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Abstract

In numerous applications, two–phase liquid–gas transport at sub–millimeter length
scales plays a substantial role in the determination of the behavior of the system at
hand. As its main application, the present work focuses on the polymer electrolyte
membrane (PEM) fuel cells. Desirable performance and operational life–time of this
class of high–throughput energy conversion devices requires an effective water manage-
ment, which per se relies on proper prediction of the water–air transport mechanisms.
Such two–phase flow involves interfacial forces and phenomena, like hysteresis, that are
associated with the physicochemical properties the liquid, gas, and if present, the solid
substrate. In this context, numerical modeling is a viable means to obtain valuable pre-
dictive understanding of the transport mechanisms, specially for cases that experimental
analyses are complicated and/or prohibitively expensive.
In this work, an efficient finite element/level–set framework is developed for three–
dimensional simulation of two–phase flow. In order to achieve a robust solver for prac-
tical applications, the physical complexities are consistently included and the involved
numerical issues are properly tackled; the pressure discontinuity at the liquid-gas inter-
face is consistently captured by utilizing an enriched finite element space. The method
is stabilized within the framework of variational multiscale stabilization technique. A
novel treatment is further proposed for the small–cut instability problem. It is shown
that the proposed model can provide accurate results minimizing the spurious currents.
A robust technique is also developed in order to filter out the possible noises in the
level–set field. It is shown that it is a key to prevent irregularities caused by the persis-
tent remnant of the spurious currents. It is shown how the well-established contact–line
models can be incorporated into the variational formulation. The importance of the
inclusion of the sub–elemental hydrodynamics is also elaborated. The results presented
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in the present work rely on the combination of the linearized molecular kinetic and the
hydrodynamic theories. Recalling the realistic behavior of liquids in contact with solid
substrates, the contact–angle hysteresis phenomenon is taken into account by impos-
ing a consistent pinning/unpinning mechanism developed within the framework of the
level–set method. Aside from the main developments, a novel technique is also proposed
to significantly improve the accuracy and minimize the the loss in the geometrical fea-
tures of the interface during the level–set convection based on the back and forth error
compensation correction (BFECC) algorithm.
Within the context of this thesis, the numerical model is validated for various cases of
gas bubble in a liquid and liquid droplets in a gas. For the latter scenario, besides free
droplets, the accuracy of the proposed numerical method is assessed for capturing the
dynamics droplets spreading on solid substrates. The performance of the model is then
analyzed for the capturing the configuration of a water droplet on an inclined substrate
in the presence the contact–angle hysteresis. The proposed method is finally employed
to simulate the dynamics of a water droplet confined in a gas channel and exposed to
air-flow.
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Chapter 1
Introduction

1.1 Application: Water Transport in Polymer Elec-
trolyte Membrane Fuel Cell

Modeling of two-phase flow of immiscible fluids has a large range of engineering appli-
cations, among others, water-oil flow in a reservoir [88], cavitation [40, 107], various
microfluidic applications [137], and liquid-gas flow in micro-channels [9, 41, 113, 126] as
well as porous [29] and fibrous [129] media. One of the recent applications where ac-
curate modeling of the two-phase flow is essential is the polymer electrolyte membrane
(PEM) fuel cell (also known as proton exchange membrane fuel cells) [4, 67, 156].
PEM fuel cells are modern energy conversion devices, known for their high efficiency
and eco-friendliness [8]. The by-product of PEM fuel cells fueled with hydrogen is
water and their efficiency is up to three times higher than that of high-temperature
combustion devices [86]. By producing hydrogen using water electrolysis, which utilizes
excess renewable energy, an emission-free transportation may be achieved. Nevertheless,
high cost and limited durability hinder the large-scale commercialization of PEM fuel
cells. In a PEM fuel cell, as depicted in Fig. 1.1, fuel (hydrogen) and oxidant (oxygen or
air) are fed in the gaseous state through the Gas Channels (GC). The chemical reaction
takes place and electrical current is produced once the fuel and oxidant molecules reach
the platinum Catalyst Layer (CL), where a chemical reaction takes place. Polymer
Electrolyte/Proton Exchange Membrane (PEM) ensures the conductivity of hydrogen
protons, while it is practically impermeable to the electrons [91]. Despite the promising
potential of PEM fuel cells to become one of the main sources of clean energy for
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Figure 1.1: Schematic of a PEM fuel cell.

transportation purposes [25], their usage is still hindered by their durability [44].
The performance of a fuel cell is usually measured in term of voltage losses; at low
and moderate currents, kinetic and ohmic losses dominate. On the other hand, at high
currents, the main factor in reducing efficiency is the so-called mass transport loss that
is due to the accumulation of by-product water. This trapped water blocks the access
of air to the reaction site [135]. Therefore, the so-called “water management” [53, 87]
is among the challenging issues that directly affect the performance and durability of
PEM fuel cells.
Efficient water management requires the evacuation of the water droplets that break-
through the outer face of the gas diffusion layer (GDL) into the gas channel (GC) [85]
(see Fig. 1.2). This evacuation is mediated by the air flowing in the GC at the cathode.
Thus, particular attention should be paid to the prediction of the droplet detachment
conditions, which, in turn, lead to insights regarding the efficiency of water evacuation
for a given operation regime. In this context, the analysis of the dynamics of water
droplets confined in the GC is of main importance [139], which requires the incorpora-
tion of the complex wettability characteristics of the outer face of the GDL [69, 156].
In such analyses, besides the experimental investigations and deliberate measurements
and/or visualizations, numerical modelling can be acquired as a viable means to provide
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(a) (b)

Figure 1.2: a) Schematic of water transport in the cathode of PEM fuel cell. b) Distribution
of liquid water in a GDL [19].

fundamental understanding of the phenomena.
In order to obtain desirably accurate results using a numerical method, however, one
needs to suitably treat the jump in the material properties at the liquid-gas interface
and incorporate the capillary forces. Moreover, once the liquid-gas interface contacts a
solid substrate, special treatments are necessary to adequately address the contact–line
dynamics. These challenging issues are further elaborated in the following.

1.2 Challenges

1.2.1 Surface tension

In the modeling of surface tension dominated multi-phase flows, the accuracy, robust-
ness, and efficiency of the numerical methods are adversely affected by the principal role
of the surface tension [68]. In this context, the main challenge is to consistently repre-
sent the strong pressure discontinuity (jump) across the interface as well as the weak
discontinuity (in the pressure gradient) that is associated with the jump in density.
Moreover, accurate representation of these discontinuities are affecting the shape and
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Figure 1.3: Spurious currents around a neutrally buoyant droplet at equilibrium [58].

position of the liquid-gas interface and vice versa. These aspects are particularly chal-
lenging since the mesh-based numerical methods are conventionally developed to model
continuous fields inside a computational cell. Any inconsistency between the modeled
surface tension and the pressure jump leads to large non-physical spurious (parasitic)
currents [46, 94] as shown in Fig. 1.3.

1.2.2 Contact–line Dynamics

In the modeling of phenomena associated with the multi-phase flow in the presence of
a solid substrate, one of the major challenges is to deal with the moving boundary of
the three-phase (gas/liquid/solid) interface, the so–called “contact–line”, using an ap-
propriate condition [13, 112, 115]. Upon the disturbance of the equilibrium condition
of a droplet laying on a solid substrate, unbalanced interfacial forces actively move the
contact–line until a new equilibrium is achieved. During this transition, the wetting
(dewetting) process is defined as the spreading (contraction) of the contact–line. Wet-
ting, or generally the dynamics of the contact–line [110], cannot be adequately described
using Young’s relation [56, 147] since its usage is limited to the static equilibrium con-
dition. Figure 1.4 presents a graphical description of the contact–line dynamics for a
spreading droplet (see [112] for the detailed description of the phenomena).
Theoretical investigations of the movement of the contact-line [37, 63] imply that the
classical continuum-level hydrodynamics along with the conventional no-slip condition at
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Figure 1.4: Qualitative description of the contact–line dynamics during droplet spreading.

the solid surface lead to an unbounded velocity gradient and consequently a singularity
in the stress at the contact-line. The conventional approach to alleviate this singularity
is to take into account a slip condition in the vicinity of the contact-line [61, 62], for
which there is also some evidence from molecular dynamics [96, 97, 130].
Employing the slip condition in the context of the continuum hydrodynamics [73] al-
lows for a theoretical solution for the viscous bending phenomenon and leads to the
well-established Cox’s relation [27], which gives a correlation between the apparent
macroscopic contact-angle and the microscopic contact-angle. More recently, it was
shown that alleviating the stress singularity can result in a complement to the hydro-
dynamic theory; Zhang and Mohseni [152] explored the possibility of integrating the
singular stress in the close vicinity of the contact-line in order to obtain a model for the
dynamic microscopic contact-angle. Moreover, one can acquire the rolling motion of the
liquid instead of the slippage, thus, obtaining the interface formation theory [111].
Besides the hydrodynamic theory that focuses on the phenomena at the continuum
level, molecular kinetic theory [12, 155] has also been acquired to derive a model for
the moving contact-line. It was shown that the resulting model is consistent with the
results of the molecular dynamic simulations [11, 31]. Both the Cox’s relation and the
molecular kinetic model have been examined by fitting the experimentally observed
correlation between the contact-angle and the contact-line velocity [10, 89, 110].
It had been revealed that depending on the features of the set of experiments, one model
or another provides a better match [33, 82, 101]. This can be explained as a result of
the fact that the hydrodynamic theory accounts for the viscous dissipation while the
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molecular kinetic theory focuses on the energy dissipation in a very close vicinity of the
contact-line [110]. Thus, depending on the flow configuration and the velocity of the
contact-line, either of these mechanisms is dominant and the behavior can be better
characterized with the respective model. So far, due to the ambiguity in determining
the underlying physics and the lack of a systematic approach to determine constitutive
parameters [103, 152], it is not a straightforward task to decide which theory (and the
resulting) model is generally superior. Therefore, in order to exploit the pros of both
the theories, combined models were proposed [16, 32, 34, 90, 92], in which the frictional
contact-line slip is taken into account as well as the viscous dissipation. Moreover, recent
studies [42, 71] have revealed that without such a combination, the modeling would be
deficient.

Realistic Solid Contact

One of the major complexities associated with the modeling of droplet spreading in
real–life applications, is the contact–angle hysteresis [38]. Specifically for the analysis
of droplet dynamics in GC of PEM fuel cells, it is essential to incorporate a dynamic
(non–static) contact–angle [5, 128] along with the prerequisites of the hysteresis phe-
nomenon [153]. This requirement particularly arises from the physicochemical properties
of the fibrous substrate formed by the face of GDL [48].
Hysteresis is associated with the pinning of the contact–line [30] and characterized
by receding and advancing contact–angles [47], which are linked to the dewetting and
wetting processes, respectively. This phenomenon is basically caused by the chemical
properties [39], or more accurately by the heterogeneity [15, 59] in the properties of
the solid substrate that comes into contact with the gas and liquid phases. Surface
roughness is also a determining factor causing a dramatic variation in the contact–angle
hysteresis [99].
In order to successfully perform numerical simulation of droplets in contact with solid
substrates, the above–mentioned phenomena should be consistently incorporated in the
computational model of the two–phase flow.

1.3 State of the Art Techniques

In the following, the numerical techniques that are so far developed for modeling the
droplet dynamics are briefly reviewed.
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1.3.1 Simplified Models

The so-called “force balance” models [74] constitute the simplest approach for the analy-
sis of the droplet configuration. With the aim of estimating the detachment condition in
terms of the size of the droplet, the net force equilibrium is analytically computed [153].
Although the associated computational cost of such extremely simplified models is low,
they are only suitable for the qualitative study of detachment of an isolated droplet in
GC.
Simplified approaches have also been developed for the qualitative analysis of liquid
transport in porous (or fibrous) media; the class of pore-network models [51, 52, 114] can
be utilized to predict the spread of the liquid phase merely at the equilibrium conditions.
These approaches rely on the correlation between the pressure difference and the flow
rate in micro-throats [100, 154]. Besides the basic formulation, the simplifications can
also be imposed to the geometrical complexities [120] and/or the transient nature of the
transport mechanisms [84].
Nonetheless, in the present work, neither of such simplifications is utilized and a com-
putational fluid dynamics (CFD) model is developed that solves the Navier-Stokes equa-
tions for two-phase flow allowing the accurate capturing of the involved physical phe-
nomena. Another notable approach to performed a detailed simulation in the context
of multi–phase flow, but out of the scope of the present work, is the Lattice–Boltzmann
method [145].

1.3.2 Lagrangian Interface Tracking

In order to develop a numerical model for multi–phase flows, it is necessary to integrate
a mechanism to capture the interface between immiscible phases. Several approaches
have been developed that track the interface in the Lagrangian manner, i.e. relying
on a constantly deforming and/or moving computational mesh fitted to the evolving
interface. These class of methods include fully Lagrangian frameworks [80] and ar-
bitrary Lagrangian Eulerian (ALE) methods [132]. A embedded Lagrangian Eulerian
approach [105, 106] has also been recently developed and successfully applied to water–
air multi–phase flow inside GC [69, 77]. This method is based on a Lagrangian fluid
flow solver for the liquid phase (droplets), while the interacting gas flow is treated in
the Eulerian framework and solved on a fixed mesh.
The major difficulty with these methods crops up when one should deal with large
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and complex mesh deformations. In these cases, it is highly probable that the quality
of the computational mesh is deteriorated to an extent that the remeshing process
becomes necessary. Therefore, generally, the Lagrangian interface tracking is associated
with the computationally highly expensive remeshing techniques. Besides the cost,
such approaches lack a systematic methodology for taking into account the topological
changes in the interface. In other words, in order to recognize the interface once droplet
breakup and merging occur as well as during the movement of their contact–line with a
solid substrate, joining and/or separating the mesh nodes should be performed according
to some ad-hoc geometrical criteria. These difficulties hinders the usage of this class
of approaches for three–dimensional simulation of multi–phase transport phenomena in
complex geometrical configurations, which would require frequent costly remeshing and
dealing with ambiguities in the re-identification of the liquid–gas interface.

1.3.3 Fully Eulerian Approaches

Dropping the need for mesh deformation, and consequently the remeshing, fully Eule-
rian methods are more efficient than the above mentioned approaches for un–simplified,
namely “direct", numerical modeling. For capturing the evolution of the liquid–gas
interface on a fixed computational mesh, different techniques have so far been devel-
oped [127], However, the most robust and widely used techniques are the volume of
fluid method [60] and the Level-set method [123].
Due to its remarkable mass conservation property, the Volume-of-fluid (VOF) tech-
nique [60] has widely been used for CFD applications in the field of liquid–gas transport
problems [5, 41, 43, 72]. Nonetheless, by just providing the volume to volume ratio of the
phases in each computational cell, it is hardly possible to introduce a generic methodol-
ogy for efficient reproduction of the phase boundaries [50, 79]. Accurate representation
of the geometry of the liquid–gas interface is essential for the reliable calculation of the
interfacial forces. In this sense, the VOF technique is not a robust option for a detailed
analysis of the phenomena associated with the multi-phase transport in complex media.
The level-set method [123] is a viable alternative for the VOF technique in the context of
multi-phase flow simulation. This technique has also been widely utilized [3, 83, 119, 151]
to capture the phase boundaries in the liquid–gas flows. Instead of the volume ratio,
the level–set method translates the geometrical configuration of the interface into a con-
tinuous function, and therefore, greatly facilitates the calculation of the corresponding
geometrical data. Nonetheless, generally, the level–set method does not guarantee the
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mass conservation (keep phase volume constant in case of incompressible fluids) and
requires the implementation of an additional procedure to compensate for the mass
loss [49, 116, 146]. In some works, the VOF technique and the level–set method are
combined together [121, 122] in order to benefit from their specific properties. However,
there is always the risk of incompatibility between the outcome of these two different
techniques [93].
Here, it is also worth to mention the phase–field methods [65, 66] that are not classified
among the so–called "sharp–interface" capturing techniques. Although the phase–field
methods can be a means to circumvent difficulties associated with choosing the adequate
model for contact–line dynamics [148], they require an extremely refined mesh in the
vicinity of the liquid-gas interface. This leads to prohibitively high computational costs
especially in three–dimensional simulations. Nevertheless, this class of methods is out
of the scope of the current work and would not be further discussed here.

Surface Tension Treatment

Solving the momentum equation on a fixed computational mesh, one of the main diffi-
culties in the fully Eulerian methods is associated with the imposition of the interfacial
conditions, e.g. surface tension; the computational cells that form the discretized do-
main are cut by the phase interface at arbitrary locations, while the flow field is generally
continuous inside each cell.
The most common approach to tackle this difficulty is the so-called “continuum surface
force” model [14], which is based on the substitution of the interfacial condition by
its numerical approximation as a smoothed body force [21, 125, 133]. In other words,
the physically localized surface tension is represented by a body force smoothed over a
support domain spread across several computational cells and constitute the transition
from the liquid to the gas phase. Therefore, the numerical error can be minimized by
narrowing this support domain, which requires utilizing a highly refined mesh adjacent
to the interface. Especially for three-dimensional simulations or in cases that involve
geometrical complexities, such adaptive mesh refinement leads to a high computational
cost. Some ad hoc techniques have also been proposed to circumvent this issue, such as
the ghost fluid method [70, 75] and the sharp interface method [124].
More important than the smoothing error, however, is that the continuum surface force
model is incapable of providing a consistent balance between the implemented surface
tension and the pressure gradient, or jump in physically consistent model. This issue
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leads to significantly large non-physical parasitic velocities called “spurious currents” [94].
In order to resolve this shortcoming, different approaches has so far been proposed such
as the cut finite element method [57] and the balanced force approach [1, 45, 140]. These
techniques can effectively suppress the spurious currents.
The above–mentioned issues can also be resolved using the class of finite element based
techniques that tackle the discontinuities via enriching the generally continuous space [7,
22, 54, 81]. These methods can robustly capture the weak (jump in the gradient) and/or
strong (jump in the variable) discontinuities that are internal to the computational
elements. If the enrichment is done locally at the level of the (cut) elements, the method
is called the enriched finite element method [64]. On the other hand, in the so-called
“extended finite element” methods [22], the enrichment is associated with the nodes.
One of the main advantages of utilizing the enriched finite element method is that it
lets one perform a static condensation step to avoid adding new degrees of freedoms and
thus, minimize the computational costs associated with the enriched approximation of
the discontinuous variable at the cut.
In the context of two–phase flows, Coppola-Owen and Codina [26] proposed an enriched
finite element method for an accurate capturing of the weak pressure discontinuity, i.e.
a jump in the pressure gradient. They showed that such enrichment effectively resolves
the spurious currents that are typically observed in the presence of gravity, due to the
jump in the density at the phase interface. More recently, an enriched finite element
space was proposed by Ausas et al. [6] that is capable of capturing the strong pressure
discontinuity (jump) across the interface. This enriched finite element space has already
been successfully employed for the numerical simulation of surface–tension dominated
two–phase flows [17].

Contact–line Dynamics

The commonly used approach for the numerical modeling of the contact–line dynamics
is the so–called “generalized Navier–slip condition” [95, 98], which combines the Navier–
slip condition on the solid substrate with a friction force proportional to the velocity
of the contact–line. Its thermodynamic consistency [103, 104] and agreement with the
molecular dynamic simulation of the wetting dynamics [102] has already been shown.
Being utilized in various numerical techniques [55, 78, 142, 143, 151], it comprises the
state–of–the–art in the numerical modeling of the moving contact–line. Alternatively,
one can impose the standard Navier–slip condition and directly employ a friction force
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at the contact–line [77].
Nevertheless, The majority of the numerical models that are developed for address-
ing the dynamics of the contact–line suffer from severe mesh–dependence of the re-
sults [108, 136]. This issue is rooted in two defects of the conventional approaches.
Using the meshes of a finite size, which is comparable to the macroscopic length–scale
of the problem, it is impossible to fully resolve the hydrodynamics in the “small–scale”
vicinity of the contact–line. Even though this unresolved length–scale is far larger than
the molecular length–scale, it is still non-resolvable using the common computational
meshes [35, 118]. This can however be solved by incorporation of the hydrodynamic
theory [2, 76, 144]. The second defect is the representation of the interfacial forces as a
smoothed body force [141, 151], which is an essential ingredient of the commonly utilized
continuum force approach. In this way, one needs to do excessive mesh refinements in the
vicinity of the interface to minimize its “artificial thickness”, which is usually supported
by a few layers of computational cells.
Another class of methods were also developed that rely on the diffusive, in contrast
to the convective, movement of the contact–line [150]. Notable methods in this class
are the diffuse interface methods [66, 117, 149]. No further details about this class of
methods will be presented here since these methods are out of the scope of the present
work.

1.4 Outline of Present Work

In this work, the weak and strong pressure discontinuities across the phase interface are
captured using a new enriched finite element space and in order to deal with small–
cut instabilities, a specific stabilization term is introduced besides those corresponding
to the variational multiscale stabilization [24]. Within the framework of the proposed
numerical method, the perfectly sharp interface is treated as a zero–thickness surface.
The evolution of the phase interface is captured using the level–set method and the
noises are are filtered out by solving an artificial diffusion equation [131] complemented
by a correction [134] step. The consistency of this noise filtering technique, especially for
cases with a solid contact, is maintained by introduction of the appropriate boundary
conditions.
In order to capture the contact–line dynamics, the molecular kinetic model is incorpo-
rated into the variational formulation [18] of the method. The sub–elemental variation
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in the contact–angle is also taken into account via the simplified form of Cox’s rela-
tion [27]. The stress singularity is circumvented by employing the Navier–slip condition
on the solid substrate. Similar to the phase interface, the contact–line is represented by
a (zero–thickness) curve. Finally, the proposed numerical method is further developed
by implementing a contact–line pinning mechanism, which underlies the contact–angle
hysteresis phenomenon.
In the following, Chapter 2 encloses the elaboration of the proposed enriched finite
element method, its stabilization, and the essential requirements of the level–set method,
e.g. the noise filtering technique. In Chapter 3, the basics of the incorporation of
the contact–line dynamics are presented along with the validation tests. Chapter 4 is
dedicated to the incorporation of the contact–angle hysteresis. In Appendix A, a side
achievements of the present work is presented; namely, an accurate method for the
level–set convection. This latter ingredient is beneficial for a significantly more accurate
capturing of the evolution of the phase interface.



Chapter 2
Enriched Finite Element/Level–set
Framework

2.1 Introduction

As the first step to reach the goal of the present work, in this chapter, the creation of
the enriched finite element space, based on the shape functions of the standard finite
element space, is described. The proposed method is stabilized within the framework
of the variational multiscale approach [24]. Moreover, in order to tackle the small–cut
instabilities, the condition of the enrichment matrix, whose inverse is involved in the
static condensation procedure, is improved. Besides the enriched finite element method,
the level–set method is described in this chapter as a means to capture the evolution of
the phase interface. A specific noise reduction technique is further proposed to regularize
the level–set function in cases of a dominant surface tension. The above–mentioned
aspects of the present work are enclosed in the following publication.

2.2 Article data
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Abstract

A finite element method is introduced to simulate surface tension dominated
flow of two immiscible fluids featuring an enriched space for capturing both
strong and weak pressure discontinuities. The proposed enriched finite ele-
ment space is created utilizing the standard finite element shape functions.
Discontinuities are captured by adding merely one additional degree of free-
dom per each node of the elements cut by the interface. Being local to
the cut elements, these additional degrees of freedom are eliminated before
assembling the global system of equations following a condensation proce-
dure. The method is stabilized introducing a procedure for improving the
conditioning of the enriched pressure contribution to the stiffness matrix in
small-cut situations. An improved smoothing strategy based on an artificial
diffusion equation is proposed to enhance the performance of the method
on rather coarse meshes. A series of three-dimensional two-phase fluid flow
benchmarks are solved to assess the performance of the method. Particular
attention is paid to surface tension dominated cases. The method is ver-
ified by showing its accuracy in capturing strong pressure discontinuity at
the interface of a spherical droplet as well as its capability in handling large
pressure gradient discontinuity in a hydrostatic liquid-gas container. The
method is further validated by simulating oscillations of a slightly disturbed
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spherical droplet. The mass conservation property of the method and the
effect of the smoothing procedure on the result is assessed by simulating the
oscillations of a prolate droplet. Ultimately, the method is tested in a more
challenging setting by simulating the rising gas bubble inside a liquid domain.

Keywords: Two-phase flow, Surface tension, Stabilized enriched FEM,
Strong and weak Pressure discontinuities, Microfluidics, Droplets

1. Introduction1

Numerical simulation of two-phase flow of immiscible fluids has become2

an attractive research topic due to the large range of engineering applications3

that involve this phenomenon. Among others, these include e.g. water-oil4

flow in a reservoir [1], cavitation [2, 3], various microfluidic applications [4]5

and liquid-gas flow in micro-channels [5, 6]. One of the recent applications6

where accurate modeling of the two-phase flow is essential is the polymer elec-7

trolyte membrane (PEM) fuel cell, an efficient eco-friendly energy conversion8

device [7]; developing a numerical tool capable of accurately predicting the9

excessive liquid water evacuation through the diffusion layer and eventually10

gas channels of PEM fuel cells can be seen as a basic prerequisite to mak-11

ing an important technological advancement, since inadequate evacuation of12

liquid water strongly limits the efficiency and durability of the cells [8].13

In the above-mentioned applications however, the accuracy, robustness,14

and efficiency of the numerical methods are adversely affected by the prin-15

cipal role of the surface tension [9]. Unfortunately, the existing commercial16

and open-source general purpose computational fluid dynamics solvers rarely17

offer a ready-to-use option to simulate surface tension dominated multi-phase18

flows.19

In the numerical simulation of surface tension dominated flows, the main20

challenge is to consistently represent the strong pressure discontinuity (jump)21

across the interface as well as the weak discontinuity in the pressure gradient22

that is associated with the jump in density. Moreover, accurate represen-23

tation of these discontinuities are affecting the shape and position of the24

liquid-gas interface and vice versa. These aspects are particularly challeng-25

ing since the mesh-based numerical methods are conventionally developed26

to model continuous fields inside a computational cell. In order to over-27

come this shortcoming, several approaches, in which the interface is defined28

by the moving computational mesh were developed. These include a fully29
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Lagrangian approach [10], an Arbitrary Lagrangian Eulerian method [11],30

and the Embedded Lagrangian Eulerian method [12]. However, when deal-31

ing with large complex interface deformations, the computationally costly32

remeshing process is unavoidable. Moreover, in such frameworks there exist33

no general criteria for the re-identification of the interface once a topological34

change takes place, i.e. ad-hoc geometrical criteria are required to join or35

separate nodes during the breakup and merging of the phase domains as well36

as the contact with a solid surface.37

On the other hand, fixed-mesh Eulerian methods are more efficient in the38

sense that remeshing is unnecessary. Moreover, the mesh quality is always39

maintained. However, since the interface generally cuts the computational40

cells in arbitrary locations, one needs to develop special strategies for dealing41

with the surface tension.42

Within the framework of Eulerian methods, the most commonly used43

approach is the so-called “continuum surface force” model [13], which re-44

lies on representing surface tension as a smoothed body force. In order to45

minimize the smoothing error in this approach, the support domain that is46

generally chosen to be several cells long should be as narrow as possible.47

Evidently, this technique, needs a highly refined mesh in the vicinity of the48

interface. Moreover, this technique results in an inconsistency between the49

modeled surface tension and the pressure jump that in turn leads to large50

non-physical spurious (parasitic) currents [14]. These issues have been ad-51

dressed in various publications. The ghost fluid method [15, 16], and the52

sharp interface method [17] were introduced to resolve the smoothing er-53

ror while the balanced force approach [18, 19, 20] was proposed to suppress54

the spurious currents. The manipulated finite element space proposed by55

Ausas et al. [21] and the cut finite element method [22] are also among the56

alternative approaches.57

Besides the above-mentioned methods, there is a class of techniques aim-58

ing at capturing intra-element discontinuities through enriching the approx-59

imation of variables within the framework of the finite element method [23,60

24, 25]. This enrichment can either be associated with nodes resulting in the61

so-called “extended finite element method” [24] or be local to the elements62

cut by the interface. This latter option is the basis of the so-called “en-63

riched finite element method” [26]. In the enriched finite element method,64

one can utilize a static condensation to eliminate the additional (enriched)65

degrees of freedom and consequently enhance the efficiency of the computa-66

tions. Coppola-Owen and Codina [27] introduced an enriched finite element67
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method for two-phase flows with a density jump at the interface and con-68

sequently a weak pressure (gradient) discontinuity due to the jump in the69

gravitational forces. They reported that using the enriched finite element70

space to represent the discontinuity in the pressure gradient, the spurious71

currents are significantly reduced. Later, Ausas et al. [28] proposed another72

enriched finite element space to capture the strong pressure discontinuity73

across the interface. This enriched pressure space was being successfully74

applied to the simulation of two-phase liquid-gas capillary flow [29].75

In the present work, a new enriched finite element space is introduced76

that can capture both the strong and weak pressure discontinuities. This77

enriched space is created based on the shape functions of the standard finite78

element space. Moreover, the proposed enriched finite element method is79

stabilized within the framework of variational multiscale approach [30]. A80

stabilization procedure is also introduced to maintain the stiffness matrix81

well-conditioned during the condensation process.82

In addition to the challenge in the implementation of the surface tension83

effect, unlike the Lagrangian methods, a robust interface capturing technique84

is also an essential need for a fixed-mesh Eulerian method. There are a85

number of approaches for this aim [31]; among them the volume of fluid86

method [32] and the Level-set method [33] are the most established ones.87

The level-set method is the natural choice to be used in conjunction with88

the finite element method since it produces a smooth function representing89

the interface, which can be directly employed to calculate the curvature.90

Nevertheless, a rather large surface tension can disturb this notable feature91

by introducing noise. This can be cured by either increasing the temporal92

and spatial resolutions [34] or using a smoothing procedure [35, 36]. In93

the present work, the artificial diffusion equation proposed by Tornberg and94

Engquist [36] is used. However, this process is known to result in spurious95

shrinkage, i.e. a non-physical volume-loss, in case the level-set function is96

substituted by the smoothed function. In order to alleviate this issue in97

the present work, this smoothing technique is improved borrowing the idea98

originally proposed for the Laplacian surface smoothing [37].99

In the following sections, first, the pressure enriched finite element space100

and the stabilization technique is discussed. The implemented interface cap-101

turing technique, i.e. the level-set method along with the smoothing proce-102

dure, is then presented. In section 3, verification and validation test-cases are103

reported. The paper ends with a summary and several concluding remarks.104
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2. Numerical Method105

2.1. Governing Equations106

Complying with the continuum condition, fluid flow is governed by mo-107

mentum conservation equation,108

ρ

(
∂u

∂t
+ u · ∇u

)
= ρb +∇ · σ in Ω, (1)

and the mass conservation equation,109

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0 in Ω, (2)

where ρ is density, b is the body force, and u denotes velocity vector. It110

should be noted that for an incompressible homogeneous single-fluid, Eq. (2)111

reduces to ∇ · u = 0. Fluid domain Ω ⊂ Rd is bounded by ∂Ω ⊂ Rd−1. For112

a Newtonian fluid total stress tensor is obtained as113

σ = −pI + µ
(
∇u +∇uT

)
, (3)

where µ is viscosity, p is pressure, and I denotes the identity tensor. Equa-114

tions (1) and (2) are subject to initial condition115

u(x, 0) = u0 in Ω, (4)

as well as Dirichlet116

u(x, t) = uD on ∂ΩD, (5)

and Neumann117

t(x, t) = tN on ∂ΩN , (6)

boundary conditions with the initial velocity field u0 and traction vector118

t = n · σ, where n denotes the outward normal vector to ∂Ω.119

2.1.1. Two-phase Flow120

The aim of the present work is to develop a numerical method to simulate121

two-phase (more specifically liquid-gas) flow. Considering two immiscible122

fluids, one can distinguish subdomains Ω1 and Ω2, which are occupied by123

fluid 1 and fluid 2, respectively, with Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. These124
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two domains are recognized by specific properties of the occupying fluid,125

(ρ1, µ1) and (ρ2, µ2). At the fluids interface Γ = ∂Ω1 ∩ ∂Ω2,126

Ju(x, t)K = 0 on Γ (7)

ensures the velocity continuity. Surface tension is included as127

Jt(x, t)K = −γκn on Γ, (8)

with surface tension coefficient γ, interface curvature κ, and non Γ being the128

outward unit normal to ∂Ω1.129

2.2. Variational Formulation130

Considering test functions w ∈ V(Ω) vanishing at ∂ΩD and q ∈ Q(Ω)131

for the momentum and continuity equations, respectively, one obtains the132

variational form of Eqs. (1) and (2) as133

∫

Ω

ρ

(
∂u

∂t
+ u · ∇u

)
·wdΩ =

∫

Ω

ρb ·wdΩ +

∫

Ω

(∇ · σ) ·wdΩ (9)

and134 ∫

Ω

qρ (∇ · u) dΩ = 0, (10)

where V(Ω) ⊂ [H1(Ω)]
d
, Q(Ω) ⊂ L2(Ω). Rewriting Eq. (9) using integration135

by parts for the stress term, one obtains136

∫

Ω

ρ

(
∂u

∂t
+ u · ∇u

)
·wdΩ =

∫

Ω

ρb ·wdΩ +

∫

Ω

∇ · (σ ·w) dΩ

−
∫

Ω

σ ..∇wdΩ (11)

Expanding stress for a Newtonian fluid (Eq. (3)), on obtains137

∫

Ω

ρ

(
∂u

∂t
+ u · ∇u

)
·wdΩ =

∫

Ω

ρb ·wdΩ +

∫

Ω

p∇ ·wdΩ

−
∫

Ω

µ
(
∇u +∇uT

) ..∇wdΩ +

∫

∂Ω

t ·wd(∂Ω). (12)

Using the finite element method (FEM), equation set (12) is discretized138

on each element Ωe, and then summed up over the entire computational139
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Figure 1: Schematic of two-fluid discretized domain, Ωe
1, Ωe

2, and Γe. Continuum domains
are marked by Ω1 and Ω2.

(discretized) fluid domain Ωd in order to obtain an assembled system of140

equations. The schematic of the domains is illustrated in Fig. 1. It is evident141

that by using linear elements, discretized interface Γd is constructed by line142

segment Γe in 2D (flat surface Γe in 3D). In the following, subscript d is143

omitted and the same notation is used for both the continuum and discretized144

domains.145

For internal elements that are not cut by the interface, the surface integral146

on the right-hand side of Eq. (12) is canceled out by assembling the equations147

over the set of neighboring elements. Nevertheless, this integral must be148

calculated on ∂ΩN and Γ to give149

∫

Ω

ρ

(
∂u

∂t
+ u · ∇u

)
·wdΩ =

∫

Ω

ρb ·wdΩ−
∫

Ω

µ
(
∇u +∇uT

) ..∇wdΩ

+

∫

Ω

p∇ ·wdΩ +

∫

∂Ω

tN ·wd(∂ΩN)−
∫

Γ

−γκn ·wdΓ. (13)

In this work, cut elements Ωe
c are split into Ωe

1 = Ωe
c ∩ Ω1 and Ωe

2 = Ωe
c ∩ Ω2150

as schematically shown in Fig. 2 for a possible case and therefore, the last151

term on the right-hand-side of Eq. (13) is directly calculated on Γe = Ωe
c ∩Γ.152

In this way, unlike the conventional continuum surface force approach [13],153

no smoothing error is introduced. It must be noted that this splitting is154

performed merely to facilitate the calculation of the integral terms in Eq. (13).155

In other words, variables are stored only at the nodes of the base element, Ωe
c,156

while pressure enrichment as described in section 2.2.1 is the key to handle157

the discontinuity across the interface.158
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(a) Ωe
c with Γe shaded (b) Ωe

1 (c) Ωe
2

Figure 2: Schematic of a possible cut in a tetrahedral element. Matching faces are marked
with the same color.

2.2.1. Enriched Finite Element Space159

Using the standard finite element approximation of variables, [uh, ph] ∈160

Vh×Qh, which is essentially continuous over the solution domain, the consis-161

tent representation of the discontinuity condition (8) is unfeasible. Precisely,162

the standard finite element space represents the discontinuity as a continuous163

variation with a sharp gradient in the vicinity of the cut. This shortcoming164

leads to severe spurious (parasitic) currents whenever γ 6= 0 is taken. In the165

present work, this issue is resolved by utilizing an enriched finite element166

space, Q = Qh ⊕ Qenr, for pressure. Denoting the standard finite element167

approximation by subscript h, for x inside a cut element, the approximated168

variables read169

ū(x, t) = uh(x, t), (14)

and170

p̄(x, t) = ph(x, t) + penr(x, t), (15)

where171

ph(x, t) =
∑

I∈N e
c

NI(x)pI(t), (16)

and172

penr(x, t) =
∑

I∈N e
c

N enr
I (x)penrI (t). (17)

For the sake of simplicity in the rest of this paper, the over-bar is omitted;173

i.e. u and p denote the approximated velocity and pressure, respectively.174

Here, N e
c is the set of all nodes of the cut element Ωe

c and NI(x) is the finite175
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(a) N1 (b) N2 (c) N3

Figure 3: Finite element shape functions. The interface is represented by line AB.

element shape function associated to node I. In this work, enriched shape176

function N enr
I is defined as177

N enr
I (x, t) =

1

2
H(x, t) (H(x, t)−H(xI , t))NI(x), (18)

where H(x, t) is defined as178

H(x, t) =

{
1 if φ(x, t) > 0

−1 if φ(x, t) ≤ 0
(19)

The standard and enriched shape functions are illustrated in Figs. 3 and 4,179

respectively. For more simplicity in these illustrations, a 2D linear trian-180

gular element is presented. It is easy to show that using these enriched181

shape functions, p(xI , t) = ph(xI , t). The proposed choice of N enr allows182

using the existing standard shape functions to construct the discontinuous183

enriched space. Another beneficial feature is that the jump in the pressure184

field and the difference in the pressure gradient across the interface are ef-185

ficiently represented by introducing three (four in case of 3D tetrahedral186

element) additional degrees of freedom, penrI , for each element cut by the in-187

terface. In this way, penr and qenr ∈ Qenr can be introduced to complement188

ph and qh ∈ Qh, respectively. Theses additional degrees of freedoms, penrI , are189

local and hence can be eliminated from the system of equations following the190

condensation procedure elaborated in section 2.2.3. It is also worth to note191

that for incompressible Newtonian two-phase systems, e.g. water-air flow,192

pressure dominates the normal stress force, t · n, acting on the interface. In193
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(a) Nenr
1 (b) Nenr

2 (c) Nenr
3

Figure 4: Enriched shape functions. The interface is represented by line AB.

this sense, satisfactory results can be obtained without acquiring an enriched194

velocity field.195

2.2.2. Stabilization196

In the present work, P1 − P1 elements are utilized and the numeri-197

cal method is stabilized within the Variational Multi-Scale (VMS) frame-198

work [30]. Approximating [u, p] using elements of a finite size, the numerical199

method is unable to resolve the physics at the spatial scale smaller than the200

element-size. The idea of VMS is to include the unresolved contributions201

known as “sub-scales” in the variational formulation [38]. Denoting these202

sub-scale by subscript s, one can write203

u = uh + us, (20)

and204

p = ph + penr + ps. (21)
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Substituting the complemented velocity (2.2.2) and pressure (21) into Eq. (13)205

and summing up the variational form of continuity equation (10) give206

−
∫

Ω

ρ

(
∂uh

∂t
+ u · ∇uh

)
·wdΩ−

∫

Ω

ρ

(
∂us

∂t
+ u · ∇us

)
·wdΩ

+

∫

Ω

ρb ·wdΩ +

∫

Ω

(ph + ps + penr)∇ ·wdΩ−
∫

Γ

−γκn ·wdΓ

−
∫

Ω

µ
(
∇uh +∇uT

h

) ..∇wdΩ−
∫

Ω

µ
(
∇us +∇uT

s

) ..∇wdΩ

+

∫

∂Ω

tN ·wd(∂ΩN) +

∫

Ω

(q + qenr) ρ [∇ · (uh + us)] dΩ = 0 (22)

It is worth to note that us and ps are zero on boundary ∂Ω and thus, the207

corresponding surface integral terms are omitted. Noting that208

∫

Ω

ρ (u · ∇us) ·wdΩ =

∫

Ω

ρ∇ · [u (us ·w)] dΩ−
∫

Ω

ρu · (∇w · us) dΩ

−
∫

Ω

ρ (∇ · u) · (w · us) dΩ, (23)

and the fact that us can be considered a static variable (∂us/∂t ≈ 0), the209

following form of Eq. (22) is obtained.210

−
∫

Ω

ρ

(
∂uh

∂t
+ u · ∇uh

)
·wdΩ +

∫

Ω

ρu · (∇w · us) dΩ +

∫

Ω

ρ (∇ · u) · (w · us) dΩ

+

∫

Ω

ρb ·wdΩ +

∫

Ω

(ph + ps + penr)∇ ·wdΩ−
∫

Γ

−γκn ·wdΓ

−
∫

Ω

µ
(
∇uh +∇uT

h

) ..∇wdΩ−
∫

Ω

µ
(
∇us +∇uT

s

) ..∇wdΩ

+

∫

∂Ω

tN ·wd(∂ΩN) +

∫

Ω

(q + qenr) ρ [∇ · (uh + us)] dΩ = 0 (24)

In the present work, the algebraic sub-grid scale technique [39, 40] is211

chosen to model the sub-scales us and ps as212

us(uh, ph, p
enr) = τ1r

m(uh, ph, p
enr), (25)

and213

ps(uh) = τ2r
c(uh), (26)
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where residuals of the momentum and continuity equations are214

rm(uh, ph, p
enr) = ρb− ρ

(
∂uh

∂t
+ u · ∇uh

)
+∇ph

+∇penr −∇ ·
[
µ
(
∇uh +∇uT

h

)]
, (27)

and215

rc(uh) = −ρ∇ · uh, (28)

respectively. In Eqs. (25) and (26),216

τ1 =

(
ρ

∆t
+
c1µ

h2
e

+
c2ρ‖u‖
he

)−1

(29)

and217

τ2 =
h2
e

c1τ1

(30)

are constant stabilization coefficients with he denoting an average element218

size, c1 = 4, and c2 = 2. For a linear element, the viscous stress term on the219

right-hand-side of Eq. (27) vanishes. Using integration by parts and taking220

into account that us is essentially zero on the boundary, one can write221

∫

Ω

(q + qenr) ρ (∇ · us) dΩ = −
∫

Ω

∇ (q + qenr) · (ρus) dΩ (31)

Using Eqs. (25) and (26) in Eq. (24), the residual of the variational formula-222

tion is223

R(uh,w, ph, q, p
enr, qenr) = −

∫

Ω

ρ

(
∂uh

∂t
+ u · ∇uh

)
·wdΩ

+

∫

Ω

ρu · (∇w · us) dΩ +

∫

Ω

ρ (∇ · u) · (w · us) dΩ

+

∫

Ω

ρb ·wdΩ +

∫

Ω

(ph + ps + penr)∇ ·wdΩ−
∫

Γ

−γκn ·wdΓ

−
∫

Ω

µ
(
∇uh +∇uT

h

) ..∇wdΩ−
∫

Ω

µ
(
∇us +∇uT

s

) ..∇wdΩ +

∫

∂Ω

tN ·wd(∂ΩN)

+

∫

Ω

(q + qenr) ρ (∇ · uh) dΩ−
∫

Ω

∇ (q + qenr) · (ρus) dΩ (32)
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2.2.3. Condensation of Additional Degrees of Freedom224

The discretized system of equations for each element can be derived by225

applying the generalized Newton-Raphson method to the residual of the vari-226

ational formulation as227

∑

J∈N e

[
∂

∂(uJ , pJ , penrJ )

(
∂R(uh,w, ph, q, p

enr, qenr)

∂(wI , qI , qenrI )

)]
(δuJ , δpJ , δp

enr
J ) =

∂R(uh,w, ph, q, p
enr, qenr)

∂(wI , qI , qenrI )
∀ I ∈ N e (33)

where I, J ∈ N e and N e denotes all nodes of element e and δ denotes the228

increment of a variable. It should be noted that penrI and qenrI are defined only229

for elements cut by the interface. Equation (33) can be split into standard230

and enriched parts as231

∑

J∈N e

[
∂

∂(uJ , pJ)

(
∂R(uh,w, ph, q, p

enr, qenr)

∂(wI , qI)

)]
(δuJ , δpJ) +

∑

J∈N e

[
∂

∂(penrJ )

(
∂R(uh,w, ph, q, p

enr, qenr)

∂(wI , qI)

)]
(δpenrJ ) =

∂R(uh,w, ph, q, p
enr, qenr)

∂(wI , qI)
∀ I ∈ N e (34)

and232

∑

J∈N e

[
∂

∂(uJ , pJ)

(
∂R(uh,w, ph, q, p

enr, qenr)

∂(qenrI )

)]
(δuJ , δpJ) +

∑

J∈N e

[
∂

∂(penrJ )

(
∂R(uh,w, ph, q, p

enr, qenr)

∂(qenrI )

)]
(δpenrJ ) =

∂R(uh,w, ph, q, p
enr, qenr)

∂(qenrI )
∀ I ∈ N e. (35)

Rewriting these equations in matrix form, one obtains233

KU + VPenr = F (36)

and234

HU + KenrPenr = Fenr. (37)
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Here, U = (δu, δp) contains all the nodal unknowns (sixteen in case of a235

tetrahedral element), while Penr contains the unknowns associated with en-236

riched pressures (four in case of a tetrahedral element). Note that Kenr237

is a local matrix for each cut element (with the size of 4 x 4 for a linear238

tetrahedron).239

Condensation implies deriving an equation for δpenr using Eq. (35) and240

substituting it in Eq. (34). This results in241

[
K−VK−1

enrH
]
U = F−VK−1

enrFenr (38)

2.2.4. Remedy for Small-cut Elements242

Generally, the numerical methods that are developed to simulate multi-243

phase flows on a fixed mesh are prone to severe instabilities when small-cut244

elements are present in the computational domain, i.e. volume ratio of Ωe
1/Ω

e
2245

is either extremely large or infinitesimally small comparing to the numerical246

accuracy of the computing system. For the present method, one of the main247

causes for such instabilities is the failure of the condensation procedure due248

to the poor condition of Kenr preventing the calculation of its inverse. In this249

work, this issue is resolved by penalizing the elemental system of equations250

as251 ∫

Γ

αJ∇p− GK · J∇qKdΓ = 0. (39)

Here, JGK represents an approximation of the jump in the pressure gra-252

dient that is evaluated in each cut element from a nodal approximation of253

G = ∇ph as254

JGKe ≈
∑

I∈N e
−

GINI/
∑

I∈N e
−

NI −
∑

I∈N e
+

GINI/
∑

I∈N e
+

NI , (40)

where N e
− = N e ∩ Ω1 and N e

+ = N e ∩ Ω2. Considering the role of enriched255

pressures in the elements cut by the interface, for more simplicity, the con-256

tribution of cut elements in the calculation of G is neglected. It is also257

worth noting that due to the continuity of the basic finite element space,258

J∇phK = J∇ahK = 0 and consequently,259

J∇pK = J∇phK + J∇penrK = J∇penrK, (41)

and260

J∇qK = J∇qhK + J∇qenrK = J∇qenrK. (42)
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Therefore, the penalty equation is equivalent to261

∫

Γ

αJ∇penrK · J∇qenrKdΓ =

∫

Γ

αJGK · J∇qenrKdΓ. (43)

The penalty coefficient, α, is estimated by analyzing the order of terms262

appearing in Kenr, which consists of263

∫

Ω

ρτ1 (∇qenr · ∇penr) dΩ. (44)

Therefore,264

α = ρ

(
ρ

∆t
+
c1µ

h2
e

+
c2ρ‖u‖
he

)−1(
Velement

Acut

)
. (45)

The ratio of the volume of the element to the area of the cut interface,265

Velement/Acut, scales α with the size of the cut and consequently ensures that266

Kenr maintains its good condition in severe cases of a small-cut.267

2.3. Level Set Method268

In the previous sections, the position of the interface was considered to269

be known a priori at each time-step. In this sense, it is necessary to follow270

the evolution of the interface during the time-marching procedure. Since, an271

Eulerian approach is employed in this work, it is not a straightforward task272

to track the interface. Therefore, the level-set method [33] is utilized as a273

means to determine Γ, and consequently the evolution of Ω1 and Ω2 in time.274

The basic idea is to introduce continuous function φ, which determines the275

extent of fluid domains, Ω1 and Ω2, as well as the interface Γ in the following276

manner;277

φ(x, t) =





< 0 if x ∈ Ω1

0 if x ∈ Γ
> 0 if x ∈ Ω2

(46)

This property of φ is maintained by taking into account its convection in278

accordance to the velocity field as279

∂φ

∂t
+ u · ∇φ = 0 in Ω. (47)

This equation, which is derived from the mass conservation Eq. (2) is subject280

to the initial condition281

φ(x, 0) = φ0(x) in Ω, (48)
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and inflow boundary condition282

φ(x, t) = φin on ∂Ωin. (49)

Here, transport equation (47) along with its boundary condition (49) is283

solved using a semi-Lagrangian scheme benefiting from an error compen-284

sation step [41]. The scheme can be summarized in the following four steps:285

1. finding φ̂(xI , tn+1) = φ(x̂I , tn), where x̂I = xI − u(xI , tn+1)(tn+1 − tn).286

2. finding φ̌(xI , tn) = φ̂(x̌I , tn+1), where x̌I = xI + u(xI , tn+1)(tn+1 − tn).287

3. calculating φ̄(xI , tn) = φ(xI , tn) + 1
2
[φ(xI , tn)− φ̌(xI , tn)].288

4. finding φ(xI , tn+1) = φ̄(x̂I , tn).289

One should note that in the implemented scheme, no actual particle is added290

to the computational domain for tracing the backward and forward move-291

ments. Instead, only the corresponding coordinates (x̂ and x̌) are computed292

and field variables are interpolated at these “fictitious positions” of node I.293

The basic feature of the level set method is to easily deduce geometrical294

parameters from the well-defined level-set function;295

n =
∇φ
‖∇φ‖ , (50)

and296

κ = ∇ · n. (51)

Equations (50) and (51) imply that one needs the level-set function to possess297

at least C1-continuity. However, representing φ as a finite element variable,298

it possess only C0-continuity. Therefore, the described approach requires299

recovery of n (or equivalently G = ∇φ) as a C0-continuous nodal value.300

This is done by solving301

∫

Ω

(G−∇φ) dΩ = 0. (52)

Numerical experiences show that the robustness of the method can be im-302

proved by also introducing a nodal curvature by solving303

∫

Ω

[
κ−∇ ·

(
G

‖G‖

)]
dΩ = 0. (53)
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This improves the estimation of the curvature and consequently, lessens the304

non-physical parasitic currents in the vicinity of the interface.305

However, advection of the level set function with the velocity field ac-306

cording to Eq. (47) can result in distortions in the φ-field and consequently307

affect the accuracy in the geometrical parameters of interest (n and κ). In308

this work, the so-called “back and forth error compensation and correction”309

method [42, 41] is used to minimize the error introduced as a result of ir-310

regularities in the gradient of the level-set function. Moreover, as proposed311

by Tornberg and Engquist [36], solving the following diffusion equation for312

φ̃ helps filtering the nonphysical oscillations in the zero level-set distance313

function, i.e. the interface.314

φ̃− ε∇2φ̃ = φ (54)

Diffusion coefficient ε ∼ 10−1h2
e is small enough not to significantly affect315

the interface. Nevertheless, it is well-known that the method is prone to316

”mass-loss”, understood as the non-physical shrinkage of domain Ω1. Due to317

this issue, as a conventional rule, smoothed function φ̃ is only used during318

the calculation of the curvature of the interface while φ is used to define the319

domains [34]. However, in the present work, the intention is to substitute320

the level-set function φ by φ̃ in order to improve the results obtained for321

rather coarse meshes. To this end, the shrinkage is alleviated by adapting322

the idea [37] proposed in the context of Laplacian surface smoothing. Based323

on this idea, the shrinkage is compensated by reverting the distance function324

for node i according to325

φi = φ̃i − dφavg,i, (55)

where326

dφavg,i =
1

Ni

Ni∑

j

(
φ̃j − φj

)
, (56)

and Ni denotes the number of nodes j connected to node i.327

Nonetheless, φ-field can still be endlessly stretched or expanded by a328

non-zero strain-rate [43] and therefore, ∇φ can become indefinitely large or329

extremely small. As a direct result of this issue, the accuracy of the curvature330

calculation procedure and consequently, the solution of the momentum equa-331

tion are severely disturbed. The more important and indirect consequence of332

the issue is failure of the method to retain the regularity of the interface [44],333

which ruins the solution. In this work, the re-initialization procedure pro-334

posed in [45] is utilized to keep the level-set function as close as possible to a335
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distance function, i.e. ‖∇φ‖ ≈ 1. In order to anchor the interface in place,336

i.e. keep the zero level-set function intact, all nodes of the elements cut by337

the interface are neglected in the re-initialization procedure. It is also worth338

to note that in this work, the level-set re-initialization is performed for the339

whole computational domain.340

The proposed numerical method is summarized in Algorithm 1. Here,341

(superscript) n counts the number of marched time-steps, nrd determines342

the frequency of φ-reinitialization procedure (nrd = 50 in the present work),343

and N and E denote the sets of all nodes and elements in the discretized344

domain, respectively.

Algorithm 1: The proposed numerical method

Input: u0, uD, tN , φ0, and φin

Output: uI , pI , and φI ; I ∈ N
1 n = 1
2 t = 0
3 while t < run-time do
4 solve Eq. (47) for φn

I

5 if n = inrd; i = {1, 2, 3, . . .} then
6 reinitialize φ

7 do smoothing according to Eqs. (54) and (55)
8 solve Eqs. (52) and (53) for κI
9 for all e ∈ E do

10 if e ∩ Γ 6= ∅ then
11 do element spliting

12 create elemental system of equations (33)
13 if e ∩ Γ 6= ∅ then
14 do introducing the penalty term (39)
15 do condensation (38)

16 do assembling the Linear System of Equations (LSE)
17 solve LSE for [uI , pI ]
18 update n = n+ 1
19 update t = n∆t

345
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3. Numerical examples346

The present model is implemented by the authors within Kratos Mul-347

tiPhysics code [46, 47], a high performance computing (HPC) open-source348

software. The non-linear system of equations is linearized using the general-349

ized Newton’s method and solved with the convergence relative tolerance of350

10−6 for both velocity and pressure fields. It must be noted that a fully im-351

plicit monolithic approach is used to obtain unknown velocities and pressures352

at the same time while the time integration is performed using the second353

order backward difference method (BDF2). For solving the linearized system354

of equations, the algebraic multigrid solver from AMGCL library [48] is ap-355

plied; the GMRES(m) method with restart parameter m = 40, Gauss-Seidel356

smoother, and the convergence tolerance of 10−9 is utilized.357

It should be noted that in the following simulations, mass conservation of358

the level-set method is enhanced following the procedure presented in [49, 50].359

It consists of slightly modifying the level-set function by δφ computed as360

δφ = −V
0

1 − V1

A
, (57)

where superscript 0 specifies the initial state, V1 =
∫

Ω1
dΩ is the volume of361

the liquid phase (Ω1), and A =
∫

Γ
dΓ denotes the area of the interface.362

3.1. Spherical Droplet at Equilibrium363

The aim of this test-case is to investigate the capability and accuracy of364

the present numerical method in capturing the strong discontinuity in the365

pressure field (”pressure jump”) caused by the surface tension.366

Here, a liquid-gas system consisting of a spherical liquid droplet sur-367

rounded by gas is simulated. The configuration is at equilibrium in the368

absence of gravity. Surface tension at the liquid-gas interface depends ex-369

clusively on the local curvature and thus, on the coordinates (xint, yint, zint)370

that define the interface position. The two-phase system is confined in a371

box with dimensions L = W = H = 0.01m, and the interface initially obeys372

(xint−xc)2+(yint−yc)2+(zint−zc)2−a2 = 0 with a = 0.003m, where (xc, yc, zc)373

denotes the center of the box. Material properties of the two fluids are chosen374

as: dynamic viscosity µl = µg = 0.001N · s/m2, density ρl = 1000kg/m3 and375

ρg = 1kg/m3, and surface tension coefficient γ = 0.1N/m.376

Figure 5 shows the the pressure distribution on a cut surface passing377

through the center of the spherical droplet. One can see that the standard378
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(a) Standard FEM (b) Enriched FEM

Figure 5: Calculated pressure field for the spherical droplet at equilibrium. Results are
presented for a cut surface passing through the center of the sphere.

(non-enriched) finite element method is incapable of representing the pressure379

jump caused by the surface tension and consequently, multiple peaks and380

valleys appear in the vicinity of the interface (see Fig. 5(a)). On the other381

hand, as illustrated in Fig. 5(b), the proposed enriched finite element method382

accurately captures the pressure jump at the interface as well as the expected383

uniform pressure fields for the individual sub-domains.384

In order to further analyze the benefits of using the proposed method,385

pressure distribution is plotted along the center-line of the cube for two386

different mesh resolutions, a/he ≈ 4.2 (with ∼ 25K elements) and a/he ≈ 8.6387

(with ∼ 200K elements). Figure 6(a) shows a slight decrease in the liquid388

pressure at the interface for a/he ≈ 4.2, when using a/he ≈ 8.6, pressure389

distribution matches the analytic solution.390

Next, we test the method with respect to its ability of suppressing the391

spurious ”parasitic” currents, typically manifesting in numerical multiphase392

simulations in the vicinity of the material interfaces. Ideally, as long as the393

droplet maintains its equilibrium spherical configuration and the pressure394

field is in balance with the surface tension, velocity in the entire domain395

including the interface should be exactly zero. However, it is well-known396

that in the numerical simulations, spurious velocities arise in the vicinity of397

the interface. The robustness of the method can be estimated in terms of its398

ability to suppress and/or control these ”parasitic” currents. Large values399

and uncontrolled time evolution of the parasitic currents can be considered400

as a sign of a serious flaw in the method.401

The parasitic currents are illustrated in Fig. 7 for both the standard and402

enriched finite element methods. For the sake of clarity in Fig. 7(a), velocity403
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(a) a/he ≈ 4.2 (b) a/he ≈ 8.6

Figure 6: Pressure distribution along a line-segment passing through the center of the
spherical droplet at equilibrium.

vectors are plotted using a scale factor of 0.005 for the non-enriched case404

(|u|spuriousmax ∼ 10−1m/s). A unit scaling factor is used for the enriched one405

(|u|spuriousmax ∼ 10−3m/s) shown in Fig. 7(b). One can see that the proposed406

enriched finite element method is successful in significantly suppressing the407

spurious velocities, which are reduced by two orders of magnitude comparing408

to the standard method.409

In order to get an insight of the computational efficiency of the method,410

the cost of different steps is estimated. In Table 1, CPU-times associated411

with the enriched and non-enriched FEM flow solvers, as well as the level-set412

convection, smoothing, and distance re-initialization operations are reported413

for a single time-step. For distance re-initialization, since this process is414

not called in every time-step, the reported value reflects the portion of its415

computational cost associated with a single time-step. The resolution is set416

to a/he ≈ 12.7 and the computational domain consists of ∼ 700K elements.417

The code is run using eight threads (four cores) on a PC with Intel R© CoreTM
418

i7-4790 CPU. It is observed that by introducing the enrichment, CPU-time419

is increased by almost 30% for a single iteration of the non-linear solver.420

Nonetheless, this additional cost is perfectly compensated by the improved421

convergence, which even leads to around 30% smaller overall CPU-time. In422

other words, for the present test, the enriched solver obtains a convergent423

solution for the non-linear system of equations by performing three iterations,424

while the non-enriched solver needs six iterations.425
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(a) Standard FEM, scale factor = 1
20 (b) Enriched FEM, scale factor = 1.0

Figure 7: Spurious (parasitic) velocity vectors for the spherical droplet at equilibrium.
Results are presented for a cut surface passing through the center of the sphere.

Table 1: CPU time associated with the main solver with and without enrichment as well
as the level-set convection, smoothing, and re-initialization operations. These times are
reported in seconds and measured for a single time-step.

Enriched flow
solver

Non-enriched flow
solver

Level-set
convection

Smoothing
process

Distance re-
initialization

Total time per
step

One iteration:
3.43s

One iteration:
2.59s

0.47s 1.02s 1.19s Enriched
method: 13.0s

Until convergence
(3 iterations):
10.3s

Until convergence
(6 iterations):
15.5s

Non-enriched
method: 18.2s
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3.1.1. Smoothing426

It is well-known that without an appropriately designed smoothing strat-427

egy, numerical simulation of a surface-tension dominated multi-phase flow428

leads to non-regularities in the level-set function [34]. This issue becomes429

particularly severe in lengthy simulations. In this section, the effectiveness430

of the smoothing procedure proposed in the present work is assessed us-431

ing the previous test-case, namely for the spherical droplet at equilibrium.432

Figure 8 illustrates the liquid-gas interface at different instances obtained433

without applying a smoothing scheme along with the result obtained uti-434

lizing smoothing. These results are presented for a/he ≈ 6.4 (with ∼ 90K435

elements). The proposed smoothing algorithm clearly enhances the robust-436

ness of the numerical method by almost completely removing the noise in the437

zero level-set function. One can see that in case of applying smoothing, the438

simulation reaches t = 1000 ∆t without any pronounced sign of the spurious439

shapes, while the non-smoothed method leads to severe shape alterations440

already at early stages of the simulations. We note that such an irregular-441

ity in the interface may also be alleviated by using mesh refinement in the442

vicinity of the interface. However, this latter option would result in a higher443

computational cost of the simulation, particularly in the transient problems.444

445

3.2. Two-phase Hydrostatic Pressure446

Besides the accurate capturing of the pressure discontinuity in a surface447

tension dominated problems shown in section 3.1, the proposed pressure-448

enriched finite element method is capable of capturing the weak pressure449

discontinuity at the interface. This feature is assessed by simulating a liquid-450

gas container at the hydrostatic equilibrium. Physical properties of the liquid451

and the gas phases are taken from the previous test-case. Geometry is as452

follows: a cubic unitary domain is filled with liquid up to z = 0.493L. The453

rest of the domain is filled with gas. No surface tension is considered and454

gravity is applied with g = −10m/s2 in the z-direction. A large discontinuity455

in the pressure gradient is expected due to the jump in density at the interface456

(considered density ratio equals 1/1000). The test is run for a mesh of L/he ≈457

14.1 (with ∼ 25K elements).458

Figure 9 shows the pressure distribution along the z-axis. Simulation459

results are shown for both the standard and the enriched FEM model. Al-460

though the nodal pressure is well approximated by both models, the enriched461

one leads to a slightly more accurate pressure approximation in the vicinity462
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(a) Initial state (b) With smoothing, t = 1000 ∆t = 0.1s

(c) Without smoothing, t = 0.05s (d) Without smoothing, t = 0.1s

Figure 8: Snapshots of the liquid-gas interface of the spherical droplet at equilibrium (b)
with and (c,d) without smoothing procedure.
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Figure 9: Hydrostatic pressure distribution at t = 100 ∆t = 0.01s.

of the interface as observed in the inset of Fig. 9. Nonetheless, the distinctive463

capability of the proposed enrichment in handling the weak pressure discon-464

tinuity is revealed by assessing its ability to provide a balance between the465

gravitational force and the pressure gradient within the elements cut by the466

interface. This can be figured out by analyzing the spurious currents; the467

smaller the parasitic currents the higher is the exactitude in satisfying the468

force balance. In the previous section, it was observed that the balancing469

between the surface tension and the pressure jump led to smaller parasitic470

currents in the vicinity of the liquid-gas interface. Time evolution of the471

maximum (spurious) velocity is illustrated in Fig. 10. It is evident that the472

standard finite element method is incapable of handling the weak pressure473

discontinuity while, the proposed pressure enriched finite element space is474

the key to suppress the spurious currents. Figure 11 shows these spurious475

currents at the tenth time step (t = 0.001s).476

3.3. Oscillating Droplet477

The next test aims at studying the performance of the method applied478

to the simulation of transient behavior of a liquid-gas system.479

The benchmark is obtained by considering the geometry and the material480

properties used in the previous example, but perturbing the interface at the481

initial state. In this case, the liquid-gas interface is expected to oscillate482
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Figure 10: Time-evolution of the parasitic current for the hydrostatic liquid-gas container.

(a) Standard FEM, scale factor = 1
2 (b) Enriched FEM, scale factor = 5.0

Figure 11: Spurious (parasitic) velocity vectors for the hydrostatic liquid-gas container at
t = 10 ∆t = 0.001s. Results are presented for a vertical cross-section passing through the
center of the cubic container perpendicular to the interface.
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with a gradually decreasing oscillation amplitude until the spherical shape is483

regained.484

Two different cases are analyzed. In the first one, the spherical droplet is485

disturbed only slightly. This enables comparison with the analytic solution486

(known for nearly spherical shapes) in terms of oscillation frequency. In487

the second case, a prolate droplet is used to investigate the performance488

of the method for a configuration that is far from equilibrium. Since the489

interface is subject to large reciprocating deformations in this case, it gives490

a particularly good insight regarding the performance of the implemented491

interface capturing technique.492

3.3.1. Slightly Disturbed Spherical Droplet493

In this section, the spherical shape of the interface (obeying (xint −494

xc)
2/a2 + (yint − yc)2/b2 + (zint − zc)2/c2 − 1 = 0 with a = b = c = 0.003) is495

slightly disturbed (b = 0.00315m) and its motion is compared to the theory496

presented in [51]. As already mentioned, physical properties are set to the497

same values chosen in section 3.1. In Fig. 12, time evolution of maximum498

vertical coordinate yint is plotted for various mesh resolutions. Theoretical499

value of the decaying amplitude of the oscillations is also calculated based500

on the theory presented in [51] and illustrated in Fig. 12 for comparison.501

This theoretical amplitude is calculated based on the formula obtained by502

Lamb (Article 355 in [51]) as Y ∝ exp(−t/τ). Here, Y is the amplitude of503

oscillations and504

τ =
ρa2

5µ
, (58)

for the most significant (second) mode of oscillations. One can see that for505

mesh resolutions of a/he ≥ 6.4, the numerical simulation provides a good506

match with the theoretical result in terms of oscillations’ dissipation.507

Frequency of the oscillation is calculated applying Fast Fourier Transform508

(FFT) to the time evolution of the maximum yint. Error in frequency is509

presented in Fig. 13. This error is calculated with respect to the theoretical510

prediction of the frequency of the second mode of oscillations according to511

the formula presented in article 275 of [51]512

ω2 =
24γ

(3ρ1 + 2ρ2)a3
. (59)

The convergence rate is seen to be practically of second-order and the rela-513

tive error is about 1% for the finest mesh with a/he ≈ 12.7 (with ∼ 660K514
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Figure 12: Oscillation of a slightly disturbed spherical droplet; decay in the amplitude in
comparison with theory [51].

elements).515

3.3.2. Prolate Spheroid Droplet516

In this case, the spherical droplet is further disturbed, obtaining a prolate517

initial shape with a = c = 0.002m and b = 0.0035m. Radius of the spheri-518

cal shape at equilibrium is R = (abc)1/3. In order to reach the equilibrium519

quickly, dynamic viscosity is increased to µl = µg = 0.01N · s/m2 while all520

other properties are unchanged. Time-evolution of maximum vertical coor-521

dinate of the liquid-gas interface yint,max is plotted in Fig. 14 for different522

mesh resolutions. Results show that the solution becomes convergent for523

R/he ≥ 6.8. It must also be noted that without applying the small-cut524

treatment presented in section 2.2.4, the simulation terminates prematurely525

due to inability to converge. The solver failure occurs as soon as the inter-526

face approaches a node, i.e. when the liquid to gas volume ratio becomes527

extremely large or negligibly small in a cut element, making the condensation528

of the enriched pressure impossible.529

Another important property a numerical multiphase flow model must530

possess is the ability to preserve volume of each phase. This conservation531

property is known to be affected by errors in the advection of the level-set532

function as well as the distance re-initialization and smoothing procedures.533

In Fig. 15, time-evolution of the ratio of the numerically calculated liquid534
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Figure 13: Oscillation of a slightly disturbed spherical droplet; error in the calculated
frequency.

Figure 14: Oscillation of a spheroid droplet; time evolution of maximum yint for different
mesh resolutions.
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Figure 15: Oscillation of a spheroid droplet; time evolution of droplet volume ratio for
different mesh resolutions.

volume to the expected value of 4πR3/3 is shown for different mesh res-535

olutions. One can see that the relative volume loss is smaller than 3.5%536

for the coarsest mesh with R/he ≈ 3.4. The volume loss decreases as the537

mesh is refined reaching a value of 0.5% for the finest mesh used in this test538

(R/he ≈ 10.2 with ∼ 660K elements). The perfectly horizontal trend of539

the graphs in Fig. 15 reveals the important fact that the volume loss is not540

accumulative and volume fluctuations are negligibly small for the present541

method.542

Long-time evolution of the maximum vertical coordinate of the interface543

yint,max is illustrated in Fig. 16 for R/he ≈ 6.8. Droplet eventually reaches its544

equilibrium shape at around t = 0.35s, when the amplitude of the oscillation545

is negligibly small. By applying FFT to the data presented in Fig. 16, the546

frequency of the most dominant mode of oscillations is 220Rad/s. This is in547

agreement with ω = 239Rad/s obtained from Eq. (59) by substituting a with548

R in the formula. The calculated frequency becomes 226Rad/s by applying549

FFT to data obtained for t ≥ 1.5s.550

Figure 17 presents snapshots of the interface at different onsets. It is551

observed that the ultimate spherical shape, which represents the theoreti-552

cally expected equilibrium state of the droplet is reached in Fig. 17(d) after553

undergoing a series of oscillatory deformations.554

One of the major ingredients of the present method is the proposed555

smoothing procedure (Eqs. (54) and (55)). This technique facilitates ob-556
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Figure 16: Oscillation of a spheroid droplet; long-time evolution of maximum yint.

(a) Initial state (b) t = 0.01s (c) t = 0.03s (d) t = 0.4s

Figure 17: Snapshots of the interface for the oscillating spheroid droplet.
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Figure 18: Oscillation of a spheroid droplet; time evolution of maximum yint for different
values of smoothing diffusion coefficients (ε).

taining desirable results on a rather coarse mesh without performing costly557

refinement in the vicinity of the interface that is required otherwise.558

In Fig. 18, time evolution of maximum yint is shown for three different559

smoothing diffusion coefficients. The result is almost unaffected for ε ≤560

10−1h2
e while choosing ε = h2

e evidently adds to the numerical dissipation.561

Time evolution of the volume ratio for three different ε is presented in562

Fig. 19. The effect of an excessive smoothing manifests in a nonphysical563

droplet shrinkage, which is subsequently corrected by the distance modifi-564

cation procedure used in the proposed numerical method (Eq. (57)). The565

effect of this combination (shrinkage and correction) along with the distance566

re-initialization procedure result in a high-frequency oscillations in the vol-567

ume ratio as seen in Fig. 19.568

Since the numerical experiments show that using ε = 10−1h2
e leads to a569

better convergence for different test-cases, this smoothing diffusion constant570

is chosen as the default value used throughout this work.571

3.4. Three-dimensional Bubble Rise572

The experiment conducted by Hnat and Buckmaster [52] has become a573

benchmark for two-phase liquid-gas flow solvers [53, 54, 55]. In this test-case,574

the rising of an initially spherical gas (ρg = 1.0kg/m3 and µg = 0.001kg/m·s)575
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Figure 19: Oscillation of a spheroid droplet; time evolution of droplet volume ratio for
different ε.

bubble of radius a = 0.0061m is simulated. This benchmark is used here to576

study the capabilities of the proposed method in simulating a considerably577

complex two-phase flow problem using a rather coarse mesh. Here, the bubble578

rises inside a rectangular container (width and length of W = L = 0.054m,579

and height of H = 0.072m) filled with a still liquid (ρl = 875.5kg/m3 and580

µl = 0.118kg/m · s). Gravity (g = 9.8m/s2) and surface tension of γ =581

0.0322N/m are considered.582

Figure 20, presents sequential snapshots of the interface and bubble cross-583

section taken at equal time intervals (0.03 s). The terminal shape of the584

bubble at t = 0.21s closely matches with the previous experimental and nu-585

merical results [52, 54]. The terminal velocity of the bubble is approximated586

as ub = 0.191m/s, which is also in an acceptable agreement with the ex-587

perimental value of 0.215m/s. Nevertheless, this result is obtained using a588

uniform coarse mesh (a/he ≈ 4.8 with∼ 900K elements) and a more accurate589

solution can be obtained by further refining the mesh. To the best of au-590

thors’ knowledge, reasonably accurate solutions in the literature are reported591

for a/he ≥ 15, while very coarse meshes (a/he ∼ 5) led to an unacceptable592

solution [56]. On the other hand, the results obtained in the present work593

show that the proposed method is robust enough to obtain an acceptable594

solution for a challenging problem associated with complex interface defor-595

mations and non-uniform velocity distributions using a rather coarse mesh.596

In this test, the change in the volume of the bubble is less than 0.75%, which597
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(a) (b)

Figure 20: Snapshots of the rising bubble with time intervals of 0.03s. (a) Three-
dimensional view of the bubble air-liquid interface, and (b) cross-section of the bubble.
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asserts the volume conservation property of the proposed numerical method.598

It is also worth to note that in this test, as well as many other com-599

plex two-phase flows where large interface motions manifest, it is common to600

encounter either small or large gas-to-liquid volume ratio in a cut element.601

In such situations, if no small-cut treatment is implemented, the enriched602

pressure condensation step introduces large errors, which consequently hin-603

ders achieving a convergent solution for the non-linear system of equations.604

Particularly, in the present bubble-rise test case, if no small-cut treatment is605

applied, the number of non-linear solver iterations increases from 2-3 to 6-8606

iterations per step as soon as the volume ratio of sub-elements becomes large.607

However, the small-cut treatment allows maintaining the Newton-Raphson608

solver convergence at the level of 2-3 iterations per step. Needless to say, at609

the moment of crossing the node, i.e. when the true small-cut threshold is610

exceeded, the solver terminates. Therefore, not only the proposed small-cut611

treatment is obligatory in severe small-cut situations, it is also beneficial for612

maintaining the convergence of the numerical method in less severe cases.613

4. Summary and conclusions614

A pressure enriched finite element method was proposed to simulate sur-615

face tension dominated two-phase flows. The proposed enriched finite ele-616

ment space was capable of handling both the weak and strong discontinuity617

in a variable by duplicating the number of corresponding degrees of freedom618

(e.g. four additional degrees of freedom are needed for pressure enrichment619

with 3D tetrahedral mesh) merely for the cut elements. The method was sta-620

bilized within the framework of the variational multiscale approach. A stabi-621

lization procedure was also proposed to enhance the condensation process in622

the severe “small-cut” situations. The level-set method was implemented to623

capture the evolution of the interface while a smoothing procedure was pro-624

posed to improve the result obtain on a coarse mesh. The proposed method625

was validated by simulating a series of test-cases including an oscillating626

droplet and a rising bubble.627

It was verified that the method is capable of accurate capturing a sharp628

pressure jump as well as a large discontinuity in the pressure gradient at the629

liquid-gas interface and results in a dramatic reduction in the spurious cur-630

rents. Obtained results showed the solid performance of the proposed method631

on relatively rough meshes. It is worth to note that robust performance of632

the proposed enriched FEM-level set method depends on careful application633
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of smoothing procedure and the proposed small-cut treatment strategy. The634

present work defines the first step in establishing a computational framework635

for analyzing two-phase microfluidic flows particularly aiming at studying the636

two-phase transport in the PEM fuel cells.637
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of multi-fluid flows with the particle finite element method. application680

to bubble dynamics, International journal for numerical methods in681

fluids 67 (2011) 1516–1539.682
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Chapter 3
Droplet Spreading on Solid Substrates:
Contact–line Dynamics

3.1 Introduction

In this chapter, the pressure–enriched finite element/level–set method, which was intro-
duced in the previous chapter, is further advanced by implementing the requirements
for the modeling of the contact–line dynamics. The molecular kinetic model and the
Navier-slip condition as well as the incorporation of the sub-elemental hydrodynamics
are discussed in this chapter. Here, the proposed method is verified by comparing the
result with the theoretical model developed for droplets of the spherical–cap shape [138].
The validation is further performed by reproducing the experimental data et al. [110]
related to the spreading of liquid squalane on a solid silica substrate. It is shown that the
proposed method provides satisfactory results using rather coarse meshes. This makes it
a suitable choice for three–dimensional liquid–gas transport problems as those encoun-
tered in studying the water management in PEM fuel cells. The following publication
comprises the content of the present chapter.

3.2 Article data

Title: Three dimensional modeling of liquid droplet spreading on solid surface: An en-
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1. Introduction1

Accurate modeling of liquid spreading on a solid surface [1] is of a funda-2

mental importance in the analysis of multi-phase flows in micro-channels [2, 3]3

as well as porous [4] and fibrous [5] media, which are encountered in a wide4

range of industrial applications. One such application, that motivated the de-5

velopments of the present work, is the water-air transport in the gas channels6

and fibrous diffusion layer of polymer electrolyte membrane fuel cells (PEM-7

FCs) [6, 7] that is an essential factor in the determination of the performance8

of the cell [8, 9].9

In the modeling of phenomena associated with the multi-phase flow in10

the presence of a solid substrate, one of the major challenges is to deal11

with the moving boundary of the three-phase (gas/liquid/solid) interface, the12

so-called contact-line, using an appropriate condition [10, 11]. Theoretical13

investigations of the movement of the contact-line [12, 13] imply that the14

classical continuum-level hydrodynamics along with the conventional no-slip15

condition at the solid surface lead to an unbounded velocity gradient and16

consequently a singularity in the stress at the contact-line. The conventional17

approach to alleviate this singularity is to take into account a slip condition in18

the vicinity of the contact-line [14, 15], for which there is also some evidence19

from molecular dynamics simulations [16, 17, 18].20

Employing the slip condition in the context of the continuum hydrody-21

namics allows for a theoretical solution for the viscous bending phenomenon22

and leads to the well-established Cox’s relation [19], which gives a correla-23

tion between the apparent macroscopic contact-angle and the microscopic24

contact-angle. More recently, it was shown that alleviating the stress singu-25

larity can result in a complement to the hydrodynamic theory; Zhang and26

Mohseni [20] explored the possibility of integrating the singular stress in the27

close vicinity of the contact-line in order to obtain a model for the dynamic28

microscopic contact-angle.29

Besides the hydrodynamic theory that focuses on the phenomena at the30

continuum level, molecular–kinetic theory [21] has also been acquired to de-31

rive a model for the moving contact-line. It was shown that the result-32

ing model is consistent with the results of the molecular dynamics simula-33

tions [22, 23]. Both the Cox’s relation and the molecular–kinetic model have34

been examined by fitting the experimentally observed correlation between35

the contact-angle and the contact-line velocity [24, 25, 26].36

It had been revealed that depending on the features of the set of experi-37
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ments, one model or another provides a better match [27, 28, 29]. This can38

be explained as a result of the fact that the hydrodynamic theory accounts39

for the viscous dissipation while the molecular–kinetic theory focuses on the40

energy dissipation in a very close vicinity of the contact-line [26]. Thus, de-41

pending on the flow configuration and the velocity of the contact-line, either42

of these mechanisms is dominant and the behavior can be better character-43

ized with the respective model. Based on the experimental results, due to44

the ambiguity in determining the underlying physics and the lack of a sys-45

tematic approach to determine constitutive parameters [30, 20], it is not a46

straightforward task to decide which theory (and the resulting) model should47

be employed. Therefore, in order to exploit the pros of both the theories,48

combined models were proposed [31, 32, 33, 34, 35], in which the frictional49

contact-line slip is taken into account as well as the viscous dissipation.50

Recently, utilizing a series of molecular dynamics simulations, Fernández-51

Toledano et al. [36] stated that the hydrodynamic theory is a reliable means52

for correlating the apparent (experimentally measurable) contact–angle and53

the microscopic contact–angle, while the molecular–kinetic theory governs54

the dynamic microscopic contact–angle. This confirms the rationale of de-55

veloping combined models like the one proposed by Petrov and Petrov [31].56

In the context of the numerical modeling of the dynamics of the contact-57

line, the utilization of the generalized Navier-slip condition [37, 38, 39] is a58

viable choice [40]. Being based on the combination of the Navier-slip condi-59

tion on the solid substrate and the frictional movement of the contact-line60

due to the unbalanced Young stress, it is consistent with the molecular dy-61

namics simulations [37, 39] and the thermodynamic principles [30, 41] for62

modeling the wetting phenomena. The generalized Navier-slip condition has63

so far been applied in the numerical simulation of various cases involving64

moving contact-line [42, 43, 44, 45]. A numerically different, but funda-65

mentally similar approach is the direct imposition of a friction force at the66

contact-line along with the standard Navier-slip condition [46]. In the nu-67

merical modeling, it is also possible to impose the no-slip condition on the68

solid surface while the force singularity is circumvented by modifying the con-69

ventional formulation [39]; as a notable choice, diffusion can be introduced70

as the mechanism underlying the contact-line movement [47] similar to the71

diffuse interface methods [48, 49, 50]. Nevertheless, this approach is out of72

the scope of the present paper and will not be further discussed here.73

Besides the utilized slip condition, one of the fundamental issues with74

the computational methods applied to the moving contact-line problem is75
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the mesh-dependence of the results [51, 52]. A physical and a numerical76

factor, at least partially, responsible for this issue are the unresolved sub-77

grid hydrodynamics and the interfacial force smoothing, respectively. In the78

vicinity of the contact-line, hydrodynamic mechanisms act at a small length-79

scale which, even being far beyond the molecular–scale, cannot be adequately80

resolved unless a prohibitive refinement of the computational mesh is per-81

formed [53]. The hydrodynamic theory is a means to circumvent the need82

for such refinement [54] and helps improving the mesh-independence of the83

numerical results [55, 56, 57]. On the other hand, conventional numerical84

methods typically utilize a numerically smooth representation of the physi-85

cally localized surface tension [58, 59, 60] following the so-called “continuum86

force approach” [61]. In the presence of the moving contact-line, the un-87

balanced Young stress is also smoothed out to act similar to a body force88

centralized at the contact-line [62, 45]. This approach is associated with an89

artificial thickness of the interface, which is usually set equal to the length90

of a few computational cells for the best performance. Therefore, fixing the91

ratio of this smoothing length to the cell size [45], a highly refined mesh is92

necessary in the vicinity of the interface and the contact-line in order to min-93

imize the error. A remedy to this issue is to utilize a computational mesh94

that is fitted to the liquid-gas interface, e.g. [63, 64, 46]. However, such an95

approach may result in severely deformed meshes and requires a frequent96

remeshing, which dramatically increases the computational costs, particu-97

larly in 3D. Moreover, in case of a severe topological change in the liquid98

phase, this class of approaches may lead to ambiguities in the recognition of99

the liquid boundary.100

In this work, a numerical method is presented that by alleviating the101

above mentioned issues, provides reasonably accurate results on rather coarse102

meshes. The previously introduced pressure-enriched finite element/level-set103

model for the two-phase flows [65] is further developed by incorporating the104

requirements of the moving contact-line problems. The simplified form of the105

molecular–kinetic model is implemented along with the Navier-slip condition106

that acts on the solid substrate. Following the methodology presented by107

Buscaglia and Ausas [66], the implementation of the moving contact line con-108

dition is done by revising the variational formulation of the method. In order109

to make the overall numerical algorithm consistent, the level-set smoothing110

procedure [65] is also modified by introducing a boundary condition that is111

compatible with the contact line condition. To account for the sub-elemental112

hydrodynamics, the simplified form of Cox’s relation [19] is used under the113
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condition of a small capillary number. In addition, this relation is applied114

only once the contact angle reaches the value within a threshold of the equi-115

librium contact angle. This ensures that the contact line velocity is limited116

and consequently, the Reynolds number is small. Nevertheless, in order to117

remove these limitations, a more general hydrodynamic model [67, 54] should118

be acquired that is a subject of future developments. In this work, an element119

splitting procedure [65] is performed at each step, which enables representing120

interface with zero-thickness. Consequently, the terms associated with the121

moving contact-line model are integrated along the curve representing the122

contact-line while the surface tension acts locally at the interface. It must123

be noted that such domain splitting is fully exploited by incorporating an124

enriched finite element space, which enables pressure (gradient) discontinuity125

within an element.126

In the following section, the governing equations including the contact-127

line condition are first discussed and then implemented in the variational128

form. Then, the customized version of the level-set method is briefly de-129

scribed and the additional boundary condition required for the smoothing130

procedure is introduced. The performance of the present method is verified131

by comparing the result with the theoretical relation between the footprint132

radius and the contact angle of a droplet spreading with a spherical-cap133

shape [68] at a small Bond number [69]. The results are further validated134

against the experimental data published by Seveno et al. [26] for a droplet135

of liquid squalane that is spreading on a solid silica substrate. The degree of136

mesh-(in)dependence of the results is shown for both test-cases. All simula-137

tions presented in this work are conducted for three-dimensional computation138

domains.139

2. Numerical Method140

The momentum and mass conservation equations for a fluid system can141

be written as142

ρ

(
∂u

∂t
+ u · ∇u

)
= ρb +∇ · σ in Ω, (1)

and143

∂ρ

∂t
+∇ · (ρu) = 0 in Ω, (2)

respectively. It should be noted that in this work, the homogeneous fluid do-144

mains (liquid and gas) are considered to be incompressible and consequently,145

5



Figure 1: Schematic of the fluid domain Ω = Ω1 ∪ Ω2.

Eq. (2) reduces to ∇ · u = 0 in each phase. The fluid domain, Ω ⊂ Rd, is146

bounded by boundary ∂Ω ⊂ Rd−1, where d defines the number of spatial147

dimensions. This set of equations is subject to the initial condition148

u(x, 0) = u0 in Ω, (3)

Dirichlet149

u(x, t) = uD on ∂ΩD, (4)

and Neumann150

T(x, t) = TN on ∂ΩN , (5)

boundary conditions. The traction vector is calculated as T = n · σ with151

the total stress tensor, σ, being obtained from the Newtonian constitutive152

equation153

σ = −pI + µ
(
∇u +∇uT

)
. (6)

Here, n is a unit vector normal to ∂Ω and pointing to the outside of Ω.154

2.1. Multi-phase flow155

Let us consider a system consisting of two immiscible fluids and a solid156

substrate (see Fig. 1). Then, the domain Ω can be separated into Ω1 and157

Ω2 with Γ = (Ω1 ∩ Ω2) and Ω = (Ω1 ∪ Ω2). The separating interface Γ is158

a constituent part of both ∂Ω1 and ∂Ω2, while it coincides with the solid159

substrate only at the contact-line ∂Γ = (∂Ω ∩ Γ), where the three phases160

(both fluids 1 and 2 along with the solid substrate) come into contact and161

three surface tensions, γ, γ1s, and γ2s, act simultaneously on the fluid 1-fluid162

2, fluid 1-solid, and fluid 2-solid interfaces, respectively (see Fig. 2).163
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Figure 2: Schematic of a droplet contacting a solid surface. Liquid-gas, liquid-solid, and
gas-solid surface tensions with respective coefficients of γ, γ1s, and γ2s are depicted in this
figure.

Being internal to the fluid domain Ω, the interfacial conditions can be164

interpreted as a jump in the traction due to the surface tension165

JT(x, t)K = −γκnint on Γ, (7)

and continuity of the velocity field166

Ju(x, t)K = 0 on Γ, (8)

where nint is the normal to the interface, Γ, and for any variable A the jump167

operator reads JAK = A1 −A2 with subscripts 1 and 2 denoting the value in168

the corresponding phase domains.169

At the contact–line for the equilibrium state [70] (θ = θY ), Young’s rela-170

tion [71] states that [10, 72]171

γ cos(θY ) + γ1s = γ2s. (9)

Therefore, one can simply write cos(θY ) = (γ2s−γ1s)/γ. In case the configu-172

ration deviates from the equilibrium, the unbalanced Young stress (force per173

unit length) is defined as [32, 50]174

τY = γ [cos(θY )− cos(θ)] . (10)

Here, τY can be interpreted as the net (effective) tension that acts parallel175

to the solid substrate at the contact-line and is responsible for its movement.176

Based on the molecular–kinetic theory [21], the movement of the contact-line177
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is associated with an energy dissipation that is usually referred to as a friction178

force acting on a moving contact-line [33, 39, 50]. Denoting the slip–velocity179

associated with the movement of the contact–line with uslip, this underlying180

mechanism can be represented by [25, 36]181

uslip = 2k0λ sinh

(
λ2τY
2kBT

)
on ∂Γ, (11)

where parameters k0 and λ are the characteristic frequency and the average182

distance of the (random thermal) molecular displacements in the vicinity of183

the contact–line, respectively. In Eq. (11), kB is the Boltzmann constant and184

T denotes the absolute temperature. In its simplest form, if the argument of185

sinh in Eq. (11) is small, the formula of the molecular–kinetic theory reads186

τY = ζuslip on ∂Γ, (12)

with ζ = kBT/k
0λ3 representing the coefficient of friction at the contact–187

line [26]. Furthermore, in order to avoid the singularity in the vicinity of the188

contact-line [73], the no-slip condition on the solid substrate is substituted189

by the Navier-slip boundary condition that can be formulated as [39, 66, 74]190

191

ns · u = 0 on ∂Ωs, (13)

and192

Is ·T = −βIs · u = −βu on ∂Ωs, (14)

where ns is the normal to solid substrate ∂Ωs, and Is = (I− ns ⊗ ns) denotes193

the surface unit tensor with I being the identity tensor. In this work, the194

slip condition (13) is implemented using the local rotation of the unknown195

velocities at solid surface ∂Ωs as discussed in [75].196

It is worth mentioning that the combination of (12) and (14) is essentially197

equivalent to the so-called “generalized Navier boundary condition” [39]. An-198

other important point to mention is that so far, no systematic approach has199

been introduced for a priori determination of parameters β and ζ to be used200

in a numerical simulation [45]. In section 3.2, it is shown that for the present201

method, ζ can be set according to the corresponding parameter obtained by202

fitting the experimental data by a comparable model (e.g. see [26]).203

2.1.1. Sub-element Hydrodynamics204

Considering the practical difficulties in computationally resolving the205

hydrodynamics in the vicinity of the contact-line with micrometer length-206

scales [76, 53, 77], the well-established hydrodynamic theory is utilized to207
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Figure 3: Schematic of the computationally reproduced and the physically expected in-
terface.

incorporate the sub-element variation of the contact angle that occurs due to208

the so-called “viscous bending” phenomenon [25, 1] (see Fig. 3). In this work,209

the formulation is based on the simplified linear form [68] of the asymptotic210

solution to the hydrodynamic theory [19] as211

θ3 = (θnum)3 − 9Ca ln(
he
lmicro

), (15)

where the capillary number is defined as Ca = uclµ/γ and lmicro is the mi-212

croscopic slip length-scale. If he is considered to be equal to the length-scale213

associated with the conventional experimental measurements of the contact-214

angle, ln(he/lmicro) ∼ 10 would be expected [25, 68]. It is worth noting that215

the simultaneous incorporation of Eqs. (12) and (15) leads to the simplified216

form of the combined molecular–kinetic/hydrodynamic model proposed by217

Petrov and Petrov [31, 26].218

The original Cox’s relation [19] is valid for Ca � 1 and small Reynolds219

number while its simplified form in Eq. (15) can be utilized in cases of a220

small contact angle, θ < 3π/4, with a vanishing viscosity ratio, µ2/µ1 � 1221

(considering µ2 for the surrounding fluid Ω2) [68]. For the test-cases solved222

in this paper, Eq. (15) is applied only for Ca < 0.3 and θnum − θY < 2π/10.223

The latter condition prevents the application of Eq. (15) in situations that a224

large difference between the dynamic contact-angle and θY leads to a rather225

large contact-line velocity and consequently, a fairly large Reynolds number.226

In order to alleviate this condition, one can follow the approach presented227

in [67]; however, in order to keep the simplicity of the formulation, it is not228

implemented in this work.229

Although it is known that the microscopic length-scale lmicro is in the230
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order of one nanometer, it is generally obtained by performing a proper data-231

fitting [26, 68]. In this sense, lmicro is added to the list of unknown model232

parameters [35] along with β and ζ. For the cases considered in this work,233

microscopic length-scale is set to lmicro = 10−9m that gives ln(he/lmicro) ∼ 10234

for the employed computational meshes. Numerical simulations also shows235

that slight variation of lmicro does not lead to any significant changes in the re-236

sults. Combining Eq. (15) with the generalized Navier condition, Yamamoto237

et al. has also reported that lmicro ∼ 10−9m led to the most satisfactory238

results in their capillary rise simulations [56].239

2.2. Variational formulation240

The variational form of the momentum equation (1) can be written for241

the whole fluid domain as [65]242

∫

Ω

ρ

(
∂u

∂t
+ u · ∇u

)
·wdΩ =

∫

Ω

ρb ·wdΩ +

∫

Ω

p∇ ·wdΩ

−
∫

Ω

µ
(
∇u +∇uT

) ..∇wdΩ +

∫

∂Ω

T ·wd(∂Ω), (16)

where w is a test function in [H1(Ω)]
d

that vanishes at the Dirichlet bound-243

ary conditions. For separate incompressible fluid domains, Ω1 and Ω2, the244

variational form of the continuity equation (2) becomes245

∫

Ω

qρ (∇ · u) dΩ = 0, (17)

with q being a test-function in L2(Ω). The boundary integral term
∫
∂Ω

T ·246

wd(∂Ω) on the right–hand–side of eq. (16) essentially includes the Neumann247

boundary (5), interfacial (7), and Navier-slip (14) conditions as well as the248

surface tension along with the molecular–kinetic model (11) acting at the249

contact line. Considering unit vectors tint and ts being tangential to the250

interface and the solid substrate, respectively (as shown in Fig. 2), one has251

Is · tint = − cos(θ)ts and consequently, the molecular–kinetic model (11) can252

be rewritten as253

(γ2s − γ1s)ts + γIs · tint −
2kBT

λ2
sinh−1

( uslip
2k0λ

)
ts = 0 on ∂Γ. (18)
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Substituting the corresponding relations into Eq. (16), one obtains254

∫

Ω

ρ

(
∂u

∂t
+ u · ∇u

)
·wdΩ =

∫

Ω

ρb ·wdΩ +

∫

Ω

p∇ ·wdΩ

−
∫

Ω

µ
(
∇u +∇uT

) ..∇wdΩ +

∫

∂ΩN

TN ·wd(∂Ω)

−
∫

∂Ωs

βu ·wd(∂Ω)−
∫

Γ

γκnint ·wdΓ

+

∫

∂Γ

[(γ2s − γ1s)ts + γIs · tint

−2kBT

λ2
sinh−1

( uslip
2k0λ

)
ts

]
·wd(∂Γ). (19)

Here, the slip–velocity at the contact–line reads uslip = ts · u. Simplifying255

the molecular–kinetic model (11) to its linear form (12), one obtains256

∫

∂Γ

2kBT

λ2
sinh−1

( uslip
2k0λ

)
ts ·wd(∂Γ) =

∫

∂Γ

ζ(ts · u)ts ·wd(∂Γ). (20)

For the sake of simplicity and in order to facilitate comparisons with the257

references chosen in the present work (where ζ is provided), the linear ap-258

proximation (Eq. (20)) is used if not mentioned otherwise.259

It must be noted that a similar variational formulation for the contact260

line dynamics has been derived by Buscaglia and Ausas [66] using the prin-261

ciple of virtual work. Conventionally, the variational formulation is derived262

by smoothing the surface tensions based on the continuum force approach263

(see [42] for example).264

In this work, the accurate integration of the terms appearing in the varia-265

tional formulation (19) is done by splitting of the cut elements. In Fig. 4, this266

procedure is schematically shown for a sample element cut by the interface.267

Elemental integration domains Ωe,cut
1 and Ωe,cut

2 are split into tetrahedra to268

facilitate the integration. The integration of the terms associated with the269

elemental interface (Γe), contact-line (∂Γe), and solid substrate (∂Ωe
s) are270

performed by utilizing the quadrature points as schematically illustrated in271

Fig. 5. By employing a high–order (two points for line-segments, three points272

for triangles, and four points for tetrahedra) Gaussian quadrature, one can273

assure that the integration procedure does not introduce further error to the274

solution (i.e. the number of Gauss points is sufficient for the integration of275
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(a) Ωe,cut (b) Ωe,cut
1 (c) Ωe,cut

2

Figure 4: Schematic of a possible cut in a tetrahedral element. The interface, Γe, is shaded
by yellow and the matching faces are marked with the same color.

(a) Ωe,cut (b) Γe and ∂Γe (c) ∂Ωe,cut
s

Figure 5: Schematic of a possible cut in a tetrahedral element contacting the solid surface.
∂Γe is marked with a red solid line and quadrature points are represented by black dots.

functions up to third–order). The conventional alternative to the element276

splitting procedure is the incorporation of a smoothed numerical approxima-277

tion of the delta function; in the continuum force approach, this is essentially278

needed to formulate the surface tension and the contact–line model. In the279

present approach, due to the employment of the splitting methodology, such280

an approximation is not required and the associated errors are alleviated.281

The presented formulation is implemented withing the framework of the282

stabilized pressure enriched finite element method proposed in [65]. Within283

element e, the standard finite element approximation of the flow variables284

reads285

u(x, t) =
∑

I∈N e

uI(t)N
e
I (x), (21)

and286

p(x, t) =
∑

I∈N e

pI(t)N
e
I (x), (22)

where N e denotes the set of associated nodes and N e
I is the shape function287
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corresponding to node I. However, using the standard finite element ap-288

proximation, it is impossible to capture the intra-element discontinuity in289

the presence of material interfaces; in the context of multi-phase flows [65],290

this is the source of the so-called “spurious currents”. In order to resolve this291

issue, the pressure approximation within an element cut by the interface can292

be enriched by accounting for a “jump” as293

p(x, t) =
∑

I∈N e,cut

pI(t)N
e,cut
I (x) +

∑

I∈N e,cut

pe,cutI,enr(t)N
e,cut
I,enr(x), (23)

with enriched nodal pressure pe,cutI,enr being local to the cut element.294

In this work, enriched shape function NI,enr is constructed based on stan-295

dard continuous shape function NI as296

NI,enr(x) =

{
NI(x) if (xI ∈ Ω1 and x ∈ Ω2) or (xI ∈ Ω2 and x ∈ Ω1)

0 else

(24)
Using this set of enriched shape functions, both the jump in the pressure and297

discontinuity in its gradient can be captured within a cut element. After in-298

troducing the enrichment terms, the variational multiscale methodology with299

the well–established algebraic sub-grid scale stabilization [78] along with a300

special small–cut treatment approach is utilized to stabilize the method as301

proposed in [65]. The momentum equation is then linearized using the gener-302

alized Newton’s method and solved along with the mass conservation equa-303

tion in a fully implicit monolithic manner. One of the remarkable features304

of this enrichment procedure is that upon the creation of the local elemen-305

tal system of equations, pressure condensation procedure [65] is performed306

at the elemental level, thus, omitting the introduction of the additional en-307

riched pressure degrees of freedom. Therefore, the degrees of freedom, and308

consequently, the size of the assembled global system of equations is the same309

as that of the standard finite element method.310

2.3. Level-set311

In the present method, the evolution of the interface is captured using the312

level-set method [79], which is based on the introduction of the continuous313

function φ that represents the signed distance to the interface. The level-set314

function is convected according to the velocity field by solving315

∂φ

∂t
+ u · ∇φ = 0 in Ω. (25)
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In the present work, this pure convection equation is stabilized following the316

methodology proposed by Codina [80]. The level-set function gradually loses317

its regularity due to its deviation from a distance function [81] and high318

frequency noise (oscillatory interface) [82]. The first problem can be resolved319

by frequent reinitialization of the level-set function in a way that ‖∇φ‖ ≈ 1320

is satisfied [83]. Due to the hyperbolic nature of the conventional level-set321

reinitialization formulation, it is necessary to take into account the so-called322

“blind-spot region” in the vicinity of the solid surface [84]. Nonetheless, in323

the present work, the marching level-set reinitialization procedure proposed324

by Elias et al. [85] is performed for the whole domain once in every 50 time-325

steps.326

Following the idea presented in [86], the high frequency oscillations can327

be effectively cured by solving a diffusion equation for the level-set function328

as329

φ̃− ε∇2φ̃ = φ in Ω, (26)

where φ̃ and φ are the smoothed (non-oscillatory) and original level-set func-330

tions, respectively. Here, ε = 5 × 103∆th2
e, with ∆t being the size of the331

time-step and he the element size. In the absence of contact with a solid,332

Eq. (26) can be solved without introducing any specific boundary condi-333

tion [86, 82, 65]. In the present method, a Neumann boundary condition is334

implemented on the solid substrate as335

ns · ∇φ̃ = ns · ∇φ on ∂Ωs. (27)

Combining Eqs. (10), (12), and (15),336

θnum =

{(
cos−1

[
ζ

γ
uslip + cos(θY )

])3

+ 9Ca ln(
he
lmicro

)

}1/3

, (28)

at the cut elements, boundary condition (27) is substituted by337

ns · ∇φ̃ = −‖∇φ‖ cos(θnum) on ∂Ωe,cut
s . (29)

It should be noted that in case of the application of the full form of the338

molecular–kinetic model, Eq. (28) should be rewritten incorporating Eq. (11).339

The main shortcoming of the presented level-set smoothing scheme is the340

probability of a slight droplet shrinkage. As proposed in [65], this issue can341
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be resolved by performing a correction step as342

φI = φ̃I −
1

NI

NI∑

J

(
φ̃J − φJ

)
, (30)

whereNI is the number of nodes J that are connected to node I. In this work,343

in order not to perturb the contact angle, a modified correction procedure344

is proposed by separating the set of nodes interior to the fluid domain from345

those that lie on the solid substrate, i.e.346

J ∈
{

Ω \ ∂Ωs if I ∈ (Ω \ ∂Ωs)
∂Ωs if I ∈ ∂Ωs

(31)

Above, all the ingredients of the proposed method are detailed. The347

summary of the overall strategy is presented in Algorithm 1.348

3. Results349

The proposed numerical method is implemented within KRATOS Multi-350

physics [87] an open-source framework for multi-physics computations. The351

second order backward difference (BDF2) time integration is applied to the352

flow equations and the Crank–Nicolson scheme is used for time-marching of353

the level-set convection equation. Algebraic multigrid library (AMGCL [88])354

was used to solve the linear system of equations using the GMRES(m)355

method (with restart parameter m = 40). The convergence tolerance of the356

linear solver is set to 10−9, while a relative tolerance of 10−5 is considered to357

check the convergence of velocity and pressure.358

In the following, the performance of proposed numerical method is first359

verified by comparing the simulation results with the theoretical relation360

obtained for the footprint radius of a liquid droplet spreading on a solid sub-361

strate at small Bond numbers. The method is further validated against the362

experimental data published in the literature for a millimeter-sized squalane363

droplet spreading on a substrate of silicone wafer. In the end, the capabil-364

ity of the method is assessed by simulating a droplet trapped inside conical365

pores. In all cases solved in this paper, gravity g = 9.8m/s2 acts in the366

negative z–direction, and Ω2 is composed of air with ρ = 1.0kg/m3 and367

µ = 1.0 × 10−5Pa.s. For the sake of convenience, the contact-angle is re-368

ported in degrees in the rest of this paper.369
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Algorithm 1: Summary of the proposed method

Input: u0, uD, TN , and φ0

Output: uI , pI , and φI ; node I ∈ Ω
1 n = 1
2 t = 0
3 while t < run-time do

4 solve Eq. (25) for φ
(n+1/2)
I with half time-step

5 if n = {50, 100, 150, . . .} then
6 reinitialize φ

7 do smoothing according to Eqs. (26) and (30) with
conditions (27) and (29)

8 calculate curvature
9 for all elements e do

10 if e ∩ Γ 6= ∅ then
11 do element spliting
12 calculate contact angle

13 create elemental system of equations

14 do assembling the Linear System of Equations (LSE)

15 solve LSE for
[
u

(n+1)
I , p

(n+1)
I

]

16 solve Eq. (25) for φ
(n+1)
I with half time-step

17 update n = n+ 1
18 update t = n∆t

16



Remark370

Before assessing the results of the proposed method, it is worth to provide371

an insight of the computational costs associated with its application: using372

a mesh with ∼ 500K elements, the total run–time per time–step is around373

62s, of which almost 80% corresponds to the two-phase flow solver, 4% to374

the level–set convection, 8% to the level–set smoothing procedure, and about375

8% is consumed for the level–set re-initialization procedure.376

3.1. Verification with theory377

If a droplet retains its spherical-cap shape during spreading on a solid378

surface, one can write a correlation between the footprint radius and the379

instantaneous contact-angle based on the mass conservation of an incom-380

pressible liquid. The resulting correlation reads as r(t) = f (θ(t)) with [33]381

382

f (θ) =

{
3V

π

[1 + cos(θ)] sin(θ)

[1− cos(θ)] [2 + cos(θ)]

}1/3

. (32)

Starting from θ(0) = π/2, the ratio of the terminal radius rY to the initial383

radius of the droplet R0 is384

rY
R0

=

{
2 [1 + cos(θY )] sin(θY )

[1− cos(θY )] [2 + cos(θY )]

}1/3

. (33)

The basic assumption of a spherical-cap droplet is valid if the Bond number385

(Bo = ρ1gR
2
0/γ) is small or equivalently the height of the droplet is smaller386

than the capillary length-scale (lc ∼
√
γ/ρ1g) [69, 33, 68]. This condition387

indicates that gravity is dominated by the capillary force and therefore, has388

a negligible effect on the droplet dynamics. Note that this assumption is389

questionable for fluids with large viscosity, e.g. for polymeric liquids [33].390

Here, a liquid droplet with an initially hemispherical shape (initial contact-391

angle of θ0 = 90◦) and an initial radius of R0 = 1.5mm is spreading on a392

solid substrate. The system is confined in a box filled by air with no-slip393

lateral and top boundaries. The schematic of the whole system is shown in394

Fig. 6. The dimensions are L = W = 8mm and H = 3mm, liquid viscosity395

is µ1 = 1.0× 10−3Pa.s, density is ρ1 = 920kg/m3, and the liquid-air surface396

tension is γ = 4.26 × 10−2N/m. This gives a Bo = 0.48 or equivalently a397

capillary length-scale of lc = 2.2mm. The equilibrium contact-angle is set to398

θY = 58◦ and the results are obtained using β = 103Pa.s/m and ζ = 1.0Pa.s,399
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Figure 6: Schematic of the initial configuration of the liquid droplet inside a solid box.

noting that this example does not intent to reproduce any real-world exper-400

iment.401

This problem is solved for four different (structured) meshes of R0/he ≈402

7.8, 11.3, 15.3, and 19.1, composed of tetrahedral elements with the size403

of he = (1/6Ve)
1/3, where Ve is the volume of a single element. The time404

evolution of the contact angle and the footprint (base) radius of the droplet405

is shown in Figs. 7 and 8, respectively. In this work, the contact-angle is406

calculated as the average of θ obtained for all cut elements with Ωe∩∂Γ 6= ∅.407

The reported radius is also the average distance of the center of the solid408

substrate, located at (x, y, z) = (L/2,W/2, 0), to the center of all ∂Γe =409

Ωe∩∂Γ. In the mentioned figures, the theoretical values of θY and rY obtained410

from Eq. (33) are shown for comparison. In addition, since the Bond number411

is finite, the corrected equilibrium footprint radius, in the presence of gravity412

is calculated based on the theory developed in [69] and denoted by rY,g in413

the following figures.414

As seen in Figs. 7 and 8, numerically obtained droplet configuration at415

equilibrium, i.e. (θeq, req) shows a good consistency with the theoretical416

prediction (θY , rY,g); while the error in θeq is around 3.1% and 2.4% for417

R0/he ≈ 7.8 and 11.3, respectively, it is reduced to below 0.5% for two finer418

meshes of R0/he ≈ 15.3 and 19.1. The corresponding errors in the footprint419

radius at equilibrium in comparison with rY,g are around 5.0%, 1.1%, 0.6%,420

and 0.3% for R0/he ≈ 7.8, 11.3, 15.3, and 19.1, respectively.421

For all the employed meshes, the largest deviation from the theoretical422

value in terms of the dynamic contact-angle and the evolving footprint radius423
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Figure 7: The effect of the mesh resolution on the time-evolution of the contact angle for
a droplet spreading with Bo = 0.48 and θY = 58◦.

Figure 8: The effect of the mesh resolution on the time-evolution of the footprint radius
of a droplet spreading with Bo = 0.48 and θY = 58◦.
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Figure 9: Mesh convergence of the footprint radius of a droplet spreading with Bo = 0.48
and θY = 58◦. The theoretical value of req is shown by dotted-line.

of the droplet, is observed in the middle stages of the spreading. The mesh-424

convergence of req is shown in Fig. 9. The equilibrium configuration of the425

droplet is obviously converging by increasing the mesh resolution. In the426

present test-case, the settings lead to a very small capillary number and427

therefore, the difference between θ and θnum is fairly small.428

Considering the initial configuration of the droplet and fact that the429

height of the droplet, and consequently the effect of gravity is constantly430

decreasing during the spreading, it is expected that the spherical-cap as-431

sumption and consequently, Eq. (32) can also be applied to the evolution432

of the radius of the droplet. It is shown in Fig. 10, where the numerically433

obtained footprint radius of the droplet for R0/he ≈ 15.3 is compared to434

Eq. (32); the agreement is clearly seen. However, specially for the initial435

stages of the spreading, the slight deviation is expected as a result of a finite436

gravity and the effect of inertia.437

It should be noted that releasing the droplet from rest with its center-of-438

gravity initially located above the solid substrate, triggers a series of oscilla-439

tions in the contact-angle (see Fig. 7, it is also directly reflected in Fig. 10440

for r = f(θ) curve). These are physically expected inertial oscillations with441

an origin similar to what was theoretically formulated in [89] (art. 275);442

any disturbance in the shape of a droplet in the simultaneous presence of443

the surface tension and inertia, results in an oscillatory behavior. Since444
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Figure 10: Time-evolution of the footprint radius of a droplet spreading with Bo = 0.48
and θY = 58◦, in comparison with r = f(θ).

the initial triggering disturbance is of a spontaneous nature, these oscilla-445

tion are eventually damped due to viscous dissipation. On the other hand,446

the persistent high-frequency oscillations of insignificant amplitude in the447

contact-angle (particularly evident near the steady-state) occur due to the448

intermittent level-set re-initialization (performed every 50 time–steps in the449

present work).450

3.1.1. Obtuse Contact–angle451

In order to further analyze the performance of the proposed method452

for an obtuse equilibrium contact–angle, the same test–case of the droplet453

spreading is simulated here with θ0 = 159◦ and θY = 105◦. Time–evolution454

of the contact–angle as well as the footprint radius is shown in Fig. 11.455

Here, despite being characterized by the same Bond number (Bo = 0.48),456

which corresponds to the initial radius of the droplet, the significantly larger457

height suggests a pronounced effect of gravity on the equilibrium shape of the458

droplet. This explains the rather large difference between rY = 1.30mm and459

rY,g = 1.77mm. In addition, releasing the droplet with its center–of–gravity460

being initially positioned farther from the solid substrate (at z0 = 1.4mm)461

triggers more profound inertial oscillations.462

21



(a) (b)

Figure 11: Time-evolution of (a) the contact–angle and (b) the footprint radius of a droplet
spreading with Bo = 0.48 and θY = 105◦. The solid red line and the dotted line correspond
to the numerical result and the theoretical prediction (θY , rY,g), respectively.

The above-presented results show that the present numerical model can463

successfully capture the configuration of a spreading droplet consistently with464

the theoretical predictions.465

3.2. Validation against experimental data466

Next, the proposed numerical method is validated by simulating the467

spreading of a liquid (squalane) droplet on a solid (silicone wafer) substrate468

and comparing the obtained numerical results with the experimental data469

reported in [26]. In this test, besides the time-evolution of the configuration470

of the droplet at the near-equilibrium stage, the initial stage of the droplet471

spreading (in which inertia also plays an important role) is taken into ac-472

count. Therefore, this test allows for the in-depth validation of the proposed473

numerical method.474

Squalane has a viscosity of µ1 = 3.14×10−2Pa.s, density ρ1 = 810kg/m3,475

and the liquid-air surface tension γ = 3.11×10−2N/m. The squalane droplet476

in contact with the surrounding air and the silicone wafer substrate creates477

an equilibrium contact angle of 38.8◦. Same computational domain as the one478

used in section 3.1 is chosen (see Fig. 6), while the initial radius and contact-479

angle of the droplet are set to R0 = 0.9mm and θ0 = 180◦, respectively. Here,480

ζ is set to 0.7Pa.s in order to correspond to the value calculated in [26] by481

performing a data fitting based on the linear Petrov model. The Navier-slip482
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Figure 12: Contact-angle as a function of the velocity of the contact-line; comparison of
the experiment [26] with the numerical data obtained for structured meshes of different
resolutions.

coefficient of β = 103Pa.s/m is chosen so to provide the best match with the483

experimentally obtained contact velocity-angle relation as shown in Fig. 12.484

It is observed that the experimental data can perfectly be reproduced by the485

implemented model for the moving contact-line. Numerical data are obtained486

by performing simulations on three different structured meshes of tetrahedral487

elements with R0/he ≈ 4.65, 6.97, and 9.30. Varying the mesh resolution has488

a negligible effect on the contact velocity-angle relation.489

In Fig. 13, the experimentally obtained time-evolution of the contact-490

angle is compared to the numerical value for different mesh resolutions. Nu-491

merical results are in a good agreement with the experimental data. Mesh-492

convergence of the solution is confirmed by comparing the results obtained493

for R0/he ≈ 6.97, and 9.30. The mesh-convergence is further shown in Fig. 14494

for the footprint radius of the droplet during the spreading.495

In an attempt to compare the radius of the droplet with data reported496

in [26], correlation R = r/ cos(θ − π/2) is applied to the numerical data.497

This correlation, based on the assumption that the spreading droplet has498

a spherical-cap shape, is valid in the current test-case only during the final499

stage of the spreading, for which θ < 70◦ [26]. Figure 15 illustrates the500

reproduced radius of the droplet for different mesh resolutions in comparison501

with the experimental data.502

Upon validation of the proposed method, in the following, the perfor-503
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Figure 13: Time evolution of the contact-angle; comparison of the experiment [26] with
the numerical data obtained for structured meshes of different resolutions.

Figure 14: Time evolution of the footprint radius; comparison of data obtained for struc-
tured meshes of different resolutions.
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Figure 15: Radius of the droplet; comparison of the data presented in [26] with the
numerical data obtained for structured meshes of different resolutions.

mance of the method is investigated for the same test is simulated on an504

unstructured mesh. The initial radius to (average) element size ratio of505

R0/he ≈ 9 is set for the elements located on the solid surface, i.e. Ωe∩Ωs 6= ∅,506

while the mesh resolution is significantly coarser for internal elements with507

R0/he ≈ 4.5. Keeping parameters β and ζ unchanged, the numerically ob-508

tained contact velocity-angle relation is shown in Fig. 16. Despite a slight509

deviation, the result is completely satisfactory. The time-evolution of the510

contact-angle obtained for the unstructured mesh is shown in Fig. 17. The511

result obtained on the unstructured mesh shows a slight increase in the512

high-frequency oscillations comparing to that of the structured mesh dur-513

ing the middle stage of the droplet spreading. In order to explore the pres-514

sure field, the computational domain is evenly divided and the pressure con-515

tours are plotted on the division plane in Fig. 18. The results obtained on516

structured and unstructured meshes exhibit a good match. The isometric517

(three-dimensional) and side view of the droplet-air interface is presented518

in Fig. 19 at different instances. These are obtained by plotting the zero519

level-set (φ = 0) iso-surfaces obtained for the unstructured mesh. As seen in520

Figs. 19(g) and 19(h), the deviation from the spherical-cap shape is evident521

for the initial stage of the spreading.522
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Figure 16: Contact-angle as a function of the velocity of the contact-line; comparison
between the experimental data [26] and the numerical results obtained for the structured
and the unstructured meshes.

Figure 17: Time evolution of the contact-angle; comparison between the experimental
data [26] and the numerical results obtained for the structured and the unstructured
meshes.

(a) (b)

Figure 18: Pressure contours obtained at t = 0.1s for (a) structured and (b) unstructured
meshes.
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(a) t = 0 (b) t = 0.01s (c) t = 0.025s (d) t = 0.04s (e) t = 0.1s

(f) t = 0 (g) t = 0.01s (h) t = 0.025s (i) a (j) t = 0.1s

Figure 19: Evolution of the liquid-air interface of the squalane droplet spreading on silicone
wafer.

3.3. Droplet trapped in conical pores523

In order to assess the capability of the proposed method in a more com-524

plex case, in the following the numerical method is applied to the evolution525

of a droplet trapped inside conical pores. The settings of this test-case pre-526

clude the straight-forward application of the conventional schemes, which are527

basically developed for structured meshes.528

The schematic of the configuration of the pore with the initially spherical529

droplet of radius R0 = 0.9mm in tangential contact with the cone is shown in530

Fig. 20. Physical parameters are set according to data reported in section 3.2531

for the squalane droplet on the silicone wafer substrate. Here, the simulations532

are performed for two conical pores of α = 30◦ and 60◦ with H = 5.5mm and533

4mm, respectively. The computational domain is discretized with tetrahedral534

elements of size R0/he ≈ 14.3 adjacent to the solid surface and R0/he ≈ 9535

inside the domain.536

The evolution of the trapped droplet is shown in Fig. 21 for α = 30◦.537

Starting from a perfectly spherical shape, concave interfaces are gradually538

established due to θY < π/2. As shown in Fig. 22, this leads to a reduced539

(negative) pressure inside the droplet at equilibrium. Figures 22 and 23540

present the pressure contours inside the computational domain obtained at541

different time-instances for α = 30◦ and 60◦, respectively. It is evident that542

by evolving the interface from a convex to a concave shape, pressure inside543
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Figure 20: Schematic of the initial configuration of the droplet trapped in a conical pore.

(a) Initial state (b) t = 0.005s (c) t = 0.01s (d) t = 0.02s (e) t = 0.08s

Figure 21: Evolution of the liquid-air interface of the droplet trapped inside a conical pore
with α = 30◦.
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the droplet varies from the maximum to the minimum value. The average544

value of the numerically obtained terminal contact-angle is θeq ≈ 43.3◦ for545

α = 30◦, and θeq ≈ 43.9◦ for α = 60◦; this is consistent with θY = 38.8◦ set546

as an input parameter for simulations.547

The present set of test-cases required, on average, three to four iterations548

to reach pressure and velocity convergence in each time-step, while the linear549

solver fulfilled the maximum tolerance condition in about 50 iterations.550

4. Summary and Conclusion551

In order to develop a level-set/enriched finite element method with the552

capability of treating dynamics of the moving contact-line, a systematic and553

physically consistent methodology was proposed; the role of the molecular–554

kinetic theory and the hydrodynamic theory in the numerical modeling were555

elaborated along with the necessary customization of the boundary condi-556

tions including the contact–line dynamics. By applying the proposed method557

to the spreading of a droplet, an acceptable mesh-convergence was observed.558

The results were also compared for both the structured and unstructured559

meshes and a good agreement was revealed. Furthermore, the straightfor-560

ward employment of the proposed method to simulate a droplet trapped in561

a (closed) conical pore, suggests the applicability of the developed numerical562

tool for pore-scale multi-phase flows. It must be noted that in this work no563

mesh-refinement strategy was utilized to locally increase the resolution close564

to the droplet interface.565

One of the interesting features of the present method was that in order to566

obtain physically meaningful results, the contact-line dissipation coefficient567

was set according to the corresponding parameter that was obtained by fitting568

the linear Petrov’s model into the experimental data. This alleviates the569

ambiguity associated with the setting of this parameter in the approaches570

rely on the generalized Navier-slip condition. However, further investigation571

with a wider range of liquid/solid materials is necessary to further support572

this affirmation, which would be the topic of a separate research.573

Generally, during the initial stage of the droplet spreading, inertial effects574

are rather significant and therefore, the validity of the simplified model used575

in the present work to resolve the sub-elemental hydrodynamics becomes576

dubious. Therefore, in order to increase the accuracy while capturing the577

spreading with a finite inertia, a more sophisticated hydrodynamic model578
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(a) t = 0.001s (b) t = 0.01s

(c) t = 0.02s (d) t = 0.2s

Figure 22: Pressure contours for α = 30◦. At t = 0.2s, the system has almost reached its
equilibrium configuration.
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(a) t = 0.001s (b) t = 0.01s

(c) t = 0.02s (d) t = 0.14s

Figure 23: Pressure contours for α = 60◦. At t = 0.14s, the system has almost reached
its equilibrium configuration.
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that also incorporates the terms appearing at finite Reynolds number can be579

acquired. This is a subject for future developments.580

In order to improve the coupling between the momentum equation and the581

evolving interface that is represented by the level-set function, in this work582

the level-set convection equation is split in time as shown in Algorithm 1.583

Numerical simulations showed that such splitting could positively affect the584

accuracy of the method and alleviate the need for an excessive diffusive level-585

set smoothing to regularize the interface. Nevertheless, further investigations586

are needed to quantify this improvement.587
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Chapter 4
Droplet Dynamics in Gas Channel:
Contact–angle Hysteresis

4.1 Introduction

One of the essential requirements for the realistic modeling of the water transport in
the gas–channel of the PEM fuel cells is the inclusion of the contact–angle hysteresis
phenomenon associated with the dynamics of the water droplet in contact with the (hy-
drophobic) outer face of the gas diffusion (fibrous) media. In this chapter, the introduced
pressure–enriched finite element/level–set framework is further developed by incorpo-
rating a modeling approach for capturing the contact–angle hysteresis phenomenon.
Additionally, a momentum correction formula is proposed to prevent the instabilities
that occur as a result of mass conservation corrections introduced in rather long–time
simulations. Here, the validation tests involve the dynamics of a water droplet on the
outer surface of a gas diffusion layer (used in commercial PEM fuel cells). This chapter
is compiled within the following publication.
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This work focuses on three-dimensional simulation of the dynamics of droplets with

contact–angle hysteresis. In order to consistently model the dynamics of the contact–line,

a combination of the linear molecular kinetic theory and the hydrodynamic theory is im-

plemented in the present numerical method. Without presetting the contact–line and/or the

contact–angle, such simulations are generally prone to irregularities at the contact–line,

which are mainly due to the imposition of the pinning and unpinning mechanisms asso-

ciated with the hysteresis phenomenon. An effective treatment for this issue is proposed

based on a simple procedure for calculating the nodal contact–angle within the framework

of enriched finite element/level set method. The resulting method also benefits from a ma-

nipulated momentum conservation equation that incorporates the effect of the liquid mass

conservation correction, which is essentially important for simulations with a rather long

(physical) run–time. In this paper, the proposed numerical model is validated against the

previously published experimental data addressing the configuration of a water droplet on

a tilted rough hydrophobic surface. In this test, the effect of the the contact–line pinning as

the underlying mechanism for droplet hysteresis phenomenon is also studied. The model

is further employed to simulate a liquid droplet confined in a channel in the presence of air

flow.
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I. INTRODUCTION1

Polymer electrolyte membrane (PEM) fuel cells (also known as proton exchange membrane2

fuel cells) are powerful modern energy conversion devices, known for their high efficiency and3

ambient-friendliness1. Despite the promising potential of PEM fuel cells to become one of the4

main sources of clean energy for transportation purposes2, their usage is still hindered by their5

durability3. Water management4 is among the challenging issues that directly affect the perfor-6

mance and durability of PEM fuel cells5. Efficient water management requires the evacuation of7

the water droplets that breakthrough the outer face of the gas diffusion layer (GDL) into the gas8

channel (GC). This evacuation is mediated by the air flowing in the GC at the cathode. Particular9

attention is paid to the prediction of the droplet detachment conditions, which, in turn, lead to10

insights regarding the efficiency of water evacuation for a given operation regime.11

In this context, the analysis of the dynamics of water droplets confined in the GC is of main12

importance6, which requires the incorporation of the complex wettability characteristics of the13

outer face of the GDL7,8. In such analyses, besides the experimental investigations and deliberate14

measurements and/or visualizations, numerical modelling can be acquired as a viable means to15

provide fundamental understanding of the phenomena.16

For the numerical analysis of droplet dynamics in GC, one of the major requirements is to in-17

corporate a dynamic (non–static) contact–angle9,10 along with the prerequisites of the hysteresis18

phenomenon11. The latter is of particular importance due to the physicochemical properties of the19

fibrous substrate formed by the face of GDL12. Once the equilibrium condition at the three-phase20

contact–line is disturbed, unbalanced interfacial forces provide a tendency towards a new equilib-21

rium leading to either wetting or dewetting process. The dynamic behavior the contact–angle13
22

during these complex processes cannot be characterized by the Young’s relation 14,15 anymore, as23

the mentioned law is limited to the definition of the static equilibrium contact–angle. It should be24

noted that modeling of the droplet dynamics on solid substrates has a vast range of applications25

from spray cooling16,17 to fundamental biological phenomena18.26

The main approaches for the modeling of the contact–line dynamics are the molecular–27

kinetic19,20 and hydrodynamic21,22 theories with former focusing on the dissipation at the inter–28

molecular length–scale and latter treating the movement of the contact–line at the continuum–29

level. Nevertheless, recent studies23,24 have revealed that the improved results are obtained when30

using a combination25 of these two approaches.31
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One of the major complexities in the droplet spreading modeling is the contact–angle hysteresis32

phenomenon26,27. Hysteresis is associated with the pinning of the contact–line28 and character-33

ized by receding and advancing contact–angles29, which are linked to the dewetting and wetting34

processes, respectively. This phenomenon is basically caused by the chemical properties30, or35

more accurately by the heterogeneity31,32 in the properties of the solid substrate that comes into36

contact with the gas and liquid phases. Surface roughness and its micro–structure are also among37

determining factors that cause dramatic variations in the contact–angle hysteresis33–35.38

Recent advances in the numerical modeling of multi–phase flows allowed to establish a re-39

liable basis for the numerical simulation of the transport of water droplets in GC10,11,36,37. The40

numerical approaches in this context can be classified within the main categories of the phase–field41

models and the sharp–interface capturing techniques. The framework of the phase–field models42

provides a means to capture the dynamics of the contact–line without prior imposition of any spe-43

cific dynamic contact–angle model38. Nevertheless, the phase–field models require an extreme44

mesh refinement in the vicinity of the liquid-gas interface, which leads to prohibitively high com-45

putational costs in three–dimensional simulations. The most used interface–capturing techniques46

on the other hand are the volume of fluid (VOF)39 and the level–set method40. While the VOF47

method perfectly preserves the mass conservation, it lacks a systematic and efficient mechanism48

for reproduction of the geometric data associated with the liquid–gas interface. Unlike VOF, the49

level–set method circumvents the complexities associated with the calculation of the necessary50

geometric data, though it needs additional treatment for mass conservation preservation41–43. Be-51

sides these Eulerian approaches, a Lagrangian framework can also be acquired in this field44,45.52

However, the employment of such a Lagrangian approach in three-dimensional cases would lead53

to a prohibitively high computational cost.54

Authors have recently introduced enriched finite element / level–set method46,47 that creates a55

framework for a sharp (zero–thickness) interface treatment, which is a key for efficient simulation56

of droplet dynamics. Moreover, this method allows for the direct implementation of experimen-57

tally admitted dynamic contact–line models. In the present work, the method is further developed58

by incorporating a consistent treatment of the contact–angle hysteresis phenomenon. The current59

numerical method models the dynamic contact–angle by a combination of the molecular–kinetic60

and the hydrodynamic theories. Additionally, in this paper, a simple mass conservation improve-61

ment technique is introduced and the effect of the corresponding correction term on the momentum62

conservation equation is incorporated.63
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In the following, first, the governing equations and the hysteresis modeling technique are briefly64

discussed. The level–set method, the corresponding contact–angle calculation, and the (liquid)65

mass conservation treatment technique are described afterwards. Next, the incorporation of the66

mass conservation correction into the momentum conservation equation, and consequently, the67

variational formulation are derived. At the end of section II, a summary of the proposed numerical68

algorithm is provided. In section III, first, the impact of incorporating the mass conservation cor-69

rection term into the momentum equation is shown. Afterwards, the proposed method is validated70

and applied to the tests involving the dynamics of a water droplet on the outer surface of a GDL71

with an emphasis on the hysteresis phenomenon. The essential importance of imposing a pinning72

mechanism for obtaining realistic results is analyzed in these tests.73

II. NUMERICAL METHOD74

A. Governing Equations75

The gas-liquid system under consideration involves air and water. The flow of each homoge-76

neous phase Ωi, i ∈ l,g of this system can be described by momentum77

ρ
(

∂u
∂ t

+u ·∇u
)
= ρb−∇p+µ∇2u in Ωi, (1)

and mass78

∇ ·u = 0 in Ωi, (2)

conservation equations, which are derived for incompressible Newtonian fluids. In the above79

equations, u is velocity, p is pressure, and b = −gez denotes the body force, with ρ and µ being80

density and dynamic viscosity of the fluid phase, respectively.81

Governing equations (1-2) are subject to the initial as well as the Dirichlet and Neumann bound-82

ary conditions, which read83

u(x,0) = u0 in Ω, (3)
84

u(x, t) = uD on ∂ΩD, (4)

and85

T(x, t) = TN on ∂ΩN , (5)

respectively, where T denotes the traction vector.86
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FIG. 1. Schematic of a droplet lying on a solid substrate. Unit vectors tint , ts, and nint are all in the same

plane, which is perpendicular to ∂Ωs. Contact–angle is the supplementary of the angle between unit vectors

tint and ts.

The liquid–gas interface (see Fig. 1), Γ = (Ωl ∩Ωg), partially determines the boundary of each87

homogeneous phase and is subject to the following conditions88

JT(x, t)K =−γκnint on Γ, (6)

and89

Ju(x, t)K = 0 on Γ, (7)

where γ and κ are the surface tension coefficient and the local curvature of the interface, respec-90

tively. In these equations, T represents the traction vector, n is the outward normal vector, and91

J·K denotes the jump operator with respect to ∂Ω. For a Newtonian fluid, the traction vector is92

calculated as93

T =
[
−pI+µ

(
∇u+∇uT)] ·n. (8)

In case the interface is located at the solid substrate (see Fig. 1), the equilibrium condition48
94

dictates that the liquid–gas surface tension must be balanced by liquid–solid (γls) and gas–solid95

(γgs) interfacial tensions at the contact–line, ∂Γ = (∂Ωs ∩Γ). This gives the Young’s relation14,49
96

γ cos(θY )+ γls = γgs. (9)

with θY denoting the equilibrium contact angle. Once the equilibrium is disturbed, a model for97

incorporating the unbalanced interfacial forces (that are rendered to the Young stress) is required50,98

τY = γ [cos(θY )− cos(θ)] , (10)
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which is a function of the dynamic contact–angle, θ . In this work, the (simplified) linear molecular99

kinetic theory13
100

τY = ζ uslip on ∂Γ, (11)

with constant coefficient of friction ζ is used to model the dynamics of the contact–line. Here,101

uslip = ts ·u is the local slip velocity of the contact–line. Taking into account nanometric (physical)102

length–scale and lmicro associated with the dynamic contact–angle, one can use the hydrodynamic103

theory21, to correlate numerically captured contact–angle θ num to microscopic θ as104

θ 3 = (θ num)3 −9
µuslip

γ
ln(

he

lmicro
), (12)

where he denote the length–scale associated with the resolution of the computational mesh (see47
105

for more details). It must be noted that fixing parameters ζ and lmicro needs deliberately designed106

experiments13.107

Another complexity associated with the modeling of the moving contact–line is the stress sin-108

gularity occurring in the vicinity of the contact–line if one tries to treat the solid substrate as a109

no–slip boundary51. The good practice to resolve this issue is to substitute the no–slip condition110

on the solid substrate with the Navier–slip condition formulated as52
111

ns ·u = 0 on ∂Ωs, (13)

and112

(I−ns ⊗ns) ·T =−βu on ∂Ωs, (14)

with I and ns being the identity tensor and the vector normal to the solid substrate, respectively.113

B. Hysteresis114

In the numerical modeling, the hysteresis phenomenon is generally rendered into the contact–115

line pinning conditions:116

contact–line is





free for wetting if θ ≥ θA

pinned if θR < θ < θA

free for dewetting if θ ≤ θR

(15)

Here, θA and θR are the static advancing and the static receding contact–angles that characterize117

the pinning threshold53. Therefore, the (static) contact–angle hysteresis is calculated as ∆θstatic =118
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θA − θR
29. In order to prevent confusion, it should be noted that in this work, θa and θr (with119

lower–case subscripts) denote the maximum and the minimum contact–angles, respectively. In120

this way, the instantaneous contact–angle hysteresis can be measured as ∆θ = θa −θr.121

Besides implementing the pinning condition (15), in order to make the whole formulation con-122

sistent with the physical interpretation of hysteresis phenomenon40, the equilibrium contact–angle,123

θY , that appears in the definition of the unbalanced Young stress (10) is also set according to124

θY =





θA if wetting

θ if pinned

θR if dewetting

(16)

This guarantees that while pinned, the contact–line has no tendency for movement. It is necessary125

to highlight that checking the liquid spreading direction, i.e. being in the wetting or dewetting126

regime, is of high importance for the physically justified incorporation of the pinning mechanism127

via conditions (15) and (16).128

C. Level–set Method129

The level–set method54 is a robust interface capturing approach based on the convection of the130

continuous signed distance function, φ , according to131

∂φ
∂ t

+u ·∇φ = 0 in Ω. (17)

The theoretical definition of φ reads132

φ(x, t) =





−d if x ∈ Ωl

0 if x ∈ Γ

d if x ∈ Ωg

(18)

with d being the distance x from the interface, or equivalently, ∥∇φ∥= 1. Using level–set function133

φ , the wetting and dewetting can easily be formulated in the vicinity of the contact–line as134

∂φ(x, t)
∂ t

=





< 0 if wetting

> 0 if dewetting
(19)

During the evolution of the interface, there is a high chance of the occurrence of irregularities135

in level–set function φ that are re-presentable as a deviation from the true distance function (i.e.136

7



(a) (b)

FIG. 2. Schematics of (a) A cut element, Ωe
cut , and (b) the corresponding contact–line, ∂Γe.

∥∇φ∥ ̸= 1) and/or noise in the reproduced interface46. In order to address these irregularities, dis-137

tance re-initialization55 and level–set smoothing47 techniques are utilized in the present method.138

The descretization of Eq. (17) is done using the streamline–upwind Petrov–Galerkin (SUPG) ap-139

proach with the addition of the cross–wind stabilization term56.140

1. Contact–angle Calculation141

Figure 2 illustrates a cut element located on the solid substrate and the associated unit vectors,

nint , ns, and ts. Based on the definition of the level–set function, the normal vector to the interface

can be calculated as

nint =
∇φ

∥∇φ∥
In this way, the numerical contact–angle corresponding to the cut element is obtained as142

θ num
e = π − cos−1

(
ns ·

∇φ
∥∇φ∥

)
. (20)

The tangent to the substrate (normal to the contact–line) is also simply calculable as

ts =
1

sin(θ num
e )

[ns × (ns ×nint)] .

In order to prevent inadequate imposition of the pinning condition, it is necessary to obtain143

regularly distributed contact–angle values. In the present work, the pinning condition (15) is144

selected based on the nodal value of the contact–angle, calculated as145

θ num
I =

1∣∣E cl
I

∣∣ ∑
e∈E cl

I

θ num
e , (21)
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where
∣∣E cl

I

∣∣ denotes the size of E cl
I , which is the set of elements that are cut by the contact–line146

and share node I. As long as a node is pinned according to condition (15), the corresponding value147

of level–set function φ is fixed and treated as a known value during the assembly of the system of148

equations obtained by discretization of Eq. (17).149

2. Mass Conservation Correction150

As shown in the literature57, the level–set method does not guarantee the conservation of the151

mass of the fluid phases. Although (adaptive) mesh refinement58 and higher–order methods42 can152

be utilized to prevent any mass loss, a simple and efficient approach to compensate for this adverse153

artifact is a global correction to the level-set field. This can be defined as154

φcorr = φ +

∫
Ω,liq dΩ−Vliq,0∫

Γ dΓ
, (22)

where φcorr denotes the corrected level-set field and Vliq,0 is the initial volume of the liquid phase155

including the net liquid inflow. The volume correction term can equivalently be represented in156

term of pseudo-velocity157

u′int =− 1
dt

∫
Ω,liq dΩ−Vliq,0∫

Γ dΓ
. (23)

Nonetheless, employing a volume correction technique requires correcting the momentum con-158

servation equation accordingly. Without loss of generality, consider a case with volume loss; the159

pseudo–velocity is positive and consequently, the mass correction procedure increases the mo-160

mentum of the liquid phase while the gas momentum is decreased. In this work, the associated161

momentum transfer is formulated and incorporated into the momentum conservation equation as162

follows.163

D. Variational Formulation164

Considering an arbitrary fluid domain (Ω), the rate of the total momentum reads165

D
Dt

∫

Ω
ρudΩ =

∫

Ω

∂
∂ t

(ρu)dΩ+
∫

∂Ω
(ρu)u ·nd (∂Ω) . (24)

Supposing that the boundary of the the arbitrary domain (∂Ω) partially coincides with the liquid-166

gas interface (Γ), one has167

D
Dt

∫

Ω
ρudΩ =

∫

Ω

∂
∂ t

(ρu)dΩ+
∫

∂Ω\Γ
(ρu)u ·nd (∂Ω)+

∫

Γ
(ρu)uΓ ·ndΓ, (25)
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where uΓ = u+u′intn is the effective (imposed) velocity of the interface, which takes into account168

both the computed velocity and the contribution of the correction calculated in Eq. (23). This gives169

D
Dt

∫

Ω
ρudΩ =

∫

Ω

∂
∂ t

(ρu)dΩ+
∫

∂Ω
(ρu)u ·nd (∂Ω)+

∫

Γ
(ρu)u′intdΓ, (26)

or equivalently170

D
Dt

∫

Ω
ρudΩ =

∫

Ω

[
∂
∂ t

(ρu)+∇ · (ρu)
]

dΩ+
∫

Γ
(ρu)u′intdΓ. (27)

Incorporating the second term on the right-hand-side of Eq. (27), which is associated with the171

mass conservation correction, and implementing the surface tension condition at the liquid–gas172

interface (8), the molecular kinetic theory along the contact–line (11), the Navier–slip condition173

on the solid substrate (14), and Neumann boundary condition (5), the variational form of the174

momentum conservation equation becomes175

∫

Ω
ρ
(

∂u
∂ t

+u ·∇u
)
·wdΩ+

∫

Γ
ρu′intu ·wdΓ =

∫

Ω
ρb ·wdΩ

+
∫

Ω
p∇ ·wdΩ−

∫

Ω
µ
(
∇u+∇uT) ..∇wdΩ

+
∫

∂ΩN

TN ·wd(∂Ω)−
∫

∂Ωs

βu ·wd(∂Ω)−
∫

Γ
γκnint ·wdΓ

+
∫

∂Γ
[(γtint −ζ u) · ts + γgs − γls] ts ·wd(∂Γ). (28)

In the present work, the test function, w, is chosen from the finite element space. All elements cut176

by the interface undergo a domain splitting process, which facilitates the accurate calculation of177

the integrals presented in Eq. (28) and circumvents the need for implementing a regularized delta178

function. The jump in the pressure field is treated utilizing a pressure–enriched finite element179

space46 and the algebraic sub-grid scale technique59 is used to stabilize the method. For the sake180

of brevity in this paper, only the new aspects of the present numerical model are discussed, while181

the detailed description of the enriched finite element framework developed by the authors46,47 is182

omitted.183

Before moving on and focus on the hysteresis phenomenon, it is worth to analyse the effect

of the proposed momentum correction term in a simple test–case, in which an ellipsoidal liquid

droplet with its surface being defined as

(
x− xc

a

)2

+

(
y− yc

b

)2

+

(
x− zc

c

)2

= 1,
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FIG. 3. Time evolution of the amplitude of the oscillating droplet with and without incorporating the

momentum correction term.

is confined inside a 1 × 1 × 1m3 box. Setting a = b = 0.25m, c = 0.4m, and xc = yc = zc =184

0.5m, the droplet oscillates until reaching an equilibrium spherical shape with radius aeq =
3
√

abc.185

Considering the comparatively large length-scales and consequently, the small curvature, in order186

to accelerate the droplet deformation, a rather large surface tension of γ = 100N/m is used in this187

test–case along with ρl = 1000kg/m3, ρg = 1kg/m3, µl = 1Pa.s, and µg = 0.01Pa.s.188

Figure 3 presents the time–evolution of the amplitude of the droplet oscillations along z–axis189

(c̄) that is normalized by aeq for both the corrected and uncorrected formulations. It is evident190191

that without the proposed correction to the momentum equation, the amplitude of the oscillation is192

growing, contrary to the basic physical expectations. Such behaviour is a cause of numerical insta-193

bility specially after rather long simulation run–times that obligates significant level–set correction194

to preserve the mass continuity. It should be noted that in order to highlight the effectiveness of the195

proposed correction, in the present test–case, the parameters are chosen in a way that the pseudo–196

velocity associated with the mass conservation correction and consequently, the correction term on197

the right-hand-side of Eq. (26), be significant. For this test, the Reynolds number is Re ∼ O(102).198

E. Computational Algorithm199

In this work, the linearized momentum conservation is implicitly solved together with the mass200

conservation equation. The computational domain is discretized using linear tetrahedral elements.201
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Algorithm 1: Time–marching

n = 1;

t = 0;

while t < run-time do

calculate nodal contact–angle according to Eq. (21);

impose fixing/unfixing φ according to Eq. (15);

solve Eq. (17) for φ for the first half time-step with un;

reinitialize φ ;

calculate curvature as κ = ∇ · (∇φ/∥∇φ∥);

for all elements e do

if e∩Γ ̸=∅ then

do element splitting;

impose pinning condition according to Eq. (16);

calculate θ according to Eq. (12);

create elemental system of equations according to Eq. (28);

do assembling the Linear System of Equations (LSE);

solve LSE for [u, p];

solve Eq. (17) for φ for the second half time-step and the updated u;

update n = n+1;

update t = n∆t;

TABLE I. Summary of the proposed method.

The convergence of the velocity and pressure fields is obtained by assuring a relative tolerance of202

10−5. All the linear systems of equations are solved using the GMRES (m = 40) with a conver-203

gence tolerance of 10−6. All the implementations are done within KRATOS Multiphysics code60.204

AMGCL library61 is utilized for solving the linear system of equation. In Table I, the main steps205

of the proposed numerical method are outlined.206
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III. RESULTS207

In the following, the main test–cases are presented, which are dedicated to the hysteresis phe-208

nomenon. Unless otherwise mentioned, the liquid and gas properties correspond to those of water209

and air, respectively; ρl = 1000kg/m3, µl = 0.001Pa.s, ρg = 1kg/m3, µg = 0.00001Pa.s, and210

γ = 0.072N/m. Gravity is set to g = 9.81m/s2 in all test–cases.211

Computational consistency requires Navier–slip parameter β to be much larger than µ/he; in212

this work, β = 1000Pa.s/m passes this criteria for all the meshes. The parameter of the molecular-213

kinetic model and the microscopic length–scale are set to ζ = 0.5Pa.s and lmicro = 10−9m, respec-214

tively. These values are within the measured range of the two parameters. Nevertheless, since215

for the test–cases solved in the present work, an emphasis is given to the pinning (underlying the216

hysteresis phenomenon) rather than the dynamics of the contact–line, these three parameters have217

a minor effect on the results. In other words, changing these parameters only affects the dynamics218

of the droplet spreading on the solid substrate wherever the contact–line is unpinned, while the219

(final) equilibrium configuration of the droplet is unaffected.220

In all cases considered below, the receding and advancing static contact angles of θR = 115◦221

and θA = 149◦ are considered, respectively. These correspond to experimentally measured values222

for a water droplet on the outer surface of a typical commercial GDL of a fuel cell8. It should223

be noted that for cases with static contact-angle hysteresis, one cannot provide any equilibrium224

contact–angle. The contact-angle is subject to variations due to the movement of the contact-225

line as well as the droplet deformation, which can be active even for a fully pinned droplet. The226

external forces, e.g. gravity and/or the drag of the air–flow, and droplet inertial oscillations lead to227

the deformation of partially or fully pinned droplets in the following tests. Not incorporating any228

prescribed contact–angle, the proposed numerical method is capable of capturing such dynamic229

behavior. In the present work, all tests are performed in three dimensions and two-dimensional230

images of the droplets correspond to cross-sections of the three-dimensional domain made at its231

horizontal plane-of-symmetry if not mentioned otherwise.232

A. Water Droplet on Tilted Solid Substrate233

First, a test consisting of a water droplet released on top of a (tilted) solid substrate in the234

presence of gravity is considered. The corresponding schematic is shown in Fig. 4. The ultimate235
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FIG. 4. Schematic of the liquid droplet on a tilted solid substrate.

configuration of the droplet is basically characterized by the hysteresis phenomenon. This test236

has been widely used as a benchmark for analyzing the hysteresis8,62–65. The main aim here is237

to validate the proposed method and further study the effect of the pinning/unpinning mechanism238

on the droplet configuration. In this sense, besides the comparison with the experimental data239240

(reported in8), this section also includes the results of the (same) test–cases re–simulated without241

the explicit imposition of the pinning condition (15).242

In this section, the volume of the droplet is set to 10µL and the time–step is ∆t = 10−5s for

all cases. Figure 5 shows the initial (spherical-cap) configuration of the water droplet. For this

configuration, one obtains the volume of the droplet as

Vliq =
∫ θ0

0
πR3

0 sin3(θ)dθ =
πR3

0
3

[
2−3cos(θ0)+ cos3(θ0)

]
.

Once the liquid volume is set, the initial radius (R0) and vertical offset Z0 = R0 sin(θ0 − 90◦) are243

calculated. It is important to note that the numerical results with θ0 < 180◦ can be compared to244

the experimental results with θ0 = 180◦ only if θ0 > θavd . For the present test–case, the initial245246

contact–angle is set to θ0 = 155◦.247

It must be noted that an important physical phenomenon here is the occurrence of oscillations,248

which are rooted in the concurrent effect of inertia and surface tension8,66,67. In order to prevent249

strong droplet oscillations in this section, first, the gravity is linearly increased from zero to g =250

9.81m/s2 with a slope of g/τr while the tilting angle is kept zero. Then, the tilting angle is251

increased from zero to α following a linear trend with the slope of π/(18τr). In this test, the252

relaxation time is set to τr = 0.01s. In the actual experiments, similar precautions are followed by253
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FIG. 5. Schematic of the initial configuration of the liquid droplet.

FIG. 6. Comparison of the numerical result with the experimental result reported in8 for zero tilting angle.

slowly releasing the droplet from the injection tip and gradually inclining the solid plane.254

In this section, the computational mesh corresponding to R0/h ≈ 11.0 is composed of ∼ 350K255

elements and ∼ 75K nodes leading to ∼ 300K degrees–of–freedom. We shall consider this mesh256

as "standard" and it will be used by default in the simulations. In case of using a different mesh257

resolution, it will be explicitly specified. Using this setup, for each test–case, reaching the physi-258

cal time of t = 0.1s (or equivalently 104 time–steps for the present case) in the simulation requires259

almost 80 hours of run–time on 4 cores of a PC equipped with an Intel® Core™ i7-4770 proces-260

sor. In this sense, the prohibitive computational cost associated with very long simulation times,261

impedes the use of an extremely large relaxation time.262

Figure 6 illustrates the numerically obtained interface of the droplet on the xz–plane for the263

zero–tilting (α = 0) case in comparison with the experimental result reported in8. The results are264

in a good agreement. The difference between the simulated footprint radius and its experimental265

value is ∼ 10%.266267

In order to check the effect of mesh resolution, the same test was also simulated on a coarser268

and a finer mesh with R0/h ≈ 8.3 and R0/h ≈ 13.8, respectively. In order to verify the mesh–269
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Comparison of the configuration of the droplet obtained at (a,d,g) t = 0.035s, (b,e,h) t = 0.045s, and

(c,f,i) t = 0.055s. In the first row, (a,b,c) the results are shown for the coarsest mesh size, R0/h ≈ 8.3. The

second and third rows correspond to the mesh sizes of R0/h ≈ 11.0 and 13.8, respectively. The dotted–lines

are fitted to the droplet configurations obtained for the finest mesh and replicated on the other figures for

the sake of comparison.

independence for a more rigorous test–case, here, the tilting angle is set to α = 30◦. Therefore,270

in this test, once the magnitude of the gravity reaches 9.81m/s2, the tilting angle is dynamically271

increasing from zero up to 30 degrees. The resulting droplet configurations are presented in Fig. 7272

at three different instances in time. In this figure, the generated computational meshes are also273

illustrated. It is important to mention that in this test, droplet is continuously deforming under274

the effects of a dynamic gravitational force, surface tension, and the inertia. The excellent match275276

between the results obtained for different mesh resolutions is evident in Fig. 7. Thus, the rest of277

the simulations are all performed with R0/h ≈ 11.0.278

Upon increasing the tilting angle, θa increases and θr decreases until the pinning threshold279

(determined by θA and θR) is surpassed and consequently, the droplet is detached. In Fig. 8, the280
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FIG. 8. Comparison of the numerical results with the experimental results reported in8 for different tilting

angles.

(a) (b) (c)

FIG. 9. Droplet configuration obtained with pinning mechanism for different tilting angles, (a) α = 10◦, (c)

α = 30◦, and (c) α = 50◦.

instantaneous contact–angle hysteresis (in terms of θa and θr) of a pinned droplet attached to a281

tilted solid substrate is compared with the experimental data8. The error bars in Fig. 8 show the282283

standard deviation of the result associated with the averaging of the advancing and the receding284

contact–angles. The agreement between the numerical and experimental results is observed in285

Fig. 8. The side view of the droplet and the configuration of its contact–line are presented in286

Figs. 9 and 10, respectively. These figures also include the result for α = 50◦, for which the287

droplet detachment occurred. The presented results correspond to the instances when the droplet288

has nearly reached a terminal shape. Nonetheless, droplet oscillations are present, leading to slight289

deformations in–time.290291292

Next, it is worth to investigate the same test–case without explicit imposition of the contact–
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(a) (b) (c)

FIG. 10. The configuration of the contact–line obtained with pinning mechanism for different tilting angles,

(a) α = 10◦, (b) α = 30◦, and (c) α = 50◦.

FIG. 11. Comparison of the numerical results with and without imposing the pinning mechanism.

line pinning/unpinning threshold. The present methodology allows for performing such simula-

tions directly by setting θA = θR = θeq. In the presence of static contact–angle hysteresis, the

corresponding droplet adhesion (pinning) force is proportional to γ |cos(θR)− cos(θA)|45,68. Con-

sequently, and taking into account that in the absence of the static contact–angle hysteresis, the net

surface force acting on the contact–line is measured as γ cos(θeq), the corresponding equilibrium

contact–angle can be estimated as

θeq = cos−1
(

1
2
[cos(115◦)+ cos(149◦)]

)
≈ 129.8◦.

As expected and shown in Fig. 11, without a pinning mechanism, the droplet is spread more.293

Without a pinning mechanism, the instantaneous contact–angle hysteresis, ∆θ = θa − θr, is also294295

significantly smaller as seen in Fig. 12 compared to Fig. 9. In the absence of a pinning mechanism,296

the frictional effect on the solid substrate is responsible for the manifestation of the (dynamic)297

contact–line hysteresis. The corresponding configurations of the contact–line are also presented298
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(a) (b) (c)

FIG. 12. The configuration of the contact–line obtained without pinning mechanism for different tilting

angles, (a) α = 10◦, (b) α = 30◦, and (c) α = 50◦.

(a) (b) (c)

FIG. 13. The configuration of the contact–line obtained without pinning mechanism for different tilting

angles, (a) α = 10◦, (b) α = 30◦, and (c) α = 50◦.

299

in Fig. 13.300301

B. Water Droplet Exposed to the Airflow in a Gas Channel302

In the following tests, the computational domain is similar to the one schematically shown in

Fig. 4, however, without tilting (α = 0). The domain sizes are L = 800µm, W = 300µm, and

H = 200µm. Here, a water droplet of R0 = 107µm is positioned on the solid substrate with the

initial contact–angle of θ0 = 90◦ and is subject to an air–flow. The inlet boundary condition is

defined by applying fixed prescribed velocity of

u =





u0
2

[
1− cos

( π
0.001t

)]
if t ≤ 0.001s

u0 if t > 0.001s

in x–direction, and at the outlet, a constant (zero) pressure boundary condition is imposed. The303

rather large relaxation time of 0.001s provides the droplet enough time to obtain contact–angles304
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(a) (b)

FIG. 14. Evolution of the interface of the droplet subject to air–flow with (a) u0 = 2m/s and (b) u0 = 6m/s.

The outline of the evolving interface is shown with dashed–line, while the solid–line corresponds to the

initial configuration of the droplet.

significantly larger than 90◦ according to the hydrophobicity of the substrate, before the imposition305

of the maximum velocity. Moreover, the droplet is initially 1.5H away from the inlet in order to306

minimize the effect of spatially uniform velocity set at the boundary of the domain. Here, the307

time–step is set to ∆t = 10−6s and the computational domain is discretized by ∼ 250K elements.308

Figure 14 shows the evolution of the droplet until reaching its terminal configuration for cases309

with u0 = 2m/s and u0 = 6m/s. The corresponding Reynolds numbers are Re = 55 and 166, based310

on the hydraulic diameter of the channel and air properties. It is observed that by increasing the311312

air–flow velocity, the contact–line sweeps a larger distance both at the receding and advancing313

fronts of the droplet. As expected, the larger drag force also leads to a significant increase in θa.314

This is further presented in Table II, which provides the contact–angle hysteresis, along with θa315

and θr, for the equilibrium configuration of the droplet. Besides the increase in θa, by increasing316

TABLE II. Contact–angle hysteresis obtained for different u0.

u0 θa(
◦) θr(

◦) ∆θ(◦)

2m/s 135.6±1.5 124.4±1.5 11.2±2.1

4m/s 139.3±2.2 128.0±1.1 11.3±2.5

5m/s 140.8±1.6 128.5±2.2 12.3±2.8

6m/s 150.0±1.8 131.3±1.3 18.7±2.2
317

318

the velocity of the air–flow, a slight increase in θr is also observed. The rate of the change in θa319

dramatically increases by approaching the threshold of droplet detachment, which is u0 = 6m/s in320

this case.321
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It is important to mention that hysteresis must be observed as a three–dimensional phenomenon322

and droplet detachment cannot be judged by taking into account only the contact–angles at the323

advancing and receding fronts. This indicates that using 2D approximations may lead to erroneous324

conclusions regarding the prediction of droplet detachment, since the lateral parts of the droplet325

might well be pinned, while the angle in the vicinity of triple–points (2D counterpart of the contact326

line) on the axis–of–symmetry exceed the threshold. This can clearly be seen for example in327

the above test–case with u0 = 6m/s, where although the advancing contact–angle has already328

reached θA, still the major part of the contact–line is pinned and consequently the droplet retains329

its location.330

Velocity vectors on a vertical and a horizontal cross–section are shown in Fig. 15 for u0 = 6m/s.331

The onset of a wake adjacent to the droplet in the downstream is detectable in Fig. 15(a). By fur-332

ther increasing the inlet velocity, such complex features of the air–flow become more significant333

and therefore, in order to adequately capture the physical phenomena, a more refined computa-334

tional mesh and/or special numerical treatments that are generally categorized within the context335

of turbulent flow modeling are required.336337

IV. CONCLUSION338

A level–set/enriched finite element method that have been developed by the authors, was fur-339

ther advanced in this work by including the pinning mechanism along with other "ingredients"340

necessary for successful modeling of the hysteresis phenomenon. A modification to the momen-341

tum equation was proposed to incorporate the effect of the mass-conservation correction and its342

performance was analyzed in the simple test of a freely oscillating droplet. The present numerical343

model was validated for a benchmark involving a water droplet placed on a tilted plane. It was also344

shown that if the pinning is absent, a dynamic contact–angle hysteresis is still observable due to345

the frictional forces acting at the surface of the solid substrate. This however, is much smaller than346

the experimentally detected static contact–angle hysteresis occurring in the presence of pinning.347

The numerical model was also employed to simulate a water droplet confined in a channel and348

exposed to an air–flow with Reynolds numbers ranging from Re ∼ 50 to 150. It is necessary to349

mention that for these tests, it was hardly possible to capture all the features of the air–flow on a350

rather coarse computational mesh that was employed. These features become more important as351

the Reynolds number increases. For capturing such effects, a significantly finer mesh resolution352
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(a)

(b)

FIG. 15. Velocity vectors around the droplet subject to air–flow with u0 = 6m/s. Cross–sectional views

perpendicular to (a) y–axis and (b) z–axis.

and consequently, prohibitively higher computational costs are needed for the accurate simulation353

of the time–evolution of the droplet configuration at larger Reynolds numbers.354

Overall, the simulations performed indicate that the proposed approach (three-dimensional en-355

riched finite element/level set method) is capable of providing important insights regarding be-356

havior of droplets contacting solid substrates accounting for dynamic contact line with hysteresis.357

Moreover, reproducing the interfacial discontinuity in a sharp way allows employing relatively358

coarse meshes that facilitate performing 3D simulations in reasonable execution time.359
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Chapter 5
Conclusion

Here, first, the main achievements of the present work are outlined. The second part is
further dedicated to the shortcomings of the present numerical approach and possible
strategies to resolve them.

5.1 Achievements

In the present work, a computational method was proposed for simulating (liquid–gas)
two–phase flow transport problem. This method was based on a pressure enriched fi-
nite element technique to solve the Navier–Stokes equation incorporating the interfacial
effects, i.e. surface tension and contact–line dynamics. Benefiting from a static conden-
sation, the introduced enriched finite element space accurately captures both the weak
and the strong pressure discontinuities without increasing the number of the degrees–
of–freedom of the global system of equations. In the proposed computational method,
the evolution of the phase boundaries was captured using the level–set method. In this
work, the crucial aspects of the developed numerical model were addressed, including the
(small–cut) stabilization, mass conservation correction, and level–set noise reduction.
In order to consistently treat the movement of the contact–line, the molecular kinetic
theory was implemented along with the customized (Navier–slip) boundary condition
on the solid substrate. The hydrodynamic theory was further utilized to incorporate
the sub–elemental (numerically unresolved) variation in the contact–angle. The de-
veloped numerical method was further developed by incorporation of the contact–line
hysteresis via implementing a pinning mechanism that conditionally depends on the
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wetting/dewetting direction of the movement of the contact–line.
Besides the main contributions, as parts of the present project, an accurate method was
also developed to solve the level–set convection equation (presented in Appendix A).
The presented numerical model can readily be applied to simulate the transport of liquid
water in different parts of a fuel cell. However, due to extremely high computational
costs, the so–called “direct numerical simulation” (DNS, which was employed in this
work) of the water transport in GDL was not performed here. This can be done by
improving the parallelization of the implemented model with the aim of exploiting the
computational power of HPC facilities for performing DNS of sample GDLs.
The capabilities and robustness of the proposed method were proved by solving various
benchmarks and test–cases involving droplet dynamics in contact with solid substrates.
This work provides the a framework for the numerical simulation of the liquid-gas trans-
port in microfluidic application. However, one can improve its robustness by addressing
the following aspects of the method.

5.2 Future research lines

In the present work, the contact–line dynamics was captured by combining the linear
molecular kinetic model with the hydrodynamic theory and a Navier–slip condition was
imposed on the solid substrate to circumvent the stress singularity. Since the d level–
set/enriched–FEM framework is suitable for treating different contact–angle/contact–
line velocity relations, it is worth to analyse the results using the nonlinear form of
the molecular kinetic theory, specially for initial stages of the droplet spreading. On
the other hand, there are some, not thoroughly tested, extensions to the hydrodynamic
theory [20, 28, 118, 152], for example, incorporating finite inertia and removing its
limitation to the small capillary numbers. One significant contribution would be the
incorporation and analysis of such formulations.
In the context of two–phase flow with finite surface tension, experiences have shown that
the utilization of a time–marching scheme of Strang splitting type can lead to significant
improvements in the accuracy of the method. Nevertheless, proposing an efficient and
robust scheme for (second–order) splitting of the contributions of the Navier–Stokes and
the level–set convection equations requires further theoretical analyses and numerical
investigations.
As in many other CFD applications, adaptive mesh–refinement is a means to improve
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the efficiency of the present two–phase flow solver. It is majorly important in cases deal
with the necking and separation of the droplets; a highly refined mesh is necessary to
resolve the topological changes in the phase interface. Nevertheless, the use of non–
uniform meshes arises complexities that need further treatments.
One of the main drawbacks of the DNS approach is its demand for highly intensive
computations. For example, the computational costs associated with the pore–scale
simulation of water transport in a sample portion of a diffusion media is prohibitively
high. Although one can run a few simulations of this kind on HPC facilities, reaching
the number of test–cases that are necessary for the interpretation of the fundamental
physical phenomena is hardly possible. In this sense, considering the recent advances
in “data–driven” approaches in CFD applications, it is worth to step up the efforts
in searching for viable algorithms that suit the (transient nature of) droplet dynamic
simulations.





Appendix A
Non–Oscillatory BFECC Algorithm for
Level–set Equation

A.1 Introduction

In this Appendix, a monotonicity–preserving technique is introduced based on the idea
comprised by the so–called “back and forth error compensation correction” (BFECC)
method [36] to dramatically improve the accuracy of the level–set convection solvers
(generally, any reversible transport equation). The effectiveness of the proposed tech-
nique is revealed for three different classes of the stabilized solvers; the SUPG method
along with the cross–wind stabilization [23], an explicit algebraically stabilized finite
element method, and the unconditionally stable semi–Lagrangian approach [109]. This
technique is elaborated in the following, under review manuscript.

A.2 Article data

Title: An Enhanced Non–Oscillatory BFECC Algorithm for Finite Element Solution of
Advective Transport Problems
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In this paper, the so-called “back and forth error compensation correction
(BFECC)” methodology is utilized to improve the solvers developed for the
advection equation. Strict obedience to the so-called “discrete maximum
principle” is enforced by incorporating a gradient–based limiter into the
BFECC algorithm. The accuracy of the BFECC algorithm in capturing
the steep–fronts in hyperbolic scalar–transport problems is improved by in-
troducing a controlled anti–diffusivity. This is achieved at the cost of per-
forming an additional backward sub–solution–step and modifying the for-
mulation of the error compensation accordingly. The performance of the
proposed methodology is assessed by solving a series of benchmarks utilizing
different combinations of the BFECC algorithms and the underlying numeri-
cal schemes. Results are presented for both the structured and unstructured
meshes.
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1. Introduction1

In a wide range of fluid dynamic applications, an elemental step in the2

numerical simulations is to solve advective, or more generally, convection–3

dominated transport problems (for example see [1, 2, 3]). In this context,4

the main challenge addressed by the researchers presently is to accurately5

capture the steep fronts while suppressing the spurious oscillations. In other6

words, the numerical method should preserve the monotonicity property [4]7

of the problem while ensuring sufficient spatial accuracy [5]. This challeng-8

ing requirement has made the numerical solution of convection–dominated9

transport problems an active topic for decades, and adopting the continu-10

ous finite element method, a vast variety of the approaches have so–far been11

developed [6, 7, 8, 9, 10].12

Stemming from the streamline–upwind/Petrov–Galerkin (SUPG) method13

[11], a series of methods were developed by introducing a residual–based sta-14

bilization term [6]. Although stable for rather smooth cases, SUPG–like15

methods are not monotonicity–preserving and therefore, suffer from spurious16

oscillations in the vicinity of a steep gradient [12, 13]. This causes the devel-17

opment of the so–called “spurious oscillations at layers diminishing (SOLD)”18

techniques [14], which need an extremely careful choice of parameters to19

provide a satisfactory result [15].20

Taking into account that the mathematical description of the monotonicity–21

preservation can be rendered into the discrete maximum principle (DMP) [13],22

the necessary requirement for obtaining a non–oscillatory solution is that the23

solver embodies DMP. Successful methods have been developed based on in-24

troducing an artificial diffusion adjusted so that DMP is satisfied [16, 17, 8,25

18]. The class of algebraic flux correction schemes [19, 1, 20, 21, 22, 23] is26

also developed by enforcing DMP at the level of the algebraic system of equa-27

tions. Consistently with Godunov’s statement [24], in order to retain both28

the spatial accuracy and monotonicity, almost all these methods rely on a29

nonlinear discretized equation, which in most cases, necessitates an iterative30

solution procedure.31

As an alternative to such iterative methods, the back and forth error com-32

pensation correction (BFECC) algorithm creates a framework for improving33

the solution of any time–reversible problem [25] [26]; applying BFECC to34

a first–order underlying scheme, a second–order numerical method is ob-35

tained [27]. The BFECC algorithm is based on three sub–solution–steps;36

first, advancing in–time using a first–order scheme, then, retreating in–time37

2



using the same scheme to evaluate the error, and finally, advancing the com-38

pensated field in–time using the same scheme. In this sense, if an explicit39

underlying scheme is used, the resulting method is fully explicit (with a fixed40

number of sub–steps). Assuming that the underlying scheme holds DMP,41

and considering the evaluated error as an anti–diffusivity term, BFECC can42

be categorized along with the predictor–corrector algorithms of the kind de-43

scribed in [28]. However, despite its great potential, there are only a few44

attempts to utilize, analyze, and enhance the BFECC algorithm. This is45

mainly due to the fact that the conventional (unlimited) BFECC algorithm46

deteriorates the capability of the underlying numerical scheme in terms of47

the prevention of the spurious oscillations. In order to circumvent this issue,48

limited BFECC algorithms were proposed; Selle et al. [27] proposed to detect49

and enforce the local bounds of the final solution following the characteristic50

line of the advection equation. General application of such limiter is not com-51

putationally justifiable unless the semi–Lagrangian CIR scheme [29] is used.52

In an alternative approach, Hu et al. [30] introduced a limiter based on the53

detection of the over/under–shoots in the final solution, which requires two54

additional sub–solution–steps that significantly increases the computational55

cost of the method.56

Knowing that the BFECC algorithm violates DMP at the error com-57

pensation step, a shock detector (limiter) can be employed to retain the58

monotonicity–preserving property of the solver if the underlying scheme, it-59

self, embodies DMP. In this way, no additional sub–solution–step is required60

and consequently, the efficiency of the BFECC algorithm is not affected.61

In the present work, a gradient–based [31] continuous nodal limiter [32] is62

incorporated to the BFECC algorithm, recovering the DMP of the result-63

ing scheme. In addition to the methods based on the conventional BFECC,64

a modified algorithm is proposed permitting more accurate capturing of the65

steep fronts. This modified algorithm also results in a superior performance in66

the smooth cases. In order to highlight the versatility of the proposed BFECC67

algorithm, it is applied to DMP–preserving Eulerian and semi–Lagrangian68

underlying schemes.69

In the following sections, first, the scalar transport equation and the low–70

order over–diffusive monotonicity–preserving solver are described. Then, the71

BFECC algorithms and the incorporation of the gradient–based limiter are72

discussed. In section 4, an enhanced underlying scheme is briefly presented73

that partially compensates for the extra–diffusivity of the low–order under-74

lying scheme. In the final section of the present paper, numerical tests are75

3



presented addressing the one– and two–dimensional advection problems on76

structured and unstructured meshes.77

2. Scalar Transport Equation78

2.1. Continuum Formulation79

As a frequently encountered example of hyperbolic problems, the con-80

servation of scalar field u(x, t) is addressed in this work. This problem is81

governed by a time–reversible partial differential equation [27] formulated as82

83

∂u

∂t
+∇ · (vu) = 0 in Ω. (1)

Assuming that velocity field v(x, t) retains the incompressibility condition,84

∇ · v = 0, Eq. (1) can be rewritten in advective form [33].85

∂u

∂t
+ v · ∇u = 0 in Ω, (2)

This equation is subject to the initial condition,86

u(x, 0) = u0(x) in Ω, (3)

and Dirichlet boundary condition87

u = uD on ∂ΩD, (4)

providing that there is an inward flux at ∂ΩD, i.e. v ·n < 0 with n denoting88

the outward normal to boundary ∂Ω.89

2.2. Galerkin Discretization90

Using test–function q ∈ L2(Ω), Eq. (2) leads to the problem of finding u91

that satisfies92 ∫

Ω

q

(
∂u

∂t
+ v · ∇u

)
= 0 ∀q. (5)

The finite element solution to this problem is obtained by discretizing the93

computational domain into a set of elements, E , and choosing both the test–94

function and the trial–function in the finite element space. In this way, u is95

approximated as uh =
∑
N e uiφ

e
i (x) and qh ∈ φi; i ∈ N e \ ND within element96

e. Here, φi denotes the shape function associated with node i, and N e
97
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and ND are the sets of nodes associated with e and the Dirichlet boundary98

condition, respectively. By doing the substitutions, the discrete form of the99

problem reads100

Ae∈E
(
Me

C

dUe

dt
+ CeUe

)
= 0, (6)

where Ue is the vector of nodal unknowns ui with i ∈ N e \ ND. Here,101

operator A represents the assembly of the elemental system of equations, and102

E denotes the set of the elements in the computational domain. The entities103

of the elemental consistent mass and convection matrices are calculated as104

me
ij =

∫

Ωe

φiφjdΩ, i ∈ N e \ ND, and j ∈ N e, (7)

and105

ceij =

∫

Ωe

φiv · ∇φjdΩ, i ∈ N e \ ND, and j ∈ N e, (8)

respectively. Assembling the contributions of all the elements, the global106

linear system of equations is obtained as107

MC
dU

dt
+ CU = 0. (9)

Without loss of generality, the finite element space is constructed by shape108

functions of simplex elements in this work.109

2.3. Stabilization110

It is widely known that in its pure form (i.e. without introducing any dif-111

fucion), Eq. (9) is subject to severe numerical instabilities [12]. Starting from112

Eq. (6), an established practice [34, 21, 35] to achieve a stabilized numerical113

scheme is to substitute the consistent mass matrix with lumped mass matrix114

Me
L and introduce artificial numerical diffusion De, which gives115

Ae∈E
(
Me

L

dUe

dt
+ CeUe + De

)
= 0. (10)

The entities of Me
L are obtained as116

me
L,ij =

{
me
i =

∫
Ωe φidΩ if i = j

0 if i 6= j
(11)
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The numerical diffusion term can be calculated as117

De = νe (Me
L −Me

C) Ue, (12)

to formulate the global system of equations as118

ML
dU

dt
= LU, (13)

with Le = νe (Me
C −Me

L)− Ce. Equivalently, one can write119

mi
dui
dt

=
∑

j

lijuj, (14)

with mi =
∑

e∈Ei m
e
i (for linear elements), where Ei denotes the set of el-120

ements that share node i. It is easy to show that, as a requirement for121

conservation,
∑

j lij = 0; therefore, the sufficient condition to abide with122

DMP and positivity of the result [28, 21] is123

lij ≥ 0, i 6= j. (15)

This is the key to attain a stabilized monotonicity-preserving low–order124

scheme [19, 1], and subsequently, prevent the spurious overshoots and under-125

shoots in the result. Providing this condition, coefficient ν can be calculated126

for each element as127

νe = max(
ceij
me
ij

, 0) ∀i, j ∈ N e. (16)

The resulting scheme is known to be non–oscillatory but strongly over–128

diffusive [35]. It must be noted that one can reduce the artificial diffusivity by129

calculating ν according to the DMP at the level of the assembled global sys-130

tem of equation. Nonetheless, the excessive diffusion of the stabilized scheme131

must be alleviated in order to obtain an accurate method. One possibility132

consists in applying the the so-called “back and forth error compensation133

and correction (BFECC)” algorithm that is described below.134

3. Back and Forth Error Compensation and Correction135

The basic idea of the BFECC algorithm is to estimate and compensate136

for the error associated with any numerical underlying scheme utilized for137
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solving a reversible differential equation [27]; this is done by reversing the138

solution of the numerical scheme and comparing the result with the starting139

state, which requires consecutive application of the underlying scheme in the140

forward and backward directions. For solving Eq. (2), the BFECC algorithm,141

as first proposed in [26], can be summarized in four steps:142

1. starting from un(x) and solving Eq. (2) forward in time to obtain143

u∗n+1(x).144

2. starting from u∗n+1(x) and solving Eq. (2) backward in time (by revers-145

ing velocity vector v) to obtain u∗n(x).146

3. estimating the error as e(x) = [u∗n(x) − un(x)]/2 and do the compen-147

sation as ũn(x) = un(x)− e(x).148

4. starting from ũn(x) and solving Eq. (2) forward in time to obtain149

un+1(x).150

Here, subscript n denotes the solution at time t = n∆t. It should be note151

that a variable time–step (∆t) can be used according to the requirement152

(CFL–like condition) of the underlying numerical scheme.153

If the numerical scheme acquired to solve Eq. (2) can be formulated as154

M
dU

dt
= LU, (17)

employing the backward Euler scheme in time, the application of the BFECC155

algorithm reads156 (
1

∆t
M− LF

)
U∗n+1 =

1

∆t
MUn, (18)

157 (
1

∆t
M− LB

)
U∗n =

1

∆t
MU∗n+1, (19)

158

E =
1

2
(U∗n −Un) =

∆t

2
M−1

(
LFU∗n+1 + LBU∗n

)
, (20)

and finally,159

(
1

∆t
M− LF

)
Un+1 =

1

∆t
MŨn

=
1

∆t
MUn −

1

2

(
LFU∗n+1 + LBU∗n

)
.

(21)

Subscripts F and B, respectively, denote the forward and the backward ad-160

vection of u. Here, it is assumed that velocity field v(x, t) is given and161
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therefore, matrices LF and LB are constructed for mid–time–step velocity162

vn+1/2 = (vn+1 + vn)/2.163

For the simple one-dimensional case described in the following section, it164

is easy to show that165

Ce =
1

2
(LeB − LeF ) . (22)

Therefore, the last term on the right–hand–side of Eq. (21) can be interpreted166

as an anti-diffusive term, which is introduced by application of the BFECC167

algorithm. This term partially compensates for numerical diffusion D. This168

property of the BFECC algorithm leads to the dismissal of condition (15)169

and undermines the stability of the method by making it prone to spurious170

over–/undershoots in the result. The occurrence of such oscillations has been171

mentioned in the literature and was tackled by limiting the results [27, 30]. In172

the following, this issue will be further discussed for a simple one-dimensional173

case.174

3.1. Analysis of One-Dimensional Case175

For the one-dimensional case with linear elements of length h, the elemen-176

tal matrices associated with the algebraically stabilized scheme described in177

Section 2.3 are178

Me
C =

[
h
3

h
6

h
6

h
3

]
, (23)

179

Me
L =

[
h
2

0
0 h

2

]
, (24)

180

Ce =

[
−v

2
v
2

−v
2

v
2

]
, (25)

181

LeF =

[
0 0
v −v

]
, (26)

and182

LeB =

[
−v v
0 0

]
. (27)

Upon assembling these matrices to obtain the global linear system of equa-183

tions, one has184

dui
dt

+
v (ui − ui−1)

h
= 0, (28)
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which is equivalent to the first–order upwind scheme. In this simple case,185

jth element is formed by nodes j and j + 1.186

Considering the forward Euler scheme for more simplicity, and applying187

the BFECC algorithm, the resulting method reads188

un+1,i = un,i +
1

2

[(
λ3 − λ2

)
un,i−2 +

(
−3λ3 + 4λ2 + λ

)
un,i−1

+
(
3λ3 − 5λ2

)
un,i +

(
−λ3 + 2λ2 − λ

)
un,i+1

]
,

(29)

where λ = v∆t/h denotes the Courant–Friedrichs–Levy (CFL) number.189

While the sum of the coefficients of nodal u on the right–hand–side of Eq. (29)190

is zero, condition (15) is not fulfilled and hence, DMP is not guaranteed.191

This explains the oscillatory results of the BFECC algorithm in the vicin-192

ity of steep fronts [30], regardless of the underlying scheme used for solving193

Eq. (2). In Section 3.3, this issue is resolved by introducing a limited BFECC194

algorithm with the monotonicity–preserving property.195

3.1.1. Truncation Error196

The exact solution of Eq. (2) in one-dimension requires that197

u(x, t+ ∆t) = u(x− δ, t) = u(x, t)− δ∂u(x, t)

∂x
+

1

2
δ2∂

2u(x, t)

∂x2

− 1

6
δ3∂

3u(x, t)

∂x3
+O(δ4),

(30)

with δ = v∆t. It is possible to perform the Taylor expansion for the dis-198

cretized equations as well; the Galerkin scheme (9) can be expanded as199

un+1,i = un,i − δ
un,i+1 − un,i−1

2h
= un,i − δ

(
∂u

∂x
+
h2

6

∂3u

∂x3
+O(h3)

)
. (31)

It must be noted that here, for the sake of simplicity, the mass matrix is200

considered to be lumped. Comparing Eqs. (30) and (31), the associated201

truncation error is202

Tri = u(xi, tn + ∆t)− un+1,i =
δ2

2

∂2u

∂x2
+
δ3

6

(
h2

δ2
− 1

)
∂3u

∂x3
+O(δ4). (32)

Similarly, for the stabilized low–order underlying scheme (28) one obtains203

Tri =
δ2

2

(
1− h

δ

)
∂2u

∂x2
+O(δ3). (33)
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Here, it is assumed that CFL number λ and consequently h/δ are set as204

constants. In this sense, factorizing δ appears to be logical.205

Applying the same procedure to Eq. (29), for the BFECC algorithm using206

the stabilized low–order underlying scheme (28), one has207

un+1,i = un,i − δ
∂φ

∂x
+
δ2

2

∂2φ

∂x2
− δ3

(
1

2
+

h

2δ
+

h2

6δ2

)
∂3φ

∂x3
+O(δ4). (34)

The associated truncation error reads208

Tri = δ3

(
1

3
+

h

2δ
+

h2

6δ2

)
∂3φ

∂x3
+O(δ4). (35)

The truncation error shows a one–order improvement comparing to Eq. (33).209

It is evident that keeping the CFL number constant, element–size h and210

time–step ∆t (or equivalently δ) are interchangeable.211

It is worth noting that the positive coefficient of ∂2u/∂x2 in Eq. (32)212

shows the anti-diffusive (with severe spatial oscillations) characteristic of the213

Galerkin scheme. On the other hand, for λ < 1, the negative coefficient of214

the leading term in Eq. (33) reveals the diffusive nature of the stabilized low–215

order scheme, which is worsen by reducing the CFL number. Nonetheless,216

the absence of this leading term in Eq. (35), discloses the ability of the217

BFECC algorithm to compensate for the excessive diffusion of the solver.218

This section is closed by further proving the ability of the BFECC algorithm219

in removing the anti-diffusivity imposed by the Galerkin scheme; applying220

the BFECC algorithm to Eq. (31), one obtains221

un+1,i = un,i +
1

16

[
λ3un,i−3 + 2λ2un,i−2 +

(
−3λ3 + 8λ

)
un,i−1

−4λ2un,i +
(
3λ3 − 8λ

)
un,i+1 + 2λ2un,i+2 − λ3un,i+3

]
,

(36)

and consequently have222

un+1,i = un,i − δ
∂u

∂x
+
δ2

2

∂2u

∂x2
+ δ3

(
1

4
− h2

12δ2

)
∂3u

∂x3
+O(δ4). (37)

Therefore, the associated truncation error is223

Tri = δ3

(
− 5

12
+

h2

12δ2

)
∂3u

∂x3
+O(δ4). (38)

The absence of ∂2u/∂x2 in Eq (38) asserts the compensation for the anti–224

diffusivity detected in Eq. (32).225
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3.2. Modified Algorithm226

In order to obtain further improvement, the BFECC algorithm can be227

modified as outlined in the following steps;228

1. starting from un(x) and solving Eq. (2) forward in time to obtain229

u∗n+1(x).230

2. starting from [un(x) + u∗n+1(x)]/2 and solving Eq. (2) half–way (∆t/2)231

backward in time (by reversing velocity vector v) to obtain u∗n(x).232

3. estimating the error as e(x) = u∗n(x)− un(x) and do the compensation233

as ũn(x) = un(x)− e(x).234

4. starting from ũn(x) and solving Eq. (2) forward in time to obtain235

un+1(x).236

As done before for the conventional BFECC algorithm by employing the237

backward Euler scheme in time, the application of this modified BFECC238

algorithm to the scheme presented in Eq. (17) reads239

(
1

∆t
M− LF

)
U∗n+1 =

1

∆t
MUn, (39)

as the first step, and240

(
2

∆t
M− LB

)
U∗n =

1

∆t
M
(
U∗n+1 + Un

)
, (40)

as the second step. Adding Eqs. (39) and (40), one obtains241

2

∆t
MU∗n = LBU∗n + LFU∗n+1 +

2

∆t
MUn, (41)

from which the third step of the modified BFECC algorithm leads to242

E = U∗n −Un =
∆t

2
M−1

(
LFU∗n+1 + LBU∗n

)
, (42)

that is the same as the error calculated in Eq. (20) for the conventional243

BFECC algorithm. Therefore, it is readily seen that both the conventional244

and the modified BFECC algorithms are equivalent if applied to a solver for-245

mulated as Eq. (17) and discretized in time using the backward Euler scheme.246

Nevertheless, if an explicit (e.g. forward Euler) scheme is used, this modified247

algorithm is not equivalent to the conventional BFECC algorithm. In the248

following, it is shown that besides the conventional BFECC algorithm, the249

introduced modified BFECC algorithm can be acquired to add a controlled250

anti-diffusivity to the solution.251
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3.2.1. One-Dimensional Case252

Similar to Section 3.1, application of the modified BFECC algorithm to253

the stabilized low–order scheme (28) with the forward Euler time discretiza-254

tion leads to255

un+1,i = un,i +
1

4

[(
λ3 − 2λ2

)
un,i−2 +

(
−3λ3 + 7λ2 + 2λ

)
un,i−1

+
(
3λ3 − 8λ2

)
un,i +

(
−λ3 + 3λ2 − 2λ

)
un,i+1

]
.

(43)

This leads to256

un+1,i = un,i − δ
∂u

∂x
+
δ2

4

∂2u

∂x2
− δ3

(
1

4
+

h

2δ
+

h2

6δ2

)
∂3u

∂x3
+O(δ4), (44)

from which, the truncation error is calculated as257

Tri =
δ2

4

∂2u

∂x2
+ δ3

(
1

6
+

h

2δ
+

h2

6δ2

)
∂3u

∂x3
+O(δ4). (45)

Equation (45) clearly shows that the modified BFECC algorithm adds half258

the amount of the anti-diffusivity of the Galerkin scheme (see Eq. 32). More-259

over, the modified algorithm neither improves nor impairs the order of the260

solver unlike the conventional BFECC algorithm which is proved to pro-261

vide enhancement upon application to the first–order solvers. Nonetheless,262

in Section 3.4, a combined algorithm is introduced that benefits from the263

advantages of both the conventional and the modified BFECC algorithms.264

3.3. Nodal Limiter265

As discussed above, the maximum principle and the positivity are no266

more guaranteed upon the application of (either the conventional or mod-267

ified) BFECC algorithm. Therefor, in order to circumvent the associated268

instability issues in the present work, a continuous nodal limiter is utilized269

to control the application of the BFECC algorithm; the idea is to fully ap-270

ply the error compensation according to the BFECC algorithm wherever271

the convected field is smooth while ignoring the correction in the vicinity272

of local extrema. In this way, upon the application of limiter function α,273

the third step of (either the standard or modified) BFECC algorithm reads274

ũn(x) = un(x)− α(x)e(x). It is worth mentioning that while DMP and the275

positivity condition are guaranteed for the solver underlying the forth-step276

of the BFECC algorithm, preserving the monotonicity for ũn is the sufficient277
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condition for the BFECC algorithm to satisfy these essential requirements.278

Here, the continuity of the limiter function allows the partial application of279

the BFECC algorithm by quantifying the smoothness of the convected field.280

The limiter utilized in the present work was originally proposed in [32]281

and further utilized in [18] to control over the artificial diffusion associated282

with the stabilization term introduced to a convection–diffusion equation.283

Later on, addressing its shortcoming for asymmetric meshes [31], a more284

general version of this limiter was introduced as [35]285

αi = 1−




∣∣∣
∑

j∈Ni\i βij (ui − uj)
∣∣∣

∑
j∈Ni\i βij |ui − uj|+ ε



ζ

, (46)

where αi = α(xi) and Ni denotes the set of nodes, which share an edge286

with node i. In Eq. (46), ε ∼ O(10−15) is an extremely small constant287

that is introduced to prevent division by zero in cases of flat u, and power288

ζ characterizes the spatial variation of α by determining the acuteness of289

its decay rate nearby the location of a non-smooth convected field. In the290

present work, ζ = 2 is set for limiting the BFECC algorithm. Coefficient291

βij is calculated based on the procedure introduced by Kuzmin et al. [35] in292

order to maintain the linearity–preservation in cases of an asymmetric mesh.293

3.4. Combined Algorithm294

The outstanding characteristic of the conventional BFECC algorithm in295

enhancing the order of accuracy of the method begin to fade away as the296

limiter decreases from unity; this is an inevitable cost to preserve the mono-297

tonicity. The more acute the local change in the gradient is, the smaller the298

limiter becomes. On the other hand, the nodal limiter (46) can be employed299

as a shock detector [18], and consequently, a measure for determining the300

nodes that are subject to relatively large numerical diffusion. The basic idea301

here is to acquire the limited amount of anti-diffusivity introduced by the302

modified BFECC algorithm (see Eq. (45) and the discussion afterwards) to303

partially compensate for excessive numerical diffusion.304

In this manner, the combined BFECC algorithm is proposed as305

1. starting from un(x) and solving Eq. (2) forward in time to obtain306

u∗n+1(x).307

2. doing the backward steps:308
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2.1 starting from u∗n+1(x) and solving Eq. (2) backward in time to309

obtain u∗n(x).310

2.2 starting from [un(x) + u∗n+1(x)]/2 and solving Eq. (2) half-way311

(∆t/2) backward in time to obtain u∗∗n (x).312

3. do the compensation as ũn(x) = un(x)− e(x) with error depending on313

α:314

e(x) =

{
[u∗n(x)− un(x)] /2 if α(x) > αth

u∗∗n (x)− un(x) if α(x) ≤ αth
(47)

4. starting from ũn(x) and solving Eq. (2) forward in time to obtain315

un+1(x).316

In this algorithm, αth denotes the threshold, below which the conventional317

BFECC algorithm is substituted by the modified BFECC algorithm. Numer-318

ical tests show that the most desirable results can be obtained by αth ≈ 0.9.319

4. Enhanced Scheme320

In this section, a methodology is described that allows limiting the extra321

diffusivity of the stabilized low–order underlying scheme (10). The resulting322

scheme is called as the “enhanced scheme” throughout this paper. The im-323

provement of the low–order stabilized scheme (10) is based on rolling back324

the stabilization procedure in the smooth area in order to minimize the ar-325

tificial diffusion. In the meantime, the formulation remains intact in the326

vicinity of local extrema in order to hold DMP. Similar to the introduced327

limited BFECC algorithm, limiter α plays the key role in this formulation328

enhancement procedure.329

Rewriting Eq. (10) and expanding the artificial diffusion term, De, one330

has331

Ae∈E
(
Me

L

dUe

dt
+ CeUe + νe (Me

L −Me
C) Ue

)
= 0. (48)

Towards the minimization of the numerical diffusion, one can take two distin-332

guished steps; bringing back the consistent mass–matrix and compensating333

for the artificial diffusion term. Incorporating the limiter, these two steps334

read335

Ae∈E
{

[αeMe
C + (1− αe)Me

L]
dUe

dt
+ CeUe + νe (Me

L −Me
C) Ue − αeD̂e

}
= 0,

(49)
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where D̂e is an approximation of De. For a simplex element, it can be shown336

that [35]337

me
iui −

∑

j∈N e

me
ijuj = (1 + d)

∫

Ωe

φi(uh − ūe)dΩ, (50)

where d denotes the number of dimensions (d = 2 in 2D) and elemental338

average ūe is calculated as339

ūe =

∫
Ωe uhdΩ∫

Ωe dΩ
. (51)

Introducing uh(x) ≈ ūe + ge · (x − x̄e) into Eq. (50), the entities of D̂e are340

calculated as341

d̂ei = νe(1 + d)

∫

Ωe

φig
e · (x− x̄e)dΩ, (52)

In this work, ge is calculated as the elemental average of nodal gradients gi,342

which are obtained using lumped–mass projection of ∇u as343

gi =
1

mi

∫

Ω

φi
∑

j∈N
∇φjujdΩ. (53)

The elemental limiter is then the minimum of the associated nodal ones,344

i.e.345

αe = min
i∈N e

αei . (54)

In the computation of Eq. (54), αei is calculated using Eq. (46) with ζ = 4.346

It must be noted that the presented scheme can be considered as an explicit347

variant of the method proposed by Kuzmin et al. [35], which has similarities348

in essence with the formulation introduced in [36]. It is also worth noting349

that for αe → 1, Eq. (49) tends to the Galerkin scheme and therefore, a350

strong anti-diffusivity is expected. In Appendix B, the implementation of351

this enhanced scheme is further described. In the numerical tests, it is shown352

how the application of the proposed limited BFECC algorithm further im-353

proves the results by eliminating the extra anti–diffusivity of this underlying354

enhanced scheme.355

5. Results356

In this section, the performance of the proposed combined BFECC al-357

gorithm is investigated in three test–cases; in the first set of tests, different358
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BFECC algorithms are applied to the low–order and enhanced underlying359

schemes and employed for the one–dimensional advection of both a non–360

smooth square–wave and a smooth sine–wave. The second test–case is the361

solid–body rotation of a notched cylinder, smooth hump and a cone [33],362

which is a well-established benchmark in this context. Here, the versatility363

of the proposed BFECC methodology is further analyzed by its application364

to the unconditionally stable (semi–Lagrangian) CIR scheme [29, 27] (see Ap-365

pendix A) and the SUPG scheme (with the cross–wind stabilization [12]).366

In the last test–case, the oblique in–flow of a scalar field is simulated in order367

to study the effect of the combined BFECC algorithm on the cross–stream368

and the stream–wise diffusion of the solver.369

In the following, all the simulations are performed using the forward Eu-370

ler scheme for discretizing the governing equations in time. Moreover, for371

the application of the combined BFECC algorithm, the switch between the372

algorithms is done according to the threshold of αth = 0.9 and 0.95 for the373

Eulerian schemes and the semi–Lagrangian approach, respectively. For these374

test-cases, L1– and L2–norm of the error are approximated as [28, 31]375

E1 =
∑

i∈N
mi |u(xi)− ui| , (55)

and376

E2 =

√∑

i∈N
mi [u(xi)− ui]2, (56)

respectively.377

5.1. One Dimensional Advection378

The test–cases addressed in this section consist of the one–dimensional1379

advection of a square–wave with an initially discontinuous field and a sine–380

wave, which corresponds to an initially smooth field; the associated initial381

conditions are defined, respectively, by382

u0(x) =

{
1 if 0.1 ≥ x ≤ 0.31

0 else
(57)

1It must be highlighted that the results are obtained on a two–dimensional mesh as
shown in Fig. 1.
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Figure 1: Semi–1D mesh for advection of the square wave. Results are presented for the
nodes lie on the center–line marked by a red solid line.

and383

u0(x) =

{
1
2
− 1

2
sin
(
10(x− 0.1) + π

2

)
if 0.1 ≥ x ≤ 0.3

0 else
(58)

The former case is a well–established test for the assessment of the perfor-384

mance of the numerical methods [19, 37] in the presence of a severe non-385

smoothness in the field. On the other hand, the sine–wave test is designed386

to reveal the ability of the numerical approach to minimize the unwanted387

side–effects of the compensatory anti–diffusivity. These test–cases are sim-388

ulated on the semi–1D mesh shown in Fig. 1 with L = 1, H = 0.02, and389

v = ex, where ex is the unit vector in the x–direction. The associated mesh–390

size is calculated as h = 1/DOFcl
2, where DOFcl denotes the number of391

degrees–of–freedom along the center–line of the domain shown in Fig. 1.392

5.1.1. Low–order Stabilized Eulerian Scheme393

The first scheme to analyze in combination with the proposed limited394

BFECC algorithm is the stabilized low–order scheme described in section 2.3.395

Here, the time–step is set to dt = 0.004 and DOFcl = 100, which give396

CFL = dt|v|/h = 0.4. The final (t = 0.5) distribution of u along the center–397

line is illustrated for the non–smooth and the smooth wave in Figs. 2 and 3,398

respectively. As expected, without the application of an error compensation399

algorithm, the stabilized low–order scheme is too diffusive and consequently,400

leads to an undesirable solution in both cases; making a compensation for the401

extra diffusivity, the conventional BFECC algorithm dramatically improves402

the result. By further adding an extra anti–diffusion to the solution of the403

advection equation, the modified BFECC scheme provides a better result404

than the conventional BFECC algorithm in the non–smooth case. However,405

2It must be noted that due to the symmetry of the mesh (shown in Fig. 1), the effective
mesh–size is smaller than 1/DOFcl.
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Figure 2: Advection of a square–wave using different BFECC algorithms combined with
the stabilized low–order underlying scheme.

Figure 3: Advection of a sine–wave with dt = 0.004 and θ = 0.
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Table 1: Error associated with the advection of a square–wave using different BFECC
algorithms combined with the stabilized low–order underlying scheme.

Algorithm E1 E2

Without BFECC 1.301× 10−3 1.951× 10−2

Modified BFECC 2.995× 10−4 1.036× 10−2

Conventional BFECC 5.497× 10−4 1.260× 10−2

Combined algorithm 3.726× 10−4 1.076× 10−2

Table 2: Error associated with the advection of a sine–wave using different BFECC algo-
rithms combined with the stabilized low–order underlying scheme.

Algorithm E1 E2

Without BFECC 7.349× 10−4 1.117× 10−2

Modified BFECC 4.127× 10−4 8.293× 10−3

Conventional BFECC 1.015× 10−4 2.370× 10−3

Combined algorithm 6.947× 10−5 1.388× 10−3

this extra anti-diffusion disturbs the solution for the smooth case. On the406

other hand, the combined BFECC algorithm although increases the compu-407

tational cost by 30%, leads to a result that closely follows that of the modified408

BFECC algorithm in the non-smooth case while does not disturb the solution409

in the smooth case. Figure 3 clearly shows the great advantage of using the410

combined BFECC algorithm for the advection of the smooth–wave; compar-411

ing to the conventional BFECC algorithm, the proposed BFECC algorithm412

provides a more accurate solution in the smooth case. A more critical as-413

sessment of the performance of different BFECC algorithms is possible by414

comparing L1– and L2–norm of the associated errors as presented in Tables 1415

and 2.416

So far, the results were reported for a single mesh with DOFcl = 100.417

Here, the sine–wave test–case is further solved for DOFcl = 50, 200, and 400,418

in order to assess the effect of different BFECC algorithms on the convergence419

of the solver, which is measured by the so–called “experimental order of420

convergence (EOC)” defined as [33, 38]421

EOC =
log(E(h2)

E(h1)
)

log(h2
h1

)
, (59)

where E(h) is the error associated with mesh–size h. The EOC values are422

presented for the stabilized low–order scheme with and without the proposed423
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Table 3: Convergence of the results of the advection of a sine–wave obtained using the
stabilized low–order underlying scheme with and without the proposed combined BFECC
algorithm for dt = 0.001.

Without BFECC Combined BFECC algorithm

Mesh–size E1 EOC1 E2 EOC2 E1 EOC1 E2 EOC2

1/50 0.0016 0.022 0.0014 0.021

1/100 0.0011 0.55 0.016 0.46 0.00062 1.16 0.010 1.06

1/200 0.00062 0.83 0.0096 0.74 0.00013 2.22 0.0023 2.17

1/400 0.00024 1.40 0.0038 1.32 0.000019 2.80 0.00035 2.72

combined BFECC algorithm in Table 3. These set of data are obtained by424

setting the time–step to dt = 0.001.425

It is clearly observed that in addition to the dramatic decrease in the426

magnitude of the error, the proposed combined BFECC algorithm improves427

the mesh–convergence; by applying the proposed algorithm, EOC is almost428

doubled. In the following, the same tests are administered for the alternative429

underlying scheme discussed in the present work, i.e. the enhanced method.430

5.1.2. Enhanced Scheme431

Following the results presented for the low–order scheme, in this section,432

different BFECC algorithms are combined with the enhanced scheme (de-433

scribed in section 4) and applied to the same one–dimensional test–cases.434

Considering that this enhanced underlying scheme is more sensitive to the435

time–step than the low–order scheme, here, dt = 0.001 is set for DOFcl =436

100. Results are presented in Figs. 4 and 5 for the non–smooth and the437

smooth test–cases, respectively.438

Benefiting from limited corrective terms, it is expected that the enhanced439

scheme provides more accurate solutions without violating the positivity as440

well as the maximum principle; it is clearly seen by comparing the results441

presented in Fig. 4 with those presented in Figs. 2 for the non–smooth case.442

Nonetheless, for the smooth case, the application of the proposed combined443

BFECC algorithm to the stabilized low–order scheme provides a comparably444

accurate result (see Figs. 3 and 5).445

Here, one should highlight the potential of the BFECC algorithm to ad-446

just the extra anti–diffusivity together with its capability to compensate for447

the extra diffusivity of the schemes developed for the convection–dominated448

problems; it is evident in Fig. 5 that by applying either the conventional or449

the proposed combined BFECC algorithm, the anti–diffusivity of the enhance450
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Figure 4: Advection of a square–wave with improved stabilized scheme, dt = 0.001, and
θ = 0.

Figure 5: Advection of a sine–wave with improved stabilized scheme, dt = 0.001, and
θ = 0.
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Table 4: Error associated with the advection of a square–wave using different BFECC
algorithms combined with the enhanced underlying scheme.

Algorithm E1 E2

Without BFECC 2.729× 10−4 8.750× 10−3

Modified BFECC 3.502× 10−4 1.378× 10−2

Conventional BFECC 3.106× 10−4 9.223× 10−3

Combined algorithm 2.405× 10−4 8.598× 10−3

Table 5: Error associated with the advection of a sine–wave using different BFECC algo-
rithms combined with the enhanced underlying scheme.

Algorithm E1 E2

Without BFECC 3.658× 10−4 7.153× 10−3

Modified BFECC 1.390× 10−4 2.769× 10−3

Conventional BFECC 7.812× 10−5 1.536× 10−3

Combined algorithm 7.587× 10−5 1.446× 10−3

scheme is finely adjusted minimizing the associated error in the smooth case.451

In Tables 4 and 5, L1– and L2–norm of the error are presented for different452

approaches developed based on the enhanced scheme and applied to the one–453

dimensional advection of the square–wave and the sine–wave, respectively.454

Similar to what is observed for the low–order scheme, the proposed com-455

bined BFECC algorithm shows an overall outperformance in the non–smooth456

and smooth cases; it improves the method in the non–smooth case while pro-457

vides a slightly more accurate result than the conventional BFECC algorithm458

in the smooth case.459

5.2. Solid–Body Rotation460

In this section, the counter–clockwise rotation of a slotted disk,461

u0(x, y) =





1 if

{√
(x− 0.5)2 + (y − 0.75)2 ≤ 0.15 and

|x− 0.5| ≥ 0.025 or y ≥ 0.85

0 else

(60)

a non–smooth (sharp) cone,462

u0(x, y) =

{
1−
√

(x−0.5)2+(y−0.25)2

0.15
if

√
(x− 0.5)2 + (y − 0.25)2 ≤ 0.15

0 else

(61)
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Figure 6: Initial configuration of the solid–body rotation test–case. Structured and un-
structured meshes are shown.

and a smooth hump,463

u0(x, y) =





1
4

+ 1
4

cos

(
π
√

(x−0.25)2+(y−0.5)2

0.15

)
if

√
(x− 0.25)2 + (y − 0.5)2 ≤ 0.15

0 else

(62)
is simulated with v(x, y) = (0.5−y, x−0.5), in a square 1×1–domain centered464

at (x, y) = (0.5, 0.5). The initial condition, u0, is shown in Fig. 6. As first465

proposed in [33], this test has become a benchmark for the assessment of the466

performance of the numerical methods developed for convection–dominated467

problems [28, 38, 39, 40]. Here, the time–step is set to dt = 0.001 unless oth-468

erwise mentioned, and the computational domain is discretized using both a469

structured mesh with 1292 nodes and an unstructured mesh with the aver-470

age mesh–size of h = 1/128 (see Fig. 6). In this section, all the results are471

presented after one complete rotation at t = 6.28.472

Figures 7 shows the results of the stabilized low–order and enhanced473

schemes with and without the proposed combined BFECC algorithm that474

are obtained using the structured mesh. Here, the result of the CIR underly-475

ing scheme is also included for the sake of its comparison with the low–order476

scheme. Without the BFECC algorithm, the low–order scheme (as well as477

the CIR scheme) brings about a highly diffused u–field and therefore, the478
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corresponding results are not shown here. It is clearly seen that all the nu-479

merical schemes abide with the positivity and the maximum principle by480

keeping 0 ≥ u ≤ 1.0. For a better assessment of the performance of the481

acquired numerical schemes, the results obtained using the enhanced scheme482

with and without the proposed combined BFECC algorithm on the unstruc-483

tured mesh are also presented in Fig. 8. The slightly more accurate solution484

on the unstructured mesh is due to its slightly larger number of mesh–nodes485

comparing to the structured mesh.486

In Figs. 9 and 10, the same set of results are presented as the contours of487

u at t = 6.28. The L1–norm of the corresponding errors is also reported in488

these figures. It is observable that, in an overall view, the semi–Lagrangian489

approach slightly outperforms the low–order Eulerian scheme while by ap-490

plying these two schemes along with the BFECC algorithm, the symmetry491

of the slotted disk is disturbed after one complete rotation. In case of the492

enhanced scheme, the application of the proposed BFECC algorithm yields493

a considerable improvement in the advection of the slotted-disk.494

In order to bring the effect of the proposed combined BFECC algorithm495

into sharp focus, the result of the enhanced scheme with and without the496

application of this algorithm are shown in Figs. 11 and 12 along different497

cut–lines passing through the domain. These figures correspond to the un-498

structured mesh. In addition to the better representation of the slotted499

disk, the proposed BFECC algorithm remarkably improves the results for500

the advection of the smooth hump and the linear body of the cone, which is501

brought about by its capability to adjust the (anti–)diffusivity of the numer-502

ical schemes. In other words, using the presented enhanced scheme, due to503

an excessive anti–diffusivity, the result is subject to a difficulty denoted as504

“terracing” [21] that is majorly cured by utilizing the BFECC algorithm.505

At the end of this section, it is worth to briefly investigate the performance506

of the proposed BFECC algorithm in combination with the SUPG-CWS507

scheme. Results are presented in Figs. 13 and 14 as the surface of z = u(x, y)508

and contours of u(x, y), respectively. Upon the application of the proposed509

BFECC algorithm, the result of the SUPG-CWS scheme is dramatically510

improved. Therefore, the proposed BFECC can also be considered as a511

viable means to improve the class of SUPG–like methods.512

5.3. Oblique Inflow513

This section aims at the investigation of the effect of the proposed BFECC514

algorithm on reducing the stream–wise as well as the cross-stream diffusion515
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u ∈ [0, 0.7902]

(a) low–order, BFECC

u ∈ [0, 0.8346]

(b) CIR scheme, BFECC

u ∈ [0, 0.9914]

(c) enhanced scheme, no BFECC

u ∈ [0, 1.0]

(d) enhanced scheme, BFECC

Figure 7: Solid–body rotation at t = 6.28. Results are obtained using different schemes
on the structured mesh and presented as surface z = u(x, y); (a) and (b) correspond
to the low–order Eulerian scheme and the semi–Lagrangian underlying scheme with the
application of the proposed combined BFECC algorithm, respectively. The results of the
enhanced scheme without and with the combined BFECC algorithm are shown in (c) and
(d), respectively.
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u ∈ [0, 1.0001]

(a) Without BFECC

u ∈ [0, 0.9995]

(b) Combined BFECC

Figure 8: Solid–body rotation at t = 6.28. Results are obtained for the unstructured mesh
and presented as surface z = u(x, y); (a) and (b) correspond to the enhanced underlying
scheme without and with the combined BFECC algorithm, respectively.

during the transport of a sharp layer. To this end, Eq. (2) is solved in a516

square 1× 1–domain with constant velocity v = −0.8ex − 0.6ey, dt = 0.001,517

and Dirichlet boundary condition518

uD(x, y) =

{
1 if x ≥ 0.8 and y = 1

0 else
(63)

imposed on the inflow (x = 1 and y = 1) boundaries of the domain. Here, the519

time–step is set to dt = 0.001 and the results are obtained using the enhanced520

scheme with and without the proposed combined BFECC algorithm on the521

1292 structured mesh as shown in Fig. 15.522

Figures 16 and 17 present the results along a perpendicular to the stream523

and a parallel to the stream cut–line, respectively. It is clearly observable524

that the proposed combined BFECC algorithm effectively reduces the cross–525

stream diffusivity while it improves the capturing of the theoretically sharp526

stream–wise front. The L1–norm of the error is E1 = 0.0203 for the enhanced527

scheme without the BFECC algorithm. Upon the application of the proposed528

combined BFECC algorithm, the error is reduced to E1 = 0.0158.529
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E1 = 5.22× 10−2

(a) low–order, BFECC

u E1 = 4.80× 10−2

(c) CIR scheme, BFECC

E1 = 2.80× 10−2

(d) enhanced scheme, no BFECC

u E1 = 1.97× 10−2

(f) enhanced scheme, BFECC

Figure 9: Solid–body rotation at t = 6.28. Results are obtained using different schemes
on the structured mesh and presented as contours of u(x, y); (a) and (b) correspond to
the low–order Eulerian scheme and the semi–Lagrangian approach with the underlying
scheme of the proposed combined BFECC algorithm, respectively. The results of the
enhanced scheme without and with the combined BFECC algorithm are shown in (c) and
(d), respectively.
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E1 = 2.33× 10−2

(a) Without BFECC

u E1 = 1.78× 10−2

(c) Combined BFECC

Figure 10: Solid–body rotation at t = 6.28. Results are obtained for the unstructured mesh
and presented as contours of u(x, y); (a) and (b) correspond to the enhanced underlying
scheme without and with the combined BFECC algorithm, respectively.

6. Conclusion530

This work constituted a methodology to substantially improve the ac-531

curacy of the numerical solution of the advection equation by adjusting the532

diffusivity of the numerical schemes; this was achieved by enhancing the back533

and forth error compensation and correction (BFECC) algorithm. It was534

shown how a gradient–based limiter can be used to retain the monotonicity535

of the numerical method obtained as a combination of the BFECC algorithm536

and an originally monotonicity–preserving scheme. The proposed algorithm537

was combined with different stabilized schemes and the resulting solvers were538

applied to a series of advection test–cases. It was revealed that while the539

proposed algorithm possesses the capability of the conventional BFECC al-540

gorithm for adjusting both the extra diffusivity and anti–diffusivity of the541

underlying numerical scheme, it provides a considerable improvement to the542

result in the vicinity of the local extrema. In addition to a strong reduction in543

the error, it was proved that the proposed algorithm substantially increases544

the rate of mesh–convergence; it was almost doubled upon the application545

of the presented BFECC algorithm to a low–order scheme. In all cases, the546

compliance of the results with the positivity and maximum principle was547

observed.548

All the results presented in this work were obtained utilizing an explicit549
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(a) x = 0.5

(b) y = 0.75

Figure 11: Solid–body rotation at t = 6.28. Results are obtained using the enhanced
underlying scheme on the unstructured mesh and presented for the nodes lie on (a) x = 0.5
and (b) y = 0.75 cut–lines.
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(a) y = 0.5

(b) y = 0.25

Figure 12: Solid–body rotation at t = 6.28. Results are obtained using the enhanced
underlying scheme on the unstructured mesh and presented for the nodes lie on (a) x = 0.5
and (b) y = 0.75 cut–lines.
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u ∈ [−6.6× 10−6, 0.6267]

(a) Without BFECC

u ∈ [−1.1× 10−5, 0.9307]

(b) Combined BFECC

Figure 13: Solid–body rotation at t = 6.28. Results are obtained for the structured mesh
and presented as surface z = u(x, y); (a) and (b) correspond to the SUPG-CWS underlying
scheme without and with the combined BFECC algorithm, respectively.

E1 = 8.22× 10−2

(a) Without BFECC

u E1 = 2.94× 10−2

(c) Combined BFECC

Figure 14: Solid–body rotation at t = 6.28. Results are obtained for the structured mesh
and presented as contours of u(x, y); (a) and (b) correspond to the SUPG-CWS underlying
scheme without and with the combined BFECC algorithm, respectively.
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Figure 15: Oblique inflow at t = 1, simulated using the enhanced underlying scheme with
the proposed combined BFECC algorithm. The result is presented as surface z = u(x, y).

Figure 16: Oblique inflow at t = 1, simulated using the enhanced underlying scheme with
and without the proposed combined BFECC algorithm. Results are presented along a
cut–line perpendicular to the stream (y = 1− 4x/3).
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Figure 17: Oblique inflow at t = 1, simulated using the enhanced underlying scheme
with the BFECC algorithm. Results are presented along a cut–line parallel to the stream
(y = 0.325 + 3x/4).

scheme (forward Euler discretization in time). Considering that the coef-550

ficient of unknowns incorporated only a combination of the consistent and551

the lumped mass matrix, the associated computational effort was rather low.552

Moreover, at each time–step, the proposed algorithm requires a fixed number553

of (four) sub–steps to estimate the error and do the correction. Therefore,554

in case the contribution of the consistent mass matrix is neglected, a fully555

explicit method would be obtained. Taking into account that by applying556

the proposed BFECC algorithm to the presented enhanced Eulerian scheme,557

the resulting error in the benchmark problem was comparable to that of the558

state–of–the–art numerical methods, this work provided an alternative to the559

nonlinear approaches developed to address convection–dominated transport560

problems. It must be noted that the application of the proposed algorithm561

is not limited to the underlying schemes presented in this work; in a wider562

view point, this algorithm can also be customized to be applied to numerical563

techniques other than the finite element method.564

7. Acknowledgment565

This work was performed within the framework of AMADEUS project566

(”Advanced Multi-scAle moDEling of coupled mass transport for improv-567

33



ing water management in fUel cellS”, reference number PGC2018-101655-568

B-I00) supported by the Ministerio de Ciencia, Innovacion e Universidades569

of Spain. The authors also acknowledge financial support of the mentioned570

Ministry via the “Severo Ochoa Programme” for Centres of Excellence in571

R&D (referece: CEX2018-000797-S) given to the International Centre for572

Numerical Methods in Engineering (CIMNE).573

Conflict of interest574

The authors declare that they have no conflict of interest.575

Appendix A. Semi–Lagrangian Approach576

The unconditionally stable CIR scheme [41, 42, 29, 27], which is named577

after Courant, Isaacson, and Rees [43], depicts the constructive idea of the578

semi–Lagrangian approach for solving hyperbolic differential equations; the579

solution at (x, t) is obtained by following the corresponding characteristic580

line to reach (x′, t−∆t) in the spatial–temporal space [44].581

For Eq. (2) the CIR scheme reads582

u(x, t) = u(x−∆tv, t−∆t). (A.1)

This scheme is temporally and spatially first–order [27]; nevertheless, it can583

be further enhanced to obtain a second–order solver [42] by acquiring non-584

linear interpolation schemes, which is beyond the scope of the present work.585

It should be noted that this scheme relies on the spatial search within the586

computational domain and consequently, in cases that the characteristic line587

points to the outside of the domain, the implementation of the solution al-588

gorithm is not straightforward. This issue specifically occurs in the vicinity589

of the inlet and curved boundaries.590

Appendix B. Comment on Enhanced Scheme Implementation591

The enhanced scheme is based on the implementation of Eq. (49) that by592

using the forward Euler time discretization, reads593

1

dt
MUn+1 =

(
1

dt
M + C + D

)
Un − Fn = 0, (B.1)
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where the elemental contributions are assembled as594

M = Ae∈E (αeMe
C + (1− αe)Me

L) , (B.2)

595

D = Ae∈E (νe [Me
L −Me

C ]) , (B.3)

and596

F = Ae∈E
(
αeD̂e

)
. (B.4)

In combination of the BFECC algorithm, Eq. B.1 is solved in forward and597

backward convection steps, i.e. first, second, and fourth step of the algo-598

rithms described in this paper.599
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