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Abstract

Hybrid Event-B, initially introduced for single machines to add continuously varying behaviour to dis-
crete change of state in Event-B, is extended to cater for multiple cooperating machines. Multiple ma-
chine working is mediated by INTERFACE and PROJECT constructs. The former encapsulates a set of
variables, their invariants and initialisations, in a form that several machines can exploit simultaneously.
The latter organises the set of cooperating machines and interfaces into a coherent system. Machine
instantiation and composition via interfaces are discussed. Machine decomposition is explored in this
framework. Multi-machine refinement is described. A hypergraph project architecture is proposed. Two
small case studies, on power switching and on the European Train Control System (the latter treated
earlier within the single machine formalism), illustrate these mechanisms. The semantics of interacting
multi-machine systems is described, and proof obligations that ensure correctness are covered.

1. Introduction

In [9], henceforth referred to as PaperI, we introduced Hybrid Event-B for single machines. This
enhancement of discrete Event-B was intended to address the unavoidable involvement of continuously
varying behaviour in many of today’s hybrid and cyber-physical systems. In that paper, we explored the
background and motivations for doing the design in the way we did it, and we gave both an informal
account of how Hybrid Event-B worked, and a formal semantics, along with a discussion of refinement.

Of course, single machines are not enough. The cyber-physical systems we mentioned, are, these
days, highly interconnected interacting multi-agent systems, coupling together a typically very heteroge-
neous collection of subsystems. A Hybrid Event-B design that caters for such situations should be able
to model separate subsystems as separate machines, independent and yet interconnected in ways that
look convincing from the application domain perspective, and with the ability to impose appropriate in-
variants on the system as a whole, including invariants that suitably couple together mutually dependent
machines.
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In this paper we present such an extension. There are two main questions that it has to address. The
first is structural/syntactic: how is the information that describes a large system divided up among its
components, and how do these relate to each other? The second is semantic: how is the semantics of a
single machine altered by the presence of other machines, and what is the semantics of interaction?

Briefly, we answer the first question by introducing new syntactic constructs, the INTERFACE and
the PROJECT. The former encapsulates a set of variables, their invariants and their initialisations; this
allows multiple machines to access these ingredients in a disciplined way. The latter defines which
machines and interfaces contribute to a project, and takes care of instantiation issues. We answer the
second question by noting that the mathematics that underlies the semantics of a single machine can be
extended fairly readily to several machines, the main additional complication coming from choosing en-
abled events to execute per machine rather than on a global basis. Moreover, we introduce synchronised
events, which are collections of events in different machines which must execute together, the seman-
tics of this being unproblematic due to the in principle applicability of the single machine semantics to
projects as a whole. The actual specification of which combinations of events need to synchronise is
delegated to the PROJECT construct.

The rest of this paper is as follows. Section 2 gives an overview of single machine Hybrid Event-B,
for orientation. Section 3 gives a brief overview of PROJECTs, INTERFACEs and MACHINEs. Section
4 explores interfaces in detail, describing how a community of machines may share variables, and the
combinatoririal rules that govern this. Section 5 covers refinement in this context. Section 6 discusses
issues of synchronisation for Hybrid Event-B in general terms. Next, Section 7 covers projects in detail,
giving syntactic precision to the various technical mechanisms described thus far. Section 8 then covers
how a machine may be decomposed once successive refinements have made it inconveniently big. This
includes partitioning of the components into submachines, and the decomposition of individual events,
as needed. Section 9 describes the hypergraph project architecture, giving concrete recommendations
on how the mechanisms introduced thus far should be used to best effect. Section 10 illustrates the
mechanisms discussed thus far in two small multi-machine case studies. The first covers a simple power
switching application; the second is based on the European Train Control System, which was treated as
a single machine application in PaperI. Section 11 gives the formal semantics of multi-machine systems.
Section 12 discusses correctness in the context of the per machine proof obligations (POs) treated in
PaperI. Section 13 summarises the detailed changes needed to these single machine POs to enable them
to work in the multi-machine context. Section 14 concludes.

2. Single Machine Hybrid Event-B, a Sketch

In this section, for purposes of orientation, we briefly review the single machine Hybrid Event-B
formalism of PaperI [9], inevitably glossing over many points covered more carefully there.

In Fig. 1 we see a basic Hybrid Event-B machine, HyEvBMch. It starts with declarations of time
and of a clock. In Hybrid Event-B, time is a first class citizen in that all variables are functions of time,
whether explicitly or implicitly. Time is read-only. Clocks allow more flexibility, since they increase like
time, but may be set during mode events. Variables are of two kinds. There are mode variables (like u)
which typically take their values in discrete sets and change their values discontinuously during mode
events. There are also pliant variables (such as x,y), declared in the PLIANT clause, which typically take
their values in topologically dense sets (normally R) and which may change continuously, such change
being specified via pliant events.

Next come the invariants. The types of the variables are asserted to be the sets from which the vari-
ables’ values at any given moment of time are drawn. More complex invariants are similarly predicates
that are required to hold at all moments of time during a run.
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MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x,y
VARIABLES u
INVARIANTS
x,y,u ∈ R,R,N

EVENTS
INITIALISATION
STATUS ordinary
WHEN
t = 0

THEN
clk,x,y,u := 1,x0,y0,u0

END
. . . . . .

. . . . . .
MoEv
STATUS ordinary
ANY i?, l,o!
WHERE
grd(x,y,u, i?, l,t,clk)

THEN
x,y,u,clk,o! : |
BApred(x,y,u, i?, l,o!,
t,clk,x′,y′,u′,clk′)

END
. . . . . .

. . . . . .
PliEv
STATUS pliant
INIT iv(x,y,t,clk)
WHERE grd(u)
ANY i?, l,o!
COMPLY
BDApred(x,y,u,
i?, l,o!,t,clk)

SOLVE
D x=
φ(x,y,u, i?, l,o!,t,clk)

y,o! :=
E(x,u, i?, l,t,clk)

END
END

Figure 1: A schematic Hybrid Event-B machine.

Then, the events. The INITIALISATION has a guard that synchronises time with the start of any run,
while all other variables are assigned their initial values as usual.

Mode events are direct analogues of events in discrete Event-B. They can assign all machine variables
(except time itself). In the schematic MoEv of Fig. 1, we see three parameters i?, l,o!, (an input, a local
parameter, and an output respectively), and a guard grd which can depend on all the machine variables.
We also see the generic after-value assignment specified by the before-after predicate BApred, which can
specify how the after-values of all variables (except time, inputs and locals) are to be determined.

Pliant events constitute the most obvious distinction between Hybrid Event-B and discrete Event-B.
They specify the continuous evolution of the pliant variables over an interval of time. The schematic
pliant event PliEv of Fig. 1 shows the structure. There are two guards: there is iv, for specifying enabling
conditions on the pliant variables, enabling conditions that mix mode and pliant variables, and clocks
and time; and there is grd, for specifying enabling conditions purely involving the mode variables. The
separation between the two is motivated by considerations connected with refinement.

The body of a pliant event contains three parameters i?, l,o!, (again an input, a local parameter, and
an output) which are functions of time, defined over the duration of the pliant event. The behaviour
of the event is defined by the COMPLY and SOLVE clauses. The SOLVE clause specifies behaviour
fairly directly. For example the behaviour of pliant variable y and output o! is given by a direct as-
signment to the (time dependent) value of the expression E(. . .). Alternatively, the behaviour of pliant
variable x is given by the solution of the first order ordinary differential equation (ODE) Dx = φ(. . .),
where D indicates differentiation with respect to time. The COMPLY clause can be used to express
any additional constraints that are required to hold during the pliant event via its before-during-and-after
predicate BDApred. Typically, constraints on the permitted range of values for the pliant variables, and
similar restrictions, can be placed here. Of all time dependent behaviours that satisfy these clauses, only
piecewise absolutely continuous functions of time which have both left and right limits at all times, and
which are right continuous at all times are considered.

The COMPLY clause has another purpose. When specifying at an abstract level, we do not neces-
sarily want to be concerned with all the details of the dynamics — it is often sufficient to require some
constraints to hold which express the needed safety properties of the system during the pliant event. The
COMPLY clauses of the pliant events can house such constraints directly, leaving it to lower level refine-
ments to add the necessary details of the dynamics. All the ways of specifying update in either kind of
event are referred to as its actions.

Briefly, the semantics of a Hybrid Event-B machine consists of a set of system traces, each being a
set of functions of time, expressing the value of each machine variable over the duration of a run.
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Time is modelled as an interval T of the reals. A run starts at some initial moment of time, t0 say, and
lasts either for a finite time, or indefinitely. The duration of the run T , breaks up into a succession of left-
closed right-open subintervals: T = ⟨[t0 . . . t1), [t1 . . . t2), [t2 . . . t3), . . .⟩. The idea is that mode events (with
their discontinuous updates) take place at the isolated times corresponding to the common endpoints
of these subintervals ti, and in between, the mode variables are constant and the pliant events stipulate
piecewise absolutely continuous change in the pliant variables.

Insisting on piecewise absolute continuity is equivalent to demanding that the behaviour over time
of each variable is a succession of solutions to well posed initial value problems, e.g. Dxs = φ(xs . . .),
where xs is a relevant tuple of pliant variables andD is the time derivative [22, 23, 18, 16]. (‘Well posed’
means that φ(xs . . .) has Lipschitz constants which are uniformly bounded over a period of absolutely
continuous behaviour, bounding its variation with respect to xs, and that φ(xs . . .) is measurable in t.) In
between the absolutely continuous pieces, isolated discontinuities are acceptable, modelling the actions
of mode events, and of discontinuities coming from the environment.

Pursuing this view, a mode transition becomes a before-/after- pair of variable valuations (the change
taking place at a single instant), while a pliant transition becomes a time-parameterised set of pairs of
such variable valuations (the common before-valuation being at the beginning of the piecewise absolutely
continuous behaviour, and the various after-valuations being indexed by the time interval, the changes
no longer taking place at a single instant). From this perspective, many questions regarding mode and
pliant events and transitions have very similar answers.

Within any interval in which the variables’ behaviour is specified by a pliant event, we seek the
earliest time at which a mode event becomes enabled, and this time becomes the preemption point beyond
which the pliant behaviour is abandoned, and the next pliant behaviour is scheduled after the completion
of the mode event.

In this manner, assuming that the INITIALISATION event has achieved a suitable initial assignment
to variables, a system run is well formed, and thus belongs to the semantics of the machine, provided that
at runtime:

[A] Every enabled mode event is feasible, i.e. has an after-state, and on its completion enables a pliant
event (but does not enable any mode event).

[B] Every enabled pliant event is feasible, i.e. has a time-indexed family of after-states, and EITHER:

(i) During the run of the pliant event a mode event becomes enabled. It preempts the pliant
event, defining its end. ORELSE

(ii) During the run of the pliant event it becomes infeasible: finite termination. ORELSE
(iii) The pliant event continues indefinitely: nontermination.

Thus in a well formed run mode events alternate with pliant events. The last event (if there is one) is a
pliant event whose duration may be finite or infinite. The relatively simple view of Hybrid Event-B just
expounded, persists in suitable form, in a multi-machine system. We examine the details in Section 11.

3. PROJECTs, INTERFACEs, MACHINEs

In this paper, multi-machine systems, henceforth called projects, need various syntactic constructs to
specify them. In our scheme there are three kinds of syntactic construct. There are MACHINEs. These
are just like the machines described above except that they can access further variables and invariants
via CONNECTS or READS clauses. These connect a machine to an INTERFACE construct, which is
a container for such shared variables and invariants. There must be a further syntactic construct that
collects together all the machine and interface constructs of a project. This is the PROJECT construct.
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As well as simply naming all the constituent machines and interfaces, there are various other global
coordination issues that are covered in a project file, which we cover later. We will start by discussing
the relationship between machines and interfaces.

3.1. Name Space Issues
When we have formal texts such as machines which (at least informally) act as enclosing binders for

the free names that occur inside them, and then contemplate combining them into larger entities such
as projects, the conventions regarding scopes of names must be clearly understood. In particular, when
placing machines inside the bigger project construct, the scopes of various identifiers may need to change
so that components are able to interact. The following covers the conventions used in this paper.

Event names remain bound within their machine, and their parameters remain bound with their events
(so an input parameter may need to be referred to asM.Ev.i? whereM is the machine that contains event
Ev of which i? is the input) — however, see Section 7.2 regarding the scopes of such bound parameters
in the presence of synchronisations.3 Variable scopes are extended to include the whole project (so
variable name clashes among machines and interfaces are forbidden). Synchronisation identifiers will
also be project-wide. This relatively simple scheme allows for uncluttered modelling, and is sufficient
for the semantics of multi-machine projects in Section 11. Of course, this does not preclude organising
multi-component systems in more sophisticated ways, but these lie beyond the scope of this paper.

3.2. Multiproject Situations and Name Spaces
The provisions of Section 3.1 apply to a single project. However, when we refine a project (or

decompose it), we need to specify how names in more than one project relate to each other. We extend
the convention just introduced to include the project identifier when many projects are in scope. Thus the
earlier M.Ev.i? becomes Prj.M.Ev.i?, referring to input i? of event Ev of machine M in project Prj. Of
course these formal names are not used in concrete syntax. So when variable x occurs in machine M in
project Prj, and x also occurs in machine MR (that refines M) in project PrjR (that refines Prj), the two
occurrences refer to the formal variables Prj.M.x and PrjR.MR.x respectively, and it is understood that
there is a formal (and unstated) joint invariant Prj.M.x = PrjR.MR.x in the refining machine MR. (Of
course, in practice, all of this is finessed via the one point rule.) Similar remarks apply for interfaces.
Also, in common with normal Event-B discourse, unqualified use of the term ‘invariant’ is intended to
always include both machine invariants and joint invariants when both are in scope.

4. Hybrid Event-B INTERFACEs

We turn to INTERFACEs. First though, some salutory remarks concerning what is to come.

4.1. Complex Mulicomponent Systems
If we consider a typical multi-component system formalised in a model based way, unless it consists

of totally independent components, in general, there will be an infinite number of true facts about it. In
general therefore, there will be an infinite number of true invariants that could be written down. The
point of saying this is that it is in principle impossible to have written down ‘all’ the invariants of a
nontrivial model. Thus the set of invariants that is written down in any particular case, is invariably
an outcome of human judgement regarding which of the possible invariants deserve to be explicitly
noted. We say this because, shortly, we will introduce a pattern for invariants that cut across subsystem
boundaries. It will have a fixed generic structure to permit mechanisation. In doing so we accept that not
all conceivable invariants will be expressible thereby, so that the utility of our proposal must be borne
out by its effectiveness in practice.

3Synchronisations are introduced later.
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MA MB

Itf1_IF Itf2_IF

Figure 2: An illustration of the constraints regarding the use of the INTERFACE construct. Machines and interfaces are large
rounded and unrounded rectangles respectively. Small rectangles are events; small black circles are variables; small black
squares are tIi’s. Machines and interfaces contain their variables, tIi’s (and events). Arrows connect the local and remote
interfaces of a tIIi.

4.2. The INTERFACE Construct
We now introduce INTERFACEs. The word has many connotations, including the idea of interface

automata and its close relatives (see e.g. [4]). Our version is rooted in the work of Hallerstade and Hoang
in [14], which we extend (in the direction of [4], arguably), to achieve what we need.

An INTERFACE is a syntactic construct that declares some variables, and (going beyond [14]),
some invariants that interrelate them, and their initialisations. Any machine that needs to access any of
these variables must have a CONNECTS (or READS) clause to it, this being the only way for more than
one machine to have access to the same set of variables (and to the related invariants and initialisations).

Consider a Hybrid Event-B project as described in Section 3. Let V be the set of variables, I be
the set of invariants, and E be the set of events declared in the project. The rules governing legitimate
accessibility/visibility between these various elements are combinatorial in nature, and are described in
the following collection of ‘diamond rules’.

Let the set of variables V be partitioned into subsets V= A%B%C% . . ., such that for every invariant
Inv ∈ I:

[!1] either all variables mentioned in Inv belong to some subset, eg. A;

[!2] or the invariant Inv is of the formU(u) ⇒V (v), where there are distinct subsets of the partition, A
and B say, such that u and v refer to variables in A and B respectively.

We call these type I and type II invariants respectively (tIi and tIIi for short). While tIi’s exemplify ‘nor-
mal invariants’, i.e. the vast majority, the tIIi’s we have just introduced capture the pattern we spoke of
above for the cross-cutting invariants that straddle subsystem boundaries. Aside from global invariants
which we introduce later, the tIIi’s will be the only permitted way to write invariants that are not com-
pletely encapsulated by a machine or interface construct. For a tIIi, the associated A and B subsets of
V are known as the local and remote subsets respectively, containing the local variables u and remote
variables v respectively. Reinforcing our statement above, we propose that tIIi’s are adequate to capture
a sufficiently rich class of inter-subsystem properties for practical use.

The lexical nature of the ‘diamond’ rules in this and related sections means that the ‘hybrid’ aspect
of Hybrid Event-B is not essential for them, see e.g. [6].

Before formally listing the remaining diamond rules, we give a small illustration of the principles
in Fig. 2. Small black circles represent variables, while small black squares represent tIi’s. Small rect-
angles represent events. Events and invariants are connected to the variables they involve by thin lines.
Interfaces are large rectangles containing the variables and invariants they encapsulate — there are two
in Fig. 2, Itf1 IF and Itf2 IF. Machines are large rounded rectangles, containing their events and local
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variables — again there are two,MA andMB. The very short thin line with one end free from an event in
MB is an I/O variable connected to the environment. The CONNECTS relationship between a machine
and an interface is depicted by a thick dashed line. Finally, tIIi’s are represented by an arrow from a
variable in the local interface to a variable in the remote interface (these containing the local and remote
variable subsets of the tIIi respectively). We return to the formal conditions of the interface scheme.

Referring to the partition of V, every subset of variables in the partition consists of variables that:

[!3] either are declared as the variables of a single machine;

[!4] or are declared as the variables of a single interface.

Each interface:

[!5] must contain all the type I invariants that mention any of its variables;

[!6] must contain any type II invariant for which the interface’s variables are in the local subset; in each
such case the interface must contain a READS ReadInt declaration for the (different) interface
ReadInt that contains the remote variables.

[!7] must contain a REFERS RefInt declaration, whenever any of its variables are the remote variables
of a type II invariant declared in a (different) interface RefInt.

Each machine:

[!8] may declare the variables belonging to a subset of the partition as local (i.e. unshared) variables;

[!9] must contain a CONNECTS IntRW declaration whenever any of its events needs (read-and-)write
access to the variables of the interface IntRW;

[!10] must contain a READS IntRO declaration whenever any of its events needs read-only access to the
variables of the interface IntRO;

[!11] must contain all the type I invariants that mention any of its local variables;

Each event:

[!12] may read and update variables that are declared locally in the machine containing the event, or that
are introduced via CONNECTS IntRW declarations in the machine containing the event;

[!13] may read (in its guards or in the expressions that define update values) variables that are introduced:
either via READS IntRO declarations in the machine containing the event, or via READS ReadInt
or REFERS RefInt declarations contained in an interface IntRW that the machine containing the
event CONNECTS (to).

[!14] must preserve all invariants that are declared in the machine that contains it, or that appear in
interface IntRW for any CONNECTS IntRW declarations of the machine, or that appear in inter-
face ReadInt or RefInt for any READS ReadInt or REFERS RefInt declarations contained in any
interface IntRW that the machine containing the event CONNECTS (to).

Each invariant:

[!15] must be contained in the interface or machine which declares all its variables (if it is a type I
invariant), or must be contained in the interface which declares its local variables (if it is a type II
invariant).
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We can now see that in a Hybrid Event-B project, verifying that all the invariants are preserved by all
event executions (provided the initial state satisfies them all), can be easily accomplished using verifi-
cation conditions that depend on information that is easily located from the syntactic information in the
machine that contains the event. We examine verification conditions in Section 12.

Referring to Fig. 2, in addition to the CONNECTS relationship depicted by the thick dashed lines,
the READS and REFERS relationships point forwards and backwards respectively along the tIIi arrows.

5. Machine and Interface Refinement

Given a project consisting of machines and interfaces satisfying [!1]–[!15], in this section we con-
sider how its components may be refined. Refinement for Hybrid Event-B machines will be as described
for single machines in PaperI. In other words, a refining machine is related to its abstraction using joint
invariants relating the variables of both machines (and a host of POs must be verified). Regarding re-
finement of interfaces, speaking intuitively, we can regard an interface as almost a kind of bare bones
machine, lacking explicit events, but implicitly admitting any state update that respects the invariants.
In that sense, in interface refinement, variables are refined in the usual way, and joint invariants can be
introduced as for a (Hybrid) Event-B machine refinement. Concrete syntax for refinement in both cases
can be taken from the Hybrid Event-B scheme (see Section 7). Furthermore, in both cases, the refinement
process itself must conform to the following principles.

[!16] The variables of an interface Itf must be refined to the variables of its refining interface ItfR via a
retrieve relation (joint invariant) that mentions only the variables of Itf and ItfR.

[!17] The variables of a machine M must be refined to the variables of its refining machine MR via a
retrieve relation (joint invariant) that mentions only the variables of M and MR.

The (essentially) independent refinement of machines and interfaced enforced by [!16]–[!17] prevents
the inadvertent falsifying of invariants in situations such as the following counterexample schema.

Suppose each of machines M1 and M2 CONNECTS (to) interface Itf . Suppose M1, M2 and Itf are
refined to M1R, M2R and ItfR respectively. Suppose the joint invariant of the M2 to M2R refinement
involves the variables of Itf and ItfR too. Then when concrete machine M1R executes an event, faithful
to some abstract event ofM1, there is no guarantee that the new state inM1 andM1R and Itf and ItfR still
satisfies the joint invariants of M2 and M2R via the coupled joint invariants linking the state in M2 and
M2R to the state in Itf and ItfR.

However, [!16]–[!17] ensure that any invariant of the M2, M2R, Itf , ItfR variables is a conjunction
of an invariant of M2, M2R with an invariant of Itf , ItfR, thus decoupling them, and ensuring that any
update to the variables of M2, M2R, or of Itf , ItfR, that preserves its respective conjunct, preserves both.

Fig. 3 shows a refinement example. MachineMA is refined to a larger machineMM, containing more
variables, invariants and events. The (refinements of) the original elements can be discerned in the figure.
Full syntactic details are postponed to Section 7.

6. Communication and Synchronisation for Hybrid Event-B Machines

In this section we consider, from a semantic perspective, how the different machines in a project can
be efficiently coordinated. Syntactic details are postponed to Section 7. We start by observing that in
the field of discrete event formalisms, there are two main ways of coordinating different automata or
machines: the shared variable paradigm and the shared (or synchronised) event paradigm.

Focusing on Event-B, the shared variable paradigm is exemplified by some of the original Event-B
documentation, and has the longer history. The original idea was described in [1]. However, pursuing this
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MA

MM

Figure 3: An illustration of the refinement mechanism. MA is refined to a larger machine MM. (Refinements of) the original
variables, invariants and events ofMA (aside from the leftmost MA event) appear on the right inMM.

through refinement led to practical difficulties, so refinement of shared variables was forbidden in [15];
but this impedes flexible development. A more streamlined approach to the problem was [14], which
introduced interfaces similar to ours, and we developed this approach further in the present version of
the INTERFACE concept, described above.

By contrast, the shared event approach partitions the variables among the machines, but allows ma-
chines to be coordinated by synchronising the execution of certain events in two machines at runtime.
Obviously, this modifies the (meta level) scheduler that dispatches events. Furthermore, synchronised
communication is achieved during synchronised execution by permitting output variables in one machine
to be linked to input variables in another machine in order to transfer data at runtime. This approach is
described in [12, 20].

In the world of continuous behaviours relevant to Hybrid Event-B, when a project consisting of
several machines executes, each machine runs continuously. So in each machine, some event is always
causing a transition (whether mode or pliant). In that sense, events are inevitably ‘shared’ in some
manner in such a world. Additionally, since in general, there is no semantic reason to prevent the updates
of variables from depending on the values of other variables (including variables shared via interfaces),
variables also end up ‘shared’ in the relevant sense. So the multi-machine continuous world more or less
forces the contemplation of both kinds of sharing simultaneously.

In our definition of multi-machine Hybrid Event-B we include both kinds of mechanism. Each is
useful for specific modelling tasks, and there is no theoretical impediment to including both in the formal
definition. Syntactic aspects are discussed in Section 7, while the semantics is set out in Section 11.

7. The Hybrid Event-B PROJECT

We now consider the Hybrid Event-B PROJECT, giving syntactic form to the ideas discussed above.
Our definition specifies the minimum that enables the runtime semantics of Section 11 to be consistent,
so at points below, we comment that a practical implementation may wish to be much more restrictive.

7.1. The PROJECT and its Constituents
The PROJECT construct identifies all the constituent machines and interfaces of a project. If these

come with all their variables and other names exactly tailored for cooperation, then that is enough.
However, in genuine engineering contexts, we would also want to facilitate reuse of existing machines
and interfaces, typically ones that were designed in a generic way to enable such reuse, so construct
instantiation is another thing that we can delegate to the PROJECT construct. Coupled with this job is
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PROJECT Example Prj
INTERFACE Itf1 IF
INTERFACE Itf2 IF
GLOBINVS Globals GI
MACHINE MA
MACHINE MB IS
CompMch WITH
Cv1→MBv1
Cv2→MBv2
CExtV1→ Itf2v1
CExtV2→ Itf2v3
CExtV3→ Itf2v2
•••

Cev2.Cv!→MBev2.MBv!
END

END

MACHINE CompMch
PLI/VAR Cv1,Cv2,
CExtV1,CExtV2,CExtV3

INVARIANTS
Cinv1(Cv1,Cv2)
Cinv2(Cv2)

EVENTS
Cev1(Cv1,CExtV1,CExtV3)
Cev2(Cv2,CExtV2,Cv!)

END

INTERFACE Itf1 IF
READS Itf2 IF
REFERS Itf2 IF
PLI/VAR Itf1v1, Itf1v2, Itf1v3
INVARIANTS
Itf1inv1(Itf1v1, Itf1v2)
Itf1inv2(Itf1v2, Itf1v3)
Itf1tIIinv(Itf1v3, Itf2v1)

INITIALISATION
•••

END

INTERFACE Itf2 IF
READS Itf1 IF
REFERS Itf1 IF
PLI/VAR Itf2v1, Itf2v2, Itf2v3
INVARIANTS
Itf2inv1(Itf2v1, Itf2v2, Itf2v3)
Itf2inv2(Itf2v3)
Itf2tIIinv(Itf2v1, Itf1v3)

INITIALSATION
•••

END

MACHINE MA
CONNECTS Itf1 IF
PLI/VAR MAv1,MAv2
INVARIANTS
MAinv1(MAv1,MAv2)
MAinv2(MAv1,MAv2)

EVENTS
MAev1(Itf1v1, Itf1v2)
MAev2(MAv1, Itf1v2, Itf1v3)
MAev3(MAv1,MAv2)

END

MACHINE MB
CONNECTS Itf2 IF
PLI/VAR MBv1,MBv2
INVARIANTS
MBinv1(MBv1,MBv2)
MBinv2(MBv2)

EVENTS
MBev1(MBv1, Itf2v1, Itf2v2)
MBev2(MBv2, Itf2v3,MBv!)

END

Figure 4: The syntax of a PROJECT by example, representing the machines and interfaces of Fig. 2.

the task of allowing such instantiated machines to communicate. For conceptual simplicity we would
want such communication to have the semantics of shared variables.

We describe the project construct via examples, starting in Fig. 4 with the syntactic description of the
system shown in Fig. 2.4 Although the variables, invariants and events of the various constructs are not
named in Fig. 2, for convenient reference we institute a uniform naming scheme as follows. Variables
are named e.g. MAv3, the third variable in machine MA (counting left to right in MA in Fig. 2). Type
I invariants are named e.g. Itf2inv1(. . .), the first invariant in Itf2 IF (counting left to right in Itf2 IF in
Fig. 2) — the variables that occur in Itf2inv1 are listed in parentheses. Events are named e.g.MBev1(. . .),
the first event in MB (counting left to right in MB in Fig. 2) — again variables occurring in MBev1 are
listed in parentheses. An example of a type II invariant is Itf2tIIinv(Itf2v1, Itf1v3), labelled similarly.

On this basis, constructs MA, MB, Itf1 IF, Itf2 IF in Fig. 4 are easy to correlate with Fig. 2. The
PROJECT construct Example Prj, aside from listing these constructs, does two further things.

Firstly, via a declaration GLOBINVS Globals GI, it allows the inclusion of a file (Globals GI) of
global invariants which are too complex to be subsumed under the tIi and tIIi patterns described earlier.
Such invariants could involve the variables from any of the interfaces (but not machines) in the project,
and we stipulate that they should be derivable from the set of all the invariants contained in all the
interfaces. Thus, they would be verified when the interfaces were stable: either before more detailed
work (thus making them requirements that must be established), or after detailed design of the project

4To save space, we compress the syntax of the machines. There is no difference between mode and pliant variables for these
structural issues, so we declare them using PLI/VAR. Invariants and events simply list their variables in parentheses.
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PROJECT ExampleR Prj
REFINES Example Prj
INTERFACE Itf1 IF
INTERFACE Itf2 IF
MACHINE MM
MACHINE MB
SYNCH(MMsynch)
MM.{MAev1,MMev4}
MM.MAev3

END
END

MACHINE MM
REFINES MA
CONNECTS Itf1 IF
PLI/VAR
MMv3,MMv4,MMv5,MMv6
MAv1,MAv2

INVARIANTS
MMinv3(MMv3,MMv4)
MMinv4(MMv4)
MMinv5(MMv4,MMv5)
MMinv6(MMv6)
MMtIIinv7(MMv5,MAv1)
MAinv1(MAv1,MAv2)
MAinv2(MAv1,MAv2)

. . . . . .

. . . . . .
EVENTS
MAev1(MMv3,MMv4,

Itf1v1, Itf1v2)
MMev4(MMv4,MMv5)
MMev5(MMv4,MMv6,MAv1)
MAev2(MAv1, Itf1v2, Itf1v3)
MAev3(MAv1,MAv2)

END

Figure 5: A project for the refinement of the machines and interfaces of Fig. 2, as illustrated in Fig. 3.

was completed (making them confirmations of project-wide properties believed to be true).
Secondly, the project construct handles the instantiation ofMB as an instance of machine CompMch.

The clauseMB IS CompMch does this. Part of the data of the clause is an injective mapping of CompMch
names to MB names. This must preserve the attribute type of the names, i.e., mode and pliant state
variables to mode and pliant state variables respectively, event names to event names, I/O bound variables
to I/O bound variables etc.; and it must conform to the name space policy of Section 3.1. Variables
outside the domain of the mapping are carried over unchanged. This notion of instantiation is rather
basic, merely showing its feasibility. A more thoroughgoing notion for (discrete) Event-B is in [19].

While Fig. 4 shows the basic composition mechanism, Fig. 5 goes on to show the effects of refine-
ment, based on the machines and interfaces shown in Fig. 3. Machine MM is a refinement of MA, which
introduces four new variables MMv3-MMv6. These appear before the original MAv1 and MAv2 in MM.
Also new are two events MMev4 and MMev5, shown in MM appearing in between MAev1 and MAev2.
Finally there are new type I invariantsMMinv3-MMinv6 and the future type II invariantMMtIIinv7, again
listed before the original invariants of MA. All are listed in left to right order (as they appear in the MM
of Fig. 3) in the syntax of MM in Fig. 5.

7.2. Synchronised and Communicating Events
The last noteworthy element of Fig. 5 is the synchronisation clause SYNCH(MMsynch). This makes

explicit the discussion of Section 6. It names the synchronisation MMsynch, and in its body, each line
cites a collection of events (each being referred to in the form MachineName.EventName). This defines
an AND/OR tree. Any execution of (any of the members of) that collection of events must contain the
synchronised execution of exactly one event from each line. We assume that different synchronisations
have no events in common.5 In Fig. 5, this means that either MAev1 or MMev4 must be synchronised
withMAev3, all being events of MM.

It may appear strange to synchronise events from the same machine, until we realise that (at least
formally) the events of a collection of machines may need to reside in fewer larger machines prior to
decomposition (see below), and that the synchronisation may be indispensable in maintaining crucial
invariants.

5In practice, particularly when failures in multicomponent systems are being modelled, the simple synchronisation scheme
just described can prove too inflexible. Various priority based enhancements could be envisaged to improve matters, but such
considerations lie outside the scope of this paper.
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The events participating in a synchronisation can communicate with each other via shared state vari-
ables like any other events, but this is not all. One property of synchronisations not visible in the syntax
of projects thus far is that the ANY clauses of all events participating in a synchronisation form a single
scope of bound parameters. Semantically, this means that any name occurring in multiple ANY clauses
within a synchronisation is captured by all of those events, and refers to a single value (time dependent in
the pliant case) across the whole synchronised family. As an aid towards ultimate implementation, such
a shared local parameter family ‘ANY b’ may be rewritten into a single writer multiple readers family
by decorating the single writer ‘ANY b!’ (with a suitable assignment to b! in the body of the event),
and decorating the multiple readers ‘ANY b?’, with the relevant value bound in the WHERE guards.
Evidently, such decorations must not clash with the input and output parameters for external I/O. An
example occurs in Fig. 7, in the discussion of decomposition. However, the writer/readers formulation
for this internal communication is just syntactic sugar, without separate semantics.

Note that synchronisations must be refined to synchronisations congruently, in order to conform to
constraints [!16]–[!17] in Section 5. Specifically, if SyncA is refined to SyncC , then every event EvC that
refines some event EvA of SyncA, must be present in SyncC , also implying that the abstract to concrete
refinement relationship for synchronisations is injective, as it is for machines.

We observe that in the scheme above, we synchronised arbitrary AND/OR combinations of events
which are simple to deal with in the semantics. In practice though, simpler schemes are more practicable
(contrast footnote 5). For example, restricting to binary synchronisations that implement unidirectional
communication, or restricting to synchronisations of mode events only (as we will do in Section 13).

7.3. A Subtlety Concerning Edge-Triggered Phenomena
In many comparable formalisms, successions of mode events (that immediately follow one another)

are often permitted. Combined with the possibilities inherent in having collections of concurrent activ-
ities, considerable semantic complexity can arise (see e.g. [13] for a discussion of comparable issues
in the context of Statecharts). In Hybrid Event-B similar avalanches of mode events are forbidden.
However, this potentially constrains expressivity regarding edge-triggered phenomena, especially when
coordination between edge-triggered phenomena in multiple machines is needed.

In multi-machine Hybrid Event-B, the approach to this is to use the semantics of direct assign-
ment of pliant variables across families of synchronised events. The semantics of equality between
time dependent functions, in particular of discontinuous functions, permits the immediate propagation
of edge-triggered effects, without incurring the complexities arising from the analysis of the sequential
dependencies of families of mode events.

8. Decomposition

The account so far permits us to assemble a large system by composing a number of machines and
interfaces together. Of equal interest though for the B-Method (not to mention other methodologies), is
the question of decomposition of a machine M—M may have grown too unwieldy through aggregation
of design detail via refinement. DecomposingM can enhance separate development of the various pieces.

Decomposition sounds like the inverse of composition, but it is not. When we compose several
machines and interfaces, our aim is to enrich and thus to change the behaviour of the overall system,
compared with what we might have had previously. But when we decompose a big system into smaller
pieces, our aim is to not change the behaviour of the overall system, but just to change the way that the
system is put together. The most immediate consequence of this in the Hybrid Event-B framework comes
from the earlier noted fact that each machine is always executing some event. Thus if decomposition
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increases the number of machines, the amount of concurrency in the system increases too. Arranging for
the behaviour of the overall system to not change then becomes non-trivial.6

Suppose machine M is part of a project P (as defined above). We call its local variables the internal
variables of M, and the variables contained in interfaces accessed byM, the external variables of M.

A major principle governing our decomposition scheme is that whenM is decomposed into a number
of submachines M1 . . .Mk and new interfaces Itf 1 . . . Itf l , then all other existing machines and interfaces
of P remain unchanged (alternatives to this are possible of course). The aim is that the behaviour of the
original project P , and of the project P [M\M1...Mk ] in which M is replaced by M1 . . .Mk and Itf 1 . . . Itf l
(with suitable adjustments to the PROJECT file) is the same. This amounts to equivalent behaviour of
individual events in M and in its decomposition, and to equivalent runtime scheduling choices in P and
P [M\M1...Mk ].

Consider a machine M of P , which we want to decompose. To simplify exposition, we decompose
M into just two machines, MX andMY, with the help of a new interface ItfXY IF. We consider pliant and
mode events in turn.

Let PliEv be a pliant event of M. Since, when a project is running, each machine is executing
some event, if PliEv is executing in M in P , the equivalent in P [M\M1...Mk ] must involve pliant subevents
executing in MX and MY . Let these be PliEvX and PliEvY respectively. We deduce that: (a) PliEvX
and PliEvY are always enabled simultaneously; (b) PliEvX and PliEvY simultaneously participate in the
same scheduling choices in P [M\M1...Mk ] that PliEv participates in in P ; (c) PliEvX and PliEvY define the
same change of state in P [M\M1...Mk ] that PliEv defines in P .

Regarding (a), simultaneous enabledness, a synchronisation of PliEvX and PliEvY achieves it easily.
However, just above, we suggested that in Section 13 we would restrict synchronisations to mode events
only, so we reject this possibility. Another way to achieve (a) is to give PliEvX and PliEvY the same INIT
and WHERE guards as PliEv, so this is what we stipulate. Consequently, all the variables that appear in
the INIT and WHERE guards must be declared in ItfXY IF (or in external interfaces).

Regarding (b), equivalent scheduling choices, suppose that in P , at some scheduling point in some
state of the system, PliEv and PliEvOther are both enabled. Then, the choice to schedule PliEv or
PliEvOther is nondeterministic. In P [M\M1...Mk ], at the equivalent point, PliEvX inMX and a correspond-
ing part of PliEvOther in MY will both be enabled (because PliEvX and PliEv have the same guards;
similarly for PliEvOther and its decomposition; and both PliEv and PliEvOther are enabled in the cor-
responding states). Thus it becomes impossible to prevent executing PliEvX and a part of PliEvOther
simultaneously, violating the desired semantic equivalence between P and P [M\M1...Mk ]. Therefore, si-
multaneous satisfiability of the guards of distinct pliant events ofM completely blocks decomposition of
M. To permit decomposition ofM, we strengthen the preceding insight to insist that the WHERE guards
of distinct pliant events are pairwise unsatisfiable, since the INIT guard of a pliant event may become
false during its execution, although the event itself may remain eligible for continued execution, making
the INIT guard an unreliable guide regarding the disabledness of its pliant event.

Regarding (c), same change of state in P and P [M\M1...Mk ], we must arrange that the assigning clauses
of PliEv, namely the COMPLY and SOLVE clauses, must be cleanly decomposed into corresponding
pieces in PliEvX and PliEvY . Fig. 6 gives an illustrative example.

In Fig. 6, PliEv is shown with its COMPLY and SOLVE clauses already broken down into parts
relevant to x variables (which will become the focus of PliEvX in MX), and parts relevant to y variables
(which will become the focus of PliEvY in MY). Speaking generally, if the decomposition strategy

6This is in sharp contrast to the case of discrete Event-B in which events occur only at isolated moments. Then, there
is no semantic difference between one machine not updating the state (except at isolated moments) and several machines not
updating the state (except at isolated moments, and never simultaneously because of non-eager scheduling of events). In discrete
Event-B, decomposition can in fact be viewed as a kind of inverse of composition.
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PliEv
STATUS pliant
INIT iv(x1,x2,y1,y2)
WHERE grd(u)
ANY i?
COMPLY
BDApredX(x1,x2, i?)∧
BDApredY(y1,y2, i?)

SOLVE
D x1= φX (x1,x2,u)
D y1= φY (y1,y2,u)
x2 := EX (x1,u)
y2 := EY (y1,u)

END

becomes
PliEvX
STATUS pliant
DECOMPOSES PliEv
INIT iv(x1,x2,y1,y2)
WHERE grd(u)
ANY i?
COMPLY
z= i?∧
BDApredX(x1,x2, i?)

SOLVE
D x1 = φX (x1,x2,u)
x2 := EX (x1,u)

END

PliEvY
STATUS pliant
DECOMPOSES PliEv
INIT iv(x1,x2,y1,y2)
WHERE grd(u)
COMPLY
BDApredY(y1,y2,z)

SOLVE
D y1= φY (y1,y2,u)
y2 := EY (y1,u)

END

Figure 6: Decomposing a pliant event into smaller events.

follows the architectural structure of a system assembled out of physical components, this kind of clean
separation is to be expected. As well as the copying of the guards of PliEv into those of PliEvX and
PliEvY, and the partition of the assigning clauses, Fig. 6 shows what can be done if there is a single
input i? that is used in both parts of the prospective decomposition. We introduce a fresh state variable z
(declared and initialised in ItfXY IF) to allow the value of i? to be shared betweenMX andMY. Of course,
this idea of introducing intermediate state variables, is available more widely in principle, to decompose
more complex constraints and assignments than we have discussed above. However, the calculations
involving such variables can quickly become very complicated, so we do not pursue this line further.

Now let MoEv be a mode event of M. Unlike pliant events, we do not insist that mode events are
executed simultaneously by all machines of a project at a given moment at runtime, creating a difference
from the previous case. Therefore, mode events ofM may be allocated in their entirety to a submachine,
or may be split into subevents MoEvX and MoEvY , as we had for pliant events.

We have the same concerns as previously: (a) simultaneous enabledness where needed; (b) equivalent
scheduling choices; (c) same same change of state defined.

Regarding (a), simultaneous enabledness, if MoEv is not split there is no issue. If MoEv is split
intoMoEvX andMoEvY say, a synchronisation ofMoEvX andMoEvY will ensure that they are executed
simultaneously, giving a lot of flexibility in how the guard ofMoEv is partitioned/duplicated in the guards
of MoEvX and MoEvY . In the extreme case of complete duplication of the whole guard (as in the pliant
case), the synchronisation may be omitted (unless required by (b), next).

Regarding (b), equivalent scheduling choices, the problems discussed for the pliant case persist, but
we also have more remedies. Consider mode events of M as follows, involving variables x and y:7

MoEv1 . . . WHEN x= 0∧ y= 0 THEN x := 1 END
MoEv2 . . . WHEN x= 0∧ y= 0 THEN y := 1 END

In M, runtime scheduling nondeterminism forces mutual exclusion between MoEv1 and MoEv2. If
the guard becomes true at a certain moment, one or other would be selected to execute (assuming no
further such events in M). Either choice disables both. But if, without any event splitting, MoEv1 was
placed inMX andMoEv2 was placed inMY, then, at the corresponding moment, both would be enabled,
and according to the semantics of Section 11, both would execute, giving a semantics different from the
M semantics. This kind of thing must be prevented, which we do as follows.

7We are grateful to a reviewer for this counterexample.
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MoEv
STATUS ordinary
ANY a,b
WHERE grdX(a,b)∧grdY(b)
THEN
x1 := EX (. . .)
x2 := EY (. . .)

END

becomes
MoEvX
STATUS ordinary
DECOMPOSES MoEv
ANY a,b!
THEN
x1 := EX(. . .)
b! : | grdX(a,b!)

END

MoEvY
STATUS ordinary
DECOMPOSES MoEv
ANY b?
WHERE grdY(b?)
THEN x2 := EY (. . .)
END

Figure 7: Decomposing a mode event into smaller events.

It is sufficient to insist that whenever twomode eventsMoEv1 andMoEv2 ofM can be simultaneously
enabled in some state, then there is at least one submachine Mj of the decomposition of M, such that
the synchronised families of subevents (or the events themselves in the unsplit case) that decompose
MoEv1 andMoEv2, each contain a (sub)event declared inMj. Such a constraint ensures that the runtime
mutual exclusion between MoEv1 and MoEv2 forced by M survives in the mutual exclusion between
some (sub)events (of) MoEv1 and MoEv2 (and thus between the synchronisations that contain them) in
Mj. We observe that the corresponding pliant event constraint (i.e. forbidding simultaneously enabled
events) is just a simplification of this.

Regarding (c), same same change of state in P and P [M\M1...Mk ], the measures we take are very
similar to the pliant case, since the assignment syntax is the same. Again we illustrate with an example.
Fig. 7 decomposes MoEv into the synchronised pair MoEvX and MoEvY . We see that the pattern for
decomposing the assignments is exactly as in Fig. 6. Additionally, Fig. 7 shows what can be done if the
original event MoEv introduces local parameters a,b in its ANY clause. If these are to be used by more
than one of the subevents of MoEv, then all such subevents must use the same values for their copies of
a,b. As described in Section 7.2, we can use the local I/O capabilities of Hybrid Event-B to handle this.
We enforce a single writer many readers discipline for such parameters, indicating the writer event by
decorating its parameter with ‘!’ and any reader events by decorating their parameters with ‘?’. In line
with the view that output is an assigning operation, the grdX of MoEv, which assigned a,b implicitly
to satisfy the required constraints, has turned in MoEvX, into an explicit assignment of b! to any value
satisfying grdX. The semantics of such I/O is always that of instant propagation (of values among bound
variables, as per Section 7.2).

We intend that the two ways of sharing local parameters illustrated for pliant and mode events re-
spectively, namely: (1) the introduction of fresh shared state variables to make values available among
subevents; and (2) the explicit use of I/O conventions and the single writer many readers discipline to
make values available among subevents, should be viewed as being equally applicable to both kinds of
event. Both mechanisms require a certain amount of lexical checking to prevent clashes. Thus in (1),
ensuring that new variables are indeed fresh and remain so; and in (2), ensuring that parameters newly
converted to I/O form do not clash with existing I/O parameters, and distinguishing newly introduced
internal communications from pre-existing communication with the environment, are both required.

To recapitulate, if a machine M is part of a project P and we wish to decompose it into subma-
chinesM1 . . .Mk and new interfaces Itf 1 . . . Itf l , with events suitably decomposed as discussed above, the
following must hold.

[!18] Regarding the internal variables of M, the submachines and interfaces M1 . . .Mk, Itf 1 . . . Itf l into
which M is decomposed conform to restrictions [!1]–[!15].

[!19] Any submachine Mj that includes an event or subevent of M that accesses an external variable of
M, must access the relevant interface in the same manner that M did.
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Figure 8: An illustration of the decomposition mechanism. MA, refined to a larger machine MM, is decomposed into smaller
machines and interlinking interfaces. The trajectory of the individual elements through this process is described in the main
text, and can also be discerned from the geometrical layout.

[!20] Every pliant event PliEv of M is decomposed into subevents PliEv1 . . .PliEvk, one for each sub-
machine M1 . . .Mk, with each subevent having the same INIT and WHERE guards as PliEv, and
with the assigning clauses appropriately distributed among the PliEv1 . . .PliEvk.

[!21] For every pair of distinct pliant events of M, the (pairwise) conjunction of its WHERE guards is
unsatisfiable.

[!22] For every pair MoEv1,MoEv2 of distinct mode events of M, neither of which has an input from
the environment, if the (pairwise) conjunction of its WHERE guards is satisfiable, then there is a
submachine Mj of the decomposition of M, such that some subevent of the synchronised decom-
position of MoEv1 and some subevent of the synchronised decomposition of MoEv2 (or, in each
case, the event itself if the event is undecomposed), are both declared in Mj.

It is clear that adhering to [!18] refines the partition of variables, when M is part of a larger project
already adhering to [!1]–[!15], thus not spoiling [!1]–[!15] overall.

Fig. 8 gives an example of decomposition at the project level, based on Fig. 3, where we have
assumed machine MA has been refined to machine MM which has thereby been enlarged to the point
where it needs to be split up. The syntax of the decomposition appears in Fig. 9. As already seen in
Figs. 6 and 7 for events, we use a DECOMPOSES Construct clause in the syntax to indicate that the
elements of the interface or machine in which it appears originate in Construct.

The lower part of Fig. 8 shows the decomposition of MM into MM1,MM2,MM3, and interfaces
ItfM1 IF, ItfM2 IF. Although the same conventions as before determine the names of the various ele-
ments, we review this decomposition in detail because of its complexity.

Reading left to right in MM, across the top we have events MAev1,MMev4,MMev5,MAev2,MAev3.
The events shown heavy, i.e. MMev5,MAev2 are pliant, others are mode events. Across the middle
we have variables MMv3,MMv4,MMv5,MMv6,MAv1,MAv2. Across the bottom we have invariants
MMinv3,MMinv4,MMinv5,MMinv6,MMtIIinv7,MAinv1,MAinv2. This is all as in Fig. 5.

BelowMM we have the interfaces of the decomposition. In ItfM1 IF we have the invariantsMMinv3,
MMinv4,MMinv5 above the variables MMv3,MMv4,MMv5. Interface ItfM2 IF contains the invariants
MAinv1,MAinv2 above the variables MAv1,MAv2. Invariant MMtIIinv7 has become a type II invariant
straddling ItfM1 IF and ItfM2 IF.
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PROJECT ExampleRD Prj
DECOMPOSES ExampleR Prj
INTERFACE Itf1 IF
INTERFACE Itf2 IF
INTERFACE ItfM1 IF
INTERFACE ItfM2 IF
MACHINE MM1
MACHINE MM2
MACHINE MM3
MACHINE MB
SYNCH(MM12synch
REFINESMMsynch)
MM1.{MAev1,MMev4}
MM3.MAev3

END
SYNCH(MMev5synch)
MM1.MMev5 mm1
MM2.MMev5 mm2
MM3.MMev5 mm3

END
SYNCH(MAev2synch)
MM1.MAev2 mm1
MM2.MAev2 mm2
MM3.MAev2 mm3

END
END

INTERFACE ItfM1 IF
DECOMPOSES MM
READS ItfM2 IF
PLI/VAR MMv3,MMv4,MMv5
INVARIANTS
MMinv3(MMv3,MMv4)
MMinv4(MMv4)
MMinv5(MMv4,MMv5)
MMtIIinv7(MMv5,MAv1)

INITIALISATION
•••

END

INTERFACE ItfM2 IF
DECOMPOSES MM
REFERS ItfM1 IF
PLI/VAR MAv1,MAv2
INVARIANTS
MAinv1(MAv1,MAv2)
MAinv2(MAv1,MAv2)

INITIALISATION
•••

END

MACHINE MM1
DECOMPOSES MM
CONNECTS ItfM1 IF
EVENTS
MAev1(MMv3,MMv4,

Itf1v1, Itf1v2)
MMev4(MMv4,MMv5)
MMev5 mm1(MMv4)
MAev2 mm1(MAv1)

END

MACHINE MM2
DECOMPOSES MM
CONNECTS ItfM1 IF
CONNECTS ItfM2 IF
PLI/VAR MMv6
INVARIANTS
MMinv6(MMv6)

EVENTS
MMev5 mm2(MMv6)
MAev2 mm2(MAv1)

END

MACHINE MM3
DECOMPOSES MM
CONNECTS ItfM2 IF
EVENTS
MAev2(MAv1, Itf1v2, Itf1v3)
MAev3(MAv1,MAv2)
MMev5 mm3(MAv1)
MAev2 mm3(MAv1)

END

Figure 9: A project for the decomposition step of Fig. 8.

Below the interfaces, the machines MM1,MM2,MM3 deal with the events. We assume that the
mode events remain undecomposed, with the synchronisation between MAev1 or MMev4 and MAev3
persisting, whereas the pliant events need to be decomposed and synchronised as described above.
Thus MM1 contains MAev1,MMev4,MMev5 mm1,MAev2 mm1. The latter two are the MM1 shares
of MMev5,MAev2 from MM. Machine MM1 contains events MMev5 mm2,MAev2 mm2 which are the
MM2 shares of MMev5,MAev2. It also retains the local variable MMv6 and local invariant MMinv6 of
MM as a local variable and local invariant of its own. FinallyMM3 contains MMev5 mm3,MAev2 mm3,
MAev3, the first two being the MM3 shares of MMev5,MAev2.

As we have seen, decomposition is intended to be a trivial kind of refinement. As an optimisation,
and to avoid excessive duplication of models in a development, we can also introduce REFINESand-
DECOMPOSES Construct clauses, which would combine a nontrivial refinement with a subsequent
decomposition step. Although entirely within the spirit of our approach, the consequent syntactic con-
straints would become increasingly complex to check mechanically.

9. The Hypergraph Project Architecture Pattern

So far, we have presented a number of mechanisms that permit the construction of multi-machine
projects in various ways, but we have not said anything about how these mechanisms should be used
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to best effect. Designers are, of course, entitled to use the features of multi-machine Hybrid Event-B
as they see fit, but some general principles have emerged in case study work which are worth broadly
recommending, and which can be labelled the Hypergraph Project Architecture Pattern.

If we consider each machine in a project as a node in a hypergraph, and each interface as a hyperedge
joining all the nodes (machines) that connect to it, then a hypergraph structure emerges immediately.
Alternatively, in the canonical reformulation of hypergraphs as bipartite graphs, we can view machine
nodes and interface nodes as the two node kinds of a bipartite graph, and the CONNECTS and READS
relationships between machines and interfaces as the bipartite graph’s edges.

Given the combinatorial nature of the diamond rules, any legal Hybrid Event-B project gives rise
to a hypergraph structure in this manner. However, the interface hyperedges may still be joined to one
another via tIIi cross-cutting invariants. It is helpful to minimise the use of those in order to increase
separate working. To do that we have to relate the hypergraph structure to the problem domain.

Normally, at least at a sufficiently low level of abstraction, the machines of a project will correspond
to actual system components. Accepting this in principle, the issue remains of how to partition all the
variables into interfaces.

At one extreme, we can put all the variables that will be updated by a machine into a separate interface
conceptually belonging to that machine — although there is no formal requirement that variables are
updated by unique machines in Hybrid Event-B, this very often happens in practice at low levels of
abstraction. Partitioning the variables this way typically gives rise to tIIi’s, as other machines need read
access to the variables, while being coupled to the variables’ owning machines by nontrivial invariants.

At the other extreme, we can analyse the responsibilities of the various machines, and partition the
variables according to the separate concerns that have to be taken care of within the project. It is often
the case that the invariants that are judged important from an applications perspective align well with
the various concerns, and often, a good separation is seen between the sets of variables involved in the
invariants belonging to different concerns. This minimises or eliminates the need for tIIi’s.

The recommendation is to follow the second route. This gives the maximum flexibility for writing
important complex invariants, which may couple different machines’ events nontrivially, yet because
they only involve the variables of a single interface, need not be restricted to the tIIi pattern. This
recommendation is called the Hypergraph Project Architecture Pattern.

The main evidence for this pattern comes from case study work. In [11] a significant landing gear
case study problem is proposed. In [7] there is a Hybrid Event-B development of it, which, due to early
modelling decisions, in effect followed the first route. This gave rise to the need for a number of tIIi’s
distributed around the various interfaces. The case study was revisited and extended in [8], and this
time the earlier modelling decisions were overturned and a hypergraph architecture as we recommend
here emerged naturally. It proved possible to eliminate all use of tIIi’s thereby. Besides this, in [10], a
PID controller case study for yaw control of an e-vehicle is developed using the hypergraph architecture
pattern, and confirms its good structural properties.

10. Small PROJECT Case Studies

In this section we present two small project case studies, small by necessity, since genuine multi-
component multistage developments would be too big to include. Larger case studies have already been
mentioned: [7, 8, 10]. The case studies here are restricted to a small development done in discrete Event-
B in Section 10.1, and, in Section 10.2, there is a reexamination of the European Train Control System,
first examined using Hybrid Event-B as a single machine in PaperI. We present these at this point since
they are primarily concerned with illustrating the structural mechanisms, and do not require the detailed
semantic considerations that occupy the remainder of the paper.
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Figure 10: A simplified high power switchgear switching mechanism.

10.1. Power Switching
In this section we consider a fragment of a power grid application. The fragment concerns the

switching in or out of the grid, of high current high voltage circuits. The switches that manage such
transitions are complex pieces of equipment. Fig. 10 shows our system. There is a button, pressed by the
operator, to bring in a circuit.

The button command is sent to the computer that controls the functioning of the various electro-
mechanical components of the switching apparatus. The computer does this via a number of sensor
inputs and actuator outputs, most of which we ignore here. Once the operations of the switching have
completed, the computer sends a signal telling the lamp to light, confirming success to the operator.

The button command is also sent to a hydraulic actuator to power up the hydraulics that will cause
the movement of the electromechanical components. Successful powerup of the hydraulics is signalled
to the computer from a sensor in the hydraulic actuator. This signal acts as a safety interlock that helps
prevent malfunction of the system (which could result in costly damage to the switchgear). Thus, if the
hydraulics fails, the absence of the sensor signal prevents the computer from issuing further commands,
avoiding damage. Likewise, if the computer fails, the mere powerup of the hydraulics does not cause
anything to move, and again, damage is avoided. Such mutual confirmation is a common feature of high
criticality systems. Fig. 11 contains a top level model of the system. We use discrete Event-B here since
our models do not require any nontrivial continuous behaviour.

PROJECT PowerSw0 Prj
MACHINE Oper

END

MACHINE Oper
VARIABLES button, lamp
INVARIANTS
button ∈ {UP,DOWN}
lamp ∈ {OFF,ON}
lamp= ON⇒ button=DOWN

EVENTS
INITIALISATION
BEGIN
button, lamp := UP,OFF

END
. . . . . .

. . . . . .
ButtonDown
WHEN button= UP
THEN button := DOWN
END

LampOn
WHEN button= DOWN
THEN lamp := ON
END

END

Figure 11: Top level (operator’s) model of the power switching system.
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PROJECT PowerSw1 Prj
REFINES PowerSw0 Prj
MACHINE FullOperR

END

MACHINE FullOperR
REFINES Oper
VARIABLES
button,buttonC,buttonH,
hydraulics, lampsignal, lamp

INVARIANTS
button ∈ {UP,DOWN}
buttonC ∈ {UP,DOWN}
buttonH ∈ {UP,DOWN}
buttonC = DOWN ⇒ button= DOWN
buttonH =DOWN ⇒ button= DOWN
lampsignal ∈ {OFF,ON}
lamp ∈ {OFF,ON}
lampsignal = ON ⇒

buttonC = DOWN ∧hydraulics = ON
lamp= ON ⇒ lampsignal = ON
lamp= ON ⇒ button= DOWN
hydraulics ∈ {OFF,ON}
hydraulics = ON ⇒ buttonH =DOWN

EVENTS
INITIALISATION
BEGIN
button,buttonC,buttonH := UP,UP,UP
hydraulics := OFF
lampsignal, lamp := OFF,OFF

END
. . . . . .

. . . . . .
ButtonDown
REFINES ButtonDown
WHEN button= UP
THEN button := DOWN
END

ButtonDownC
WHEN button= DOWN
THEN buttonC := DOWN
END

ButtonDownH
WHEN button= DOWN
THEN buttonH := DOWN
END

HydraulicsOn
WHEN buttonH = DOWN
THEN hydraulics := ON
END

LampSignal
WHEN buttonC =DOWN ∧hydraulics =ON
THEN lampsignal := ON
END

LampOn
REFINES LampOn
WHEN lampsignal = ON
THEN lamp := ON
END

END

Figure 12: Enriched top level model, ready for decomposition.

Our aim is to refine and decompose this top level view to model the different components separately,
and to add the sensor behaviour mentioned. As a first step, we refine the machine Oper to a machine
FullOperR that includes all the pieces needed for the decomposition, so that the decomposition itself
becomes the simple rearrangement we described in Section 8. The result is shown in Fig. 12, where all
the detail has been built into the machine FullOperR. This has an additional two copies of the button
variable, one each for the upcoming Comp and Hydraulics machines. The original events of Oper are
present, along with some new events. Note that the PROJECT files have had little to do yet.

In Fig. 13 we decompose FullOperR into OperR, Comp and Hydraulics. The OperR machine rep-
resents the operator’s view in the decomposed system. The Comp machine is intended as the head of
a refinement development, to take into account an increasing number of sensor inputs and actuator out-
puts as the development progresses. The Hydraulics machine is also intended to become the head of a
refinement development, to take into account more detail in the hydraulic system.

This small system illustrates our decomposition method rather well. Control starts with the operator,
and is then passed to both the computer and hydraulics subsystems via the button press. After some
activity in the two separate subsystems, reinforcement of normal functioning in both subsystems is gained
by the sending of the hydraulics = ON signal from the hydraulics subsystem, and its correct processing
by the computer subsystem. As already noted, this kind of mutual confirmation is rather common in
critical systems. However, the to-and-fro of control and information that is needed for this is typically
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PROJECT PowerSw2 Prj
DECOMPOSES PowerSw1 Prj
INTERFACE Comp IF
INTERFACE Hydr IF
MACHINE OperR
MACHINE Comp
MACHINE Hydraulics

END

INTERFACE Comp IF
DECOMPOSES FullOperR
READS Hydr IF
REFERS Hydr IF
VARIABLES button,buttonC, lampsignal, lamp
INVARIANTS
button ∈ {UP,DOWN}
buttonC ∈ {UP,DOWN}
buttonC = DOWN ⇒ button= DOWN
lampsignal ∈ {OFF,ON}
lamp ∈ {OFF,ON}
lampsignal = ON ⇒

buttonC = DOWN ∧hydraulics = ON (∗1)
lamp= ON ⇒ lampsignal = ON
lamp= ON ⇒ button= DOWN

INITIALISATION
BEGIN
button,buttonC := UP,UP
lampsignal, lamp := OFF,OFF

END
END

INTERFACE Hydr IF
DECOMPOSES FullOperR
READS Comp IF
REFERS Comp IF
VARIABLES buttonH,hydraulics
INVARIANTS
buttonH ∈ {UP,DOWN}
hydraulics ∈ {OFF,ON}
buttonH =DOWN ⇒ button= DOWN (∗2)
hydraulics = ON ⇒ buttonH =DOWN

INITIALISATION
BEGIN
buttonH := UP
hydraulics := OFF

END
END

MACHINE OperR
DECOMPOSES FullOperR
CONNECTS Comp IF
EVENTS
ButtonDown
WHEN button= UP
THEN button := DOWN
END

LampOn
WHEN lampsignal = ON
THEN lamp := ON
END

END

MACHINE Comp
DECOMPOSES FullOperR
CONNECTS Comp IF
EVENTS
ButtonDownC
WHEN button= DOWN
THEN buttonC := DOWN
END

LampSignal
WHEN buttonC =DOWN ∧hydraulics =ON
THEN lampsignal := ON
END

END

MACHINE Hydraulics
DECOMPOSES FullOperR
CONNECTS Hydr IF
EVENTS
ButtonDownH
WHEN button= DOWN
THEN buttonH := DOWN
END

HydraulicsOn
WHEN buttonH = DOWN
THEN hydraulics := ON
END

END

Figure 13: The decomposed power switching development.

handled rather poorly in traditional model based decomposition techniques, which are normally much
more oriented towards a pure divide-and-conquer strategy.

Our decomposition creates interfaces Comp IF andHydr IF. The former is primarily concerned with
the Comp machine and the latter with the Hydraulics machine. The invariants linking computation and
hydraulics cross-cut this structure, which we take care of using the tIIi’s marked (∗1) and (∗2) in Fig. 13.
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INTERFACE HydrR IF
REFINES Hydr IF
READS Comp IF
REFERS Comp IF
VARIABLES buttonH,hydraulics,pump
INVARIANTS
buttonH ∈ {UP,DOWN}
hydraulics ∈ {OFF,ON}
pump ∈ {OFF,ON}
buttonH =DOWN ⇒ button= DOWN (∗2)
hydraulics = ON ⇒ pump =ON

INITIALISATION
BEGIN
buttonH,hydraulics,pump := UP,OFF,OFF

END
END

MACHINE HydraulicsR
REFINES Hydraulics
CONNECTS HydrR IF
VARIABLES pumpfail
INVARIANTS pumpfail ∈ BOOL
EVENTS
INITIALISATION
BEGIN pumpfail := FALSE END

ButtonDownH
WHEN button= DOWN
THEN buttonH := DOWN
END

Pumpfail
WHEN ¬pumpfail
THEN pumpfail := TRUE
END

PumpOn
WHEN buttonH = DOWN ∧¬pumpfail
THEN pump := ON
END

HydraulicsOn
WHEN pump =ON
THEN hydraulics := ON
END

END

Figure 14: The further refined hydraulic system.

The tIIi (∗2) tracks the waking of control in the hydraulic subsystem when the operator button is pressed,
while tIIi (∗1) records the return of control to the computer subsystem once the hydraulics have done
enough of their task, the computer having also been busy with its own tasks in the meantime. At a global
level we have not lost track of the dependencies between all the events, while nevertheless facilitating
separate development. However, this structure does not follow our recommended Hypergraph Architec-
ture Pattern, because the variables have been aggregated into interfaces according to the machines that
update them, rather than according to their functional concern.

We consider the addition of a small amount of extra detail to our system, refining it by including the
engaging and monitoring of the pump that pressurises the hydraulic circuit that will drive the switching
gear. We give just the refined fragment, rather than including the whole project. This appears in Fig. 14,
which contains the refined interface HydrR IF and the refined machine HydraulicsR. The latter intro-
duces the pump, and also, a failure mode for the pump, which when set, prevents the hydraulics variable
from being set, reflecting the system characteristics discussed earlier.

Superficially, Figs. 13 and 13 contain a violation of our decomposition rules, in that there are two
events in machine FullOperR, namely ButtonDownC and ButtonDownH, both of which are enabled
when button =DOWN, and which are put into different submachines Comp and Hydraulics during de-
composition. We make several observations about this.

First observation. This is a discrete Event-B development. So there are no pliant events and all
(mode) events execute lazily, temporally isolated from each other, the only coincidences in execu-
tion times being those forced via synchronisations. Therefore the measures taken to prevent undesired
scheduling possibilities are not needed. Specifically [!20]–[!22] are not needed for discrete Event-B,
and the structural rules alone [!18]–[!19] are sufficient. Since [!22] does not apply and ButtonDownC
and ButtonDownH cannot execute simultaneously, there is no violation.

Second observation. The discrete Event-B development may be regarded as a shorthand for a cor-
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responding Hybrid Event-B development whose non-trivial events are all mode events. Such a develop-
ment may be translated to legitmate Hybrid Event-B by adding a COMPLY INVARIANTS default pliant
event, and adding to each mode event an (otherwise redundant) input from the environment to ensure
lazy execution. Now [!20]–[!22] are applicable, and although the events execute lazily, they execute in
different machines, and the scheduling policy of Hybrid Event-B would not prevent them being sched-
uled simultaneously (this follows from points [10] and [12.1] in the semantics of Section 11). So there
is a violation.

Third observation. Following on from the preceding, we could easily add a boolean variable turn to
machine FullOperR to artificially create sequentialisation, setting it nondeterministically in ButtonDown
say, and guarding ButtonDownC and ButtonDownH on opposite values of turn, negating its value in
each of these events. This cures the violation. During decomposition, if we put turn in Comp IF, then
machine Hydraulics would need an additional CONNECTS Comp IF to access turn.

Fourth observation. As an alternative to the previous case, we notice that even when ButtonDownC
and ButtonDownH are executed simultaneously, there is no detrimental effect on the overall system
behaviour since the updates are non-interfering and both are needed for the ultimate goal of switching
the lamp on. This demonstrates that [!22] is certainly very conservative. More liberal variations on
condition [!22] can be imagined, but these would entail substantial excursions into static analysis, which
we wish to avoid in this paper.

Fifth observation. The mode event scheduling policy of Hybrid Event-B mentioned above (points
[10] and [12.1] of the semantics) is quite specific. Although it prevents a mode event with input from
executing immediately after a preceding mode event, it does not prevent more than one mode event with
input from executing simultaneously (or indeed simultaneously with other mode events without input)
provided all belong to different machines. The motivation is connected with refinement. In Hybrid Event-
B, since default event scheduling is eager, inputs from the environment are used to introduce elements of
nondeterminism. Since refinement typically reduces nondeterminism, environmental inputs may, during
refinement, be replaced by more deterministic and more eager behaviour modelled using state variables.
If inputs were always constrained to execute apart from each other and apart from non-input events
(which could easily be arranged), some refinements of this kind could be rendered impossible, given that
time runs at the same rate in all levels of a refinement chain in Hybrid Event-B.

10.2. European Train Control System
In this example, we reconsider the treatment of the European Train Control System (ETCS) from

PaperI, in the light of the multi-machine theory of this paper. Since there are two obvious agents in the
ETCS model, the Radio Block Controller and the Train, having a machine for each is evidently more
desirable than a single machine treatment, all other things being equal.

In the ETCS, the rail track is organised into dynamically controlled movement authorities. The key
invariants are that distinct movement authorities are always disjoint, that each movement authority
contains (at most) one train, and that each train is in some movement authority. If these are always
maintained, then trains cannot collide.

Since the present treatment is just a repackaging of the PaperI treatment, we do not repeat the argu-
ments that justify the mathematical details of the model. Instead, we focus on the various different pieces,
and how they fit together. Accordingly, we go straight to the generalised movement authority model of
Fig. 15. In this, we have train dynamical variables, τ.p, τ.v and τ.a which represent the current position,
velocity and acceleration of the train, respectively, and the train emergency braking distance τ.sb. We
also have movement authority variables m.r, m.e and m.d, representing respectively the recommended
speed (away from the emergency braking zone), the movement authority endpoint, and the demanded
maximum speed permissible at the endpoint. The key invariant is thus τ.p≥m.e⇒ τ.v≤m.d.
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Figure 15: The European Train Control System. A generalised movement authority, defined by its recommended speed limit
m.r, end position m.e and demanded speed limit (at end) m.d. This is used to control the train parameters: train acceleration
τ.a, train speed τ.v, and train position τ.p. The essential safety invariant is τ.p≥m.e⇒ τ.v≤m.d.

10.3. A Hybrid Event-B Project for ETCS
The structural part of the ETCSHybrid Event-B Project is shown in Fig. 16, containing the PROJECT

ETCS Prj file itself, the CONTEXT ETCS Ctx static data file, and the INTERFACE ETCS IF file.
The project file identifies the component constructs contributing to the project, namely the context

file, the interface file, and the RadioBlockController and TrainController machines. It also contains the
synchronisation specifications, which are very simple in this project; all that is needed is to specify that
the MOVEMENT AUTHORITY mode events in the two machines are to execute simultaneously (these
being a decomposition of a single event of PaperI into two).

The context file contains the normal and emergency mode constants, and the emergency brake emrg
and new movement authority newMA message values. It also contains the maximum train deceleration
and acceleration, b and A, also ε, which is the polling interval. In addition, it contains two static functions,
bd and od (braking distance and overshoot distance) needed in the safety calculations.

The interface file contains almost all of the variables of the system. Many of them are accessed
by both machines. The train position and velocity τ.p and τ.v are pliant because they are required to
change continuously when following a physical law. The other dynamical variables (train acceleration
and movement authority data) are only changed by mode events, so their behaviour will be piecewise
constant (albeit that their values are drawn from R), so we can declare them as mode variables. A perusal
of the code of the two machines reveals that each variable is only updated by a single machine of the
project, even if it is accessed by both, which accords with static criteria for correctness discussed below.
Since there is only one interface file, the project has a hypergraph architecture automatically.

The key safety property appears as inv9 in Fig. 16.8 Observe that if all the train variables τ.
lived in the TrainController (train) machine, and all the movement authority variables m. lived in the
RadioBlockController (RBC) machine, then if we put inv9 into the RBC machine, then we would have
to existentially quantify the train variables in inv9. While it is one thing to say that values for the train
variables exist that make inv9 true, it is quite another to say that the current train variable values do
so. A corresponding problem arises if inv9 were put into the train machine — and doing both of these
things is no good either, since neither set of existential witnesses would be connected to the actual system
values at any particular time. Inspecting the details of the train machine and the RBC machine reveals

8The labels of the invariants are consistent with PaperI.
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PROJECT ETCS Prj
CONTEXT ETCS Ctx
INTERFACE ETCS IF
MACHINE RadioBlockController
MACHINE TrainController
SYNCHRONISE
RadioBlockController.
{MOVEMENT AUTHORITY}

TrainController.
{MOVEMENT AUTHORITY}

END
END

CONTEXT ETCS Ctx
SETS MODES,MSGS
CONSTANTS
normal,emergency
emrg,newMA
b,A,ε
bd,od

AXIOMS
MODES=
{normal,emergency}

MSGS = {emrg,newMA}
b ∈ R∧b> 0
A ∈ R∧A> 0
ε ∈ R∧ ε> 0
bd ∈ R×R → R

∀x,y•bd(x,y) =
x2−y2

2×b
od ∈ R → R

∀z•od(z) = zε+
1
2
Aε2

END

INTERFACE ETCS IF
SEES ETCS Ctx
PLIANT
τ.p,τ.v

VARIABLES
mode,m.r,m.e,m.d

INVARIANTS
inv0 : τ.p ∈ R∧ τ.p≥ 0
inv1 : τ.v ∈ R∧ τ.v≥ 0
inv2 : mode ∈MODES
inv5 :m.r ∈ R∧m.r ≥ 0
inv6 :m.e ∈ R∧m.e ≥ 0
inv7 :m.d ∈ R∧m.d ≥ 0
inv8 :m.r ≥m.d
inv9 : τ.p≥m.e⇒ τ.v≤m.d

INITIALISATION
BEGIN
τ.p,τ.v := 0,0
mode := normal
m.r,m.e,m.d := 0,0,0

END
END

Figure 16: Project construct, static data, and shared variables and invariants for ETCS.

that train variables τ. are only inspected and updated in the train machine. Therefore the only reason for
putting them in the interface ETCS IF is the need to relate them to the movement authority variables in
the critical safety invariant inv9.

We now consider the behaviour of the system, though briefly, since it is the same as in PaperI.
The RadioBlockController machine in Fig. 17, after initialising, engages in the IDLE RBC pliant event,
which does nothing, waiting to be interrupted either by the MOVEMENT AUTHORITY mode event
(which adjusts the movement authority variables to new values), or by the EMERGENCY mode event
(which notifies an emergency ahead). Both mode events have input parameters, so, according to the
semantics, the needed values become available at undetermined times that do not clash with any other
mode event occurrences. Note that EMERGENCY can only occur once, since it disables its own guard,
after which it brings the system to rest.

Note the specifications of the pliant behaviour in the IDLE RBC and FINAL RBC events. These
say COMPLY CONST(. . .). This utilises the CONST pliant modality [5] demanding that the values of
the variables mentioned do not change during the pliant transition. This makes clear which variables
(mode or pliant) are being controlled by the event, but is strictly speaking superfluous. Equally good
would be COMPLY Invariants, the usual default, applying to all the variables controlled by the machine,
which would work here, since all the variables mentioned are mode variables and thus are forbidden from
changing during a pliant event in the machine that controls them. Also permissible would be COMPLY
skip which says ‘do nothing’ to the values of the variables controlled by the machine during the pliant
event, again consistent with the expected constant behaviour of all the relevant variables.

Focusing on theMOVEMENT AUTHORITY event, when prompted by the newMAmessage from the
environment, it reassigns the movement authority variables according to spontaneously generated output
parameter values r!,e!,d!. These are passed to the train during the simultaneous execution of the train’s
MOVEMENT AUTHORITY event. (Note that the formal semantics of this is the spontaneous generation
of values for shared bound variables r,d,e, despite the I/O appearance of the variable names.) In PaperI,
we gave a careful justification of why the particular restrictions placed on the various parameters were
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MACHINE RadioBlockController
CONNECTS ETCS IF
EVENTS
IDLE RBC
STATUS pliant
WHEN mode= normal
COMPLY
CONST(mode,
m.r,m.e,m.d)

END
. . . . . .

. . . . . .
MOVEMENT AUTHORITY
STATUS ordinary
ANY msg?,r!,e!,d!
WHERE
mode = normal∧
msg?= newMA∧
r! ∈ R∧ r!> 0∧
e! ∈ R∧ e!> 0∧
d! ∈ R∧d! > 0∧
r!≥ d!∧
(d!≥m.d⇒ e!≥m.e)∧
(d!≤m.d⇒

e!≥m.e+(m.d2−d!2)/2b)
THEN
m.r,m.e,m.d := r!,e!,d!

END
. . . . . .

. . . . . .
EMERGENCY
STATUS ordinary
ANY msg?
WHERE
mode= normal∧
msg?= emrg

THEN
mode := emergency

END
FINAL RBC
STATUS pliant final
WHEN
mode= emergency

COMPLY
CONST(mode,
m.r,m.e,m.d)

END
END

Figure 17: The RadioBlockController machine for the European Train Control System.

appropriate. We do not repeat that here.
We turn to the TrainController machine, shown in Fig. 18. This also CONNECTS to the INTER-

FACE ETCS IF. It declares a train internal clock τ.clk to manage the train’s polling behaviour, and also
the train acceleration variable τ.a, which ranges between −b (maximum deceleration) and A (maximum
acceleration).

The only non-final pliant event is DRIVE, scheduled whenever the clock is reset to 0, lasting for a
period τ.clk < ε. At the reset, various mode events can become enabled (via a guard τ.clk = ε), thus
continuing the system trace. The DRIVE event just stipulates Newtonian mechanics.

Of the mode events, MOVEMENT AUTHORITY is the most complex, performing the train’s part
of the synchronised movement authority update. As before, we refer to PaperI for the technical details.
Mode events SPEED OK and SPEED HIGH manipulate the train’s speed during normal operation.

If, by the end of a polling interval, the mode has been set to emergency by the RBC, or the emergency
braking zone has been entered, then in AUTOMATIC TRAIN PROTECTION, the acceleration is set to
maximum braking and the clock is reset. The last mode event, FULL STOP, is triggered when the
velocity reaches 0 during emergency braking, whereupon the train’s motion stops, enabling the final
pliant event FINAL TRAIN.

The brief outline of the ETCS system just given is to be compared with the more detailed single
machine treatment in PaperI. Although the specific formulae were carefully justified there, the point here
is that the multi-machine formulation is essentially just a splitting up of the single machine version.
In that sense, it illustrates well our objective in this paper that decomposition should be little more
than a syntactic partitioning process, and that the semantics of a decomposed system should be readily
understandable in terms of a recomposed monolithic system.

11. Formal Semantics

The formal semantics of a single Hybrid Event-B machine is discussed in detail in PaperI. The formal
semantics of multi-machine projects is essentially the same, but with two complications. The first is the
fact that we allow events to be synchronised (usually across more than one machine, but not necessarily,
allowing for cases like MMsynch in Fig. 5). This implies that the ‘guard at runtime’ of such a collection
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MACHINE TrainController
CONNECTS ETCS IF
CLOCK τ.clk
VARIABLES τ.a,τ.sb
INVARIANTS
inv2 : τ.a ∈ R∧

τ.a ∈ [−b . . .A]
inv3 : τ.sb ∈ R∧

τ.sb≥ 0
EVENTS
INITIALISATION
STATUS ordinary
BEGIN
τ.a := 0
τ.sb := 0
τ.clk := 0

END
DRIVE
STATUS pliant
WHEN τ.clk = 0
COMPLY τ.v≥ 0∧

τ.clk< ε
SOLVE D τ.v= τ.a

D τ.p= τ.v
END

. . . . . .

. . . . . .
MOVEMENT AUTHORITY
STATUS ordinary
WHEN mode= normal
ANY r?,e?,d?
WHERE
r? ∈ R∧ e? ∈ R∧d? ∈ R

THEN
τ.sb :=
bd(r?+Aε,d?)+od(r?)

END
SPEED OK
STATUS ordinary
ANY a
WHEN
τ.clk = ε∧
mode = normal∧
m.e− τ.p≥ τ.sb∧
τ.v≤m.r∧
a ∈ [−b . . .A]

THEN τ.a := a
τ.clk := 0

END
. . . . . .

. . . . . .
SPEED HIGH
STATUS ordinary
WHERE
τ.clk= ε∧mode = normal∧
m.e− τ.p≥ τ.sb∧ τ.v≥m.r

THEN τ.a := −b
τ.clk := 0

END
AUTOMATIC TRAIN PROTECTION
STATUS ordinary
WHEN
τ.clk= ε∧

(mode= emergency∨
m.e− τ.p≤ τ.sb)

THEN τ.a := −b
τ.clk := 0

END
FULL STOP
STATUS ordinary
WHEN
τ.v= 0∧mode = emergency

THEN τ.a := 0
τ.clk := 0

END
FINAL TRAIN
STATUS pliant final
WHEN
τ.clk= 0∧mode = emergency∧
τ.v= 0∧ τ.a= 0

COMPLY skip
END

END

Figure 18: The TrainController machine for the European Train Control System.

of events is the conjunction of all the guards of the members of the collection (and not their individual
guards as written). We make provision for this by formally scheduling ‘event clusters’ rather than events,
where an event cluster is either a synchronised set of events, or an individual unsynchronised event. Note
that event clusters need not necessarily be specified by the synchronisation mechanisms we described
in previous sections —it is sufficient that they consist of either all mode events or all pliant events—
making specification of event clusters orthogonal to their semantics.

The second is the fact that different machines can undergo mode transitions at different times. This
means that unrelated machines are pursuing pliant transitions at those moments. Since the mathematics
that guarantees existence of the pliant behaviours is global in nature, a mode transition in machine A
must be handled using an (essentially seamless) ‘interrupt and resume’ construction for any machine B
that is pursuing a pliant transition just then. We need to take care that this does not introduce undesired
choice points for the runtime scheduler.

The above remarks make it clear that these issues belong predominantly to bureaucracy. Although
they add some complexity to the semantics, they add no profundity, so the underlying ideas for multi-
machine Hybrid Event-B remain as for single machines.

We turn to the semantics itself. In order to not waste space repeating routine material, we rely on [2]
(especially Chapters 5, 9, 14) for the semantics of discrete Event-B; and on [22] (especially Chapter III
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§10) for differential equations in the sense of Carathéodory.
For simplicity, our semantics will do a fair bit of ‘runtime checking’. In a practical system, most

of this is avoided by imposing syntactic tests, and these would normally be provably sound against the
semantics (see Section 12). For our purposes though, avoiding dealing with both syntactic and semantic
checking simplifies the presentation of the semantics.

Firstly, we make precise a few points of terminology and convention.

• Time, referred to as t, takes values in the real left-closed right-open set [t0 . . . +∞), where t0
is an inital value for time. For every other system variable var, there is a type Uvar. If var is
pliant, thenUvar is R.

(1)

• The semantics is given for a project P , which is a set of machines and interfaces, P ≡
{M1 . . .Mk, I1 . . . Ip}. For each state variable var, there is exactly one machine or interface that
declares it.

(2)

• Time is a distinguished variable (read-only, never assigned by events, and synchronised with
all machines in P during INITIALISATION). All state variables have interpretations which are
functions of an interval of time starting at t0; see (6). As well as directly referring to the time
variable, time may be handled indirectly by using clock variables (declared as such), whose
values may be reset by mode events.

(3)

• The events M.Ev of a machine M ∈ P consist of mode events and pliant events. Given a
project P , an event cluster is a non-empty set of events, either all mode events (a mode event
cluster), or all pliant events (a pliant event cluster). N. B. An event cluster has no internal
communications, though there may be bound variables shared across several events of the
cluster.

(4)

• Given a mode event cluster, given a valuation of all the state variables, and values of inputs
and local parameters of the events in the cluster, and a value of time, the mode event cluster is
enabled iff the tuple of values lies in the topological closure of the set of tuples of values such
that all the WHERE clauses of the events in the cluster evaluate to true. Given a pliant event
cluster, given a valuation of all the state variables, and a value of time, the pliant event cluster
is enabled iff all the INIT and WHERE clauses evaluate to true.

(5)

• The semantics of P is a set of system traces S . Each system trace S ∈ S is given by a time
interval T = [t0 . . . tFINAL) (where tFINAL, with tFINAL > t0, is finite or +∞), and a set of time
dependent variable interpretations ζvar : T →Uvar, one for each state variable var of P . If S is
empty we say that the semantics of P is VOID. (N. B. For reasons of simplicity, we omit inputs,
local parameters and outputs from system traces. These are regarded as existing only for the
duration of the transitions that they belong to; i.e., the single time value at which a mode
transition occurs, or the topological interior of the interval during which a pliant transition
takes place. With additional machinery, such parameters could be included in system traces.)

(6)

• A pliant variable is governed by a pliant event iff, it is constrained in the COMPLY clause of
the event, or it occurs in the left hand side of a differential equation or of a direct assignment
in the SOLVE clause of the event. To manage pliant variables over the mode transitions of
other machines, additional machinery is needed. In a given system trace S, for each pliant
variable pli and time t ∈ [t0 . . . tFINAL), the function MchPliEv(pli, t) returns M.PliEv, which
consists of a pliant event PliEv and the machine M ∈ P that declares PliEv— and is such that
the interpretation ζpli at time t of variable pli is recording the trajectory of a pliant transition
determined by the pliant event M.PliEv. The function MchPliEv (like the system trace S) is
constructed incrementally. If the construction breaks down at some point, then the trace S is
aborted.

(7)
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• The set of traces S is constructed by the step by step process below, which describes how
individual system traces are constructed incrementally.9 Whenever a CHOOSE is encountered,
the current trace-so-far is replicated as many times as there are different possible choices, a
different choice is allocated to each copy, and the procedure is continued for each resulting
trace-so-far. Whenever a TERMINATE is encountered, the current trace-so-far is complete and
is added to the semantics S , of P . Whenever an ABORT is encountered, the current trace-so-far
is abandoned (and eliminated from S ). If a VOID is encountered, or the constructed S is empty,
the semantics is VOID.

(8)

The construction of system traces is as follows.

[1] Let η := 0 (where η is a meta-level variable).
[2] Assuming all machines and interfaces in P have feasible INITIALISATIONs that satisfy all the

invariants in P , CHOOSE such an initial assignment, thereby interpreting the values of all variables
at time t0. Otherwise, VOID.

[3] If any non-INITIALISATION mode event cluster of P that does not have any inputs (but which
may have local parameters or outputs), is enabled when the state variables have the values at tη
and enabling values exist for the local variables, then ABORT.

[4] With the state variables having the values at tη, CHOOSE a maximal set PliEvENclst of ENabled
pliant event clusters, such that for each machine M ∈ P there is at most one event cluster in
PliEvENclst containing an event of M.
[4.1] Considering all occurrences of differential equations and direct assignments in all SOLVE

clauses of the events in the event clusters in PliEvENclst, if any pliant variable pli appears in
the left hand side of more than one occurrence, or pli is governed by more than one event,
then ABORT.

[5] If η = 0 let PliEvCTclst := /0. Otherwise, let PliEvCTclst be a set of (ConTinuing) pliant event
clusters from machines of P , such that: (1) PliEvCTclst is maximal; (2) no variable governed
by any event in any event cluster in PliEvCTclst is governed by any event in any event clus-
ter in PliEvENclst; (3) for every variable pli governed by an event PliEv in an event cluster
in PliEvCTclst, we have

−−−−−−−−−−−−→
MchPLiEv(pli, tη) =M.PliEv, where M is the machine that contains

PliEv (and the overarrow denotes left-limit); (4) for every event PliEvCT in any event cluster
of PliEvCTclst, for every mode variable mv which occurs in the WHERE guard of PliEvCT ,−−−−→
mv(tη) = mv(tη).

[6] Let PliREM consist of any remaining pliant variables that are not governed by any event in any
event cluster in PliEvENclst∪PliEvCTclst. If PliREM is nonempty, then ABORT. If there is a
machine M such that none of the events in the event clusters in PliEvENclst∪PliEvCTclst are
declared inM, then ABORT.

[7] ABORT if there does not exist a tMAX > tη such that in the left-closed, right-open interval [tη . . . tMAX):
(1) there is a simultaneous solution of all the differential equations and direct assignments in the
SOLVE clauses (that also respects all the BDApred predicates) of all the pliant events in all the
event clusters in PliEvENclst∪PliEvCTclst, such that; (2) intial state variable values are the val-
ues at tη, intial input and local parameter values are the right-limit values at tη, and such that; (3)
the initial values satisfy the INIT and WHERE guards of the pliant events in PliEvENclst but need
only satisfy the WHERE guards of the pliant events in PliEvCTclst.

9N. B. The process is not intended to be an executable sequential procedure. All traces-so-far are intended to be explored
simultaneously and to completion, even if completion involves an infinite amount of time for a non-terminating system trace.
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[8] Otherwise, CHOOSE a simultaneous solution as in [7], let tMAX be maximal such that the properties
in [7] hold, and use the solution to assign the values of all pliant variables (and outputs) in the
interval [tη . . . tMAX).
[8.1] For all pliant variables pli, for all t ∈ [tη . . . tMAX), let MchPliEv(pli, t) be the event and ma-

chine governing the behaviour of pli. (N. B. This assignment is total by [6], and is unambigu-
ous by [4.1] and [5].)

[8.2] For every mode variable, extend its value at tη to a constant function in the interval [tη . . . tMAX).
[9] If no non-INITIALISATION mode event cluster is enabled by the values of the state variables at any

time tNEXT in the open interval (tη . . . tMAX) (including left-limit at tMAX itself), together with a choice
of values for inputs and local parameters, then if the invariants in the machines and interfaces of P
are not satisfied in the open interval (tη . . . tMAX), then ABORT. Otherwise TERMINATE.

[10] CHOOSE tη+1 > tη such that: either tη+1 is the earliest time at which a non-INITIALISATION
mode event cluster without input from the environment in any of its events (but potentially having
suitably chosen local parameters) is enabled according to the criteria in [9] at tη+1, or a non-
INITIALISATION mode event cluster with at least one event having input from the environment is
enabled (with a suitable choice of inputs and local parameters) according to the criteria in [9] at
tη+1 and there is no non-INITIALISATION mode event cluster without input from the environment
that is enabled according to those criteria at any time between tη and tη+1.

[11] If the invariants in the machines and interfaces of P are not satisfied in the open interval (tη . . . tη+1),
then ABORT.

[12] Let η := η+1.
[12.1] With the state variables having the values at tη (or their left-limit values at tη if tη = tMAX),

CHOOSE MoEvENclst to be a non-empty set of non-INITIALISATION mode event clusters
comprising the union of: (a) a maximal (but possibly empty) set of mode event clusters
none of whose events has input from the environment, (b) a (possibly empty) set of mode
event clusters, each containing at least one event with input from the environment; such that
all events are enabled when suitable values are assigned to local parameters, and for each
machine M ∈ P there is at most one event cluster inMoEvENclst containing an event of M.

[12.2] CHOOSE an assignment to state variables and outputs according to the BApred predicates of
all the mode events in MoEvENclst, such that all the invariants of P are satisfied, thereby
(re)interpreting those variable values at time tη. Otherwise ABORT.

[12.3] For any other state variable var without a value at tη, interpret its value at tη as
−−−−→
var(tη),

provided this is finite. Otherwise ABORT.
[12.4] Discard the interpretation of all state variables in the open interval (tη . . . tMAX), where tMAX is

the value determined in [8]. (If tη = tMAX then the interval is empty.)
[13] Goto [3].

Regarding the soundness of the above construction, we make the following remarks. In PaperI,
we discussed the soundness of the semantic construction for single machines based on the assumed
soundness of update semantics for discrete Event-B, and on the soundness of the Carathéodory semantics
for DEs and the demand for piecewise absolute continuity of pliant behaviours. In this paper, we aim to
bootstrap the single machine definition to a multi-machine definition, by arguing that the occurrences of
mode events and pliant events in the multi-machine context can be interpreted as occurrences of mode
and pliant events in a (fictitious) global context, built out of the ingredients of the individual machines
and interfaces of the multi-machine project.

More precisely, suppose we have a multi-machine project P . We construct a single machineM out
of the ingredients of P . This is predominantly a lexical job, undertaken within the constraints of the
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name space conventions of Section 3.1. We then argue that the system traces of P can be identified with
a subset of the system traces ofM . SinceM is consistent by PaperI, consistency of the multi-machine
construction follows.

We assume that the various alphabets of names are countably infinite, and that we have at our disposal
a renaming relation “ ” which takes its argument (which is typically some data structure manufactured
from lexical elements of P ) and maps it injectively to a fresh name in the relevant name space. Since
the name spaces are countably infinite and P has a finite description, we can safely assume that “ ” is
always able to return a suitable value.

We will assume that none of the static CONTEXTs SEEn by any part of P contains any identifier
definition (of some static piece of mathematics) that conflicts with any other such identifier definition.
Therefore we can take the scope of all the definitions in all such CONTEXTs to be project-wide for
convenience.

We construct M as follows. We work exclusively with the instantiated project P I , that is to say, the
project description that results when all the MACHINE ... IS ... clauses have been evaluated.

Since the scope of state variable names in P I is global, we can take the state variables ofM to just
be the variables of P I , verbatim. Because of this, we can then immediately take the invariants of M to
just be the invariants of all the machines and interfaces of P I . And a similar approach will work for any
syntactic element of any machine or interface in P I defined in terms of state variables alone. For example,
any VARIANT expression of any machine of P I becomes a variant of M . And since CONTEXTs are
static, consistent, and do not require renaming, any INITIALISATION of an interface or machine of P I

becomes an initialisation ofM .
Next we define the event names ofM . Let M1.Ev1,M1.Ev2, . . . ,Mp.Evq be a listing (in some canon-

ical, say lexicographical, ordering) of the events in a nonempty set EvClst of event clusters, where
either: each element of EvClst is a mode event cluster, or, each element of EvClst is a pliant event
cluster; and such that for each machine M of P I , at most one element of EvClst contains an event
of M. Construct the event name “M1.Ev1,M1.Ev2, . . . ,Mp.Evq”. If any of M1.Ev1,M1.Ev2, . . . ,Mp.Evq
have a parameter —say M1.Ev2 has input parameter M1.Ev2.in?— we create a corresponding input pa-
rameter “M1.Ev2.in”? for “M1.Ev1,M1.Ev2, . . . ,Mp.Evq”. Any guard of “M1.Ev1,M1.Ev2, . . . ,Mp.Evq”,
whether an ANY guard or an INIT guard, is created as the conjunction of the corresponding guards
of M1.Ev1,M1.Ev2, . . . ,Mp.Evq, with occurrences of parameter names replaced suitably. Similarly for
COMPLY clauses. The actions of “M1.Ev1,M1.Ev2, . . . ,Mp.Evq”, whether mode actions or pliant ac-
tions, consist of just the union of the sets of actions of theM1.Ev1,M1.Ev2, . . . ,Mp.Evq, with occurrences
of parameter names replaced suitably.

Having constructed the event named “M1.Ev1,M1.Ev2, . . . ,Mp.Evq”, if EvClst consisted of clusters
of pliant events, we next do the following in all possible ways. Regarding an overline as additional lexical
element, we construct the event name “M1.Ev1,M1.Ev2, . . . ,Mp.Evq” where the overlined event names
are all events belonging to some (but not all) of the event clusters in EvClst. If EvClst contains only one
cluster this construction is null. For each event name thus constructed, we give it a body identical to that
of “M1.Ev1,M1.Ev2, . . . ,Mp.Evq” except that the INIT guards of the overlined contributing events are
removed (i.e. set to true).

We will assume that “M1.INITIALISATION,M1.INITIALISATION, . . . ,Mp.INITIALISATION” is the
INITIALISATION ofM , where the list of initialisations includes all the initialisations of all the machines
and interfaces of P I , thus completing the construction of the events ofM .

Finally, we let M SEE all the CONTEXTs seen by any of the constituents of P I . Since we have
assumed CONTEXTs do not contain inconsistent declarations, and do not mention state variables, they
are not subject to renaming, and so may be taken verbatim.
Definition 11.1. Let P be a project, P I be the instantiated project, and M the machine constructed
above. M is called an associated single machine of P (and of P I ).
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We say an associated single machine, not the associated single machine, since we do not regard “ ” as a
fixed global static relation, but rather, as a sufficiently injective relation constructed ad hoc per project.

Theorem 11.2. Let P be a project, P I be its instantiation, andM an associated single machine. Up to
the renaming defined by “ ”, every system trace of P is a system trace ofM .

Proof: Because we only evaluated “ ” on fully hierarchical arguments (i.e. arguments that —according to
the name space conventions defined in Section 3.1— contained sufficient data to disambiguate potential
name clashes arising from name coincidences in local name spaces), the assumed sufficient injectivity of
“ ” ensures no inadvertent clashes occur inM .10

It remains to check that every system trace of P corresponds to a system trace ofM . We proceed by
induction. Evidently the initial states of P andM are the same up to the renaming of the initialisations.
For the inductive step, we assume the states of P andM are the same after N steps. Then there are two
cases: for mode event steps and for pliant event steps.

Suppose P schedules a number of mode event clusters in step [12] of the semantics, consisting of
events, say M1.Ev1,M1.Ev2, . . . ,Mp.Evq. Then it is clear that the event “M1.Ev1,M1.Ev2, . . . ,Mp.Evq” of
M is similarly schedulable. And since the states of P and M are the same, the same state change is
possible in both P andM , completing the inductive step.

Suppose P schedules a number of pliant event clusters in step [8] of the semantics, consisting of
events, say M1.Ev1,M1.Ev2, . . . ,Mp.Evq, where some of these events belong to PliEvENclst and some to
PliEvCTclst. Then it is clear that the event “M1.Ev1,M1.Ev2, . . . ,Mp.Evq” of M (where the overlined
event names correspond exactly to the events in the clusters in PliEvCTclst), is similarly schedulable.
And since the states of P and M are the same, the same state change is possible in both P and M ,
completing the inductive step. "

Note that we do not attempt to prove an equivalence between the semantics of P andM . The scheduling
policy ofM (i.e. any enabled event can run) is too liberal to restrict the behaviour to just that of P . To
get an equivalence, we would have to introduce suitable priorities into the scheduling policy in order to
prevent undesirable scheduling choices.

Definition 11.3. A Hybrid Event-B project P is said to be non-void iff its semantics is not VOID, i.e. its
set of system traces S ̸= /0. It is said to be correct iff it is non-void, and also, during the construction of
its semantics, no ABORT is ever encountered.

Theorem 11.4. Let P be a project, P I be its instantiation, and M an associated single machine. Then
P is correct ifM is correct (in the single machine sense of Definition 7.1 of PaperI).11

Proof: Evident, from the fact that if no system trace construction attempt of M ever encounters an
ABORT, then the subset of those attempts corresponding to P also doesn’t. "

Definition 11.5. A Hybrid Event-B project PR correctly refines a Hybrid Event-B project P iff for every
system trace SR of PR there is a system trace S of P such that:

(i) If SR occupies the time interval [t0 . . . tFINR), then S occupies a time interval [t0 . . . tFIN), where
tFINR ≤ tFIN.

(ii) For each t in [t0 . . . tFINR), all the invariants hold.
(iii) At each occurrence of a mode event in S there is an occurrence of a mode event in SR.

10E.g. even if Ev is an event name in both machine M1 and machine M2, M1.Ev andM2.Ev do not clash, and thus neither do
“M1.Ev” and “M2.Ev”.
11The single machine Definition 7.1 of PaperI is like Definition 11.3, with the substitution of ‘machine’ for ‘project’.
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A brief inspection shows that Definition 11.5 of a correct refinement for projects is identical to the defi-
nition of a correct refinement for single machines from PaperI, with the obvious substitution of ‘project’
for ‘machine’. This is made possible by the fact that in both cases it is the set of system traces that is the
key concept.

12. Correctness

In this section we consider how the correctness of a multi-machine system can be safely established
by discharging a collection of statically derivable proof obligations (POs) — the objective of these is to
enable us to conclude statically, that runtime errors do not occur. In addressing this goal there is always
a tension between the strength of the assumptions made, and the effort expended in proving the relevant
correctness properties. We start by summarising the single machine situation.

12.1. Single Machine POs, and Associated Single Machines
In Figs. 19-21, we collect the POs relevant to a single Hybrid Event-B machine and its refinement

that were established in PaperI (where full details can be found). We briefly review them now.
Fig. 19 has the POs that establish soundness of an individual machine. Init/FIS (PaperI (11)) proves

the feasibility of initialisation; Init/INV (PaperI (12)) shows that initialisation establishes the invariants.
MoEv/FIS (PaperI (13)) is traditional mode event feasibility, i.e. there is an after-state reachable from
the before-state. PliEv/FIS (PaperI (14)) is pliant event feasibility, i.e. there is a time-indexed family of
after-states given by SOL, satisfying the SOLVE clause and the BDApred clause. Optionally (heavy [ ][ ][ ]
brackets) it asks that the duration of the solution is greater than a Zeno constant. MoEv/INV (PaperI
(15)) is traditional mode event invariant preservation. PliEv/INV (PaperI (16)) is invariant preservation
for pliant events, demanding that this applies until the preemption time defined using TRM, this in turn
being calculated using the disjunction of mode event guards.12 MoPli/WFor, well-formedness (PaperI
(17)), controls the handover from mode to pliant events: if a mode event makes a valid step, it disables
all mode events and enables some pliant event. PliMo/WFor (PaperI (18)) does the converse: if a pliant
event runs for a MAXIMAL time during which no mode event is enabled, then (assuming it is not a FINAL
event), the termination time must be WELLDEFined and the state values then must enable a mode event.

Figs. 20 and 21 collect the POs that confirm soundness of a refinement. Init/FISR (PaperI (20)) is
feasibility of refined intialisation, while Init/INVR (PaperI (21)) demands that initalisation establishes
the joint invariant K (for a suitable abstract counterpart value). MoEv/FISR (PaperI (22)) checks feasi-
bility of a refining mode event, in the presence of a suitable abstract counterpart value. MoEv/GRDR
(PaperI (23)) is mode guard strengthening. MoEv/INVR (PaperI (24)) is conventional simulation for
mode events. The next three POs, MoEv/FISRW, MoEv/GRDRW and MoEv/INVRW (PaperI (25)-
(27)), redo the work of the previous three —with the help of a witness relationW that is able to supply
the existential witnesses required by the original versions— provided the witness relationW itself is fea-
sible (MoEv/FISRW). MoEv/NewR (PaperI (28)) is the simplified invariant preservation PO when new
refining mode events refine ‘skip’, and MoEv/NewRV (PaperI (29)) demands that such new mode events
decrease a VARIANT function V . MoEv/RelDLF (PaperI (35)) is mode event relative deadlock freedom:
if one or more of the abstract mode events is enabled, then at least one refining mode event is enabled.

Then come the pliant events. PliEv/FISR (PaperI (30)) is feasibility of refining pliant events, in the
presence of suitable abstract corresponding values. PliEv/GRDR (PaperI (31)) is pliant guard strengthen-
ing, including the optional removal of checking abstract INIT guards (the PliEvCTclst case). PliEv/INVR
(PaperI (32)) is the pliant simulation condition, ensuring a time-parameterised family of simulations at

12N. B. TRM is omitted in the case of FINAL pliant events.

33



Init/FIS ∃u′ • InitA(u′)
Init/INV InitA(u′) ⇒ I(u′)
MoEv/FIS I(u)∧grdMoEvA(u, i?, l) ⇒ (∃u′,o!•BApredMoEvA(u, i?, l,o!,u′))
PliEv/FIS I(u( L))∧ ivPliEvA(u( L))∧grdPliEvA(u( L))

⇒ (∃ R > L • [[[ ( R− L ≥ δZenoPliEvA)∧ ]]] (∀ L ≤ t < R • (∃u(t), i?(t), l(t),o!(t) •
BDApredPliEvA(u(t), i?(t), l(t),o!(t),t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t),t))))

MoEv/INV I(u)∧grdMoEvA(u, i?, l)∧BApredMoEvA(u, i?, l,o!,u′) ⇒ I(u′)
PliEv/INV I(u( L))∧ ivPliEvA(u( L))∧grdPliEvA(u( L))∧ (∃ R > L • TRM( R)∧ (∀ L ≤ t < R,

u(t), i?(t), l(t),o!(t)•BDApredPliEvA(u(t), i?(t), l(t),o!(t),t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t),t)))
⇒ (∀ L ≤ t < R • I(u(t)))

MoPli/WFor ∃u0, i0?, l0,o0!• I(u0)∧grdMoEvA(u0, i0?, l0)∧BApredMoEvA(u0, i0?, l0,o0!,u)∧ I(u)
⇒ ¬ [ ∃l •grdMoEvA1(u, l)∨grdMoEvA2(u, l) . . .grdMoEvAN(u, l) ]∧

[ (ivPliEvA1(u)∧grdPliEvA1(u))∨ (ivPliEvA2(u)∧grdPliEvA2(u))∨ . . .∨

(ivPliEvAM(u)∧grdPliEvAM(u)) ]

PliMo/WFor I(u( L))∧ ivPliEvA(u( L))∧grdPliEvA(u( L))∧ (∃ R > L • (∀ L ≤ t < R,u(t), i?(t), l(t),o!(t) •
BDApredPliEvA(u(t), i?(t), l(t),o!(t),t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t),t)∧MAXIMAL( R)∧

¬ [ ∃i?, l •grdMoEvA1(u(t), i?, l)∨grdMoEvA2(u(t), i?, l)∨ . . .∨grdMoEvAN(u(t), i?, l) ]))

⇒ WELLDEF( R)∧ [ ∃i?, l •grdMoEvA1(
(((−−−→
u( R)

)))
, i?, l)∨grdMoEvA2(

(((−−−→
u( R)

)))
, i?, l)∨ . . .∨

grdMoEvAN(
(((−−−→
u( R)

)))
, i?, l) ]

Figure 19: Single machine soundness POs from PaperI.

individual moments of time. PliEv/FISRW (PaperI (33)) and PliEv/INVRW (PaperI (34)) do the same
job as PliEv/FISR and PliEv/INVR, but with the help of a time-dependent witness relationW . Note that
there is no PliEv/GRDRW, since the guards of pliant events cannot depend on inputs (so that there is no
existential quantification in PliEv/GRDR). Finally there is PliEv/RelDLF (PaperI (36)), essentially, the
same as its relative deadlock freedom mode counterpart.

Theorem 9.1 of PaperI assures us that a single machine is correct if it satisfies the POs of Fig. 19.
Accordingly we can conclude:

Theorem 12.1. If an associated single machine M of a multi-machine project P satisfies the POs of
Fig. 19 (interpreted as concerningM ), then P is correct in the sense of Definition 11.3.

Proof: Since the POs guarantee correctness of any single machine (including the associated single ma-
chine of the project), and the associated single machine’s system traces are a superset of the system traces
of the multi-machine project, the latter is correct too. "

Theorem 12.2. Suppose project PR is a syntactic refinement of project P — in the sense that it is con-
nected syntactically to P in the way expected for a refinement, and also obeys the restrictions described
in Section 5 for refinements of projects. Suppose M R is an associated single machine of PR and the
refinement POs of Figs. 20 and 21 hold betweenM (the associated single machine of P ) andM R. Then
PR is a correct refinement of P .

Proof: Provided the POs hold forM andM R, Theorem 9.2 of PaperI assures us thatM R refinesM in
the sense of Definition 8.1 of PaperI. This means that: the abstract system trace’s temporal duration is at
least as long as the concrete one’s; that all the invariants in both systems hold throughout the common
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Init/FISR ∃w′ • InitC(w′)

Init/INVR InitC(w′) ⇒ (∃u′ • InitA(u′)∧K(u′,w′))

MoEv/FISR ∃u•K(u,w)∧grdMoEvC(w, j?,k) ⇒ (∃w′, p!•BApredMoEvC(w, j?,k, p!,w′))

MoEv/GRDR I(u)∧K(u,w)∧grdMoEvC(w, j?,k) ⇒ (∃i?, l •grdMoEvA(u, i?, l))
MoEv/INVR I(u)∧K(u,w)∧grdMoEvC(w, j?,k)∧BApredMoEvC(w, j?,k, p!,w′)

⇒ (∃i?, l,o!,u′ •BApredMoEvA(u, i?, l,o!,u′)∧K(u′,w′))

MoEv/FISRW I(u)∧K(u,w)∧grdMoEvC(w, j?,k)∧BApredMoEvC(w, j?,k, p!,w′)

⇒ (∃i?, l,o!,u′ •W (u, i?, l,o!,u′,w, j?,k, p!,w′))

MoEv/GRDRW I(u)∧K(u,w)∧grdMoEvC(w, j?,k)∧W (u, i?, l,o!,u′,w, j?,k, p!,w′)

⇒ grdMoEvA(u, i?, l)
MoEv/INVRW I(u)∧K(u,w)∧grdMoEvC(w, j?,k)∧BApredMoEvC(w, j?,k, p!,w′)∧W (u, i?, l,o!,u′,w, j?,k, p!,w′)

⇒ BApredMoEvA(u, i?, l,o!,u′)∧K(u′,w′)

MoEv/NewR I(u)∧K(u,w)∧grdNewEvC(w, j?,k)∧BApredNewEvC(w, j?,k, p!,w′) ⇒ K(u,w′)

MoEv/NewRV BApredNewEvC(w, j?,k, p!,w′) ⇒V (w′) <V (w)

MoEv/RelDLF I(u)∧K(u,w)∧ (∃o!, p!,u′,w′ •W (u, i?, l,o!,u′,w, j?,k, p!,w′))∧

[ grdMoEvA1(u, i?, l)∨grdMoEvA2(u, i?, l)∨ . . .∨grdMoEvAN(u, i?, l) ]

⇒ grdMoEvC1(w, j?,k)∨grdMoEvC2(w, j?,k)∨ . . .∨grdMoEvCM(w, j?,k)

Figure 20: Single machine refinement POs from PaperI: initialisation and mode events. Subscripts A and C indicate abstract
and concrete entities.

part of the durations; and that each abstract mode event occurrence corresponds to a concrete mode event
occurrence.

We proceed by induction, with inductive hypothesis stating that:

Every system trace-so-far SR of PR is a refinement of a system trace-so-far S of P . The durations
of SR and S are equal; the values of all state variables after SR and S satisfy all the invariants;
for each abstract mode event occurrence in S there is a concrete mode event occurrence in SR.

Being obviously true for the initial states, we assume the hypothesis holds for SR up to length N, and
examine extending some SR by one step. This step extends SR to some SR′, by a step of PR. This step
corresponds in an obvious way to a step of M R. That M R step is a refinement of an M step because
the single machine refinement POs hold forM andM R. We must show that theM step can always be
chosen to correspond to a P step.

Suppose the PR step is a mode event step. Mode events in PR and M R (and their runtime steps)
correspond bijectively. The corresponding M R step either refines an explicit M mode step or refines
a skip in M . In the former case, noting that mode events (and their runtime steps) in P and M also
correspond bijectively, we conclude that a step of P exists that re-establishes the inductive hypothesis.
In the latter case, there is no explicitM mode step, and so the same conclusion holds in P , the inductive
hypothesis being easy to re-establish.

Otherwise, the PR step is a pliant event step. It is some combination of pliant event steps (freshly
enabled by the preceding mode step of PR), and of ‘interrupt and resume’ steps, these being distributed
among the machines of PR. This combination corresponds to a single step of a singleM R event via the
“ ” construction, which offers the correct combination as one of the options in the construction. In turn,
this step is a refinement of anM step, because the POs hold.

Because the restrictions described in Section 5 hold, the joint invariants of theM toM R refinement
decompose into a conjunction of separate joint invariants for each pair of corresponding interfaces or
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PliEv/FISR (∃u( L)• I(u( L))∧K(u( L),w( L))∧ ivPliEvC(w( L))∧grdPliEvC(w( L))

⇒ (∃ R > L • [[[ ( R− L ≥ δZenoPliEvC)∧ ]]] (∀ L < t < R • (∃w(t), j?(t),k(t), p!(t) •
BDApredPliEvC(w(t), j?(t),k(t), p!(t),t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t),t)))))

PliEv/GRDR I(u( L))∧K(u( L),w( L))∧ ivPliEvC(w( L))∧grdPliEvC(w( L))

⇒ [[[ ivPliEvA(u( L))∧ ]]] grdPliEvA(u( L))

PliEv/INVR I(u( L))∧K(u( L),w( L))∧ ivPliEvC(w( L))∧grdPliEvC(w( L)) ⇒
(((

∃ R > L • TRM( R)∧ (∀ L < t < R,w(t), j?(t),k(t), p!(t) •
BDApredPliEvC(w(t), j?(t),k(t), p!(t),t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t),t))

⇒ (∀ L < t < R • (∃u(t), i?(t), l(t),o!(t) •
BDApredPliEvA(u(t), i?(t), l(t),o!(t),t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t),t)∧
K(u(t),w(t))))

)))

PliEv/FISRW I(u( L))∧K(u( L),w( L))∧ ivPliEvC(w( L))∧grdPliEvC(w( L)) ⇒
(((

∃ R > L • TRM( R)∧ (∀ L < t < R,w(t), j?(t),k(t), p!(t) •
BDApredPliEvC(w(t), j?(t),k(t), p!(t),t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t),t))

⇒ (∀ L < t < R • (∃u(t), i?(t), l(t),o!(t)•W (u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t), p!(t))))
)))

PliEv/INVRW I(u( L))∧K(u( L),w( L))∧ ivPliEvC(w( L))∧grdPliEvC(w( L)) ⇒
(((

∃ R > L • TRM( R)∧ (∀ L < t < R,w(t), j?(t),k(t), p!(t) •
BDApredPliEvC(w(t), j?(t),k(t), p!(t),t)∧SOLPliEvC(w(t), j?(t),k(t), p!(t),t)∧
W (u(t), i?(t), l(t),o!(t),w(t), j?(t),k(t), p!(t)))

⇒ (∀ L < t < R •

BDApredPliEvA(u(t), i?(t), l(t),o!(t),t)∧SOLPliEvA(u(t), i?(t), l(t),o!(t),t)∧
K(u(t),w(t))

)))

PliEv/RelDLF I(u)∧K(u( L),w( L))∧ [ (ivPliEvA1(u( L))∧grdPliEvA1(u( L)))∨

(ivPliEvA2(u( L))∧grdPliEvA2(u( L))∨ . . .∨ (ivPliEvAM(u( L))∧grdPliEvAM(u( L)) ]

⇒ [ (ivPliEvC1(w( L))∧grdPliEvC1(w( L)))∨ (ivPliEvC2(w( L))∧grdPliEvC2(w( L))∨ . . .∨

(ivPliEvCN(w( L))∧grdPliEvCN(w( L)) ]

Figure 21: Single machine refinement POs from PaperI: pliant events.

machines of P and PR. This implies that the component of the M R step (whether a freshly enabled
pliant step or a resume step) corresponding to each machine, is separately enabled. In turn this implies
that each such step is enabled in P , completing this case of the inductive step.

We do the same for each possible way of extending any length N system trace-so-far, completing the
inductive step as a whole. "

The above results, while convenient enough conceptually, demand global knowledge, and, in effect,
global reasoning. This defeats the object of decomposing a project into a collection of subsystems since
the task of verification is made worse by the structuring mechanisms. In the next section, we take
measures to reduce the need for global reasoning, by making the structuring mechanisms more precise.

12.2. Verification of Multi-Machine Projects
In this section we extend the single machine formulation of statically derivable correctness to the

multi-machine case, without resorting to the single machine reformulation of a multi-machine project. In
this context, the tension noted above, between strength of assumptions made and effort expended in proof
of soundness based on those assumptions, becomes quite acute. The desire for separate working (for
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development and verification) pulls powerfully against the desire for the widest global system knowledge
(for the most incisive reasoning).

Wewant to base our statically derivable correctness properties as far as possible on the single machine
POs described earlier. Here though, we face a couple of additional difficulties not encountered in the
definition of multi-machine runtime semantics.

The first concerns ensuring correct coverage of variable update. In the runtime semantics, if a choice
of events scheduled for execution results in inconsistent or multiple assignment to the same variable, or
some variable unaccounted for, the run is simply ABORTed. Here, we must prevent such things statically.

The second arises from the presence of synchronisations, and concerns the implicit interaction be-
tween the scoping convention rooted in machines and interfaces, and the scoping implications of syn-
chronisations. This affects how we must reinterpret a single machine PO if we are to reuse it in a
multi-machine context, since the events of a single machine (that might occur individually in a single
machine PO) may be involved in nontrivial synchronisations.

Regarding synchronisations, our comments on their semantics in Sections 7.2 and 8 help. Suppose
a synchronisation Sync combines events M1.Ev1 and M2.Ev2. Then: the ANY scopes of M1.Ev1 and
M2.Ev2 are unified, with the replacement of I/O parameter pairs throughout by a common local parameter
(e.g. replacing a! and a? by a throughout); and the other event attributes are combined by conjunction,
e.g. grdSync ≡ grdM1.Ev1 ∧grdM2.Ev2 ; . . . ; BApredSync ≡ BApredM1.Ev1 ∧BApredM2.Ev2 ; and so on, yielding
the corresponding attributes of the synchronisation Sync. (The same considerations apply irrespective of
whether M1 and M2 are different or not.) This interpretation of the synchronisations declared within a
project can now be made to correspond to the event clusters of the runtime semantics.

We simplify things further by stipulating that pliant events are always unsynchronised. In practice,
pliant behaviour originates, almost exclusively, from some piece of identifiable physical apparatus, most
naturally modelled by encapsulating it in a machine of its own, precluding the need for synchronisation.
Besides, unlike mode events, pliant events do not preempt, so identifying the conditions that initiate them
is relatively easy. If synchronised pliant behaviour is needed, it can be programmed simply by enabling
the relevant pliant events via one or more purposely designed mode synchronisations. This simplification
makes the adaptation of the single machine POs to the multi-machine/synchronisation context easier.

With this understanding of synchronisations, we now consider the interpretation of the single ma-
chine POs within the multi-machine project context in more detail. We leave till later the question of
the extent to which these POs, interpreted in the way we indicate, are sufficient to ensure the correctness
of multi-machine projects. We recall that an event cluster —and therefore a synchronisation, by our
conflation of the two concepts here— may consist of a single event according to Section 11, and (4).

Definition 12.3. Let Sync be a synchronisation in a project P .
(i) A machine M ∈ P is relevant to Sync iff it contains an event of Sync.
(ii) An interface I ∈ P is relevant to Sync iff some machine M relevant to Sync CONNECTS to or

READS I, or some machine M relevant to Sync CONNECTS to or READS an interface J which
READS or REFERS to I.

(iii) A variable v is relevant to Sync iff it is declared in a machine or interface that is relevant to Sync.
(iv) An invariant Inv is relevant to Sync iff it is declared in a machine or interface that is relevant to

Sync.

Our aim is to ensure that in the multi-machine context, each single machine PO is reinterpreted in a scope
wide enough to include all machines or interfaces (and in particular, the variable declarations that they
contain), that may be relevant to any synchronisation that includes any event occurring in the original
PO. This done, we investigate the extent to which multi-machine correctness follows.

We start by looking at single machine POs which verify some property of a single event. Reinter-
preting such a PO so that it works for a (single or multi-event) synchronisation Sync, is straightforward.
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In instantiating such a PO we use the synchronisation attributes defined above for Sync instead of the
attributes of a single event, and the scope of the PO in terms of variables and invariants that figure in the
PO becomes restricted to the variables and invariants that occur in the machines and interfaces relevant
to Sync. This approach is sufficient for the POs: Init/FIS, Init/INV, MoEv/FIS, PliEv/FIS, MoEv/INV,
PliEv/INV, MoEv/NewRV, Init/FISR.

The next easiest single machine POs to deal with are those POs that involve a single abstract event
and a single concrete event that refines it (contained in a refining machine). Where there are no pos-
sible nontrivial synchronisations, the normal scoping of the PO (namely just the abstract and concrete
machines containing the events, plus any relevant interfaces), is sufficient. This covers (in particular)
refinement POs for pliant events: PliEv/FISR, PliEv/GRDR, PliEv/INVR, PliEv/FISRW, PliEv/INVRW.

For mode events, subject to nontrivial synchronisations, a potential complication can enter in the
following manner. According to the final remarks in Section 7.2 regarding [!16]–[!17], an abstract syn-
chronisation must be refined to a corresponding concrete synchronisation. This is so that any invariants
that depend on the abstract synchronicity survive at the concrete level. That however, does not prevent
such a concrete synchronisation from containing additional concrete events. In particular, it introduces
the possibility of concrete refining events synchronising with the events of a machine newly introduced
during the refinement step (a very useful design capability). Also there may be additional synchronisa-
tions at the concrete level, that do not correspond to any abstract synchronisation.

The possibility of additional concrete events in a concrete synchronisation leads to the possibility
of additional concrete variables (referred to in this manner below) occurring in the concrete synchro-
nisation, which are not refinements of variables in the abstract synchronisation. This complicates the
determination of appropriate scopes when abstract and concrete synchronisations both appear in a PO.

Returning to the class of POs we are interested in, namely refinement POs for mode events, we note
that each of those POs assumes a property of the concrete event and infers a property of the abstract event.
Reinterpreting them for the multi-machine situation, in which events become synchronisations, we see
that any of the additional concrete variables that we spoke of can occur only in the assumptions, and
being unconnected to any variables occurring in the PO conclusions, do no harm. Their occurrences in
the assumptions are thus implicitly quantified. This covers POs: Init/INVR, MoEv/FISR, MoEv/GRDR,
MoEv/INVR, MoEv/FISRW,MoEv/GRDRW,MoEv/INVRW,MoEv/NewR. Leaving aside trivial cases,
the modified POs appear in (17)–(22) in Section 13 below.

The remaining single machine POs involve multiple occurrences of events in both the assumptions
and conclusions. The easiest to deal with is PliEv/RelDLF, because pliant events are unsynchronised.
Being unsynchronised, there is no possibility of having additional concrete variables. It is thus sufficient
to reinterpret PliEv/RelDLF for multi-machine working in the context of the variables declared in the
abstract and concrete machines and interfaces relevant to the abstract and concrete events (a.k.a. syn-
chronisations) in the single machine PO. Although the manipulations are routine for this PO, to give an
example of the routine case, the PO itself is quoted in (23).

The mode counterpart of the preceding is MoEv/RelDLF. As in the previous case there are multiple
events in the assumptions and conclusions. However, here the situation is the converse of the one for
(17)–(22), in that the concrete synchronisations are in the conclusions of the PO, therefore potentially
mentioning additional concrete variables there. These variables must be existentially quantified. We
avoid the existential quantification itself by employing a witness relation to choose the values of these
additional variables appropriately, depending on the variables in the assumptions, and thus delegating
the choice of values to the application design process. Besides this, each abstract synchronisation in the
PO assumptions may involve a different set of additional machines, leading to a different set of concrete
machines and additional concrete variables. So the argument just made must be iterated across all the
synchronisations in the assumptions, and the results aggregated using one witness relation with a large
number of arguments. The modified PO is (24).
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Two POs remain: MoPli/WFor and PliMo/WFor. These exhibit many of the technical issues that we
have met already. In MoPli/WFor there is a single mode synchronisation in the assumptions, with multi-
ple mode synchronisations in the conclusions. The latter will, in general, introduce additional variables,
not present in the assumptions (though these are not the ‘additional concrete variables’ spoken of above
because only one level of abstraction is involved). Since we are disabling the mode synchronisations
in the conclusions, their additional variables must be universally quantified (i.e. existentially quantified
under the negation). The conclusions also contain pliant events, but since these are unsynchronised, the
relevant variables are those of the machine(s) containing the mode synchronisation in the assumptions
(together with those of any relevant interfaces). There is one further complication. If the synchronisation
in the assumptions is non-trivial, it involves multiple machines, and a pliant event must be enabled in
each of them (to avoid falling foul of step [6] in the formal semantics). Therefore, in the conclusions, the
disjunction of pliant event guards (of the single machine PO) must be remodelled as a conjunction (over
machines) of per-machine disjunctions of the relevant pliant events. The modified PO is (25).

In PliMo/WFor there is a single pliant event in the assumptions. The mode events of the machine con-
taining the pliant event will, in general, participate in different synchronisations, involving different other
machines and different additional variables. The conclusions of the PO contain negative occurrences (of
the guards) of these synchronisations. Their purpose is to ensure that none of the synchronisations is
enabled prior to preemption time. The additional variables in these occurrences must be universally
quantified to achieve this. The PO also contains positive occurrences of these synchronisations. Their
purpose is to ensure that at least one of them is enabled at preemption time. The additional variables in
these occurrences must be existentially quantified. The modified PO is (26).

This completes the coverage of the single machine POs. We saw that the POs that introduced the
greatest additional complexity were the ones that established some aspect of liveness. This is hardly
surprising. It is also evident that due to the greater ambiguity concerning scopes of the various terms
occurring in the POs, the multi-machine versions that we derived give the impression of offering a weaker
approximation to reachability than is the case for the single machine POs.

With the above perspective established, we turn to correctness for multi-machine projects. For sim-
plicity, we will assume without comment that all machine instantiations have been fully evaluated, so
that we don’t need to refer to P I explicitly. This also means that all internal communications inside
mode synchronisations are understood to have been remodelled as shared bound variables. This allows
synchronisations to be seen as the event clusters of the runtime semantics, as noted already.13

Theorem 12.4. Let P be a Hybrid Event-B project. Suppose the following conditions are satisfied.

(i) For every valuation V of all the state variables and every variable v, if events M1.Ev1 and M2.Ev2
both update v (where machines M1 and M2 are distinct), then at most one of M1.Ev1 and M2.Ev2
has its WHERE guard satisfiable in V .

(ii) Pliant events are unsynchronised.
(iii) For every pliant event PliEv, only mode variables declared in the machine that contains PliEv

occur in the WHERE guard of PliEv.
(iv) For every pliant event PliEv, for every pliant transition determined by PliEv, if the pliant transition

becomes infeasible at some R > L, then the state variable valuation at R enables a mode event
in the machine that contains PliEv.

Suppose further that for every machine M ∈ P , the single machine POs listed in Section 12.1, and
reinterpreted as described earlier and in Section 13, hold. Then P is correct according to Definition
11.3.

13In principle, event clusters could even be defined dynamically. Nothing in the runtime semantics requires a static definition.
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Proof: Firstly, we assume as part of event feasibility, that no event or synchronisation (whether mode or
pliant) has an inconsistent specification for the update of any variable. Then, it is sufficient to go through
the steps of the formal semantics in Section 11 for the project P , and to confirm that the static properties
assumed are sufficient to ensure that the ABORT cases are never encountered. Once this process loops
back, we have, in essence, an inductive proof of the theorem.

Regarding step [2], we assume that initialisation assigns values to all variables, consistent with the
invariants.

Next, the mode-to-pliant well-formedness PO MoPli/WFor applied to each machine, guarantees that
for each machine, no mode event without inputs is enabled, passing step [3]; it also guarantees that for
each machine, there is an enabled pliant event determining its subsequent behaviour, passing step [4].
Assumption (i) ensures that for each variable, and thus for each pliant variable, only one machine can
have enabled events that govern that variable. Since only one such event can be scheduled per machine,
conflicting updates to any variable in events of different machines are impossible, ensuring that step [4.1]
is passed.

Since we are at the start of the system run, PliEvCT = /0 in step [5], and since all variables have an
acceptable initial value and every pliant variable is governed by some pliant event selected in step [4],
step [6] is also passed.

Pliant event feasibility, PliEv/FIS, ensures that in step [7], some nonempty interval (t0 . . . tMAX) can
be found, leading to a choice of explicit solution for some maximal tMAX in [8]. Assumption (i) ensures
that in step [8.1] a unique MchPliEv(pli, t) exists, since only one machine can update any pliant variable,
and step [8.2] is unproblematic. The invariant preservation PO for pliant events PliEv/INV, ensures that
in step [9], if there is no preemption point during the pliant behaviour, then the execution continues
indefinitely or becomes infeasible (giving finite termination at tMAX in the latter case — which, although
permitted by the runtime semantics, is actually prevented by assumption (iv)), so step [9] is passed
unproblematically.

Otherwise, there is a preemption point, chosen according to the detailed criteria in [10]. The invariant
preservation PO for pliant events PliEv/INV, ensures that step [11] is passed unproblematically.

Now, the next cycle of execution starts. After reindexing, [12], in step [12.1], assumption (i) ensures
that for each variable, only one machine (for an event) or set of machines (for a synchronisation) can have
enabled events that update that variable. Since only one such event or synchronisation can be scheduled
per machine (or set of machines), conflicting updates to any variable in events of different machines
are impossible, passing step [12.1]. The mode event invariant preservation PO MoEv/INV, ensures that
step [12.2] can be passed. For step [12.3], we know that the invariants hold up to, but not necessarily
including tη. Since the semantics of Hybrid Event-B is restricted to piecewise absolutely continuous
behaviours in which the left and right limits exist for all times, the needed left limit exists and is finite.
The closure interpretation of the invariants (if needed, see PaperI) ensures that this limit preserves the
invariants. Step [12.4] cleans up the time interval (tη . . . tMAX) when necessary.

The proof then continues as from the third paragraph above, though it deals with a generic tη in-
stead of t0. The one difference between the first pliant transition and those encountered later, is that for
subsequent pliant transitions, the preceding non-INITIALISATION mode transitions need not involve all
of the machines M1 . . .Mn. So there are two cases: machines MEN , that experience a mode transition,
and machines MCT , that do not experience a mode transition. For the latter, an ‘interrupt and resume’
behaviour should take place.

For MEN, the argument is as above. Some mode event or synchronisation involving MEN was exe-
cuted, and the mode-to-pliant well-formedness PO MoPli/WFor, applied to each such machine, guaran-
tees that there is an enabled pliant event, MEN .PliEvNEXT say, determining its subsequent behaviour.

For MCT , we need to check the entry conditions in steps [5] and [6] hold in order to allow the
‘interrupt and resume’, and then to ensure the resumption actually takes place.

For step [5], by assumption (ii), MCT was pursuing a pliant event of its own at tη, say MCT .PliEvCT .
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By assumption (iii), every mode variable in the WHERE guard of PliEvCT is declared in MCT , beyond
the reach of a mode event in any machine other than MCT to update. Since MCT did not experience a
mode transition, each such variable therefore continues to have the value it had immediately preceding
tη, giving [5].(4), from which we conclude that the WHERE guard of PliEvCT is true at tη. Knowing
that, we can choose to impose [5].(3) at tη in MCT provided that PliEvCT is in a position to continue. To
establish the latter fact, suppose that PliEvCT , at tη, reached left-limit values

−−−−−→
vars(tη) for the variables it

updates, which made PliEvCT infeasible beyond tη. Then by assumption (iv), a mode event would have
been enabled and would have executed at tη in MCT . Since we assumed that that did not happen, the
values

−−−−−→
vars(tη) are in the interior of the feasible set (of variable valuations) of PliEvCT . Furthermore, the

mode event at tη did not update any variable updated by PliEvCT , since to do so would have contravened
assumption (i). So we deduce that

−−−−−→
vars(tη) = vars(tη), and since these values are in the interior of the

feasible set of PliEvCT , PliEvCT is able to continue.
So MEN .PliEvNEXT and MCT .PliEvCT are both separately enabled to continue pliant behaviour after

the mode transition. If they both wished to update the same variable v, it would contradict assumption (i)
again, from which we deduce that [5].(2) holds. Since each pliant event is unsynchronised, it constitutes
a pliant event cluster by itself, and thus, since all machines that did not experience the mode transition
have (by induction hypothesis) a pliant event that is running, all such event clusters constitute a set of
‘interrupt and resume’ event clusters that is maximal, giving [5].(1). For [6], we observe that if any pliant
variable is not explicitly mentioned in any of the pliant events that are about to execute (whether ‘new’
or ‘resume’ events), it is covered by the default COMPLY Invariants provision described in PaperI.

Thus we have consistent feasible behaviour specified for all the pliant variables, and the execution
can resume at point [8]. We are done. "

We extend this result to cover refinement.

Theorem 12.5. Let P and PR be Hybrid Event-B projects. Suppose PR is a syntactic refinement of
project P — in the sense that it is connected syntactically to P in the way expected for a refinement, and
also obeys the restrictions described in Section 5 for refinements of projects. Suppose the conditions of
Theorem 12.4 are satisfied for both projects, and additionally, the refinement POs of Section 12.1, rein-
terpreted as described earlier and in Section 13, hold. Then PR is a correct refinement of P according
to Definition 11.5.

Proof: As for single machines, the claim of the theorem states that: the abstract system trace’s temporal
duration is at least as long as the concrete one’s; that all the invariants in both systems hold throughout the
common part of the durations; and that each abstract mode event occurrence corresponds to a concrete
mode event occurrence.

The proof proceeds by induction. So let SR be a system trace of PR, given by a collection of time
dependent valuations y(t) for all the variables of all the machines over an interval [t0 . . . tFINR). We show
that we can simulate SR by a system trace S of P , such that all the invariants of both projects hold during
[t0 . . . tFINR), and at each occurrence of a mode event in S, there is an occurrence of a mode event in SR.
We reuse arguments in the proof of Theorem 12.4 whenever we can.

System trace SR starts with an initial state satisfying PR’s invariants, and the initialisation refinement
POs, applied per machine, ensure a corresponding P initial state satisfying P ’s invariants. Thereafter,
pliant transitions and mode transitions alternate in SR.

The process starts with a pliant transition. By the pliant refinement feasibility and guard strengthen-
ing POs, PliEv/FISR and PliEv/GRDR, applied per machine, a pliant transition is enabled and feasible,
and thus starts in each machine, creating a pliant transition in S. The starting conditions of the pliant
transitions in S and SR satisfy the assumptions of the refinement invariant preservation PO PliEv/INVR,
on a per machine basis. Therefore, we can deduce that as long as all the machines (concrete and abstract)

41



are executing their pliant transitions, the invariants are maintained by S, provided they are maintained by
SR. (We know the latter since SR is a system trace of PR, by Theorem 12.4.)

Suppose the next preemption time in SR is tnext . For the sake of a contradiction suppose also that
the abstract system trace S reaches a state in which some mode event is enabled, sooner than this
next SR preemption time (at time tsoon < tnext say). Then the mode event relative deadlock freedom
PO MoEv/RelDLF would be applicable at tsoon, and thus there would be one or more mode events that
were enabled at tsoon in SR. These would cause a preemption in SR at tsoon < tnext, and since there is
no such preemption, the supposition that S reached an abstract preempting state is incorrect. So the pli-
ant transition continues in S until tnext. (N. B. We assume that the witness relation in MoEv/RelDLF is
comprehensive enough that it covers all correct possibilities for inference of concrete enabledness from
abstract enabledness.)

When a pliant transition is preempted in SR, the argument of Theorem 12.4 shows that the preemption
is correctly handled in SR— one or more mode events (belonging to one or more synchronisations) are
enabled, and execute, preserving the invariants. To each of the ‘old’ mode events among them, the mode
event guard strengthening PO MoEv/GRDR is applicable. This ensures that a corresponding abstract
mode event is enabled and executes via MoEv/FISR, and preserves the invariants via MoEv/INVR. Each
‘new’ mode event causes no change, i.e. a ‘notional skip’, at the abstract level, via MoEv/NewR. The
argument justifying the application of these on a per-abstract/concrete-machine-pair basis depends on
the independence of the retrieve relations for distinct abstract/concrete machine pairs and for distinct
abstract/concrete interface pairs, guaranteed by conditions [!16] and [!17] of Section 5.

After the concrete mode transition, there is a concrete pliant transition in SR. This consists of one
pliant transition per machine, since pliant events are unsynchronised. For each of them, the pliant event
guard strengthening PO PliEv/GRDR ensures that a pliant event is enabled at the abstract level in each
machine, which can then execute. Again, the argument can be carried through on a per-abstract/concrete-
machine-pair basis because of conditions [!16] and [!17] in Section 5. The enabledness of the abstract
pliant event for machines simulating a ‘new’ concrete event (i.e. executing a ‘notional skip’ at the abstract
level), ensures that the preceding pliant transition did not become disabled precisely at the moment of
preemption in such machines. The argument now continues as previously for the abstract and concrete
pliant events, showing that the whole of the concrete system trace SR can be simulated in the manner
stated. The claims of the theorem are now easy to prove. "

In the above, for clarity, we restricted to discussing state variables, ignoring the impact of I/O parameters.
In the presence of such parameters, the proofs can be extended to arrive at similar conclusions, albeit
that additional assumptions are needed, concerning the availability of inputs, when they are required by
system traces.

12.3. Type II Invariants and their Verification
The proofs in the previous section relied on a machine’s access to both interfaces of a tIIi in order

to prove such invariants, since no distinction is made there between tIIi’s and other invariants. In this
section we optimise this by re-examining the cases where an event only needs to access either the local
or the remote variables of a tIIi, in order to increase possibilities for separate working during verification.

Consider a tIIi, which we refer to as (∗) ≡U(u) ⇒ V (v), where variables u and v belong to differ-
ent interfaces. We start by considering mode events. In that context, we generically prime after-state
expressions. Thus (∗′) denotes U(u′) ⇒ V (v′), and so on. We write the mode events of interest in the
form MoEvXYZ, and their guards in the form grdXYZ where the meta-symbols X ,Y,Z belong to {U,V}.
This notation means, for example, that the guard gUVV of the eventMoEvUVV mentions the variables u,v
(indicated by the XY symbols in the subscript) and the before-after predicate BApredUVV of MoEvUVV
updates variable v (indicated by the Z symbol). The shorter notation MoEvUV means that the guard
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mentions only u, and the update is to v alone. We assume that for events MoEvUU and MoEvVV, ver-
ification would be restricted to variables u and v of the (∗) invariant respectively, requiring access only
to the interface containing those variables. For events of the form MoEvUVU and MoEvUVV though,
both parts of (∗) would participate in the verification process equally, requiring access to both the u and
v interfaces, since both sets of variables are read. In the following, we suppress the I/O variables from
the BApred terms for clarity.

Theorem 12.6. Suppose a set of machines and interfaces satisfying [!1]–[!15] is given. Suppose that
initial states satisfy the invariants, and suppose that all events preserve all type I invariants declared
locally and in interfaces. Suppose also that any events that update both families of variables of type II
invariants also preserve all invariants. Then the following conditions for mode events are sufficient to
preserve type II invariants.

MoEvUVU/MoEvVU : grdUVU(u,v)∧¬U(u)∧BApredUVU(u,u′) ⇒ ¬U(u′) (9)
MoEvUU : grdUU(u)∧¬U(u)∧BApredUU(u,u′) ⇒ ¬U(u′) (10)

MoEvUVV/MoEvUV : grdUVV(u,v)∧V (v)∧BApredUVV(v,v′) ⇒V (v′) (11)
MoEvVV : grdVV(v)∧V (v) ⇒ BApredVV(v,v′) ⇒V (v′) (12)

Proof: We focus on the inductive step of an inductive invariant preservation argument, assuming the
initial states satisfy all the invariants, that we are dealing with a mode transition of the inductive argument,
and that in the first part of the inductive step of the argument, all the tIi’s have been taken care of. We
also assume that this first part covers any events that update both families of variables of any tIIi (e.g. if
the relevant machine connects to both interfaces). Thus the only remaining events that might violate
the invariants are events that involve one or other family of variables that occur in a tIIi such as (∗),
i.e. events of the kind mentioned. We exhibit the argument for MoEvUVU, treating the other cases more
briefly.

Let u,v be (the relevant part of) a state that is reached (by executions that are covered by the inductive-
proof-so-far) and suppose u,v satisfies the invariants. Suppose MoEvUVU is enabled and is executed.
Evidently grdUVU(u,v) holds in the before-state. IfV (v) holds in the before-state then we are done, since
only u is updated by MoEvUVU, and thus V (v′) ⇔ V (v), whence we get (∗′) immediately. Otherwise,
¬V (v) holds, whence grdUVU(u,v)∧¬V (v) is true, whence we get grdUVU(u,v)∧¬U(u) by contraposi-
tion of (∗). Therefore grdUVU(u,v)∧¬U(u)∧BApredUVU(u,u′) holds, the hypothesis (9). Assuming (9)
therefore, we conclude ¬U(u′), which is enough for (∗′).

ForMoEvVU, the argument is the same except that grdVU just depends on v.
For the MoEvUU case, suppose MoEvUU is enabled. Then grdUU depends only on u, and based on

(10), we can reuse the previous argument from the grdUU ∧¬U point.
For the MoEvUVV case, suppose MoEvUVV is enabled. If U(u) does not hold then we are done,

since only v is updated. Otherwise, U(u) holds and we conclude, in turn, grdUVV ∧U , grdUVV ∧V , and
grdUVV ∧V ∧BApredUVV , the hypothesis of (11). Assuming (11), we conclude V (v′), whence (∗′). There
is the evident simplification for MoEvUV .

For the MoEvVV case, suppose MoEvVV is enabled. Then the above argument is again easily
adapted, relying on (12). This completes all the cases, and the inductive step of the invariant preser-
vation argument. "

Of course, examining the above proof shows that we only need the hypotheses of the theorem to hold for
reachable states, since only those take part in any run of the system. But reachability is hard to capture
in general, so the weaker formulation is much more suited to static analysis. The same remarks in fact
apply to all argumennts based on statically constructed POs. The implications (9)-(12) thus give a range
of convenient POs to be used in place of MoEv/INV when the right structural conditions obtain.
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We turn to pliant events. The analogue of MoEv/INV is now PliEv/INV. The key observation is
that the temporal coincidence of the before- and after- states in a mode transition is never exploited in
arguments like the proof of Theorem 12.6. Therefore the same arguments can be used in the context of a
pliant transition, with the previous mode before-state corresponding to the initial state of the pliant tran-
sition, and the previous mode after-state corresponding to an arbitrary non-initial state in the execution
of the pliant transition. After all, the system’s invariants hold in the initial state, and are required to hold
for all such non-initial states to establish PliEv/INV. Thus we can conclude the following.

Theorem 12.7. Suppose a set of machines and interfaces satisfying [!1]–[!15] is given. Suppose that
initial states satisfy the invariants, and suppose that all events preserve all type I invariants declared
locally and in interfaces. Suppose also that any events that update both families of variables of type
II invariants also preserve all invariants on reachable states. Then the following conditions for pliant
events are sufficient to preserve type II invariants. In (13)-(16), in keeping with the demands of PliEv/INV,
t ranges over the open interval ( L, R), and we have removed this quantification, and mention of I/O
variables, for clarity.

PliEvUVU/PliEvVU : ivUVU(u( L),v( L))∧grdUVU(u( L),v( L))∧¬U(u( L))∧

BDApredUVU(u( L),u(t))∧SOLUVU(u( L),u(t)) ⇒ ¬U(u(t)) (13)
PliEvUU : ivUU(u( L))∧grdUU(u( L))∧¬U(u( L))∧

BDApredUU(u( L),u(t))∧SOLUU(u( L),u(t)) ⇒ ¬U(u(t)) (14)
PliEvUVV/PliEvUV : ivUVV(u( L),v( L))∧grdUVV(u( L),v( L))∧V (v( L))∧

BDApredUVV(u( L),u(t))∧SOLUVV(u( L),u(t)) ⇒V (v(t)) (15)
PliEvVV : ivVV(v( L))∧grdVV(v( L))∧V (v( L))∧

BDApredVV(v( L),v(t))∧SOLVV(v( L),v(t)) ⇒V (v(t)) (16)

13. Proof Obligations

In this section we present in detail the modified and additional POs discussed in the previous section
for the verification of multi-machine projects. For clarity, we refer to events as Mch.Ev, quoting a
machine identifier to enable different machines to be distinguished. Where different synchronisations
need to be distinguished, we use a synchronisation identifier: Sync.Ev; and where we need both we can
use both: Sync.Mch.Ev. PO (23) is an example of a routine PO, where no additional variables of any
kind need to be considered, other cases of which are omitted.

We start with the refinement POs for mode events. The easiest is modified refinement feasibility
MoEv/FISR, since the corresponding abstract event does not figure in the PO. In (17) we introduce
notational conventions that will be maintained in the rest of this section.

∃u;x•K(u,w ;x,z)∧grdSyncC.MoEvC(w, j?,k;z)
⇒ (∃w′, p!;z′ •BApredSyncC.MoEvC(w, j?,k, p!,w′;z,z′)) (17)

In (17), compared with its single machine precursor, aside from the renaming of the event from MoEvC
to SyncC.MoEvC, we have the additional state variables z (with after-values z′). These belong to any
enlargement of the concrete synchronisation SyncC that extends the set of events that SyncC contains
beyond the set of refinements of the events in the abstract synchronisation SyncA that it refines according
to the conditions in [!16]–[!17]. The additional state variables z may come with additional parameters
for the enlarged synchronisation, but we do not write these separately, in order to save clutter. The
variables z are separated from the earlier variables by a semicolon, to highlight their different origin.
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Also, they will have counterparts x in the abstract project (mentioned in the retrieve relation K in (17)),
unless z belongs to machine(s) freshly introduced during the refinement.

The next PO is the modified guard strengthening PO, MoEv/GRDR. With the notational conventions
established, this becomes:

I(u)∧K(u,w;x,z)∧grdSyncC.MoEvC (w, j?,k;z)
⇒ (∃i?, l •grdSyncA.MoEvA(u, i?, l)) (18)

In (18), although the abstract counterpart x of the concrete additional variable z appears in K, it does not
appear in data for SyncA.MoEvA since the abstract events in SyncA.MoEvA do not involve x.

The modification of invariant preservation MoEv/INVR now follows straightforwardly:

I(u)∧K(u,w;x,z)∧grdSyncC.MoEvC (w, j?,k;z)∧BApredSyncC.MoEvC(w, j?,k, p!,w′;z,z′)
⇒ (∃i?, l,o!,u′ •BApredSyncA.MoEvA(u, i?, l,o!,u′)∧K(u′,w′;x,z′)) (19)

The next three POs just reprise the preceding in the presence of a witness function and are given
without further comment:

I(u)∧K(u,w;x,z)∧grdSyncC.MoEvC (w, j?,k;z)∧BApredSyncC.MoEvC(w, j?,k, p!,w′;z,z′)
⇒ (∃i?, l,o!,u′ •W (u, i?, l,o!,u′ ,w, j?,k, p!,w′;z,z′)) (20)

I(u)∧K(u,w;x,z)∧grdSyncC.MoEvC (w, j?,k;z)∧W (u, i?, l,o!,u′ ,w, j?,k, p!,w′;z,z′)
⇒ grdSyncA.MoEvA(u, i?, l) (21)

I(u)∧K(u,w;x,z)∧grdSyncC.MoEvC (w, j?,k;z)∧BApredSyncC.MoEvC(w, j?,k, p!,w′;z,z′)∧
W (u, i?, l,o!,u′ ,w, j?,k, p!,w′;z,z′)

⇒ BApredSyncA.MoEvA(u, i?, l,o!,u′)∧K(u′,w′;x,z′) (22)

We examine the relative deadlock freedom POs next. For pliant events, which are unsynchronised,
we merely prefix each event identifier with the relevant machine name, MchA or MchC, where the latter
refines the former:

I(u)∧K(u( L),w( L))∧

[ (ivMchA.PliEvA1(u( L))∧grdMchA.PliEvA1(u( L)))∨

(ivMchA.PliEvA2(u( L))∧grdMchA.PliEvA2(u( L))∨ . . .∨

(ivMchA.PliEvAM(u( L))∧grdMchA.PliEvAM(u( L)) ]

⇒ [ (ivMchC.PliEvC1(w( L))∧grdMchC.PliEvC1(w( L)))∨

(ivMchC.PliEvC2(w( L))∧grdMchC.PliEvC2(w( L))∨ . . .∨

(ivMchC.PliEvCN (w( L))∧grdMchC.PliEvCN (w( L)) ] (23)

The more interesting case is for mode event relative deadlock freedom. As explained in Section 12.2,
each abstract event might belong to a different synchronisation, leading to different additional variables
at the concrete level. The witness relation takes care of connecting all the appropriate values together:

I(u)∧K(u,w)∧ (∃o!, p!,u′,w′ •W (u, i?, l,o!,u′ ,w, j?,k, p!,w′;z1,z2 . . . zM))∧

[ grdSyncA1.MchA.MoEvA1(u, i?, l)∨grdSyncA2.MchA.MoEvA2(u, i?, l)∨ . . .∨

grdSyncAN.MchA.MoEvAN (u, i?, l) ]

⇒ grdSyncC1.MchC.MoEvC1 (w, j?,k;z1)∨grdSyncC2.MchC.MoEvC2(w, j?,k;z2)∨ . . .∨

grdSyncCM.MchC.MoEvCM (w, j?,k;zM) (24)
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Last, we turn to the well formedness POs. In MoPli/WFor (25), we suppose that there are K machines
involved in the synchronisation in the assumptions, Sync.MoEv. We suppose that there are N machines
involved in the synchronisations to be disabled at the value u, these being all the machines that in one
of their synchronisations, include a mode event from one of the machines needed for Sync.MoEv. The
variables z1 . . . zN are the variables belonging to those N machines (and relevant interfaces) that are not
involved in the synchronisation Sync.MoEv itself. We suppose that the K machines of Sync.MoEv have
M1,M2 . . .MK pliant events respectively that need to be enabled on an at-least-one-per-machine basis.

∃u0, i0?, l0,o0!• I(u0)∧grdSync.MoEv(u0, i0?, l0)∧BApredSync.MoEv(u0, i0?, l0,o0!,u)∧ I(u)
⇒ ¬ [ ∃l,z1,z2 . . . zN •

grdSync1.MoEv1(u, l,z1)∨grdSync2.MoEv2(u, l,z2)∨ . . .∨grdSyncN.MoEvN (u, l,zN) ]∧

[ (ivMch1.PliEv1(u)∧grdMch1.PliEv1(u))∨ (ivMch1.PliEv2(u)∧grdMch1.PliEv2(u))∨ . . .∨

(ivMch1.PliEvM1 (u)∧grdMch1.PliEvM1 (u)) ]∧

[ (ivMch2.PliEv1(u)∧grdMch2.PliEv1(u))∨ (ivMch2.PliEv2(u)∧grdMch2.PliEv2(u))∨ . . .∨

(ivMch2.PliEvM2 (u)∧grdMch2.PliEvM2 (u)) ]∧ . . .∧

[ (ivMchK.PliEv1(u)∧grdMchK.PliEv1(u))∨ (ivMchK.PliEv2(u)∧grdMchK.PliEv2(u))∨ . . .∨

(ivMchK.PliEvMK (u)∧grdMchK.PliEvMK (u)) ] (25)

In PliMo/WFor (26), since the assumptions involve a single, unsynchronised, pliant event PliEv, it
belongs to a single machine, Mch say. The mode events of Mch may belong to a number of non-trivial
synchronisations, involving a number of variables z1,z2 . . . zN that are not declared inMch or any interface
relevant to PliEv. These figure in the disabling of the synchronisations prior to R and the enabling of at
least one at R.

I(u( L))∧ ivPliEv(u( L))∧grdPliEv(u( L))∧ (∃ R > L • (∀ L ≤ t < R,u(t), i?(t), l(t),o!(t) •
BDApredPliEv(u(t), i?(t), l(t),o!(t), t)∧SOLPliEv(u(t), i?(t), l(t),o!(t), t)∧MAXIMAL( R)∧

¬ [ ∃i?, l,z1,z2 . . . zN •grdSync1.MoEv1(u(t), i?, l,z1)∨grdSync2.MoEv2(u(t), i?, l,z2)∨ . . .∨

grdSyncN.MoEvN (u(t), i?, l,zN ) ]))

⇒ WELLDEF( R)∧ [ ∃i?, l,z1,z2 . . . zN •

grdSync1.MoEv1(
(((−−−→
u( R)

)))
, i?, l)∨grdSync2.MoEv2(

(((−−−→
u( R)

)))
, i?, l)∨ . . .∨

grdSyncN.MoEvN (
(((−−−→
u( R)

)))
, i?, l) ] (26)

Besides the modifications to single machine POs that we have just presented, additional conditions
arise from the verification of multi-machine projects. Theorem 12.4 imposes four conditions that need
to be checked in order that the soundness result follows. We consider them one by one.

Condition (i) says the following. For all variables u of an interface I, for all values of u, for all
event pairs from different machines that are connected to I and that can update u, the conjunction of the
WHERE guards of the pair is false. Writing the lexical assumptions to the left of a turnstile, this yields:

Mch1 ̸=Mch2∧declared in interface(u, Itf ) ⊢ grdMch1.Ev1(u)∧grdMch2.Ev2(u) ⇒ false (27)

A lot can be done to soften the impact of (27). Static and functional assignments of variables to the
machines whose events can update them are very simple to check, and can dramatically simplify the task
of confirming (27).

Condition (ii) states that pliant events are unsynchronised. This imposes a simple lexical/syntactic
condition to check.
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Condition (iii) states that every mode variable in the WHERE guard of any pliant event PliEv is
declared within the same machine as PliEv. This is another simple lexical/syntactic condition to check.

Condition (iv) states that for every pliant event PliEv, for every pliant transition determined by PliEv,
if the pliant transition becomes infeasible at some R > L, then the state variable valuation at R enables
a mode event in the machine that contains PliEv. This can be read as a variation on PliMo/WFor (26),
replacing MAXIMAL( R) with INFEASIBLE( R), which not only asserts that R is maximal, as previously,
but that BDApredPliEv∧SOLPliEv is infeasible beyond R. We do not repeat the PO in full.

And, besides all the above, we must take into account the repercussions of the optimisation of tIIi’s,
illustrated in Theorem 12.6 and Theorem 12.7, where an implementation chooses to use the optimisation.
The impact of the tIIi structure on other POs than the ones discussed in Theorem 12.6 and Theorem 12.7
may be readily inferred from the proofs of those theorems.

14. Conclusions

In the preceding sections, we started by briefly reviewing the Hybrid Event-B formalism for single
machines developed in detail in PaperI, [9], and used the ideas there as a springboard for the design of a
Hybrid Event-B formalism for multiple cooperating machines. These typically arise through the decom-
position of a more complex design, or through the instantiation/composition of existing components into
a desired architecture. Our approach to that design problem was guided by a number of principles.

First and foremost was the need for important invariants to survive any structuring process. To
achieve this, project partitioning is made subordinate to the structure and arrangement of the invariants,
and the hypergraph project architecture pattern gives guidance on how the best partitioning may be ar-
rived at. Acknowledging that the structure and arrangement of invariants is not guaranteed to align with
architectural goals, type II invariants give additional scope for compromising between desired architec-
ture and verified properties. Of course, it is possible that further patterns for invariants might prove
necessary in some cases, but experience with the hypergraph architecture tends to suggest this might not
be so likely. The provision of global invariants in the project file may prove to be all that is needed.

A second guiding consideration was the need for project structure to not introduce any semantic
surprises. Thus the semantics of a multi-machine project should be easily related to the semantics of
a corresponding single machine. In fact the soundness of our semantic definition for multi-machine
projects was established precisely by relating their behaviours to those of associated single machines.

We gave a couple of simple case studies to illustrate the methodology. The first, concerned with
power switching, featured decomposition and refinement, but restricted to mode events. The second
was a decomposed presentation of the European Train Control System case study, originally done as a
single machine in PaperI. We commented that larger case studies, elsewhere, had provided the fuel for
the development of the the hypergraph project architecture pattern.

As noted in Section 11, the semantics of multi-machine projects was a more bureaucratic version of
the single machine case, the increasing complexity coming from the way that multi-machine projects,
with their variables shared via interfaces and synchronisations, could potentially interfere with one an-
other. The main additional issue was the need for different machines to be able to undergo mode events
independently, an unavoidable complication if real world behaviour is to be seriously addressed. This re-
quired some care to arrive at a definition that was compatible enough with the single machine view. This
done, we were able to discuss how the single machine proof obligations, discussed in detail in PaperI,
could be reinterpreted in the multi-machine context, to give a verification strategy for the multi-machine
case, culminating in the simplifications for type II invariants.

All of this has yielded an expressive formal modelling and verification framework for hybrid and
cyberphysical systems. Future work will concentrate on the details of the reasoning facilities needed to
support this framework in an appropriate extension of the Rodin tool system [3, 21, 17].
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