442 research outputs found

    High Order Cell-Centered Lagrangian-Type Finite Volume Schemes with Time-Accurate Local Time Stepping on Unstructured Triangular Meshes

    Get PDF
    We present a novel cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume scheme on unstructured triangular meshes that is high order accurate in space and time and that also allows for time-accurate local time stepping (LTS). The new scheme uses the following basic ingredients: a high order WENO reconstruction in space on unstructured meshes, an element-local high-order accurate space-time Galerkin predictor that performs the time evolution of the reconstructed polynomials within each element, the computation of numerical ALE fluxes at the moving element interfaces through approximate Riemann solvers, and a one-step finite volume scheme for the time update which is directly based on the integral form of the conservation equations in space-time. The inclusion of the LTS algorithm requires a number of crucial extensions, such as a proper scheduling criterion for the time update of each element and for each node; a virtual projection of the elements contained in the reconstruction stencils of the element that has to perform the WENO reconstruction; and the proper computation of the fluxes through the space-time boundary surfaces that will inevitably contain hanging nodes in time due to the LTS algorithm. We have validated our new unstructured Lagrangian LTS approach over a wide sample of test cases solving the Euler equations of compressible gasdynamics in two space dimensions, including shock tube problems, cylindrical explosion problems, as well as specific tests typically adopted in Lagrangian calculations, such as the Kidder and the Saltzman problem. When compared to the traditional global time stepping (GTS) method, the newly proposed LTS algorithm allows to reduce the number of element updates in a given simulation by a factor that may depend on the complexity of the dynamics, but which can be as large as 4.7.Comment: 31 pages, 13 figure

    Toward a Simple, Accurate Lagrangian Hydrocode.

    Full text link
    Lagrangian hydrocodes play an important role in the computation of transient, compressible, multi-material flows. This research was aimed at developing a simply constructed cell-centered Lagrangian method for the Euler equations that respects multidimensional physics while achieving second-order accuracy. Algorithms that can account for the multidimensional physics associated with acoustic wave propagation and vorticity transport are needed in order to increase accuracy and prevent mesh imprinting. Many of the building blocks of traditional finite volume schemes, such as Riemann solvers and spatial gradient limiters, have their foundations in one-dimensional ideas and so were not used here. Instead, multidimensional point estimates of the fluxes were computed with a Lax-Wendroff type procedure and then nonlinearly modified using a temporal flux limiting mechanism. The linear acoustic equations were used as a simplified test environment for the Lagrangian Euler system. Here Lax-Wendroff methods that exactly preserve vorticity were investigated and found to resist mesh imprinting. However, the dispersion properties of the schemes were poor and so third-order accurate vorticity preserving methods were developed to remedy the problem. The third-order methods guided the construction of a temporal limiting mechanism, which was then used in a vorticity preserving flux-corrected transport scheme. While the acoustic work was interesting in its own right, it also proved to be a useful stepping stone to Lagrangian hydrodynamics. The acoustics algorithms were extended to produce the Simple Lagrangian Method (SLaM). Standard test problems have shown that a first-order accurate version of the method is able to resist mesh imprinting and spurious vorticity despite its minimalistic structure. SLaM is capable of second-order accuracy with a simple parameter change and some preliminary work was done to extend the temporal flux limiting ideas from acoustics to the Lagrangian case. The limited SLaM method converges at second-order for smooth data and is able to capture shocks without producing large unphysical oscillations.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113577/1/tblung_1.pd

    High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Full text link
    We present a new family of very high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV) and Discontinuous Galerkin (DG) schemes for the solution of nonlinear hyperbolic PDE systems on moving 2D Voronoi meshes that are regenerated at each time step and which explicitly allow topology changes in time. The Voronoi tessellations are obtained from a set of generator points that move with the local fluid velocity. We employ an AREPO-type approach, which rapidly rebuilds a new high quality mesh rearranging the element shapes and neighbors in order to guarantee a robust mesh evolution even for vortex flows and very long simulation times. The old and new Voronoi elements associated to the same generator are connected to construct closed space--time control volumes, whose bottom and top faces may be polygons with a different number of sides. We also incorporate degenerate space--time sliver elements, needed to fill the space--time holes that arise because of topology changes. The final ALE FV-DG scheme is obtained by a redesign of the fully discrete direct ALE schemes of Boscheri and Dumbser, extended here to moving Voronoi meshes and space--time sliver elements. Our new numerical scheme is based on the integration over arbitrary shaped closed space--time control volumes combined with a fully-discrete space--time conservation formulation of the governing PDE system. In this way the discrete solution is conservative and satisfies the GCL by construction. Numerical convergence studies as well as a large set of benchmarks for hydrodynamics and magnetohydrodynamics (MHD) demonstrate the accuracy and robustness of the proposed method. Our numerical results clearly show that the new combination of very high order schemes with regenerated meshes with topology changes lead to substantial improvements compared to direct ALE methods on conforming meshes

    An efficient discontinuous Galerkin method for aeroacoustic propagation

    Get PDF
    An efficient discontinuous Galerkin formulation is applied to the solution of the linearized Euler equations and the acoustic perturbation equations for the simulation of aeroacoustic propagation in two-dimensional and axisymmetric problems, with triangular and quadrilateral elements. To improve computational efficiency, a new strategy of variable interpolation order is proposed in addition to a quadrature-free approach and parallel implementation. Moreover, an accurate wall boundary condition is formulated on the basis of the solution of the Riemann problem for a reflective wall. Time discretization is based on a low dissipation formulation of a fourth-order, low storage Runge-Kutta scheme. Along the far-field boundaries a perfectly matched layer boundary condition is used. For the far-field computations, the integral formulation of Ffowcs Williams and Hawkings is coupled with the near-field solver. The efficiency and accuracy of the proposed variable order formulation is assessed for realistic geometries, namely sound propagation around a high-lift airfoil and the Munt problem

    Lagrangian ADER-WENO Finite Volume Schemes on Unstructured Triangular Meshes Based On Genuinely Multidimensional HLL Riemann Solvers

    Full text link
    In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space-time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allows for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. We apply the method presented in this article to two systems of hyperbolic conservation laws, namely the Euler equations of compressible gas dynamics and the equations of ideal classical magneto-hydrodynamics (MHD). Convergence studies up to fourth order of accuracy in space and time have been carried out. Several numerical test problems have been solved to validate the new approach

    Three-dimensional finite element analysis for high velocity impact

    Get PDF
    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model

    Simulation of flows with violent free surface motion and moving objects using unstructured grids

    Get PDF
    This is the peer reviewed version of the following article: [Löhner, R. , Yang, C. and Oñate, E. (2007), Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int. J. Numer. Meth. Fluids, 53: 1315-1338. doi:10.1002/fld.1244], which has been published in final form at https://doi.org/10.1002/fld.1244. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.A volume of fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier–Stokes solver operating on adaptive, unstructured grids to simulate the interactions of extreme waves and three-dimensional structures. The present implementation follows the classic VOF implementation for the liquid–gas system, considering only the liquid phase. Extrapolation algorithms are used to obtain velocities and pressure in the gas region near the free surface. The VOF technique is validated against the classic dam-break problem, as well as series of 2D sloshing experiments and results from SPH calculations. These and a series of other examples demonstrate that the ability of the present approach to simulate violent free surface flows with strong nonlinear behaviour.Peer ReviewedPostprint (author's final draft

    Direct numerical simulation of multi-phase flow in complex media

    Get PDF
    Tesi en modalitat de compendi de publicacionsIn numerous applications, two-phase liquid-gas transport at sub-millimeter length scales plays a substantial role in the determination of the behavior of the system at hand. As its main application, the present work focuses on the polymer electrolyte membrane (PEM) fuel cells. Desirable performance and operational life-time of this class of high-throughput energy conversion devices requires an effective water management, which per se relies on proper prediction of the water-air transport mechanisms. Such two-phase flow involves interfacial forces and phenomena, like hysteresis, that are associated with the physicochemical properties the liquid, gas, and if present, the solid substrate. In this context, numerical modeling is a viable means to obtain valuable predictive understanding of the transport mechanisms, specially for cases that experimental analyses are complicated and/or prohibitively expensive. In this work, an efficient finite element/level-set framework is developed for three-dimensional simulation of two-phase flow. In order to achieve a robust solver for practical applications, the physical complexities are consistently included and the involved numerical issues are properly tackled; the pressure discontinuity at the liquid-gas interface is consistently captured by utilizing an enriched finite element space. The method is stabilized within the framework of variational multiscale stabilization technique. A novel treatment is further proposed for the small-cut instability problem. It is shown that the proposed model can provide accurate results minimizing the spurious currents. A robust technique is also developed in order to filter out the possible noises in the level-set field. It is shown that it is a key to prevent irregularities caused by the persistent remnant of the spurious currents. It is shown how the well-established contact-line models can be incorporated into the variational formulation. The importance of the inclusion of the sub-elemental hydrodynamics is also elaborated. The results presented in the present work rely on the combination of the linearized molecular kinetic and the hydrodynamic theories. Recalling the realistic behavior of liquids in contact with solid substrates, the contact--angle hysteresis phenomenon is taken into account by imposing a consistent pinning/unpinning mechanism developed within the framework of the level-set method. Aside from the main developments, a novel technique is also proposed to significantly improve the accuracy and minimize the the loss in the geometrical features of the interface during the level-set convection based on the back and forth error compensation correction (BFECC) algorithm. Within the context of this thesis, the numerical model is validated for various cases of gas bubble in a liquid and liquid droplets in a gas. For the latter scenario, besides free droplets, the accuracy of the proposed numerical method is assessed for capturing the dynamics droplets spreading on solid substrates. The performance of the model is then analyzed for the capturing the configuration of a water droplet on an inclined substrate in the presence the contact--angle hysteresis. The proposed method is finally employed to simulate the dynamics of a water droplet confined in a gas channel and exposed to air-flow.Existen numerosas aplicaciones industriales en las que transporte bifásico (líquido-gas) a escalas submilimétricas resulta crucial para la determinación del comportamiento del sistema en cuestión. Entre todas ellas, el presente trabajo se centra en las pilas de combustible con membrana de electrolito polimérico (PEMFC). El rendimiento deseable y la vida útil operativa de esta clase de dispositivos de conversión de energía de alto rendimiento requieren una gestión eficaz del agua (conocida como “water management”), que per se depende de la predicción adecuada de los mecanismos de transporte de agua y aire. Así pues, el análisis del flujo microfluídico de dos fases obliga considerar fuerzas y fenómenos interfaciales, tales como la histéresis, que están asociados con las propiedades fisicoquímicas del líquido, el gas y, si está presente, el sustrato sólido. En este contexto, la modelización numérica es una alternativa viable para obtener una predicción precisa de los mecanismos de transporte, especialmente en aquellos casos en los que los análisis experimentales son prohibitivos, ya sea por su complejidad o coste económico. En este trabajo, se desarrolla un marco eficiente, basado en la combinación del método de elementos finitos y el método de “level-set”, para la simulación tridimensional de flujos bifásicos. Con el fin de lograr una herramienta numérica robusta para aplicaciones prácticas, las complejidades físicas se incluyen consistentemente y los problemas numéricos involucrados se abordan adecuadamente. Concretamente, la discontinuidad de la presión en la interfaz líquido-gas se captura consistentemente utilizando un espacio de elementos finitos enriquecido. La estabilización del método se consigue mediante la introducción de la técnica de multiescalas variacionales. Asimismo, se propone también un tratamiento novedoso para el problema de la inestabilidad de tipo “small-cut”. Se muestra que el modelo propuesto puede proporcionar resultados precisos minimizando las corrientes espurias en la interfaz liquido-gas. Complementariamente, se presenta una nueva metodología para filtrar el ruido en el campo de “level-set”. Esta metodología resulta ser crucial para prevenir las irregularidades provocadas por el remanente persistente de las corrientes espurias. El comportamiento de la línea de contacto es considerado a través de la inclusión los modelos correspondientes en la formulación variacional. A este respecto, el presente trabajo aborda la importancia de la inclusión de la hidrodinámica subelemental. Los resultados presentados se basan en la combinación de la cinética molecular linealizada y las teorías hidrodinámicas. Para representación del comportamiento realista de los líquidos en contacto con sustratos sólidos, el fenómeno de histéresis del ángulo de contacto se tiene en cuenta imponiendo un mecanismo de anclado / desanclado consistente desarrollado en el marco del método de level-set. Aparte de los desarrollos principales, también se propone una técnica novedosa para la convección de la función ”level-set”. Ésta permite mejorar significativamente la precisión, minimizando a su vez la pérdida en las características geométricas de la interfaz asociadas al transporte. Esta nueva metodología está basada en el algoritmo de corrección de compensación de errores (BFECC). La herramienta numérica desarrollada en esta tesis es validada para varios casos que involucran burbujas de gas en un líquido y pequeñas gotas de líquido en un gas. Para el último escenario, además de las gotas libres, se evalúa la precisión de la herramienta propuesta para capturar la dinámica de las gotas sobre sustratos sólidos. A continuación, se analiza el rendimiento del modelo para capturar la configuración de una gota de agua sobre un sustrato inclinado en presencia de la histéresis del ángulo de contacto. El método propuesto finalmente se aplicaPostprint (published version
    corecore