25 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    A hardware-software codesign framework for cellular computing

    Get PDF
    Until recently, the ever-increasing demand of computing power has been met on one hand by increasing the operating frequency of processors and on the other hand by designing architectures capable of exploiting parallelism at the instruction level through hardware mechanisms such as super-scalar execution. However, both these approaches seem to have reached a plateau, mainly due to issues related to design complexity and cost-effectiveness. To face the stabilization of performance of single-threaded processors, the current trend in processor design seems to favor a switch to coarser-grain parallelization, typically at the thread level. In other words, high computational power is achieved not only by a single, very fast and very complex processor, but through the parallel operation of several processors, each executing a different thread. Extrapolating this trend to take into account the vast amount of on-chip hardware resources that will be available in the next few decades (either through further shrinkage of silicon fabrication processes or by the introduction of molecular-scale devices), together with the predicted features of such devices (e.g., the impossibility of global synchronization or higher failure rates), it seems reasonable to foretell that current design techniques will not be able to cope with the requirements of next-generation electronic devices and that novel design tools and programming methods will have to be devised. A tempting source of inspiration to solve the problems implied by a massively parallel organization and inherently error-prone substrates is biology. In fact, living beings possess characteristics, such as robustness to damage and self-organization, which were shown in previous research as interesting to be implemented in hardware. For instance, it was possible to realize relatively simple systems, such as a self-repairing watch. Overall, these bio-inspired approaches seem very promising but their interest for a wider audience is problematic because their heavily hardware-oriented designs lack some of the flexibility achievable with a general purpose processor. In the context of this thesis, we will introduce a processor-grade processing element at the heart of a bio-inspired hardware system. This processor, based on a single-instruction, features some key properties that allow it to maintain the versatility required by the implementation of bio-inspired mechanisms and to realize general computation. We will also demonstrate that the flexibility of such a processor enables it to be evolved so it can be tailored to different types of applications. In the second half of this thesis, we will analyze how the implementation of a large number of these processors can be used on a hardware platform to explore various bio-inspired mechanisms. Based on an extensible platform of many FPGAs, configured as a networked structure of processors, the hardware part of this computing framework is backed by an open library of software components that provides primitives for efficient inter-processor communication and distributed computation. We will show that this dual software–hardware approach allows a very quick exploration of different ways to solve computational problems using bio-inspired techniques. In addition, we also show that the flexibility of our approach allows it to exploit replication as a solution to issues that concern standard embedded applications

    Exploring resource/performance trade-offs for streaming applications on embedded multiprocessors

    Get PDF
    Embedded system design is challenged by the gap between the ever-increasing customer demands and the limited resource budgets. The tough competition demands ever-shortening time-to-market and product lifecycles. To solve or, at least to alleviate, the aforementioned issues, designers and manufacturers need model-based quantitative analysis techniques for early design-space exploration to study trade-offs of different implementation candidates. Moreover, modern embedded applications, especially the streaming applications addressed in this thesis, face more and more dynamic input contents, and the platforms that they are running on are more flexible and allow runtime configuration. Quantitative analysis techniques for embedded system design have to be able to handle such dynamic adaptable systems. This thesis has the following contributions: - A resource-aware extension to the Synchronous Dataflow (SDF) model of computation. - Trade-off analysis techniques, both in the time-domain and in the iterationdomain (i.e., on an SDF iteration basis), with support for resource sharing. - Bottleneck-driven design-space exploration techniques for resource-aware SDF. - A game-theoretic approach to controller synthesis, guaranteeing performance under dynamic input. As a first contribution, we propose a new model, as an extension of static synchronous dataflow graphs (SDF) that allows the explicit modeling of resources with consistency checking. The model is called resource-aware SDF (RASDF). The extension enables us to investigate resource sharing and to explore different scheduling options (ways to allocate the resources to the different tasks) using state-space exploration techniques. Consistent SDF and RASDF graphs have the property that an execution occurs in so-called iterations. An iteration typically corresponds to the processing of a meaningful piece of data, and it returns the graph to its initial state. On multiprocessor platforms, iterations may be executed in a pipelined fashion, which makes performance analysis challenging. As the second contribution, this thesis develops trade-off analysis techniques for RASDF, both in the time-domain and in the iteration-domain (i.e., on an SDF iteration basis), to dimension resources on platforms. The time-domain analysis allows interleaving of different iterations, but the size of the explored state space grows quickly. The iteration-based technique trades the potential of interleaving of iterations for a compact size of the iteration state space. An efficient bottleneck-driven designspace exploration technique for streaming applications, the third main contribution in this thesis, is derived from analysis of the critical cycle of the state space, to reveal bottleneck resources that are limiting the throughput. All techniques are based on state-based exploration. They enable system designers to tailor their platform to the required applications, based on their own specific performance requirements. Pruning techniques for efficient exploration of the state space have been developed. Pareto dominance in terms of performance and resource usage is used for exact pruning, and approximation techniques are used for heuristic pruning. Finally, the thesis investigates dynamic scheduling techniques to respond to dynamic changes in input streams. The fourth contribution in this thesis is a game-theoretic approach to tackle controller synthesis to select the appropriate schedules in response to dynamic inputs from the environment. The approach transforms the explored iteration state space of a scenario- and resource-aware SDF (SARA SDF) graph to a bipartite game graph, and maps the controller synthesis problem to the problem of finding a winning positional strategy in a classical mean payoff game. A winning strategy of the game can be used to synthesize the controller of schedules for the system that is guaranteed to satisfy the throughput requirement given by the designer

    Implementation Effort and Parallelism - Metrics for Guiding Hardware/Software Partitioning in Embedded System Design

    Get PDF

    Temperature-Aware Design and Management for 3D Multi-Core Architectures

    Get PDF
    Vertically-integrated 3D multiprocessors systems-on-chip (3D MPSoCs) provide the means to continue integrating more functionality within a unit area while enhancing manufacturing yields and runtime performance. However, 3D MPSoCs incur amplified thermal challenges that undermine the corresponding reliability. To address these issues, several advanced cooling technologies, alongside temperature-aware design-time optimizations and run-time management schemes have been proposed. In this monograph, we provide an overall survey on the recent advances in temperature-aware 3D MPSoC considerations. We explore the recent advanced cooling strategies, thermal modeling frameworks, design-time optimizations and run-time thermal management schemes that are primarily targeted for 3D MPSoCs. Our aim of proposing this survey is to provide a global perspective, highlighting the advancements and drawbacks on the recent state-of-the-ar

    Automatic synthesis and optimization of chip multiprocessors

    Get PDF
    The microprocessor technology has experienced an enormous growth during the last decades. Rapid downscale of the CMOS technology has led to higher operating frequencies and performance densities, facing the fundamental issue of power dissipation. Chip Multiprocessors (CMPs) have become the latest paradigm to improve the power-performance efficiency of computing systems by exploiting the parallelism inherent in applications. Industrial and prototype implementations have already demonstrated the benefits achieved by CMPs with hundreds of cores.CMP architects are challenged to take many complex design decisions. Only a few of them are:- What should be the ratio between the core and cache areas on a chip?- Which core architectures to select?- How many cache levels should the memory subsystem have?- Which interconnect topologies provide efficient on-chip communication?These and many other aspects create a complex multidimensional space for architectural exploration. Design Automation tools become essential to make the architectural exploration feasible under the hard time-to-market constraints. The exploration methods have to be efficient and scalable to handle future generation on-chip architectures with hundreds or thousands of cores.Furthermore, once a CMP has been fabricated, the need for efficient deployment of the many-core processor arises. Intelligent techniques for task mapping and scheduling onto CMPs are necessary to guarantee the full usage of the benefits brought by the many-core technology. These techniques have to consider the peculiarities of the modern architectures, such as availability of enhanced power saving techniques and presence of complex memory hierarchies.This thesis has several objectives. The first objective is to elaborate the methods for efficient analytical modeling and architectural design space exploration of CMPs. The efficiency is achieved by using analytical models instead of simulation, and replacing the exhaustive exploration with an intelligent search strategy. Additionally, these methods incorporate high-level models for physical planning. The related contributions are described in Chapters 3, 4 and 5 of the document.The second objective of this work is to propose a scalable task mapping algorithm onto general-purpose CMPs with power management techniques, for efficient deployment of many-core systems. This contribution is explained in Chapter 6 of this document.Finally, the third objective of this thesis is to address the issues of the on-chip interconnect design and exploration, by developing a model for simultaneous topology customization and deadlock-free routing in Networks-on-Chip. The developed methodology can be applied to various classes of the on-chip systems, ranging from general-purpose chip multiprocessors to application-specific solutions. Chapter 7 describes the proposed model.The presented methods have been thoroughly tested experimentally and the results are described in this dissertation. At the end of the document several possible directions for the future research are proposed

    Caracterización y optimización térmica de sistemas en chip mediante emulación con FPGAs

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 15/06/2012Tablets and smartphones are some of the many intelligent devices that dominate the consumer electronics market. These systems are complex to design as they must execute multiple applications (e.g.: real-time video processing, 3D games, or wireless communications), while meeting additional design constraints, such as low energy consumption, reduced implementation size and, of course, a short time-to-market. Internally, they rely on Multi-processor Systems on Chip (MPSoCs) as their main processing cores, to meet the tight design constraints: performance, size, power consumption, etc. In a bad design, the high logic density may generate hotspots that compromise the chip reliability. This thesis introduces a FPGA-based emulation framework for easy exploration of SoC design alternatives. It provides fast and accurate estimations of performance, power, temperature, and reliability in one unified flow, to help designers tune their system architecture before going to silicon.El estado del arte, en lo que a diseño de chips para empotrados se refiere, se encuentra dominado por los multi-procesadores en chip, o MPSoCs. Son complejos de diseñar y presentan problemas de disipación de potencia, de temperatura, y de fiabilidad. En este contexto, esta tesis propone una nueva plataforma de emulación para facilitar la exploración del enorme espacio de diseño. La plataforma utiliza una FPGA de propósito general para acelerar la emulación, lo cual le da una ventaja competitiva frente a los simuladores arquitectónicos software, que son mucho más lentos. Los datos obtenidos de la ejecución en la FPGA son enviados a un PC que contiene bibliotecas (modelos) SW para calcular el comportamiento (e.g.: la temperatura, el rendimiento, etc...) que tendría el chip final. La parte experimental está enfocada a dos puntos: por un lado, a verificar que el sistema funciona correctamente y, por otro, a demostrar la utilidad del entorno para realizar exploraciones que muestren los efectos a largo plazo que suceden dentro del chip, como puede ser la evolución de la temperatura, que es un fenómeno lento que normalmente requiere de costosas simulaciones software.Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    Artificial neural networks acceleration on field-programmable gate arrays considering model redundancy

    Get PDF
    Artificial Neural Networks (ANNs) have dramatically developed over the last ten years, and have been successfully applied in many important areas. A natural follow-up topic is to deploy ANNs to a wider range of hardware platforms. However, modern ANN models may aim for millisecond- or even nanosecond-level latency for each input processing while it is common for them to require million-level operations and gigabyte-scale data access for computing each input. This intrinsic high computational complexity introduces hardware challenges to the system implementation. Meanwhile, the integration of computing resources on hardware platforms is hampered by the slowing down of Moore’s Law. Therefore, it is important to study new design methods for ANN hardware systems that produce high model accuracy with low resource usage. Field-Programmable Gate Array (FPGA) is a natural fit for this topic due to its reconfigurability and flexibility. These features of FPGA allow us to implement customised data paths and data representations on hardware, which makes it the primary platform in this research. The main topics discussed in this thesis include neural network redundancy and its impact on hardware systems. The main goal is to reduce hardware complexity by reducing neural network redundancy and maintaining accuracy at the same time. To achieve this, redundancy is firstly categorised into two types: model- and data-level. Then, each type is studied in isolation before both are combined in a single system design. First, to study model-level redundancy, an algorithm called dropout is implemented as a way to reduce model-level redundancy during training and used here to reduce hardware cost. Our proposed system achieves a 50% reduction in DSP usage and 33% to 47% fewer on-chip memory usage compared to conventional implementations. Second, in terms of data-level redundancy, we aim to study how data precision affects hardware cost and system throughput. Our experiments show that reduced-precision data present negligible or even no accuracy loss to full-precision data on the tested benchmarks. In particular, the 4-bit fixed point presents a good trade-off between model accuracy and hardware cost compared to other tested data representations. Third, we studied the interactive effect of reducing both model- and data-level redundancy and proposed a FPGA accelerator design for Redundancy-Reduced (RR-) MobileNet [Hea17]. Our proposed RR-MobileNet system achieves a state-of-the-art latency, 7.85 ms, for single image processing in ImageNet inference. Finally, a design guideline is proposed as a step-by-step guidance for redundancy-reduced neural network system design.Open Acces

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems
    corecore