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Abstract

We present a novel cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume scheme on unstructured
triangular meshes that is high order accurate in space and time and that also allows fortime-accurate local time
stepping(LTS). It extends our previous investigations on high orderLagrangian finite volume schemes with LTS
carried out in [36] in one space dimension. The new scheme uses the following basic ingredients: a high order
WENO reconstruction in space on unstructured meshes, an element-local high-order accurate space-time Galerkin
predictor that performs the time evolution of the reconstructed polynomials within each element, the computation of
numerical ALE fluxes at the moving element interfaces through approximate Riemann solvers, and a one-step finite
volume scheme for the time update which is directly based on the integral form of the conservation equations in
space-time. The inclusion of the LTS algorithm requires a number of crucial extensions, such as a proper scheduling
criterion for the time update of each element and for each node; a virtual projection of the elements contained in the
reconstruction stencils of the element that has to perform the WENO reconstruction; and the proper computation of
the fluxes through the space-time boundary surfaces that will inevitably contain hanging nodes in time due to the LTS
algorithm.

We have validated our new unstructured Lagrangian LTS approach over a wide sample of test cases solving the
Euler equations of compressible gasdynamics in two space dimensions, including shock tube problems, cylindrical
explosion problems, as well as specific tests typically adopted in Lagrangian calculations, such as the Kidder and the
Saltzman problem. When compared to the traditional global time stepping (GTS) method, the newly proposed LTS
algorithm allows to reduce the number of element updates in agiven simulation by a factor that may depend on the
complexity of the dynamics, but which can be as large as∼ 4.7.

Keywords: Arbitrary-Lagrangian-Eulerian (ALE), high order Lagrangian ADER-WENO schemes, moving
unstructured meshes, time-accurate local time stepping (LTS), hyperbolic conservation laws, Euler equations of
compressible gas dynamics

1. Introduction

In the last few years there has been a renewed interest in the development of novel accurate and robust cell-centered
Lagrangian finite volume schemes for hydrodynamics. Since in a Lagrangian method the computational mesh moves
with the local fluid velocity, such schemes are regarded as the first choice in all problems presenting moving material
interfaces appearing in compressible multi-phase and multi-material flows, for instance, the numerical simulation
of inertial confinement fusion (ICF). The vast majority of modern Lagrangian schemes adopts acell-centeredfinite-
volume approach, see for example [15, 23, 78, 68, 72, 73, 74, 71], where all flow variables are defined as cell-averaged
quantities inside a control volume. However, alsostaggeredLagrangian schemes are possible, see e.g. [67], where
the velocity is defined at the cell interfaces, while the other flow variables are still defined at the cell centers.

∗Corresponding author
Email addresses:walter.boscheri@unitn.it (Walter Boscheri),michael.dumbser@unitn.it (Michael Dumbser∗),

olindo.zanotti@unitn.it (Olindo Zanotti)

Preprint submitted to Elsevier August 19, 2017

http://arxiv.org/abs/1408.3719v1


In [75, 15] Godunov-type finite volume schemes have been presented for Lagrangian hydrodynamics, while in
[25, 26] the governing equations have been coupled with the equations for the evolution of the geometry and the
resulting weakly hyperbolic system has been solved using a node-based finite volume solver. Unstructured mul-
tidimensional meshes have been considered by Maire in [69, 71, 70], who developed up to second order accurate
cell-centered Lagrangian schemes where the time derivatives of the fluxes have been computed with a node-centered
solver. This approach may be regarded as a multi-dimensional Lagrangian extension of the Generalized Riemann
problem methodology used for example in the ADER approach ofTitarev and Toro [83, 85] in the Eulerian context.
Arbitrary-Lagrangian-Eulerian (ALE) methods based on remeshing and remapping have also been investigated very
recently for single and multi-material flows in [49, 90, 13, 79].

In [21, 64] Cheng and Shu presented the first better than second order accurate Lagrangian schemes for hydro-
dynamics on structured meshes, where the use of a high order Essentially Non-Oscillatory (ENO) reconstruction
operator yielded high order of accuracy in space, while highorder of accuracy in time was guaranteed using either
a Runge-Kutta or a Lax-Wendroff-type time stepping. Arbitrary high order accurate cell-centered Lagrangian-type
finite volume schemes for conservative and non-conservative hyperbolic PDE on moving unstructured triangular
and tetrahedral meshes have been considered for the first time by Boscheri et al. in a very recent series of papers
[10, 38, 12, 9, 11]. A new class ofmeshlessLagrangian particle methods based on a high order accurate moving
least-squares WENO reconstruction has been forwarded in [2].

High order accurate Lagrangian algorithms using the classical continuous finite element method (FEM) can be
found, for example, in the work of Scovazzi et al. [77, 80] andDobrev et al. [28, 29, 30], while Lagrangian dis-
continuous Galerkin finite elements have been recently proposed by Vilar et al. and Yu et al. in [52, 50, 51, 63].
Arbitrary-Lagrangian-Eulerian DG schemes have been developed and applied, for example, in [20, 46].

Almost all of the above mentioned algorithms use an explicitglobal time stepping scheme in which the timestep
is computed under a classicalglobal CFL stability condition, so that the timestep is essentially determined by the
smallest control volume appearing in the mesh. In Lagrangian hydrodynamics, where the mesh follows as closely
as possible the local fluid motion, very severe deformationsand distortions may occur in the computational cells,
especially at shocks and shear waves. As a consequence, the computational efficiency of the algorithm drastically
decreases, because the smallest timestep imposed by the most deformed control volumes dictates the timestep for the
entire computational grid, including those elements whichare much bigger or which lie in a zone where the fluid is
moving uniformly. In the Eulerian framework such a problem can be partially avoided controlling the mesh quality
a priori and designing a high quality mesh once in a pre-processing step, since the grid will not change anymore
during the simulation. Of course, the CFL condition can be circumvented by using implicit or semi-implicit schemes,
see for example [17, 19, 18, 31, 32, 33], but this approach does not yet seem to be very popular in the context of
cell-centered Lagrangian-type finite volume methods. An alternative to overcome the global CFL condition consists
in the development of numerical schemes that allow for time-accuratelocal time stepping (LTS), where each element
has to obey only a less restrictivelocal CFL stability condition, hence using its own optimal local timestep. Therefore,
many efforts have been devoted to the construction of high order accurate Eulerian schemes with time-accurate LTS,
developing either discontinuous Galerkin finite element methods [48, 42, 82, 65, 53, 62, 47] or high order accurate
finite volume schemes with LTS [8, 7, 89, 16, 4, 3, 14, 47, 45, 39]. The finite volume schemes with LTS adopt
mainly classical adaptive mesh refinement (AMR) techniquesin space and time or block-clustered local time stepping
algorithms. In [55, 54] also high order accurate Runge-Kutta time integrators with local time stepping (so-called multi-
rate integrators) can be found. To the knowledge of the authors, the first high order accurateLagrangianalgorithm
with time accurate local time steppingon moving grids has been proposed very recently in [36], where the equations
of hydrodynamics and of classical magnetohydrodynamics (MHD) have been solved in one spatial dimension. In the
present paper we extend the algorithm presented in [36] tomoving unstructured triangular meshes.

The rest of the paper is structured as follows: in Section 2 the numerical scheme is described, including the details
of the local time stepping algorithm on moving unstructuredmeshes, while numerical convergence studies as well as
some classical numerical test problems for hydrodynamics are presented in Section 3. We conclude the paper giving
an outlook to future research and developments in Section 4.
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2. Numerical method

2.1. Formulation of the equations and basic set-up
In this article we consider nonlinear hyperbolic conservation laws, cast in the form

∂Q
∂t
+ ∇ · F(Q) = S(Q), x = (x, y) ∈ Ω(t) ⊂ R

2, t ∈ R+0 , Q ∈ ΩQ ⊂ R
ν, (1)

whereQ = (q1, q2, ..., qν) is the vector of conserved variables defined in the space of the admissible statesΩQ ⊂ R
ν,

F(Q) = (f (Q), g(Q)) denotes the nonlinear flux tensor andS(Q) represents a nonlinear algebraic source term which is
not allowed to be stiff. The system of equations (1) is defined in two space dimensions, hence addressing the space
coordinate vector and the time withx = (x, y) andt, respectively. The two-dimensional computational domainΩ(t) is
time-dependent since in the Lagrangian framework the mesh is moving, hence changing its configuration at each time
step. The domain is discretized using a total number ofNE conforming trianglesTn

i , therefore at a general timetn the
current triangulationT n

Ω
of the domainΩ(tn) = Ωn is given by the union of all elements, i.e.

T n
Ω =

NE⋃

i=1

Tn
i . (2)

Within the Lagrangian LTS algorithm that is going to be presented in this paper each element moves in time inde-
pendently from the others and following its own local timestep, hence the triangulationT n

Ω
will in generalneverbe

assembled at a common time level. In the LTS framework hanging nodes in time are naturally produced and one is in
general not able to define the configuration of the computational mesh at a certain time leveltn, unless we force the
computation to reach the same timet, which could be typically the case either at the final time or at an intermediate
output time. For this reason in the rest of the paper each timelevel tn will be addressed also with the element number
it refers to, i.e.tni , with the subscripti denoting the number of the physical triangleTi .

As suggested in [10], we adopt a spatial reference systemξ − η defined by the coordinate vectorξ = (ξ, η)
where the unit reference triangleTe is composed of the nodesξe

1 = (ξe
1, η

e
1) = (0, 0), ξe

2 = (ξe
2, η

e
2) = (1, 0) and

ξe
3 = (ξe

3, η
e
3) = (0, 1). The physical elementTn

i defined in the physical systemx−y is mapped to the reference element
Te using the transformation

x = x(ξ, tn) = Xn
1,i +

(
Xn

2,i − Xn
1,i

)
ξ +

(
Xn

3,i − Xn
1,i

)
η, (3)

whereXn
k,i = (Xn

k,i,Y
n
k,i) represents the vector of physical coordinates of thek-th vertex of triangleTn

i at time tni . In
the Lagrangian framework the use of the reference system, which does not change in time, is much more convenient
rather than carrying on the computation in the physical system, where elements are moving and deforming in time.

As usual for cell-centered finite volume schemes, data are represented and evolved in time within each control
volume as piecewise constant cell averages

Qn
i =

1
|Tn

i |

∫

Tn
i

Q(x, tni )dV, (4)

where the volume of elementTn
i is denoted by|Tn

i | at the current element timetni . In the time-accurate LTS algorithm
a cellTn

i is allowed to evolve the solution in time only if the so-called update criterion[41, 65, 36] is satisfied, namely
if

max
j∈Ni

(
tnj
)
≤ (

tni + ∆tni
) ≤ min

j∈Ni

(
tnj + ∆tnj

)
, (5)

whereNi denotes theNeumann neighborhoodof elementTi , i.e. the three direct side neighborsT j of the cell, while
tni and∆tni represent the current local time and the local timestep of triangleTi , respectively. Hence,

(
tni + ∆tni

)
is the

future time of elementTi and to make notation easier it will be addressed withtn+1
i .

There are two important issues that need to be clarified:

1. In order to develop a numerical scheme that evolves the cell averages (4) with high order of accuracy in space
and in time in one single step, two strategies are followed. For the accuracy in space we implement a suitable
Weighted Essentially Non-Oscillatory (WENO) reconstruction technique that is able to deal with LTS and which
is presented in detail in the next Section 2.2, while for the accuracy in time we use an element-local space-time
Galerkin predictor approach, as illustrated in Section 2.3.
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2. In a time-accurate LTS finite volume scheme, each elementTn
i evolves the solutionQn

i in time with a local
timestep∆tni that is computed according to a local CFL stability condition. As a result, the WENO reconstruc-
tion will be carried outlocally, i.e. considering only the elementTn

i which is currently updating the solution to
its new time leveltn+1

i , as well as an appropriate neighborhood ofTn
i that is necessary to carry out the recon-

struction, the so-called reconstruction stencilSW
i . Since the neighbor elements ofTi in general have a different

local time, the reconstruction needs to get time-accuratevirtual cell averages from the neighbor cells as input.
These virtual cell averages are readily available from the local space-time Galerkin predictor solution inside the
neighbors.

2.2. High order WENO reconstruction for local time stepping
In order to obtain high order of accuracy in space a nonlinearWENO reconstruction algorithm is used. As done

in [10, 38, 12, 9, 11] we adopt thepolynomialformulation presented in [41, 40, 84, 88], instead of the original
pointwiseapproach proposed by Shu et al. in [58, 5, 57, 92]. Other high order accurate reconstruction algorithms on
unstructured meshes can be found, e.g. in [1, 22, 27, 66]. While all the details of high order WENO reconstruction
are contained in the above-mentioned references, we present here only a brief summary of the main features of the
scheme, highlighting the modifications that are necessary to handle a time accurate local time stepping formulation.

The reconstructed solutionwh(x, tni ) is given in terms of piecewise polynomials of degreeM and is computed
locally for each control volumeTn

i . First, one has to construct a set of reconstruction stencils Ss
i relative to the

elementTi , namely

Ss
i =

ne⋃

j=1

Tm( j), (6)

where 1≤ j ≤ ne denotes a local index which counts the elements belonging tothe stencil, whilem( j) maps the local
counter j to the global element number used in the triangulation (2). As explained in [6, 76, 60, 40], in two space
dimensions on unstructured meshes one has to take a total number of elementsne for each stencil that is bigger than
the smallest numberM = (M + 1)(M + 2)/2 needed to reach the formal order of accuracyM + 1, hence we typically
setne = 2M. Furthermore, according to [60, 40], we need a total number of stencilss = 7 in order to perform the
polynomial WENO reconstruction, namely one central stencil s = 1, three primary sector stencilss ∈ {2, 3, 4} and
three reverse sector stencilss ∈ {5, 6, 7}. As a consequence, the update criterion (5) must be extendedto the total
WENO stencilSW

i given by

SW
i =

7⋃

s=1

Ss
i , (7)

hence obtaining
max

(
tnj
)
≤ tn+1

i ≤ min
(
tn+1
j

)
, ∀T j ∈ SW

i . (8)

In order to guarantee that at least one element in the entire mesh satisfies condition (8), the total stencilsSW
i need to

be constructed in such a way that they aresymmetric, i.e. each elementT j ∈ SW
i inside the stencil ofTi mustcontain

in its own WENO stencilSW
j the elementTi . In other words, ifT j ∈ SW

i thenTi ∈ SW
j . It is always possible to

construct such symmetric stencils by adding elements to thestencils until the condition of symmetry is satisfied for
all elements.

For the sake of clarity we give a simple example of what could happen if we takenon-symmetricstencils. Let
elementT j benot contained in the stencil ofTi and letTi belong to the stencilSW

j of elementT j . Let furthermore the

current time level ofTi andT j betni andtnj , respectively, with the corresponding future timestn+1
i andtn+1

j . Without loss

of generality we assumetni = tnj , while the future time levels are chosen such thattn+1
i > tn+1

j . If the update criterion on
thenon-symmetricstencilSW

i is supposed to be satisfied, then elementTi is allowed to update the numerical solution
to its future time, which will subsequently become thecurrent time of Ti , i.e. tni → tn+1

i . The resulting situation will
lead to adead lockin the algorithm, where elementT j will never obey condition (8) sincetn+1

j < tni . A simple solution
is to always build asymmetricstencil. In this case elementT j performs the updatefirst and does not prevent element
Ti from updating its solution. The drawback of this approach isthat slightly larger stencils are required.

Due to (8), the current timetnj of the neighbor elements belonging to the WENO stencilSW
i must be lower than

the current time leveltni of the triangleTi for which the reconstruction has to be performed. Moreover,in Lagrangian
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algorithms the mesh is moving in time, therefore the local WENO reconstruction is carried out on avirtual geometry
with virtual cell averages, as suggested in [36]. These virtual cell averages, which are needed for the reconstruction,
are obtained from the local space-time predictor solutionqh(x, tni ) inside the neighbor elementsT j using a simple
integralprojection(averaging). The way how this predictor solution is computed will be described in the next Section
2.3. A similar projection is used also for the virtual geometry of the elements inside the total WENO stencil, where
all elementsTn

j ∈ SW
i are movedvirtually until time tni is reached. We emphasize that the projection of the stencil

geometry and of the cell averages is done only virtually, just for the purpose of reconstruction, because the real
mesh motion and the real conservative update of the cell averages will be performed individually by each element
at its scheduled time according to the update criterion (8).The geometry of each stencil elementTn

j , i.e. the vertex
coordinates, are projected and also all the other geometricquantities used for the computation, e.g. normal vectors,
volumes, side lengths,etc.. For the sake of clarity, the projected quantities will be denoted by a tilde symbol in the
following, hence

X̃n+1
k, j = Xn

k, j +
(
tni − tnj

)
V

n
k, j, ∀Tn

j ∈ SW
i , k = 1, 2, 3 (9)

and

Q̃n
j =


Qn

i , if j = i,
1
|T̃n

j |

∫
T̃n

j
qh(x, tni )dV, if j , i, ∀T j ∈ SW

i . (10)

In (9) the time-averaged node velocityV
n
k, j is computed according to the node solver algorithm, see also[10, 11, 12, 9],

which will be briefly described in Section 2.4, while in (10) the virtual cell averages̃Qn
j of the neighbor elements are

given as the spatial integral of the predicted solution at time tni over the virtual control volumes̃Tn
j .

Once the virtual geometry and the virtual cell averages havebeen computed for the entire stencilSW
i , we are in the

position to carry out thelocal high order WENO reconstruction procedure. To obtain the reconstruction polynomial
wh(x, tni ), integral conservation of the projected cell averagesQ̃n

j in each reconstruction stencilSs
i is required, i.e.

1

|T̃n
j |

∫

T̃n
j

ws
h(x, tni )dV =

1

|T̃n
j |

∫

T̃n
j

ψl(ξ, η)ŵ
n,s
l,i = Q̃n

j , ∀Tn
j ∈ Ss

i , (11)

where the integrals are evaluated using Gaussian quadrature formulae of suitable order (see [81] for details). For sim-
plicity, in the above equation, as well as in the rest of the paper, we have adopted the Einstein summation convention
over repeated indices. The reconstruction polynomial on each stencil is expressed in terms of a set of orthogonal
spatial basis functionsψl(ξ, η) on the reference element, see [34, 59, 24], andM unknown degrees of freedom̂wn,s

l,i .
Since each stencil contains a total number of elementsne >M, system (11) results in an overdetermined linear alge-
braic system that is solved by a constrained least-squares technique [40]. In the Lagrangian framework the geometry
evolves in time. Hence, the reconstruction matrix, which isgiven by the multidimensional integrals in (11), continu-
ously changes in time. As a consequence, the system (11) mustbe solved whenever elementTi performs its WENO
reconstruction. To maintain the scheme as simple as possible and reasonably cost efficient, the stencil topology is
fixed once and forall in a preprocessing stage and is not dynamically recomputed.

In order to avoid spurious oscillations at discontinuities, the reconstruction operator must be nonlinear. Therefore
the polynomials defined on each stencil are combined with each other and weighted in a nonlinear way, where the
non-linearity is introduced in the WENO weightsωs

ω̃s =
λs

(σs + ǫ)r , ωs =
ω̃s∑
q ω̃q

, (12)

through the oscillation indicatorsσs, which are computed according to [58, 41, 40] as

σs = Σlmŵn,s
l,i ŵn,s

m,i , (13)

with

Σlm =
∑

α+β≤M

∫

Te

∂α+βψl(ξ, η)
∂ξα∂ηβ

· ∂
α+βψm(ξ, η)
∂ξα∂ηβ

dξdη. (14)
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As done in [40, 41], we setǫ = 10−14, r = 8, λs = 1 for the one-sided stencils (s> 1) andλ1 = 105 for the central
stencil. The final nonlinear WENO reconstruction polynomial and its coefficients are then given by

wh(x, y, tni ) = ψl(ξ, η)ŵn
l,i, with ŵn

l,i =

7∑

s=1

ωsŵ
n,s
l,i . (15)

2.3. Local space-time Galerkin predictor on moving triangles

In order to achieve high order of accuracy in time we use the local space-time continuous Galerkin method, where
the reconstructed polynomialwh obtained at the current element timetni areevolvedlocally within elementTi(t) until
the future timetn+1

i . This method was first introduced for the Eulerian frameworkin [37] and then extended to moving
meshes in [44, 10, 38, 11]. In all the above-mentioned references the space-time continuous Galerkin procedure has
been proposedlocally, i.e. the high order evolution of the reconstructed polynomial has always been carried out
within each control volume and considering separately all the elements of the entire mesh. As a consequence, such a
procedure automatically fits the construction of a time-accurate local time stepping algorithm.

As previously done for the WENO reconstruction, we use againthe spatial reference systemξ − η, where now the
relative timeτ is also considered. Therefore the physical element can be mapped to the reference space-time element
TE × [0, 1] using the local space transformation (3) and the following mapping in time:

t = tni + τ∆tni , τ =
t − tni
∆tni

. (16)

The spatial coordinate vector in physical and reference coordinates are given byx = (x, y) andξ = (ξ, η), respectively,
while x̃ = (x, y, t) andξ̃ = (ξ, η, τ) are the corresponding space-time coordinate vectors. According to [37], we adopt
aweak integral formulationof the governing PDE (1), which is rewritten in the space-time reference system using the
relations (3)-(16):

∂Q
∂τ

τt +
∂Q
∂ξ

ξt +
∂Q
∂η

ηt +
∂f
∂τ
τx +

∂f
∂ξ
ξx +

∂f
∂η
ηx +

∂g
∂τ
τy +

∂g
∂ξ
ξy +

∂g
∂η
ηy = S(Q). (17)

The Jacobian of the spatial and temporal transformation andits inverse read

Jst =
∂x̃

∂ξ̃
=


xξ xη xτ
yξ yη yτ
0 0 ∆t

 , J−1
st =

∂ξ̃

∂x̃
=


ξx ξy ξt

ηx ηy ηt

0 0 1
∆t

 , (18)

where we used the propertiesτx = τy = 0 andτt =
1
∆t , according to the definition (16). We rely on the inverse of the

Jacobian matrix for reducing Eqn. (17) to

∂Q
∂τ
+ ∆t

(
∂Q
∂ξ

ξt +
∂Q
∂η

ηt +
∂f
∂ξ
ξx +

∂f
∂η
ηx +

∂g
∂ξ
ξy +

∂g
∂η
ηy

)
= ∆tS(Q), (19)

which can be simply reformulated as
Qτ = ∆tP, (20)

with the aid of the termP defined as

P := S(Q) −
(
∂Q
∂ξ

ξt +
∂Q
∂η

ηt +
∂f
∂ξ
ξx +

∂f
∂η
ηx +

∂g
∂ξ
ξy +

∂g
∂η
ηy

)
. (21)

As done in [37], the solution vectorQ, the flux tensorF, the source termS as well as the termP are discretized
using a nodal finite element approach. The discrete solutions are denoted byqh, Fh, Sh andPh, respectively, and are
given by

qh = qh(ξ, η, τ) = θl(ξ, η, τ)̂ql,i, Sh = Sh(ξ, η, τ) = θl(ξ, η, τ)̂Sl,i ,

Fh = Fh(ξ, η, τ) = θl(ξ, η, τ)F̂l,i, Ph = Ph(ξ, η, τ) = θl(ξ, η, τ)P̂l,i . (22)
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Here, θl = θl(ξ̃) = θl(ξ, η, τ) are a set of space-time nodal basis functions defined by the Lagrange interpolation
polynomials passing through a set of space-time nodesξ̃m = (ξm, ηm, τm), see [37] for details. The same approximation
also applies to the mapping from the physical space-time coordinate vector̃x to the reference space-time coordinate
vectorξ̃, hence

x(ξ, η, τ) = θl(ξ, η, τ)̂xl,i , t(ξ, η, τ) = θl(ξ, η, τ)̂tl , (23)

where the use of thesamebasis functionsθl is allowed by the adoption of anisoparametricapproach.̂xl,i = (x̂l,i , ŷl,i)
are the degrees of freedom of the vector of physical coordinates in space, that are partially unknown, whilet̂l denote
theknowndegrees of freedom of the physical time at each space-time nodex̃l,i = (x̂l,i , ŷl,i, t̂l) according to (16).

In order to obtain the weak formulation of the governing PDE (1), we first multiply (19) with a test function which
is given by the same space-time basis functionsθk(ξ, η, τ) and then we integrate it over the unit reference space-time
elementTe× [0, 1], i.e. 〈

θk,
∂θl

∂τ

〉
q̂l,i = ∆t 〈θk, θl〉 P̂l,i , (24)

where the approximations given by (22) have been used as wellas the following integral operator

〈 f , g〉 =
1∫

0

∫

Te

f (ξ, η, τ)g(ξ, η, τ)dξdηdτ, (25)

which denotes the scalar product of two functionsf andg over the space-time reference elementTe× [0, 1]. Moreover
the universal matrices

K τ =

〈
θk,

∂θl

∂τ

〉
and M = 〈θk, θl〉 (26)

proposed in [10, 38] are used to write expression (24) in a more compact matrix notation, namely

K τq̂l,i = ∆tMP̂l,i . (27)

Let q̂0
l,i be the part of the degrees of freedom of vectorq̂l,i that are known from the initial conditionwh by setting the

corresponding degrees of freedom to the known values (see [37] for details) and let̂q1
l,i represent the unknown degrees

of freedom forτ > 0. Sincêq0
l,i are known, they can be moved onto the right-hand side of (27),hence obtaining the

following nonlinear algebraic equation system (20), whichcan be solved by an iterative procedure, i.e.

K τq̂r+1
l,i = ∆tMP̂r

l,i , (28)

with the superscriptr denoting the iteration number. The initial guess (r = 0) can be simply given by the reconstruction
polynomialwh at the initial time level, otherwise a more efficient initial condition based on a second order MUSCL-
type scheme can be used (see [56]).

Due to the Lagrangian formulation, which implies mesh motion, we have also to consider the evolution of the
vertex coordinates of the local space-time element. The motion is governed by the following ODE system

dx
dt
= V(x, y, t), (29)

with the local mesh velocityV = V(x, y, t) = (U,V) approximated again with a nodal approach as

Vh = Vh(ξ, η, τ) = θl(ξ, η, τ)V̂ l,i , V̂ l,i = V(x̃l,i). (30)

Our algorithm belongs to the family of the so-called Arbitrary-Lagrangian-Eulerian (ALE) schemes, hence we allow
the mesh velocity to be potentially different from the local fluid velocity. In this way Eulerian algorithms are repro-
duced by setting the mesh velocity to zero, while almost pureLagrangian methods can be obtained when the mesh
velocity coincides with the local fluid velocity. As suggested in [44, 10] the system (29) can be conveniently solved
for the unknown coordinate vector̂xl,i using the same local space-time Galerkin method:

〈
θk,

∂θl

∂τ

〉
x̂l,i = ∆t 〈θk, θl〉 V̂ l,i , (31)
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which yields the iteration scheme
K τ̂xr+1

l,i = ∆tMV̂r
l,i . (32)

Since the physical triangleTn
i at timetni is known, the initial condition of the ODE system is simply given by the nodal

degrees of freedom̂xl at relative timeτ = 0.
In practice, the ODE system (29) is solved at each iteration of the PDE solver (28) and the procedure is repeated

until convergence is reached. At the end of the local space-time Galerkin procedure we obtain anelement-local
predictor for the numerical solutionqh, for the fluxesFh = (fh, gh), for the source termSh and also for the mesh
velocityVh.

In a Lagrangian scheme with LTS we are dealing with hanging nodes in time and we generally do not have
a matching in time of the geometry, as already explained before, but discontinuities in the geometry configuration
are not admitted. In cell-centered Lagrangian schemes a unique node velocity is obtained by a so-called no-solver
algorithm that takes as input all vertex-extrapolated states from the triangles in the Voronoi neighborhood surrounding
the vertex. In the Lagrangian ADER-WENO schemes with globaltime stepping presented in [10, 38] we used a
suitable node solver algorithm to update the meshglobally, since the future time was the same for all the elements.
Here, in the context of LTS, we adopt again the node solver algorithm with the aim to fix auniquenode velocity,
but the vertex will bephysically(and not virtually) moved only when an element of the Voronoineighborhood of the
vertex fulfills the update criterion (8). To handle this situation in practice, each nodek is also equipped with a local
node timetnk.

2.4. Mesh motion with local time stepping

As explained at the end of Section 2.3, each nodek of the computational mesh needs to be assigned auniquely
defined velocity vector. The Voronoi neighborhoodVk of nodek is composed by all those elementsT j which share
the nodek. The nodek will be moved each time the update criterion (8) is satisfied by one elementTi ∈ Vk. Therefore
the future time to which nodek moves will coincide with the future timetn+1

i of that elementTi .
In [12] three different node solver algorithms have been presented and here weconsider the node solver denoted

asNScs, which adopts the idea of Cheng and Shu [21, 64]. However, rather than taking a simple arithmetic average
of the velocity, the node velocityVk is computed as amass weightedaverage velocity among the neighborhoodVk of
nodek, i.e.

Vk =
1
µk

∑

T j∈Vk

µk, jVk, j, (33)

with
µk =

∑

T j∈Vk

µk, j , µk, j = ρ
n
j |Tn

j |. (34)

The local weightsµk, j are the masses of the elementsT j , obtained by multiplying the cell averages of the densityρ j

with the cell area|T j | at the current neighbor time leveltnj .
The mesh motion plays an important role in Lagrangian schemes, because it allows interfaces and shear waves

to be precisely identified. For this reason an accurate computation of the node velocity represents a crucial step,
and in our approach the local velocity contributionsVk, j are taken to be the time integrals of the high order vertex-
extrapolated velocities at nodek. We can use the space-time reference systemξ−η−τ and the velocity approximation
given by (30) to evaluate the time integral. Since each nodek can be moved by any of the Voronoi neighborsT j , the
vertex time level of nodek is not knowna priori when an elementTi satisfies (8) and is ready to update the geometry.
Therefore, it is much more convenient to define anode timevariabletnk, that is independent of the time evolution of
the elements and advances in time whenever the node is moved by any of its Voronoi neighborsT j. As a result, the
high order velocity integration for each elementT j ∈ Vk must be done within the time interval∆tk = [tnk, t

n+1
k ], that

has to berescaledto the corresponding reference time interval∆τk = [τ0
k, j, τ

1
k, j] as

τ0
k, j =

tnk − tnj
∆tnj

τ1
k, j =

tn+1
k − tnj
∆tnj

, ∀T j ∈ Vk, (35)
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where∆tnj is the local timestep of elementT j. Recall thattn+1
k = tn+1

i , if the node is moved by elementTi which is

supposed to satisfy the update criterion. Finally the localvelocity contributionsVk, j are given by

Vk, j =



τ1
k, j∫

τ0
k, j

θl(ξe
m(k), η

e
m(k), τ)dτ


V̂ l, j , (36)

wherem(k) is a mapping from the global node numberk to the local node number in elementT j , while ξe
m andηe

m

represent the coordinates of the vertices of the reference triangle in space.̂V l, j are the space-time degrees of freedom
which areknownfrom the local space-time predictor solutionqh, j . Each nodek belonging to elementTi is finally
moved to the new positionXn+1

k with
Xn+1

k = Xn
k + ∆tk Vk. (37)

2.5. Finite volume scheme

The vector of conserved variablesQn
i is evolved to the next time leveltn+1

i only when elementTi obeys the update
criterion (8). As proposed in [10, 11] the governing PDE (1) can be rewritten in a more compact space-time divergence
form, which reads

∇̃ · F̃ = S(Q), (38)

with the space-time nabla operator and the tensorF̃ defined as

∇̃ =
(
∂

∂x
,
∂

∂y
,
∂

∂t

)T

, F̃ = (F, Q) = (f , g, Q) . (39)

The conservation law (38) is then integrated in space and time over the space-time control volumeCn
i = Ti(t)×

[
tni ; tn+1

i

]

generated by the time evolution of elementTi and depicted in Figure 1, hence yielding

tn+1
i∫

tni

∫

Ti(t)

∇̃ · F̃ dx dt =

tn+1
i∫

tni

∫

Ti(t)

Sdx dt, (40)

which, after application of Gauss’ theorem, reads

∫

∂Cn
i

F̃ · ñ dS =

tn+1
i∫

tni

∫

Ti(t)

Sdx dt, (41)

The vectorñ = (ñx, ñy, ñt) is the outward pointing space-time unit normal vector defined on the space-time surface
∂Cn

i , which is composed of five space-time sub-surfaces, as shownin Figure 1: the first one∂Cn
bot is given by the

element configurationTn
i at the current time level, while∂Cn

top represents the control volumeTn+1
i evolved to the

future time level. The remaining three lateral space-time sub-surfaces∂Cn
i j are usually shared with the so-called

Neumann neighborsNi of Ti , i.e. with the direct side neighbors. As explained in [10, 38, 12] a set of bilinear basis
functions are used to parametrize the lateral sub-surfaces, which are mapped onto a side-aligned local reference system
(χ, τ). The unit normal vector̃n can be computed from the parametrization of the lateral sub-surfaces, while for∂Cn

bot
and∂Cn

top it simply reads̃n = (0, 0,−1) andñ = (0, 0, 1), respectively.
In the time-accurate local time stepping (LTS) algorithm, when the elementTi is ready to update its numerical

solutionQn
i , it might well be the case that the vertices ofTi have already been moved by another elementT j sharing

one or more nodes withTi . This situation generates hanging nodes in time, as shown inFigure 1, where vertex 1 has
changed its position to 1′. In order to design a suitable finite volume scheme on moving meshes with LTS, some parts
of the flux integral appearing in (41) will be computed using amemory variableQM

i , according to [36]. The memory
variable contains all fluxes through the element space-timesub-surfaces∂Cn

i j in thepast, e.g. the fluxes through the
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Figure 1: Space-time evolution of elementTi from time tni (black triangle) to timetn+1
i (red triangle). The triangular sub-surfacesΩ1,2 and

Ω2,3 (already computed in the past by some Voronoi neighbors of the vertices ofTi) are highlighted in green, while the trapezoidal space-time
sub-surfaces∂Cn

i j computed with the current element update are highlighted inblue.

space-time triangular surfacesΩ1,2 andΩ1,3 depicted in Figure 1. Therefore, from (41) the following high order ALE
one-step finite volume scheme with LTS is obtained:

|Tn+1
i |Qn+1

i = |Tn
i |Qn

i −
∑

T j∈Ni

1∫

0

1∫

0

|∂Cn
i j |F̃i j · ñi j dτdχ +

tn+1
i∫

tni

∫

Ti(t)

S(qh) dxdt+QM
i , (42)

with |Tn
i | and|Tn+1

i | representing the surface of triangleTi at the current and at the future time level, i.e.tni andtn+1
i , and

|∂Cn
i j | denoting the determinant of the coordinate transformationof each lateral sub-surface∂Cn

i j . FurthermorẽFi j · ñi j

is the numerical flux used to resolve the discontinuity of thepredictor solutionqh at the space-time sub-face∂Cn
i j . In

the finite volume scheme (42) the flux integral across the quadrilateral sub-surface∂Cn
i j is computed in an edge-based

unit reference system (χ, τ) ∈ [0, 1]2 that is linked to the physical coordinates of the four space-time nodes that define
∂Cn

i j . Note that in the edge-aligned system the relative time coordinateτ is in generaldifferentfrom the ones in the
adjacent left and right elementsTi andT j, respectively, since the two nodes that define the edge may have already
been moved before the update of elementTi . Let us denote the common edge between elementTi andT j ∈ Ni with
λi j and the global number of the first node onλi j with L and the one of the second node on the same edge withR, then
the space-time coordiantes of the four space-time nodes defining the sub-surface∂Cn

i j in (42) are given by

x̃1
i j =

(
Xn

L, t
n
L

)
, x̃2

i j =
(
Xn

R, t
n
R

)
, x̃3

i j =
(
Xn+1

R , tn+1
R

)
, x̃4

i j =
(
Xn+1

L , tn+1
L

)
. (43)

Note thatL = L(i, j) andR= R(i, j) are functions of the numbers of elementTi and the neighborT j, respectively, but
to ease notation this explicit dependency is dropped. The associated space-time integral of the numerical flux over
∂Cn

i j is also callededge fluxand denoted byGn
i j in the following. The physical times of the four space-time nodes (43)

have then to be rescaled to each individual reference space-time coordinate system associated with elementTi and its
neighborT j , respectively, using the time transformation (16).

In order to obtain a conservative scheme, the task of the memory variableQM
i in (42) is to accumulate (sum) all

past fluxes through the lateral space-time sub-surfaces, from the current element timetni to the current local node times
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tnL andtnR, respectively, see [36]. The edge fluxGn
i j through the sub-surface∂Cn

i j is given by

Gn
i j =

∫

∂Cn
i j

F̃i j · ñi j dS =

1∫

0

1∫

0

|∂Cn
i j |F̃i j · ñi j dτdχ. (44)

Then, if elementTi is updated according to (42), the memory variable of the element itself is reset to zero and the
memory variables of theneighborelementsT j ∈ Ni are updated by summing (accumulating) the contribution of the
edge-fluxGn

i j to QM
j . Note that for elementTi the contributionGn

i j has negative sign. Like in the 1D case presented in
[36] we therefore have after each update of elementTi:

QM
i := 0, QM

j := QM
j +Gn

i j , ∀T j ∈ Ni . (45)

The implementation of the finite volume scheme (42) requiresthat a numerical flux is specified through an ap-
proximate Riemann solver. A possible simple formulation for the numerical flux is given by the Rusanov-type ALE
flux, which, according to [10], reads

F̃i j · ñi j =
1
2

(
F̃(q+h ) + F̃(q−h )

)
· ñi j −

1
2

smax

(
q+h − q−h

)
, (46)

wheresmax is the maximum eigenvalue of the ALE Jacobian matrix w.r.t. the normal direction in space, which is

AV
n(Q) =

(√
ñ2

x + ñ2
y

) [
∂F
∂Q
· n − (V · n) I

]
, n =

(ñx, ñy)T

√
ñ2

x + ñ2
y

, (47)

with I representing the identity matrix andV · n denoting the local normal mesh velocity.
A more sophisticated alternative is given by the Osher-typenumerical flux, which guarantees a less dissipative

numerical scheme if compared with the Rusanov flux. It has been presented in [43] for the Eulerian case and then
extended to moving meshes in multiple space dimensions in [44, 10, 11]. The corresponding numerical flux is given
by

F̃i j · ñi j =
1
2

(
F̃(q+h ) + F̃(q−h )

)
· ñi j −

1
2



1∫

0

∣∣∣AV
n(Ψ(s))

∣∣∣ ds


(
q+h − q−h

)
, (48)

where a simple straight-line segment path is used to connectthe left and the right state across the discontinuity, i.e.

Ψ(s) = q−h + s
(
q+h − q−h

)
, 0 ≤ s≤ 1. (49)

According to [43] the integral in (48) is evaluated numerically using Gaussian quadrature. The absolute value of the
dissipation matrix in (48) is evaluated as usual as

|A| = R|Λ|R−1, |Λ| = diag(|λ1|, |λ2|, ..., |λν|) , (50)

whereR andR−1 denote the right eigenvector matrix and its inverse, respectively.
When elementTi performs its local time update, the geometry of cellTi is also updated, because all three vertices

of Ti are moved according to (37). Using the memory variableQM
i we ensure conservation of the edge-fluxes, since

the numerical fluxes computed over the space-time sub-surfaces∂Ci j are immediately saved (with opposite sign) in
the memory variables of the neighbor elementsT j ∈ Ni . While the consideration of edge fluxes is sufficient for
the Lagrangian LTS algorithm presented in [36], its extension to moving unstructured triangular meshes requires an
important modification due to the increased topological complexity of a two-dimensional mesh. As shown in Figure
2, each vertexk of elementTi is shared among the Voronoi neighborsT j ∈ Vk. Hence, we must also compute a
numerical fluxGk,m across each edge defined by the verticesk andm which doesnot belong to elementTi, i.e.

Gk,m =

∫

∂Ωk,m

F̃l,r · ñl,r dx̃. (51)
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This vertex fluxwill also be stored (with the proper sign) in the corresponding memory variablesQM
l andQM

r of
elementsTl and Tr , wherel denotes the left element andl denotes the right element on the corresponding edge
composed of verticesk − m, respectively. As shown in Figure 2, the numerical flux is integrated over thetriangular
space-time surfacesΩ j, j+1, defined by vertices(x̃(k), x̃(k′), x̃(m)), that represent the space-time coordinates of vertexk
at the old and at the new time level, and the space-time location of vertexki, j , respectively.

Figure 2: Space-time evolution of elementTi from time tni (black triangle) to timetn+1
i (blue triangle). The triangular sub-surfacesΩ1,2 andΩ2,3

are highlighted in red.

In our finite volume formulation we are carrying out an integration over the closed space-time control volumeCn
i ,

which automatically guarantees the compliance with the geometric conservation law (GCL), see the appendix of [11]
for more details. From the Gauss theorem one has indeed

∫

∂Cn
i

ñ dS = 0. (52)

In order to verify whether the GCL is also satisfied in the practical implementation of our Lagrangian LTS algorithm,
we need to compute the integral above whenever elementTi performs an update. For this purpose, we also compute
a variableHM

i that behaves like the memory variableQM
i , but for the GCL. All past contributions to the integral (52)

relative to the cellTi are recorded in thegeometrical memory variable HMi , which is reset to zero when the local
timestep procedure has been completed by elementTi . Strictly speaking this this is not needed, since Eqn. (52) is
always satisfied at the end of a local time step because the final space-time control volume is always closed! In all test
problems reported in Section 3, property (52) has always been explicitly verified for each element and for each local
time step up to machine precision.
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2.6. Description of the high order Lagrangian LTS algorithmin multiple space dimensions

The aim of this Section is to give an overall overview of the entire LTS algorithm that has been previously described
in all its parts. By placing each portion of the algorithm in acontext, this presentation should clarify how the numerical
scheme can be practically implemented. Due to the LTS approach, where elements are updated in the order given by
the update criterion (8), we can no longer speak oftimestepsbut we have to considercycles, as done in [36]. In each
cycle the scheme runs over all elements and only those which obey condition (8) are allowed to update the numerical
solution, while the others are simply skipped to the next cycle. In thepre-processing phaseall elements of the mesh

Figure 3: Update of elementTi andT2 according to the high order Lagrangian LTS algorithm presented in this paper. At the beginning we assume
thesamecurrent time for each element, i.e.tni = tn1 = tn2 = t. (a) At the current time levelt each element is given its own reconstruction and predictor
solutionwh andqh, respectively. (b) Update of elementTi to the new time leveltn+1

i . Computation of the necessary edge fluxes with the direct
neighborsandcomputation of the associated vertex fluxesΩ1,4,Ω3,4,Ω3,5,Ω2,5. (c) Update of elementT2, where the edge fluxes are evaluated only
over the space-time surfaces that exceeds the vertex fluxes previously calculated and stored in the memory variableQM

2 . (d) Computation of the
vertex fluxes related to the update of elementT2.

are assigned with the initial condition of the problem at thecommon time levelt = 0, i.e. the cell averagesQn
i are

defined according to (4) from the known initial condition. For each element thefirst WENO reconstruction procedure
presented in Section 2.2 is carried out. Since all elements are at the same timet = 0, for this first reconstruction no
virtual geometry or virtual cell averagesQ̃ are needed. As a result, we obtain the high order spatial polynomialwh for
each element. Then, theelement-local timestep∆tni is computed for each cellTi according to a classical CFL stability
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condition, considering only cell numberi and its Neumann neighborhoodNi , i.e.

∆tni = min

CFL
d̃i

|λ̃max,i |
,CFL

d̃ j

|λ̃max, j |

 , ∀T j ∈ Ni , (53)

with d̃ j = d0
j denoting the incircle diameter of elementT j and|λ̃max, j | = |λmax, j |0 representing the maximum absolute

value of the eigenvalues computed from the initial condition Q̃ j = Q0
j in T j. CFL is the Courant-Friedrichs-Levy

number that must satisfy the inequality CFL≤ 0.5 in the two-dimensional case, as stated in [87]. In the last part
of the pre-processing stage, since the local element timestep∆tni as well as the local reconstruction polynomialwh

have already been computed, we are able to carry out the localspace-time Galerkin predictor procedure described in
Section 2.3, which gives the high order local space-time predictor solutionqh. All cells are now at the same current
time levelt = 0 and for each elementTi the local predictor solutionqh, the local reconstruction polynomialwh and
the cell averageQn

i are given (Figure 3 (a)). We underline that also each nodek of the entire computational mesh is
assigned the initial time levelt0k = 0.

The algorithm proceeds with thecomputational phase, during which each elementTi will reach the imposed final
time of the simulationt = t f in a certain number of necessary cycles, according to its ownoptimal timestep. The first
cycle starts by looping over all elements to check in which elements the update criterion (8) is satisfied. If an element
Ti obeys condition (8), then it performs the local timestep until its future timetn+1

i = tni + ∆tni (Figure 3 (b)) through
the following sub-steps:

• mesh motion: each vertexk of elementTi is moved to the new position at timetn+1
k = tn+1

i using the node solver
algorithm illustrated in Section 2.4 and all other geometric quantities of elementTi are also updated;

• edge flux computation: we compute the numerical fluxesGn
i j through the quadrilateral space-time sub-surfaces

and using the high order Lagrangian finite volume scheme (42)we obtain the numerical solutionQn+1
i . Subse-

quently, we reset the memory variable of elementTi to zero, i.e.QM
i := 0 and accumulate the edge-fluxes into

the memory variables of the neighbor elements to maintain conservation (QM
j := QM

j +Gn
i j ). Also the geometry

variableHM
i is reset to zero, after assuring that condition (52) is satisfied;

• vertex flux computation: as explained in Section 2.5, for each vertexk of the elementTi we also need to evaluate
for each edgek − ki, j the additional fluxesGk, j using (51) (Figure 3 (b)). The numerical fluxes evaluated over
the space-time triangular sub-surfaceΩ j, j+1 (see Figure 2) are immediately stored into the memory variable of
the adjacent elementsT j ,T j+1, while the part of the geometry integral (52) is stored intoHM

j andHM
j+1. In this

way we ensure that the numerical scheme is fully conservative;

• virtual projection: all the elementsT j belonging to the entire reconstruction stencilSW
i of elementTi are now

movedvirtually to the future time level of celli, i.e. tn+1
i , and also the virtual cell averagesQ̃ j areestimated

from the local predictor solutionqh in the neighborsT j ;

• local WENO reconstruction: once thevirtual geometry and cell averages have been projected to the futuretime
tn+1
i , the local WENO reconstruction technique described in Section 2.2 can be carried out for elementTi , hence
obtaining the new reconstruction polynomialwh at timetn+1

i ;

• local timestep computation: using the virtual geometry and the virtual solution of the Neumann neighbors, the
next local timestep∆tn+1

i is evaluated according to (53);

• local space-time predictor: finally we compute the high order space-time predictor solution qh valid within the
next timestep of elementTi .

This procedure is repeated for all elements, until all of them reach the final time of the simulationt f . As soon as an
elementTi has finished its own computation because it has reached the final time t f , it is automatically skipped at the
beginning of each cycle, waiting for the remaining elementsto reach the final time, too.

This brief description summarizes how our high order Lagrangian LTS algorithm is organized. During the simu-
lation hanging nodes in time appear because each node is moved physicallyonly by the updating elementTi which
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the vertex belongs to. As a consequence, the resulting space-time mesh is computeddynamically, producing anon-
conformingspace-time mesh. Due to our high order approach, the edge andvertex fluxes have to be evaluated using
higher order Gaussian quadrature rules, hence increasing the computational cost. In practical applications, for which
first or second order accurate finite volume schemes are considered adequate, one could rely on the fast and simple
mid-point rule that would significantly improve the computational efficiency of our LTS algorithm.

3. Test problems

In the following we solve some numerical test problems in order to validate the high order Lagrangian ADER-
WENO algorithm with time accurate local time stepping (LTS)presented so far. We consider the two-dimensional
Euler equations of compressible gas dynamics, which can be cast into form (1) with

Q =



ρ

ρu
ρv
ρE


, f =



ρu
ρu2 + p
ρuv

u(ρE + p)


, g =



ρv
ρuv

ρv2 + p
v(ρE + p)


, (54)

where the vector of conserved variables is denoted byQ and the flux tensor is addressed withF = (f , g). Furthermore
let ρ andρE denote the mass density and the total energy density, respectively, while v = (u, v) represents the velocity
vector andp is the fluid pressure. The source termS(Q) is zero for the homogeneous Euler equations. The system is
closed using the equation of state (EOS) for an ideal gas, namely

p = (γ − 1)

(
ρE − 1

2
ρ(u2 + v2)

)
, (55)

whereγ is the ratio of specific heats.
In the next sections the governing PDE (1), with the definitions provided by (54), will be assigned with different

initial conditions, that may be given either in terms of the vector of conserved variablesQ = (ρ, ρu, ρv, ρE) or of the
primitive variablesU = (ρ, u, v, p). The system will be solved applying the Lagrangian ADER-WENO finite volume
schemes illustrated in Section 2.5, choosing among the Rusanov-type (46) and the Osher-type (48) numerical fluxes.
In all the proposed test problems the local mesh velocity is chosen to be equal to the local fluid velocity (V = v), hence
a formulation of our ALE algorithm has been chosen that comesas close as possible to a truly Lagrangian scheme.

3.1. Numerical convergence studies

In order to carry out the numerical convergence studies for the high order LTS Lagrangian schemes we consider
the classical smooth convected isentropic vortex proposedon triangular grids by Hu and Shu [57]. The initial com-
putational domain is the squareΩ(0) = [0; 10] × [0; 10] defined on thex = (x, y) plane with periodic boundary
conditions imposed on each side. The initial condition is given in terms of primitive variables as a linear superposition
of a homogeneous background field and a perturbation:

U = (ρ, u, v, p) = (1+ δρ, 1+ δu, 1+ δv, 1+ δp). (56)

The flow is assumed to be isentropic, hence with no perturbation in the entropy, while the perturbations for velocity
v = (u, v) and temperatureT are given by

(
δu
δv

)
=

ǫ

2π
e

1−r2

2

(
−(y− 5)

(x− 5)

)
, δT = − (γ − 1)ǫ2

8γπ2
e1−r2

, (57)

wherer2 = (x− 5)2 + (y− 5)2 is the vortex radius,ǫ = 5 denotes the vortex strength and the ratio of specific heats is
set toγ = 1.4. The perturbations for density and pressure are then expressed as

δρ = (1+ δT)
1
γ−1 − 1, δp = (1+ δT)

γ

γ−1 − 1. (58)
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Table 1: Numerical convergence results for the compressible Euler equations using second to fourth order Lagrangian ADER-WENO finite volume
schemes with time accurate local time stepping (LTS). The error norms refer to the variableρ (density) at timet = 1.0.

O2 O3 O4
h(Ω(t f )) ǫL2 O(L2) h(Ω, t f ) ǫL2 O(L2) h(Ω(t f )) ǫL2 O(L2)
3.58E-01 5.286E-02 - 3.32E-01 3.471E-02 - 7.00E-01 6.419E-02 -
2.48E-01 3.558E-02 1.1 2.51E-01 1.789E-02 2.4 3.28E-01 1.030E-02 2.4
1.70E-01 1.514E-02 2.3 1.68E-01 6.346E-03 2.6 2.51E-01 3.598E-03 3.9
1.28E-01 8.193E-03 2.1 1.28E-01 2.935E-03 2.8 1.68E-01 7.706E-04 3.8

The vortex is convected with velocityvc = (1, 1), so that at the final timet f of the simulation the exact solution
Qe(x, t f ) is simply given by the time-shifted initial condition, e.g. Qe(x, t f ) = Q(x − vct f , 0), with the averaged
convection velocity of the vortexvc = (1, 1). As depicted in Figure 4, the mesh is highly distorted and twisted by the
vortex motion and no rezoning algorithm [12, 9] is adopted here because we want to validate the new LTS algorithm
inside an almost fully Lagrangian approach. Therefore the final time of the simulation is chosen to bet f = 1.0, which
allows the computational mesh to remain reasonably well-shaped. We run this test case on successive refined meshes
and for each mesh the corresponding error is expressed in thecontinuousL2 norm as

ǫL2 =

√√√ ∫

Ω(t f )

(
Qe(x, y, t f ) − wh(x, y, t f )

)2
dxdy, (59)

wherewh(x, y, t f ) represents the high order reconstructed solution at the final time, while the mesh sizeh(Ω(t f )) is
evaluated as the maximum diameter of the circumcircles of the triangles in the final computational domainΩ(t f ). We
use the Rusanov-type numerical flux (46) to obtain the convergence results listed in Table 1, achieving the designed
order of accuracy of the scheme very well.

Figure 4: Mesh configuration at three different output times for the smooth isentropic vortex test problem. The mesh is highly twisted in the center
of the computational domain, which is furthermore convected with velocityvc = (1, 1).

3.2. Riemann problems

Here we solve two classical Riemann problems, namely the shock tube problems of Sod and the Lax, which
are in the following addressed as RP1 and RP2, respectively,and which are widely adopted to validate numerical
algorithms for the solution of the compressible Euler equations. They both include the formation of a left-propagating
rarefaction wave, an intermediate contact discontinuity and a right-propagating shock wave. Though intrinsically
one-dimensional, these tests become non-trivial and multidimensional when applied to unstructured meshes, where in
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Table 2: Initial condition for the Sod (RP1) and the Lax (RP2)shock tube problem.t f is the final time of the simulation andxd denotes the position
of the initial discontinuity.

Case ρL uL vL pL ρR uR vR pR t f xd

RP1 1.0 0.0 0.0 1.0 0.125 0.0 0.0 0.1 0.2 0.0
RP2 0.445 0.698 0.0 3.528 0.5 0.0 0.0 0.571 0.1 0.0

general the element edges are not aligned with the fluid motion. Since a contact wave is present in the solution, we
can also check how well it is resolved by our Lagrangian LTS scheme.

The initial computational domain is given by the boxΩ(0) = [−0.5; 0.5] × [−0.05; 0.05] that is discretized with a
characteristic mesh size ofh = 1/200, leading to a total number ofNE = 8862 elements, while the initial conditions
are given in terms of the primitive variablesU = (ρ, u, v, p). Table 2 reports the relevant data for the setup of the two
tests, wheret f represents the final time of the simulation whilexd gives the position of the initial discontinuity which
splits the computational domain, as well as the initial conditions, in the two left and right statesUL andUR. We set
periodic boundary conditions in they direction, while transmissive boundaries are imposed along thex direction. The
ratio of specific heats is assumed to beγ = 1.4 for both Riemann problems.

The exact solution is computed with the exact Riemann solverpresented in [87]. We use the third order version of
our Lagrangian ADER-WENO schemes with LTS using the Osher-type numerical flux to obtain the results depicted
in Figures 5-6, where a comparison between the exact and the numerical solution is shown. We observe an excellent
resolution of the contact wave with only one intermediate point for both RP1 and RP2, and a very good agreement
with the analytical solution can also be noticed for density, as well as for pressure and for the horizontal velocity
component. Table 3 aims at showing the computational efficiency of the LTS algorithm w.r.t. the Lagrangian ADER-
WENO schemes with global time stepping (GTS) presented in [10]. In order to give a fair comparison between LTS
and GTS schemes, the efficiency is not measured in terms of computational time, whichmay depend on the machine
hardware or on the algorithm implementation, but rather we count the total number of element updates needed to reach
the final time of the simulation, as done in [36]. Hence, looking at Table 3, we notice that the Lagrangian algorithm
with global time stepping requires a total number of elementupdates that is a factor of 3-4 times larger than the one
of our new Lagrangian scheme with LTS.

Table 3: Comparison of the computational efficiency between GTS and LTS algorithm in terms of the total number of element updates for RP1 and
RP2. A third order scheme has been adopted.

Number of element updates
Case GTS LTS GTS/LTS
RP1 10.120404· 106 3.257847· 106 3.11
RP2 23.349964· 106 5.020780· 106 4.45

3.3. Two-dimensional explosion problems

Circular explosion problems can be regarded as the two-dimensional extension of Riemann problems. The initial
domainΩ(0) = {x : ‖x‖ < Ro} is given by the unit circle of radiusRo = 1. A circle of radiusR = 0.5 separates two
different states that define the initial conditions reported in Table 4 in terms of primitive variablesU = (ρ, u, v, p).
The two states are addressed here as theinner stateUi and theouterstateUo, respectively. Transmissive boundary
conditions have been imposed on the external boundary and wesetγ = 1.4. EP1 corresponds to the initial data of the
classical Sod shock tube problem RP1, while EP2 is taken from[87]. In both cases we use the same computational
meshm1, with a characteristic mesh size ofh = 1/100 for r ≤ R andh = 1/50 for r > R, hence obtaining a total
numberNE = 43756 of triangles.

As proposed in [10] a suitable reference solution can be obtained simplifying the two-dimensional Euler equations
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Figure 5: Comparison between exact and third order accuratenumerical solution for the Sod shock tube problem RP1. Density (top right), velocity
(bottom left) and pressure (bottom right) distribution areshown as well as a 3D view of the density solution at the final timet f = 0.2 (top left).

Table 4: Initial conditions for the two-dimensional explosion problems EP1 and the EP2 witht f denoting the final time of the simulation.

Case ρi ui vi pi ρo uo vo po t f

EP1 1.0 0.0 0.0 1.0 0.125 0.0 0.0 0.1 0.2
EP2 1.0 0.0 0.0 1000.0 1.0 0.0 0.0 0.01 0.012
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Figure 6: Comparison between exact and third order accuratenumerical solution for the Lax shock tube problem RP2. Density (top right), velocity
(bottom left) and pressure (bottom right) distribution areshown as well as a 3D view of the density solution at the final timet f = 0.1 (top left).
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to a one-dimensional system with geometric source terms [87], which reads

Qt + F(Q)r = S(Q), (60)

with

Q =


ρ

ρu
ρE

 , F =


ρu

ρu2 + p
u(ρE + p)

 , S= −1
r


ρu
ρu2

u(ρE + p)

 . (61)

Herer andu represent the radial direction and the radial velocity, respectively. As a result, a proper reference solution
is obtained after solving the inhomogeneous system of equations (60)-(61) on a one-dimensional mesh of 15000
points in the radial intervalr ∈ [0; 1] using a classical second order TVD scheme [87] with a Rusanov-type numerical
flux. Third order accurate Lagrangian ADER-WENO schemes with time accurate local time stepping have been
used together with the Osher-type numerical flux (48) to compute the explosion problems EP1 and EP2. Figures 7-8
show a comparison between the numerical solution obtained with the Lagrangian LTS scheme and the 1D reference
solution. As for the Riemann problems presented in the previous section, one can appreciate the very good resolution
of the contact wave in the density distribution and a good agreement with the reference solution is achieved also for
horizontal velocity and pressure. We point out that EP2 is more challenging than EP1 because it involves a strong
shock wave which causes a high compression of some elements in the mesh, as clearly depicted in Figure 9. By using
the LTS approach we can avoid that those small triangles dictate the timestep for the entire mesh, hence allowing the
other control volumes to reach the end of the simulation muchfaster and with a lower number of element updates, as
highlighted in Table 5.

The numerical simulation of many important phenomena arising in science and engineering typically requires
the use of non-uniform computational grids with small elements clustered in some portions of the computational
domain. In such circumstances, the use of a classical globaltime stepping algorithm would slow down the computation
severely, since the smallest element of the mesh reduces theadmissible timestep for the entire grid. Within the Eulerian
framework on Cartesian grids, such a problem can be conveniently circumvented by resorting to Adaptive-Mesh-
Refinement (AMR) with local time stepping, see e.g. [8, 7, 4, 3, 14, 45, 39, 91]. There, the mesh is forced to refine
only when and where this is needed, while it is recoarsened assoon as the chosen refinement criterion is no longer
satisfied. An alternative option consists of preparing the computational mesh with alocal static refinement, which
will remain fixed during the evolution if an Eulerian approach is adopted, while it will respond to the dynamics of the
fluid if a Lagrangian framework is adopted, like in the present paper. In both cases, a local time stepping algorithm
would make a huge difference in terms of computational efficiency, avoiding large control volumes to be slowed down
by very small ones. Motivated by these considerations, we have run a modified version of the explosion problem EP1,
denoted as EP1∗, which uses the same initial conditions of the former, apartfor the meshm2, which has been built
with a local mesh refinement around the initial location of the discontinuity, i.e. atR = 0.5. More specifically, the
mesh size ish = 1/100 in the refined zone, and it grows with a growth rate ofs = 1.5 until h = 1/10, which is used
in the rest of the domain. Figure 10 shows the initial and the final configuration of the computational gridm2 as well
as a zoom onto the discontinuity. With this test problem we want to make another case for adopting the LTS approach
rather than the classical GTS algorithm, and the advantagesof the former can be easily deduced by looking at Table
5, where we compare the total number of element updates for each explosion problem needed to reach the final time
of the simulation.

Table 5: Comparison of the computational efficiency between GTS and LTS algorithm using the total number of element updates for EP1, EP2 and
EP1∗.

Number of element updates
Case GTS LTS GTS/LTS
EP1 30.804224· 106 12.206887· 106 2.52
EP2 181.412376· 106 38.274477· 106 4.74
EP1∗ 22.171520· 106 8.313123· 106 2.67
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Figure 7: Comparison between reference and third order accurate numerical solution for the explosion problem EP1. Density (top right), velocity
(bottom left) and pressure (bottom right) distribution areshown as well as a 3D view of the density solution at the final timet f = 0.25 (top left).
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Figure 8: Comparison between reference and third order accurate numerical solution for the explosion problem EP2. Density (top right), velocity
(bottom left) and pressure (bottom right) distribution areshown as well as a 3D view of the density solution at the final timet f = 0.012 (top left).
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Figure 9: Initial (left) and final (right) mesh configurationfor the explosion problem EP2. The strong shock generates a high compression of those
elements which follow the wave.

3.4. The Kidder problem

The Kidder problem is a classical benchmark problem for Lagrangian algorithms. It has been widely used in the
literature [69, 15] in order to assure that no spurious entropy is produced by the Lagrangian scheme. This test case
was first designed by Kidder in [61] and it consists of an isentropic compression of a portion of a shell filled with an
ideal gas. The shellΩ(0) is initially bounded byr i(t) ≤ r ≤ re(t), wherer =

√
x2 + y2 represents the general radial

coordinate whiler i(t), re(t) denote the time-dependent internal and external radius, respectively. The perfect gas is
initially assigned with the following vector of primitive variablesU0:

U0 =



ρ0(r)
u0(r)
v0(r)
p0(r)


=



(
r2
e,0−r2

r2
e,0−r2

i,0
ρ
γ−1
i,0 +

r2−r2
i,0

r2
e,0−r2

e,0
ρ
γ−1
e,0

) 1
γ−1

0
0

s0ρ0(r)γ


, (62)

whereρi,0 = 1 andρe,0 = 2 are the initial values of density at the internal and the external frontier, respectively.
According to [69] the ratio of specific heats isγ = 2 and the initial entropy distributions0 is assumed to be uniform,
i.e. s0 =

p0

ρ
γ

0
= 1.

Sliding wall boundary conditions are imposed on the horizontal and vertical edges that bound the portion of
the shell, while on the internal and on the external frontierwe set a space-time dependent state, which is assigned
according to the exact solutionR(r, t) [61]. The analytical solution for the Kidder problem is given at the general time
t for a fluid particle initially located at radiusr as a function of the radius and of the homothety rateh(t), i.e.

R(r, t) = h(t)r, h(t) =

√
1− t2

τ2
, (63)

whereτ is the focalisation time

τ =

√√
γ − 1

2

(r2
e,0 − r2

i,0)

c2
e,0 − c2

i,0

(64)

with ci,e =

√
γ

pi,e

ρi,e
representing the internal and external sound speeds. Following [15, 69], the final time of the

simulation is chosen to bet f =
√

3
2 τ, so that the compression rate ish(t f ) = 0.5 and the exact solution is given by

23



Figure 10: Initial (top) and final (bottom) configuration of the gridm2 for the explosion problem EP1∗. A zoom of the mesh configuration across
the contact wave is shown on the right at timet = 0.0 (top) andt = 0.25 (bottom).
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the shell located within the interval 0.45 ≤ R ≤ 0.5. We use a fourth order accurate version of our new Lagrangian
ADER-WENO scheme with LTS using the Osher-type numerical flux (48). The results are depicted in Figure 11,
which shows the numerical solution for density at three different output timest = 0.0, t = 0.9 andt = t f . Moreover,
the evolution of the internal and external radius of the shell has been monitored during the simulation and Table 6
reports the absolute error|err| of the frontier positions, which is defined as the difference between the analytical and
the numerical location of the internal and external radius at the final time.

Figure 11: Fourth order accurate density distribution for the Kidder problem at the initial timet = 0.0 (top left), att = 0.9 (top right) and at the
final time t = t f (bottom left). The evolution of the internal and external radius of the shell is also shown (bottom right) and compared with the
analytical solution.

3.5. The Saltzman problem

Another classical test case for Lagrangian gas dynamics is the Saltzman problem, which was presented for the
first time by Dukowicz et al. in [35] for a two-dimensional Cartesian grid that has been skewed in such a way that no
element edges are aligned with the main fluid flow. It is a very challenging test problem against which any Lagrangian
scheme ought to be validated [69, 64]. It involves a strong shock wave caused by a piston that is moving along the
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Table 6: Absolute error for the internal and external radiuslocation between exactRex and numericalRnum solution.

Rex Rnum |err|
Internal radius 0.45000000 0.44996063 3.94E-05
External radius 0.50000000 0.49930053 6.99E-04

main directionx of the initial rectangular domainΩ(0) = [0; 1] × [0; 0.1], which is initially discretized by 100× 10
squareelements. According to [69, 64], each element is then split into two right triangles, so that we obtain a total
number of elements ofNE = 2 · 100× 10 = 2000, and finally the following mapping is applied in order toskew the
mesh:

x′ = x+ (0.1− y) sin(πx) y′ = y, (65)

wherex = (x, y) represents the coordinate vector of the uniform grid, while x′ = (x′, y′) are the final skewed coordi-
nates. As done in [64] the fluid is initially at rest and is assigned an internal energye0 = 10−4 and a densityρ0 = 1,
hence the initial condition in terms of conserved variablesreadsQ0 = (ρ0, ρu0, ρv0, ρE0) =

(
1, 0, 0, 10−4

)
. According

to [64], the ratio of specific heats is set toγ = 5
3 and the final time is assumed to bet f = 0.6, while the piston is

moving with velocityvp = (1, 0) towards the right boundary of the domain. Moving slip wallboundary condition is
imposed on the piston, whereas fixed slip wall boundaries have been set on the remaining sides of the domain. As
fully explained in [10, 87], the exact solutionQex(x, t) is computed by solving a one-dimensional Riemann problem
and at the final timet f it is given by

Qex(x, t f ) =

{
(4, 1, 0, 2.5) if x ≤ xf ,(
1, 0, 0, 10−4

)
if x > xf ,

(66)

wherexf = 0.8 denotes the final shock location. The piston is moving very fast, so that the fluid next to the piston is
highly compressed and elements there must typically obey a severe CFL condition. In practice, we have to start the
simulation with CFL=0.1, hence using very small andglobal timesteps. After timet = 0.01 the numerical scheme
proceeds with the new time accuratelocal time steppingalgorithm described in this article. We have used the third
order version of our LTS Lagrangian ADER-WENO schemes and the very robust Rusanov-type numerical flux (46).
Figure 12 shows a comparison between the exact and the numerical solution for density and horizontal velocity at the
final time of the simulation for both the LTS and the GTS version of our algorithm, while the initial and the final mesh
configurations are depicted in Figure 13. An overall good agreement of the numerical solution with the exact solution
can be observed and the decrease of the density which occurs near the piston is due to the well knownwall-heating
problem, see [86]. Furthermore we point out that the results obtained with the LTS scheme given in the left column
of Figure 12 do not differ very much from the numerical solution obtained with global time stepping (GTS) shown in
the right column of Figure 12.

4. Conclusions

In this article we have presented a high order Lagrangian finite volume schemes with time-accurate local time
stepping (LTS) on moving unstructured triangular meshes. The numerical scheme is derived from [10, 38], where
a classical global time stepping approach is adopted, and from the recently developed one-dimensional high order
Lagrangian LTS numerical scheme [36]. In our approach the WENO reconstruction technique is used to achieve
high order of accuracy in space, while high order of accuracyin time is obtained via the local space-time Galerkin
predictor. The new algorithm illustrated in this article isbased on a non-conforming mesh in time, with hanging nodes
that are continuously moving and in principle never match the same time level, unless either an intermediate output
time or the final time of the simulation is reached. As a consequence, the reconstruction is carried out locally, i.e.
within each control volume, using a virtual geometry and a virtual set of cell averages of the surrounding elements
that are both computed using the high order space-time predictor solution. In order to develop a fully conservative
numerical scheme, the fluxes are evaluated relying on memoryvariables, which allow to record all fluxes accumulated
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Figure 12: Third order accurate numerical solution for the Saltzman problem at the final timet f = 0.6. Left panels: solution obtained with LTS.
Right panels: solution obtained with GTS.
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Figure 13: Initial and final mesh configuration for the Saltzman problem using the new LTS algorithm.

in the past within each control volume. Unlike the one-dimensional version of the algorithm presented in [36], on two-
dimensional unstructured meshes we need also to compute additional fluxes over triangular space-time sub-surfaces,
whenever an element performs the update timestep. This additional computational and algorithmic complexity is due
to the increased complexity of the topology of a 2D mesh, which consists in control volumes, edges and nodes. By
construction, our scheme is conservative and automatically satisfies the geometric conservation law (GCL) due to the
integration over a closed space-time control volume.

The algorithm has been applied to the Euler equations of compressible gas dynamics, solving a set of canonical
test problems and benchmarks for Lagrangian schemes. Furthermore convergence rates up to fourth order of accuracy
in space and in time have been shown.

Further work may contain the extension of the presented LTS algorithm to three space dimensions and non-
conservative hyperbolic balance laws as well as the implementation of a proper treatment for stiff source terms, hence
allowing the scheme to be applied to more complex systems of equations.
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[15] G. Carré, S. Del Pino, B. Després, and E. Labourasse. Acell-centered Lagrangian hydrodynamics scheme on generalunstructured meshes in
arbitrary dimension.Journal of Computational Physics, 228:5160–5183, 2009.

[16] C.E. Castro, M. Käser, and E.F. Toro. Space–time adaptive numerical methods for geophysical applications.Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 367:4613–4631, 2009.

[17] V. Casulli. A semi-implicit finite difference method for non-hydrostatic free-surface flows.International Journal for Numerical Methods in
Fluids, 30:425–440, 1999.

[18] V. Casulli. A semi–implicit numerical method for the free–surface Navier–Stokes equations.International Journal for Numerical Methods
in Fluids, 74:605–622, 2014.

[19] V. Casulli and G. S. Stelling. Semi-implicit subgrid modelling of three-dimensional free-surface flows.International Journal for Numerical
Methods in Fluids, 67:441–449, 2011.

[20] J. Cesenek, M. Feistauer, J. Horacek, V. Kucera, and J. Prokopova. Simulation of compressible viscous flow in time-dependent domains.
Applied Mathematics and Computation, 219:7139–7150, 2013.

[21] J. Cheng and C.W. Shu. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations.Journal of Compu-
tational Physics, 227:1567–1596, 2007.

[22] S. Clain, S. Diot, and R. Loubère. A high-order finite volume method for systems of conservation lawsmulti-dimensional optimal order
detection (mood).Journal of Computational Physics, 230:4028 – 4050, 2011.

[23] A. Claisse, B. Després, E.Labourasse, and F. Ledoux. Anew exceptional points method with application to cell-centered Lagrangian schemes
and curved meshes.Journal of Computational Physics, 231:4324–4354, 2012.

[24] B. Cockburn, G. E. Karniadakis, and C.W. Shu.Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering.
Springer, 2000.

[25] B. Després and C. Mazeran. Symmetrization of Lagrangian gas dynamic in dimension two and multimdimensional solvers. C.R. Mecanique,
331:475–480, 2003.

[26] B. Després and C. Mazeran. Lagrangian gas dynamics in two-dimensions and Lagrangian systems.Archive for Rational Mechanics and
Analysis, 178:327–372, 2005.

[27] S. Diot, S. Clain, and R. Loubère. Improved detection criteria for the multi-dimensional optimal order detection(MOOD) on unstructured
meshes with very high-order polynomials.Computers and Fluids, 64:43–63, 2012.

[28] V.A. Dobrev, T.E. Ellis, Tz.V. Kolev, and R.N. Rieben. Curvilinear Finite elements for Lagrangian hydrodynamics.International Journal for
Numerical Methods in Fluids, 65:1295–1310, 2011.

[29] V.A. Dobrev, T.E. Ellis, Tz.V. Kolev, and R.N. Rieben. High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics. SIAM
Journal on Scientific Computing, 34:606–641, 2012.

[30] V.A. Dobrev, T.E. Ellis, Tz.V. Kolev, and R.N. Rieben. High Order Curvilinear Finite Elements for axisymmetric Lagrangian Hydrodynamics.
Computers and Fluids, 83:58–69, 2013.

[31] V. Dolejsi. Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows.Communications in Computational
Physics, 4:231–274, 2008.

[32] V. Dolejsi and M. Feistauer. A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible
flow. Journal of Computational Physics, 198:727–746, 2004.

[33] V. Dolejsi, M. Feistauer, and J. Hozman. Analysis of semi-implicit DGFEM for nonlinear convection-diffusion problems on nonconforming
meshes.Computer Methods in Applied Mechanics and Engineering, 196:2813–2827, 2007.

[34] M. Dubiner. Spectral methods on triangles and other domains.Journal of Scientific Computing, 6:345–390, 1991.
[35] J.K. Dukovicz and B. Meltz. Vorticity errors in multidimensional lagrangian codes.Journal of Computational Physics, 99:115 – 134, 1992.
[36] M. Dumbser. Arbitrary-Lagrangian-Eulerian ADER-WENO Finite Volume Schemes with Time-Accurate Local Time Stepping for Hyper-

bolic Conservation Laws.Computational Methods in Applied Mechanics and Engineering, 280:57–83, 2014.
[37] M. Dumbser, D.S. Balsara, E.F. Toro, and C.-D. Munz. A unified framework for the construction of one-step finite volume and discontinuous

galerkin schemes on unstructured meshes.Journal of Computational Physics, 227:8209 – 8253, 2008.
[38] M. Dumbser and W. Boscheri. High-order unstructured Lagrangian one–step WENO finite volume schemes for non–conservative hyperbolic

systems: Applications to compressible multi–phase flows.Computers and Fluids, 86:405 – 432, 2013.
[39] M. Dumbser, A. Hidalgo, and O. Zanotti. High order space-time adaptive ADER-WENO finite volume schemes for non-conservative

hyperbolic systems.Computer Methods in Applied Mechanics and Engineering, 268:359–387, 2014.

29
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[42] M. Dumbser, M. Käser, and E. F. Toro. An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V:
Local time stepping andp-adaptivity. Geophysical Journal International, 171:695–717, 2007.

[43] M. Dumbser and E. F. Toro. On universal Osher–type schemes for general nonlinear hyperbolic conservation laws.Communications in
Computational Physics, 10:635–671, 2011.

[44] M. Dumbser, A. Uuriintsetseg, and O. Zanotti. On Arbitrary–Lagrangian–Eulerian One–Step WENO Schemes for Stiff Hyperbolic Balance
Laws. Communications in Computational Physics, 14:301–327, 2013.

[45] M. Dumbser, O. Zanotti, A. Hidalgo, and D. S. Balsara. ADER-WENO finite volume schemes with space-time adaptive meshrefinement.
Journal of Computational Physics, 248:257–286, 2013.

[46] M. Feistauer, J. Horacek, M. Ruzicka, and P. Svacek. Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees
of freedom.Computers and Fluids, 49:110–127, 2011.

[47] A. Ferrari, C.D. Munz, and B. Weigand. A high order sharpinterface method with local timestepping for compressiblemultiphase flows.
Communications in Computational Physics, 9:205–230, 2011.

[48] J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco, and L. Ziantz. Adaptive local refinement with octree load–balancing for the
parallel solution of three–dimensional conservation laws. Journal of Parallel and Distributed Computing, 47:139–152, 1997.

[49] M.M. Francois, M.J. Shashkov, T.O. Masser, and E.D. Dendy. A comparative study of multimaterial Lagrangian and Eulerian methods with
pressure relaxation.Computers and Fluids, 83:126–136, 2013.

[50] F.Vilar. Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics.Computers and Fluids, 64:64–
73, 2012.

[51] F.Vilar, P.H. Maire, and R. Abgrall. Cell-centered discontinuous Galerkin discretizations for two-dimensionalscalar conservation laws on
unstructured grids and for one-dimensional Lagrangian hydrodynamics.Computers and Fluids, 46(1):498–604, 2010.

[52] F.Vilar, P.H. Maire, and R. Abgrall. A discontinuous Galerkin discretization for solving the two-dimensional gasdynamics equations written
under total Lagrangian formulation on general unstructured grids.Journal of Computational Physics, 276:188–234, 2014.
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[60] M. Käser and A. Iske. ADER schemes on adaptive triangular meshes for scalar conservation laws.Journal of Computational Physics, 205:486

– 508, 2005.
[61] R.E. Kidder. Laser-driven compression of hollow shells: power requirements and stability limitations.Nucl. Fus., 1:3 – 14, 1976.
[62] L. Krivodonova. An efficient local time–stepping scheme for solution of nonlinearconservation laws.Journal of Computational Physics,

229:8537–8551, 2010.
[63] Z. Li, X. Yu, and Z. Jia. The cell–centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two dimensions.

Computers and Fluids, 96:152–164, 2014.
[64] W. Liu, J. Cheng, and C.W. Shu. High order conservative Lagrangian schemes with LaxWendroff type time discretization for the compressible

Euler equations.Journal of Computational Physics, 228:8872–8891, 2009.
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