, the value of
the composition has to match the only component value that
is not null.

We combine structural decomposition with a notion of re-
finement as per the following definition:

Definition 2 (Refinement). Let A, B, C and
D be types with C � A and D � B. Further, let f : A →
B and g : C → D be features. Then, we say that g is a
refinement of f if f.get and g.get are the same on I(C) ×
Ω and the setters are the same for elements of C, i.e. the
following equations holds for all c ∈ I(C), and ω ∈ Ω:

f.get(c, ω) = g.get(c, ω)

D(f.set) = D(g.set)∩I(C)× I(B)× Ω ⊂ I(C)× I(D)× Ω

and if (c, b, ω) ∈ D(g.set), then we have that

f.set(c, b, ω) = g.set(c, b, ω).

In particular, we know that for each element c, the refer-
ence f will always (i.e. for each model state ω) refer to an
element of D.

An important special case here is the refinement by a con-
stant reference g ≡ d for some constant element d ∈ I(D).
Usually, constant features are not explicitly modeled as they
do not contain any information specific to the model ele-
ment, but in combination with a refinement, they may carry
information that is known for some subtypes, but not in the
general case for a given type A.

3. DEEP MODELING THROUGH STRUC-
TURAL DECOMPOSITION

Throughout this paper, we treat as the main characteristic
of Deep Modelling that non-transitive instantiation relation-
ships can be modeled, i.e. there can be model elements A, B
and C such that A is an instance of B and B is an instance
of C but A is not an instance of C.

A prominent example depicted in Fig. 1 is that a concrete
dog (a poodle) can be an instance of Poodle which in turn
is an instance of Breed. In this example, Poodle acts both
as model element (object) and as a class, which is why it is
often called a clabject to express this duality [8].

Such a situation can be described using the powertype
pattern first presented by Odell [9]. However, many modeling
environments such as Ecore currently do not support this
pattern and even in the UML, it is an isolated concept.

<<abstract>>
Dog

Poodle

BreedBreed

1

� instance-of �

Figure 1: Poodle is both a class and an instance

On the other hand, there is a very prominent example of
a clabject even in traditional two-level modeling with self-
descriptive meta-metamodels, namely the class Class which
is an instance of itself. Its properties as a class are described
by the references and attributes of Class because the meta-
metamodel effectively describes a type system. Essentially,
the class Class describes that its instances can be instanti-
ated, typically done through a mapping to a platform class
that we call code generation.

The core idea of this paper is to reuse this duality of the
Class element on a wider scope. Thus, whenever we concep-
tually face a clabject, a metaclass whose instances can be
instantiated again, this metaclass should be a subtype of
Class. However, unlike UML stereotypes that were rejected
by a large portion of the community, we hide the type system
relevant information by decomposing them into domain ref-
erences. References that are not applicable are cut off using
a refinement with a constant.

Furthermore, we added an explicit instance-of relation be-
tween classes. With this relation, we may specify that Dog

is an instance of Breed, meaning that the type of each dog
element will be in turn an instance of Breed. Thus, the Breed

reference is just a converted type reference and hence, the
instance-of relation can be seen as a formalization of the
powertype pattern, expressed with a single reference.

Given the relationship to stereotypes, this connection is
hardly suprising since Henderson and Gonzalez-Perez have
already shown a close connection of the powertype pattern
to UML stereotypes some years ago [10]. We will see the
instance-of relation being used later in Section 5 in a number
of places.

But as the domain concepts are still classes as they (pos-
sibly indirectly) inherit from the class Class, we can use the
standard generators to generate model representation code
for them. With this generated code, the class nature of a
clabject is represented by a mapping into the platform type
system while the object nature of it is represented as a model
element.

This mapping of the type facet to the platform type sys-
tem also yields the consequence that an instance of a clab-
ject A cannot be in the same model as A unless the model is
manually bootstrapped, such as done for Class. As a conse-
quence, a clabject cannot easily be an instance of itself unless
the model developer has explicitly expressed an intend that
this behavior is desirable by bootstrapping the model. This
neglects the various paradoxa presented by Atkinson et al.
[11] for languages he referred to as level-blind.

On the other hand, the instantiation indeed implies a strat-
ification of the model and divides it into levels, as suggested
by Atkinson [11], though these levels can be crossed not only
by instantiation relations. Our case study example in Sec-
tion 5 will give an example where this enables us to keep a
level structure in the presence of model elements that would
otherwise break the level structure. Basically, this is possi-

ble by binding user defined clabjects to classes known in
advance through the instance-of relation. These base classes
are known before any model for the deep metamodel is cre-
ated and thus can freely be referenced, including a usage for
analysis or transformation purposes.

4. NMETA
We have implemented structural decomposition and refine-

ments in the NMeta meta-metamodel which is used within
the .NET Modeling Framework (NMF1). Its basic meta-
classes are depicted in Figure 2. In NMeta, every model
element is an instance of ModelElement and therefore has an
absolute URI which makes it uniquely identifiable and ad-
dressable. This URI is created automatically based on the
containment hierarchy of the model elements (the Parent ref-
erence) and on the URI of the model that contains the model
element. Further, model elements also have a relative URI
to identify them within the scope of their model in case the
models URI is not set. Conversely, it is possible to resolve a
relative URI starting from a given model element as context.

<<abstract>>
ModelElement

+ AbsoluteUri : Uri
+ RelativeUri : Uri

+ Resolve(relativeUri : Uri) : ModelElement
+ GetReference(reference : Reference) :
ModelElement[*]
+ GetAttribute(attribute : Attribute) :
String[*]
+ GetClass() : Class

Model

+ ModelUri : Uri

RootElements

0..*

Parent

0..1

Figure 2: The base metaclasses in NMeta

Model elements are categorized into classes that define the
type system of a model (metamodel). An excerpt showing
the metaclasses responsible for the type system is depicted
in Figure 3. The type system is similar to the one from Ecore
and there is a model transformation from Ecore to NMeta.
In particular, a model conforming to an Ecore metamodel M
can also be read using the transformed NMeta metamodel
M ′, provided M does not contain generic types, factories or
custom XMI handlers.

Similar to Ecore, metaclasses may contain attributes and
references, but attributes and references may refine other at-
tributes or references and constraints may be put on them. If
an attribute is refined or constrained, it is effectively struc-
tural decomposed by all the refining attributes and a con-
stant attribute yielding the values of the constraint. An
equivalent statement holds for references.

The reference refinement is used e.g. for the Type refer-
ence that attributes and references inherit from TypedElement.
The reason is that a reference is only valid when the type
assigned to it is a reference type. Conversely, an attribute
must be typed with a value type. In Figure 3, this relation
is denoted with a dotted arrow from the ReferenceType or
DataType reference of references and attributes to the Type

reference of TypedElement.
The semantic behind this assignment is that the Type of a

reference is its ReferenceType. Conversely, if we set the Type

of a reference, the setter internally sets the ReferenceType.

1http://nmf.codeplex.com/

http://nmf.codeplex.com/

<<abstract>>
ModelElement

+ AbsoluteUri : Uri
+ RelativeUri : Uri

<<abstract>>
MetaElement

+ Name : String (Identifier)
+ Summary : String
+ Remarks : String

<<abstract>>
TypedElement

+ IsOrdered : Boolean
+ IsUnique: Boolean
+ LowerBound : Integer
+ UpperBound : Integer

Reference

+ IsContainment : Boolean

Attribute

+ DefaultValue : String

<<abstract>>
Type

<<abstract>>
ValueType

+ FromString(input : String) :
Object
+ ToString(object : Object) :
String

PrimitiveType

+ SystemType : String

<<abstract>>
StructuredType

<<abstract>>
ReferenceType

Class

+ IsAbstract : Boolean

ReferenceConstraint AttributeConstraint

DeclaringType 1References 0..*

DeclaringType

1

Attributes

0..*

Type 1

Identifier

0..1

ReferenceType

1

� refines �

DataType 1

� refines �

� instance-of �

Opposite

0..1

Refines

0..1

Refines

0..1

BaseTypes

0..*

InstanceOf

0..1

References0..*

DeclaringType 1ReferenceConstraints 0..*
DeclaringType1

AttributeConstraints0..*

Constrains 1 Constrains 1

Figure 3: The type system of NMeta

However, this only works if the set value is an instance of
ReferenceType. If it is not, we throw an exception because a
reference whose type is not a reference type cannot be valid.
This implementation yields that the validation that types
of references must be reference types is already checked by
the type system and thus there is no need for an additional
constraint, formulated e.g. in OCL.

References may only refine references from base classes,
but conversely it is allowed that a reference is decomposed
multiple times for different subtypes of its declaring type.
Components of a structural decomposed reference must match
the composition reference in terms of ordering and contain-
ment and can themselves be decomposed again. A unique
reference must not be decomposed as we did not implement
to ensure a uniqueness constraint for the composition ref-
erence. The default value of an attribute is ignored if this
attribute is decomposed. Since the inheritance hierarchy of
value types is not modeled, the types of refinement attributes
must match the refined attribute exactly.

Besides a reference of base classes, classes in NMeta are
allowed to restrict inheritance to instances of a given class
through the InstanceOf reference. This reference may only
be specified for abstract classes. If a class A is an instance
of class B, then only instances of B may inherit from A.
Consider a an instance of type C which inherits from A.
Because B was declared as an instance of A, C must be of
type B. Thus, the type of a is an object of type B. Since
this is known at compile-time, the generated code contains
a refined method to obtain the model elements type of type
B.

If the InstanceOf reference is left blank, this has the same
effect as specifying that a class is an instance of Class. This is
because the base class ModelElement is marked as an instance
of Class. Moreover, when classes define an instance-of rela-
tion and one of its base class also specifies an instance-of
relation, then the new instance-of class must be a subtype
of the base class instance-of class. As an immediate conse-
quence, all classes used in the instance-of reference must be
subtypes of Class.

NMF provides a transformation from NMeta metamodels2

to code. This code generator creates an interface and a de-
fault implementation class for each class in the metamodel.
For any attribute or reference, a property and a change event
is generated. If there is no structural decomposition defined,
this property is backed by a field, otherwise a private get-
ter and setter implementation is generated that composes
or decomposes the property on the fly. For decomposition,
the setter will assign the value to the first component prop-
erty that fits. This affects the default implementation class,
as any implementation class using a backing field for a de-
composed property cannot be reused, but it does not affect
the generated interface, so that the substitution principle is
maintained for any analysis that consumes the model and
just relies on the interface. This holds in particular also for
the code generator itself, so that a model representation class
can be generated for every subclass of Class as well. Artifacts
that modify model elements such as editors would rather op-

2When using deep modeling approaches, the term meta-
model gets blurred. We use the term metamodel to describe
a model that can be instantiated.

erate on the real type of the model elements and therefore
only see the public properties, which are exactly the non-
decomposed properties.

The generator links a metaclass with a generated class
through an annotation. Furthermore, the method to return
the class element of a model element is overridden to return
the concrete class element. If an abstract class A specifies an
instance-of relation to clabject class B, then every instance
of A will have a type that is itself of type B and therefore, an
abstract discriminant method is generated that returns the
type as an instance of B. For any instance of B, the code
generator will generate an implementation of this method
that statically returns this model element.

5. CASE STUDY: AN ARCHITECTURE DE-
SCRIPTION LANGUAGE USING DEEP
MODELING

To validate our concept for Deep Modeling, we created
DeepADL as a prototype language for architectural descrip-
tion using Deep Modeling. DeepADL is largely inspired by
the Palladio Component Model (PCM) [6] but only focuses
on component repositories, software architectures and de-
ployment. In particular, the performance-relevant elements
of PCM such as service effect specifications are omitted. Many
of these concepts do not benefit from Deep Modeling and
are therefore not relevant for this paper. However, our ap-
proach allows us to simply copy them from a strict two-
level metamodel of PCM into a deep modeling metamodel of
DeepADL, making this approach attractive for refactorings
for deep modeling.

To answer where to apply Deep Modeling, one has to look
for concepts that are best described with an instance-of rela-
tionship, for example using the patterns of de Lara et al. [1].
In an architecture description scenario, we have identified
several of these instantiation relationships. First of all, an ar-
chitecture description introduces models of a component and
its interfaces. These component types form an application-
independent repository. Instances of these component types
are then assembled to a systems architecture. Here, each in-
stantiated component (AssemblyContext in PCM) has to be
connected to components realizing the interfaces that are
required by the components type. In the next step, the ar-
chitecture is deployed to a set of resources, where each com-
ponent must be mapped to a particular resource.

A challenge here are composite component types, compo-
nent types that use a set of component instances to fulfill
their functionality. The problem arises because these com-
ponent types ‘live’ in the component type repository level
but require elements from the system architecture level –
the instances of other component types. This is forbidden
by all approaches we know that use a fixed level structure
(‘level-adjuvant’ languages).

Together with NMeta itself, this makes five modeling levels
which we sketched in Figure 4. These levels are quite natu-
ral as they reflect the development process of a component-
based system. At first, a component model is created (or
selected from the many already existing ones). Then, com-
ponent types are created, before they can be assembled to a
component-based system which in the end can be deployed.
As foreseen by Atkinson et al., they also match the stratifi-
cation of the model into levels. However, through abstract
base classes, we are able to cross these level boundaries.

NMeta

DeepADL

Component Type Repository

System Architecture

Deployment

instance of

instance of

instance of

instance of

Figure 4: Levels of DeepADL

These levels also exist in PCM although it is modeled in
Ecore which only supports strict metamodeling, i.e. exactly
two levels. We will thus use it for comparison in Section 6.

We begin with component types. Component types are
represented by the abstract class Component. Since component
types can be instantiated, they are clabjects and therefore
Component must inherit from Class. Same as PCM, DeepADL
supports two different kinds of component types, basic com-
ponents and composite components. Instances of a compo-
nent type are assembly contexts, so we create a reference con-
straint to the base types of Class and fix it to the AssemblyContext

class. Conversely, we specify that AssemblyContext is an in-
stance of Component.

Further, a component type is an implementation of its
provided interfaces. The most convenient way will be if the
component types inherit from the interfaces that they pro-
vide. Thus, Interface itself must be clabject as well and the
provided interfaces of a component type refine its base types.
However, here we introduced a subtle difference to PCM
since components in PCM are allowed to provide the same
interface multiple times through multiple roles.

For each required interface of its component type, an as-
sembly context must be assigned an assembly context whose
component type provides the required interface. In PCM,
this is modeled through an AssemblyConnector. In DeepADL,
we want our assembly contexts to have a strongly typed ref-
erence for each required interface of the component type
so that the ontological property of required interfaces of
a component type becomes the linguistic element that the
assembly context should have a reference. Hence, the re-
quired interfaces refine the references of Component. Thus,
RequiredInterface must inherit from Reference. These re-
quired interfaces should not reference any reference type, but
only instances of the class Interface, since any access to a
component must be encoded through an interface.

Because component types are classes, we can map them
to a CLR platform class and instantiate instances of compo-
nent types. These instances are assembly contexts since any
component type as a class also inherits from AssemblyContext.
This makes the component type of an assembly a part of its
identity since the type of an object cannot be changed during
its lifecycle. Thus, unlike e.g. in PCM, the component type
of an assembly cannot change and assembly contexts cannot
exist without a component type. Here, important validation
rules are ensured directly by the type system, which we see

<<abstract>>
ReferenceType

Class

Reference

RequiredInterface

IsUnique = false
IsOrdered = false
IsContainment = false
UpperBound = 1
LowerBound = 1

<<abstract>>
Component

BaseTypes = [AssemblyContext]
IsAbstract = false

BasicComponent

CompositeComponent

Signature

+ Name : String (Identifier)

Service

+ Name : String (Identifier)

Interface

BaseTypes = [AssemblyContext]
IsAbstract = true

References 0..*

ReferenceType 1

RequiredInterfaces 0..*

Interface 1

BaseTypes

0..*

ProvidedInterfaces

1..*

Services 0..*

Signatures 0..*

Implements

1

refines

refines refines

Figure 5: Component types in DeepADL

as a big advantage.
The signatures offered by an interface are not relevant at

the system architecture level since the fact that a component
type provides a particular interface already implies that a
component provides services that implement the interfaces
signatures. As a consequence, the ontological properties of an
interfaces signatures or a component types offered services
are no linguistic properties and are therefore usual references,
i.e. no refinement references. Furthermore, also the disjunc-
tion of components into basic components and composite
components has no effect on the system architecture.

The entire metamodel up to this point can be seen in Fig-
ure 5 where we again used dotted lines to represent reference
refinements. The classes Class, Reference and ReferenceType

are imported from NMeta and we omitted their details for
brevity. Furthermore, we wrote in the attributes part of
the classes also the constraints, both reference constraints
and attribute constraints. Note in particular the attribute
constraint of the Interface class that sets the IsAbstract

attribute to True, meaning that instances of Interface as
classes are abstract.

Because AssemblyContext is marked as an instance of Compo-
nentType, we can generate a method that returns the compo-
nent type of an assembly context. Furthermore, as the refer-
ences of a component type are decomposed into its required
interfaces, we statically know that each component instance
will have an assembly context assigned for each required in-
terface. Therefore, we can generate a method that takes a
RequiredInterface and returns the corresponding AssemblyContext

element connected on the reference generated for the re-
quired interface. The name of this method is constructed
using the name of the reference that is used as a component

for the references of a ComponentType as a class.

1 public interface IAssemblyContext : IModelElement, IReference {

2 IComponentType GetComponentType();

3 IAssemblyContext GetRequiredInterfacesValue(IRequiredInterface

reference);

4 }

Listing 1: The generated interface for an
AssemblyContext

The complete interface for an AssemblyContext is depicted
in Listing 1. Any class generated for an instance of a compo-
nent type implements this interface, resolving the component
type object from a static URI. For more detail, we encour-
age the reader to have a look into the generated code for our
usage example of DeepADL3.

We believe, these generated methods make the generated
API even simpler to use than with the workaround in tradi-
tional two-level modeling where developers of a model trans-
formation would have to iterate manually through connector
elements such as AssemblyConnectors in PCM to find the as-
sembly context connected for a given required interface.

Assembly contexts are composed in a system architecture,
i.e. a system architecture would instantiate components from
a repository and connect them appropriately. Such a sys-
tem architecture can be deployed to multiple resource envi-
ronments. This deployment can be seen as an instantiation
where the deployed system is an instance of the abstract sys-
tem architecture. Thus, we model SystemArchitecture as a
clabject, i.e. it inherits from Class. For each assembly context
in a system architecture, developers must assign a resource

3http://github.com/georghinkel/DeepModelingDemo

http://github.com/georghinkel/DeepModelingDemo

container where the assembly context will be deployed to.
Thus, the assembly contexts of a software architecture form
its references as a class. Each such reference is typed with
the resource container where the assembly context shall be
deployed to.

This deployment view can be seen in Figure 6. In this dia-
gram, the separation of the different modeling levels can be
easily seen since the classes related to the deployment on the
left hand of Figure 6 have no connection (except InstanceOf)
to the classes representing the system architecture which are
on the right hand.

A key observation here is that DeepADL contains classes
spanning all levels involved in architecture description, i.e.
repository, assembly and deployment. It is not restricted
to the highest (repository) level. The purpose of classes on
lower levels such as AssemblyContext for the system architec-
ture level is mainly to give them an application-independent
structure that is usable also for consumers of the model such
as transformations or analyses.

Next, we describe the representation of composite compo-
nents. Unlike basic components that are the smallest unit of
implementation, a composite component bundles the func-
tionality of multiple other components (possibly composite
components as well), but does not contain any implemen-
tation on its own. In fact, composite components act like
a Facade to their inner components. They are very similar
to software architectures in that they contain some assembly
contexts, i.e. instances of components, that are assembled to-
gether. On the other hand, composite components are com-
ponents and thus belong to the repository level. However, the
assembly of the inner components of a composite component
is independent of the choice in which systems a composite
component is used, if used at all. In particular, composite
components require a reference to assembly contexts that
are on a lower metamodelling level in Figure 4.

NMeta is agnostic of modeling levels and allows this. In
particular, the metamodel fragment regarding composite com-
ponents is depicted in Figure 7. Composite components may
contain arbitrary many assembly contexts. These assembly
contexts form the assemblies that the component uses to re-
alize its functionality. A second reference ExposedAssemblies

denotes the subset of assemblies that are exposed to outside
world, i.e. the components that realize the interfaces that
the component offers.

On the other hand, the component types of the assembly
contexts used in the composite component may require inter-
faces. In order to have a valid model, all assembly contexts
within the composite component must be connected to an
instance of some class implementing the interface. This may
be another assembly context within the composite compo-
nent, but it may also be a delegation to the required inter-
face of the composite component. While the first does not
require any additional model elements, the latter requires
to model delegation connectors explicitly. These delegation
connectors must be instances of the interfaces which they
delegate to. We model this as being instances of a common
Delegate class. These delegates act like delegate type defini-
tions in .NET that basically simply define a method signa-
ture. Likewise, delegators in DeepADL simply reference the
interface which they delegate. Since they can be instantiated
in delegation connectors, they are clabjects as well and thus
inherit from Class.

This requires a new validity constraint as a delegation con-

nector may only use a port with a type that is referenced
from its delegate type.

This level-crossing makes it very hard to model compos-
ite components with level-adjuvant languages: Because con-
ceptually, composite components may contain instances of
composite components, any fixed amount of levels is not suf-
ficient for deep-modelling composite components. Our struc-
tural decomposition approach is agnostic to levels and thus
can ignore this problem. However, since one can only create
an instance of a model element once it has been turned into a
platform class, we can exclude that a composite component
eventually contains an instance of itself, which is a validity
constraint that is otherwise very hard to formulate.

6. EXAMPLE USAGE: A MEDIA STORE IN
DEEPADL

The evaluate advantages of DeepADL over architectural
languages using traditional two-level modeling, we consider
a concrete example. In particular, we modeled a simple e-
Commerce application called the MediaStore. This e-Commerce
application lets users upload and download media files that
are persisted in a database. Uploaded media files are pro-
cessed with a watermark and saved to the database. This
system has been used as a case study for PCM already in
2009 [6].

Since we do not have a suitable editor for models yet, we
created small applications that use the generated model API
to create models of the MediaStore system. These applica-
tions along with the generated code for all of the levels can
be obtained online4.

An overview of the MediaStore is depicted in Figure 8.
This figure contains all three levels that have been discussed
above. The components and the interfaces of the MediaStore
form the repository. These repository components are then
used to create the system architecture by composing them
together. Finally, Figure 8 also shows the deployment that
all components are deployed to a single application server
except for the database component and the web browser.

In the Component Type Repository, the differences be-
tween PCM and DeepADL are small. This is reasonable
since components are at a very high level. While PCM mod-
els provided interfaces explicitly through a ProvidedRole el-
ement, provided interfaces are referenced in DeepADL di-
rectly. However, if we take a look to the next level, the situa-
tion is different. The metamodel excerpt of PCM to represent
the assembly contexts of a system architecture is depicted
in Figure 9.

In PCM, assembly connectors are very generic. The fact
that in a valid system architecture, each component must
have an assembly connector for each required interface must
be specified through an OCL constraint. Consequently, if a
user forgets to add an appropriate assembly connector, he
gets an error message saying that not all interfaces are con-
nected unless a more appropriate error message is deducted
from the OCL constraint or manually implemented. Con-
versely, one also needs to ensure that all assembly connectors
of an assembly context are valid.

On the other hand, in the DeepADL version the classes
that model editors are working with are much more specific
to the MediaStore. Since they are in fact classes, we can vi-
sualize them in a class diagram. An excerpt of this class dia-

4http://github.com/georghinkel/DeepModelingDemo

http://github.com/georghinkel/DeepModelingDemo

<<abstract>>
ReferenceType

Class

ReferenceComponent

<<abstract>>
AssemblyContext

IsUnique = false
IsOrdered = false
IsContainment = false
UpperBound = 1
LowerBound = 1
ReferenceType = [ResourceContainer]

SystemArchitecture

BaseTypes = [SystemDeployment]
IsAbstract = false

<<abstract>>
SystemDeployment

ResourceEnvironment

ResourceContainer

instanceof

instanceof

Environment 1

Container 1..*References 0..*

ReferenceType1

Assemblies 0..*

BaseTypes

0..*

refines

Figure 6: System deployment in DeepADL

Class

<<abstract>>
Component

CompositeComponent

<<abstract>>
AssemblyContext

Interface

RequiredInterface

Delegate

BaseTypes = [DelegationConnector]

DelegationConnector

Assemblies
1..*

instanceof

ExposedAssemblies 1..*

instanceof

Delegations

0..*

Port

1

RequiredInterfaces
0..*

Type 1

ProvidedInterfaces

0..*

Type

1

BaseTypes

0..*

refines

Figure 7: Composite components in DeepADL

AudioStoreWebForm UserManagement

EncodingAdapterOggEncoder DBAdapter

Web-Browser

MySqlClient MySqlDB

<<ResourceContainer>>
Application Server

<<ResourceContainer>>
Database Server

<<ResourceContainer>>
Client

<<LinkingResource>>
throughput = 128
unit = KBit/s

<<LinkingResource>>
throughput = 512
unit = KBit/s

<<Interface>>
HTTP

<<Interface>>
IEncoder

<<Interface>>
IAudioDB

<<Interface>>
IAudioStore

<<Interface>>
IUserManagement

<<Interface>>
IUserDB

<<Interface>>
ICommand
IConnection
IDataReader

Figure 8: The software architecture of the MediaStore [6]

<<abstract>>
RepositoryComponent

+ Name : String

<<abstract>>
Role

+ Name : String

ProvidedRole

RequiredRole

Interface

+ Name : String

AssemblyContext AssemblyConnector

System

ProvidedRoles
1..*

RequiredRoles

0..*

Interface

1

Assemblies

0..*

Connectors

0..*

From

1 To

1

ComponentType 1

Provided
1

Required

1

Figure 9: A simplified metamodel excerpt from PCM for system modeling

gram around the AudioStore component is depicted in Figure
10. Here, each required interface is turned into a reference
because in fact a RequiredInterface model element is a refer-
ence. Each of these references has a multiplicity of 1, therefor
implying a constraint that for example an AudioStore must
have an AudioDB assigned. The error message that can be
presented to the user if this contraint is violated, that the
AudioDB of an AudioStore cannot be null, is much more spe-
cific and likely to be more helpful.

The NMF code generator for classes generates us a model
representation code for the AudioStore component type, i.e.
a generated API. We use this API to (currently programmat-
ically) create instances of this component type. This gener-
ated API only allows us to set domain-specific properties like
the referenced IAudioDB component but it does not show us
class characteristics like references or attribute constraints.
The reference of references has been refined whereas the at-
tribute constraints reference has been constrained. In fact,
the AudioStore class does not inherit from Class and explic-
itly implements its interface.

A similar statement is true for the deployment. Here again,
the solution in two-level modeling such as applied in PCM is
to introduce a generic concept of an allocation context. An
excerpt of the PCM metamodel regarding the deployment
can be found in Figure 11.

On the other hand, the deployment for the MediaStore in
DeepADL is depicted in Figure 12. Because we created a Sys-
temArchitecture called MediaStoreSystem, we can instantiate
this clabject for the deployment of the MediaStore. Because
an assembly context is a reference, we get a reference for
every assembly context that is used inside the system.

System AssemblyContext

ResourceEnvironment ResourceContainer

Allocation AllocationContext

Assemblies

0..*

Containers

0..*

Contexts

0..*

System 1

Environment 1

Assembly 1

Container 1

Figure 11: A simplified metamodel excerpt of PCM
for deployment

ResourceEnvironment ResourceContainer

MediaStoreAllocation

Containers

0..*

Environment 1 AudioStore 1

Figure 12: Deployment of the MediaStore in
DeepADL

We also believe although we have not performed adequate
empirical experiments that users find it more natural and
intuitive to assign a resource container to a reference named
AudioStore than creating an allocation connector that con-
nects the AudioStore assembly with the resource container.
This is even more true at the system architecture level where
the user is asked to assign an instance of IAudioDB to the
reference AudioDB. Here, the type system already checks

<<abstract>>
IAudioStore

<<abstract>>
IUserManagement

<<abstract>>
IAudioDB

<<abstract>>
AssemblyContext

AudioStore UserManagementEncodingAdapter

DBAdapter SystemArchitecture

UserManagement

1AudioDB

1

Assemblies

1..*

Figure 10: Excerpt of the implied DeepADL metamodel to specify the architecture of a MediaStore system
based on a repository of component types

the validity so we can easily provide the user with tool sup-
port that only suggests valid options to connect, so only
DBAdapter or EncodingAdapter instead of the all the com-
ponents that appear in the repository.

Of course, all of this tool support can also be provided
with two-level modeling techniques. However, to the best of
our knowledge, there is no satisfying solution yet that ana-
lyzes the OCL constraints and uses this analysis to provide
tool support up to such a level. The problem is that this
information is widespread among a multitude of OCL con-
straints. The metamodel excerpt of Figure 11 needs one con-
straint to be valid, the excerpt from Figure 9 already four.
In DeepADL, the same situation does not require a single
OCL constraint.

7. RELATED WORK
The term of Multi-level modeling has got blurred in the re-

cent past [11]. In the first workshop on Multi-Level-Modeling
in 2014, the term has been replaced by Deep Modeling in or-
der to also allow level-blind approaches such as ours, and to
distinguish the field from statistics.

7.1 Refinements
The idea to use refinements for deep modeling is not new

as in particular, Back and Von Wright have written a whole
book on refinement calculus with a strong mathematical
foundation based on lattices and set theory [12]. A usage
in a model-driven context has been proposed by Varró and
Patarisza in 2003 [13] or Pons [14]. However, these approaches
have not tackled to represent instantiation chains using re-
finements.

7.2 Level-adjuvant languages
Level-adjuvant approaches typically use a level-agnostic

meta-metamodel [15] describing the model structure. Many
of these approaches are much more mature than ours and
already provide rich tool support [16], [17]. However, we be-
lieve the case of composite components as in PCM is a case
that inherently asks for support for level-crossing references
as we presented in this paper, which is typically not sup-
ported by level-adjuvant languages.

On the other hand, Rossini et al. have created a compari-
son where they compare the level-adjuvant MetaDepth lan-
guage with strict two-level modeling for cloud-based appli-
cations [18]. We believe that their solution using potencies
is much simpler than a solution using structural decomposi-

tion could be, mainly because the potencies allow attributes
clear when designing the first level to span multiple model-
ing levels more easily. Thus, there seems to be a trade-off
decision between our approach and level-adjuvant languages
when to apply which strategy.

7.3 Level-blind languages
In contrast to level-adjuvant languages, level-blind languages

have no explicit notion of levels. Rather, they are helping con-
structs as the result of stratification. As our approach shows,
this still allows to cross the boundaries of modeling levels.
Atkinson et al. have presented some paradoxa for level-blind
languages [11] for which they regarded these approaches to
be logically inconsistent but because our approach requires
an explicit mapping from a clabject to the platform type sys-
tem, paradox situations like the quoted phenomena of being
his own baby simply do not apply to our approach.

However, our approach is not the first one to be level-less.
Henderson, Clark and Gonzalez-Perez have been working on
an approach involving basically only objects and slots [19],
[20]. However, this approach is not compatible to existing
two-level metamodels such as Ecore and less convenient in
terms of a generated API.

8. CONCLUSION AND OUTLOOK
In this paper, we have proposed an approach how deep

modeling can be achieved with a slight and non-invasive ex-
tension to existing and well-accepted meta-metamodel such
as Ecore. This brings us into the comfortable situation that
we can apply deep modeling techniques such as non-transitive
instantiation chains of arbitrary length with a self-describing
and thus sound meta-metamodel and at the same time reuse
all available tools to work with the models such as model
transformation languages. At the same time, our approach
circumvents paradox situations level-blind approaches to deep
modeling have been blamed for in the past. We have applied
our approach to the realistic scenario of creating a deep mod-
eling version prototype of the popular Palladio Component
Model where we could simplify the generated API for the
model and reduce the number of constraints necessary. This
case study also employs a case which crosses the boundaries
of metamodeling levels, which is why we think that this case
study will be hard to model in level-adjuvant languages.

In the future, we plan to create a generic model editor
that allows users to create such models through a convenient
interface.

References
[1] J. D. Lara, E. Guerra, and J. S. Cuadrado, “When and

how to use multilevel modelling,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol.
24, no. 2, p. 12, 2014.

[2] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fer-
nandez, “An empirical study of the state of the practice
and acceptance of model-driven engineering in four in-
dustrial cases,” Empirical Software Engineering, vol. 18,
no. 1, pp. 89–116, 2013.

[3] M. Staron, “Adopting model driven software develop-
ment in industry–a case study at two companies,” in
Model Driven Engineering Languages and Systems, Springer,
2006, pp. 57–72.

[4] L. A. Meyerovich and A. S. Rabkin, “Empirical analy-
sis of programming language adoption,” in Proceedings
of the 2013 ACM SIGPLAN international conference on
Object oriented programming systems languages & appli-
cations, ACM, 2013, pp. 1–18.

[5] C. Atkinson, R. Gerbig, and C. Tunjic, “Towards multi-
level aware model transformations,” in Theory and Prac-
tice of Model Transformations, Springer Berlin Heidel-
berg, 2012, pp. 208–223.

[6] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance predic-
tion,”Journal of Systems and Software, vol. 82, pp. 3–22,
2009.

[7] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,
and A. Schmitt,“Combinators for bi-directional tree trans-
formations: a linguistic approach to the view update
problem,” SIGPLAN Not., vol. 40, no. 1, pp. 233–246,
2005.

[8] C. Atkinson, “Meta-modelling for distributed object en-
vironments,” in Enterprise Distributed Object Comput-
ing Workshop [1997]. EDOC’97. Proceedings. First In-
ternational, IEEE, 1997, pp. 90–101.

[9] J. J. Odell, “Power types,” Journal of Object-Oriented
Programming, vol. 7, no. 2, p. 8, 1994.

[10] B. Henderson-Sellers and C. Gonzalez-Perez, “Connect-
ing powertypes and stereotypes.,”Journal of Object Tech-
nology, vol. 4, no. 7, pp. 83–96, 2005.

[11] C. Atkinson, R. Gerbig, and T. Kühne,“Comparing multi-
level modeling approaches,” MULTI 2014–Multi-Level
Modelling Workshop Proceedings, p. 53, 2014.

[12] R.-J. Back and J. Von Wright, Refinement calculus: a
systematic introduction. springer Heidelberg, 1998.

[13] D. Varró and A. Pataricza, “Vpm: a visual, precise and
multilevel metamodeling framework for describing math-
ematical domains and uml (the mathematics of meta-
modeling is metamodeling mathematics),” Software and
Systems Modeling, vol. 2, no. 3, pp. 187–210, 2003.

[14] C. Pons, “Heuristics on the definition of uml refinement
patterns,” in SOFSEM 2006: Theory and Practice of
Computer Science, Springer, 2006, pp. 461–470.

[15] C. Atkinson and T. Kühne,“Meta-level independent mod-
elling,”International Workshop on Model Engineering at
14th European Conference on Object-Oriented Program-
ming, pp. 12–16, 2000.

[16] C. Atkinson and R. Gerbig, “Melanie: multi-level model-
ing and ontology engineering environment,” in Proceed-
ings of the 2nd International Master Class on Model-
Driven Engineering: Modeling Wizards, ACM, 2012, p. 7.

[17] J. De Lara and E. Guerra, “Deep meta-modelling with
metadepth,” in Objects, Models, Components, Patterns,
Springer, 2010, pp. 1–20.

[18] A. Rossini, J. Lara, E. Guerra, and N. Nikolov, “A Com-
parison of Two-Level and Multi-level Modelling for Cloud-
Based Applications,” in Modelling Foundations and Ap-
plications: 11th European Conference, ECMFA 2015, Springer,
2015, pp. 18–32.

[19] B. Henderson-Sellers, T. Clark, and C. Gonzalez-Perez,
“On the search for a level-agnostic modelling language,”
in Advanced Information Systems Engineering, Springer,
2013, pp. 240–255.

[20] T. Clark, C. Gonzalez-Perez, and B. Henderson-Sellers,
“A foundation for multi-level modelling,”in MULTI 2014–

Multi-Level Modelling Workshop Proceedings, 2014, p. 43.

	2016,11_Titelbl.pdf
	DeepModeling_TechReport-2.pdf
	Introduction
	Structural Decomposition
	Deep Modeling through Structural Decomposition
	NMeta
	Case Study: An architecture description language using Deep Modeling
	Example Usage: A Media Store in DeepADL
	Related Work
	Refinements
	Level-adjuvant languages
	Level-blind languages

	Conclusion and Outlook

