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A Flexible Fog Computing Design for Low-Power Consumption and Low Latency Applications
Reprinted from: Electronics 2021, 10, 57, doi:10.3390/electronics10010057 . . . . . . . . . . . . . . 37

Pablo Merino, Gabriel Mujica, Jaime Señor, and Jorge Portilla
A Modular IoT Hardware Platform for Distributed and Secured Extreme Edge Computing
Reprinted from: Electronics 2020, 9, 538, doi:10.3390/electronics9030538 . . . . . . . . . . . . . . . 59

Minseon Kang, Yongseok Lee and Moonju Park
Energy Efficiency of Machine Learning in Embedded Systems Using Neuromorphic Hardware
Reprinted from: Electronics 2020, 9, 1069, doi:10.3390/electronics9071069 . . . . . . . . . . . . . . 85

Alberto Garcı́a, Rafael Zamacola, Andrés Otero and Eduardo de la Torre
A Dynamically Reconfigurable BbNN Architecture for Scalable Neuroevolution in Hardware
Reprinted from: Electronics 2020, 9, 803, doi:10.3390/electronics9050803 . . . . . . . . . . . . . . . 95

Francisco Pajuelo-Holguera, Juan A. Gómez-Pulido and Fernando Ortega
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Spain, in 2010. He is currently an Associate Professor at UPM and researcher within the Centro

de Electrónica Industrial, belonging to the UPM. His research interests are focused on Wireless

Sensor Networks, Internet of Things, Digital Embedded Systems and Reconfigurable FPGA-based

embedded systems. He has participated in more than 30 funded research projects, including

European and national funded projects, as well as private industry funded projects, mainly related

to WSN and IoT. He was a visiting researcher with the Industrial Technology Research Institute

(ITRI), Hsinchu Taiwan, in 2008 and with the National Taipei University of Technology (Taipei Tech),

Taiwan, in 2018. He has authored numerous publications in prestigious international conferences

and journals with good impact factors.

Andres Otero

Andrés Otero received his M.Sc. degree in Telecommunication Engineering from the University

of Vigo, where he graduated with honors in 2007. He received his Master of Research and Ph.D.

degrees in Industrial Electronics from Universidad Politécnica de Madrid (UPM), in 2009 and
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Preface to ”Recent Advances in Embedded
Computing, Intelligence and Applications”

The latest proliferation of Internet of Things deployments and edge computing combined with

artificial intelligence has led to new exciting application scenarios, where embedded digital devices

are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with

workloads formerly reserved for the cloud, such as deep learning. These devices allow processing

close to where data are generated, avoiding bottlenecks due to communication limitations. The

efficient integration of hardware, software and artificial intelligence capabilities deployed in real

sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the

fostering of the offloading processing functionalities to the edge.

In this book, researchers have contributed nine peer-reviewed papers covering a wide range

of topics in the area of edge intelligence. Among them are hardware-accelerated implementations

of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and

neuromorphic machine learning, and embedded recommender systems. In chapters 1 and 2, the

importance of speeding up the design space exploration and the optimization of reconfigurable

accelerations for neural networks is introduced to the readers and addressed by proposing a

novel method for improving the performance estimation of key metrics during the design space

exploration, as well as the evaluation of multi-objective evolutionary algorithms with quantization

in real hardware acceleration platforms.

Moreover, in chapters 3, 4, and 5, the topic of low power design for the Fog, Edge and

Extreme Edge layers is presented to the readers from three main perspectives: low-latency wireless

communication considering energy management strategies on hardware platforms; the modularity

and flexibility of the sensor nodes for resource-constrained distributed computing with enhanced

security; and energy-aware machine learning strategies through neuromorphic hardware. Chapter 6

reinforces the idea of scalable neuroevolution in hardware by proposing a dynamically reconfigurable

block-based neural network model integrated with an evolutionary algorithm implemented in

hardware.

Finally, chapters 7, 8, and 9 show three exciting and diverse investigations where embedded

systems and embedded intelligence techniques are applied to recommender systems, hyperspectral

image processing for brain cancer classification, and 2D graphic accelerators embedded in hardware

platforms. This way, the benefits of using hardware acceleration techniques close to the data sources

are presented to the readers.

The guest editors would like to thank all the authors who contributed to the Special Issue for

their very high-quality research works in embedded computing, intelligence, and applications. The

underlying advances and actual implementations allow significant progress to be made in the related

application domains.

Jorge Portilla, Andres Otero, and Gabriel Mujica

Editors
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Abstract: Contemporary advances in neural networks (NNs) have demonstrated their potential in
different applications such as in image classification, object detection or natural language processing.
In particular, reconfigurable accelerators have been widely used for the acceleration of NNs due to
their reconfigurability and efficiency in specific application instances. To determine the configuration
of the accelerator, it is necessary to conduct design space exploration to optimize the performance.
However, the process of design space exploration is time consuming because of the slow perfor-
mance evaluation for different configurations. Therefore, there is a demand for an accurate and fast
performance prediction method to speed up design space exploration. This work introduces a novel
method for fast and accurate estimation of different metrics that are of importance when performing
design space exploration. The method is based on a Gaussian process regression model parametrised
by the features of the accelerator and the target NN to be accelerated. We evaluate the proposed
method together with other popular machine learning based methods in estimating the latency and
energy consumption of our implemented accelerator on two different hardware platforms targeting
convolutional neural networks. We demonstrate improvements in estimation accuracy, without the
need for significant implementation effort or tuning.

Keywords: field-programmable gate array; deep learning; neural network; performance estimation;
Gaussian process

1. Introduction

Recently, neural networks (NNs) have demonstrated superhuman performance in
a multitude of tasks, such as in image classification [1], object detection [2], semantic
segmentation [3] or natural language processing [4]. NNs are also making their way into
real-life practical applications, such as in medical diagnostics [5], autonomous driving [6]
or aviation [7–9]. While in medicine, the applications of NNs are primarily limited by their
algorithmic performance, in other practical scenarios such as in autonomous driving, their
hardware performance needs to also be considered in addition to their decision making
capabilities. The hardware performance is usually considered in terms of latency or energy
efficiency, which is especially crucial when aiming at real-time response rates. While it is
indeed possible to run NNs on stock hardware platforms such as central processing units
(CPUs) or graphical processing units (GPUs), to achieve peak hardware performance, it is

Electronics 2021, 10, 520. https://doi.org/10.3390/electronics10040520 https://www.mdpi.com/journal/electronics
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also necessary to consider reconfigurable hardware accelerators [10]. Considering the rapid
pace of NN architecture design, accelerators need to be partially reconfigurable such that
they are adaptable to the new generation of NN designs, while still achieving favourable
hardware performance.

Therefore, to fully utilise the performance capabilities of a reconfigurable accelerator,
it is necessary to perform design space exploration (DSE) [11] to determine the optimal hard-
ware configuration of the accelerator, given the desired NN architectures. The search space
when performing DSE is determined by the available accelerator’s configuration domains
which can, for example, be determined by the levels of implementable parallelism [10].
Naively, DSE is conducted by systematically synthesising different configurations of a
given accelerator on the hardware platform and measuring the real-world performance
of the desired NNs on the accelerator. Given a large search space, consisting of different
configurations of the accelerator, the time and resource costs of actually implementing
the accelerator on the target hardware platform limit the speed of DSE. Practically, it is
therefore necessary to accurately estimate the hardware performance during DSE with
respect to multiple different hardware specifications, to enable the fast exploration and
exploitation of the available configurations for the given NNs.

There are several performance estimation frameworks for reconfigurable accelera-
tors [12–14]; however, estimating the performance without knowing the run-time intricacies
when running different NNs is still a challenging task. There are two main reasons for this
complication: (1) the cost of executing a certain operation on hardware varies by on/off-
chip communication, synchronisation, control signals, I/O interruptions, in particular for
the NN accelerators, the NN’s architecture, complicating the estimation; (2) it is difficult
to accurately select the most representative design features for all hardware specifications
during performance estimation.

In this work, we propose a novel approach for performance estimation of custom
convolutional neural network (CNN) accelerators. The proposed method constitutes a
Gaussian process regression model [15] coupled with features that can be readily read off
datasheets for the underlying hardware platform or the target algorithm (a tutorial code is
available at https://git.io/Jv31c). We evaluate the method for estimating layer-wise latency,
as well as network-wise latency and energy consumption. Experiments were conducted
with respect to two hardware platforms, the Intel Arria GX 1150 field-programmable
gate array (FPGA), as well as a structured application-specific integrated circuit (ASIC)
implementation of the targeted accelerator. We compared the proposed approach to
other machine learning-inspired methods such as linear regression (LR), gradient tree
boosting (GTB) or a feed-forward fully-connected NN. The proposed approach is simple
to implement, fast in providing predictions and more accurate in comparison to the other
compared methods in estimating both latency and energy. This article extends our previous
work [16] by further evaluation with respect to estimating an additional hardware metric,
energy consumption, by benchmarking the proposed method with respect to an additional
hardware implementation platform (ASIC) and by supportive software experiments. The
further experimentation proves that the Gaussian process is an accurate estimator that can
be used to estimate the hardware performance for running CNNs.

In Section 2, we discuss the background on NN design and the related work on
performance estimation. Then, in Section 3, we introduce the proposed method, followed
by Section 4, where we describe the implemented hardware design of the benchmarked
accelerator. Then, we present the experiments, results and discussion in Section 5. Lastly,
we conclude the work in Section 6.

2. Background and Related Work

In this section, we present an overview of NNs and their compute pattern and related
work on performance estimation methods.

2



Electronics 2021, 10, 520

2.1. Neural Networks

NNs are built by stacking several mathematical operations on top of each other, other-
wise known as layers. In this work, we mainly demonstrate our method on an accelerator
for CNNs; however, the proposed method is not limited to accelerators for CNNs. The
processing of a CNN is usually done in a layer-by-layer fashion; nevertheless, most modern
networks [17–19] have residual or concatenative connections between them [17]. Specifi-
cally for CNNs, frequently used layers are 2D convolutional, fully-connected or pooling
layers interchanged with element-wise applied non-linearities [20]. Convolutional or fully-
connected layers aim to learn useful features that can be used to recognise patterns in the
input data, while pooling aims to reduce the representation and pool the most important
information, while processing the data through the NN. Practically, convolutional and
fully-connected layers take up over 90% of the computation and energy consumption in a
CNN model [2,21,22]. The algorithm behind 2D convolution is shown in Algorithm 1. The
notation used in this paper is presented in Table 1.

Algorithm 1 Convolution.
Input: Input feature map I of shape C× HI ×WI ; weight matrix W of shape F×C×K×K

Output: Output feature map O of shape F× HO ×WO
1: for ( f = 0; f < F; f ++)

2: for (c = 0; c < C; c ++)

3: for (h = 0; h < HO; h ++)

4: for (w = 0; w < WO; w ++)

5: O[ f ][h][w] += ∑K−1
i=1 ∑K−1

j=1 W[ f ][c][i][j] ∗ I[c][h ∗ s + i][w ∗ s + j]

Table 1. Notation used in this paper.

HI Height of the input feature map WI Width of the input feature map
HO Height of the output feature map WO Width of the output feature map
K Kernel size F Number of filters
C Number of channels s Stride in a convolution
W Weights in a neural network PF Parallelism in the filter dimension
PC Parallelism in the channel dimension PV Parallelism in the data vector dimension

MCLK (MHz) Memory access clock cycle time LCLK (MHz) Logic clock cycle time
MEFF (%) Memory transfer efficiency S (bits) Memory transfer size
DW (bits) Processing data width M Number of input features

B Number of layers in a neural network N Number of training samples

As illustrated in Algorithm 1, the convolution accepts a C × HI ×WI sized input
feature map, and then, the input is convolved with a kernel with the shape of F×C×K×K.
Each kernel window with the size of K×K is applied to one channel of the input HI ×WI by
sliding the kernel with a stride of s to produce one output feature map HO ×WO; then, the
results of C channels are accumulated to produce one filter of the output. All filters of the
output feature maps F× HO ×WO are generated by repeating this process F times. A fully-
connected layer can be re-interpreted as a convolution by considering the kernel size K = 1.
Utilizing this compute pattern, it is then possible to summarize the number of compute
operations, as well as the number of memory transfers, as shown in Table 2. At the same
time, given the different for-loops in Algorithm 1, it is possible to parallelise the convolution
operation in each for-loop dimension: filter, channel, data vector or kernel. In Section 4,
we introduce the implemented accelerator, which is capable of taking advantage of this
property in multiple dimensions.

3



Electronics 2021, 10, 520

Table 2. Number of operations and the data size for a convolution.

Sizes Number of Operations/Data Size

Number of compute operations F× C× HI ×WI × K× K
Input size HI ×WI × C

Weights size F× C× K× K
Output size HO ×WO × F

2.2. Performance Estimation

As discussed in Section 1, the most accurate and reliable method for determining
the performance of a CNN for a specific system configuration is deploying the CNN on
the hardware platform and measuring its performance. A significant drawback of this
method is that it requires re-implementation for different hardware specifications on the
hardware’s fabric. Given a large number of potential configurations that might need to be
benchmarked during DSE, this approach is too time consuming and resource demanding.
Therefore, it is more feasible and practical to perform DSE with respect to an estimate of
the performance at the software level, rather than running the CNN for each hardware
configuration of different hardware architectures. Considering a complex accelerator for
multi-layer CNNs, it is likely that due to the intricacy of the data manipulation or the
compute, the performance for the CNNs will need to be estimated on a case-by-case
basis. Therefore, this approach is infeasible in general, as it is usually constrained to a
single hardware configuration. Nevertheless, there have been a few researchers who have
proposed general performance estimation methodologies [12–14].

A performance estimation framework for reconfigurable dataflow platforms was pro-
posed by Yasudo et al. [12], which can analytically determine the number of accelerator
units suitable for an application. Dai et al. [13] proposed an estimation method based on
a GTB and a high-level synthesis report. However, their method requires a significant
amount of data and features from the synthesis report, which might not be available,
especially when high-level synthesis is not being used to implement the accelerator. Liu et
al. proposed a general heuristic based method [14] for estimating the performance of FPGA
based CNN accelerators and that is now used as the standard go-to estimation method.
The heuristic analytic approach does not depend on any potentially collected measure-
ments to perform the estimation, and it is simple to implement since it relies only on the
variables that can be easily read from the respective datasheets for the hardware platform
or the algorithmic configuration. Nevertheless, this general estimation method usually
computes the most optimistic estimate, and it does not take into account communication,
synchronisation or control. One way to refine the estimation is that we can collect a few
runtime data points and use them to improve the estimate.

Therefore, in our work, we propose using a Gaussian process (GP) regression model [23]
together with data samples collected by running the CNN on real hardware. GP is a model
built on Bayesian probabilistic theory, which can embody prior knowledge into the predic-
tive model and can be used for the regression of real-valued non-linear targets [23].

3. Method

In this section, we motivate and describe the proposed method for performance
estimation, which is based on a GP regression model.

Given a dataset D = {(xi, yi)}; i = 1, . . . , N consisting of N observations with inputs
and outputs as xi ∈ RM and yi ∈ R1, respectively, a function f needs to be induced to
hypothesise y∗ on new, previously unseen, inputs x∗. x represents a vector of M features,
while y represents the real-valued target that is to be estimated in this case. As discussed in
the previous Section 2.2, there are multiple function classes that can be used to perform
this task.

A naive parametric approach would make use of a predictive conditional distribution
that can be written as p(y∗|w,D, x∗). This approach constitutes an LR, using parameters

4
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w, such that the prediction is made as y = ∑M
m wmxm. It requires learning the parameters

w, which represent one potential function realisation f that fits the data.
Assuming a Gaussian weight prior p(w) = N (w|0, Σw), with some pre-defined co-

variance matrix Σw, we can induce a Gaussian distribution on any set of y: p(y|x) =
N (y|µ, K), where K ∈ RN×N is the covariance matrix characterised by a covariance func-
tion and µ represents the mean. This leads to the consideration of a non-parametric
predictor, where instead of learning w, the focus is shifted towards inferring an entire
distribution of function classes for explaining the data. Specifically, a non-parametric
predictor uses a parametric model and integrates the parameters. A prior p(θ) induces a
distribution over plausible functions, where θ is a latent random variable. Using such a
probabilistic modelling framework, we can sample plausible data-fitting functions directly.
This approach avoids necessitating a decision on which predefined class of function predic-
tors to use, as it considers all of them. The assumption that any set of values specified at an
arbitrary point xi over functions is Gaussian distributed leads to a GP model.

GP is a flexible Bayesian model characterised by a finite collection of Gaussian ran-
dom variables [ f1, f2, . . .], such that for any finite set of plausible inputs X∗, the vector
f ∗ = f (X∗) follows a Gaussian distribution [23]. The stochastic process can be entirely
determined by second-order statistics: a mean function m(.) and a kernel (covariance)
function k(., .). The mean function represents the value that the mean across the functions
f tends towards. The covariance matrix K is characterised by the kernel function values
[K]i,j = k(xi, xj) = φ(xi)

Tφ(xj), for some non-linear function φ(.), which represent the
value that the sample covariance for all sampled functions tends towards for the points
xi and xj. The kernel encodes structural information of the latent function f and must be
symmetric and positive semi-definite.

For N Gaussian observations XN ∈ RN×M; Y N ∈ RN×1, yi = f (xi) + εi where
εi ∼ N (εi|0, σ2), the posterior for unseen data X∗ is defined as in Equations (1) and (2)
(for a detailed derivation, please refer to [23]):

f ∗|y ∼ N (m∗|N , K∗,∗|N) (1)

m∗|N = m(XN) + K∗,N(KN,N + σ2 I)−1(Y N −m(XN))

K∗,∗|N = K∗,∗ − K∗,N(KN,N + σ2 I)−1KN,∗
(2)

Furthermore, training the GP requires finding appropriate latent random variables
or hyperparameters θ. Considering the posterior over hyperparameters: p(θ|X, y) =
p(y|X,θ)p(θ)

p(y|X)
, hyperparameters θ∗ are obtained through maximising the log of marginal

likelihood θ∗ = arg maxθ log p(y|X, θ) + log p(θ).
In this paper, we propose to use a GP regression model as outlined above to predict

the performance of an algorithm realisation on a given accelerator and a hardware platform.
We propose to use the characteristics of the accelerator at design time and the target NN as
features, as shown in Table 1, with respect to which we can predict the target performance
measure (a tutorial code is available at https://git.io/Jv31c). Practically, this means that an
input vector x is a vector of M features with algorithmic or hardware properties for one
configuration of the system, while y can represent the performance that is to be estimated.
The features of the input vector x being used are those that are already known and used
in the standard analytic estimation [14], avoiding the need for any additional feature
extraction from the dataset or the datasheets. These features consist of characteristics of
the CNN to be run, as well as the hardware accelerator. Additionally, it is possible to
embody the standard analytic method into the GP based estimator, through using it as the
mean function m(.). This model enables us to use any available measurements as training
data and does not restrict us to one class of predictors; it considers a plausible family
of best fitting models that are characterised by the kernel and the mean function. The
proposed method is able to make predictions outside of the observed data samples without
collapsing [23]. At the same time, by choosing the features given by the datasheets, the
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model is more interpretable than an NN or an LR, where the corresponding uninterpretable
weights w need to be learned. Moreover, the Gaussian noise assumption can be interpreted
as an additive instrumentation error, while collecting measurements. Furthermore, if
used during DSE, the GP model can additionally provide an uncertainty estimate for its
predictions, which can more precisely guide the exploration and the exploitation of the
search space [23]. The overall system diagram, including all the necessary parts of the
prediction methodology, is presented in Figure 1. The dashed lines symbolise the fitting of
the GP, through providing hardware measurements, along with the characteristic NN and
hardware features, to the GP to obtain the θ∗, Y N , KN,N to be used during the evaluation.
During the evaluation, the features and the fitted GP model are then used for prediction.

For a training set of size N samples, the computational complexity of the training
scales in ∼O(N3) due to the unavoidable Cholesky factorisation, while the prediction is
∼O(N2), and the memory requirements are ∼O(NM + N2). Therefore, given a typical
number of collected real-world measurements (which is <1000) for different configurations
of the accelerator, the method is scalable to be used in practice.

Figure 1. Overview of the proposed prediction methodology based on a Gaussian process (GP).

In the next section, we present the CNN accelerator on which we used the proposed
method. We compare our approach with other estimators in predicting layer-wise latency
and network-wise latency and energy consumption.

4. Hardware Design

In this section, we detail the accelerator architecture, the performance for multiple
different CNN architectures of which we aim to estimate.

4.1. Accelerator’s Architecture

The hardware design of our accelerator is illustrated in Figure 2. The design consists
of a CNN engine, a central communication interconnect and an off-chip main memory.
The weights of the whole network are transferred and stored in the off-chip memory via a
central communication interconnect before the processing. The CNN engine is composed of
an input buffer, a weight buffer, a convolutional processing engine (PE) and other functional
modules including batch normalisation (BN) [24], shortcut (SC) [17], pooling (Pool) and
rectified linear unit (ReLU) activation. In order to fully utilise the extensive concurrency
exhibited in CNNs and improve the hardware efficiency, we support three types of fine-
grained parallelism in our CNN engine: filter parallelism (PF), channel parallelism (PC)
and vector parallelism (PV). The accelerator processes each layer in a CNN one-by-one, and
the intermediate results between layers are transferred and stored in the off-chip memory,
in case the output size is bigger than the available on-chip memory. To achieve higher
hardware performance, the accelerator is designed to support 8 bit operations.
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Figure 2. The convolutional neural network accelerator’s design. SC, shortcut; PC, channel paral-
lelism; PV, vector parallelism; PF, filter parallelism; DMA, direct memory access.

To avoid large memory consumption on the on-chip memory, we adopt the channel-
major computational pattern for convolution, which is illustrated in Algorithm 2. In our
channel-major PE, the computation required along the channel dimension in each filter is
finished first. In this way, the on-chip memory only needs to cache the intermediate results
for one filter, which largely decreases the memory usage.

In this paper, we used this accelerator design to perform the benchmarking of our
proposed estimator method in estimating layer-wise latency, network-wise latency and
energy consumption.

Algorithm 2 Channel-major computational pattern.
Input: Input feature map I of shape C× HI ×WI ; weight matrix W of shape F×C×K×K

Output: Output feature map O of shape F× HO ×WO
1: for ( f = 0; f < F

PF ; f ++)

2: for (h = 0; h < HO; h ++)

3: for (w = 0; w < WO
PV ; w ++)

4: for (c = 0; c < C
PC ; c ++)

5: O[ f ][h][w] += ∑K−1
i=1 ∑K−1

j=1 W[ f ][c][i][j] ∗ I[c][h ∗ s + i][w ∗ s + j]

4.2. Standard Analytical Latency Model

In this section, we outline the layer-wise processing latency model for the proposed
accelerator, which constitutes the standard method as proposed in [14] for comparison.

The simplest form of a heuristic that estimates layer-wise latency on a hardware
accelerator consists of partitioning the overall processing time to individual layers, Ti,
corresponding to the time to perform one convolution in a feed-forward CNN consisting of
B convolutions/layers. The per-layer latency of an implemented CNN accelerator consists
of three parts: (1) time for loading the input; (2) computation time; (3) time for storing
the results.

The complete input has to be loaded into the on-chip memory only once for the first
layer, while the partial results that do not fit into the on-chip memory are off-loaded to
the off-chip memory. Nevertheless, the time spent on this memory transfer is assumed to
be negligible.

The size of the weights and the input/output for convolution is shown in Table 2,
following the notation defined in Table 1. The per-layer latency Ti for a single convolutional
layer i; i = 1, . . . , B of a CNN with B layers is shown in Equations (3)–(5) as follows:
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1. Loading time, i.e., the time to load the input into the on-chip memory. Note that the
loading of the data is in parallel with respect to the channel parallelism PC:

Tweightsi
=

Ki × Ki × Fi × Ci × DW
PC× PV ×MCLK × S×MEFF

Tdatai
=

HIi ×WIi × Ci × DW
PC× PV ×MCLK × S×MEFF

Tloadi
= Tweightsi

+ Tdatai
(3)

2. Computation time, i.e., the time to compute PF × PC parallel filters and
channels, respectively:

Tcomputei =
Fi × Ci × HIi ×WIi × Ki × Ki

PF× PC× LCLK
(4)

3. Storing time, i.e., the time to store the output back to the off-chip memory. Note
that similar to the input loading time, the storage time is divided by the channel
parallelism PC:

Tstorei =
HOi ×WOi × Fi × DW

PC× PV ×MCLK × S×MEFF
(5)

Therefore, the time required to process a single convolutional layer can be written as
in Equation (6) below:

Ti =





Ti=1 = Tloadi
+ Tcomputei

Ti 6=1∨N = max(Tweightsi
, Tcomputei )

Ti=N = max(Tweightsi
, Tcomputei ) + Tstorei

(6)

Note the max operations, which are present due to pipelining of the design, result in a
latency determined by the slowest operation.

5. Experiments

In this section, we present the experimental settings, as well as the results with respect
to both latency and energy estimation on different CNN architectures on the implemented
accelerator (Section 4). The experiments were performed on an FPGA, as well as a custom
ASIC. The networks were quantized into 8 bits [25], such that DW = 8 bits.

5.1. Evaluation for FPGA Design

This section describes the accelerator on an Intel Arria GX 1150 FPGA, and we
evaluate the proposed GP based method with respect to layer-wise latency estimation,
while running CNNs on the accelerator. The fixed hardware parameters used for the
FPGA implementation are such that the filter, channel and data parallelism were set as
PF = 64, PC = 64, PV = 1. At the same time, the memory and logic clock frequencies
were MCLK = 200 MHz and LCLK = 200 MHz. The memory efficiency was assumed to
be MEFF = 70%, and the communicating data-width size was S = 64 bits. The evalua-
tion dataset comprised of several different configurations of convolutional layers, which
were the building blocks of three different CNNs, namely SSD [18] with 24 convolutions,
Yolo [19] with 75 convolutions and ResNet-50 [17] with 57 convolutions. The characteristics
of the dataset from a software perspective are shown in Table 3. These networks were
chosen because their algorithmic structures present challenges to the accelerator design, its
control and its scheduling. In particular, SSD and Yolo are characteristic by their irregulari-
ties, which result in the output being produced at different times, while ResNet is known
for its residual blocks, which require implementing additional control in hardware.
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Table 3. Dataset for the evaluation of the layer-wise latency on an FPGA.

Parameter Min Mean Max

HI/WI 1 42 418
HO/WO 1 37 416

K 1 2 7
C 3 360 2048
F 64 371 2048

Latency (ms) 0.018 0.841 11.727

In total, the dataset for layer-wise latency estimation for each layer i consisted of
N = 156 training samples, and the input feature size M was 15, corresponding to:
HIi , WIi , HOi , WOi , Ki, Fi, Ci, PF, PC, PV, MCLK, LCLK, MEFF, S and DW. The recorded la-
tency per convolution represents the targets y. Due to the limited size of the dataset,
leave-one-out cross-validation (LOOCV) with respect to the mean absolute error (MAE)
was used to compare the estimators. LOOCV is a particular case of leave-k-out cross-
validation where k = 1, which means that a model is trained on all samples except one, on
which the performance is then evaluated. Although potentially more expensive to imple-
ment, it provides a less biased estimate of the test errors. In this instance, the performance
of the predictor is measured by the absolute error between the prediction and the target
value. The error is accumulated for all samples from which the mean is then calculated by
dividing the total summed error by the number of samples.

In the evaluation, the proposed method is compared with the standard analytical
method, including LR, GTB and a fully-connected multi-layer NN. Due to the few data
samples, we used the layer-wise latency model as presented in Section 4.2 as the mean
function m(.) of the GP model. We considered several hyperparameters for the proposed
GP based method such as the learning rate, ranging from 0.1 to 0.000001 on a logarithmic
scale, and the kernel, ranging from linear, Gaussian to Matérn kernels [23], and their
combinations. The best parameters were found by a grid search with respect to the LOOCV
MAE. For GTB and NN, we needed to determine the most influential parameters such as
the learning rate, ranging from 0.01 to 0.0001 on a logarithmic scale, or for the GTB, the
number of trees or the tree depth determined by gradual pruning. For the NN, we needed
to decide the number of hidden nodes, between [10, 1], [10, 10, 1] and [10, 10, 10, 1], and for
the activation function, we considered tanh, ReLU and sigmoid. The hyperparameters were
similarly found through a grid search with respect to the LOOCV MAE. For the standard
method and LR, it was not necessary to determine any hyperparameters. The results for
latency estimation are presented in Table 4.

Table 4. Evaluation of layer-wise latency estimation for different methods on the convolutional neural network accelerator
on an FPGA.

Methods Layer-Wise Latency
LOOCV MAE (ms)

Implementation and
Optimiser Properties

Standard method 0.450 None None

Linear regression 0.450 Sklearn [26] Default

Gradient tree boosting 0.607 Sklearn [26]; AdaBoost [27]
Learning rate: 0.1
Number of trees: 10
Maximum depth: 3

Neural network 1.257 TensorFlow [28]; Adam [29]

Batch size: 8
Learning rate: 0.1
Regulariser: L2, 0.001
Number of nodes: 10,10,1
Activations: ReLU

Our method 0.312 GPFlow [30]; Adam [29]
Mean function: Ti
Learning rate: 0.001
Kernel: Matérn 3/2
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Overall, the best method proved to be the combination of the standard method as the
mean function for the GP and the collected data. In comparison to other approaches, the
proposed method achieved approximately a 30.7% improvement in LOOCV with respect
to MAE, decreasing to 0.312 ms in comparison with the second best-performing methods,
which were LR and the standard method with a 0.450 ms MAE.

5.2. Evaluation on the ASIC Design

In this section, we implement the outlined hardware accelerator using 28 nm eA-
SIC [31] technology on the Intel N3XS platform with 8GB DDR3 installed as an off-chip
memory. The whole design was clocked at MCLK, LCLK = 333 MHz, and the PF, PC and
PV were set as 64, 64 and 1, respectively. The example design we used in this experiment
kept the same parallelism configuration for the entire CNN model. Other designs, such
as the streaming design [32], can support layer-wise configurable parallelism. However,
the layer-wise instantiation of a modern deep CNN requires extensive hardware resources,
which are often not available.

Before the evaluation of our GP based estimation, we compare both the FPGA and
eASIC implementations in terms of latency and power efficiency (frames per second per
Watt (FPS/W)) on four CNN models including SSD, ResNet-50, Yolo and VGG-16. It can
be clearly seen from Table 5 that the eASIC design achieved higher energy efficiency and
smaller latency than the FPGA implementation on all four CNN models.

Table 5. Hardware performance comparison between the FPGA and eASIC design.

SSD [18] ResNet-50 [17] Yolo [19] VGG-16 [33]

Latency FPS/W Latency FPS/W Latency FPS/W Latency FPS/W(ms) (ms) (ms) (ms)

FPGA 3.24 7.01 4.62 4.92 41.22 0.55 23.18 0.98
eASIC 2.39 22.02 3.06 17.20 31.55 1.67 15.35 3.43

Next, we evaluated the GP based estimation for the eASIC design with respect to
latency and energy consumption. Instead of estimating per-layer latency, this experiment
aimed at validating the GP based estimation of a whole NN for both latency and energy
consumption. We ran ResNet-50 [17] using different network configurations with respect
to energy and latency to form the evaluation and training datasets, which is illustrated in
Figure 3.

1st Unit, Depth = 3, Stride = 1

Avg-Pool
Fully-Connected

Cell

Cell

Cell
Skip

Cell
Skip

Conv
Cin

Conv
Cin ∗ E

Conv
Cin ∗ E

Cout
+

Conv Head, Stride = 2 
Pool, Stride = 2

2nd Unit, Depth = 4, Stride = 2

3rd Unit, Depth = 6, Stride = 2

4th Unit, Depth = 3, Stride = 2

Figure 3. ResNet-50 with different depths, channel numbers and expansion ratios.
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The network contains three parts: head part, middle part and tail part. The head part
includes a convolutional layer and a pooling layer with stride-2, while the tail part consists
of an average pooling layer followed by a fully-connected layer. We fixed the head and
tail parts while changing the network configurations for the middle part that contains
four residual blocks with a gradually reduced feature map size and increased channel
numbers. In each residual block, the depth ranges from two to Di, where Di denotes the
maximal depth in the ith block. In each cell of the residual block, the expansion ratio (E)
was chosen from [0.5, 0.75, 1.0]. For regression, as the hardware properties are fixed for the
eASIC design, we only needed to encode the network configurations as a 13-dimensional
vector, which represents the expansion ratio used in the 13 cells, giving M = 13. The
expansion ratio was zero, if this cell was skipped. We randomly sampled 800 different
network configurations and evaluated these networks on our eASIC designs with respect
to latency and energy consumption. We used 600 samples for training and 200 samples
for evaluation. Therefore, even though the hardware configuration remained fixed, we
benchmarked the methodology with respect to changing various software parameters.

To demonstrate the advantages of GP based estimation compared with other regres-
sion techniques, we also compared it with LR, GTB and NN, which is illustrated in Table 6.
In this instance we used a zero mean function, such that the methods should rely more on
data, instead of any bias that could have been potentially induced by inaccurate analytical
approximation. All methods used the same hyperparameters as in Section 5.1, to demon-
strate the flexibility and simplicity of the implementation of the proposed GP regression
model. It can be seen that our method achieved a smaller MAE on both latency and energy
estimation, when compared with the other methods. In comparison to LR, which is a
simple and widely adopted estimator, the performance can be improved by approximately
two times with respect to both latency and energy estimates.

Table 6. Evaluation of network-wise latency and energy estimation for different methods on the convolutional neural
network accelerator on an eASIC.

Methods Latency Energy Implementation PropertiesMAE (ms) MAE (W) and Optimiser

Linear regression 0.177 0.272 Sklearn [26] Default

Gradient tree boosting 0.476 0.501 Sklearn [26]; AdaBoost [27]
Learning rate: 0.1
Number of trees: 10
Maximum depth: 3

Neural network 0.108 0.241 TensorFlow [28]; Adam [29]

Batch size: 8
Learning rate: 0.1
Regulariser: L2, 0.001
Number of nodes: 10,10,1
Activations: ReLU

Our method 0.079 0.151 GPFlow [30]; Adam [29]
Mean function: 0
Learning rate: 0.001
Kernel: Matérn 3/2

Furthermore, in Figure 4, we show the advantages of GP over the aforementioned
methods on smaller datasets by varying the training dataset size and number of features
as the input of the models with respect to the overall prediction latency and energy
consumption on the eASIC. Each experiment was repeated three times varying the number
of available data points or features to evaluate the robustness of the compared methods.
It can be observed that the GP is more accurate and also more robust as the standard
deviation is consistently smaller in comparison to the other methods in all experiments.
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Figure 4. Prediction benchmarks for latency with respect to changing training data size (a) and
feature set size (b). Benchmarks for energy with respect to changing training data size (c) and feature
set size (d).

The main advantage of the proposed method lays in its implementation simplicity, as
it reuses those variables that can be commonly found in hardware or algorithmic datasheets
and commonly used in DSE, combined with recorded measurements. The method can be
improved by recording more measurements and simple fine-tuning of the hyperparameters
related to the kernel K. Nevertheless, as demonstrated in Sections 5.1 and 5.2, the method
is capable of estimating the performance even with respect to few collected data samples.

A potential limitation of this method, as was eluded to in Section 3, stems from
the kernel computation, which scales with the complexity of O(N3). This means that
the inference time can be prolonged if there are many training samples. One possible
solution to overcome this problem is to use variational inference to determine the k most
important points that have to be included in the kernel computation [34]. Nevertheless,
the inference time is much less than the time needed for synthesis and then running the
design on hardware.

6. Conclusions

In this paper, we propose an accurate method for estimating the performance of an
accelerator for convolutional neural networks and compare it with the standard method,
linear regression, gradient tree boosting and an artificial neural network. Moreover, we
evaluate our method with respect to two hardware platforms on which we accurately pre-
dict the overall latency or energy consumption of the given convolutional neural networks.
The evaluation demonstrates that the innovative Gaussian process method paired with
collected data can provide an accuracy improvement with respect to the other compared
methods. Future work includes providing tools to automate our approach, and extending
it to cover applications beyond machine learning designs.
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Abstract: This paper compares the latency, accuracy, training time and hardware costs of neural
networks compressed with our new multi-objective evolutionary algorithm called NEMOKD, and
with quantisation. We evaluate NEMOKD on Intel’s Movidius Myriad X VPU processor, and
quantisation on Xilinx’s programmable Z7020 FPGA hardware. Evolving models with NEMOKD
increases inference accuracy by up to 82% at the cost of 38% increased latency, with throughput
performance of 100–590 image frames-per-second (FPS). Quantisation identifies a sweet spot of
3 bit precision in the trade-off between latency, hardware requirements, training time and accuracy.
Parallelising FPGA implementations of 2 and 3 bit quantised neural networks increases throughput
from 6 k FPS to 373 k FPS, a 62× speedup.

Keywords: quantisation; evolutionary algorithm; neural network; FPGA; Movidius VPU

1. Introduction

Neural networks have proved successful for many domains including image recog-
nition, autonomous systems and language processing. State-of-the-art models have an
enormous number of parameters, making them highly computationally and memory in-
tensive. For example, AlexNet [1] is a Convolutional Neural Network (CNN) consisting of
60 million parameters and 650 k neurons with an architecture comprising five convolutional
layers, multiple max-pooling layers, three fully-connected layers and a final softmax layer.
GPUs are often used to train and use neural networks because they can deliver the highest
peak arithmetic performance for 32 bit floating point neural network inference compared
with CPUs and FPGAs. At the time when the AlexNet model was proposed (2012), the
network was too large to fit on a single GPU. This problem was overcome by distributing
the model across two GPUs for training. The use of 200+ Watt GPUs for such purposes
over days and weeks is prohibitively expensive [2].

In recent years, a new class of hardware has emerged to significantly improve
performance-per-Watt for deep learning. Accelerator devices such as the Intel Movid-
ius Myriad X VPU [3] and the Coral/Google Edge TPU [4] accommodate deep learning
workloads because they provide a trade off between compute performance and power
consumption. The extreme on the hardware spectrum is programmable hardware like
FPGAs, which provide extremely high throughput performance of fixed-point deep learn-
ing inference [5]. This is essential for real-time domains with low latency throughput
requirements, e.g., remote computer vision and automated stack market trading.

It is widely accepted that neural network models exhibit a high level of redundancy.
Most parameters contribute little or nothing to the final output [6], and the precision of
arithmetic calculations are unnecessarily precise [7]. Removing redundant bloat offers the
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opportunity of mapping sophisticated models to energy efficient devices. Methods for
compressing neural networks include precision reduction, removing redundant parameters
or structure, and transferring knowledge from large models to smaller models [8].

The aim of compression is usually to reduce the hardware footprint of a model to
increase its inference throughput (decreasing its inference latency), without overtly affecting
inference accuracy.

Compressing neural network can:

• Speed up inference time: The size of neural network models are limited by memory
capacity and bandwidth. Training and inference computations switch from compute-
bound to memory-bound workloads as model sizes increase. This memory capacity
bottleneck limits the practical use of very large models [9].

• Improve energy efficiency: It costs orders-of-magnitude more energy to access off-chip
DDR memory compared to on-chip memory e.g., SRAM, BRAM and cache memory.
Fitting weights into on-chip memories reduces frequency of energy inefficient off-chip
memory accesses. Quantised fixed-point representations can significantly reduce
energy costs [10], e.g., less than 5 Watts on FPGAs [11].

• Reduce verification costs: Recent SMT-based verification approaches aim to prove
a neural network’s robustness against adversarial attacks e.g., [12,13]. SMT solvers
generally do not support non-linear arithmetic so activation functions must be lin-
earised. This approximates a model for the purpose verification, rendering verification
results unreliable. Quantising activation functions can increase reliability of verifying
neural networks robust [14], because it is the same model being verified and deployed.
Moreover quantised models can be as robust against adversarial attack as their full
precision version, possibly because quantisation acts as a filter of subtle adversarial
noise [15].

Neural network models vary hugely in their sizes, i.e., from 60 thousand parameters
up to 900 million parameters. Figure 1 shows how compression such as quantisation and
knowledge distillation can put relatively large models within reach of high throughput
hardware accelerators [16–20].
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Neural network models vary hugely in their sizes, i.e. from 60 thousand parameters
up to 900 million parameters. Figure 1 shows how compression such as quantization and
knowledge distillation can put relatively large models within reach of high throughput
hardware accelerators.

This paper evaluates the accuracy, throughput, training time and resource costs of two
compression approaches applied to different sized models: (1) an evolutionary algorithm to
modify the structure of 16 bit precision neural networks targeting the Intel Movidius Myriad X
VPU, and (2) 1-8 bit precision quantization of fixed neural networks targeting the Xilinx Z7020
FPGA.

Contributions

This paper makes the following contributions:

• A new framework called NEMOKD for hardware aware evolution of knowledge-
distilled student models (Section 3).

• An evaluation of neural network quantization by measuring inference accuracy,
throughput, hardware requirements and training time, targeting programmable FPGA
hardware (Section 4.2).

• An evaluation of NEMOKD showing its ability to minimise both latency and accuracy
loss on Intel’s fixed Movidius Myriad X VPU architecture (Section 4.3).

• A comparison of NEMOKD and quantization performance on these architectures
(Section 4.4).

2. Quantization Methodology
2.1. Quantization for FPGAs

Floating point precision permits individual neural network parameters a range of ex-
ponent values. Higher precision values (larger exponents) can induce more computational
overhead, leading to higher power consumption and longer compute times. Fixed-point
quantized models use (usually smaller) fixed exponent values for all network parameters.
This imposed restriction brings a range of benefits such as faster and more power efficient
mathematical operations but can also potentially impact a model’s accuracy [21].

Quantization [22] shifts values from 32 bit floating point continuous values to reduced
bit discrete values. In a neural network, weights between neurons and activiation
functions can be quantized.
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This paper evaluates the accuracy, throughput, training time and resource costs of two
compression approaches applied to different sized models: (1) an evolutionary algorithm
that modifies the structure of 16 bit precision neural networks targeting the Intel Movidius
Myriad X VPU, and (2) 1–8 bit precision quantisation of fixed neural networks targeting
the Xilinx Z7020 FPGA.
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Contributions

This paper makes the following contributions:

• A new framework called NEMOKD for hardware aware evolution of knowledge-
distilled student models (Section 3).

• An evaluation of neural network quantisation by measuring inference accuracy,
throughput, hardware requirements and training time, targeting programmable FPGA
hardware (Section 4.2).

• An evaluation of NEMOKD showing its ability to minimise both latency and accuracy
loss on Intel’s fixed Movidius Myriad X VPU architecture (Section 4.3).

• A comparison of NEMOKD and quantisation performance on these architectures
(Section 4.4).

2. Quantisation Methodology
2.1. Quantisation for FPGAs

Floating point precision permits individual neural network parameters a range of ex-
ponent values. Higher precision values (larger exponents) can induce more computational
overhead, leading to higher power consumption and longer compute times. Fixed-point
quantised models use (usually smaller) fixed exponent values for all network parameters.
This imposed restriction brings a range of benefits such as faster and more power efficient
mathematical operations but can also potentially impact a model’s accuracy [21].

Quantisation [22] shiftsvalues from 32 bit floating point continuous values to reduced
bit discrete values. In a neural network, weights between neurons and activiation
functions can be quantised.
Binarisation [23] is a special case of quantisation that represents weights and/or
activation function outputs with a single bit. These methods replace arithmetic
operation with bit-wise operations, reducing the energy consumption and memory
requirements.

Quantised neural networks can signifiantly outperform binarised neural networks
and can compete with the accuracy of full precision models [22].

2.2. FINN Framework

Section 4.2 evaluates very low precision neural networks, quantising precision from
32 bits to 1–8 bits to fit within the resource constraints of FPGAs. Xilinx’s FINN quantisation
framework and FPGA backend is used in these experiments. FINN initially supported
binarised neural networks [7], then was extended for quantised networks [24] and Long-
Short Term Memory Neural Networks (LSTM) [25]. Our experiments in Section 4.2 use
FINN functionality from [24].

FINN employs quantisation aware training at the Python level, before generating
synthesisable C++ for hardware. The weights and activation functions during training in
Python operate on floating point values but Python functions simulate quantisation to limit
weights and activation function outputs to discrete values permitted by the chosen quanti-
sation configuration. When generating hardware, the arithmetic precision of weights and
activation functions in the C++ match the quantised bit widths simulated during training.

2.3. Weight Quantisation for Training

FINN discretises the range of full precision values by rounding to a close neighbour
to fixed point quantised values for weights. The min and max values for the quantisation
range are related to the quantisation precision n, they are defined as:

max = 2− 1
2n−2 min = −2 +

1
2n−2
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The quantisation formula for x ∈ [min; max] is shown in Equation (1).

QuantiseWeights(x) =
b2nx + 2n−1 − 1c

2n−2 − 2 +
1

2n−2 (1)

Table 1 shows examples of quantised values with min = −2 and max = 2 with 2n − 1
values in this interval. The values are all strictly positive but the quantisation range is
symmetric. The step between each quantised value is 1

2n−2 . When n increases, the number
of quantised values increase and we can obtain values close to the upper and lower bound
of the interval.

Table 1. Quantised weight values between 0.136 and 2 with min = −2 and max = 2.

Value Precision (bits)
1 2 3 4 5 6 7 8

0.136 1 0 0 0.25 0.125 0.125 0.125 0.140625
0.357 1 0 0.5 0.25 0.375 0.375 0.34375 0.359375
0.639 1 1 0.5 0.75 0.625 0.625 0.625 0.640625
1.135 1 1 1 1.25 1.125 1.125 1.125 1.140625

2 1 1 1.5 1.75 1.875 1.9375 1.96875 1.984375

2.4. Activation Function Quantisation for Training

The quantisation of activation functions works similarly to weight quantisation. For
the quantised hyperbolic tangent function tanh(x) = ex−e−x

ex−+e−x , the range of values in Table 1
is optimal because the function has two asymptotes towards -1 and 1, e.g., tanh(2) = 0.964.
The saturation plateau of the activation function is almost attained. Figure 2 shows the
shape of tanh for different quantisation precisions.
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3. NEMOKD: Knowledge Distillation and Multi-Objective Optimisation of
Neural Networks

This section presents our new NEMOKD framework. Its aim is to produce accurate
neural networks small enough to fit onto hardware accelerators to achieve high throughput.
Section 3.2 describes its knowledge distillation based training. Section 3.3 shows its multi-
objective optimisation that evolves encoded neural network hyper-parameters to find
optimal trade-offs between accuracy and throughput. Section 3.4 presents the NEMOKD
methodology for hardware-aware optimisation, which measures inference latency on the
intended target device to feed into the evaluation of evolved CNN architectures.

3.1. Evolutionary Algorithms

Evolutionary deep learning approaches [26] have been proposed as an alternative
training approach to stochastic gradient descent. However, due to the enormity of the
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search space for state-of-the-art neural networks that comprise millions of parameters,
evolutionary algorithms often fail to discover optimal solutions.

Recent neuro-evolution techniques retain stochastic gradient descent and back propa-
gation for training, before using evolutionary algorithms to search for optimal architectural
configurations. Device-aware Progressive Search for Pareto-Optimal Neural Architec-
tures [27] is a method of neural architecture search that has been shown to simultaneously
optimise device-related objectives such as inference time and device-agnostic objectives
such as accuracy. This search algorithm uses progressive search and mutation operators to
explore the trade-offs between these objectives. Applying this algorithm to problems on a
range of different hardware devices from a NVIDIA Titan X GPU to a mobile phone with
an ARM Cortex-A35, the authors of [27] were able to obtain higher accuracy and shorter
inference times compared to the state-of- the-art CondenseNet [28].

Neural-Evolution with Multi-Objective Optimisation (NEMO) [29] is a neural network
optimisation algorithm. It is a machine learning technique that uses multi-objective evolu-
tionary algorithms to simultaneously optimise both accuracy and inference time of neural
networks by evolving their architecture.

3.2. Knowledge Distillation

Neural networks often have a softmax output layer that produce probabilities of given
inputs belonging to each class. The cross entropy loss function measures the similarity of
the softmax output vector against a ground truth vector defined by the training set. Given
ground truth label vector y, N classes in the vector, and a softmax prediction vector p, the
cross entropy loss is:

H(y, p) = −
N

∑
i

yi ln(pi) (2)

Knowledge distillation incorporates an additional hyper-parameter, temperature (T),
into this softmax calculation. Softer probability distributions over classes are obtained by
using higher temperatures [8]. Knowledge distillation employs a loss function that uses
two weighted objective functions:

1. Student loss: cross entropy of the student’s standard softmax output (T = 1) with
the ground truth vector.

2. Distillation loss: cross entropy of the teacher’s high temperature (T = τ) output
with the students high temperature output.

The loss function for knowledge distillation (from [30]) is:

L(x; W) = αH(y, σ(zs; T = 1))︸ ︷︷ ︸
Student Loss

+ βH(σ(zt; T = τ), σ(zs; T = τ))︸ ︷︷ ︸
Distillation Loss

(3)

where x is an input, W are the parameters of the student network, y the ground truth
vector and σ(z; T = τ) is the softmax function applied to logit vector z and temperature
T = τ. The student and teacher logit vectors are s and t, and hyper-parameters α and β are
arbitrary constants.

In the NEMOKD methodology (Section 3.4), student models in the initial CNN archi-
tecture population are partially trained using knowledge distillation.

3.3. Multi-Objective Optimisation

Multi-Objective Optimisation solves optimisation problems with at least two con-
flicting objectives. For a solution space A that contains all permissible neural networks
configurations, the two objectives of NEMOKD are (1) minimise inference latency (latency)
and (2) minimising accuracy loss (error):

mina∈A(latency(a), error(a)) (4)
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NEMOKD generates this solution space A by encoding and evolving hyper-parameters
of student models (Section 3.3.1) then evolving these to optimise for Equation 4 (Section 3.3.2).

3.3.1. Encoding Student Models for Evolution

The evaluation of NEMOKD in Section 4.3 uses two baseline student architectures:
FlexStudent and Resnet8x4. We encode certain features of these model into genotypes to
evolve their hyper-parameters.

We encode the FlexStudent model with 11 genes. Genes 1 and 2 determine the
number of convolutional and fully connected layers respectively. Genes 3–7 determine the
number of output channels in convolutional layers. Genes 8–11 encode the number of fully
connected layers. Figure 3 shows how NEMOKD decodes the genotype representation of
the baseline FlexStudent model into a CNN architecture.
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trained with knowledge distillation. Model mutations with NSGAII are both fine and
coarse grained. Mutation in our NEMOKD framework modifies four hyper-parameters:
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1. The number of convolutional layers.
2. The number of Fully Connect layers.
3. The number of output channels.
4. The number of Fully-Connected neurons.

NEMOKD uses NSGAII to generate a set of CNN architecture solutions from one
population member. Student models (either FlexStudent or Resnet8x4) are first encoded
into a genotype sequence (Figure 3). The evolutionary process then happens in two steps:
(1) crossover generates a new solution by combining genotypes of two parents; (2) ranking
and selection chooses the fittest members of the population, based on the best trade-off
between accuracy and latency when evaluated on the VPU. For every solution, mutation
alters one or more genes at random.

For the two objectives of minimising latency ( f1) and error ( f2), a solution a dominates
solution b if it outperforms for one of these objectives and is not worse in the other:

∀i ∈ [1, 2], ∃j ∈ [1, 2] : fi(a) ≤ fi(b) and f j(a) < f j(b) (5)

NEMOKD uses NSGAII to search for Pareto optimal solutions. A CNN architecture
solution a is Pareto optimal if it is not dominated by any other solution in a solution space
A:

∀b ∈ A, ∀i ∈ [1, 2], ∃j ∈ [1, 2] : fi(a) ≤ fi(b) and f j(a) < f j(b) and a 6= b (6)

The final output from NEMOKD is a population of evolved models, which includes
those in the Pareto optimal set.

3.4. NEMOKD Methodology

The NEMOKD methodology combines knowledge distillation and the multi-objective
evolutionary algorithm above. The methodology comprises two phases:

Phase 1: Knowledge Distillation: A baseline model is trainedwith knowledge dis-
tillation to provide a comparison for NEMOKD performance. NEMOKD uses that
baseline architecture as a starting point to generate variants using evolutionary multi-
objective optimisation.
Phase 2: Model Evolution: Each generation produces 10–20 variations of the baseline
model, each then trained using knowledge distillation. The two objectives, minimising
latency and minimising error, are measured for each model on the VPU device. The
Pareto optimal models are retained to form part of the next generation. The other
models are discarded. This process repeats for a specified number of generations. In
our NEMOKD evaluation (Section 4.3), generations range from 14 to 27.

The NEMOKD methodology is shown in Figure 4. A population N is initialised. Each
member of this population is a genotype that represents a CNN student architecture in
the solution space (Section 3.3.1). To increase the chance of finding comparable or better
solutions in a small number of generations, random perturbations are then applied to half
the population to encourage more diverse solutions.

First, each genotype is decoded to construct a CNN model. These are then partially
trained with knowledge distillation and are then converted to the ONNX format and finally
a half-precision Intermediate Representation for VPU deployment. The fitness of each
individual genotype is then assessed on the VPU device based on accuracy and latency
performance. Genotype evaluation results are passed to NSGAII for evolution of student
model hyper-parameters (Section 3.3.2).

NSGAII selects genotypes based on their fitness values to add new members. Crossover
and mutation are applied to this member set, to add to the overall population. This evolve/
decode/select process repeats until a specified number of NEMOKD generations. The algo-
rithm outputs the final population including the Pareto optimal set (Equation (6)). This set
of solutions provides optimal trade-offs between the two objectives in the objective space.
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Figure 4. NEMOKD methodology.

3.5. NEMOKD versus NEMO

Our NEMOKD methodology extends NEMO [29] in three ways:

1. Knowledge distillation replaces standard training in the learning phase of the evalua-
tion procedure.

2. To conserve time and computational resources in the learning phase, partial training is
provided with only 30 epochs (in phase 1) as opposed to fully training each member
of initial population.

3. Latency and accuracy is measured on the VPU device to asses the fitness of population
members. This evaluation data is fed into the evolutionary NSGAII algorithm.

Accuracy after 30 epochs is indicative of performance should full training later be
performed. Therefore to save time and energy costs of fully training all evolving student
variants, a developer might select a fully evolved partially trained model that meets latency
requirements, then subject it to more training with 200+ epochs.

We say NEMOKD’s evolutionary optimisation is hardware-aware , because fitness is
measured on the processor architecture (Intel’s Movidius VPU) intended for deploying
the model. This is based on the idea that a model’s latency performance depends on
the processor architecture used, and that optimising a model for one architecture may be
ineffective if deploying to another [27].

4. Evaluation
4.1. Hardware Platforms

This section evaluates quantisation for programmable hardware, and our NEMOKD
evolutionary algorithm for the fixed VPU architecture. The dataset and neural network
model for the experiments are shown in Table 2.

For the programmable hardware experiments we target the mid-range Xilinx Zynq Z7020
140 mm × 87 mm FPGA on the Xilinx PYNQ-Z2 development board which uses ≈13.8 W
energy. This FPGA has 53 k Lookup Tables (LUT), 106 k Flip Flops (FF) and 560 KB of
Block RAM (BRAM) memory. Of the 64 quantised neural networks in Section 4.2, only four
fit on this FPGA. This validates the need for aggressive compression approaches such as
quantisation, on small to medium sized FPGA devices.
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fit on this FPGA. This validates the need for aggressive compression approaches such as
quantisation, on small to medium sized FPGA devices.

Table 2. Quantisation and model evolution experiments

Device Model Dataset Section

Xilinx Z7020 FPGA 3 layer fully
connected MLP MNIST Sections 4.2.1

and 4.2.2

(quantisation) 3 layer fully
connected MLP FASHION-MNIST Section 4.2.3

Intel Movidius
Myriad X VPU Teacher Student

MobileNetV2 FlexStudent CIFAR10 Section 4.3
(model evolution) Resnet32x4 FlexStudent CIFAR100 Section 4.3

Resnet32x4 Resnet8x4 CIFAR100 Section 4.3

For the fixed hardware experiments we use a USB-based Intel Neural Compute Stick 2
(NCS2) accelerator using a 72.5 mm × 27 mm Intel Movidius Myriad X Visual Processing
Unit (VPU) which uses ≈1.5 W energy. The NCS2 comprises dedicated accelerators with
the 16 programmable 128-bit VLIW Vector Processors optimised for processing highly
parallel workloads. The device can compute up to 1 Tera Operation Per Second (TOPS).
The centralised 2.5 MB of on chip memory facilitated by the intelligent memory fabric
enables memory access latencies of 400 GB/s and reduces the requirements for more costly
off-chip data transfer. The NCS2 device has 512 MB of LPDDR4 memory [3].

4.2. Quantisation Results

This section investigates the design space granted by FINN’s ability to independently
quantise weights and activation functions of a Multilayer Perceptron (MLP) network
with three Fully-Connected (FC) layers. We created 64 quantised models from a baseline
model by independently and exhaustively varying the bit-widths of weights and activation
functions from 1 to 8. For 64 neural network quantisation configurations, the evaluation in
this section measured:

1. Absolute accuracy and hardware resource costs of the 64quantised neural networks
(Section 4.2.1).

2. Relative performance comparison of accuracy and hardware resource costs, compared
with the other 63 quantised models (Section 4.2.2).

The training was done using 50,000 images from the MNIST dataset. A validation
dataset of 10,000 images was then used to minimise overfitting. Accuracy was measured
using a testing dataset, to test how well the model generalised to new data. FINN’s backend
converted the model to a binary weight file and a synthesisable C++ implementation
for hardware.

4.2.1. Absolute Performance
Absolute Accuracy Performance

Each of the 64 neural networks was labelled with a quantised weight W-X and quan-
tised activation function A-Y with X, Y ∈ [1; 8]. Accuracy is measured after 10, 20, 30, 50
and 100 epochs.

Figure 5 plots the inference error rate for each of the 64 quantised neural networks
after training with 10, 20, 30, 50 and 100 epochs. Using 1–3 bits weights had a noticeable
effect on accuracy, i.e., between 3.9–4.7% dropping down to below 3.7% using 4 bits or
more. Training further with 40–100 epochs shifted the noticeable accuracy boundary to
just 1 bit weight, meaning that with enough training, 2 bit weights achieved almost the
same inference accuracy as 3–8 bit weights. The quantisation of activation functions had
a steady impact on accuracy, i.e., higher precision activation functions result in better
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accuracy, however, this was not as dramatic as the impact that quantised weight precision
has on accuracy. With increased training time, the accuracy performance flattened, where
absolute difference in accuracy between the best and worst quantisation configuration
greatly diminished. Additionally, we observed a major gap between 1 and 2 bit weights
versus 3–8 bit weights, especially for 10 and 20 epochs. Training beyond 40 epochs allowed
weights to be quantised from 3 to 2 bits without noticeable accuracy loss.
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Figure 6a shows that both weight precision and activation function precision con-
tributed evenly to LUTs costs. Figure 6b shows that the precision of activation functions
determined FF costs. While FFs and LUTs could store small amounts of data, BRAMs
had greater storage capacity and were used by hardware synthesis tools for larger data
structures such as arrays. Figure 6c shows that BRAM consumption was determined
exclusively by weight precision.

4.2.2. Relative Performance

Table 3 gives the best and worst relative performance numbers for the 64 quantised
neural networks. The three radar plots in Figure 7 represents different quantised neural
network configurations, comparing accuracy and resource use (LUTs, FFs and BRAMs)
performance relative to the best and values in Table 3. Each metric defines one branch in a
radar chart. The three precision variations in Figure 7 are:

1. Weight oriented distribution (Figure 7a) increased the weight precision and kept the
activation function constant at 4 bits, i.e., W1–A4, W3–A4, W6–A4 and W8–A4.

2. Activation oriented distribution (Figure 7b) increased the activation function precision
and kept the weight precision constant at 4 bits, i.e., W4–A1, W4–A3, W4–A6 and
W4–A8.

3. Linear distribution (Figure 7c) increased both the weight and activation function
precision across the diagonal from the heat maps in Figure 6, i.e., W1–A1, W2–A2,
W4–A4 and W7–A7.

Table 3. Relative performance for radar plots in Figure 7.

Metric Relative Performance
Worst Best

Accuracy loss 2.07% 1.52%
BRAM 1643 224

Flip Flops 226,282 31,954
Look Up Tables 223,910 53,336
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Figure 7. Radar charts for different quantisation configurations

The radar plots compare the relative performance of these quantisation configurations.
The models were ranked on LUT, BRAM and FF requirements (fewer was better), and their
accuracy (higher was better). These scores were then normalised between 0 and 1. For
example the model with the highest accuracy had a score of 1 and was plotted outermost
in the radar plot in the Accuracy dimension, whereas the model withlowest accuracy was
plotted at the centre point. Likewise for hardware requirements, e.g., the neural network
requiring the fewest BRAMs was plotted outermost in the BRAM dimension.
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plotted at the centre point. Likewise for hardware requirements, e.g., the neural network
requiring the fewest BRAMs was plotted outermost in the BRAM dimension.

When activation functions were set to 3 bits, increasing weights from W1 to W3 caused
the greatest relative accuracy score improvement (Figure 7a). When weights were fixed at 4
bits, all accuracy scores were in the top half, with increases of activation function precision
costing significantly more LUT and FF resources, with BRAM costed largely the same
(Figure 7b). Scaling both precision linearly had an equal impact on FF, LUT and BRAM
scores, yet their accuracy score were all in the top quartile when weights were 2–8 bits
(Figure 7c). In summary if top-half relative accuracy performance was the goal, the most
important constraint was 2+ bits for representing weights.

The importance of the trade-offs is highlighted by the fact that most of the neural
networks did not fit on the target device (Xilinx Zynq Z7020). It had 280 BRAMs and only
seven of the networks met this constraint, and 106,400 FFs with 22 of the networks within
this constraint.

4.2.3. Parallel Speedups

FINN supports parallelisation on a layer-by-layer basis. The amount of parallel
hardware resources used to implement each layer of a neural network is user definable.
Parallelism is controlled with two settings: (1) the number of hardware processing elements
(PE) to process each output channel, and (2) the number of input channels processed within
one clock cycle (SIMD) [24]. Using more parallel hardware for a layer shortens the layer’s
clock cycle latency, at the cost of increased hardware requirements. If the layer is on the
critical path, i.e., is has the highest latency cost, then parallelisation of that layer should
shorten overall latency thereby increasing throughput.

Our throughput evaluation used a multi-layer perceptron with three fully connected
layers with the FASHION-MNIST dataset. Each quantised model was tested for accuracy
and throughput on the Xilinx Z7020 FPGA on the PYNQ-Z2 board. Each model was trained
with 40 epochs. The results compared:

1. Inference accuracy.
2. Frames-Per-Second (FPS) image throughput.
3. Quantisation configurations W2A2, W3A3 and W4A4.
4. The parallelism degree for PE and SIMD for all layers, setting both at 2, 8 then 16.

Figure 8 shows throughput results. The model with 2-bit precision achieved 84.9%
accuracy. Increasing parallelism did not affect accuracy because each time it was the
same model, just implemented with more parallel hardware. Increasing to 3-bit and 4-bit
precision increased accuracy to 85.5% and 85.7%. Setting PE and SIMD to 2 achieved
a throughput of 6 k FPS. Increasing these parallelism parameters to 8 and 16 increased
throughput to 96 k and 373 k FPS for the 2 and 3 bit models—a 62× speedup. The W4A4
quantised model did not fit within the Xilinx Z7020 FPGA’s available resources when PE
and SIMD is 16, and hence is not shown in Figure 8.

4.2.4. Quantisation Results Discussion

The sweet spot in the quantisation design space for the MNIST and FASHION-MNIST
datasets is about 3 bit weights and 3 bit activation functions. Beyond 3 bit quantisation and
with enough training, there is no significant improvement to accuracy performance. This
confirms results in [25]. Our methodology for evaluating the trade-off between accuracy,
throughput and hardware efficiency is similar to [32]. We extend that work by also measur-
ing the impact of varying training of quantised models, and a more fine grained benchmark
suite measuring weight precision independently of activation function precision.

In summary, our quantisation experiments show:

• LUT and FF resources increase with increased activation function precision, because
increasing arithmetic calculation complexity increases the number of required pro-
cessing units.
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• BRAM increases with increased weight precision, because weight parameters are
stored in BRAM memories.

• Inference accuracy is highest with higher precision, i.e., least aggressive quantisation.
The biggest improvement in accuracy with a 1 bit increment is switching from 1 to 2
bits weight precision.

• With enough training beyond 50 epochs, 2 bit precision achieves almost the same
inference accuracy as 3–8 bit precision.

• Increasing the parallelisation of hardware neural network implementations signifi-
cantly increases throughput performance from 6.1 k FPS to 373 k FPS, a 62× speedup.

• The trade-off between precision, throughput and accuracy is the W3A3 model with
16 for PE and SIMD, achieving 373 k FPS and 85.5% accuracy for the FASHION-
MNIST dataset.
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Figure 8. Throughput and accuracy performance of parallel FPGA designs for FASHION-MNIST.

4.3. NEMOKD Results

For the NEMOKD experiments in this section, we used two student models as our
solution space for hyper-parameter evolution:

1. FlexStudent , a model that we constructed with a simple five layer model to provide
a starting point for the NEMOKD evolution process (Section 3). A similar model
performs well as a student architecture on the CIFAR10 dataset [33].

2. A version of the Resnet8x4 architecture, modified to enable the NEMOKD hyper-
parameter evolutionary process.

Our NEMOKD framework was measured with three benchmarks:

1. The MobileNetV2 model distilled into a FlexStudent student model with the CIFAR10
dataset.

2. The Resnet32x4 model distilled into a FlexStudent student model with CIFAR100.
3. The Resnet32x4 model distilled into a Resnet8x4 student model with CIFAR100. For

this experiment, the number of layers remained fixed.
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a starting point for the NEMOKD evolution process (Section 3). A similar model
performs well as a student architecture on the CIFAR10 dataset [33].

2. A version of the Resnet8x4 architecture, modified to enable the NEMOKD hyper-
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Our NEMOKD framework was measured with three benchmarks:

1. The MobileNetV2 model distilled into a FlexStudent student model with the CIFAR10
dataset.

2. The Resnet32x4 model distilled into a FlexStudent student model with CIFAR100.
3. The Resnet32x4 model distilled into a Resnet8x4 student model with CIFAR100. For

this experiment, the number of layers remained fixed.

27



Electronics 2021, 10, 396

The experiments used 30 epochs for knowledge distillation and the number of NSGAII
generations varies for each experiment, ranging from 14 to 27. For our pruning benchmarks
we used Platypus [34] for multi-objective optimisation, RepDistiller [35] for knowledge
distillation, and OpenVino’s Python API to execute trained exported PyTorch models on
the NSC2 device.

4.3.1. Knowledge Distillation Parameter Search

Figure 9 shows knowledge distillation error with 30 epochs. It illustrates how different
combinations of knowledge distillation parameters affected the accuracy of the baseline
model after 30 epochs. The α value determined how much the distillation loss and student
loss contributed to the overall loss e.g., if α = 0.5, then both terms in the knowledge
distillation loss function were weighted evenly. The softmax function in the distillation
loss term was parametrised by the temperature. This softened the output distribution
revealing extra information about which classes the model found most alike. The blue
surface illustrates the error rate of the baseline model with respect to different combinations
of knowledge distillation hyper-parameters. The orange plane indicates the baseline test
error performance without knowledge distillation.
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Figure 9. Knowledge distillation parameter search for Teacher/Student distillation

For the MobileNetV2 teacher, a FlexStudent student model and CIFAR10 in Figure 9a,
any choice of knowledge distillation hyper-parameters provided a significant increase in
accuracy over the baseline model.

Figure 9b shows that some combinations of the knowledge distillation parameters
had a negative effect on the accuracy of the baseline model. We observed that this method
produced better accuracy than could be obtained by distilling knowledge into the baseline
model, once again at the expense of latency. The MobileNetV2/FlexStudent experiment
in Figure 9a is similar to Figure 9b, but rather than CIFAR100 it used the simpler CI-
FAR10 dataset. In this case, every combination of knowledge distillation hyper parameters
provided significant improvement over baseline.
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For the MobileNetV2 teacher, a FlexStudent student model and CIFAR10 in Figure 9a,
any choice of knowledge distillation hyper-parameters provided a significant increase in
accuracy over the baseline model.

Figure 9b shows that some combinations of the knowledge distillation parameters
had a negative effect on the accuracy of the baseline model. We observed that this method
produced better accuracy than could be obtained by distilling knowledge into the baseline
model, once again at the expense of latency. The MobileNetV2/FlexStudent experiment
in Figure 9a is similar to Figure 9b, but rather than CIFAR100 it used the simpler CI-
FAR10 dataset. In this case, every combination of knowledge distillation hyper parameters
provided significant improvement over baseline.
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In Figure 9c, the majority of combinations of knowledge distillation hyper-parameters
had a negative impact on the baseline model accuracy, though certain combinations did
provide improvements as shown in Figure 9c. In this case, no major trends were observed
with respect to the individual hyper-parameters. We observed that this method, once again,
produced better accuracy than could be obtained by distilling knowledge into the baseline
model with 30 epochs of training.

4.3.2. Efficacy of NEMOKD Evolution

Figure 10 shows the latency and accuracy performance of student models after
30 epochs for student models. It shows the baseline model trained with just knowledge
distillation (green diamonds). The red and blue points show performance of the models
at intermediate and final generations of student models. As with the quantisation experi-
ments, accuracy was measured using a testing dataset to asses how the models generalised
to new unseen data.
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Figure 10. Student latency and accuracy performance for Teacher/Student distillation

Figure 10a shows FlexStudent student performance with the MobileNetV2 teacher.
The chosen knowledge distillation hyper-parameters for this experiment greatly increased
the accuracy of the baseline model. With 30 epochs of training, many students in the final
generation evolved to attain a better accuracy than the baseline model but with the same
or better latency. The same was also true of the baseline model trained with knowledge
distillation. The most accurate students, however, had larger latency values with respect
to the baseline model. The best latency/accuracy trade-off for Resnet32x4/FlexStudent
distillation with CIFAR10 was an evolved model with five convolutional layers with a
relatively small number of output channels and just two fully connected layers. It has a
low to moderate number of neurons of about 125–150 neurons.

Figure 10b shows FlexStudent student performance with the larger Resnet32x4 teacher
model, for the CIFAR100 dataset. Student models evolved from the same baseline FlexStu-
dent as the experiment in Figure 10a. Figure 10b illustrates the population at two distinct
generations of the evolutionary process, in addition to the baseline architecture from which
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distillation. The most accurate students, however, had larger latency values with respect
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distillation with CIFAR10 was an evolved model with five convolutional layers with a
relatively small number of output channels and just two fully connected layers. It has a
low to moderate number of neurons of about 125–150 neurons.

Figure 10b shows FlexStudent student performance with the larger Resnet32x4 teacher
model, for the CIFAR100 dataset. Student models evolved from the same baseline FlexStu-
dent as the experiment in Figure 10a. Figure 10b illustrates the population at two distinct
generations of the evolutionary process, in addition to the baseline architecture from which
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all the students evolved. Interestingly, the combination of knowledge distillation hyper-
parameters we chose for this experiment had a negative impact on the accuracy of the
baseline model. However, the evolved students appeared to adapt their architecture to
accommodate these parameters, resulting in student models with significant accuracy im-
provements for the same inference latency. The best accuracy produced by the NEMOKD
algorithm was obtained by an architecture with a higher latency. In contrast to Figure 10a,
every student model in the final generation evolved to have the same layer structure as the
baseline model.

Figure 10c shows Resnet8x4 student performance student performance with the
Resnet32x4 teacher, for the CIFAR100 dataset. It differs from Figures 10a,b in two ways:
(1) a different evolutionary starting point is used for the ResNet8x4 student; and (2) the
layers of this student model are fixed, only the output channels of the convolutional layers
were modified in the NEMOKD evolutionary process.

4.4. Discussion
4.4.1. Quantisation for FPGAs

Our quantisation experiments (Section 4.2) use the quantisation scheme implemented
in Xilinx’s FINN framework. Developing compression algorithms for embedded devices is
a research area of its own, e.g., a dynamic precision data quantisation algorithm in [36],
performed layer-by-layer from a corresponding floating point CNN, with the goal of
improving bandwidth and resource utilisation. Other compression approaches are focused
on specific goals e.g., reducing power consumption, or target specific hardware e.g., GPUs
or FPGAs, or target specific domains or even specific application algorithms.

Device Specific Quantisation

Recent work explores the performance trade-offs between reduced precision of neural
networks and their speed on GPUs, e.g., performance aware pruning can lead to 3–10 times
speedups [37]. Multi-precision FPGA hardware for neural networks significantly reduces
model sizes, which in [38] enables an ImageNet network to fit entirely on-chip for the
first time, significantly speeding up throughput. Another recent study [25] measures the
hardware cost, power consumption, and throughput for a High Level Synthesis extension
of FINN that supports Long Short-Term Memory (LSTM) models on FPGAs. [39] proposes
a design flow for constructing low precision, low powered FPGA-based neural networks
with a hybrid quantisation scheme. [40] shows that resource-aware model analysis, data
quantisation and efficient use of hardware techniques can be combined to jointly map
binarised neural networks to FPGAs with dramatically reduced resource requirements
whilst maintaining acceptable accuracy.

Domain Specific Quantisation

Some quantisation methods target specific algorithms, e.g., a resource-aware weight
quantisation framework for performing object detection in images [41].

4.4.2. NEMO with Knowledge Distillation for the VPU

Knowledge distillation parameters for the NEMOKD experiments (Section 4.3) greatly
increase the accuracy of the baseline model. With 30 epochs of training, many students in
the final generation evolve to attain a better accuracy than the baseline model but with the
same or better latency. The most accurate students, however, have larger latency values
with respect to the baseline model. The best trade-off model evolved five convolutional
layers with a small number of output channels and just two fully connected layers, with a
low to moderate number of neurons of about 125–150 neurons.

Our NEMOKD approach significantly increases inference accuracy at a modest ex-
pense of latency. The method consistently provides higher accuracy students than could be
obtained through an exhaustive knowledge distillation parameter search with the baseline
model, irrespective of the choice of knowledge distillation hyper-parameters. This high-
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lights the importance of the student’s architecture in the knowledge distillation process.
Evolving students appears to enable models to adapt and accommodate an arbitrary choice
of knowledge distillation hyper-parameters, even if the choice was initially detrimental to
the accuracy of the baseline model.

4.4.3. Comparing Quantisation and NEMOKD

The quantisation and NEMOKD results are shown in Figure 11. Both compression
approaches start from baseline models: ResNet32x4 and MobileNetV2 for NEMOKD,
and a 32 bit Multi-Layer Perceptron model for quantisation. Quantisation reduces the
arithmetic precision without changing a model’s architecture, i.e., the number of hidden
layers and number of neurons are unchanged. Training with the FINN framework is
quantisation-aware, with performance sweet spots for our benchmarks at around 2–4 bits.

In contrast, the NEMOKD framework changes the model’s architecture whilst leaving
arithmetic precision unchanged during training. After training, models are converted into
the OpenVINO IR format with 16-bit half precision for deployment on the VPU.

Typically, 30 image FPS throughput is considered real-time computer vision perfor-
mance [42]. Quantisation and the NEMOKD framework both achieve real-time image
processing: 590 FPS on the VPU and 373 k FPS on the FPGA.
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The quantization and NEMOKD results are shown in Figure 11. Both compression
approaches start from baseline models: ResNet32x4 and MobileNetV2 for NEMOKD, and a
32 bit Multi-Layer Perceptron model for quantization. Quantization reduces the arithmetic
precision without changing a model’s architecture, i.e., the number of hidden layers and
number of neurons are unchanged. Training with the FINN framework is quantization-
aware, with performance sweet spots for our benchmarks at around 2–4 bits.

In contrast, the NEMOKD framework changes the model’s architecture whilst leaving
arithmetic precision unchanged during training. After training, models are converted into
the OpenVINO IR format with 16-bit half precision for deployment on the VPU.

Typically, 30 image FPS throughput is considered real-time computer vision perfor-
mance [43]. Quantization and the NEMOKD framework both achieve real-time image
processing: 590 FPS on the VPU and 373 k FPS on the FPGA.
5. Conclusions and Future Work
5.1. Conclusions

This paper explores two optimisation approaches for neural networks for programmable
hardware and a fixed AI processor: (1) quantization precision of fixed models, and (2)
evolving hyper-parameters of student models in conjunction with knowledge distillation.
There is a sweet spot of 3 bit quantization in the trade-off between latency, hardware
requirements, training time and accuracy. Parallelising hardware implementations of
neural networks increases FPS from 6 k to 373 k, a 62× speedup. Evolving student models
increases inference accuracy by up to 82% at the cost of 38% increased latency. The lowest
inference latencies were 1.7 ms for the FlexStudent model distilled from MobileNetV2,
1.4 ms for FlexStudent distilled from Resnet32x4, and 2 ms for Resnet8x4 distilled from
Resnet32x4. This is a throughput of between 100 and 590 FPS.

5.2. Future Work
Larger datasets and models

Our experiments use four datasets: MNIST and FASHION-MNIST for quantization,
and CIFAR10 and CIFAR100 for NEMOKD. The quantization experiments are based on a
five layer fully-connected network and the NEMOKD experiments use two student models.
More work is required to scale accuracy-preserving compression methods to real world
computer vision applications e.g., from 28× 28 MNIST and FASHION-MNIST images, and
32× 32 CIFAR10 and CIFAR100 images, to much higher dimensions such as 400× 150 road
lane detection images for autonomous driving [44]. Scaling compressing experiments to (1)
deeper models with tens/hundreds of hidden layers, and (2) datasets with thousands of
classes e.g., ImageNet, would be an intermediate step in that direction.
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five layer fully-connected network and the NEMOKD experiments use two student models.
More work is required to scale accuracy-preserving compression methods to real world
computer vision applications e.g., from 28× 28 MNIST and FASHION-MNIST images, and
32× 32 CIFAR10 and CIFAR100 images, to much higher dimensions such as 400× 150 road
lane detection images for autonomous driving [43]. Scaling compressing experiments to (1)
deeper models with tens/hundreds of hidden layers, and (2) datasets with thousands of
classes e.g., ImageNet, would be an intermediate step in that direction.

5.2.2. Profile Guided Automating Compression

Our quantisation benchmarks were exhaustive in the design space of 1–8 bits for
activation functions and weight values. The quantisation was homogeneous across the
entire network each time, i.e., each quantisation configuration applied to all parameters.
Combining layer-specific dataflow optimisation and layer-specific quantisation allows
models to fit entirely in on-chip BRAM, thereby removing off-chip memory accesses which
improves throughput performance [44]. In [45], mixed precision quantisation scheme
applies layer-wise priority in inverse order of their layer depth, based on findings that
binarising different layers has a widely-varied effect on accuracy loss. FINN supports
per-layer activation function and weights precision, as well as layer-by-layer clock cycle
profiling and accuracy testing. This opens up the opportunity for automating profile guided
layer-by-layer quantisation methodologies in simulation i.e., without having to run models
on hardware, to find the optimal trade-off between throughput and accuracy for each
combination of model and dataset.

When using evolutionary algorithms with knowledge distillation for larger datasets
and models, enabling more parameters to be the subject of mutation throughout the
evolutionary process could prove beneficial in automating search for optimal compressed
models. Recent teacher-student methods [35] outperform knowledge distillation in a wide
range of problems. Designing a flexible student model that accommodates both evolution
and more complex distillation methods would be considerably more challenging, but
given the positive results we report for NEMOKD we believe this would be important
future work.

5.2.3. Performance Portability of Compressed Models

The two compression methods in this paper were tested on one hardware platform
each. Our NEMOKD approach is hardware-aware, since the multi-objective optimisation
phase is measured on the Intel Movidius VPU device. Evolving the same initial model
with the goal of minimising latency and accuracy loss may produce quite different models
for different devices due to different memory latencies, cache size and the number of
parallel processing elements on each device. For quantisation, the amount of on-chip
BRAM memory ranges from 0.5 to 8 MB for different FPGA devices, meaning aggressive
quantisation and binarisation is needed for low-end devices, necessitating auto-tuning of
model precision to be device specific.

5.2.4. Combining Knowledge Distillation with Quantisation

Previous work shows that combining compression methods can achieve superior
performance compared with using them in isolation, e.g., combining pruning and knowl-
edge distillation [46]. The approach in [47] shows that distilling knowledge to shallower
quantised architectures can achieve accuracy comparable with state-of-the-art full-precision
models. There are other compression methods such as weight sharing [48] to consider
for hybrid compression. A complete study of neural network compression approaches is
in [21].

More work is required to evaluate these hybrid neural network compression tech-
niques at the scale of state-of-the-art real world problems. Not only may hybrid methods
achieve superior throughput performance and energy efficiency, reducing precision and
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removing unimportant redundancy at scale may make verification of large real-world deep
learning models possible.
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Abstract: In this paper, we propose a flexible Fog Computing architecture in which the main features
are that it allows us to select among two different communication links (WiFi and LoRa) on the fly and
offers a low-power solution, thanks to the applied power management strategies at hardware and
firmware level. The proposed Fog Computing architecture is formed by sensor nodes and an Internet
of Things (IoT) gateway. In the case of LoRa, we have the choice of implementing the LoRaWAN
and Application servers on the cloud or on the IoT gateway, avoiding, in this case, to send data
to the Cloud. Additionally, we have presented an specific setup and methodology with the aim of
measuring the sensor node’s power consumption and making sure there is a fair comparison between
the different alternatives among the two selected wireless communication links by varying the duty
cycle, the size of the payload, and the Spreading Factor (SF). This research work is in the scope of
the STARPORTS Interconnecta Project, where we have deployed two sensor nodes in the offshore
platform of PLOCAN, which communicate with the IoT gateway located in the PLOCAN premises.
In this case, we have used LoRa communications due to the required large distance between the
IoT gateway and the nodes in the offshore platform (in the range of kilometers). This deployment
demonstrates that the proposed solution operates in a real environment and that it is a low-power
and robust approach since it is sending data to the IoT gateway during more than one year and it
continues working.

Keywords: harsh environment; fog computing; edge computing; cloud computing; IoT gateway;
LoRa; WiFi; low power consumption; low latency; flexible; smart port

1. Introduction

At the beginning of the new millennium, the increase in users connected to the Internet
forced companies to rethink the way they used the Internet to offer their services. The
modern wireless communication systems, the infrastructures required by the Internet and
the increasing demand for large volumes of data, provided the perfect conditions for Cloud
Computing to prosper. Keeping with this trend, computing, control, and data storage has
been centralized and moved to the cloud, as was stated years ago in Reference [1]. Cloud
Computing allows the possibility of storing and processing data without the need for a
specialized HW and/or SW, as long as you have an Internet connection.

Internet of Things (IoT) is a collection of computing devices (specifically things)
interconnected through the Internet and intended to offer services aimed at all kinds
of applications [2]. Currently, many electronic devices that are part of the IoT are data
producers. It is not difficult to think that, a few years from now, that number of devices
will be multiplied. By 2025, it is estimated that 30 billion devices will be connected
to Internet using Low Power Wide Area (LPWA) networks and proprietary or cellular
technologies [3,4]. In this case, the amount of data to be processed in the conventional
cloud will make data processing inefficient or even unfeasible.
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To alleviate this problem, the concept of Edge Computing emerged. As data is increas-
ingly produced at the edge of the network, it is more efficient to process the data right
there. This means that most of the generated data are not transmitted to the cloud, but they
are processed at the edge of the network. Several implementations of the Edge Computing
principle have been proposed in Reference [5–7], among others: Mobile Cloud Comput-
ing (MCC) [8], Cloudlet Computing (CC) [9], and Mobile Edge Computing (MEC) [10].
The different and multiple ways of implementing Edge Computing resulted in new per-
spectives on the Edge Computing paradigm; hence, the term Fog Computing appeared.
Fog Computing represents a complete architecture that distributes resources horizontally
and vertically between Cloud-to-Things. As such, it is not just a trivial extension of the
cloud, but rather a new actor interacting with cloud and IoT to assist and enhance their
interaction [11].

The difference between Fog Computing and Edge Computing is subtle. Furthermore,
we have not found in the literature a clear definition to differentiate the Edge Computing
term from the Fog Computing term. Due to this ambiguity, we present in this paper how we
define these architectures. The main difference between them is where the computational
power is located. In Fog Computing, the intelligence is at a node closer to the IoT device.
That node can be called IoT gateway. This fits the definition in Reference [12], where Fog
Computing is defined as a horizontal, system-level architecture that distributes computing,
storage, control, and networking functions closer to the users along a cloud-to-thing
continuum. However, in Edge Computing, the edge is the IoT device responsible for the
data generation and processing [13], and it is connected to the cloud.

Fog Computing is intended to solve the typical problems of Cloud Computing, such as:

• Unpredictable end-to-end network latencies between the end user and the cloud.
Hence, Fog Computing can achieve better time responses, which is important for
real-time applications and services.

• Frequent use of Cloud infrastructures. Fog Computing reduces the number of connec-
tions with the cloud and, therefore, possible interruptions in the data flow.

• High bandwidth and high energy needs to cope with the intense data traffic. Fog
Computing reduces the required bandwidth of the communications with the cloud in
a network with a large number of nodes or data since the processing can be distributed
at different levels: edge level, gateway level, and cloud level, reducing significantly
the quantity of data to be sent to the cloud.

Additionally, Fog Computing offers some advantages with respect to Edge Computing,
such as:

• Increasing the security and privacy with the creation of a pre-cloud link to protect the
data.

• Reducing the resources at the node to execute complex processes.
• Increasing the autonomy of the edge nodes with a significant reduction of their power

consumption.

To our best of knowledge, most of the previous works related to Fog Computing archi-
tectures are reviews, surveys, or analysis of the current state of the art [13,14]. Few of them
are architectural proposals based on Fog Computing. Furthermore, some implementations
presented in the literature propose generic architectures to integrate Fog Computing in IoT-
based applications [15] or they present test-bed and simulation results in order to evaluate
the viability of the proposals [16]. Reference [17] presents an intra-vehicle resource sharing
model with the aim of getting low-latency cloud services. Their motivation is in line with
this research. However, they focus on the framework using mobile communications based
on 5G technology and not on a low-cost and low-power deployment. In any case, these
implementations do not show results in a real use case.

Among the most common technologies used for IoT devices, we can highlight Low
Power Wide Area (LPWA). These technologies offer their ability to deliver low-power
connectivity to a large number of devices spreading across large geographic areas at
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an unprecedented low cost. A LoRa-type LPWA network uses a gateway, which can be
connected to the cloud. LoRa Tx/Rx has low power consumption and long range compared
to other LPWAs. This technology can be operated on sub-gigahertz unlicensed radio bands.
Furthermore, with these characteristics, its market penetration and its wide use in the
industrial, educational, and amateur community make LPWA LoRa technology ideal for
IoT [3,18]. However, the key goal of LoRa technology is to achieve long range with low
power consumption and low cost, unlike other technologies that are more appropriate to
achieve higher data rates, lower latency, and higher reliability. There are situations where
complex processing is required, but the node does not have the necessary resources for
that processing. Hence, more data must be sent to the fog or cloud, and a higher data rate
communication will be required.

This paper proposes a flexible architecture for IoT based on Fog Computing using
LoRa and WiFi communications. This architecture can be easily implemented in many
IoT applications. Many of these benefits are inherent to an architecture based on Fog
Computing, that is, the Internet connection, security, and privacy and the limitation of
resources on the edge, which are characteristics of the own architecture. As well as
exploiting the benefits of Fog Computing, the proposed architecture permits us to select the
most appropriate wireless connection with the IoT gateway according to the data rate, the
payload size, the required range, and the power consumption. Furthermore, the edge nodes
contain different sensors with low and medium data sizes, and the data processing can be
distributed between the sensor nodes and the IoT gateway as needed. The proposed sensor
nodes are ultra-low power solutions, thanks to the power strategies applied to the SW and
HW designs. To quantify the benefits of the proposed approach, this paper will present
specific results, such as power consumption at the edge node and at the IoT gateway.

The paper is structured as follows. In Section 2, a review of the different IoT ap-
plications are introduced. Section 3 provides the description of the case study of this
research work. Section 4 presents the implementation of the proposed Fog architecture. In
Section 5, the test setup, the measurement methodology, and the experimental results are
presented. Finally, the discussions and conclusions obtained from the experimental results
are summarized in Section 6.

2. Related Work

As commented in the previous Section, Cloud Computing has played a huge role
in IoT applications. Some of these applications have started to demand faster execution
in their processes. Hence, the trend has been to take advantage of the capabilities for
computing on the edge devices to process data and, among other benefits, reduce the
amount of data to be transmitted. More recently, the idea of processing data between the
edge and the cloud has reported new benefits, such as an increase in network security
and energy-size saving at the end nodes, making possible the implementation of this
philosophy for new applications.

Among the applications for IoT reviewed in the literature, we have found several ex-
amples in which the rapid response of the system is an essential requirement [19]; therefore,
Edge Computing has been used. For example, the increase in security applications, such as
fire control, face recognition, or traffic control, have caused video surveillance and video
analysis systems to have grown tremendously in recent decades. The algorithms for video
analysis require intensive processing and with added privacy, as shown in Reference [20].
In Reference [21], a classification and a review of current architectures for Edge Computing
is made, and an experimental analysis is presented for the case of image processing in the
field of video games. In this case, Edge Computing performance for a recurse-intensive
application is evaluated through different scenarios. Edge Computing satisfies the neces-
sary requirements for these applications to the detriment of the size and consumption of
the end nodes. In Reference [17], a vehicular infrastructure model for 5G technology is
proposed, taking into account compute intensive applications but providing some kind
of cloud assistance and looking for low-latency cloud services. Ref. [7] is more focused
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on smart cities services at the edge providing security, privacy and protection to exploit
edge servers computational, and low network latency capabilities. In spite of the fact that
these last approaches look for an optimization of the distribution of the computational
complexity for the provided services, none of them are focused on the reduction of the
power consumption and cost of the overall architecture.

On the opposite side, there are other IoT applications in which the sensor nodes
measure different parameters, and they send the information with the minimum necessary
processing. In these applications, the communication of the sensor nodes with the cloud
is carried out through low-bandwidth and long-range communications. These nodes are
designed to operate for long periods without the need to replace the battery, but they can
only work for very low data sizes which permits very small duty cycles. Smart cities are
a typical example of IoT in modern infrastructures, which allow, by means of a sensor
networks deployment, precise measurements of resources, such as water, electricity, and
gas. Architectures, such as those presented in Reference [22–24], have been implemented in
these scenarios. However, as has been discussed, the HW implemented in the end nodes is
not flexible enough to enlarge the data sizes to be transmitted or to carry out more complex
processing. Reference [6] proposes a Reinforcement Learning framework for autonomous
energy management focused on mobile user devices. The proposed architecture learns the
power-related statistics of the devices, providing a computation environment on the fly
but only taking into account the cost of resource usage. As mentioned in Section 1, none of
these approaches show results in a real use case.

In summary, we have seen that there are time-sensitive applications with a high
computational load, while, in other applications, the fundamental requirement is the low
power consumption. For these applications, non-flexible hardware architectures have
been designed, i.e., the more efficient in power consumption, the less powerful to process
data, or vice versa. Furthermore, remote sensing has opened the doors to new ways of
monitoring and controlling a multitude of still unexplored fields, which will lead to the
development of new IoT applications; thus, they will demand more flexible architectures.
To deal with this problem, new architectures, such as Reference [15,16], have emerged. In
these architectures, the computational load has been transferred to an edge gateway near
to the end nodes. This edge gateway communicates with an upper gateway by means of
LoRa, and this, in turn, communicates with the cloud. A simple HW to achieve a small size
and low power consumption characterizes the end nodes. These nodes communicate with
the edge gateway through Bluetooth. Hence, when the application requires it, they can
send large amounts of data at relatively high speeds. In addition, complex processing is
possible at the gateway to respond to the application in the cloud. Thus, these architectures
solve certain problems presented in the literature by exploiting the benefits offered by a
Fog Computing architecture. However, their approaches are not flexible in terms of the
deployment of the end nodes since the gateway must be very close to them. Moreover,
their approaches have not been deployed in a real environment and a real use case, which
is essential for a system validation to check the applicability and the robustness of this kind
of solutions. Furthermore, both communication technologies will always be active at the
same time in order to send data to the cloud. This fact entails a re-transmission of the data,
thus yielding an extra consumption.

3. System Applicability

The approach presented in this paper provides an efficient architecture for a wide
range of applications, such as Smart Buildings, Smart Factories, and Smart Ports. These
applications have in common the necessity of deploying low-cost and low-power IoT
devices for monitoring the environment and/or the infrastructure degradation using
wireless communications to facilitate their own deployment. Our architecture fulfills
these costs and power requirements. Furthermore, our solution is capable of changing
the wireless link from LoRa to WiFi, and, vice versa, according to the conditions of the
specific situation, we can have for one application. As an example, for the Smart Factory
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application, the IoT gateway could be integrated in an Autonomous Guided Vehicle (AGV)
to gather the environmental and degradation data. Hence, the AGV can be capable of
getting closer to some sensor nodes, but other ones can be located far away. When the
AGV is stopped at the expected control points, our system will be able to receive the
data in both scenarios. On the other hand, this will not be the only criterion to select one
communication link. The system will be capable of making that decision according to some
internal configurations, such as the required data rate and the size of the payload, which
will affect the power consumption. These configurations can vary during the operation
since one application can have different stages.

Case Study: Smart Ports

This research work is focused on Smart Ports as the case study to prove the efficiency
of the proposed architecture. A port is a complex and dynamic environment that includes
various activities, such as transportation, logistic, fishing, maintenance, and rescue oper-
ations, as well as protection of its environmental impacts [25]. The sensoring needs in a
port ranges from localization of goods, ships, and infrastructure vehicles (which requires
a constant update) to monitor the state of the docks, bollards, cranes, and warehouses,
where updatings can be made on a daily or weekly basis. Additionally, ports are subjected
to emergency situations (under heavy storms, for example) when it would be desirable
to have more frequent updates of the state of the port’s infrastructure. Therefore, IoT
devices can considerably improve and automate many of these activities to increase the
safety and security, as well as reduce the operational delays, of the different processes.
However, this scenario also imposes strong conditions in the hardware, software, and
network architectures of the IoT deployment. From the end-node perspective, there are
two important restrictions: power availability and network access. The first one means that
power consumption in the end-node must be drastically reduced in order to last several
years without replacing the battery. The second means that the end-node must have some
flexibility to access the network infrastructure based on range, power consumption, and
data payload.

One of the most important advantages of the proposed architecture is that this de-
sign offers a high flexibility in terms of deployment. Hence, this approach can be easily
customized to achieve an efficient solution for different applications.

Each application and use case will have different requirements related to latency,
privacy, communications coverage, and power consumption. Our approach permits to
configure the network on the fly according to these application requirements. In order
to do that, the nodes can select the wireless communications to be used (WiFi or LoRa)
and can communicate with a local server avoiding the communication with the cloud, if
needed. On the other hand, we are capable to increase the computational complexity of
the IoT gateway with the aim of reducing the quantity of data sent to the cloud. This fact
would reduce the latency, which is a really important factor for real-time applications.

The specific application we have analyzed in this work is the predictive maintenance
of critical infrastructures of the port, which can be made by the proposed system remotely
and in an unattended manner. Thus, the sensor nodes must be deployed accordingly to
measure the structural health of the most critical components or structures identified within
the port. The proposed sensor nodes will be able to measure essential parameters to predict
the structural health of these structures, such as the temperature, structural movements,
corrosion, and pressure. Furthermore, our system is prepared to automatically use the
most appropriate wireless connection according to the quantity of data (the size of the
payload), the data rate required, and the distance to be covered. Our flexible platform will
allow us to embed the IoT gateway into a drone so that, if the drone is capable of flying
towards some sensor nodes, and high data rates are required, the WiFi connection will be
selected. However, when the sensor nodes are located far away from the drone and over a
restricted area where the drone cannot access, LoRa communications will be chosen with
the aim of covering large distances. On top of that, there will exist other scenarios and use
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cases where the criteria to select the communications link will be the efficiency in power
consumption, and, for those cases, a further analysis is needed.

Taking into account the requirements of this specific application, the benefits obtained
by using our proposed architecture are listed below:

• The aim is to monitor the structure remotely over years. To do so, the sensor nodes,
which are deployed and embedded on the structure, must operate using a battery.
Our approach applies some low power strategies to comply with this requirement
looking for an autonomy of years. On the one hand, the sensor node will stay active
when measuring or sending wireless data. On the other hand, the system will manage
the wireless communications to be used taking into account the power consumption.

• In the scope of a port, there are critical structures everywhere. Therefore, it is impor-
tant to cover different distances wirelessly. Our approach can select between WiFi
connection when the range is not so long (around 100 m) and LoRa connection when
we need higher ranges (in the range of kilometers). Other factor to select the wireless
communications is the quantity of data to be sent. Thus, the WiFi connection will be
active when large quantity of data are required and/or high data rates are needed but
always if we have WiFi coverage (short range). Otherwise, the proposed solution will
select between WiFi and LoRa communications according to the power consumption
as is evaluated in this paper (see Section 5).

• To predict accurately the state of the critical structures and be able to act in real-time,
a reduction of the latency in the communications can be considered as an important
benefit. The proposed architecture permits to embed a local server inside the IoT
gateway with the corresponding reduction of the overall latency.

This research work has been supported by the STARPORTS Project as is explained
in the Funding section. PLOCAN, one of the STARPORTS participants, has an offshore
platform very suitable to validate the proposed architecture in a relevant environment
but at the same time in a controlled scenario. The offshore platform is 5.7 km from the
PLOCAN building, very well suited to test LoRa communications when the IoT gateway
is in the PLOCAN premises. Thus, two sensor nodes were deployed in the PLOCAN
offshore platform (see Figure 1), and a fixed IoT gateway was installed in the PLOCAN
building receiving data through LoRa from the sensor nodes over more than twelve months,
working with a Spreading Factor (SF) of 10, in this case (currently the sensor nodes continue
working with the same battery keeping good and stable voltage levels).
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Figure 1. The sensor nodes deployed in the PLOCAN offshore platform.

4. Design of the Proposed Fog Architecture

The proposed architecture is shown in Figure 2. Note that the red boxes represent
the deployed devices such as it is described in the previous Section. In this architecture,
the IoT application located in the cloud communicates with the sensor nodes through an
IoT gateway with two different wireless communication technologies, which are WiFi and
LoRa. This gateway can be fixed or mobile, and it can communicate with each end-node
through one of these communication technologies, depending on the demanded data
rate, gateway to end-node coverage, or a trade-off between these parameters and power
consumption. Cloud communication with the IoT gateway could be done through an
Ethernet connection, in the case of a fixed IoT gateway, as in the case of the STARPORTS
project, or a 3G/4G connection, in the case of a mobile IoT gateway. Additionally, the
IoT gateway is capable of performing complex processes, such as filtering, calibration,
correlation, frequency analysis, etc., to alleviate the data load in the cloud or executing
safety-critical computation, if needed.
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Figure 2. Proposed flexible Fog Computing architecture.

In this architecture, the sensor nodes can be considered low-cost and low-power nodes
since an effective power management is applied and the proposed architecture permits not
only to alleviate the data load in the cloud but also to distribute in an efficient manner the
computational operations between the sensor nodes and the IoT gateway.

The total cost of the sensor node materials is shown in Table 1. In this case, accurate
sensors have been used to measure acceleration, temperature, humidity, and corrosion. If
the application does not require those measurements, the cost of the sensor node could fall
below 30€.

The cost of the IoT gateway materials is shown in Table 2. In our prototype, the IoT
gateway has been built using carrier boards. However, we could customize it by designing
our own carrier board. In that case, it would only be necessary to acquire the SOM and
the LoRa concentrator. Note that the cost of the SOM starts from 54€. The SOM can be
customized as a function of the required features; therefore, this cost will depend on the
SOM customization level.
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Table 1. Total cost of the sensor node materials.

Component Part Name Unit Price (€) ×1000 (€)

LoRa Transceiver Module RN2483 10.81 9.84
Wireless Module CC3220MODASF12MONR 15.94 10.24

Inductance-to-Digital Converter LDC1000QPWRQ1 7.73 4.22
Humidity and Pressure Sensor BME280 5 2.14

MEMS Accelerometer ADXL355BEZ 40.94 32.71
Real Time Clock DS1374U-18+ 3.15 1.66

Power management ICs <7 <4
Connectors (UFL, Battery connector) <2 <1

Other components <2 <1
PCB Lab Circuits manufacturer <10 <5

Total (€) <93 <65

Table 2. Total cost of the Internet of Things (IoT) gateway.

Component Part Name Unit Price (€)

SOM DART-MX8M Starting from 54
SOM + Carrier Board VAR-DT8MCustomBoard 244

LoRa Gateway Concentrator Module RAK833 80

4.1. The Sensor Nodes

In a Smart Port environment, it would be desirable that the sensor nodes to be de-
ployed work unattended with battery lives of more than 3 years [18]. Other important
aspect is the communication range since in that environment you can need short and long
range communications. Then, having such flexibility will permit large distances (several
kms) but also small distances (<100 m) if a mobile platform is used to gather data from
the sensor nodes (using a drone), assuming that the drone is stopped when the system
gathers the data. Additionally, in a Smart Port you can have different kind of variables
to be measured. Hence, the system must be able to measure from very low sample rate
measures to high sample rate variables (∼500 Hz).

The architecture we have developed to fulfill the above features is given in Figure 3.
Figure 4 shows a photograph of the sensor node electronics and housing. As can be seen,
the node has wireless connectivity with WiFi and LoRa. The main component is the CC3220
micro-controller [26], a Cortex-M4 based device that includes a Network Processor with
WiFi Driver, TCP/IP Stack, baseband processor, and complete analog front-end. It also
contains a 1MB flash memory that allows storing data and configuration parameters in
the node. LoRa connectivity is provided by the RN2483 module [27], which includes
LoRaWAN Class A protocol stack). The CC3220 controls the LoRa device using commands
via an UART interface.

The node is housing several sensors: 3-axis accelerometer (ADXL355 [28]) with very
low noise density (22.5 µg/

√
Hz), a Pressure/Humidity/Temperature sensor (BME280 [29])

and an inductance sensor (LDC1000 [30]) that allows us to measure corrosion levels. All
the three sensors can be accessed through a unique SPI interface.
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Figure 3. Block diagram of the sensor node.

Figure 4. Sensor node.

Low Power Strategies

The power supply is provided by a primary battery of 3.6 V and 5800 mAh. For
this battery size and given the required duration, this means the node must draw an
average current of less than 250 µA. This value is too small, even for the lowest power
micro-controller in the market (∼135 µA/MHz.) Therefore, remote nodes must reduce
its power consumption by decreasing its duty cycle. The duty cycle is the relationship
between the on-time, the time in which the nodes are working, and the cycle time, which is
the total time of one cycle. The off-time is the time in which the nodes are sleeping. The
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node can modify the duty cycle by configuring the DS1374 RTC device [31] of Figure 3.
The node will generate two supply voltages: 3 V for the RTC (see Figure 3) and 3.3 V for
the rest of the circuit. The 3 V voltage is always active, but the 3.3 V can be enabled by
a switch (first time boot) or by the RTC (generates a pulse that boots the CC3220 after a
specified period according to the selected duty cycle). The 3.3 V will be disabled by the
CC3220 after all the tasks related to a set of measures. Additionally, each sensor can be
individually shutdown from the CC3220 using GPIO signals.

The sensor node has two operational modes: Normal Mode and Storage Mode, for
which state machines are given in Figure 5. In Normal mode, the node typically powers
up from a RTC pulse (POWER-UP state), loads design parameters from an internal non-
volatile memory, takes measures from the sensors (SENSOR state), configures the wireless
interface, and sends the data to the IoT gateway (LoRa-WIFI state). The node then waits for
the Application server to send new configuration parameters for the next cycle (REMOTE
state) and then goes back to the DEEP-SLEEP state by disabling the 3.3 V regulator output.
In Storage Mode, the node stores the measures from the sensors in a non-volatile memory
and only sends the complete data packet once every several cycles. This Storage Mode can
be interesting in the case where we use WiFi communications from a mobile platform, such
as a drone. Hence, the sensor node would store the data from areas without WiFi coverage
until getting close to the IoT gateway integrated in the drone. On the other hand, both in
the case of a fixed and a mobile approach when we need a real-time monitoring for fast
processes, the Normal Mode is more suitable.

Figure 5. Operational modes and state machine of the sensor node.

LoRa and WiFi are two very different communications systems that complement each
other very well in several aspects of a wireless link. Range, bit-rate, and power are the main
design variables to consider when selecting a wireless interface. When a decision must be
made based on range and bit-rate, the choice can be quite easy. But decisions based on
power can be much more difficult because one must consider not only the physical layer
of the communication interface but also the upper software layers. For example, from the
strict specification of the modulation schemes, WiFi is much more power efficient than
LoRa (in terms of nJ/bit, it is around three orders of magnitude more efficient). But, if we
take into account the overhead introduced by the protocols and software stacks needed
to manage the communications with both methods (much more complex in WiFi than in
LoRa), the differences begin to narrow.

Low Power strategies must weight the wireless connection to be used (WiFi or LoRa)
depending on the size of the payload, the duty cycle of the sensor node, and the commu-
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nication range. This is the aim of the experiments carried out in this research work are
described in detail in Section 5.

4.2. The IoT Gateway

A block diagram of the IoT gateway is presented in Figure 6. The IoT gateway
designed is based on a Variscite DART-MX8M System-on-Module (SOM [32]) based on
NXP’s i.MX8M with up to 1.8 GHz Quad-core ARM Cortex-A53™, plus 400 MHz Cortex-
M4™ real-time processor [33], and works under Debian (stretch) GNU/Linux 9. Although
the DART-MX8M contains extensive processing capabilities from its quad-core architecture
plus graphics and video processing unit, this SOM is not well suited for running Machine
Learning or Artificial Intelligence applications in the gateway. However, our architecture
can be easily upgraded to house the DART-MX8M-PLUS, pin-to-pin compatible with
the DART-MX8M. The DART-MX8M-PLUS [34] includes the iMX8M-Plus processor [35]
that has basically same quad-core Cortex-A53 architecture, plus a Cortex-M7 at 800 MHz
and a Digital Signal Processor (DSP) accelerator also at 800 MHz. But, more importantly,
it includes a Neural Processing Unit (NPU) that allow the efficient implementation of
Machine Learning algorithms in the IoT gateway, reducing power and time consuming
data transfers to the cloud.

To include the LoRa connectivity to our IoT gateway we have added a LoRaWAN
concentrator [36] that interfaces with the processor through a SPI port. The software that
manages the incoming LoRa packets from the concentrator is the Packet Forwarder from
Semtech [37]. This software sends the encrypted LoRa packets to the LoRaWAN server of
your choice, where they are decrypted by the LoRaWAN and Application servers. For this
configuration, we have used The Things Network [38], as is shown in Figure 7. The IoT
gateway will also be working as a WiFi Access Point. A software running in the SOM will
be responsible for acquiring the data packets from the node.

Figure 6. Block diagram of the IoT gateway.
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Figure 7. The IoT gateway with the server implemented on the cloud.

The IoT gateway has also the possibility to work, as shown in Figure 8, by installing
both the LoRaWAN server and the Application servers in the i.MX8M SOM. As a result,
data from the sensors can be processed, normalized, enhanced, and stored at the gateway,
reducing the uplink traffic to the cloud. Figure 8 also shows the software architecture of
the IoT gateway, an adaptation to the specifications of OpenFog reference architecture [12].
In our case, the physical layers are WiFi and LoRa, and the Protocol Abstraction layers
are implemented, in this case, as packet forwarders that respond to the central component
of the architecture, i.e., the Node Configuration and Management block. This block has
access to the processing and storage resources of the IoT gateway and implements the
communications with the cloud infrastructure.

Figure 8. The IoT gateway software architecture with the LoRaWAN server implemented.

5. Results
5.1. Setup and Methodology

The aim of the proposed setup is to measure the energy consumption generated by the
sensor node when using WiFi communication or LoRaWAN communication. In order to
do that, we have implemented the setup shown in Figure 9. The same setup configuration
has been implemented for the both cases, WiFi and LoRa, to carry out parallel tests. The
power supply has been set to 3.3 V. The LTC4150 Coulomb counter monitors the current
through a precision external resistor between the positive terminal of the source and the
power terminal of the sensor node.

A series of pulses are obtained at the output of the Coulomb counter depending on
the current consumed by both, the sensor node, and the Coulomb counter. Each pulse
corresponds to a quantity of electric charge of 0.307 Coulombs, that is, 0.085 mA/h. A
msp430FR2433 [39] micro-controller is responsible for capturing the instant of time in
which each pulse was generated. The micro-controller sends the time instant and the
number of the pulse to a PC via UART communication for further processing. Note that
the micro-controller is powered by the computer; therefore, the consumption generated by
itself is not taken into account.
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Figure 9. Implemented setup for the energy consumption measurements.

As can be seen in the photogragh of Figure 10, the msp430FR2433 LaunchPad is
powered from the PC through the USB connector, whereas the power supply is used to
power the sensor nodes and the Coulomb counter at 3.3 V. The LoRa and WiFi gateway
have been both implemented in the same Variscite DART-MX8M SOM. A motherboard is
used to connect and power the SOM.

IoT Gateway IMX8M

LoRa WiFi

LoRa

WiFi

Figure 10. Photogragh of the implemented setup.

5.1.1. Lora and Wifi Gateway Implementation for the Energy Consumption Measurements

• WiFi gateway configuration:
The WiFi module of the SOM has been configured as an access point, with static IP
address and wpa-psk security type. Therefore, the node just needs to connect to the
Wifi network generated by the SOM and send its frames.
In order to receive and manage the received frames, a UDP socket to the WiFi IP
address has been created so that every received frame is captured and logged into a
file for further analysis.

• LoRa gateway configuration:
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As explained in Section 4.2, a RAK833 LoRa concentrator has been used running
“LoRa Packet Forwarder”. The measured consumption of this LoRa concentrator is
420 mA at 3.3 V. The “LoRa Packet Forwarder” runs on the SOM to forward LoRa
packets received by the concentrator to a server through an IP/UDP link. As is shown
in Figures 7 and 8, the LoraWAN Server and the Application server can be located
on the gateway or on the cloud. For the energy consumption measurements, we
have used the configuration mode with the server on the IoT gateway to facilitate the
overall setup and the data analysis since The Things Network has several restrictions
related to higher data rates and payload sizes according to the SF. That is why we have
implemented a Network server stack (Chirpstack) [40] into the SOM to carry out the
tests. The Chirpstack LoRa Network Server stack provides open-source components
for LoRa networks. Together, they form a ready-to-use solution including an user-
friendly web-interface for device management and APIs for integration. The measured
consumption of the SOM when Chirpstack is running is 800 mA, supplied at 3.3 V.

5.1.2. Sensor Node Implementation for the Energy Consumption Measurements

The operation of both tested sensor nodes is exactly the same, except that, in one case,
it is used WiFi, and, in the other case, LoRa, but both nodes measure, process, and transmit
the same number of data, with the same duty cycle and using the same operating modes
for further comparison.

To check what communication is more efficient depending on the conditions, different
tests have been done with different payloads for every Spreading Factor (SF). Note that
different SFs affect mainly the range of LoRa communications.

The software running in both nodes follows the flowchart shown in Figure 11. This
flow chart is in line with the normal mode described in Figure 5. As the on-time is not a
fixed value due to the communication link, the on-time of each cycle must be measured.
Thus, when the node starts a new cycle, it initiates a timer to count the on-time period of the
duty cycle. Then, when the serial ports configuration is done, the configuration parameters
stored in the flash memory files are read. These parameters are shown in Table 3. After
reading the files, the node sets the cycle time in the DS1374 Real Time Clock. Then, the
node is configured to use LoRa or WiFi communication based on the mode parameter.

If LoRa mode is active, the node initiates UART interface to communicate with RN2483.
The LoRa module is configured with “automatic re-transmit” option and with the SF
selected for the test. The frequency plan used is EU863-870. Once the LoRa module config-
uration is done, the node connects to LoRa network using Activation by Personalization
(ABP). The main advantage of this type of connection is that it is not required to join
the network in order to send data, that is, the server-side confirmation is not necessary
since the session is already manually assigned. It has been preferred over Over the Air
Activation (OTAA) because OTAA needs the LoRa module to be active all the time to
have the session parameters updated. This means additional power is needed during the
end-node’s off-time, which can distort the power measurements in our experimental setup.

If WiFi mode is selected, the WiFi network processor subsystem is configured in station
mode, with Dynamic Host Configuration Protocol (DHCP), normal power management
policy, and auto connection policy. The WiFi standard used is 802.11 b/g/n 2.4 GHz. Once
this network processor is configured, the node sets the WiFi network Service Set Identifier
(SSID) and connects to it.
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Figure 11. Sensor node software flowchart.

Table 3. Configuration parameters from the flash memory.

Parameter Description Value

mode Selects WiFi or LoRaWAN communication Variable for each test
ssid SSID of the WiFi network STARPORTS

cycle time The total time of one cycle 20 s
payload Number of bytes to be sent Variable for each test
cycles Number of cycles of the test 4000

When the connection is established, either with the LoRa network or with the WiFi
network, the node starts reading data from sensors. The first sensor is an Analog to Digital
Converter used to calculate the voltage from battery. The second sensor is ADXL355 ac-
celerometer. After this sensor configuration, the node reads the data from the accelerometer
and packages it. The last sensor is BME280, a combined digital humidity, pressure, and
temperature sensor. Before getting the data from BME280,some steps are carried out, such
as calibrating sensors and compensating measurements. Then, the data obtained from
BME280 are packaged.
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In order to measure the energy consumption of our approach during the proposed
tests, we decided to use the same payload size in each test to compare fairly the con-
sumption results obtained with WiFi and LoRa links. Therefore, the node discards the
real data from sensors and takes dummy data with a fixed number of bytes. This fixed
payload is configured by reading a payload file from the flash memory according to the
payload parameter, described in Table 3, which will select the payload file to be read. The
node sends the packet over WiFi or LoRa network depending on the mode configured
on the node. Hence, although the data from the sensors are not really sent wirelessly, the
measurements done by these sensors have been configured in the same way for all the tests.
Thus, we will have the same consumption according to the sensors for each test.

Finally, the cycle number is increased by one and written to a file stored in the flash
memory. The timer counter stops and the accumulated on-time of the test is calculated
by adding to it the on-time of the cycle, which is written in the internal flash memory.
Then, the node goes to the sleep mode until the wake-up time signal from the RTC is
received. Once the node completes the total number of cycles as is indicated in Table 3, the
test finalizes.

5.2. Energy Consumption Measurements

Figure 12 shows the energy consumed by the sensor node in a 20 s cycle for different
Spreading Factors (SF). Note that the SF does not apply to the WiFi technology. Despite
this fact, we have evaluated WiFi and LoRa links with parallel tests done at the same time.
Hence, as the SF affects LoRa, we have also repeated the WiFi tests for each SF.

In the case of LoRa, it can be seen that the energy consumption increases as the number
of bytes to be transmitted or the SF is increased. However, in the case of WiFi, it can be
seen that the energy consumption is more stable for different sizes of the payload, that is,
the number of data transmitted does not have a great influence on the energy consumption.
This effect is closely related to the duty cycle. In the case of LoRa technology, the time
the data is at the air is longer than in the case of WiFi technology. Hence, the duty cycle
is larger when LoRa is used, which implies a higher energy consumption when we have
more bytes or higher SFs. Finally, it can be said that there is a cut-off point between the
LoRa and WiFi curves, which, from an energy point of view and depending on the range
we need to reach, can help us to determine which technology is more efficient. In this case,
we see that, for SF’s greater than 10, WiFi technology always consumes less, and, for an
SF of 7, LoRa consumes less. For the case of an SF equal to 8, LoRa consumes more than
WiFi when more than 140 bytes are transmitted, and, for the case of an SF equal to 9, LoRa
consumes more than WiFi when we need to transmit more than 40 bytes.

From the tests carried out, the results have been extrapolated to determine the battery
life as a function of the cycle time. Figure 13 shows the duration of a battery with a capacity
of 5800 mA/h for different cycle times, different SFs, and different sizes of messages to
be transmitted. It can be seen that the cycle time is the parameter that mostly determines
the battery life, that is, for a specific SF configuration and data size to be transmitted, the
longer the cycle time, the longer the time spent in sleep mode and, therefore, the lower the
average energy consumption per cycle.

It can be seen in Figure 14 that, for the STARPORTS use case, with a cycle time of
900 s, sending an average of 32 bytes through LoRa and with an SF of 9, a battery life of
15,720 h (around 1.8 years) is estimated. If we want to extend the battery life up to 3 years,
keeping the same range and data size, we should increase the cycle time to 1950 s. In the
case of configuring the node with an SF of 12 in order to achieve a higher range, we should
increase the cycle time up to 3160 s to get a battery life of 3 years. Otherwise, by using an
SF of 7 for short range, we should set the cycle time to 1725 s.
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Figure 12. Energy consumption by the sensor node for different Spreading Factors (SFs).
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Figure 13. Battery duration for different cycle times and SFs.
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6. Conclusions

The new applications that have emerged from the IoT concept have generated a great
growth of IoT devices connected to the Internet. This has resulted in a large amount of
data flowing into the cloud, which can require a huge bandwidth and in consequence,
an inefficient solution from the energy or storage point of view. In addition, certain
applications require real-time processing or even make decisions without the need of
an Internet connection. In this paper, a flexible Fog Computing architecture has been
proposed. Thanks to that flexibility, this approach is capable of solving the previous issues
related to the real-time processing and the communications bandwidth, as well as adding
new advantages to the existing architectures, such as increasing security and privacy in
the network and reducing the required resources at the node level, in order to increase
autonomy without losing computational capacity.

In the proposed architecture, low-power strategies have been implemented in the
sensor node in order to obtain autonomy for several years. These nodes are capable of
selecting between two different communication links (LoRa and WiFi) on the fly, depending
on the available coverage, the amount of data to be transmitted, or a trade-off between the
energy consumption, coverage, and data to be transmitted. Furthermore, in the proposed
architecture, a local server has been implemented within the IoT gateway, in which it is
possible to process data at higher speed. This IoT gateway can work in real-time, with a
very low latency in response to the data measured by the sensor nodes.

Different tests have been carried out by varying the parameters of the system, such as
the duty cycle, the size of the data packet, and the Spreading Factor (SF), which only affects
the LoRa communications. The objective of these tests has been to quantify the energy
consumption of the sensor nodes focusing on the communication links. We have seen that,
unlike WiFi, in the case of LoRa, the energy consumption increases as the number of bytes
to be transmitted or the SF is increased. Additionally, there is a cut-off point between the
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LoRa and WiFi curves, which, from an energy point of view and depending on the range
we need to reach, can help us to determine which technology is more efficient.

The efficiency of the proposed architecture has been tested in a real scenario for a
Smart Port application. It has demonstrated the capability of the sensor nodes to capture
temperature, corrosion, acceleration, and pressure data and send them to the IoT gateway
at a distance of 5.7 km, maintaining, even at that distance, a low energy consumption.
Thus, the application has been running for more than one year in a hostile environment.
Extrapolating the results obtained from the tests, we estimate that, with a 5800 mA/h
battery capacity, these sensor nodes can monitor critical points of the port infrastructure
and perform predictive maintenance of structural health for a duration of 1.7 years.
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Abbreviations
The following abbreviations are used in this manuscript:

AGV Autonomous Guided Vehicle
API application programming interface
ABP Activation by Personalization
CC Cloudlet Computing
DHCP Dynamic Host configuration Protocol
DSP Digital Signal Processor
GPIO General Purpose Input-Output
HW Hardware
IoT Internet of Things
IP Internet Protocol
LoRa Long Range Modulation
LoRaWAN Long Range Wide Area Network
LPWAN Low Power Wide Area Network
MCC Mobile Cloud Computing
MEC Mobile Edge Computing
NPU Neural Processing Unit
OTAA Over the Air Activation
PLOCAN Plataforma Oceanica de Canarias
SSID Service Set Identifier
SW Software
TCP Transmision Control Protocol
UART Universal Asynchronous Receiver-Transmitter
RTC Real Time Clock
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SF Spreading Factor
SOM System on Module
UDP User Datagram Protocol
USB Universal Serial Bus
WiFi Wireless Fidelity
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Abstract: The hardware of networked embedded sensor nodes is in continuous evolution, from those
8-bit MCUs-based platforms such as Mica, up to powerful Edge nodes that even include custom
hardware devices, such as FPGAs in the Cookies platform. This evolution process comes up with
issues related to the deployment of the Internet of Things, particularly in terms of performance
and communication bottlenecks. Moreover, the associated integration process from the Edge up to
the Cloud layer opens new security concerns that are key to assure the end-to-end trustability and
interoperability. This work tackles these questions by proposing a novel embedded Edge platform
based on an EFR32 SoC from Silicon Labs with Contiki-NG OS that includes an ARM Cortex M4
MCU and an IEEE 802.15.4 transceiver, used for resource-constrained low-power communication
capabilities. This IoT Edge node integrates security by hardware, adding support for confidentiality,
integrity and availability, making this Edge node ultra-secure for most of the common attacks in
wireless sensor networks. Part of this security relies on an energy-efficient hardware accelerator that
handles identity authentication, session key creation and management. Furthermore, the modular
hardware platform aims at providing reliability and robustness in low-power distributed sensing
application contexts on what is called the Extreme Edge, and for that purpose a lightweight multi-hop
routing strategy for supporting dynamic discovery and interaction among participant devices is fully
presented. This embedded algorithm has served as the baseline end-to-end communication capability
to validate the IoT hardware platform through intensive experimental tests in a real deployment
scenario.

Keywords: extreme edge; embedded edge computing; internet of things deployment; hardware design;
IoT security; Contiki-NG; trustability

1. Introduction

The Internet of Things paradigm has achieved an enormous integration level inside the technology
distributed all around the world. It covers from consumer electronics, such as Wi-Fi controlled
thermostats, to industrial or professional applications, such as a Wireless Sensor Network (WSN)
registering data all along a whole forest. The future of communication protocols could also lead
to bigger growths on new IoT system implementations, e.g., real-time systems collecting data from
dozens of sensors around a fabric to optimize manufacturing operations dynamically. Therefore,
the development of this kind of platforms looks promising.

The traditional hardware solutions that were used in Wireless Sensor Networks mostly relied on
de-facto standard sensor motes, such as Micas and TelosB [1], or similar approaches where 8-bit
or 16-bit-based microcontrollers were integrated as the core of the wireless devices, to perform
simple yet energy-efficient tasks for the target application. During the last decade tens of hardware
platforms for the Extreme Edge [2] of the IoT have appeared with different elements and focusing
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on aspects such as low power consumption, high processing capabilities or open HW philosophy,
among others [3]. Although these hardware platforms have been valid for many WSN application
contexts, the ongoing revolution of IoT is pushing the hardware implementation towards the
integration of more complex capabilities that allow tackling the challenges of smart and highly
dynamic scenarios [4], particularly concerning the arising end-to-end IoT security issues with such
an amount of expected Edge devices in place. In this sense, the traditional behavior of a WSN, in
which the devices remained in sleep modes for a very long period of time (thus the main consumption
components to be considered were the deep power modes) and then wake up to transmit a sensing
measurement to a root device, is changing to more active collaborations among participant sensors, in
which the type of features they provide to the local or overall IoT Edge deployment becomes a key
performance element of the system. In such scenarios, protecting the relationships among the nodes is
crucial to assure data integrity and security on the Edge.

Nonetheless, it seems that practical implementation problems of IoT networks are always related
to security and reliability issues. One of the many reasons is that those networks are usually built
up from many nodes that have some restrictions on energy consumption and processing capabilities.
Thus, they are often designed as tiny embedded systems with low-cost processors that do not have the
enough computational power to implement security systems. However, if the problems associated
with a lack of security capabilities are ignored, several disasters on the network and on the products
related to it can indeed appeared. A common mistake on simple IoT products deployment is to think
that data exchanged by the nodes on the Edge is not critical, as it does not contain private data about
users, e.g., humidity sensors sensing moisture measurements to the central node that controls the
overall climate of one house. However, since the security process is too simple or may not even exist
on these nodes, an attacker could take control of one node and then scale privileges through upper
layers of the network, reaching cloud server and the data located there.

The problem resides not only in the ability of the attacker to scale privileges in the network.
Actions taken inside the nodes on the Edge might be also harmful for the system and for the users.
Although many people might think that an attacker stealing data related to the temperature of their
rooms is not a real threat, other systems may suffer from this uncontrolled access to the Edge. A good
example of that is the research made by the authors in [5], where they analyzed the security problems
within the Philips Hue lamps. In this case, the authors were able to infer the key that protects the
firmware updates of the lamps, by measuring the patterns on the power consumption of the main chip
while making cryptographic tasks. Then, they could upload new custom versions of the firmware
to the lamps by just requesting it to the chip, once a minimum distance from the node is reached.
Upon this update being accepted, the new firmware can be programmed to request the same update
to other lamps on the network, propagating itself such as an infection. The ability to change the
software that controls the nodes is the key to allow the attackers to cause several problems to the
users. Looking at those lamps, the authors remark the possibility of causing epileptic attacks to
users by generating stroboscopic lights. In this context, some solutions are being proposed by the
community [6] in different ways, software-wise as well as hardware-wise. The security issue in IoT is
certainly gaining more attention presently, and new approaches are being proposed to improve this
aspect. For instance, some authors present testbeds to approach the difficult task of assessing security
in IoT deployments [7].

In this work, these main concerns related to the security on the Edge of IoT are addressed,
by creating a hardware platform that combines a main processing core with a Hardware Security
Module in a modular and flexible architecture, so as to foster protection strategies for current and
future sensor network deployments. Different techniques are used to guarantee privacy and integrity
in the data collected by sensor nodes, as well as mechanisms to join the network in a trustable manner.
The design and implementation of the hardware layer have been conceived to produce a trade-off
solution between computational performance, power consumption awareness and high degree of
protection with dedicated hardware resources, particularly considering the increasingly importance of
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the active operations of the nodes in IoT dynamic contexts. The runtime self-diagnosis management of
the Edge node by providing power and functional islands, real-time current consumption monitoring
and an extended range of operational modes for advanced power profiles are key features that this
work takes into account to provide dynamic adaptation for the target application scenarios.

Secondly, in order to validate and provide a baseline hardware and software platform
for supporting distributed IoT Extreme Edge applications, a lightweight and robust multi-hop
communication strategy for the Extreme Edge of IoT is proposed in this work (called Extreme-LT
Routing) that allows verifying the dynamic deployment, discovery, data processing and dissemination
of IoT devices in a reliable yet low-power resource-constrained fashion. The presented routing
algorithm is based on the self-composition of the network topology based on the deployment conditions
of the wireless nodes to find the best possible routes for the given circumstances, so as to achieve
an optimized data delivery from the sensing nodes to the Edge of the IoT layers. The design and
implementation of this technique is included as an embedded software component of the proposed IoT
platform, and it has been used as the support communication capability to analyze its behavior and
performance in real IoT Extreme Edge deployments, through the realization of intensive experimental
tests, as shown in the outcomes of the work.

The main contributions of this work can be summarized as follows:

• A modular hardware platform for the edge and extreme edge of the IoT, with HW enhancements
for security, trustability and protection against hacking. It includes the implementation of
enhanced low-power profiles to provide a trade-off solution between more demanding processing
capabilities yet reduced energy consumption.

• An extreme lightweight transmission protocol for multi-hop packet routing in
resource-constrained IoT edge sensor networks. Its main features are simplicity, robustness,
efficiency and hardware Independence.

• A detailed and extensive set of real experimental tests to study the performance of the proposed
solutions on the actual hardware implementation. The enhanced low-power profiles as well as
the dynamics of the proposed transmission technique are deeply analyzed.

The rest of the article is organized as follows: Section 2 presents the Cookie modular platform,
the particular design and implementation under study in this paper and its main features, as well as
the porting and integration of the Contiki-NG operating system into the proposed hardware platform.
Section 3 introduces the security aspects of the Internet of Things and their relevance on wireless
sensor networks. The implementation of the security solution in the aforementioned platform is also
proposed. Then, Section 4 is devoted to detail the lightweight multi-hop communication strategy
for dynamic data processing and dissemination on the Extreme Edge, which is intensively tested
and validated in Section 4.2, where the experimental results are presented and discussed. Finally,
conclusions and future works are highlighted in Section 5.

2. Modular Hardware Platform for the Extreme Edge of IoT

The baseline architecture of the proposed solution for supporting security and distributed
applications on the Edge and Extreme Edge relies on a modular hardware platform: The Cookie
node [8,9]. This architecture follows a very flexible approach that promotes the implementation of IoT
technologies with a very smooth integration effort, by considering the combination and reusability of
hardware components in a seamless and modular fashion. The general structure of a Cookie node is
composed of four main layers: The processing layer, which integrates the core elements to provide
computational capabilities to the sensor node; the communication layer, which includes the wireless
technology to provide connectivity to the surrounding network as well as the remote IoT infrastructure;
the sensor layer that implements the physical interface to interact with the target environment; and the
power supply layer, which is in charge of the voltage level provisioning and debugging capabilities
to the rest of the modular platform. The vertical connectors of the Cookie architecture facilitate the
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plug-and-play philosophy of the platform, which means that new communication, sensing, processing
and power supply technologies can easily be integrated without the need to replace or redesign the rest
of the layers. Therefore, reusability and adaptability are the main pillars to facilitate fast prototyping
upon the hardware architecture [8].

2.1. The Cookie Node

Targeting the provision of security and reliability capabilities on the Extreme Edge, a new IoT
hardware platform has been developed in this work following the design style and the modularity of
the Cookie architecture. This new self-contained version of the Cookie node aims at the next generation
of IoT devices particularly considering key objectives such as trustability, scalability, flexibility and
a security-based design, as well as adapting it to the hardware architecture and modularity of the
Cookies. In this way, the new Cookie Edge Node is indeed an IoT oriented platform, which includes
a Silicon Labs EFR32MG12 SoC as a core of the processing layer and several peripherals for sensing
and security purposes. A general schematic view of the Cookie board architecture from a functional
point of view is shown in Figure 1. The EFR32 MCU is a 32-bit Cortex-M4 SoC with a maximum
operating frequency of 40 MHz, an IEEE 802.15.4 radio and enough memory to run applications with
an increased demand on computational resources on the Edge and the Extreme Edge (256 kB RAM,
1 MB Flash). While being a 32-bit chip, it has been designed with the goal of energy efficiency, fast
wake-up times and a scalable power amplifier [10]. These features are seized in the Cookie node, while
bearing in mind the necessity of establishing a secure and trustable network.

It also includes a SI7021 temperature and relative humidity sensor [11], which can be interfaced
via I2C, and an ICM-20648 6-axis inertial sensor [12], which is accessed through SPI.

Figure 1. Block Diagram of the designed Cookie Node.

Besides the crypto accelerator integrated in the EFR32, the proposed Cookie node has another
cryptographic co-processor. The Microchip ATECC608A encryption chip [13] is a core feature of the
board, making it able to run several encryption algorithms and store the secure key on hardware,
supporting the establishment of a chain of trust among the nodes in the sensor network. Also, its design
makes the chip resistant to side-channel attacks.

With the aim of controlling its energy consumption, the new Cookie layer also includes two
operational amplifier blocks at the input of the MCU and the consumption islands. These blocks
enable the MCU to measure the consumption of the SoC and the sensors separately, and are directly
connected to a 12-bits resolution ADC, therefore allowing the platform to perform self-adapting
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energy-aware strategies to switch to a better suited power profile, according to the application context
needs. The implementation result of the new IoT Cookie node for the Extreme Edge is shown in Figure
2, where a top-layer view of hardware platform is presented.

Figure 2. Implementation of the Cookie node with Silicon Labs EFR32 MCU and Microchip ATECC608A
Cryptographic Co-Processor.

2.2. Low-Power Strategies

2.2.1. EFR32 Low-Power Modes

According to Hyung-Sin Kim et al. [14], although the idle current of each hardware component
is provided by its datasheet, the idle current of a sensor node may be impacted by many additional
factors, making it significantly greater than the sum of the datasheet values [14]. The MCU of the
Cookie, as part of the EFR32MG12 family, has a variety of low-power modes available. These modes
allow the SoC to save energy by reducing the power consumption of the processor when it is not
required to display its complete functionality. These modes are depicted as follows [15]:

• EM0 - Active/Run Mode: the normal running mode, everything is active.
• EM1 - Sleep Mode: the CPU clock is disabled. The memory can still be accessed through

Direct Memory Access (DMA) and the peripherals can be handled using the Peripheral Reflex
System (PRS).

• EM2 - Deep Sleep Mode: not only the CPU clock, but the high frequency oscillators are also
disabled. The 32 kHz low frequency oscillator is still enabled.

• EM3 - Stop Mode: all high and low frequency oscillators are disabled except for the ultra-low
frequency and, optionally, the auxiliary ones.

• EM4S - Shutoff Mode: all oscillators are disabled, there is no RAM retention and the MCU is shut
down except for the recovery logic. The only way to wake up is through an external reset.

• EM4H - Hibernate Mode: similar to the EM4S mode, providing more options for the wake-up
call. Mode EM4H can have RTCC running with the ultra-low frequency oscillator, while EM4S
cannot. EM4H does also provide some RAM retention, which EM4S does not.

2.2.2. Enhanced Low-Power Profiles

Besides the low-power modes of the EFR32, the designed Cookie node for the Extreme Edge
provides software access to enable or disable signals associated with the power supply of the external
peripherals, such as the sensors and the cryptochip, then introducing the concept of power and
functional islands. In this way, the power consumption of these islands can be arbitrarily controlled
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and adjusted to the combination that suits best each moment according to the target application and
its dynamics. This feature can be combined with the aforementioned energy modes of the processor,
therefore improving the consumption saving of the platform and enabling the creation of some more
powerful and extended Low-Power Profiles.

All possible combinations of these options for the modes studied in Section 2.4 are highlighted in
Table 1.

Table 1. Combined low-power modes of the Cookie Edge Node, allowing the creation of a more
advanced range of power profiles.

EM0 EM1 EM2

All islands disabled EM0-000 EM1-000 EM2-000
Temp sensor enabled EM0-100 EM1-100 EM2-100
Cryptochip enabled EM0-010 EM1-010 EM2-010
Inertial sensor enabled EM0-001 EM1-001 EM2-001
Temp + Crypto enabled EM0-110 EM1-110 EM2-110
Temp + Inertial enabled EM0-101 EM1-101 EM2-101
Crypto + Inertial enabled EM0-011 EM1-011 EM2-011
All islands enabled EM0-111 EM1-111 EM2-111

The naming code for each cell of the table (each combined mode) comes from the combination of
the power mode of the processor (EMx) and three bits depending on the on/off state of the power
switch of each consumption island, in the following order: the temperature sensor (x__), the encryption
chip (_x_) and the inertial sensor (__x). For example, having the EFR32 in normal sleep mode
while having the inertial sensor enabled and the other two power islands disabled would be coded
as EM1-001.

2.3. Software Integration and Usability

To provide additional software support for the proposed Cookie node beyond the embedded
libraries developed to use the platform (in case of needed), the Contiki-NG Operating System has
been integrated in this hardware node. Contiki-NG started as a fork of Contiki OS [16], with the
intent of focusing on the new 32-bits platforms, and the available partial porting of Contiki for EFR32
core [17] has been adapted to the Cookie Edge Node and completed using some of the libraries for
the EFR32 from Silicon Labs. In addition to this, the porting has been conceived to provide fully
support to the new hardware elements of the proposed solution, including the management of the
power and functional islands, the self-diagnosis of the sensor node based on the power consumption
monitoring cross-correlated with the advanced power profiles, and the enhanced security capabilities
of the Cookie. Moreover, based on the modular architecture of the Cookie platform, and since the
vertical connectors have been exploited to make full compatibility of the new hardware design with
already existing or future Cookie layers, the different analog and digital signals and their relationship
with the connected hardware elements are properly addressed in the implemented porting.

Most of the work to complement and enrich the initial porting and the adaptation to the proposed
hardware node can be classified into the following categories:

• Adaptation of the pinout and other purely hardware-related issues, such as mapping ports to
new locations.

• Completion of unfinished functions and missing parts of the Software Abstraction Layer (SAL).
Since the porting is still a work in progress, some work needed to be done in this area.

• Particularization of generic functions calling to platform-specific ones for each target or board.
Since each board provides the user with its own set of Hardware Abstraction Layer (HAL)
functions and lower level functions belonging to each MCU, some parts of the higher level needed
to be properly connected to the lower layers. This also includes adapting the drivers for the
interaction with the peripherals.
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2.4. Characterization

From a hardware perspective, this work is heavily focused on sensor nodes for the IoT, and not
on the general wireless sensor networks domain. For this reason, it might not cover some of the most
popular and traditional devices of the literature and include some others that better fit within the scope
of next generation IoT Edge devices, as commented before. Also, it will not compare the proposed
platform to smaller 8-bit or 16-bit-based platforms, since the performance and overall purpose of those
differ from the aim of the proposed Extreme Edge platform.

To study the different low-power modes, every single combination of the state of the power
islands has been tested on the Cookie Edge Node, going through all the energy modes of the processor
for each one of them. The main approach was also to test the upper boundaries of the power profile sets
in order to provide a trade-off relationship between power consumption and platform performance,
seeking a good balance for those more demanding IoT scenarios, as described in the introduction
section. The procedure started by initializing the board and forcefully staying in EM0 mode for a
few seconds. After that, the MCU went into the next mode (EM1 - sleep) and waited for another 3 s,
repeating this process successively from the highest to the lowest power mode. Before going into deep
sleep mode (EM2), a low frequency clock was prepared to wake up the MCU and proceed into the
next instruction.

During the tests, the peripherals in their enabled state were in idle mode waiting for the instruction
to start a sensing cycle, and did not perform any operation or measure. In this way, the measurements
obtained are closer to a real behavior since the sensing frequency in a real deployment is supposed to
be low, i.e., the purpose of the low-power modes is to save energy when the board is idle, not during a
measurement/transmission cycle.

The consumption of each one of the combined low-power modes can be seen in Table 2.

Table 2. Current consumption of the combined low-power modes for the upper active consumption
states (mA).

EM0 EM1 EM2

All islands disabled 11.93 10.43 6.80
Temp sensor enabled 11.94 10.44 6.81
Cryptochip enabled 11.99 10.45 6.82
Inertial sensor enabled 12.44 10.89 7.33
Temp + Crypto enabled 11.99 10.45 6.83
Temp + Inertial enabled 12.51 10.87 7.34
Crypto + Inertial enabled 12.45 10.95 7.35
All islands enabled 12.52 10.97 7.37

Table 3 shows the approximate current consumption of different platforms in their active state
(MCU active, peripherals enabled) and their idle state (MCU sleeping, peripherals turned off).
The platforms featured are OpenMoteB (CC2538 SoC based on ARM Cortex-M3, 32-bit), DotNOW
emote (STM32F103ZG [18] ARM Cortex-M3, 32-bit) and Sparkfun freeSoC2 [19] (PSoC5LP ARM
Cortex-M3, 32-bit). The consumption values shown for the platforms are taken from their respective
datasheets, obtained by adding the manufacturer values for the processor consumption in similar
circumstances than those of the Cookie for its testing: MCU active with the radio turned off and
peripherals enabled but in a wait state. The values for the stm32 consumption (DotNOW emote) that
correspond to sleep mode at 36 MHz with all peripherals enabled are shown. The consumption of
OpenMoteB was obtained by adding 13 mA of core consumption at 32 MHz and the consumption
of some common peripherals: GP timer, USB, SPI, I2C, UART, but no ADC nor Flash being used.
Consumption values for the freeSoC2 were obtained directly from the datasheet for a frequency of
24/48 MHz and 25 ◦C.
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Table 3. Current consumption comparison for the different Edge nodes.

Board (MCU Clock Frequency) Current

OpenMoteB [20] (32 MHz) 18 mA
DotNOW emote [21] (36 MHz) 17 mA
Sparkfun freeSoC2 [22] (24 MHz) 8.9 mA
Sparkfun freeSoC2 (48 MHz) 15.4 mA
Cookie Layer (38.4 MHz) 12.52 mA

2.5. Hardware Discussion

Figure 3 shows the differences in current consumption between the compared hardware platforms
regarding the results shown in Table 3. Since the clock configurations are slightly different for each one
of them, the plot has been normalized by considering the outcome of the current consumed per units
of MHz. It can be seen that the Cookie layer outperforms the rest of the platforms even with one of
the highest clock frequency operations, although in case of the freeSoC2 working at 48 MHz provides
quite similar results but for a sleeper state, in contraposition to the Cookie Edge Node in normal
mode. In the meantime, the results show that the Cookie layer obtains more than 40% of current
consumption reduction in comparison with the OpenMoteB, whose results contribute to optimize the
efficiency of the target approach regarding the balance between higher computational duty cycles
(thus more presence of active operational modes in the functional profile of the sensor nodes) and
power awareness on the Edge.
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Figure 3. Results comparison of the Extreme Edge nodes considering the current consumption per MHz.

3. Security on the Extreme Edge

Protecting the Edge and particularly the Extreme Edge is one of the main pillars of the proposed
modular platform, so as to provide trustability, robustness and reliability in the increasingly complex
and diverse application scenarios of IoT. Traditionally, the security issue has been deeply studied in
Internet, networking and computer science. However, the ubiquity of IoT devices introduces new
elements to the equation, and more vulnerabilities should be considered to be protected from potential
attackers. The security schemes are known to have a difficult implementation in real deployments
of IoT networks. The operations that take place in common schemes may spend a large amount of
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time, in comparison with the usual time that a node should be active performing sensing, processing
and communication tasks. This is an important issue when the approach for saving energy is to have
the nodes in active mode the minimum required time, and move them to a sleep mode whenever
possible. Thus, the addition of security capabilities to this type of networks must consider the extra
power consumption that will appear.

Moreover, in the new IoT world, it is common to find networks composed of embedded devices
that use communication protocols that do not necessarily have access to Internet, as in case of the
wireless sensor networks (WSNs), which are oriented to low data rate and low-power consumption.
Internet is a network that is continuously being monitored to find irregularities and attacks, but this is
certainly not the case of the WSN domain.

The security on the Edge of the IoT is a very serious problem that is being addressed by the
scientific community. In this regard, in [23] a security agent is introduced, which is a hardware element
with enough resources to carry out advanced security algorithms. This element offloads the security
tasks from the restricted sensor nodes, which are working on measuring and sending information to
the network wirelessly, although they represent a source of vulnerability, as detailed before. This is the
main reason tackling the security and trustability problem directly from the Extreme Edge perspective
is gaining important attention.

In this way, one of the main aspects to be considered is that the security should rely on securing
the criptographic key, and the ability to keep it hidden from potential attackers, so that a trustable
communication between the different parties of the network can be guaranteed. Moreover, side-channel
attacks should be foreseen, especially when an attacker may have physical access to deployed nodes.
This work focuses on these principles by protecting the key inside the IoT nodes, using dedicated
hardware with enhanced capabilities in this regard, with very few overheads in terms of cost and
power consumption.

3.1. The Chain of Trust on the Edge

When two members do not know each other, they need to establish a root of trust. This technique
is based on the fact that the manufacturer of the equipment or a Certificate Authority (CA) acts as a
third member that provides confidence by giving legitimacy to the relationship between the public key
and the member who claims to have it.

This process (known as Public Key Infrastructure, or PKI) is a combination of different elements
and procedures that allow the execution of the encryption, signature and non-repudiation of
transactions or electronic communications using asymmetric cryptography, with guarantees during
the whole process. Using PKI, members that do not know each other can authenticate and trust
among them before starting a communication. This is done by means of using signatures and
certificates. The process consists of the creation of certificates, by the CA, for each device. Subsequently,
each member has the public key of the CA with which it is possible to check the validity of the
member’s certificate with the one a communication (and thus an authentication process) has to be
performed. The certificate is a data structure that contains relevant information about the device
including its public key, and it is signed by the CA.

This concepts have been brought to the Extreme Edge by the design and implementation of
the proposed new Cookie platform, combining the main processing core with a so-called Hardware
Security Module (HSM). This dedicated accelerator allows providing the chain of trust with enhanced
security capabilities in a transparent and efficient fashion, thus creating a protected modular and
trustable hardware node for the Extreme Edge of IoT, as described in the following paragraphs.

3.2. Cookie Node with Enhanced Hardware Security

The Cookie node ensures security and trustability on the Extreme Edge by using the ATECC608A
HSM designed by Microchip Inc., which is directly attached to the main I2C bus, as stated previously
in the description of the hardware modules. This chip accomplishes two main tasks. First, the power
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and time consumption of the cryptographic operations are moved from the software running at the
microcontroller to a hardware accelerator, and second, it serves as a trustable module inside the node,
meaning that it provides security to store sensitive data inside the platform that will not be discovered
by side-channel attacks [24].

The most common strategy adopted when facing the security issue in IoT systems, is the use of
symmetric and asymmetric schemes in a mixed fashion, where the authentication processes of the
nodes relies on the asymmetric part, and the message exchange is done with symmetric algorithms.
These are known to be more efficient if the communication channel is trustable [25]. For asymmetric
authentication, usually Elliptic-Curve Cryptography (ECC) is the preferred choice, since the same
security level can be achieved with smaller key sizes compared to other alternatives, such as RSA [26].
On the symmetric scheme, the most spread cypher is the Advanced Encryption Standard (AES)
with a key length of 128 bits. With this scenario in mind, the ATECC608A was chosen because it
provides hardware acceleration for both NIST standard P256 ECC and AES algorithms, and also,
the corresponding procedure to switch from asymmetric to symmetric schemes, which is, in this case,
the Elliptic-Curve Diffie–Hellman (ECDH) algorithm.

Regarding the capabilities of the HSM to work as an isolated trustable environment,
many considerations about its configuration must be done before accessing it from the microcontroller.
In order to provide authentication based on a chain of trust, two certificates must be generated prior to
the final deployment of the network. The first one identifies the CA, and it is stored in all the HSMs.
The second one identifies the HSM itself, and it is signed by the previous CA. Both certificates are
stored in a compressed X.509 format in this isolated environment, and must be validated by all the
parties involved in the authentication process, prior to verifying the private key associated with the
public key included inside the device’s certificate. Such a private key is also generated during the
configuration stage inside the HSM, and it is never delivered outside the chip under any request.
Shared keys for the AES-128 implementation are internally generated by this chip and thus they are
never shown.

As already stated, the whole authentication process involves two stages, where the public keys are
validated against the signed certificates, and the private key is later checked to be correct. In the first
step, certificates are requested to the HSM by the microcontroller, and are exchanged over the network,
to perform a validation of the signs and get the public ECC keys of each node. First, the CA’s certificate
is checked, followed by the device’s certificate, where this public key actually resides. The second
stage is to verify the private key that is supposed to be the corresponding one to the announced public
key. This is done by generating a random number and request for the new node to sign it with its
private key, and test the result against the already known public key. All of this is performed with the
help of the hardware acceleration provided by the HSM, and the sequence of operations are described
in Figure 4.

If the new node succeeds in the verification process, it is labelled as a trustable party. Thus,
full communication availability should be allowed. Continuing with the previous ideas, a switch to
a symmetric cyphering method is made. The sensor node benefits from the capabilities of the HSM
to accelerate the ECDH key exchange that generates a shared secret between the two nodes from the
asymmetric key pairs. Since the ECDH algorithm is computed on each node separately, an eventual
“authentication confirmed” message should be sent to the new node to coordinate the operation.
After both nodes get what is called the pre-master shared secret, a Key Derivation Function (KDF),
also available in the HSM, hashes the result one more time. This extra step adds randomness to the
previous ECDH operation, and makes the following digest more suitable to use as a symmetric key.
A time diagram for this stage is shown in Figure 5.
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Once the secure channel for communications has been established, the rest of the messages can be
cyphered with the AES-128 algorithm. Notice that the HSM does not support commonly used AES
methods of operation, such as AES-CBC (Cypher-block chaining) or AES-CTR (Counter) [27]. Instead,
it only provides acceleration of a basic AES engine that works with a single block of 16 bytes. Working
only with the engine is not secure because it would not spread the information between different
blocks of data, and the resulting cyphertext could not be random enough compared to the original
plaintext source. Therefore, it is compulsory for a good performance of the symmetric scheme to
coordinate the AES engine of the HSM with an extra help from the microcontroller, to get the behavior
of the already mentioned modes of operation.
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The main microcontroller of the platform running the software in the sensor nodes also provides
its own inner hardware accelerator for AES. Table 4 compares the time spent between this accelerator
and the HSM to perform the same encryption tasks, considering different AES modes. Notice that
the external HSM provides a better time performance compared to the inner accelerator of the
microcontroller, even with the need for additional support from the software part to coordinate
the relationships between different blocks (128 bits each one) in the AES-CBC and AES-CTR modes.
This reduction in the consumed time, in combination with the low-power characteristics of the HSM,
makes this a suitable solution for securing real deployments of IoT edge networks. The added
overheads and power consumption is minimum compared to the whole behavior of the network, even
with the authentication processes that usually take more time to complete, since those are, in principle,
only executed once, and the enhanced security justifies the approach of using a dedicated hardware.

Table 4. Experimental comparison of the two security modules included in the Cookie platform,
considering the computational time for different AES modes

AES-ECB (1 Block) AES-CBC (16 Blocks) AES-CTR (16 Blocks)

EFR32MG12 31 us 210 us 219 us

ATECC608A 7 us 165 us 183 us

Finally, each message exchange should be coupled with a Message Authentication Code (MAC),
which allows the destination node to check if there was any error. This MAC can be generated by
hashing the message with the SHA-256 function in the HSM. Another alternative would be to take
advantage of the Galois field multiplication hardware accelerator of the HSM, which can be used to
incorporate the AES-GCM (Galois/Counter Mode) operation [28] to the scheme. This mode calculates
and adds the needed authentication code during the cyphering process, saving computational time.

4. The Extreme-LT Routing Protocol

As a means of validating and testing the performance of the Cookie platform in multi-hop
distributed deployment contexts, the design and implementation of a dynamic and adaptive routing
strategy is proposed in this work, seeking reliability yet lightweight operation for the Extreme Edge.
The presented routing algorithm is based on the self-composition of the network topology based on
the deployment conditions of the wireless nodes in the target scenario, to find and update the best
possible routes for the given circumstances in a lightweight and dynamic fashion, so as to achieve an
optimized data delivery from the sensing nodes to the Edge of the IoT layers.

There are some studies in the literature exploring the diverse options for the choice of IoT routing
protocols. In [29], the authors focus on ad-hoc routing and study several protocols based on different
mechanisms such as distance vector or link state. Another IoT routing protocol is RPL (Routing
Protocol for Low-Power and Lossy Networks, [30]), which is widely used and supported by many IoT
platforms and operating systems. This is reflected in the existence of many adaptations and variations
for it, to enhance its performance in certain scenarios ([31–33]), as well as reviews of RPL-based
protocols such as the one in [34].

The Extreme Edge Lightweight Transmission protocol (Extreme-LT) is a lightweight routing
protocol developed at the Center of Industrial Electronics (CEI-UPM) for its use on the Cookie modular
platform. It is a distance vector routing protocol for IoT networks, focused on simplicity, robustness
and reduced processing load. It pursues the goals of reliability, robustness, efficiency and hardware
independence set by CTP (Collection Tree Protocol, [35]), adapting and simplifying some mechanisms
used by other protocols.

The protocol distinguishes between two node types: sending nodes and a root node. A network
will always be composed of a root node, acting as a sink, and a variable number of sending nodes,
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establishing a tree topology. In this sense, Extreme-LT builds a Destination Oriented Directed Acyclic
Graph (DODAG, [30]), similar to the ones used in other IoT routing protocols such as RPL.

The protocol is designed as a simple solution to route messages from the sending nodes to the
sink, and since it is conceived to tackle the scenarios where the majority of traffic is directed to the sink
node, and having in mind that the environment is lossy and routes are expected to change frequently,
there is no necessity to store the whole upstream route in the node using routing tables, as seen in other
protocols. Instead, each node only needs to know the route to its parent. Because of this, the choice of
the best parent among the candidates is of utmost importance to the establishment of the tree and the
optimization of the network topology. For the construction of the DODAG, the protocol uses the rank
information and Received Signal Strength Indication (RSSI) as the metric to determine the best parent
node from all the potential ones. The procedure to assign the rank of a node follows the following
expression:

Rank(child) = Rank(parent) + HopIncrease (1)

With a rank increase per hop of 1 by default, the node rank is equal to the hop count from the
root, resulting in the same metric that RPL implements for its Objective Function Zero (OF0, [36]).
According to Yassien et al. [37], OF0 is not inferior to MRHOF (Minimum Rank with Hysteresis
Objective Function, [38]) in terms of Packet Delivery Ratio (PDR) and power consumption, and even
outperforms it in some scenarios. On top of that, Extreme-LT imposes a tie-break policy for equal rank
candidates based on their RSSI.

Since a node has no routes stored other than the one pointing to its parent node, for downstream
communications the protocol either uses unicast transmissions when it is a response to an upstream
message, or uses broadcast messages for the nodes to filter in reception. The former is the usual
solution, while the latter is restricted to specific situations to avoid flooding the medium.

For any given packet being transmitted, the network protocol header frame format includes data
from the sender node, such as the node ID, its rank within the network topology or the DAG ID,
as well as information related to the packet itself, such as the packet type or the packet number to keep
track of the total number of packets sent from a sending node. Different DODAGs, with different DAG
IDs, can coexist at the same time.

The protocol relies on the usage of several packet types, ranging from data packets to various
kinds of control packets: Request, Discovery (network advertisement), Repair Unicast and Repair
Broadcast. These packets have a common header, specific to the protocol, and an optional payload.
In particular, data packets have a payload and control packets do not have it. The header frame format
of the protocol is shown in Figure 6. To illustrate this frame format, different packet frames can be seen
in the examples shown in Figure 7.

0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15+

Byte 0: packet type.
Bytes 1-2: rank of the sending node.
Bytes 3-4: node ID of the destination node.
Bytes 5-6: PAN ID of the network the sending node belongs to.
Bytes 7-8: node ID of the sending node.
Bytes 9-10: packet number.
Bytes 11-12: rank of the original sender of the message.
Bytes 13-14: sequence number of the original sending node.
Bytes 15+: rest of the message payload, if any.

Figure 6. Extreme-LT header frame format.
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06 FFFF 0000 3412 FFFF 0100 0000 0100

Request message, short packet: 15B (no payload)

03 0100 0000 3412 3AC6 0A00 0100 0100 48E26300…

Data message, long packet: 95B = 15B header + 80B payload

Figure 7. Extreme-LT header examples, with and without payload.

The general functionality of a sending node under the protocol can be seen as a state machine in
Figure 8, and Figure 9 shows the corresponding one for the root node. The purpose of the sending
nodes is to connect to the network in the best possible conditions, to then start measuring data
from the sensors and sending it towards the sink node. For this, a sending node will broadcast a
request message when booted. This is the first route creation mechanism provided by the protocol.
Any node that receives this message will respond with a unicast discovery message directed to that
node. The discovery message contains network advertisement information, including the rank of
the node within the network topology. The new node will retrieve the network information from the
message and store the node ID as its parent, assigning itself a rank one step higher than the rank of the
parent. When other nodes in range also receive the request and send their discovery messages back
to the new node, if their rank is better than the current parent or they have equal rank but a higher
RSSI, the new node will accept them as its new parent node, replacing the former one. If the rank is
lower, the discovery message will be ignored. This mechanism ensures that every node will connect to
the reachable parent that offers the best connection to the sink, optimizing the route composition and
reducing the number of relay hops as much as possible.

The same request-discovery mechanism triggers when a node loses connection to its parent.
When a node encounters a fatal transmission problem at its data link layer, after retrying for a given
amount of attempts, the node will delete its parent and broadcast a request, accepting a new parent
with the best rank from the nodes within its range. After that, it will broadcast a repair command so
that their child nodes can repair themselves, updating their routes and ranks. From the perspective of
the rest of the network, this mechanism works as if the node had just been turned on as a new addition
to the network, although internally the node will increase its sequence number, so it can track the
number of times it has been forced to repair its route.

The second mechanism apart from the request-discovery method, is the network creation from
the root. When the root node is booted, it will broadcast a discovery message to advertise the network.
Every node in range will connect directly to it, since the sink has rank 0, and spread the network
advertisement by broadcasting a discovery message with their own rank. Both mechanisms coexist so
the creation of the network can be done in a flexible way, while also making it robust in case of new
additions or changes in the topology. An example of a normal startup, depicting both mechanisms,
is shown in Figure 10. The flow chart shows a situation where a node A is deployed on its own, with no
other nodes nearby to connect to. It will request a rank and receive no answer. After that, the root
node is plugged. It will create a network and broadcast a discovery message that node A will receive,
accepting the root as its parent node. It will then spread the discovery to other nodes (none in this
case). After a while, a node B is connected, and will broadcast a request as node A did. Assuming
that the root node is out of range and node A is the only one able to respond to, it will send back a
discovery message, being a unicast in this case. Node B will accept node A as its new parent and then
it can begin the data transmission towards the network sink through it.
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Figure 8. State machine of a sending node (non-root) under Extreme-LT.

After the network is established, the nodes will start sending their data to the sink node. For this,
the data packets are always sent to the parent node. The node will first inspect the packet header,
checking if the destination is their own node ID or another node ID upstream, i.e., the root ID. It will
also check if the rank of the sending node is correct. If it is correct, it will relay the message upstream,
or process the content of the payload if the destination was its own node ID. If not, there is an error in
the network, since that node should not be sending data to this one. The node will ignore the data
packet and send back a unicast repair message.

When a node receives a repair command, it will first filter it compared to its parent node ID.
A node will only accept repair commands from its parent. If the sender node ID is the node ID
stored as parent, the node will delete it and broadcast a request. After this, it will send broadcast a
repair command so its child nodes, if any, will repair themselves and update their routes and ranks.
The protocol can be condensed into these two rules:
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• A node will only send data packets to its parent node. A data packet from a lower ranked node
implies the network topology has changed and needs to be repaired.

• A node will only accept repair commands from its parent node. Repair commands received from
any other node will be ignored.

Node start

Send discovery
broadcast

Received
request

Process incoming data
(steady state)

Send discovery
unicast

Figure 9. State machine of the sink node (root) under Extreme-LT.

The robustness of the protocol comes from its simplicity. Loops are avoided by ensuring a node
will only accept a parent if its rank is the best among all reachable nodes, and will only accept repair
commands from the node it has stored as its parent. Discovery messages from nodes with a rank that
is not better than the current one will be ignored, and repair commands received from any node that is
not its parent will be ignored as well.

As a summary, Extreme-LT is a distance vector protocol developed for the testing and validation
of the Cookie platform, but not exclusive to it. It is based on the creation of DODAGs, relying on the
robustness granted by the route creation mechanism to implement a reactive maintenance strategy.
This way the control packet flow within the network is minimized, reducing the route overheads.

The following section presents the tests carried out on the hardware platform to validate its
performance under the protocol, detailing the testing conditions and procedure, the parameters used
and the results obtained, which are analyzed and discussed subsequently.
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Figure 10. Message exchange in a normal operation under Extreme-LT.

4.1. Preliminary Tests

4.1.1. Range Tests

Before testing the performance of the nodes using the protocol, outdoor tests have been carried
out to determine the transmission power of the Cookie platform and the maximum acceptable range
of communication. The setup for the tests consisted on a sender node, deployed in a fixed position
at ground level, sending packets periodically to a receiver node. The transmission power was set
at 20 dBm, which is the maximum power gain of the antenna. The distance between the nodes was
initially 1.5 m from which the receiver node was moved away, increasing the separation until the
sink node was eventually unable to receive messages. This end condition was met at an approximate
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distance of over 130 m, beyond that distance the RSSI of the incoming messages was −85 dBm or
lower and some of the packets were lost.

4.1.2. Traffic Tests

The next set of tests were designed to create heavy traffic conditions on the sink node and
evaluate its capability to receive and process data from several nodes under such conditions. For this,
the setup consisted on a receiver node connected to a terminal and 10 sending nodes deployed
around it. Transmission power was set at −15 dBm. After being connected, all sender nodes started
sending messages to the sink with the following parameters: sending interval = 0.1 s; packet size per
transmission = 95 B; minimum number of iterations per node = 1000 (which means that the test lasted
until every sending node had sent at least 1000 packets). This sets a worst-case scenario to analyze
the performance of the protocol under such conditions. The results obtained are shown in Table 5,
computing a total amount of 11041 packets, with PDR (number of packets received at the destination
divided by the packets sent by the source, expressed as a percentage) mean equal to 98,4 %. From
these outcomes, where the worst PDR was more than 96%, it can be concluded that the sink node is
able to endure heavy traffic conditions, being able to receive and process most of the messages sent to
it (certainly very close to 100%).

Table 5. Traffic test: saturation of the sink node.

Node A Node B Node C Node D Node E

Received 1087 1079 1090 1094 1085

Total 1103 1099 1104 1103 1104

PDR (%) 98.606% 98.198% 98.808% 99.203% 98.308%

Node F Node G Node H Node I Node J

Received 1095 1069 1090 1083 1089

Total 1103 1103 1112 1103 1107

PDR (%) 99.303% 96.1012% 98.24% 98.206% 98.414%

The results of these preliminary tests ensure the sink node will be able to support the incoming
traffic and also determine the maximum transmission range of the nodes, and serve as the baseline for
the following rounds of testing, in which the performance of the nodes under the routing protocol will
be tested.

4.2. Extreme-LT Experimental Evaluation and Results

4.2.1. Setup, Test Procedure and End Conditions

Once the functionality of the platform was verified, a series of tests were performed to trial its
behavior under the protocol dynamics, particularly pushing its operation to very extreme boundaries.
For these tests, the nodes were deployed in an indoor environment, with the network distribution
shown in Figure 11. In this schematic representation of the main lab room (approximately 238 m2),
the red dot represents the root node, acting as a sink, and the yellow dots represent the sensor nodes,
able to both generate messages on their own and relay messages from other nodes. The rectangles
represent the working disposition of the lab, just as a reference to show the distribution of the nodes
and the different locations used during the deployment and testing process.

The setup parameters considered to perform the experimental tests are configured as follows:
two packet sizes were used: small packets, with a length equal to 15 B, and large packets, with a length
equal to 95 B. These two sizes correspond to those of control and data packets used by the protocol.
The message interval for the sender nodes was established at 1 s, 0.5 s and 0.1 s respectively (so very
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aggressive traffic conditions, in which all the nodes are transmitting and routing packets intensively),
with 3 different intervals tested over 2 different packet sizes, for a total of 6 test rounds, where each
node generates a minimum of 1000 packets per iteration, as shown below. This setup parameters are
summarized in Table 6.

Table 6. Parameters used for each round of testing.

Parameters Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

Packet size 15 B 15 B 15 B 95 B 95 B 95 B

Sending interval 1 s 0.5 s 0.1 s 1 s 0.5 s 0.1 s
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Figure 11. Distribution of the deployed sensor nodes for the routing protocol tests within the indoor
scenario.

For each round of testing, the sensor nodes were deployed and turned on in the positions shown
in figure 11, then the root node was connected. By connecting the root node last, the route creation will
start from the root node and propagate downstream to the rest of the nodes. This is the second network
creation mechanism described in the protocol. An example of the network creation procedure for the
setup used in the tests is shown in figure 12. The topology is established by the network depending on
the deployment conditions of the moment. After joining the network, each sensor node started sending
packets towards the root node, be it directly or through multiple hops, bouncing in the intermediate
sensor nodes. The distribution of the nodes in the lab was the same for all the tests, having their
positions fixed, and the connections between them were established automatically according to the
protocol, thereby creating some differences in the position of each individual node within the topology.

Because of these differences, the nodes will not be addressed individually but attending to their
rank in the network: the sink node has rank 0, the nodes directly sending to it have rank 1, and so on.

Each round of testing was stopped after every node had sent a minimum of 1000 packets to the
sink. With this, the PDR of the nodes can be measured and compared, to determine the impact of the
packet size and sending interval.

4.2.2. Test results and discussion

The results obtained for each node, sorted by node rank, can be seen in table 7. For each of the
rounds of testing, the route creation mechanism established the network topology, resulting in the
node distribution shown in figures 13a to 13f.

Figure 11. Distribution of the deployed sensor nodes for the routing protocol tests within the
indoor scenario.

For each round of testing, the sensor nodes were deployed and turned on in the positions shown
in Figure 11, then the root node was connected. By connecting the root node last, the route creation
will start from the root node and propagate downstream to the rest of the nodes. This is the second
network creation mechanism described in the protocol. An example of the network creation procedure
for the setup used in the tests is shown in Figure 12. The topology is established by the network
depending on the deployment conditions of the moment. After joining the network, each sensor node
started sending packets towards the root node, be it directly or through multiple hops, bouncing in the
intermediate sensor nodes. The distribution of the nodes in the lab was the same for all the tests, with
their positions fixed, and the connections between them were established automatically according
to the protocol, thereby creating some differences in the position of each individual node within the
topology.

Because of these differences, the nodes will not be addressed individually but attending to their
rank in the network: the sink node has rank 0, the nodes directly sending to it have rank 1, and so on.

Each round of testing was stopped after every node had sent a minimum of 1000 packets to the
sink. With this, the PDR of the nodes can be measured and compared, to determine the impact of the
packet size and sending interval.
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Route creation example:
1) Root connection (rank 0)
2) Root -> A, B, C, E (rank 1)
3) A -> root, B, C (ignored)
B -> root, A, C, E (ignored)
C -> D (rank 2), root, A, B, E (ignored)
E -> G (rank 2), root, B, C (ignored)
4) D -> C, F (rank 3)
G -> E, H, I (rank 3)
5) F -> D, H, I (ignored)
H -> G, F, I (ignored)
I -> G, F, H (ignored)
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Figure 12. Example of network creation from the root.

From these results, it can be concluded that, as expected, a lower sending interval increases the
time the nodes are busy, making a node less capable of relaying messages. This condition makes the
routing protocol produce more disperse routes with less child nodes per parent over a highly ramified
tree, with many nodes connected to a single node in the same branch. This is, when the saturation of
the nodes increases, the protocol tends to form N-ary subtrees with a lower N. In this way, the protocol
avoids bottlenecks at route creation, even if it implies that the network will have a higher traffic overall
(which ultimately compensates the possibility of losing packets and/or the number of retransmissions
produced by bottlenecks).

In these circumstances, a node that could have rank 2 connecting directly to a rank-1 parent node
has instead rank 3, because the rank 1 parent node is saturated and does not accept the request from a
potential child node (which then connects to a higher rank node that is less saturated). On the other
hand, this decision will effectively increase the traffic of the network, since the intermediate rank 1

Figure 12. Example of network creation from the root.

4.2.2. Test results and discussion

The results obtained for each node, sorted by node rank, can be seen in Table 7. For each of the
rounds of testing, the route creation mechanism established the network topology, resulting in the
node distribution shown in Figure 13a–f.

From these results, it can be concluded that as expected, a lower sending interval increases the
time the nodes are busy, making a node less capable of relaying messages. This condition makes
the routing protocol produce more disperse routes with less child nodes per parent over a highly
ramified tree, with many nodes connected to a single node in the same branch. This is, when the
saturation of the nodes increases, the protocol tends to form N-ary subtrees with a lower N. In this
way, the protocol avoids bottlenecks at route creation, even if it implies that the network will have a
higher traffic overall (which ultimately compensates for the possibility of losing packets and/or the
number of retransmissions produced by bottlenecks).
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(a) Test round 1: 15 B, 1 s. (b) Test round 2: 15 B, 0.5 s. (c) Test round 3: 15 B, 0.1 s.

(d) Test round 4: 95 B, 1 s. (e) Test round 5: 95 B, 0.5 s. (f) Test round 6: 95 B, 0.1 s.

Figure 13. Node rank distribution generated for rounds 1 to 6.

In these circumstances, a node that could have rank 2 connecting directly to a rank-1 parent node
has instead rank 3, because the rank 1 parent node is saturated and does not accept the request from a
potential child node (which then connects to a higher rank node that is less saturated). On the other
hand, this decision will effectively increase the traffic of the network, since the intermediate rank
1 node will have to route messages coming from all the nodes of its branch, regardless of whether they
are sent directly to it or through a relay node.

Also, the congestion comes with a higher packet loss rate. By lowering the sending interval, the
PDR from the higher rank nodes drops, reaching rates around 70% in the worst cases. This is due to
the higher load put on the relay nodes, since those nodes must send their own messages and redirect
messages coming from their child nodes.

For an easier interpretation, the results of each round of tests have been merged, grouping the
received and total number of messages attending to the rank of the nodes and obtaining a combined
PDR of the nodes with rank 1, rank 2 and so on. These combined results are depicted in Table 8.

A comparison of these results is presented in Figure 14. There is indeed a tendency to avoid
bottleneck nodes and disseminate the routes. Such a tendency is accentuated as the sending interval
decreases, as can be seen when comparing the results from round 3 to rounds 1 or 2, but there is no
direct correlation between the increase in sending frequency and a lower PDR in some cases. As the
figure shows for rounds 5 and 6, a faster sending interval (T = 0.1 s) for the same packet size forced the
network to route packets in a different way, achieving better delivery rates for each rank than those
obtained for a slower message frequency (T = 0.5 s). This is explained by the route creation mechanism.
The protocol chooses the best available parent at route creation, selecting the node with the best rank
and RSSI as a new parent. Once the route is created and all nodes have started sending, it may occur
that the parent node is saturated most of the time due to the high message load from other nodes,
being unable to route messages. Thus, the node will delete it and look for a new one, selecting a parent
able to correctly receive and route its messages (event with a higher rank) due to having lower load.
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In a less saturated scenario, the node might retain its initial parent and stay working under heavier
traffic conditions, resulting in a lower PDR. In more saturated circumstances, this initial parent was
rejected due to its high load and incapability to relay all the messages it received, resulting in a better
PDR due to the reactive mechanism that establishes the routes.

Table 7. Individual node results for each test round.

Round 1 Node A Node C Node B Node D Node F Node E Node H Node G Node I

Received 1316 1366 1368 1365 1365 1367 1240 1362 1243
Total 1367 1369 1369 1369 1370 1368 1301 1370 1300
% 96.269% 99.781% 99.927% 99.708% 99.635% 99.927% 95.311% 99.416% 95.615%
Rank 1 1 1 2 2 2 2 2 3

Round 2 Node A Node C Node E Node B Node F Node G Node D Node I Node H

Received 1144 1137 1140 1132 1135 1132 1136 1136 1137
Total 1149 1179 1146 1135 1178 1149 1148 1179 1149
% 99.565% 96.438% 99.476% 99.736% 96.350% 98.520% 98.955% 96.353% 98.956%
Rank 1 1 1 1 2 2 2 3 3

Round 3 Node A Node B Node G Node D Node C Node E Node I Node F Node H

Received 1324 1339 1299 1172 1325 1280 1219 1189 915
Total 1342 1345 1341 1349 1345 1334 1333 1334 1088
% 98.659% 99.554% 96.868% 86.879% 98.513% 95.952% 91.448% 89.130% 84.099%
Rank 1 1 1 2 2 2 3 3 4

Round 4 Node A Node C Node B Node E Node F Node G Node D Node I Node H

Received 1184 1148 1169 1082 1120 1062 1105 1026 1035
Total 1203 1201 1201 1195 1190 1201 1189 1190 1191
% 98.421% 95.587% 97.336% 90.544% 94.118% 88.426% 92.935% 86.218% 86.902%
Rank 1 1 1 2 2 2 3 3 3

Round 5 Node A Node C Node B Node E Node G Node F Node H Node D Node I

Received 1322 1209 1369 1096 1044 994 918 930 823
Total 1382 1267 1380 1264 1266 1199 1267 1267 1197
% 95.658% 95.422% 99.203% 86.709% 82.464% 82.902% 72.455% 73.402% 68.755%
Rank 1 1 1 2 2 3 3 3 4

Round 6 Node C Node B Node D Node I Node A Node E Node H Node G Node F

Received 3653 4319 1486 764 2960 3326 834 1417 936
Total 3707 4345 1583 809 2983 3397 969 1473 1218
% 98.543% 99.402% 93.872% 94.438% 99.229% 97.910% 86.068% 96.198% 76.847%
Rank 1 1 2 2 2 2 3 3 4

Another aspect that stands out is the relationship between packet size and PDR. It is expected
that bigger packet sizes will put a heavier load on the nodes and cause an increment in the time the
nodes are busy processing the data, thus reducing the idle time they have left to relay messages from
downstream nodes. A decrease in PDR is therefore expected, more noticeable as the number of hops
increases. As it can be seen when comparing results obtained from rounds 1 and 4, or rounds 2 and 5,
a bigger packet size for the same sending interval results in a worse PDR for nodes of the same rank.
Also, it is important to highlight that the created traffic is a very extreme case of a normal application
context, so it allowed to analyze experimentally the performance of the multi-hop communication
strategy and the designed Cookie node under adverse traffic conditions.
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Table 8. Combined PDR attending to node rank.

Test Round Sum Rank 1 Sum Rank 2 Sum Rank 3 Sum Rank 4

Round 1

Received 4050 6699 1243 0
Total 4105 6778 1300 0
% 98.660% 98.834% 95.615% 0.000%
Nodes 3 5 1 0

Round 2

Received 4553 3403 2273 0
Total 4609 3475 2328 0
% 98.785% 97.928% 97.637% 0.000%
Nodes 4 3 2 0

Round 3

Received 3962 3777 2408 915
Total 4028 4028 2667 1088
% 98.361% 93.769% 90.289% 84.099%
Nodes 3 3 2 1

Round 4

Received 3501 3264 3166 0
Total 3605 3586 3570 0
% 97.115% 91.021% 88.683% 0.000%
Nodes 3 3 3 0

Round 5

Received 3900 2140 2842 823
Total 4029 2530 3733 1197
% 96.798% 84.585% 76.132% 68.755%
Nodes 3 2 3 1

Round 6

Received 7972 8536 2251 936
Total 8052 8772 2442 1218
% 99.006% 97.310% 92.179% 76.847%
Nodes 2 4 2 1
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Figure 14. Results comparison of PDR for different packet sizes and sending intervals, grouped by
node rank.
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5. Conclusions and Future Work

In this work the new version of the Cookie node for the Extreme Edge of IoT is fully presented,
a modular hardware platform conceived and designed to provide trustability and robustness necessary
for the present and future of IoT applications, and based on the flexibility and scalability paradigm of
the Cookie platform. The functionality of this Edge node has been showcased in real experimental
performance tests to validate both the hardware and software integration of the proposed system.
Additionally, a porting of the Contiki-NG operating system to the platform has been developed as an
example of the flexibility and adaptability that is targeted with this new IoT sensor node, which opens
the possibility of porting different operating systems into the platform in the future.

Moreover, a lightweight routing protocol designed for sink networks, one of the most commonly
used topologies in IoT, is also presented. The protocol takes advantage of mechanisms used by
other protocols and implements a simple, lightweight and robust multi-hop communication strategy
for the Extreme Edge of IoT. Its performance has been tested on the Cookie platform, obtaining an
extensive analysis of the routing mechanism within intensive communication scenarios with heavy
traffic patterns, where the amount of data to be transmitted within the network has been overloaded
to study the behavior of the sensor nodes within such extreme conditions.

On the other hand, security is a major concern in IoT, and the Edge is the most vulnerable part of
the whole ecosystem. A hardware platform with a security-conscious conception during the design
and implementation of the proposed Cookie Edge Node solution has been introduced. With very
few costs and power consumption overheads, the security increases dramatically. Overall, the results
show that a high balance between performance, security and power awareness, and self-diagnosis in
dynamic scenarios (where the active operation, participation and collaboration among the nodes is an
increasingly common feature in IoT), is certainly possible with the proposed design in this work. In this
sense, the proposed Cookie platform is currently being used in practical use cases within the railway
field, to provide trustability and chain of trust for on-board and on-track sensor network deployments.
The presented platform is serving as the baseline IoT sensor node technology for such application
contexts, and further in-field network deployments will be fully supported by this hardware platform.
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Abstract: Recently, the application of machine learning on embedded systems has drawn interest
in both the research community and industry because embedded systems located at the edge can
produce a faster response and reduce network load. However, software implementation of neural
networks on Central Processing Units (CPUs) is considered infeasible in embedded systems due to
limited power supply. To accelerate AI processing, the many-core Graphics Processing Unit (GPU)
has been a preferred device to the CPU. However, its energy efficiency is not still considered to be
good enough for embedded systems. Among other approaches for machine learning on embedded
systems, neuromorphic processing chips are expected to be less power-consuming and overcome
the memory bottleneck. In this work, we implemented a pedestrian image detection system on an
embedded device using a commercially available neuromorphic chip, NM500, which is based on
NeuroMem technology. The NM500 processing time and the power consumption were measured
as the number of chips was increased from one to seven, and they were compared to those of a
multicore CPU system and a GPU-accelerated embedded system. The results show that NM500 is
more efficient in terms of energy required to process data for both learning and classification than the
GPU-accelerated system or the multicore CPU system. Additionally, limits and possible improvement
of the current NM500 are identified based on the experimental results.

Keywords: embedded system; artificial intelligence; hardware acceleration; neuromorphic processor;
power consumption

1. Introduction

An Artificial Neural Network (ANN) consists of a large group of nodes, each of which is assigned
a value or synaptic weight to act as an artificial neuron. Calculation of the weight for each neuron
for learning and the weighted function value of the input vectors for classification requires large
computing power; thus, massively parallel processing can be beneficial. Many-core CPUs and GPUs
can be employed in a server for the acceleration of neural network computation to exploit the inherent
parallelism of the ANN. Currently, GPUs are the most widely used hardware accelerator of artificial
intelligence because GPUs are specialized in performing the same operations on many data instances
simultaneously, which is inherently required in the ANN. However, CPUs and GPUs are power-hungry
devices, and the energy-intensive computation of the ANN is one of the critical problems that make it
difficult for the ANN to be used for power-limited embedded systems.

To make the neural network less power-hungry, the use of specially designed hardware dedicated to
neural network performance has been studied. The use of Field-Programmable Gate Arrays (FPGAs) is
one such effort; FPGAs consume less energy and can be configured as a custom neural-network-specific
hardware [1,2]. A study comparing energy efficiency between an FPGA and GPU in [3] found that
simple and parallel computations were performed well on the GPU, but the FPGA outperformed the
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GPU in terms of energy efficiency as the complexity of the computational pipeline grew. FPGAs and
GPUs offer suitability depending on the application specifications [4]. Thus, the hybrid use of both
FPGAs and GPUs [5] has been researched as an efficient implementation of neural networks, especially
on embedded systems that require both performance and energy efficiency [6].

Another approach to accelerate the neural network is the ASIC (Application-Specific Integrated
Circuit) implementation of neural network models. In particular, neuromorphic chips have been
developed to implement brain-like computation to overcome the memory bottleneck problem in parallel
processing with von Neumann architecture processors. There are commercial neuromorphic chips
available on the market, such as Intel’s Loihi and General Vision’s NeuroMem. ZISC (Zero Instruction
Set Computer) is a hardware implementation of the ANN (Artificial Neural Network) commercialized
by IBM, allowing massively parallel processing of digital data [7]. Its feed-forward network provides
a nonlinear classifier, which can be used for unknown and uncertainty detection. Based on ZISC
technology, General Vision developed the CM1K chip, which consists of 1,024 neurons that can store
and process 256-byte length vectors [8,9]. The CM1K chip has been applied to face recognition [9], a fish
inspection system [10], and an authentication system by face and speech recognition [8]. The NM500
chip is a successor of CM1K and consists of 576 neurons [11]. Neurons of NM500 have exactly the
same behavior as those of CM1K, but it is operated at a higher clock rate and consumes less power.
The possibility of adopting the NM500 chip for an ADAS (Advanced Driver Assistance System) has
been discussed in [12].

While much research has been done to compare the performance and the energy efficiency of
FPGAs and GPUs, little work can be found on neuromorphic chips. IBM’s TrueNorth chip is reported
as highly energy efficient in [13], and NM500′s power consumption is available in the hardware
manual. In [14], the authors studied the energy efficiency of a neuromorphic computing system using
ReRAM (Resistive RAM). Others compared the performance of neuromorphic computing systems by
simulation [15]. However, most research has focused on the neuromorphic chip’s performance and
power consumption. When it is used as an accelerator in a system, other factors such as data transfer
from the host system and control subsystem for interconnection should be considered because the
energy cost of data movement is much higher than that of computation [16]. Examining the benefits
and the problems of the neuromorphic hardware accelerator for a real-world application needs to
include an evaluation of the performance with a real target system.

In this paper, we study the performance and the energy efficiency of a neuromorphic chip
employed in an embedded system using a currently available commercial neuromorphic chip, NM500,
by comparing its performance and power consumption with those of CPU and GPU cores. To this
end, a pedestrian image detection system was implemented and tested on a real target equipped with
NM500 chips. The number of neurons in the tested neural network ranges from 576 to 4032 due to
the hardware restriction of the evaluation board containing the neuromorphic chips. For these three
different configurations (neuromorphic chips, GPUs, and CPUs) of embedded systems, the processing
time and power consumption for learning and classification are measured, and the energy efficiency
for processing a data instance is calculated and compared.

This paper is organized as follows. Section 2 provides a brief description of the neuromorphic
hardware tested in this work. Section 3 explains the datasets and how they are preprocessed for
evaluation. In Section 4, experimental results on the power consumption and performance in detecting
pedestrian images using NM500 hardware are presented and compared with those on a CPU-only
system and a GPU system. Finally, Section 5 discusses applications and possible improvements of the
neuromorphic hardware.

2. Neuromorphic Hardware

The neuromorphic chip used in our work to accelerate AI processing in an embedded system
is NM500 by Nepes, which is based on the NeuroMem technology of General Vision. An NM500
chip has 576 hardware neurons; a hardware neuron is an identical element that can store and process
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information simultaneously. They are all interconnected and working in parallel. NM500 makes these
hardware components (neurons) collectively behave as a KNN (K-Nearest Network) or RBF (Radial
Basis Function) classifier [11].

Figure 1 shows the interconnection architecture of the NM500. Logically, the network is three-layered:
one input layer, one hidden layer, and an output layer. All the neurons in the chip can be considered as
nodes in the hidden layer. Each hardware neuron has 256-byte storage, which limits the input size to
less than or equal to 256 bytes. The output size is 2 bytes, so the number of candidate class labels for
training data is limited to 65,536. Input data and commands are fed to each cell in parallel, and neurons
are daisy-chained to signal to the next neuron to accept the input data in training neurons sequentially.
Though the layers cannot be made deeper, the hidden layer is extendable by stacking up multiple
NM500 chips. The “Neuron interconnect” module shown in Figure 1 enables the use of multiple chips
in parallel to expand the size of the neural network by an increment of 576 neurons.
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A neuron has a model and IF (Influence Field) value after its learning process, stored in its volatile
memory. When data are provided for classification, each neuron calculates the distance of a data
point from its model and fires if the distance is less than the IF value. Each neuron examines the
response of others on the parallel bus, and if another neuron reports a smaller distance value, then it
withdraws itself [11].

The NM500′s architecture is not meant to be configured to have a deeper neural network,
which may affect accuracy for specific applications. However, because the neural network has only
one hidden layer, the classification time of the neuromorphic hardware becomes almost constant.
Considering the simplicity of the hardware configuration, it could be suitable for embedded systems
whose requirements can be fulfilled by a relatively simple neural network.

3. Benchmark Problem and Data Preprocessing

Because embedded systems have scarce computing resources and power constraints, machine
learning problems with a complex model are often infeasible to execute on the system. For example,
AlexNet requires about 727 MFLOPS to process a 227 × 227-pixel image, while BCM2835 MCU
in Raspberry Pi B development board delivers about 213 MFLOPS at peak operating frequency,
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which requires 3.4 s to process an image. Thus, we need to select a machine learning problem that can
be feasibly executed on embedded systems.

Pedestrian detection is an important problem in computer vision and has broad application
prospects, such as video surveillance, robotics, and automotive safety [17,18]. As autonomous driving
systems emerge, detecting small-size pedestrians in images becomes more important [19]. Furthermore,
pedestrian detection on an embedded system using GPUs has been studied by researchers, including
a recent example in [20]. Thus, because of its practical importance and implementation feasibility,
pedestrian detection using the RBF classifier was selected to benchmark the hardware accelerators for
embedded systems in our experiments.

For test datasets, the INRIA Person Dataset [21,22], which is very popular in pedestrian detection
research [23], was used for our experiments. From the dataset, HOG (Histogram of Oriented Gradient)
features with the SVM classifier were extracted to detect a human in [21]. Normalized images in
128-by-64-pixel format were used in our experiments. A pedestrian data point consists of an image
pair in which one is a mirror image of another. Non-pedestrian images were generated by randomly
selecting 128-by-64-pixel areas from the original image. Table 1 summarizes the images used in
our experiments.

Table 1. Dataset for experiments.

Use Category No. of Images

Training Pedestrian 2416
Non-Pedestrian 2416

Classification
Pedestrian 1132

Non-Pedestrian 4531

First, the HOG is used as a feature descriptor for human detection to identify a pedestrian.
The HOG descriptor methods have shown high performance in human detection and have been
widely used for pedestrian detection [24,25]. The image is divided into local regions, where the
gradient, direction, and size are computed using the differences in brightness between adjacent pixels.
Histograms are generated using the calculated values to make feature vectors.

Because the NM500 chip has a memory of only 256-byte input, the HOG descriptors that are
first generated with a high dimension (3780 in our implementation) are not suitable to be used.
To reduce the dimension of the features, the PCA (Principal Component Analysis) method was adopted.
PCA is a linear transformation feature extraction method that uses less data than the input data while
maintaining the most important information of the input data [25,26]. Using the PCA method, the HOG
features are transformed into 40-dimensional data. Finally, 32-bit floating-point features are quantized
to 8-bit data using the vector quantization method in [27], which results in 160-byte input vectors.

4. Experimental Results

The neuromorphic chips are packaged into a hardware module named NeuroShield. The NeuroShield
module is an evaluation board with one NM500 chip containing 576 neurons, on top of which three more
extension modules can be stacked at most. The extension module has two NM500 chips and is called
NeuroBrick. Thus, a NeuroShield module supports at most 4032 neurons. Because the NeuroShield
module has one NM500, and each NeuroBrick module has two NM500 chips, the neuromorphic
processing can be done with four different numbers of neurons: 576 with only the NeuroShield module,
1728 with one NeuroBrick on it, 2880 with two NeuroBricks, and 4032 at maximum.

To compare the neuromorphic chip-based system with other systems, the same pedestrian
detection neural network was implemented on a CPU-only system and a GPU system. The CPU-only
system is an embedded board with the Exynos5422 processor. The Exynos5422 CPU of the embedded
board used in our experiments has an 8-core CPU, which consists of 4 fast (big) cores and 4 slow (little)
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cores. Because little cores are too slow to be used for neural network processing, only big cores were
used in the experiments.

As a GPU system for comparison, Nvidia’s Jetson Nano board with 128 GPU cores was
used. The neural network on the GPU system was implemented using the Tensorflow-GPU library.
The NeuroShield module was connected to the Jetson Nano board using an SPI (Serial Peripheral
Interface) connection at 2 MHz. The power consumption of the NeuroShield module was measured
separately from the Jetson Nano board. Table 2 summarizes the hardware configurations of each
system test in the experiments. The neuromorphic system (NeuroShield) does not have a CPU or
external memory because NM500 is not a Von Neumann architecture.

Table 2. Hardware specifications.

System Type Accelerator CPU Memory

CPU system None Octa-core ARM @2 GHz
(A15 × 4 & A7 × 4) 2 GB LPDDR4

GPU system GPU (128 cores)
Quad-core ARM @1.43

GHz
A57 × 4

4 GB LPDDR4

Neuromorphic system NM500
(up to 7 chips) - 256 B per each neuron

Figure 2 shows the power consumption of three implementations with different underlying
hardware: NM500, GPU, and CPU-only. For the CPU-only system, we measured the power
consumption in two cases: using only one core and using all four big cores. The GPU system
consumes about 4.85–4.89 Watts on average. The power consumption of the GPU system includes the
power consumed by the CPU in the system. For a fair comparison with the neuromorphic hardware,
the power consumed only by the GPU cores needs to be measured, which could not be done because
the GPU cores are integrated with CPU cores in the Jetson Nano SoC. Therefore, to estimate the power
consumption of the GPU cores, the power consumption of the board with GPU cores off at idle state
was measured, which is about 1.41 Watts on average. The GPU line in Figure 2 shows the power
consumption of the entire system, while the GPU–idle line shows the power consumption estimated
by subtracting the average power consumption of the Jetson Nano board at idle state with the GPU
cores off.
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The GPU cores cannot be turned off partially; thus, the power consumption remains the same
regardless of the number of neurons. The power consumptions of both the CPU-only and GPU systems
are barely changed, while that of the NM500 system linearly increases as the number of chips (hardware
neurons) employed increases. An additional NM500 chip containing 576 hardware neurons consumes
approximately 100mW, so the total power consumption increases by 0.2 W for every additional 1172
neurons. The power consumption of the NeuroShield is a little higher than that of the NeuroBrick
because the NeuroShield has an FPGA for interfacing with SPI, I2C, and USB.

Figure 3 shows the amount of time needed to train a neural network for the three systems.
The time in the graph is in a base-10 log scale. Training on the CPU-only system takes much longer
than other systems, about 15–185 times longer than the GPU system even though four cores are used.
The learning time of the neuromorphic chip-based system is even shorter than that of the GPU system,
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To determine the classification performance, 1132 pedestrian images and 453 non-pedestrian
images were tested. The processing time of the neuromorphic-based system is unchanged even though
the number of neurons used in the system is increased, as shown in Figure 4, because all hardware
neurons are in the same layer and execute in parallel. On the other hand, the processing times of
the CPU-only system and the GPU system increase as the number of neurons increase. Nevertheless,
the GPU system is the fastest among the systems to process all the test images. We could not test with
more neurons because the current NeuroShield does not support more than three NeuroBricks on it.

To determine the energy efficiency of the neuromorphic hardware, we calculated the amount of
energy needed to process an image when each system is learning or classifying. The consumed energy
for learning is shown in Figure 5, while the energy for image detection is shown in Figure 6.

90



Electronics 2020, 9, 1069

Electronics 2020, 9, x FOR PEER REVIEW 7 of 11 

 

 

Figure 3. Time to train the model. 

To determine the classification performance, 1132 pedestrian images and 453 non-pedestrian 

images were tested. The processing time of the neuromorphic-based system is unchanged even 

though the number of neurons used in the system is increased, as shown in Figure 4, because all 

hardware neurons are in the same layer and execute in parallel. On the other hand, the processing 

times of the CPU-only system and the GPU system increase as the number of neurons increase. 

Nevertheless, the GPU system is the fastest among the systems to process all the test images. We 

could not test with more neurons because the current NeuroShield does not support more than three 

NeuroBricks on it. 

 

Figure 4. Time for processing all test data. Figure 4. Time for processing all test data.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 11 

 

To determine the energy efficiency of the neuromorphic hardware, we calculated the amount of 

energy needed to process an image when each system is learning or classifying. The consumed energy 

for learning is shown in Figure 5, while the energy for image detection is shown in Figure 6. 

 

Figure 5. Energy per training data. 

When training the neural network, the system with NM500 requires the least amount of energy 

to process an image data instance. The GPU system’s energy efficiency is much better than that of the 

CPU-only system, but the efficiency of the neuromorphic chip-based system is over an order of 

magnitude higher than that of the GPU system in terms of per-data energy consumption. This is 

because both the power consumption and the processing time of the NM500 are much lower than 

those of the GPU system. 

For classification, the required amount of energy consumed for a data instance by the GPU 

system is more than that of the neuromorphic system but is not very high (< 2.5 times). Though the 

power consumption of the GPU system is higher than that of the NM500 system, the processing time 

of the GPU system is shorter than that of the NM500 system. The energy consumption of the GPU 

system in classification is much lower than that in training because less computation is needed in 

classification. However, the NM500 system consumes about 80% more energy for classification than 

learning. 

Figure 5. Energy per training data.

When training the neural network, the system with NM500 requires the least amount of energy
to process an image data instance. The GPU system’s energy efficiency is much better than that of
the CPU-only system, but the efficiency of the neuromorphic chip-based system is over an order of
magnitude higher than that of the GPU system in terms of per-data energy consumption. This is
because both the power consumption and the processing time of the NM500 are much lower than
those of the GPU system.

For classification, the required amount of energy consumed for a data instance by the GPU system
is more than that of the neuromorphic system but is not very high (<2.5 times). Though the power
consumption of the GPU system is higher than that of the NM500 system, the processing time of the
GPU system is shorter than that of the NM500 system. The energy consumption of the GPU system in
classification is much lower than that in training because less computation is needed in classification.
However, the NM500 system consumes about 80% more energy for classification than learning.
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5. Conclusions

In this work, we compared the performance and the energy efficiency of a commercially available
neuromorphic chip with those of GPU and CPU cores on embedded devices. The processing time
and power consumption were measured while increasing the number of neurons in the neural
network. The experimental results show that the time required for the neuromorphic chips to learn the
same amount of data is about 13–15 times shorter than that required for the embedded system with
128 GPU cores. On the other hand, the time required to classify a dataset remains almost constant
for the neuromorphic processor due to its neural network architecture with only one hidden layer.
In classification, the GPU processes data faster than the neuromorphic chip, but the processing time
tends to increase as the number of neurons increases. Thus, it is expected that the neuromorphic chips
can outperform the GPU system with a larger number of neurons, but this could not be tested due to
the restriction in the expandability of the evaluation board for the neuromorphic chips.

As most embedded systems depend on limited power supply such as batteries, energy efficiency
is a critical factor in designing a system. In our experiments, the energy required for NM500 chips to
process an input data instance is less than 1/35 of that required by the GPU accelerated embedded
system in training the neural network, while the energy consumption of the GPU system in classification
is only 1.22–2.37 times higher than that of NM500 chips. Because the neural network of NM500
has only one hidden layer, the processing time for classifying the given dataset remains almost the
same even though the number of neurons increases, while the power consumption increases linearly.
On the contrary, the classification time of the GPU system is almost linearly proportional to the
number of neurons, while the power consumption remains unchanged. Therefore, the energy for the
neuromorphic chips to classify data is expected to be close to 50% of that for the GPU system as the
number of chips increases. It is interesting to note that the neuromorphic chips are especially energy
efficient in training the neural network in comparison with the GPU system.

However, despite the high energy efficiency of the neuromorphic chip, it still needs to be improved.
First of all, NM500′s architecture can support only one hidden layer, which may restrict the possible
benefit of deeper neural networks. Second, the lack of the ability to dynamically switch on and
off a partial group of chips makes it difficult to manage power consumption. Finally, if high-speed
interconnection such as AMBA or other high-speed bus protocols is supported, the processing time
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can be reduced further. The current SPI connection of the NM500 requires about 10 us to write a
byte, a total 1660 us for learning a 160-byte data instance, which is done in about 2045 us. Therefore,
communication via SPI interconnection accounts for about 82% of the total processing time. Integration
of the neuromorphic chips into an SoC could be considered to improve the performance and the energy
efficiency of machine learning on embedded systems using the neuromorphic hardware.
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Abstract: In this paper, a novel hardware architecture for neuroevolution is presented, aiming to
enable the continuous adaptation of systems working in dynamic environments, by including the
training stage intrinsically in the computing edge. It is based on the block-based neural network
model, integrated with an evolutionary algorithm that optimizes the weights and the topology
of the network simultaneously. Differently to the state-of-the-art, the proposed implementation
makes use of advanced dynamic and partial reconfiguration features to reconfigure the network
during evolution and, if required, to adapt its size dynamically. This way, the number of logic
resources occupied by the network can be adapted by the evolutionary algorithm to the complexity
of the problem, the expected quality of the results, or other performance indicators. The proposed
architecture, implemented in a Xilinx Zynq-7020 System-on-a-Chip (SoC) FPGA device, reduces
the usage of DSPs and BRAMS while introducing a novel synchronization scheme that controls the
latency of the circuit. The proposed neuroevolvable architecture has been integrated with the OpenAI
toolkit to show how it can efficiently be applied to control problems, with a variable complexity and
dynamic behavior. The versatility of the solution is assessed by also targeting classification problems.

Keywords: neuroevolution; block-based neural network; dynamic and partial reconfiguration;
scalability; reinforcement learning

1. Introduction

Artificial Neural Networks (ANN) are computational models inspired by the structure and
physiology of the human brain, aiming to mimic their natural learning capabilities. ANNs excel
in complex tasks, such as computer vision, natural language processing or intelligent autonomous
systems, which are difficult to handle by using conventional rule-based programming languages.
In addition, biological evolution has inspired the development of evolutionary engineering methods
that exploit the benefits of Evolutionary Algorithms (EA) [1] as optimization and solution searching
tools. Evolutionary engineering techniques have been applied in areas such as robotics [2],
bioengineering [3], electrical engineering [4] or electromagnetism [5]. EAs have also been used
to design and adjust digital circuits, which is known as Evolvable Hardware (EH) [6].

Natural learning and biological evolution are not independent processes. Natural brains are
themselves products of natural selection. Similarly, EAs can be combined with ANNs to discover
computing structures featured with learning capacities. The combination of both bio-inspired fields
is known as neuroevolution [7]. It includes techniques to create neural network topologies, weights,
building blocks, hyperparameters and even learning algorithms. One of the pioneering algorithms in
neuroevolution is NeuroEvolution of Augmenting Topologies (NEAT). NEAT and their variants have
been applied to evolve topologies along with weights of small recurrent neural networks, showing
outstanding performance in complex reinforcement learning tasks [8,9]. Other researchers have focused
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on the evolution of deep neural network topologies and the optimizer hyperparameters, substituting
handcrafted design and re-design steps with automated methodologies [10]. Deep neuroevolution
requires intensive gradient-based training and evolution cycles, only appropriate to cloud facilities.

Differently to the state-of-the-art, a hardware-accelerated integrated solution for neuroevolution
is proposed in this paper. In addition to the design automation benefits inherent to neuroevolution
and the expected acceleration produced by hardware, implementing a neuroevolvable hardware
architecture allows training (and re-training) the neural network, in an edge computing device, during
its whole lifetime. This approach enables the continuous adaptation of systems working in dynamic
environments. Continuous adaptation is not possible in conventional ANNs that use gradient-based
backpropagation algorithms for training since the high computational demands associated with these
algorithms require cloud or GPU-based computing resources, not available in the edge. However, the
different nature of evolutionary algorithms makes possible the design of custom hardware accelerators
for learning weights and topologies to be used directly in the edge.

The proposed neuroevolvable hardware architecture is based on the Block-based Neural Network
(BbNN) template, initially conceived in [11]. A BbNN is a particular type of ANN, in which neurons
are arranged as a two-dimensional grid of Processing Elements (PEs). Each PE is connected to its
four nearest neighbors through four ports (north, south, east and west), which are configurable as
inputs or outputs. Internally, each PE features one, two or three artificial neurons, depending on its
configuration. The parallelism, regularity and high modularity of the BbNN model make it appropriate
to be implemented in hardware. In this paper, we propose using a System-on-a-Chip (SoC) FPGA, in
which a dual-core ARM processor and reconfigurable logic are combined in the same chip. The EA is
executed in the processor, while candidate BbNN solutions are evaluated in the programmable logic,
increasing the evaluation (and inference) throughput.

The size of the BbNN structure determines the complexity of the problems it can solve. It also has
a significant impact on training time. The more complex a problem is, the bigger the BbNN has to be.
However, bigger networks increase the design space to be explored during evolution, which may even
prevent its convergence. Since the optimal size for a given problem is unknown in advance, it may be
necessary to discover it by trial and error. In addition, when a network is applied to different problems
during different system operation stages, it is expected that its size could be changed. For these reasons,
the BbNN implementation we propose in this paper is dynamically scalable. Thus, the BbNN can be
scaled up and down in size at run-time during the training process, adapting the number of neurons
to the complexity of the task.

Dynamic scalability is achieved by using the Dynamic Partial Reconfiguration (DPR) technique,
which allows modifying part of the logic while the rest of the device continues working. The proposal
of this paper consists in composing the network at run-time by replicating the primary PE of the
network, taking benefit of its regularity. This strategy reduces the memory footprint and the time
required for scaling the network. It is enabled by the advanced reconfiguration capabilities provided by
the IMPRESS [12,13] reconfiguration tool. Moreover, advanced fine-grain reconfiguration features are
used in the proposed architecture to modify the parameters of the network during evolution, without
requiring a global configuration infrastructure reaching each PE. Differently, the device reconfiguration
port is used to modify the configuration parameters by writing the appropriate positions in the device
configuration memory. This approach also reduces configuration time and resource occupancy.

The run-time adaptation features provided by the proposed architecture are applied in this
work for controlling Cyber-Physical Systems (CPSs) working under dynamic conditions. Different
environments included in the OpenAI toolkit [14] are used to benchmark the performance of the
proposed architecture for control applications. The OpenAI toolkit defines control problems with
different complexities. In particular, we have selected the inverted pendulum and the mountain
car problems, as the test bench. When applied to control problems, the feedback provided by the
environment after applying the actions generated by the BbNN is used as a reward, guiding the
evolutionary algorithm. This means that evolvable BbNNs can be considered a form of reinforcement
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learning. We also prove how the proposed network can be applied in classification problems, such as
the XOR.

The original contributions of this paper can be summarized as follows:

• A scalable BbNN hardware architecture with reduced usage of DSPs and BRAMs. The proposed
architecture supports feedback loops, includes a novel synchronization mechanism and a
simplified implementation of the activation function.

• A novel approach for the network adaptation that exploits the advanced dynamic and partial
reconfiguration features offered by the IMPRESS tool to obtain dynamic scalability and an efficient
parameter and topology configuration during evolution.

• The integration of the proposed architecture, implemented on an SoC FPGA, with the OpenAI
toolkit, conforming a hardware-in-the-loop simulation platform. This platform shows the
applicability of the proposed neuroevolvable hardware architecture as a reinforcement learning
solution for control problems.

The rest of the paper is organized as follows: first, in Section 2, the basic operation principles and
previous works on BbNNs are presented. In Section 3, the different approaches existing in the literature
to implement dynamically scalable architectures are discussed. Then, Section 4 describes the proposed
implementation for the BbNN architecture, while Section 5 provides the evolutionary algorithm used
in this work. A description of how dynamic scalability and fine-grain reconfiguration are implemented
in the architecture is included in Section 6. Section 7 provides use cases and implementation results,
while conclusions and future work are tackled in Section 8.

2. Block-Based Neural Networks

In this section, the main background concepts related to Block-based Neural Networks and the
existing implementations in the literature are described.

2.1. Basic Principles

BbNNs are a type of ANN in which neurons are arranged as a two-dimensional array of n×m PEs,
as shown in Figure 1. The number of inputs of the architecture corresponds to the number of columns
(m) in the matrix. Outputs are obtained from the PEs in the last row, leaving unconnected those that
are not needed. Each PE is linked with its four closest neighbors, at the north, south, east and west
directions. PEs placed at the last column are connected to those in the first column, forming a cylinder.
Each PE has, therefore, four ports, which are configurable as inputs or outputs. Vertical links can be
configured upwards or downwards, and horizontal links can be configured to the right or the left.
Depending on the configuration of the ports, different types of processing elements are defined. Thus,
PEs with 1-, 2- or 3-inputs (i.e., 3-, 2- or 1-outputs) are possible, up to a total amount of fourteen PE
types, as shown in Figure 2. These types result from combining all the PE inputs with the outputs, with
the only limitation that every input must be connected to, at least, one output. PEs with all inputs or all
outputs are discarded to avoid inconsistencies within the network. Each processing element applies a
neuron operator in each port configured as an output. Neuron operators in BbNNs do not differ from
traditional units used in ANNs [11]. They perform a weighted addition of all the inputs and transmit
the result to the output node, after invoking an activation function [15]. The activation function is
non-linear, being the sigmoid or the hyperbolic tangent the most widely used. These functions are
applied to introduce non-linear relations in the network, needed to approximate functions that involve
non-linear relations between variables. Performing non-linear operations on hardware platforms, such
as FPGAs, entails a high logic resource utilization, especially in terms of DSPs or LUTs.
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Figure 1. Block-based Neural Network layout.

Figure 2. Processing Element (PE) schemes considered for the Block-based Neural Network.

Since the evolutionary algorithm can decide the direction of every link during the training stage,
internal loops may appear. Internal loops feature the network with memory capabilities, so data
from a previous state are combined with new data flowing through the network in subsequent time
instants. Some examples of feedback loops are shown in Figure 3. Feedbacks are essential when
solving time-dependent problems such as control or time series prediction. However, inner loops
create data-paths with different lengths, and so they complicate discovering when input data have
been completely processed. Knowing when the output data is valid requires synchronizing neuron
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activities. As it is exposed in Section 4, a synchronization mechanism based on tokens has been
implemented in this work.

Figure 3. Inner feedback loops of a Block-based Neural Network (BbNN) configuration.

Authors in [11] demonstrate mathematically that for structures with a maximum of five inputs,
the number of interconnections in a BbNN is higher than the corresponding value in a fully connected
network. Therefore, BbNNs can replace traditional neural networks with a similar number of inputs
while providing parallelism and scalability. Parallelism given by hardware acceleration enhances the
throughput of the system, while the high regularity of the BbNN layout facilitates its scalability.

2.2. Related Works

Moon and Kong conceived the BbNN model in 2001 [11], as an alternative to general neural
network models, specially designed to be implemented in reconfigurable hardware devices. Beyond the
architecture, they also proposed the use of genetic algorithms for optimizing the structure and weights
of the network. Following this initial work, various researchers have improved the architecture, the
optimization method and the applications of the BbNNs, as described next.

The works by Merchant et al. present significant contributions in terms of the BbNN
architectures [16,17]. They implemented a BbNN on an SoC FPGA device, that can be evolved
online. In particular, the authors selected a Xilinx Virtex-IIPro FPGA featured with two on-chip
PowerPC 405 processors. The EA, which is in charge of adapting the system when the operational
environment changes, is executed in the on-chip processor, while the configurable BbNN model runs in
the programmable logic. This approach is known as intrinsic evolution, since the EA directly changes
the final hardware, instead of evolving it offline, using a software model. In this implementation,
the Smart Block-based Neuron (SBbN) is proposed as the basic element of the BbNN. The SBbN is a
software-configurable neuron, in which the on-chip processor controls the operation of the neuron.
The authors present this approach as an alternative to include all the possible configurations of the
neuron simultaneously and then selecting the appropriate one with a multiplexer. Differently, in
this work, we propose a dynamically reconfigurable processing element, in which the modification
of its functionality is carried out by writing in the device configuration memory. A mechanism for
latency control using tokens, inspired by Petri networks, is also proposed in the works by Merchant.
The token synchronization of this work is slightly different since our proposal also implements accept
signals to avoid overwriting unconsumed data. In contrast to the solution proposed by Merchant, our
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architecture is fully pipelined, and it allows inner loops. These loops require a proper initialization of
the tokens to avoid deadlocks in the network, which is shown in Section 4.4.

A new variant of the BbNN model, known as the Extended Block-based Neuron Network
(EBbN), is presented in [18]. In contrast with classic BbNN implementations, the EBbN presents six
input/output ports instead of four. However, possible configurations are limited since the north and
south ports are always configured downwards. The two east and the two west ports can be configured
to provide both side horizontal data flow, right or left data flow, or they may not provide either
side data flow. The EBbN has a lower hardware overhead when compared with the SBbN. Authors
achieve this by using the internal resources more efficiently since resource redundancy within the PE is
eliminated. Pipeline registers are introduced to separate every row in the network. However, the EBbN
model cannot be applied on large networks since the critical path still becomes longer as the number
of stages increases. Differently, our approach is fully pipelined at all the outputs of each neuron
(i.e., at horizontal and vertical directions). This pipeline scheme achieves higher operating frequencies
than previous works, and hence the throughput of the proposed architecture is incremented.

Focusing on the implementation of the activation function, some works [16,19,20] present a
LUT-based approximation of its non-linear section, where discrete values of the function are stored.
This method achieves high accuracy but increases memory utilization unless all the PEs share a single
LUT-based function, which in turn, constitutes a bottleneck. An alternative to the LUT-based activation
function was presented in [21]. In that work, a sigmoid-like activation function is implemented as a
piecewise-quadratic (PWQ) function (i.e., as a function defined by multiple sub-functions).

There have also been contributions in terms of the training algorithms. Although most of
the BbNN-based systems are trained by using EAs, some works rely on alternative optimization
methods. In [22], the problem is posed as a set of linear equations solved with the linear least-squares
method. This approach provides good training accuracy for time-series prediction and nonlinear
system identification problems. Authors in [23] propose the use of a multi-population parallel genetic
algorithm (GA) targeting implementations on multi-threading CPUs.

Most of the implementations reported for the BbNN do not allow the inner feedback loops defined
in the original model. Only in works by Nambiar [21,23] and Kong [11,24], topologies with feedback
loops are addressed, showing how these feedback loops can lead to non deterministic results if all the
PE outputs are not registered. The authors tackled this issue by introducing latency as a parameter to
be controlled by the EA, encoded in the chromosome. In the present work, the uncertainties induced
by feedback loops are controlled with the token synchronization.

In previous works, the BbNN model has succeeded in solving tasks of different domains such as
classification, time series forecasting and control. In [25], it has been applied to ECG signal analysis and
classification, such as arrhythmia detection [26] or driver drowsiness detection [27]. Hypoglycemia
detection has been another use case of the BbNN related to the healthcare domain [28]. Time series
prediction [22,24] and dynamic parameter forecasting [23] show the BbNN capabilities to solve tasks
with temporal dependencies. This ability to solve problems where time is an intrinsic factor makes
BbNN a good option to deal with control problems, like mobile control problems [11] or dynamic
fuzzy control [29]. Real-time intrusion detection systems have also been developed in [30].

Apart from the works related to BbNNs, there are almost no hardware implementations of
neuroevolvable systems providing continuous learning in the state-of-the-art. One of the most relevant
works in this regard is the GenSys [31], an SoC prototype that includes an accelerator for the NEAT
algorithm and an inference engine that accelerates in hardware the neural networks described by the
evolutionary algorithm. At this regard, the work by A.Upegui on the evolution of spiking neural
networks using DPR on commercial FPGAs is also notable [32].

In a more general sense, different circuit topologies have been proposed in the state-of-the-art to be
used as part of evolvable hardware systems. Relevant examples are the Cartesian Genetic Programming
(CGP) [33] or Systolic Arrays (SA) [34]. Both of them are based on meshes of interconnected processing
elements that perform different functions from their inputs. In its standard form, the CGP corresponds
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to a computing graph that is directed and feed-forward. Therefore, a PE may only receive inputs from
either input data or the output of a PE in a previous column [33,35]. Connectivity is CGP is achieved
by adding large multiplexers at the input of each PE, which has a resource overhead that limits the
size of the structure. In turn, SAs do not have such a high connectivity overhead since their dataflow is
fixed and restricted to the closest neighbors of each PE.

3. Existing Approaches to Scalability

Scalable architectures offer significant advantages compared to fixed architectures. Their size can
be adapted to change the quality of the results, to operate with inputs of different width or to modify its
computation performance (e.g., adding more modules to exploit data parallelism). An architecture can
be scaled at design-time (e.g., using generics in HDL descriptions [36]), or it can be scaled dynamically
to deal with changing external conditions. Dynamic scalability requires using SRAM-based FPGAs,
with dynamic partial reconfiguration (DPR) capabilities. DPR makes it possible to adapt part of the
device fabric at run-time, while the rest of the system (i.e., the static part) remains uninterrupted.
There are two concepts that are important to understand in dynamically reconfigurable systems, which
are reconfigurable regions (RRs) and reconfigurable modules (RMs). The RMs are accelerators that
can be exchanged in the system at run-time. On the other hand, the RRs are regions of the FPGA that
have been reserved for allocating the RMs. This section introduces different approaches found in the
literature to implement dynamically scalable architectures.

The most direct way to implement scalable architectures is to synthesize offline different variants
of the same accelerator, with different sizes, and then to swap them in one Reconfigurable Region (RR)
of the FPGA. This approach has been used in [37] to generate a scalable family of two-dimensional
DCT (discrete cosine transform) hardware modules aiming at meeting time-varying constraints for
motion JPEG. A similar approach is used in [38] to vary the deblocking filter size to adapt it to different
constraints in H.264/AVC coding. In [39], the authors implement a CORDIC accelerator that can be
scaled at run-time to work with different data types when the required dynamic range and accuracy
change. A sharp drawback of this approach is that the whole RR remains occupied when the size of
the architecture decreases, so it can not be reused for other modules.

A more efficient alternative to achieve real footprint scalability is to create several RRs, as shown
in Figure 4a, and changing the size of the architecture by replicating modules in parallel. With this
approach, free RRs can be reused for other RMs. This approach has been used in [40] with four RRs to
allocate a scalable H.264/AVC deblocking filter. When the architecture can not be divided into different
RMs, it is possible to arrange contiguous RRs in slot or grid styles [41]. In these configurations, one RM
can be allocated in several RRs, as shown in Figure 4b. In this way, when the size of the architecture
increases, the RM can use more RRs. This approach has been used in [42] to generate an architecture
for DCT computation with three size levels that can be allocated in up to three contiguous slots.

The previous approaches can be used when the modules are connected directly to the static
system. However, they are not valid in two-dimensional mesh-type architectures (e.g., BbNNs or
systolic arrays) that have direct interconnections among neighboring processing elements. The most
natural solution to interconnect RMs is to use static resources crossing the boundaries of their RRs.
This approach is followed in [43], where the authors generate a triangular systolic array architecture
for computing the DCT. The systolic array can be scaled using different RRs that can allocate a whole
diagonal of PEs. The main drawback of this approach is that the communication among RRs is fixed,
and therefore, it is not very easy to reuse the RRs for other accelerators. The authors in [44] solve this
problem by using switching boxes that can be configured to adapt the interconnection among the PEs.

Using static but configurable interconnections among PEs offers excellent flexibility at the cost of
having a considerable resource overhead. It is possible to reduce this overhead by using reconfigurable
interfaces instead of a fixed infrastructure. A reconfigurable interface is composed of specific device
routing nodes located at the border of the PE; if a neighbor module uses a compatible set of nodes in
its interface, the communication between neighboring modules is enabled without requiring fixed
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interconnections. The authors in [34,45] used this approach to build a scalable systolic array for
evolvable hardware and a scalable wavefront array to implement a deblocking filter. In both cases,
the static system contains one RR that interfaces with the static system through specific nodes located
at the border of the RR. The RR does not have static resources, and therefore it can be deemed
as a grid-based RR that can allocate multiple PEs. In this way, the same RR can allocate several
architectures with different communication schemes. Authors relied on the academic tool Dreams [46]
to build these applications since commercial tools did not, and still do not provide these advanced
reconfiguration features.

Static system

RR
1

RR
2

RR
3

RR
4

RM 1 RM 2 RM 3 RM 4

(a)

Static
System

RR 1

RR 2

RR 3

RR 4

RR 5

RM 1

RM 2

(b)

Figure 4. (a) Scalable architecture using multiple isolated reconfigurable regions connected to the static
system. (b) Scalable architecture using multiple reconfigurable regions arranged in a slot style, where
one reconfigurable module (RM) can span multiple reconfigurable regions (RRs).

It must be noticed that every module of the architecture does not have a fixed position in the
device when its size changes. This fact limits the connection of the scalable architecture with the static
system. The solution provided by the authors is to use only one input/output module located in
one corner of the RR and to surround the architecture with communication and control modules that
communicate the outer blocks of the architecture with the input/output instance. When using this
approach, the RR can allocate several modules. One example could be connecting the static system
to the 4 corners of the RR and allocating two-dimensional architectures or monolithic reconfigurable
modules, as shown in Figure 5. In this case, the architectures can only grow at the expense of reducing
the size of the other modules.
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Figure 5. Scalable architectures using reconfigurable interconnections.
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4. Proposed Bbnn Architecture

This section describes the reconfigurable and scalable architecture proposed to implement BbNNs
in hardware. It aims to reduce the utilization of resources while keeping modularity and scalability.
First, we focus the discussion on the implementation of the processing elements used as the basic
building block for the BbNN. Then, the modules used for connecting the neurons and handling data
within the network are described.

Each PE in the BbNN computes a variable number of outputs (K) with a given number of inputs
(J) using the following expression:

yk = g

(
bk +

J

∑
j=1

wjkxj

)
, k = 1, 2, . . . K (1)

where:

• g: is the activation function of the neuron.
• xj: is the jth input of the neuron.
• wjk: is the is the connection weight between the jth input and the kth output.
• bk: is the bias applied to the kth output.
• yk: is the kth output of the neuron.

These arithmetic operations are proposed in the original model to be computed as floating-point
numbers, including the non-linear activation function. A set of numerical optimizations are proposed
first to provide an optimized hardware implementation.

4.1. Numerical Optimizations

We have studied first the most convenient fixed-point data representation and the approximation
of the activation function to be used in the proposed hardware implementation.

4.1.1. Numerical Range for Inputs and Parameters

The numerical range has a straightforward impact on the hardware resource utilization and
the size of the chromosomes used during training since the algorithm directly evolves these values.
Therefore, it also affects the size of the design space to be explored.

In this work, we have decided to use a range of (−4, 4). Experimentally, we have validated that
this range is appropriate to activate or deactivate the network nodes during training. This choice is
also coherent with the proposals existing in the literature. For instance, in [21], authors use the range
of [−3, +3]. Notice that in both cases, the number of bits required for the representation of the integer
part is the same. The complete fixed-point representation scheme is explained in the next section.

4.1.2. Fixed-Point Representation Scheme

A fixed-point representation has been chosen for the input data and all the intermediate
computations, aiming at reducing the logic resources required when compared to the floating-point
counterpart. We now describe the details of the selected representation, which is graphically shown in
Figure 6.

All the registers and data ports are implemented using 16 bits. Since the integer part requires
three bits to allocate the integer range of (−4, 4), 13 bits remain for the fractional part. This scheme is
used for inputs, weights and bias, but it is modified for the internal neuronal computations within a
PE. The maximum number of concurrent connections to a single PE output is 3, as shown in Figure 2.
It corresponds to a PE with a single output and three inputs, represented by Equation (2). Considering
that weights have been limited to the range (−4, 4), the range of values passed to the activation
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function is (−16, 16) as Equation (3) illustrates. The integer part of these values can be represented
with 4 bits, plus an extra bit for the sign.

output = g (x1w1 + x2w2 + x3w3 + b) (2)

max.output = g (1× 4 + 1× 4 + 1× 4 + 4) = g(16) (3)

Instead of enlarging the accumulation registers inside the PE, we opt for redistributing the 16 bits
as follows. We dedicate now the 5 bits required for the integer part and the remaining 11 bits for the
fractional part. This decision reduces the flip-flops required for the implementation of each PE.Output
data from the activation function and input data to the PE are coded with the same fixed-point
representation. Figure 6 shows the data representation at each computation stage.

Figure 6. Fixed-point representation used in this work.

4.1.3. Approximation of the Activation Function

We use the sigmoid function as the activation function since it has proven in the literature to
provide good results when used in BbNNs [21,25]. Other well-known activation functions reported in
the neural network literature, such as the Rectified Linear Unit (ReLU), could also be appropriate from
the algorithmic point of view. However, we have discarded the functions that are not constrained to a
value range, which creates overflows and inconsistencies when dealing with fixed-point data types in
hardware implementations.

As mentioned in Section 2, some authors used an LUT-based approximation for the approximation
of the non-linear function, where discrete values of the sigmoid function are stored in pre-computed
look-up tables. Thus, computing the activation function is reduced to finding in the table the value
corresponding to the required point. However, this look-up table constitutes a bottleneck if multiple
PEs require simultaneous access to this table. In an architecture with massive parallelism like BbNNs,
sharing the activation function has a considerable impact on the processing throughput. As an
alternative, piecewise quadratic (PWQ) functions can approximate the sigmoid without the necessity
of LUTs. PWQ function technique implies performing multiplications, which require the usage of
DSP units.

Differently, the proposal of this work consists in splitting the function domain into sub-functions
whose operands can be represented as the addition of powers of 2, as shown in Equation (4).
The selection of the appropriate sub-function (i.e., the corresponding tranche of the function) is carried
out by evaluating the integer part (xint) of the function argument. In turn, the fractional part (x f rac) is
used to compute the output within each sub-function, by applying bit-shifting transformations.
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g(x) =
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(4)

In Figure 7, the comparison of the approximate sigmoid function and the real function is exposed.
Mean squared error between both functions in the non-linear section is 1.254× 10−4. This error is only
calculated for the (−6, 6) range since out of this range the sigmoid function is practically linear.

Figure 7. Comparation of the approximate sigmoid function and the real function.

4.2. Proposed Processing Element Architecture

As shown in Figure 8a, the interface of the processing element includes the following signals:

• Input data: one input signal per PE side (xn, xe, xs, xw)
• Output data: one output signal per PE side (yn, ye, ys, yw).
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• Token signals: one token signal per input/output port. They are part of the synchronization
mechanism. They indicate that intermediate results are ready to be consumed. They are set to one
by the producer PE and set to zero by the consumer PE.

• Accept signals: one accept signal per input/output port. These signals avoid overwriting
unconsumed data. They are also part of the token-based synchronization scheme. Accept
signals are set to zero when the consumer has not consumed inputs or while it is triggered, and
they are set to one when the link has no data, and the consumer PE is idle.

(a)

(b)

Figure 8. Proposed structure for the BbNN processing element. (a) Shows the interface and internal
connections of one possible type of processing element (PE). (b) Exposes internal blocks of a generic PE.

Each PE is characterized by a set of parameters, represented as blue boxes in Figure 8b.
These parameters fully define the behavior of the PE, including the PE type, the weights and the
biases. They are implemented with LUTs that can be configured using the fine-grain reconfiguration
technique detailed in Section 6. This way, each PE of the BbNN is configured without the need for a
global configuration infrastructure. Thus, enhancing the scalability of the BbNN.

Apart from the PE parameters, each PE is composed of the following modules:

• Parameter selection block: it generates the signals that select the proper operands at the right
clock cycles depending on the values stored in the parameter selection registers (Xparam, Wparam,
Bparam and Yparam). These values are chosen from the PE type.

• MAC Unit: it performs all the calculations to generate the weighted sum during the
computation cycle.

• Computation cycle counter: this counter controls the computation cycle stage.
• Activation function: this block computes the approximation of the sigmoid function, as it was

described in the previous section.
• Synchronization logic: this logic checks the values of the token signals to trigger the computation

cycle. When the operations are executed, it generates the output ports tokens. This logic also
manages the accept signals.

Only one DSP per PE is needed, which is included in the MAC Unit. All the calculations of the
neuron block are performed throughout seven clock cycles. The DSP is used sequentially during these
clock cycles performing multiply and accumulate (MAC) operations with the appropriate operands.
During the computation cycle, the Parameter Selection Block generates selection signals to indicate
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which input, weight, bias value and output is required at each cycle. This selection depends on
the coded sequence stored in the fine-grain reconfigurable LUTs of the Parameter Selection Block.
These values constitute the internal configuration of the PE. Once the weighted sum of a neuron’s
output is ready, its value is passed to the activation function block to generate the final output value.
Table 1 illustrates how each parameter of the neuron is encoded.

Table 1. Signal coding for parameter selection.

SelX Input SelW Weight SelB Bias SelY Output

00 Xn 00 W1 0 B0 0001 Yn
01 Xe 01 W2 1 B1 0010 Ye
10 Xs 10 W3 - - 0100 Ys
11 Xw 11 W4 - - 1000 Yw
- - - - - - 0000 Reset acc.

The operations carried out in the seven clock-cycles are shown with an example in Figure 9. In the
first clock cycle, the triggering condition of the PE is checked, and the values stored in the accumulator
from previous clock cycles are reset. If the triggering condition is fulfilled, the PE parameters are read
sequentially and decoded on the subsequent clock cycles. This decoding uses the values in Table 1 to
generate the selection signals for each operand and the proper output at each clock cycle. Each neuron
type has an unique codification for each selection signal (SelX, SelY, SelB and SelY).

Figure 9. Values of the selection parameter register for the subscribed neuron type and read sequence.

Not all PE types require the seven clock cycles to compute the output. This value is defined by the
worst case, which corresponds to a PE with the maximum number of outputs (i.e., 1-input/3-outputs).
As the DSP is used sequentially, the accumulated results must be reset before computing a different PE
output. With three outputs, two clock cycles are needed per output: one clock cycle to multiply the
input and the corresponding weight, and an extra clock cycle to reset the accumulator. Therefore, six
clock cycles are used as computation cycles, besides the additional clock cycle needed to check the
triggering condition. In any case, the clock cycles not required by a given PE are lost, since all the PEs
are synchronized every seven clock cycles.
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4.3. From the Basic PE to the Block-Based Neural Network IP

The proposed BbNN has been integrated into an Intellectual Property (IP) core, as shown in
Figure 10. The main component of the IP is the BbNN itself. At design-time, the BbNN is a dummy
block reserved in a reconfigurable region. This reconfigurable region is then used to allocate PEs
at run-time to compose a BbNN of a given size. The composition of the BbNN is carried out by
reconfiguring individual PEs into the reconfigurable region. Each PE has compatible interfaces to
neighboring PEs so that they connect directly without predefined static interconnections. Composing
the BbNN in this modular way allows scaling its size efficiently by adding or removing PEs.

Input front

Reconfigurable Region

Output front

Memory
Bank

GFSM

Registers

Global signals

BbNN IP

AXI LITE

AXI FULL

INT

Figure 10. Block-based Neural Network Intellectual Property (IP) with fine-grain reconfigurable
elements in each PE.

Once the BbNN has been composed, it can be configured using a technique called fine-grain
reconfiguration that has been used in state of the art to reconfigure specific elements of an FPGA
(e.g., LUTs) [47,48]. In the proposed BbNN each PE parameter (e.g., weights, biases) is implemented
using LUTs whose output values can be modified by adapting the LUTs truth table using fine-grain
reconfiguration. The IP also contains specific logic to provide the inputs to the BbNN via fine-grain
reconfiguration. This way, a direct connection between the BbNN and the static system is not required,
which enhances the scalability of the network. However, output signals are connected through the
southern border of the reconfigurable region, independently of the size of the network. A memory bank
accessible by the processor using an AXI interface has been included to store the outputs temporarily.

In summary, the proposed BbNN implementation relies on dynamic partial reconfiguration to
(1) compose the BbNN on the fly by stitching together individual neuron blocks, (2) change the
configuration of each neuron in the training phase and (3) providing the input values to the network.
Details regarding the scalability and the configuration of the BbNN are described in Section 6.

The processor is also connected to the BbNN IP through an AXI lite interface that can be used to
modify the BbNN configuration registers. These registers can be used to enable or disable the BbNN,
asserting that a new input has been provided to the network or to select which network outputs are
used. The General Finite State Machine (GSFM) controller is the component that reads the registers
written by the user and writes the necessary control signals to the BbNN. These signals are connected
to every PE of the network. To allow scalability, these signals use specific routing resources of the
FPGA reserved to clocks and other global signals. Once the BbNN generates a set of valid outputs,
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the GSFM asserts an interrupt signal to indicate that the processor can read the output values and
generate a new input signal.

4.4. Management of Latency and Datapath Imbalance

All the PE outputs include a pipeline register to keep the critical path of the circuit constant
regardless of the BbNN configuration. Therefore, the latency of the network depends on the length of
the paths between the inputs and outputs. By latency, we mean the number of cycles needed to process
all the BbNN inputs until a valid output is generated. Since the dataflow is fully configurable, this
latency is variable. This circumstance is shown in Figure 11, where two BbNN configurations with the
same size and selected output, but different dataflows, are represented. Configuration in Figure 11a
has a latency of 10 cycles, and configuration Figure 11b has a latency value of 18 cycles.

(a) (b)

Figure 11. Configurations with the same dimensions and selected output but different latency.
(a) shows a configuration with a 10 latency cycles; meanwhile (b) exposes a configuration with 18
latency cycles.

The dependency of the datapath length with the network configuration might also cause the
computing imbalance at the PE level. If two paths arriving the same PE have different lengths, valid
data will arrive at the PE at different control steps. In this work, the network latency and the datapath
imbalance are controlled with a synchronization scheme based on tokens and accept signals. When an
output from a neuron is ready to be used, a token is set at the pertinent link. PEs are only triggered if all
the tokens at their input nodes are activated. Accept signals avoid overwriting a link with unconsumed
data. This approach may cause deadlocks during the first calculation cycle if the BbNN configuration
under test has feedback loops. Neurons influenced by feedback loop wait for other neurons in the loop
to produce an output, leading to a deadlock. This scenario is avoided by setting to one the tokens in
the upward vertical links by default at the first calculation cycle.

5. Proposed Evolutionary Algorithm

This section presents the EA used as the optimization mechanism in the proposed BbNN. EAs have
been selected for driving the training of the network since they require fewer memory resources and a
lower numerical precision when compared with other alternatives, including gradient-based methods.
This makes them suitable for their intrinsic implementation in the SoC. The EA runs on the processor
of the system, and its goal is to optimize data structures called chromosomes. These chromosomes
encode complete configurations of the network, including weights, biases and port directions for
every PE. BbNN codification within the chromosome structure is exposed in Figure 12. The size of
the chromosome depends on the BbNN size. Larger networks require larger chromosomes since
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the EA uses a direct encoding. Weights and biases of each PE are represented with 16-bits per
parameter (see Figure 12a). Dataflow configuration of the whole network is encoded with two bitstrings:
E_param for East ports and N_param for North ports. Two bits per PE are needed to configure the
dataflow. Figure 12b shows an example of the dataflow configuration generated by this combination
of parameters. Therefore, each PE adds 98 bits to the chromosome size. A problem-dependent fitness
score is assigned to every chromosome during the evaluation stage. This value is stored in each
chromosome with a float variable. Each chromosome also has an associated age, whose functionality
is explained next in this section, stored as an integer variable.

(a)

(b)

Figure 12. BbNN configuration encoded in the chromosome structure. (a) presents the representation
of the chromosome structure. (b) exposes and example of dataflow configuration from bits in E_param
and N_param.

The proposed algorithm is detailed in Algorithm 1. The algorithm takes as many iterations
(generations) as needed to achieve a fitness score that exceeds the value defined as the target. The initial
population of chromosomes is created randomly (line 1). At every generation, a mutation operator
is applied over the whole population of chromosomes with different mutation rates (line 6). Thus,
producing copies of the chromosomes with altered data. These copies are the offspring. The portion of
altered data injected by the mutation operator is given by the mutation rate, which in the proposed
algorithm decays in chromosomes with high fitness values. Therefore, good chromosomes suffer
lighter mutations. Decaying the mutation rate enhances the performance of the algorithm since
aggressive mutations on the dataflow may worsen the behavior of chromosomes with a high fitness
value. In turn, chromosomes with undesired performance are removed from the population with two
mechanisms: extinction and age threshold.

Each chromosome has an associated age. This value is incremented if any offspring chromosome
improves the performance of the original one (line 12). A chromosome is removed if its age is over
the maximum age, defined as an algorithm parameter (lines 13–15). This mechanism prevents the
stalling of the evolutionary algorithm. After some generations, the extinction operator is applied
over chromosomes with the lowest fitness values (lines 19–22). This strategy constitutes a kind of
elitism: only the best chromosome is protected from extinction. Extinction is the second mechanism to
prevent the algorithm from stalling while it increases the diversity of the population, thus avoiding
to fall into local minimum points. All operators of the proposed EA are configurable with the
parameters represented in Table 2. The values of these parameters have been set empirically to enhance
the convergence of the EA. Another mechanism to prevent the stalling of the EA is the dynamic
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scalability of the network. If fitness value remains constant for several generations, the EA scales up
the architecture by adding a row to the network.

The design of the fitness function is crucial for accomplishing a successful evolution process.
This function must be adapted to the problem by the designer. In classification problems, the goal
of the function is to assign a high score to chromosomes that result in higher classification accuracy.
Meanwhile, in control problems, the fitness function is designed to assign high scores to those
chromosomes which behavior achieves the requirements for the physical problem to be considered as
solved. The design of each fitness function for each of the use cases described in this work is detailed
in Section 7.

Algorithm 1: Evolutionary algorithm

1 Initialization(population);
2 bestFitness = evaluate(population);
3 generations = 0;
4 while bestFitness < targetFitness do
5 for chromosome in population do
6 offspring = mutation(chromosome);
7 bestFitnessMut = evaluate(offspring);
8 if bestFitnessMut > (chromosome.fitness) then
9 replaceChromosome(chromosome, offspring);

10 chromosome.age = 0;
11 else
12 chromosome.age++;
13 if chromosome.age > maxAge then
14 remove(chromosome);
15 end
16 end
17 end
18 selectBest(population);
19 if subgenerations > ExtinctionFreq then
20 extinction(population);
21 subgenerations = 0;
22 else
23 subgenerations++;
24 end
25 generations++;
26 end

Table 2. Parameters of the Evolutionary Algorithm.

Parameter Type Value Functionality

TargetFitness Float (0, 1.0) Application dependant Desired fitness
Pop-size Int 15 Number of chromosomes in the population
N-offspring Int 10 Number of mutated copies from one chromosome
MaxAge Int 7 Maximum number of stalled generations
ExtinctionFreq Int 5 Generations between extinctions
MutationRate Float (0, 1.0) 0.3 Percentage of data altered in the mutation
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6. A New Approach to Build a Scalable Bbnn

Enhancing the BbNN model with dynamic scalability allows handling the size of the network
as a parameter to be optimized at run-time, instead of being fixed at design-time. This way, the
optimization algorithm can find the appropriate size, as a trade-off between the size of the design space
under exploration and the capability of the architecture to undertake complex problems. Dynamic
scalability is also useful in applications in which changing the network size leads to different quality
levels. In these applications, it is possible to adapt the size of the BbNN according to different run-time
constraints, such as energy consumption, quality of results or available logic resources in the FPGA.

Its modular design and the distributed nature of its control make the BbNN an excellent candidate
to be implemented in a grid-based RR, using specific reconfigurable interfaces. The proposed
implementation is possible thanks to the use of the advanced reconfiguration features provided by the
IMPRESS reconfiguration tool [12,13]. IMPRESS is an open-source (https://des-cei.github.io/tools/
impress) design tool developed by the authors targeting the implementation of reconfigurable systems.
IMPRESS has been designed with a particular focus on implementing scalable two-dimensional
mesh architectures (i.e., overlays). Some features of IMPRESS that are of significant importance to
build scalable overlays are the following: direct reconfigurable-to-reconfigurable interfaces, module
(i.e., bitstream) relocation, the implementation of multiple RMs in the same clock region and decoupling
the implementation of the static system and the reconfigurable modules. All these features allow the
reconfiguration of multiple individual PEs in a single RR to compose at run-time a BbNN of any given
size. Another feature of IMPRESS that is of great importance to implement scalable BbNNs is the
possibility to instantiate LUT-based constants inside reconfigurable modules. This feature, known
as fine-grain reconfiguration, allows changing these logic constants by reconfiguring a single device
frame that spans one clock region column. A frame is the minimum reconfigurable unit of an FPGA.
Fine-grain reconfiguration accelerates the reconfiguration of logic constants distributed throughout
the device fabric. LUT-based reconfigurable components can be used to access the inside of a RR
without needing a direct link to the static system. In the case of BbNNs, the purpose of fine-grain
reconfiguration is twofold. First, it allows changing the configuration of the PEs without using any
global bus interface. It also enhances scalability as it is possible to provide inputs to the network
without using external communication modules that add overhead to the system.

The following is a description of the process of building a scalable BbNN with the aid of IMPRESS.
First, it is necessary to generate the static system with a single RR that contains the interface of
the output BbNN blocks. The interface of the RR can be easily defined by selecting which border
(e.g., south) is used, and then IMPRESS automatically selects which routing nodes are used as interface
points. Figure 13a shows an example of an empty RR with a south interface. The next step is
implementing the reconfigurable PE. IMPRESS allows relocating reconfigurable modules in different
RRs, whenever they have the same resource footprint (i.e., regions with the same resource distribution).
Once all the modules have been implemented, it is possible to compose a BbNN of arbitrary size at
run-time by reconfiguring individual blocks, as shown in Figure 13b. Notice that contrary to the Xilinx
reconfiguration flow where each RM has to be allocated in a unique RR, IMPRESS can allocate inside a
single RR multiple RMs that are interconnected to each other through reconfigurable interfaces.

During the run-time training of the BbNN, it is necessary to configure each PE of the BbNN to
modify the weights, biases and the neuron type configuration. Fine-grain reconfiguration needs to be
fast enough to be usable in the training phase of the BbNN, where a large number of potential candidate
configurations have to be evaluated. To reduce the reconfiguration time, IMPRESS automatically
groups all the LUT-based constants in the same column of device resources so that all the constants
can be reconfigured by modifying a minimum amount of frames. This feature makes fine-grain
reconfiguration fast enough to be used in the training phase of the BbNN. Fine-grain reconfiguration
can also be used to enhance scalability. As explained before, the works presented in [34,45] surrounded
the scalable architectures with communication and control modules that passed the input/output
signals to the corresponding modules. This strategy can lead to considerable resource overhead for
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small overlays. This overhead is avoided in this work by providing the inputs to the BbNN with
fine-grain reconfiguration. Figure 13c shows an example of a scalable BbNN with fine-grain constants
grouped in columns to modify the BbNN configuration and the input modules.

As we have seen, the BbNN relies on two different reconfigurations techniques. The first one
is used to allocate RMs inside the RR to change the size of the BbNN. The BbNN size is usually
selected before launching the application. However, the EA can change it at run-time if the fitness
value is stalled after a given number of generations, as shown in the experimental results. The second
technique is the fine-grain reconfiguration, which is used to provide the inputs of the BbNN and also
to configure the BbNN parameters during the training phase.

Reconfigurable Region

(a)

Reconfigurable Region

Input

PE

Input Input

PEPE

PE PE PE

PE PE PE

(b)

Reconfigurable Region

(c)

Figure 13. (a) Empty reconfigurable region. (b) reconfigurable region with 3 × 3 BbNN.
(c) reconfigurable region with 4 × 4 BbNN showing LUT-based constants grouped in columns.

One difficulty that arises when building scalable BbNNs with reconfigurable interfaces and fine-grain
reconfiguration is how to connect the edges of the network. This means, to close the structure as a
cylinder, which is a convenient feature to increase the connectivity between input variables. The proposed
implementation connects the edges by routing the signals through the interior of the BbNN, as shown
in Figure 14. This approach increases the heterogeneity of the PEs. Instead of using the same RM,
this solution requires three different RMs depending on the location (i.e., center or edge of the BbNN),
which hinders PE relocation. Moreover, bypass signals crossing the BbNN form a combinatorial path
which size increases with the size of the BbNN. When building larger BbNNs, these routes can become the
critical path, thus limiting the maximum system frequency. In the cases where the maximum frequency
limit is achieved, it is possible to connect dummy blocks (i.e., blocks that output a constant value) at the
edges of the BbNN. While this solution does not connect the edges of the BbNN, it has the advantage that
it keeps the frequency of the system independent of the BbNN size.

West
PE

Bypass
PE

Bypass 
PE

East
PE

Figure 14. Connecting the external edges of the BbNN using reconfigurable interconnections.
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Figure 15a shows the implementation of the BbNN static system in a Xilinx Zynq xc7z020clg400-1
SoC, including the area reserved for the RR. The RR can be populated at run-time with PEs to compose
a BbNN with up to 3 × 5 neurons. Figure 15b shows the implementation of the different neurons and
input modules and how they can be arranged at run-time to compose a 1 × 5 BbNN. It is important
to remark that the BbNN is rotated compared to the one shown in Figure 15c. In this case, the data
flow goes from the west to the east. This modification allows placing all the input modules in the same
column, aligning all the fine-grain reconfigurable inputs in the same frame. Thus, speeding-up the
reconfiguration process. The main drawback of rotating the BbNN is that it hinders the relocation of
the neurons in the column. PEs in the bottom and top columns have a different interface to those in
the middle of the column, and therefore their partial bitstreams are not compatible with relocation.

(a)

Input 2

Input 1

Input 3

Input 4

Input 5 PE15

PE14

PE13

PE12

PE11

(b)

Figure 15. (a) Shows a BbNN static system implementation that can allocate up to 3 × 5 PEs. (b) Shows
how neuron blocks can be arranged inside the reconfigurable region at run-time to form a 1 × 5 BbNN.

IMPRESS incorporates a library to manage the reconfiguration of mesh-type architectures.
This library includes a bidimensional variable that represents the current configuration of the
architecture. Each element in this variable has two parameters. The first one is a pointer to a
reconfigurable module in the library. The second one is the location where the reconfigurable module is
allocated in the device. When any of these parameters are changed, IMPRESS automatically initiates the
reconfiguration process to allocate the specified reconfigurable module in the desired FPGA location.

Moreover, IMPRESS includes a run-time hardware reconfiguration engine specialized for
fine-grain reconfiguration. The reconfiguration engine receives the configuration of the constants, and
it automatically reconfigures the FPGA with the required configuration.

114



Electronics 2020, 9, 803

7. Results

This section illustrates the performance of the system in terms of logic resource utilization, the
reconfiguration time and the capability to resolve different problems in two different domains, which
are classification and control tasks.

7.1. Logic Resource Utilization and Reconfiguration Times

Table 3 contains the resource utilization of the static system and each PE in the BbNN
implementation shown in Figure 15. The static system includes the BbNN controller, the fine-grain
reconfiguration engine and an empty RR where the BbNN PE blocks can be allocated at run-time.
Table 3 also shows the resources used by each individual processing element. Each PE uses 473 LUTS,
163 flip-flops and 1 DSP. As the PE can be implemented in different reconfigurable regions, there are
small variations in the percentage of used resources among RRs. The size of the partial bitstreams also
depends on the region where the PE is implemented. The PE bitstream size varies from 21.8 kB to
26.9 kB, depending on the reconfigurable region where the PE is implemented, while the input module
bitstream size is 5.8 kB.

As shown in Figure 14, the PE can adopt three different configurations, which have to be
implemented as three different RMs. To implement each possible BbNN size, we have to analyze
all the possible locations where the RMs can be allocated. The bypass RMs can only be allocated in
the inner regions of the RR. However, the edge RMs (e.g., west and east PEs) can be placed in every
region except the opposite edge regions (i.e., a west RM cannot be allocated on the east side of the
RR). When using the Xilinx reconfiguration flow, it is necessary to generate one partial bitstream
for each RM location, which would result in 33 (12 × 2 for edge RMs and 9 for the bypass RM)
different partial bitstreams to generate all possible combinations. However, generating all the possible
combinations is avoided by the flexibility benefits provided by IMPRESS, which allows relocating one
partial bitstream to compatible regions (i.e., regions that have the same resource distribution). In the
BbNN implementation shown in Figure 15, the total number of partial bitstreams needed to generate
all the possible combinations is reduced to 9.

Table 3. Resource utilization of the BbNN implemented on a Zynq XC7Z020.

Resource Type Static System Individual PE

LUTs 7966 473 (95.84%) *
FFs 7939 163 (16.98%) *

DSPs 0 1 (25%) *
BRAMs 2 0

* Percentage of the resources available in the RR used by the PE.

Table 4 shows a comparison of the proposed PE implementation and existing proposals in the
state-of-the-art in terms of logic resources. The proposed architecture presents the lowest footprint
in memory elements and DSPs. This is achieved by the proposed implementation for the sigmoid
function and the strategy proposed to reuse the single DSP over different clock cycles. The downside
of the dynamic scalability and flexibility of the proposed architecture is reflected in the high utilization
of logic elements. This logic overhead is a consequence of the online training feature. One downside
of dynamic partial reconfiguration is that other circuits cannot use the unused resources of the
reconfigurable region where the PE is implemented. Table 3 shows that in our PE proposal, the LUTs
are the bottleneck and leave several FFs, DSP and BRAMs unused.
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Table 4. Resource utilization per individual PE in comparison with other works in the state-of-the-art.

Work Platform Logic
Elements *

Memory
Elements

DSP
Elements

Activation
Function

Proposed architecture Zynq XC7Z020 473 163 FFs 1 Sigmoid-no DSP
Nambiar [21] Stratix III 231 276 FFs 2 Tanh-piecewise
Jewajinda [49] Virtex V 263 341 FFs 1 Sigmoid-LUT based
Merchant [19] Virtex-II Pro 338 4BRAM 1 Sigmoid-LUT based

Lee and Hamagami [18] ** Stratix IV 186 40 FFs 8 Linear

* Logic element implementation depends on the selected platform: 4-inputs LUTs (Virtex-II Pro), 6-inputs
(Zynq XC7Z020, Stratix III, Virtex V) LUTs or 8-inputs (Stratix IV). ** Only resource consumption for 8 × 16
BbNN size provided. Approximate metrics per PE.

Table 5 shows the breakdown of the time spent in each operation stage, both during the training
and the inference phases. The time the BbNN needs to process a set of inputs depends on the latency.
In a 3 × 3 BbNN, the maximum latency is 9. As each PE needs 7 clock cycles to compute its outputs,
the BbNN takes a maximum of 63 clock cycles to make the computation, which results in 0.63 µs at
100 MHz. The transference of inputs to the BbNN is carried out using the fine-grain reconfiguration
engine, and it takes 6.1 µs. In turn, the outputs are read with the AXI interface in 4.3 µs. Therefore, the
maximum throughput in the inference phase is 90.66 Kilo Operations per second (KOPS). By operation,
we mean to process a new set of inputs completely to obtain the desired output from the BbNN. In the
training phase, it is also necessary to configure the BbNN. The configuration of each parameter of
the BbNN also relies on the fine-grain reconfiguration, and it takes 41.7 µs. In the training phase,
it is also necessary to take into account the time required by the software to calculate the fitness
and to generate the chromosomes, which is application dependant. The computing times for fitness
computation are reported next for each use case. All the design operates at 100 MHz, except the
fine-grain reconfiguration engine that works at 175 MHz. While the ICAP configuration port has a
nominal value of 100 MHz, it has been demonstrated in [50] that it is possible to overclock it at higher
frequencies without behavior malfunction. This overclocking aims at reducing the total time needed to
reconfigure the BbNN during evolution.

Table 5. Time breakdown for a 3 × 3 BbNN.

Task Inference Training

BbNN computation <0.63 µs <0.63 µs
Input data transference 6.1 µs 6.1 µs

Output data transference 4.3 µs 4.3 µs
BbNN configuration - 41.7 µs
Fitness computation - Application dependant

Throughput 90.66 KOPS Application dependant

Table 6 shows how the BbNN size impacts the time spent in each stage. Reconfiguration times
shown in the table are a consequence of how IMPRESS carries out the fine-grain reconfiguration
process, which is described next. First, when the evolutionary algorithm commands to change one
parameter in an RM, IMPRESS has to search the device column where the parameter is placed and
then modify the column configuration accordingly. Once the user has changed all the parameters, the
new configuration values are sent to the reconfiguration engine, a hardware component in charge
of reconfiguring the selected columns with the new configuration data. The time spent on this first
stage depends on the number of parameters that have to be changed. In contrast, the second phase
only depends on the number of columns that have to be reconfigured. In the implementation shown
in Figure 15a, the number of frames that have to be reconfigured increases with the BbNN depth.
Therefore, the BbNN configuration time of a 3 × 3 BbNN increases significantly compared to a
1 × 3 BbNN. However, when increasing the width of the BbNN, the number of frames that have to
be reconfigured is kept constant, thus resulting in a more efficient reconfiguration process. Table 6
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shows that increasing the size from a 3 × 3 to a 3 × 5 BbNN results in a more efficient reconfiguration
time, especially in the case of the input data that only increases 0.5 µs. The increment in the BbNN
configuration time is higher because more parameters have to be changed in the first phase of the
reconfiguration process.

Table 6 also shows the comparison between using fine-grain reconfiguration (working at 175 MHz)
and using an AXI lite interface in a non-reconfigurable BbNN operating at 100 MHz. Using fine-grain
reconfiguration to configure the BbNN parameters is more efficient than using an AXI lite interface for
all the three different sizes. In contrast, the best option to transfer the input data to the BbNN depends
on the number of inputs. Fine-grain reconfiguration is convenient when there are five inputs, while
the AXI lite interface is the preferred option when the BbNN only contains three inputs.

Table 6. Performance comparison for different BbNN sizes.

BbNN Size BbNN Computation
(µs)

Input Data (µs) Output Data (µs) BbNN Configuration (µs)

Fine-Grain AXI Fine-Grain AXI Fine-Grain AXI

1 × 3 BbNN <0.21 µs 6.1 4.5 - 4.3 15.8 19.7
3 × 3 BbNN <0.63 µs 6.1 4.5 - 4.3 41.7 58.9
3 × 5 BbNN <1.05 µs 6.6 7.7 - 7 56 94.1

7.2. Case Studies

This section provides three different case studies showing how the neuroevolvable hardware
system can be adapted to different problems. All the results provided are the average of 100 training
processes. The EA finishes if a candidate configuration achieves the goal fitness or 1000 generations
are exceeded. At each generation, 150 candidate configurations (i.e., chromosomes) are evaluated.

We expose here one classification problem and two control problems. In the classification problem,
each chromosome is evaluated with all samples in the dictionary. In control problems, a new set of
initial states is evaluated at each generation to avoid inconsistent solutions.

7.2.1. Classification Domain: the Xor Problem

The XOR problem involves two inputs and one output, all 1-bit width. The goal is to evolve
the BbNN, so it behaves like a logic XOR gate. If two inputs have the same value, the output is zero.
Otherwise, the output must be one.

This problem is solved by using the truth table of the XOR gate as the reference. The selected
output of the BbNN is compared with the reference result for each input data pair. The fitness function
used to evaluate each configuration is based on the mean squared error of the BbNN output and the
reference (see Equation (5)). Both values are float data type. The fitness function expresses the accuracy
of the chromosome to approximate the output values to the binary values of the XOR truth table.
A fitness over 0.9 corresponds to a mean squared error below 10% for the four cases in the XOR truth
table. This problem is considered solved if the achieved fitness is over 0.9.

XOR f itness = 1−
(

1
4

4

∑
i=1

(yi − yreal)
2

)
(5)

Fitness computation for this problem takes 21 µs, and it is executed once per sample in the batch.
The batch contains four samples, so the fitness is computed four times per chromosome. Figure 16
shows the fitness progression along the evolution process and Figure 17 the selected configuration for
a 2 × 2 network that solves the problem. It should be noted that the links connecting the edges of the
network are used by the solution (i.e., the structure is closed as a cylinder). Figure 18 and Table 7 show
the influence of the BbNN size in training. Experimental results showed that the minimum BbNN that
can solve this task is a 2 × 2 BbNN. BbNNs with more than 2 × 2 elements facilitate the evolution
towards a solution evaluating fewer configurations.
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The four graphs in Figure 18 show the influence of the BbNN size on the convergence of the
XOR problem. For each size, the generations needed by the EA to solve the problem are registered.
Each graph covers up to 1000 generations. Beyond this value, the execution of the EA is considered as
non-convergent. From these measurements, it can be concluded that the more convenient BbNN size
for XOR proves to be 4 × 2 BbNN since it has the lowest rate of non-convergent executions and the
highest rates of executions below 100 generations. This BbNN size has the lowest number of evaluated
chromosomes and generations on average, as exposed in Table 7.

Figure 16. Progression of the fitness value during the XOR training for a 2 × 2 BbNN.

Figure 17. Solution for the XOR problem.

Table 7. Influence of the BbNN size on the training process for the XOR problem. Average stats from
100 convergent training processes.

Performance Indicator 2 × 2 BbNN 3 × 2 BbNN 4 × 2 BbNN 5 × 2 BbNN

Best fitness 0.95 0.97 0.98 0.95
Average tested configurations 19,954 13,434 13,036 20,090

Average generations 133 91 87 140

If the complexity of the classification problem is unknown at run-time, the dynamic scalability
of the BbNN may take an essential role in the search for solutions. This situation is shown for the
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XOR problem in Figure 19. The system starts by searching for a solution with a 1 × 2 BbNN structure.
After a period with the fitness stalled completely, the system dynamically adds a new row of PEs to the
BbNN (at generation 211, in Figure 19). After a few iterations with the new size, the neuroevolutionary
system is able to find a solution. The EA does not support population where chromosomes encode
BbNN of different sizes, but it can recompose a new BbNN architecture and reset the evolution process
if the fitness does not show any improvement.

(a) (b)

(c) (d)

Figure 18. Influence of the BbNN size in the convergence of the algorithm for XOR problem. Each graph
exposes the data from 100 executions of the EA. The generations needed to achieve a solution are
segmented in intervals, from 0 to 1000 generations. Executions over 1000 generations are stopped.
Convergence of different BbNN sizes is analyzed: 2 × 2 BbNN (a), 3 × 2 BbNN (b), 4 × 2 BbNN (c)
and 5 × 2 BbNN (d).

Figure 19. Resolution of the XOR problem using the dynamic scalability feature. At generation 211 the
Evolutionary Algorithm (EA) increases the BbNN size and resets evolution. At generation 249 the EA
converges towards a solution.
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7.2.2. Control Domain: Mountain Car

The Mountain Car is a standard control problem. It involves a car whose starting position is at
the bottom of a valley. The car must reach the top of the hill at the right. The engine of the car is not
powerful enough to reach the goal position by accelerating up the slope. Therefore, the car needs to
gain momentum to reach it by oscillating from left to right.

A simulation environment for the Mountain Car problem is included in the Gym OpenAI [14]
toolkit (Figure 20). The observation space of the environment has two variables: the position of the
car and the speed. Both variables are float type that are transformed to the fixed-point representation
before being processed by the network. Three possible actions can be performed on the car: push left,
push right or do not push. The force of the engine is constant.

Figure 20. OpenAI Mountain Car environment and coordinate system used to determine the position
of the car. The hills are generated with the sin(3x) function.

The BbNN is evolved to find a controller for this problem directly by interacting with the
environment. The Zynq-7020 SoC FPGA device in which the neuroevolvable hardware system
runs has been integrated as a hardware-in-the-loop platform with the OpenAI simulator running
on a PC. The evaluation of each candidate circuit is called an episode. Each episode finishes when
the car reaches the goal position, or after 200 control actions (steps). This value has been obtained
experimentally after observing that beyond this number of actions, the likelihood that an unsuccessful
candidate circuit reaches the final position decreases.

A specific fitness function has been developed for this environment, which is shown in
Equation (6). This fitness function rewards circuits able to drive the car close to the desired position
with the fewest possible number of steps. Position of the car is its X coordinate according to Figure 20.
It can vary in the range (−1.2, 0.5), the fitness expression presents three possible scenarios:

• Fitness score in the range (−0.12, 0): the steps component in the fitness function is equal to zero
since the circuit performs 200 control actions without any success. The car is far from the goal
position at the end of the episode.

• Fitness score in the range (0, 0.05): the steps component is also null because all control actions
were consumed, but the circuit can drive up the car near the desired position.

• Fitness score over 0.05: circuits scored in this range can drive the car to the goal position in
less than 200 steps. The fewer control actions needed, the higher the score is. We consider that
achieving the top of the hill with 150 steps can be considered good behavior. This corresponds to
a fitness score over 0.4, which is set as the threshold to consider a problem as solved.
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Fitness computation for this problem takes 41 µs. Fitness is computed once at the end of each
episode and hence once per chromosome. An example of the evolution of fitness in an episode is
shown in Figure 21.

Table 8 exposes the influence of the BbNN size on the training process. We only consider topologies
with two columns since this is the number of observable variables in the environment. The number
of rows varies from 2 to 4. First, we can see that all the considered BbNNs can solve the problem,
even with a single row. However, the size has a direct effect on the performance of the EA. Small
network architectures need fewer generations to solve the problem since chromosomes have fewer
parameters to be optimized. A 1 × 2 BbNN needs 323 generations on average to converge to a solution;
meanwhile, 2 × 2 BbNN increases the number of generations needed. Although networks over 1 × 2
size need more generations to be optimized, they enhance the quality of the solution. A 2 × 2 BbNN
achieves a good compromise between the best fitness and evaluated circuits.

Figure 22 provides the convergence of the EA for different BbNN sizes similar to the previous
problem. In this case, the smallest BbNN architecture ensures the convergence of the 81% executions
below 100 generations and has a low rate of non-convergent executions. Moreover, this BbNN size
presents the lowest average generations in Table 8. Therefore, 1 × 2 BbNN is the most suitable size in
this case.

f itness =
(

1− steps
200

)
+

f inalPosition
10

(6)

Figure 21. Example of progression of the fitness value during the Mountain Car training for 2 × 2 BbNN.

Table 8. Influence of the BbNN size on the training process for Mountain Car problem. Average stats
from 100 training processes.

Performance Indicator 1 × 2 BbNN 2 × 2 BbNN 3 × 2 BbNN 4 × 2 BbNN

Best fitness 0.41 0.46 0.45 0.43
Average tested configurations 323 1.156 3.899 984

Average generations 3 8 26 7
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(a) (b)

(c) (d)

Figure 22. Influence of the BbNN size in the convergence of the algorithm for Mountain Car problem.
Each graph exposes the data from 100 executions of the EA. The generations needed to achieve a
solution are segmented in intervals, from 0 to 1000 generations. Executions over 1000 generations
are stopped. Convergence of different BbNN sizes is analyzed: 1 × 2 BbNN (a), 2 × 2 BbNN (b),
3 × 2 BbNN (c) and 4 × 2 BbNN (d).

7.2.3. Control Domain: Cart Pole

Cart Pole or Inverted pendulum is a staple problem in the control domain. The center of mass
of the pendulum is above its pivot point. Therefore, the pendulum is unstable if no control actions
are performed on it. OpenAI also provides a python-based simulation environment for this problem,
whose graphical representation is shown in Figure 23.

Figure 23. Cart Pole environment.

Four variables are observed in the environment: the position and speed of the cart, the angle of
the pole and the speed at the end of the pole. All of them are float type variables with different ranges.
The system must keep the pole in a balanced position. Two actions can be performed on the simulation
environment: push the cart left or right.

In this case, an episode finishes if the angle of the pole is over 12◦ or the position of the cart
exceeds the scenario boundaries. In those cases, the pole is considered to be unbalanced. After each
control action on the pole, a partial error value is calculated. This value represents the instability of the
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pole after the control action. The partial error involves the four parameters of the observation space
and their maximum value, as shown in Equation (7). If the pole falls, global fitness is calculated as the
addition of all partial error. Not performed steps are scored with the highest partial error value, as
shown in Equation (8):

partialerrorj =
1
4

1
200

(
4

∑
i=1

xi
maxi

2
)

(7)

f itness = 1−
(

200

∑
j=1

partialerrorj +
200− steps

200

)
(8)

where:

• xi: is the ith parameter in the observation space.
• maxi: is the maximum value in the range of ith parameter in the observation space.
• partialerrorj: represents the instability of the pole after the jth control action.

Fitness function showed in Equation (8) is designed to assign high scores to those chromosomes
that complete 200 control actions in balance and low partial error. Fitness computation for this problem
takes 46 µs. Fitness is computed after each control action since it involves an accumulation of the
partial error. The ultimate fitness would be 1 in case the pole last for 200 control actions in a balanced
and static position. However, two chromosomes able to balance the pole during 200 control actions can
have different fitness scores since every partial error value depends on the value of the four variables of
the observation space. The problem is solved if a fitness value over 0.95 is achieved. An example of the
progression of fitness during a Cart Pole training experiment for 3 × 4 BbNN is shown in Figure 24.

Figure 24. Example of progression of the fitness value during the Cart Pole training for 3 × 4 BbNN.

The minimum BbNN width for this problem is four: one column for each variable in the
observation space. The minimum network size compatible with this control problem is, therefore,
1 × 4 BbNN. Networks with an additional row to 2 × 4 BbNN broaden the design space exploration,
and the EA evaluates more configurations to encounter a solution. Additional rows on the architecture
have the same effect. Table 9 and graphs in Figure 25 exposes the influence of the BbNN size on
the training process. These data have been gathered similarly to former case studies. In this case,
increasing the size of the network leads to higher rates of non-convergent executions. Therefore,
the most suitable size for this problem is 1 × 4 BbNN, which has the lowest rate of non-convergent
executions (Figure 25) and the lowest average generations needed to solve the problem (Table 9).
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Table 9. Influence of the BbNN size on the training process for Cart Pole problem. Average stats from
100 training processes.

Performance Indicator 1 × 4 BbNN 2 × 4 BbNN 3 × 4 BbNN 4 × 4 BbNN

Best fitness 0.977 0.973 0.970 0.978
Average tested configurations 518 2101 8651 2051

Average generations 4 14 58 14

(a) (b)

(c) (d)

Figure 25. Influence of the BbNN size in the convergence of the algorithm for Cart Pole problem. Each
graph exposes the data from 100 executions of the EA. The generations needed to achieve a solution
are segmented in intervals, from 0 to 1000 generations. Executions over 1000 generations are stopped.
Convergence of different BbNN sizes is analyzed: 1 × 4 BbNN (a), 2 × 4 BbNN (b), 3 × 4 BbNN (c)
and 4 × 4 BbNN (d).

Figure 24 contains the fitness progression of 3 × 4 BbNN during the training process of the Cart
Pole problem. The initial unbalanced condition of the pole is different from each generation. Therefore,
the same BbNN configuration varies its fitness value depending on the initial state. Figure 26 presents
a solution to this problem in which the evolutionary algorithm has created two feedback loops.
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Figure 26. BbNN solution for Cart Pole problem.

7.3. Online Adaptation for Control in Dynamic Environments

As proof of the online adaptation capability of the proposed system, two examples based on the
previous control problems are provided. Both online training examples are tackled following the same
approach. First, the system is trained under normal conditions, and once it is capable of controlling
the problem for at least 10 generations, physical parameters are changed. This change hampers the
capability of the trained BbNN to solve the initial problem. Table 10 exhibits the initial conditions for
each problem and their modified values.

Table 10. Initial and modified conditions for online training.

Problem Parameter Normal Value Modified Value

Cart Pole
Gravity 9.8 m/s 20.0 m/s

Pole length 0.5 m 0.1 m
Cart mass 1.0 Kg 1.5 Kg

Mountain Car Engine power 0.001 0.0008

Some of these modifications to the problem conditions emulate changing the environment.
For instance, the modified value of the engine power of the car in the Mountain Car problem emulates
a loss of power in the engine. Other changes emulate conditions that harden the problem resolution.
For instance, an increment of the gravity over the pole seems unrealistic but creates a handicap for the
problem resolution.

Both control problems exhibit similar behavior. After the change in the conditions, a drop in the
fitness can be observed. The re-training stage has better average fitness than the first training stage.
This means that the system has prior knowledge about the problem, creating a nice basis to solve it
when harder conditions appear. Figures 27 and 28 show the evolution of the fitness when conditions
change for both control problems.
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Figure 27. Cart Pole training and re-train for 3 × 4 BbNN.

Figure 28. Mountain Car training and re-train for 2 × 2 BbNN.

8. Conclusions and Future Work

In this paper, we propose a dynamically scalable hardware implementation of the Block-based
Neural Network model, which, under the control of an evolutionary algorithm, enables
continuous system adaptation. The proposed neuroevolvable hardware system integrates advanced
reconfiguration features that allow to (1) compose the BbNN at run-time by stitching together
individual PEs and (2) providing the inputs and changing each PE configuration with reduced
reconfiguration times. The result is a scalable BbNN whose size can be adapted to the computational
demands required by a given application. Experimental results show how scalability allows changing
the number of logic resources occupied by the network depending on the complexity of the problem
or the expected quality of the results. The proposed system has been implemented in an SoC FPGA
and integrated using a hardware-in-the-loop scheme with the OpenAI toolkit to show its efficiency in
reinforcement learning problems, such as the cart pole and the mountain car problem.

Regarding resource utilization, each PE uses 473 LUTs, 163 FFs and 1 DSP. Compared to other
state-of-the-art solutions, our proposal uses more LUTs but reduces the number of FFs or DSPs.
Fine-grain reconfiguration has been proven to be a valid solution to train the BbNN online as all the
parameters of a 3 × 3 BbNN can be reconfigured in just 41.7 µs. In real applications, it is not necessary
to change all the parameters at the same time, which further reduces the total time needed to configure
the network. The inputs of the network are also provided using fine-grain reconfiguration in 6.1 µs
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while the outputs are transferred using an AXI full interface in 4.3 µs. The time needed to compute the
fitness is application-dependent and ranges from 21 µs to 46 µs for the use cases provided in this paper.

Further research will be carried out to extend the reinforcement learning capabilities of the
proposed solution in more complex scenarios and other applications. Different variants of the
evolutionary algorithm will also be explored to increase the capacity of the system to deal with
more complex problems. Moreover, the evolutionary algorithm will be modified to use the size of the
BbNN as an additional parameter subject to evolution, which will allow selecting the most appropriate
BbNN size for a given application without user intervention. The fixed-point data encoding of the
network can be an obstacle when solving complex problems. Therefore, more precise encoding
schemes, like dynamic fixed-point or wider bit width of registers, will be studied. This improvement
in data representation may cause an increment in FPGA resource consumption. Other optimization
algorithms, such as gradient descend based or multi-threaded EAs will be analyzed, as an alternative
to EAs.
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Abstract: Nowadays, highly portable and low-energy computing environments require programming
applications able to satisfy computing time and energy constraints. Furthermore, collaborative
filtering based recommender systems are intelligent systems that use large databases and perform
extensive matrix arithmetic calculations. In this research, we present an optimized algorithm
and a parallel hardware implementation as good approach for running embedded collaborative
filtering applications. To this end, we have considered high-level synthesis programming for
reconfigurable hardware technology. The design was tested under environments where usual
parameters and real-world datasets were applied, and compared to usual microprocessors running
similar implementations. The performance results obtained by the different implementations were
analyzed in computing time and energy consumption terms. The main conclusion is that the
optimized algorithm is competitive in embedded applications when considering large datasets and
parallel implementations based on reconfigurable hardware.

Keywords: embedded systems; collaborative filtering; recommender systems; parallelism;
reconfigurable hardware; high-level synthesis

1. Introduction

Nowadays, in the framework of the information society, a large amount of information is
being generated from multiple and heterogeneous data sources. The own interaction of the user
who generates or uses this information is added to the same. Representative examples can be
found in areas such as e-commerce (users who buy and value products) and the entertainment
industry (users who value series and movies). This information is usually stored in large databases,
permanently and dynamically growing and updating, which constitute a source of knowledge
regarding user behavior, so that predictions and recommendations can be made. This is where
recommendation systems emerge.

Recommender Systems (RS) [1] are algorithmic techniques that allow users to obtain
recommendations and predictions after an intelligent processing of the data of large databases. RS
give personalized recommendations to the users according to their behavior when requesting and
handling information [2,3]. In this sense, RS are also known as filters because they block the data not
connected to the users’ behavior.

Besides the analysis and recommendation of information, an important application of RS is the
prediction of the users’ behavior. For example, in the Predicting Student Performance (PSP) problem [4],
the score of an evaluation task in the academic environment for a particular student can be predicted
when RS considers it as a ranking prediction problem. Nevertheless, the most popular implementation
of RS is Collaborative Filtering (CF) [5,6], where users with similar preferences in the past will have

Electronics 2020, 9, 546; doi:10.3390/electronics9040546 www.mdpi.com/journal/electronics131



Electronics 2020, 9, 546

similar preferences in the future [7]. For example, if two users have rated the same movies as positive,
new movies that either rates as positive might be liked by the other user.

A matrix defines the relationship between users and items in CF. This matrix stores the ratings
(explicit or implicit) of the users to the items, and has a high level of sparsity, because users only rate a
small number of available items. Popular online applications, such as e-commerce websites or movies
databases, generate rating matrices composed of thousands of million ratings, where hundreds of
thousands of users have rated hundreds of thousands of items.

The way to fill the gaps of the sparse ratings matrix [8] considers the Matrix Factorization (MF)
technique [9]. MF generates a scalable model for prediction purposes [10] composed of two matrices.
The prediction is a combination of factors as result of multiplying the row corresponding to a user in
the user-latent space with the column corresponding to an item in the item-latent matrix. In addition,
MF assumes that users’ ratings are conditioned by K latent factors describing the items of the system.
MF algorithms try to find these hidden factors through the rating matrix.

We would like to highlight the interest in implementing a CF algorithm in hardware for running
embedded applications due to several reasons. Firstly, we must bear in mind that CF involves large
amount of data because of the number of users and items in databases. The needs of predictions
and data handling involve high computational efforts, especially if real time constraints are required.
Therefore, the design of hardware circuits that accelerate some processes of the algorithm is especially
interesting. Besides, possible embedded applications of CF require fast algorithms if they should
be performed on small, low-power computing environments. Therefore, we focus the research on
implementing embedded applications of CF by considering Field Programmable Gate Array (FPGA)
devices [11], under the Reconfigurable Computing (RC) [12] and System-On-Chip (SoC) [13] concepts.

We propose using FPGA devices for designing accelerated CF algorithms because this technology
combines software flexibility with hardware performance by exploiting parallelism. Thus, if an
embedded implementation is designed carefully by following these advantages, it can provide excellent
results, even surpassing the performance delivered by usual microprocessors or Central Processing
Units (CPU) in similar experimental conditions [14]. Other design approaches based on different
hardware technologies can also be explored. In this sense, Graphical Processing Units (GPUs) can be
programmed by using OpenCL for similar purposes, although their high power consumption could be
a constraint when using them for embedded applications.

In summary, our proposal is to design an embedded, low-energy implementation of an efficient
CF algorithm in order to perform applications on highly-portable light computing environments. Our
approach was successfully tested considering several state-of-the-art datasets.

The remainder of this paper is structured as follows. We present some related works in
Section 2. In Section 3, we discuss the basis of two approaches, basic and enhanced, of CF algorithms.
Next, Section 4 explains the design and implementation of both algorithms, emphasizing on the
parallelization strategy considered for improving the performance results. Section 5 shows a
performance comparison between the two approaches and usual microprocessors, detailing the
state-of-the-art datasets considered, the experimental procedure followed, and the timing and power
results. Finally, the conclusions of this paper are summarized in Section 6.

2. Related Works

RS are a good opportunity to provide advanced services to Internet users. Some classic
examples of heterogeneous successful applications are PHOAKS [15] (it helps users to locate useful
information on the World Wide Web (WWW) examining USenet news messages), Referral Web [16] (it
combines social networks and collaborative filtering), Fab [17] (it combines content-based information
with collaborative filtering), Siteseer [18] (a conceptual recommender system for CiteSeerX), and
many others. However, currently growing concepts in the Internet domain, such as Internet of
Things, autonomous driving, and augmented reality, among many others, are pushing to consider
new applications of the RS. For example, we can find novel and advanced applications of RS in
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vehicles [19], voice-enabled devices [20], smartphones [21], and multimedia data for robustness [22],
diversification [23], and real-time [24] recommendation aims, among many other examples.

In the context of an increasing application of the RS, many research efforts are focused on
improving the accuracy and reducing their limitations. In this regard, RS have some limitations,
especially related to their complexity and difficulty in understanding them. They represent black
boxes that require personalized explanations related to the individuals’ mental models [25], which has
consequences in many areas, such as computer vision [26].

Computing systems based on low-performance and low-consumption microprocessors may
be involved in some of these new fields of application of RS. Thus, there are environments where
RS could run on such computer systems, for example smartphones and IoT devices. In fact, the
demand of computing resources by RS may have limited their application in these areas and devices.
Particularly, mobile RS are an interesting area for online applications (social networks, e-commerce,
and streaming platforms) in situations where the data volume can produce overload. These situations
may occur more and more frequently, given the rapid increase in the use of mobile devices in a context
of continuous growth and improvement of network infrastructure. The links between web and mobile
RS are identified in [27] to provide guidelines for embedded RS in mobile domain. We find some
examples of mobile RS in recommending different types of media to its users using a context-aware
approach [28] or in recommending photos by means of current contextual data in combination with
information found in the photos [29]. Other examples of mobile RS can be found in the mobile news
based on the current context and format [30], the recommendation of music depending on the daily
activities of a person [31], or the passengers of a car [32].

For all the above reasons, the tools and technologies for designing and implementing embedded
computing systems based on low-consumption devices can lead to the application of RS for many
purposes in novel fields. Our proposal considers the reconfigurable technology based on FPGA devices
for implementing fast, low-power collaborative filtering algorithms for embedded applications. This
proposal is in line with other works where ML functions and features have been implemented using
similar technology, for different purposes, mainly for acceleration tasks. Thus, we can find FPGA
technology applied for Convolutional Neural Networks (CNN) [33], Deep Learning (DL) [34], K-Means
clustering [35–37], and kernel density estimation [38], among others.

It is particularly interesting to explore the application of FPGAs for CF, especially for
acceleration purposes. In this regard, there are some attempts to accelerate tasks involved in
cloud services and large databases, such as Amazon [39]. We can find some examples of FPGA
implementations of different aspects of RS algorithms, rather than the whole system itself. For example,
a Stochastic Gradient Descent (SGD) algorithm [40] used for training some RS models is implemented
on FPGA considering single-precision floating-point [41]. In this sense, our proposal takes a step
forward, as we undertake the complete implementation of two CF algorithms, which are capable of
handling real datasets.

3. Recommender Systems: Two Approaches

In this section, we present two approaches of CF algorithms, detailing their mathematical
descriptions and how they work.

3.1. Basic Algorithm

In the context of machine learning, MF technique represents a well known family of algorithms
that split a matrix X ∈ Rn×m into two matrices U ∈ Rn×k and V ∈ Rk×m, in such a way that X ≈ U ·V
[42]. Note that the rank of the matrices U and V is much smaller than the rank of X, since k� n and
k� m. Therefore, the factorized matrices U and V contain a compact representation of the original
matrix X.

Applied to CF, MF based RS factorize the sparse rating matrix R ∈ Rn×m that contains the set of
known ratings of n users to m items [43]. The fundamental assumption of these kinds of algorithms
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is that the ratings of the users to the items are conditioned by a subset of latent factors intrinsic to
the users and items. For example, in a movies’ RS, it is assumed that the rating a user provides to a
movie is conditioned by the genre of that movie. As consequence of the factorization process, two new
matrices are generated: P ∈ Rn×k, which represents the k-latent factors of the n users; and Q ∈ Rm×k,
which represents the k-latent factors of the m items. Once the factorization is performed, the rating
predictions (r̂ui) of a user u to an item i can be computed by the dot product of the row vector of the
matrix P that contains the latent factors of the user u (~pu) and the column vector of the matrix Q that
contains the latent factors of the item i (~qi):

r̂ui = ~pu ·~qT
i . (1)

Hence, the learning process consists on find the optimal parameters for the matrices P and Q
that verifies

R ≈ P ·QT . (2)

This process is usually raised as an optimization problem in which the quadratic difference
between the known ratings (ru,i) of the matrix R and the predicted ones (~pu ·~qT

i ) must be minimized:

min
~pu ,~qi

∑
(u,i)∈R

(ru,i − ~pu ·~qT
i )

2. (3)

The most popular implementation of MF applied to CF is Probabilistic Matrix Factorization (PMF) [44].
PMF performs the factorization thorough a probabilistic model that represents interaction between the
users and items in a CF context. Figure 1 contains a graphical representation of this probabilistic model.
The figure contains three representational elements: circles that symbolize random variables; arrows
between two variables that indicate dependence between that random variables; and rectangles that
indicate repetitions of the random variables. The color of the circles indicates if the random variables
are observed (black) or must be learned (white). As we can observe, there exists three random variable:
Rui that symbolizes the rating of the user u to the item i; Pu that symbolizes the latent factors of each
user u; and Qi that symbolizes the latent factors of each item i. The arrows between Pu and Qi with
Rui denote that there exists dependency between the rating of user u to item i and the latent factors of
user u and item i. PMF assumes a Gaussian distribution for all the random variables. σR, σP and σQ
denotes model hyper-parameters.

Pu

UI
R
ui

R

Q P

Qi

Figure 1. Graphical representation of PMF model.
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Algorithm 1 summarizes PMF. The inputs are the rating matrix R, the number of latent factors K,
and the hyper-parameters to control the learning process λ and γ. The outputs are the latent factors
matrices P and Q learned from the rating matrix.

Algorithm 1: PMF algorithm.
input : R, K, λ, γ
output : P, Q
Create a random matrix P with U rows and K columns
Create a random matrix Q with I rows and K columns
repeat

for each user u do // This loop can me parallelized for each user
for each item i rated by user u do

error = R[u][i] - dotProduct(P[u], Q[i])
for each factor k do

P[u][k]+ = γ · (error · P[u][k]− λ ·Q[i][k])

for each item i do // This loop can be parallelized for each item
for each user u that has rated the item i do

error = R[u][i] - dotProduct(P[u], Q[i])
for each factor k do

Q[i][k]+ = γ · (error ·Q[i][k]− λ · P[u][k])

until convergence
return P, Q

3.2. BNMF Algorithm

Bayesian Non-negative Matrix Factorization (BNMF) [9] model is another factorization model
designed for CF based RS. BNMF model has demonstrated its superiority by providing more accurate
predictions and recommendations than PMF model. As PMF, BNMF factorizes the rating matrix in a
probabilistic way.

The main objective of BNMF is to provide an understandable probabilistic meaning of the latent
factors space generated as consequence of the factorization process. To achieve this, the model has
been designed in such a way that it better represents the interaction between users and items. Instead
of assuming a continuous distribution to represent ratings, such as Gaussian distribution, a discrete
distribution is used. This coincides with the reality of most CF systems, where users must rate items
on a pre-set scale (e.g., 1–5 stars).

Figure 2 contains a graphical representation of BNMF model. The model is composed by the
following random variables:

• ~θu is a K dimensional vector from a Dirichlet distribution. This random variables are used to
represent the probability that a user belongs to each group.

• κik from the Beta distribution used to represent the probability that a user in the group k likes the
item i.

• Zui from the Categorical distribution used to represents that the user u rates the item i as if
he or she belongs to the group k.

• ρui from the Binomial distribution used to represent the observable rating of the user u to the item i.

The model also contains the following hyper-parameters:

• α is related to the possibility of obtaining overlapping groups of users sharing the same
preferences.

• β is related to the amount of evidences required to belong to a group.
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• K is related to the number of groups (i.e., number of latent factors) that exists in the dataset.
• R is related to the Binomial distribution which take values from 0 to R.

To be able to compute predictions with the BNMF model, we must determine the conditional
probability distribution of the non-observable random variables given a set of observations (i.e., the
known ratings). Applying the variational inference technique [45], we can obtain the algorithm to
perform this task. Algorithm 2 contains a detailed explanation about the training phase of BNMF
model. For further information about the inference process, see [9].

Algorithm 2: BNMF algorithm. The algorithm returns the latent factors for each user and
item. Input ratings (rui) must be normalized.

input : rui, α, β, K, R
output : puk, qik
temp : γuk, ε−ik , ε+ik , λuik, λ′uik
Initialize γuk
Initialize ε−ik
Initialize ε+ik
repeat

for each user u do
for each item i rated by user u do

for each factor k do
λ′uik ← exp(Ψ(γuk) + r+ui ·Ψ(ε+ik ) + r−ui ·Ψ(ε−ik )− R ·Ψ(ε+ik + ε−ik ))

for each factor k do

λuik ← λ′uik
λ′ui1+···+λ′uiK

for each item i do
ε+ik ← β

ε−ik ← β

for each user u do
γuk ← α

for each item i rated by user u do
for each factor k do

γuk ← γuk + λuik
ε+ik ← ε+ik + λuik · R · rui
ε−ik ← ε−ik + λuik · R · (1− rui)

until convergence
for each factor k do

for each user u do
puk ← γuk

∑ f=1..K γu f

for each item i do

qik ←
ε+ik

ε+ik+ε−ik
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Figure 2. Graphical representation of BNMF model.

4. Hardware Designs for Embedded Applications

In this section, we present the hardware implementations of PMF and BNMF. The purpose of
both implementations is twofold. On the one hand, the operations of the algorithms are accelerated by
using the parallelism that hardware provides; on the other hand, the energy consumption is reduced
in comparison with usual microprocessors.

4.1. PMF Design

PMF was parallelized by considering High-Level Synthesis (HLS) technology [46]. HLS transforms
C specifications (C, C++, SystemC, or OpenCL code) into a Register Transfer Level (RTL) implementation,
which allows us to synthesize the design to any Xilinx FPGA. This way, HLS facilitates the fast design
of efficient circuits by parallelizing code automatically. Specifically, for this work, we considered
Vivado HLS tool [47], which was deeply analyzed by O’Loughlin et al. [48].

The main parallelization strategy for PMF is described in [49]. As we can see in Algorithm 1,
two consecutive loops can be parallelized after initialization in order to update the corresponding
factorized matrices for each user/item. These loops are sequentially performed several times.

4.2. BNMF Design

In this section, we show how we implemented the BNMF algorithm on a reconfigurable hardware
platform. Previously, we implemented two versions of PMF on FPGA. The first version was a simple
design without parallelism in order to check the viability of using an embedded operating system
for running a full recommender system and analyze its performance. The second version was a
parallelized design in order to accelerate the operations. Therefore, next, we focused our efforts just on
implementing a parallelized design of BNMF, once checked the viability of using the same hardware
platforms and software tools applied to PMF. In this section, we detail how we designed the BNMF
algorithm for a high-performance implementation on FPGA.

The main tools used for the design of the BNMF algorithm in an FPGA are summarized in
Table 1. Zedboard is a low-energy and low-cost prototyping board that mounts a programmable
System-on-Chip (SoC) including an ARM processing architecture. Furthermore, there are many
elements and features to design any computing system based on Linux, Windows, and Android
operating systems, among others, and interact with the user’s needs.

Table 1. Main tools for implementing BNMF in FPGA.

Hardware Zedboard Zynq-7000

SoC: Xilinx Zynq XC7Z020
Elements: HDMI, VGA, audio, Ethernet, SD, USB ...
Memory: 512 MB DDR3
Oscillators: 100 MHz and 33.3 MHz

Operating System Linaro OS

Software Xilinx Vivado HLS

137



Electronics 2020, 9, 546

Figure 3 shows the architecture where BNMF is implemented and executed. This architecture
basically consists of three elements, mutually communicated along an AXI bus: external memory,
multiprocessor system, and programmable logic.

• The memory of type DDR3 can store up to 512 MB. It hosts the datasets that provide the users
and items to the RS, as well as the main program to control the BNMF flow. Storing the datasets
in the external memory instead of in the internal memory blocks of the FPGA frees up space in
the programmable logic to implement the BNMF core. In addition, an AXI interface was chosen
to implement parallel access to memory so as not to limit bandwidth excessively. However, very
large datasets may exceed the available memory capacity; in this case, the dataset is hosted on the
SD card together with Linaro OS.

• The multiprocessor system is based on an ARM Dual Cortex-A9. It just runs the main control
program: basic operations for initializing and starting the BNMF core implemented in the FPGA,
as well as getting and displaying the results returned by it.

• The SoC block implements the BNMF core. The main advantage of this block is the high
parallelization level of the operations described in Algorithm 2. Thus, the expected performance
of this design would be higher than the performance given by a simple sequential code in the
same main control program.

MPCore System

ARM Dual Cortex-A9

control program execution

initializations

call BNMF

get results

display results

FPGA Xilinx Zynq-7000 SoC

XC7Z020-CLG484

BNMF core

start

loads users/items

performs parallel

calculations

returns results

Memory

512 MB DDR3

datasets

users

items

AXI bus
control

program

Figure 3. Basic architecture for BNMF on the Zynq Zedboard 7000.

As we did in PMF, we installed an embedded Linux OS (Linaro distribution) on the board in
order to allow running the BNMF on the FPGA. This OS is launched from a separated partition in the
SD card, thus the changes made by the program are written in that partition. The Linaro filesystem
is a complete Ubuntu-based Linux distribution with graphical desktop. The advantage of using the
Linaro is that we can work with the ZedBoard just as if we used a commercial processor. Thus, the
code executed both in ZedBoard and in CPU is exactly the same.

4.3. Parallelization Strategy

In this section, we detail how the parallel implementation of the BNMF algorithm was designed.
The results obtained in PMF encouraged us to improve the performance by designing a more accurate
parallel design in BNMF.

The parallel design was developed mainly by programming with HLS. However, we also modified
the design manually by including different optimization directives provided by HLS in order to
increase the fine-grained parallelism without the need to modify the C code, in order to obtain a higher
performance circuit. Thanks to these directives, we managed the way of parallelizing certain loops
and operations. The most used directives were those for unrolling loops or functions, which allow
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us to work with arrays in parallel. Additionally, other directives to later transfer data to the BNMF
algorithm were used too.

Figure 4 allows explaining easily the parallelization strategy followed by the design. First,
according to Algorithm 2, we perform random initializations of γ, e+ and e− in parallel, since they
are matrices and are highly parallelizable.

Next, four consecutive blocks implement parallel operation for calculating some sections of the
algorithm. These four blocks are executed sequentially because there is a clear data dependency
between them.

The update of λ requires a great computational cost, since we could define it as a matrix vector.
Basically, the parallelization consists in updating each of the elements of that matrix vector in parallel. Then,
we also perform the update of e+ and e− in parallel. Finally, we calculate the user factors a and b in parallel.
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Figure 4. Strategy for parallelizing BNMF.
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5. Performance Comparison

In this section, we highlight the different results obtained by PMF and BNMF. First, we explain the
datasets considered for the experiments. Next, we show the performance results in terms of computing
time and energy consumption.

5.1. Datasets

Both PMF and BNMF were tested using four state-of-the-art datasets of different characteristics,
widely used for this purpose: The Movies Dataset (Kaggle), Movielens-100K, Movielens-1M, and
Netflix-100M (Table 2). These datasets gather the activity of many users when rating movies with
scores from 1 to 5, where each user rates at least 20 movies.

We chose datasets of very different sizes to check the impact of the matrix calculations in the
performance given by the FPGA implementation. To get a rough idea, the product Users × Items goes
from 6.3M in Kaggle to 8495M in Netflix-100M.

Table 2. Datasets used to test PMF and BNMF algorithms.

Dataset Kaggle Movielens-100k Movielens-1M Netflix-100M

Ratings 100,000 100,000 1,000,000 10,000,000
Users 700 943 6,000 480,188
Items 9000 1682 4000 17,691

5.2. Experimental Procedure

Figure 5 shows the phases of the experimental procedure followed in our research. First, we
studied in depth the best way to parallelize BNMF, looking for those operations that can be parallelized
without altering the right calculation of the remaining ones. Once the parallelizaton strategy was
determined, we generated the parallel core using Xilinx Vivado HLS. The BNMF design was exported
as IP core, which can be reached by the processor and memory in the architecture described in Figure 3.
Next, this core was exported as bitstream into the Linaro OS, and the aforementioned datasets were
added to perform the tests. Finally, the BNMF algorithm was executed and the results are validated.

This experimental procedure was performed as many times as different datasets available for
performance purposes.

BNMF parallelization

Vivado HLS parallelization

Export HLS block into Linaro OS in Zynq

Load datasets into Linaro OS in Zynq

Run BNMF

Valid results?

No

Yes

Test another datest

New design

strategy

Figure 5. Experimental procedure.
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5.3. Timing Results

In this section we show the computing time obtained by the hardware implementations of BNMF
and PMF algorithms, and by an up-to-date microprocessor for comparison purposes.

With regard to the FPGA implementation, we measured the elapsed time by using HLS,
considering the same FPGA device and the required operational frequency. Once the design is
synthesized, HLS allows us to know whether the given frequency can be supported by the FPGA
device, as well as the number of clock cycles used by the hardware. Hence, we calculated the elapsed
computing time.

We considered for the CPU experiments an Intel i7-950 with clock frequency of 3 GHz. Note that
the RS implemented on the FPGA reached a very low frequency compared to the CPU: 667 MHz. The
CPU runs codes that implement the same operations described in the PMF and BNMG algorithms,
considering the same parameters and datasets.

Table 3 shows the computing time in seconds of the PMF and BNMF algorithms for the CPU and
FPGA implementations, considering the four datasets. We deduce two interesting conclusions.

Table 3. Computing time (s) and FPGA speedup of PMF and BNMF algorithms for the CPU and FPGA
implementations.

Dataset Kaggle Movielens-100k Movielens-1M Netflix-100M

Algorithm PMF BNMF PMF BNMF PMF BNMF PMF BNMF

CPU (s) 76.12 284.38 33.62 152.22 113.41 504.01 96,381.80 405,843.84
FPGA (s) 1129.70 313.82 831.04 163.72 2934.57 105.93 98,649.80 50,625.32

FPGA speedup ×0.07 ×0.91 ×0.04 ×0.93 ×0.04 ×4.76 ×0.98 ×8.02

First, comparing both algorithms, we can observe that BNMF takes more computing time than
PMF in CPU, although much less in FPGA. The reason is simply that BNMF provides the greatest
parallelization degree in the FPGA implementation. Second, we can observe that, the larger is the
dataset, the better are the results we obtain in the parallel implementation of BNMF in FPGA. In both
the Kaggle dataset and the Movielenes-100k dataset, the time results are very similar. However, the
two largest datasets begin to show a greater computing time difference between FPGA and CPU. Thus,
for the Movielens-1M dataset, the FPGA gets a speedup of almost ×5, while this speedup increases to
×8 for the Netflix-100M dataset.

In conclusion, a FPGA implementation is more attractive for the BNMF algorithm and larger
datasets. As a proposal, it would be interesting to experiment with larger sets corresponding to other
types of data.

5.4. Power Results

Energy consumption is another important metric for computing systems performance. The RS
algorithms have a certain energy impact on the hardware platforms. Knowing this impact is important
because it helps us to optimize energy-aware designs of embedded RS. We keep in mind that embedded
RS can be demanded for computing-intensive cases when performing many predictions over time.

Xilinx Vivado provides the total on-chip power of the FPGA implementations. Table 4 shows the
power in watts of the PMF and BNMF algorithms for the CPU and FPGA implementations, considering
the four datasets. We observe that the power reduction in any FPGA implementation is very high
(more than 80% on average). Therefore, a clear advantage of implementing RS in FPGA is the low
energy consumption with regard to current CPUs.

Under the algorithmic point of view, we can check in Table 4 that BNMF gives a more significant
power reduction than PMF. This fact, along with the computing time reduction for large datasets
deduced from Table 3, encourage us to consider BNMF as the best algorithmic option for building
embedded RS applications.
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Table 4. Power (w) and FPGA power reduction of PMF and BNMF algorithms for the CPU and FPGA
implementations.

Dataset Kaggle Movielens-100k Movielens-1M Netflix-100M

Algorithm PMF BNMF PMF BNMF PMF BNMF PMF BNMF

CPU (w) 8.21 11.33 7.33 10.81 12.31 16.26 32.21 41.20
FPGA (w) 0.95 2.52 0.82 2.24 1.64 4.41 3.03 7.37
FPGA power reduction 88% 78% 89% 80% 87% 73% 91% 83%

6. Conclusions

We researched the performance of two different approaches of collaborative filtering based
recommender systems for embedded applications. For this purpose, we parallelized some operations
by considering high-level synthesis technology for FPGA devices. Regarding computing time, the
FPGA implementation of the Bayesian non-negative matrix factorization algorithm provided good
speedups compared to general-purpose microprocessors when dealing with large datasets, and it
surpassed clearly the results obtained by the probabilistic matrix factorization approach. Furthermore,
the low power consumption of FPGA devices makes interesting the line of exploring computing
solutions for embedded applications of collaborative filtering. In summary, the proposed approach
allows running efficient embedded collaborative filtering applications when using low-energy
computing systems based on FPGAs, taking advantage of the opportunity provided by reconfigurable
computing to exploit parallelism.
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Abstract: Currently, high-level synthesis (HLS) methods and tools are a highly relevant area in the
strategy of several leading companies in the field of system-on-chips (SoCs) and field programmable
gate arrays (FPGAs). HLS facilitates the work of system developers, who benefit from integrated and
automated design workflows, considerably reducing the design time. Although many advances have
been made in this research field, there are still some uncertainties about the quality and performance of
the designs generated with the use of HLS methodologies. In this paper, we propose an optimization of
the HLS methodology by code refactoring using Xilinx SDSoCTM (Software-Defined System-On-Chip).
Several options were analyzed for each alternative through code refactoring of a multiclass support
vector machine (SVM) classifier written in C, using two different Zynq®-7000 SoC devices from
Xilinx, the ZC7020 (ZedBoard) and the ZC7045 (ZC706). The classifier was evaluated using a brain
cancer database of hyperspectral images. The proposed methodology not only reduces the required
resources using less than 20% of the FPGA, but also reduces the power consumption −23% compared
to the full implementation. The speedup obtained of 2.86× (ZC7045) is the highest found in the
literature for SVM hardware implementations.

Keywords: high-level synthesis; HLS; SDSoC; support vector machines; SVM; code refactoring;
Zynq; ZedBoard

1. Introduction

High-level synthesis (HLS) methodologies allow hardware (HW) designers to increase the
abstraction level and accelerate the automation for the synthesis and verification of the design process.
The current rise in the complexity of the applications and the increment of the capabilities of silicon
technologies, as well as the so called time to market constrain, make HLS methodologies and tools of
mandatory use in the near future [1]. Due to the multiple commercial solutions that can be found
in the market for multiprocessor system-on-chips (MPSoCs) nowadays, it is strictly necessary to
improve its techniques and methodologies [2] so that the technology is able to deal with the multiple
implementation possibilities by using high-level design [3,4].

Some implementations of support vector machine (SVM) classifiers in field programmable
gate arrays (FPGAs) have been released in different applications, such as image processing [5,6],
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automotive [7], medical [8,9], and data signal processing [10,11], among others. These implementations
use different platforms depending on the application and the desired accuracy and timing. For
readers who are interested in different implementations using diverse devices and including not
only a training implementation but also a classification one, we recommend [12], where the authors
review the state-of-arts of SVM implementations using different types of FPGAs. Another interesting
research from the same authors is a SVM classifier for melanoma detection using a Zynq® device
(ZC7020) and HLS methodology. The dataset employed is based on traditional RGB (red, green,
and blue) images and the generation of a binary SVM model, having an output of the class as 1
(melanoma) and −1 (non-melanoma) [13]. The implementation depended on directives used directly
in Vivado HLS without code refactoring. Finally, it is relevant to take into account that, in every
implementation, the communication between the software (SW) and the hardware (HW) parts in an
embedded system represents a relevant bottleneck to be solved, especially when using data with high
storage and data transfer requirements, e.g., hyperspectral image processing. For example, in [14],
the different stages of an Least-Squares Support Vector Machine (LS-SVM) implementation using a
Zynq device is approached, separating the code of the algorithm into different parts, depending on the
communications necessary for each part. In consequence, some parts are more suitable to be computed
using the Advanced RISC Machines (ARM) processors than implementing them in the programmable
logic (PL) part. For this reason, it is mandatory to know the code in detail, and to identify the parts
(loops and sequential code) that are suitable to be accelerated in the embedded system.

Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy methods to obtain
both spatial and spectral information of a scene [15]. While a conventional RGB (red, green, and blue)
image only records three spectral bands in the visible spectrum (380–740 nm), HSI is able to obtain
spectral information within and beyond the human eye [16]. Hyperspectral (HS) sensors are capable
of capturing a very large number of contiguous spectral bands, measuring the radiation reflectance,
absorbance, or emission of the material that is being captured. At the end, a vector of radiance values
for each pixel of the image (called the spectral signature) is obtained [15], allowing the automatic
identification of the materials presented in the scene through image processing algorithms [17]. HSI is a
non-invasive and non-ionizing technique that supports the rapid acquisition and analysis of diagnostic
information in several fields, such as remote sensing [18,19], drug identification [20,21], forensics [22–24],
food safety inspection, and control [25–27], among many others. In the medical field, several studies can
be found in the literature where HSI is applied to different medical applications [28–30]. Particularly,
many research groups have investigated the use of HSI for surgical applications, especially for cancer
analysis [31,32], such as laparoscopic HS imaging [33], the differentiation of breast cancerous and
non-cancerous tissue [34], the identification of tongue cancer of in vivo human samples [35], intestinal
ischemia identification [36], prostate cancer detection [37], gastric cancer delineation [38], head and
neck cancer classification and delineation [39,40], among others.

In this paper, an evaluation of code refactoring and SDSoCTM (Software-Defined System-On-Chip)
design methodology and implementation is performed, using both binary and multiclass SVM
classifiers for hyperspectral imagery. To test the implementation design flow, the SVM codes were
modified to increase the speed up and were tested in two different Zynq devices. Our proposed
methodology could provide a reliable solution to accelerate the processing of hyperspectral data in
several medical applications, in particular for the intraoperative brain cancer detection application.

This paper is organized as follows. In Section 2, the most relevant specifications of the research
work are described, such as the devices (Zynq), the electronic design automation tool (SDSoC), and
the basis of the SVM classifiers. In addition, a summary of the hyperspectral dataset employed in
this work is detailed. In Section 3, a detailed explanation of the code refactoring of the binary and
the multiclass SVM classifiers is provided, together with an explanation of the used methodology.
This paper concludes including the experimental results in Section 4 and outlining the conclusions in
Section 5.
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2. Materials and Methods

This section is intended to briefly describe the tools and platforms employed for the development
of this work, as well as the methodology followed for the implementation of the algorithms using HLS.
Furthermore, the hyperspectral dataset employed for the experiments is described.

2.1. Zynq-7000 SoC Device from Xilinx

The Zynq is an SoC (system-on-chip) provided by Xilinx [41]. All versions have the same
processing system (PS) features, a dual-core ARM Cortex A9 (ARMv7-A architecture), 32 KB Level
1 cache for instructions, and 32 KB Level 1 cache for data. The two cores share a 512 KB L2 cache
and a 256 KB on-chip memory (OCM). The basic clock frequency for the PS part of this platform is
667 MHz, but some specific versions can reach 1 GHz. The programmable logic (PL) part can access
the DDR memory, the OCM memory, and the L2 cache in the PS via AXI interfaces, with coherency
behavior through the Accelerated Coherency Port (ACP). The resources of the PL part depend on
the version selected. In this paper, two Zynq versions were selected: a ZC7020 in a ZedBoardTM

Evaluation Kit [42] and the ZC7045 in a Xilinx Zynq-7000 SoC ZC706 Evaluation Kit [43]. These devices
prevent the designer from wasting excessive HW or SW design time, increasing the communication
performance between the two parts by using the provided communication interfaces, but sometimes
some modifications are required to get an appropriate HLS implementation. The transactions between
the PL and the PS parts suppose a relevant challenge for the designer and dramatically affect the final
system performance.

The ZC706 board uses the XC7Z045 SOC and 1 GB DDR3 RAM among other resources. The
XC7Z045 includes the standard SW configuration (PS part) for a generic Zynq device, and the PL part
contains a Kintex-7 architecture with 350 K logic cells, 218.6 K LUTs (Look Up Tables), 437.2 K FFs (Flip
Flops), 19.2 Mb BRAM (Block RAM), and 900 DSPs (Digital Signal Processors) (18 × 25). The ZedBoard
uses the XC7Z020 SOC and 512 MB DDR3 RAM. The XC7Z020 contains an Artix-7 architecture with
85 K logic cells, 53.2 K LUTs, 106.4 K FF, 4.9 Mb BRAM, and 220 DSP (18 × 25). Both devices include
the same SW part, but do not use the same architecture. In this work, both devices were used to check
if it is worth using the most expensive SOC for the application.

In a data-intensive embedded system, the designer needs to deal with the communication
bottleneck, not only with the HW implementation but also with the SW communication. The Zynq
provides dedicated and well-defined data bus communications between both parts, including SW and
HW parts, in one device. Moreover, the design tools created by the manufactures provide the designers
with efficient mechanisms to save time in the final implementation. Such tools provide libraries and
methods to communicate the two parts and create the final implementation in a reasonable amount
of time.

2.2. SDSoC Development Environment by Xilinx

SDSoC is a tool developed by Xilinx that provides the designer with the possibility of creating
complete embedded systems from C or C++ code using Zynq devices as the target system. This type
of tools provides new features over the traditional HLS tools, which are of high interest in the research
community [44,45]. SDSoC includes a system compiler that analyzes the code in order to determine
the data flow between the PS and PL parts, and provides the designer with a complete system. SDSoC
invokes Vivado to create the system and Vivado HLS to create the IPs for the desired accelerated
functions. Then, SDSoC includes the accelerated functions and the Data Movers IP (Intellectual
Property) for data transaction. In order to provide an efficient time implementation, the tool generates
a thread for each accelerated function, ensuring synchronization between the software and hardware
threads. The designer can configure the communication between PL and PS parts in the code with
SDSoC pragma directives to meet the application and solution constraints and adds Vivado HLS
directives to create the desired accelerated IP. The version used in this work is the 2018.2.
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The methodology applied in this paper includes that proposed by Xilinx [46] with some
modifications, thus creating a well-defined six-step design flow, as shown in 0. After the code
is verified in the ARM, checking the results Figure 1a, the first step in the design flow is the profiling
stage Figure 1b. In this step, a profiling tool is needed to detect the functions that must be accelerated.
This step can be carried out with different profiling tools, such as Valgrind [47] for memory usage
and gprof [48] for timing. This step lets the designer identify the relevant functions in the code for
HW acceleration. Since SDSoC uses Vivado HLS, the second step shown in Figure 1c includes the
optimization suggested by the Vivado HLS and SDSoC guidelines. The third step of the methodology
Figure 1d consists of code refactoring, restructuring the source code for an improvement of the latency.
In some cases, this phase is mandatory if a certain speedup is pursued. Moreover, without this code
refactoring, the acceleration could not be affordable. The objective is to modify the code in such a way
that the final implementation reuses the FPGA resources, makes the most of the FPGA embedded
resources, e.g., DSP (digital signal processing) macros, or reflects a particular architecture to achieve
the design constrains. Code refactoring for HLS performance improvement is the main contribution of
this paper, and it will be further explained in Section 3.
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The fourth step of the methodology Figure 1e is to obtain the performance estimation provided by
the tool, and check if the results are the expected ones. In this stage, a detailed report of the resources
and speedup of accelerated functions is provided, and a new iteration can be done to improve the
expected performances. The final iteration of performance estimation depends on the resources of the PL
part, and the resources used will be shown in the HLS report obtained in the next step. The constraints,
the SDSoC compiler directives, and the code refactoring drive the performance estimation. This step
has a high impact on the quality of the final implementation. The designer can also use Vivado HLS
directives together with SDSoC directives. The directives provide instructions to the compiler to meet
the characteristics of the HW architecture and the desired timing constrains, e.g., the use of pipelines to
implement loops, the type of communication channels for data-flow implementations (Data Movers),
FPGA resources to be used for variable storage, etc. To improve the results, it is necessary to take into
account the inferred implementation of the compiler tool.

The final step of the methodology shown in Figure 1f lets the designer check the estimated
performance in the selected board. The estimated performance is obtained during the performance
estimation stage (before the synthesis) with the profiling tool included in the SDSoC software. This
estimation does not allow the designer to know the critical functions (obtained in the profiling stage),
but it shows the estimated speedup that will be achieved with the current implementation. Commonly,
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these results are different from the real speedup obtained in the final implementation. Here, the
speedup can be computed by measuring the clock cycles taken by the accelerated solution compared
to those taken by the serial execution in the ARM processors. SDSoC invokes Vivado HLS in order to
generate the HDL implementation files for the accelerated functions in HDL (VHDL or Verilog) and
provides several comprehensive synthesis reports. The information provided in the synthesis reports
helps the designer meet the targeted performance and resource usage requirements for a specific
application. SDSoC also generates all the files needed to run the application in the embedded system,
the bitstream for the PL part, the connection between the PS and PL parts (Data Movers), and the files
of the OS in Linux or FreeRTOS with the executable binary (ELF file) for running the application. This
final step is mandatory due to the difference between the real and the estimated performance. The real
performance usually is lower than the estimated one. In order to obtain the real performance, it is
mandatory to check the clock used in the PS part.

2.3. Support Vector Machine Classifier

The SVM algorithm is a binary classification approach proposed by Vapnik in 1979 [49]. The main
goal of this algorithm is to find a hyperplane that separates two classes according to their features
with maximum margin. A set of data xi (xi ∈ Rd) and labels associated to this data (yi ∈ R) are given.
Each label provides information about data xi; if yi = 1, the class is positive, and if yi = −1, the class
is assumed to be negative. For example, if we are dealing with a diagnostic test, a positive class
could mean ‘disease’ while a negative can represent ‘non-disease’. According to the input data xi,
Equation (1) can be written.

ŷ = xi·w + b (1)

In Equation (1), ŷ is the predicted class for the instance xi, and the parameters w and b define
the maximum margin hyperplane (w ∈ Rd and b ∈ R). These parameters, w and b, are learned from
a training set, consisting of tuples of data and labels (xi, yi). One of the main features of the SVM
algorithm is that it can be easily generalized for non-linear data [50], which is especially useful for
complex data where a linear separation hyperplane is not capable of separating the data accurately.
Similarly to other binary classifiers, SVM can be extended to a multiclass classifier by combining
several binary classifiers [51].

SVMs are kernel-based supervised classifiers that have been widely used in the classification of
HS images [52]. In the literature, SVMs achieve good performance for classifying HS data, even when
a limited number of training samples are available [53]. Due to its strong theoretical foundation, good
generalization capabilities, low sensitivity to the curse of dimensionality, and ability to find global
classification solutions, many researchers usually prefer SVMs instead of other classification algorithms
for classifying HS images [30].

SVM Multiclass Classifier

In this paper, we address the implementation of the multiclass SVM classification stage. For this
purpose, we first employed an implementation of the basic binary SVM classifier to perform the
experiments and optimizations. Then, a multiclass SVM classifier implementation based on the
one-vs-one method was used to apply and evaluate the optimizations proposed with the binary
algorithm. This allowed reusing some parts of the binary code modifications and copying the
methodology used in this first implementation. The linear kernel with the hyperparameter cost equal
to 1 was employed for the SVM classifier, since it has been demonstrated to produce accurate results
for hyperspectral brain cancer detection applications [54].

The first version of binary and multiclass classification were written in C++ language and both
final versions were written in plain C following a hardware-friendly way. Both codes were tested
comparing results with the SVM implementation of the LIBSVM [55] implementation in MATLAB®

2019a (The MathWorks, Inc., Natick, MA, USA) software. To validate the implementation, gold
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standard results were obtained from the MATLAB SVM implementation in double precision and saved
into binary files. Such data were used to compare the software and hardware implementations.

In this implementation, the multiclass SVM algorithm was split into four different stages:

(1) Variables declaration and initialization. Here, the inputs that represents the previously trained
model of the algorithm (support vectors, the bias, and the sigmoid function parameters) as well
as the samples to be classified are declared and initialized.

(2) Distances computation. In this step, the distances between the samples (i.e., the pixel) and the
established hyperplane are computed.

(3) Binary probability computation. This step has the goal of estimating the binary probability of
a certain pixel to belong to the two classes under study in the one-vs-one method, taking into
account the distances computed in the previous step.

(4) Multiclass probability computation. This final step aims to obtain the multiclass probabilities for
each pixel performing a for loop that iteratively refines the probabilities for each pixel associated
to a certain class obtained in the previous step. The value of each probability is incrementally
modified on the assumption that the difference with the value of the previous iteration is under
a certain threshold or if the maximum error is reached (the user establishes both parameters).
As soon as one of these two situations is confirmed, the multiclass probabilities of the pixel are
computed, and the final classification map is generated.

This partition of the algorithm will allow performing two different implementations, one where
the entire algorithm is implemented onto the PL part (full version) and another one where the stage
with the most computational cost (modular version) is implemented onto the PL part and the remaining
stages are executed in the PS part.

2.4. In Vivo HS Human Brain Cancer Database

In this work, the HS data employed to evaluate the performance of the implementations belong to
an in vivo HS human brain cancer database [56]. This database was generated intraoperatively using
an HS acquisition system developed during the execution of the HELICoiD project [56]. Particularly,
three HS images that belonged to three adult patients undergoing craniotomy for resection of intra-axial
brain tumors at the University Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain) were
employed for the validation of the implementations. The patients had a grade IV glioblastoma tumor
confirmed by histopathology. The study protocol and consent procedures were approved by the
Comité Ético de Investigación Clínica-Comité de Ética en la Investigación (CEIC/CEI) of the University
Hospital Doctor Negrin, and written informed consent was obtained from all subjects. HS data
from these images were labeled into four classes as normal tissue, tumor tissue, hypervascularized
tissue, and background, following the method explained in [56]. This method consisted of two main
steps. First, the pathologists analyzed the biopsied tissue from the tumor area extracted during the
surgical procedure after capturing the intraoperative HS image. Then, the neurosurgeon labeled
certain pixels of the image where they were confident that the pixels belonged to one of the four
classes. Normal tissue, hypervascularized tissue, and background were labeled according to the
surgeon criteria and experience by visual inspection using the labeling tool based on the Spectral Angle
Mapper (SAM) algorithm. Tumor tissue pixels were labeled with the same labeling tool, but taking
into account the definitive diagnostic information provided by histopathological analysis. Normal and
hypervascularized tissue samples were not pathologically analyzed due to ethical reasons. Figure 2a
shows the information structure of an HS cube [31]. On one side, each pixel of the HS image contains a
full spectral signature of length equal to the number of spectral bands of the HS cube. The reflectance
value of a certain pixel in a certain wavelength is called a voxel. On the other side, a gray-scale image of
the captured scene can be obtained using any of the spectral bands that display the spatial information
provided by the image sensor at such a particular wavelength. The rubber ring markers presented in
the image were employed for labeling purposes with the goal of identifying the pathological assessment
of the brain tissue (normal or tumor).
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Figure 2. Hyperspectral (HS) in vivo brain human database. (a) Example of the HS cube basis [31].
(b–d) are synthetic red, green, and blue (RGB) representations of the HS images employed in this study
for results validation (OP8C1, OP12C1, and OP20C1, respectively), where the tumor area is surrounded
in yellow [56]. The size of the HS image in terms of pixels×bands and megabytes is shown below each
RGB representation.

The HS data generated by the sensor was preprocessed following the preprocessing chain described
in [54]. This chain was based on five main steps: (1) a white and dark calibration employed to perform
a radiometric calibration of the HS image using a white tile that reflects 99% of the incident light and a
dark reference image that remove the effect of the dark currents produced by the HS sensor; (2) an
extreme band removal applied due to the low performance of the HS sensor in these bands; (3) a
band averaging process where the redundant information provided by the high spectral resolution
of the camera is eliminated; (4) a smooth filter employed to remove the spectral noise in the spectral
signatures; and (5) a normalization of the spectral signatures between 0 and 1 to avoid differences in the
amplitude of the signatures produced by the non-uniform illumination. Finally, the HS dataset consists
of 128 spectral bands, covering the spectral range between 450 and 900 nm (visible and near-infrared
spectra). Figure 2b–d show the synthetic RGB representations of the HS cubes selected for this study
and their corresponding size. These synthetic RGB images were generated only for visualization
purposes using three wavelengths directly extracted from the original HS cube to conform the RGB
image (R = 708.97 nm, G = 539.44 nm, B = 479.06 nm).

3. Code Refactoring

The reference code was modified until the final implementation showed clear indications of
reaching the performance objectives. After each change or restructuration in the code, a serial
verification was performed in order to check the results. These modifications were applied to the
binary classifier code. Once the optimal modifications were reached, the same methodology was
applied to the multiclass classifier code.
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3.1. Use of Directives and Memory Allocation

The first modification in the code was to include the minimal directives in order to avoid
dependences of the tool. In this case, only the HLS pragma for pipelining (the number of pragma HLS
pipeline) was used. For memory allocation, only the sds_alloc function was used. This function is
defined in a SDSoC library (sds_lib.h), and allocates physically contiguous memory, which can affect
system performance in the data transfer between the PS and the PL part. Since the accelerated function
receives a considerable amount of data, normally more than 8 MB, the AXI DMA scatter gather was
selected using the related SDSoC directives (#pragma SDS data zero_copy and #pragma SDS data
data_mover (Var1:AXIDMA_SG . . . )).

3.2. Improvement in Data Transfer

If the accelerated function only processes one pixel at each iteration, no speedup is obtained
even with the pragma directives. In order to improve the acceleration of the classification function,
several pixels are transferred between the PS and PL parts in the same clock cycle. Due to the 533-MHz
DDR3 SODIMM bandwidth constraint, an optimal amount of data must be selected in order to avoid
wasted data cycles. Since the implemented system is not always able to reach the entire bandwidth, it
is necessary to determine the highest data transfer near the bandwidth constrain. It is necessary to
take into account that the amount of pixels is not always an integer multiple of the optimal amount
of pixels for a data cycle, so zero padding is a good option to avoid calculating non-existent values.
Figure 3a shows the original code of the SVM binary software implementation. Figure 3b shows the
re-factored code applied in order to improve the transferred data using the proposed modification,
where BLOCKSIZE is the amount of pixels in each data transfer, BANDS is the number of bands values
for each pixel, PIXELS is the number of pixels in the image, and inputInter/outputInter are the arrays
for intermediate input/output data transfers.
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3.3. Improvement in Data Processing

The classification function features a temporal dependency because the actual value on each
iteration depends on its value in the previous iteration. Each classification value for a pixel (clValue)
is calculated adding the bias data and then accumulating the result of multiplying the weight of
every band obtained in the training classification (bandWeight) by the value of the pixel in that band
(bandWeight). So pipelining is not possible to be used in the function given in Equation (2).

clValue+ = bandValue·bandWeight (2)

To improve the execution of this function in order to calculate clValue, instead of using just one
accumulator, we propose the use of several intermediate accumulators. At the end, the final value
for clValue is the sum of the intermediate accumulators. 0 3c shows the refactored code, where the
proposed modification is applied in order to improve the data processing. This refactorization allows
the pipelining implementation to use eight accumulators, where BLOCKSIZE is the number of pixels
for each data transfer, BANDS is the amount of bands for each pixel, intputData[n] is the array with
the pixel values, outputVector[n] is the array with the classification results, weights[n] is the array with
the weights for the classification, and inter[m] is the array for intermediate accumulators.

Figure 4 shows a diagram of the improvement in data transferring and processing, where P is the
number of pixels, Pn is the block of pixels processed in each data transfer, Bn is the block of bands in
which it is divided into the total bands value for each pixel, An represent the intermediate accumulators,
and A is the final accumulator for that pixel.
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3.4. Including Redundant Data inside Accelerated Function

Every time the classification is called, bias and weights values are transferred via the data-mover
IP to the accelerated function in the PL part. The classification data type is double (8 bytes, 64 bits);
therefore, every time Equation (2) is called, the bias and the corresponding weight need to be transferred
for computation. If the SVM training is done before, the weights will not change, hence, weights and
bias values can be included in the IP, reducing the data transfer and improving the speedup.

3.5. Data Type Reduction

Reducing the data type from double to float decreases the bus bandwidth required for the data
transfer between the PS and PL parts. It is necessary to take into account that it is not possible in every
application to change the data type due to the precision needed. In this work, the HS images were
processed in double and float precision, comparing the classification results. In this application, it was
verified that the precision lost did not change the classification results. This data change reduced the
bus bandwidth from 64 bits (8 bytes) to 32 bits (4 bytes).
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4. Experimental Results and Discussion

All the results presented in this section were obtained through the elaboration of the designed
architecture straight on the boards, i.e., no estimated performance was used in these results. In summary,
about 70 implementations were tested in order to obtain accurate results. Each implementation was
iterated 100 times per classification on board to obtain a reliable average values. Linux was used as the
OS in all the implementations for controlling and verification purposes. The speedup was calculated
calling the classification twice, the first one in software without any modification at all, and the second
one in hardware, with all the modifications incorporated.

The preliminary results obtained without applying code refactoring shows a speedup factor of
0.67× (in fact, the implementation showed a slowdown situation); this result was the main reason to
change the code in order to find a better implementation. Once the code was modified by changing
the amount of pixels per clock cycle, parallelizing the processing data with several accumulators and
selecting 100 MHz for the Data Movers IP, a speedup factor between 1.15× and 1.41×was obtained,
depending on the block size.

Once the optimal number of pixels per clock cycle was established, we optimized the other
parameters of the HS design. First, increasing the frequency for data movers and for the accelerated
function to 200 MHz showed a speedup of 1.61×. Second, including weights and bias inside the
accelerated function and keeping the 200 MHz for data movers and the accelerated IP showed a
speedup of 2.35×. Finally, keeping all the configurations shown in Figure 5, 200 MHz for data movers
and accelerated function, including weights and bias in the accelerated function, and changing the data
type from double to float showed a speedup of 2.89×. It is worth noticing that the speedup decreases
once the block size (number of pixels per clock cycle) increases above 128 pixels. This speedup decrease
is due to the wasted space in each transfer to the PL part, since the block size exceeds the amount of
data that the PS part can send to the PL part in each clock cycle.
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Figure 5. Speedup obtained varying the amount of pixels per clock cycle (100 MHz for data movers
and accelerated function).

Figure 6 shows a speedup comparison applying all the above modifications, using different pixels
per data cycle and different partitions for bands value. In the best case, with the code refactoring and
changing the data type, the highest speedup achieved is 2.89×with a block size of 64 pixels per data
cycle and partitioning the bands value using 16 accumulators.

Finally, the same methodology was applied to the multiclass SVM classifier. In this case, the code
was divided into four stages (see Section 2.3), and once the performance analysis was obtained, two
versions were implemented, the full one (including all the stages in the PL part) and the modular one,
implementing only the most intensive computational stage (the distance computation, stage number 2)
in the PL part. This difference allows us to compare the speedup versus the resources occupied in the
PL part and the power consumption. As well as in the binary classification, the classification results
obtained were validated with the gold standard results provided by the LIBSVM implementation
in MATLAB. In this case, for the multiclass classification, Figure S1 of the supplementary material
shows the four-class classification maps obtained for each HS cube employed in this study. The
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red color indicates tumor pixels, the green color indicates normal pixels, the blue color indicates
hypervascularized pixels, and the background pixels are represented in black. These gold standard
classification results were previously published in [57] and exactly match with the results obtained by
the proposed multiclass SVM implementation.

Figure 7 shows the time consumption and speedup obtained using both the ZedBoard (ZC7020)
and the ZC706 (ZC7045) for both cases, full (F) and modular (M) implementations, as well as the
SW implementation results. These results show that the obtained speedup is the best when the
modularization of the SVM stage is performed, considering both platforms. In addition, it is clear that
the ZC706 platform outperforms the results obtained with the ZedBoard. In all cases, the selected
frequency for the PL part was 100 MHz. On the other hand, Figure 8 shows the resources occupied
using both platforms for both implementations, where it is possible to observe that the modular version
is more efficient than the full version in terms of resources usage. Finally, Table 1 shows the power
consumption for the two platforms using both implementations. As it can be observed, comparing all
the results, the separation of the code offers better performance, since it consumes less power than the
full one, uses fewer resources, and obtains better latency values.
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for data movers and accelerated function).
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Figure 7. Execution time (a) and speedup (b) results respect to the software (SW) implementation of
both hardware (HW) implementations (F = full, M = modular) in each processing platform.

Table 1. Power consumption for both implementations (F = full, M = modular).

ZedBoard (ZC7020) ZC706 (ZC7045)

Type F M F M
Dynamic Power (W) 2.42 1.89 2.61 1.91

Static Power (W) 0.17 0.15 0.22 0.21
Total (W) 2.59 2.04 2.84 2.13
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Table 2. Comparison of the speedup, power consumption, and resources employed among the 
different implementations. Bold values represent the best results for the specific resource or feature. 
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Figure 8. Resources consumption for both implementations (F = full, M = modular) in both platforms.

As it was mentioned in the introduction, other hardware implementations have been
performed [12]. In some cases, the implementations have increased the speedup; in other cases,
they have reduced the resources needed or they have reduced the power consumption for different
types of FPGAs. In all cases, a stand-alone FPGA was used. Only one work used a Zynq device [58],
although a binary SVM classifier was implemented, and for that reason it is not included in this
comparison. On all cases, the SDSOC was not used in any such implementations. In this comparison,
only Xilinx devices have been taken into account for resources assessment, due to the different
architectures used between Xilinx and Altera devices. In summary, the implementations used for
comparison have been [59–62]. As different FPGAs have different types of resources, even using only
Xilinx devices, some resources cannot be comparable. In those cases, the resources were omitted.
Table 2 presents the comparison of the speedup, power consumption, and resources employed among
the state-of-the-art implementations and our proposed solution. Notice that some of the articles did
not provide all the necessary information for this comparison. In this table, bold values refer to the
best result for each feature or resource.

Table 2. Comparison of the speedup, power consumption, and resources employed among the different
implementations. Bold values represent the best results for the specific resource or feature.

Reference
Method [59] [60] [61] [62] Proposed (M Version)

Device Xilinx
Virtex-4

Xilinx
Virtex-6

Xilinx
Virtex-II

Xilinx
Virtex-7

ZC7020
(ZedBoard)

ZC7045
(ZC706)

Tool System
Generator Xilinx ISE n/a Xilinx XPE

14.1
SDSOC
2018.2

SDSOC
2018.2

Clock rate (MHz) 202.84 n/a 42.012 n/a 200 200

Speedup factor n/a n/a 2.53 n/a 2.20 2.86

Power (W) n/a 2.02 n/a 1.70 2.04 2.13

Slice Registers
(%) 5.00 0.15 21.00 11.00 n/a n/a

Slice LUTs (%) 2.00 0.35 20.00 11.00 n/a n/a

LUTs (%) n/a n/a n/a n/a 20.22 4.84

LUTRAM (%) n/a n/a n/a n/a 4.30 1.00

FF (%) 4.00 32.00 2.00 100.00 14.18 2.76

IOBs (%) 37.00 37.00 20.00 4.00 n/a n/a

DSP (%) 14.00 0.91 n/a 0.00 15.45 3.78

BUFG (%) 3.00 3.00 n/a n/a 9.38 9.38

BRAM (%) n/a n/a n/a n/a 6.07 1.56

MMCM (%) n/a n/a n/a n/a 25.00 12.50

n/a: Data not available, LUTs: Look Up Tables, LUTRAM: LUTs used as RAM, FFs: Flip Flops, IOBs: Input/Output
Blocks, DSPs: Digital Signal Processors, BUFG: Global Clock Buffer, BRAM: Block RAM, MMCM: Mixed-Mode
Clock Manager.

Although all the compared implementations address SVM multiclass classification, to the best
of our knowledge, none of the implementations use medical images. Furthermore, none of such
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works used HSI. In [59], binary images were used for Persian handwritten digits detection [63].
In [60], Patil et al. employed RGB images to develop a facial expression recognition system using the
Cohn-Kanade database [64]. In [61], a phoneme recognition system was tested using the DARPA TIMIT
Acoustic-Phonetic Continuous Speech Corpus database [65]. Finally, Mandal et al. [62] employed
the setosa and non-setosa data of Fisher’s Iris database available in MATLAB®. Furthermore, it is
worth noticing that different techniques for data reduction were employed in each work. For example,
in [59,60], fixed point and truncation methods were used. In this work, the only data reduction
performed was a conversion from double to float data type. For these reasons, a fair comparison is not
possible because the types of data used for the SVM classifier are different. However, the superiority of
our implementation is demonstrated using HSI data, which imposes relevant challenges due to their
high dimensionality and data throughput. As it can be seen in Table 2, our proposed implementation
achieved the best speedup factor (2.86×) using the ZC7045 (ZC706 board) device. Regarding the
power consumption, the implementation performed in [62] obtained the lower value. However, our
proposed solutions provide similar values, having only an increment of 0.34 and 0.43 W in the ZC7020
(ZedBoard) and ZC7045 (ZC706) devices, respectively. In contrast, the use of the FPGA resources is
lower than [62], especially in the ZC7045 device. Furthermore, it is worth noticing that in the ZC706,
the designer has also extra space for other applications; for example, if the designer wants to use the
output of the SVM to another machine learning algorithm, or if extra space is required to execute other
algorithms in parallel.

5. Conclusions

The results obtained in this work demonstrate the major benefits of writing efficient code for
HLS tools, in this case SDSoC, to accelerate a binary SVM classifier. This methodology can be easily
replicated in other HLS tools to validate the inferred system, as only a few specific tool directives have
been used. It is recommended to include all the redundant data in the accelerated function in order to
decrease the interfaces between PS and PL, thus significantly improving the speedup of the system
by reducing the transferred data. Moreover, the modular version (M), the one that only implements
the binary probability computation, not only obtains better speedup compared to the full version (F),
but also uses less resources, consuming less power. In summary, it is advisable to reduce as much as
possible the implemented functions in HLS, taking into account the transferred data between the SW
and HW parts, fitting each chunk of data to the bus data-width plus the control data. On the other
hand, looking at the resources used in the (ZC7045) ZC706, this implementation allows the designer to
add other algorithms in the SOC, for example, to reuse the output of the SVM in other applications, or
to parallelize the computation of the inputs in other types of algorithms. Finally, it is worth noticing
that the power consumption of the ZC706 is similar to the one obtained with the ZedBoard. However,
the speedup achieved by the ZC706 is higher than the one achieved by the ZedBoard. In summary, in
this paper, the following methodology is proposed. First, a profiling stage is mandatory in order to
identify the functions to accelerate. Second, we make use only of the basic pragmas in the HLS tool.
With these two basic steps, we create a basic project in order to check the preliminary results. If the
results meet the requirements, it will be necessary to modify the loops to create small arrays instead
of passing to the hardware part large amounts of data, trying to fit the data size to the bandwidth of
the bus used in the communication. Next, check for the data dependencies inside the loop, trying
to remove the dependencies, as the accumulators could be if they suppose additional dependencies.
Once all these steps have been committed, the designer should create the final project and check the
results. In case it was not possible to avoid the dependencies inside the loop, the obtained speedup will
represent the time variations in the transmission stage. Future works will contemplate the automation
of code refactoring in order to provide a reliable tool that facilitates the implementation of the original
code, obtaining an improved speedup.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-9292/8/12/1494/s1,
Figure S1: Classification results of the SVM multiclass classifier for the employed HS cubes. (a), (c) and (e)
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are the synthetic RGB representations of the HS images, where the tumor area is surrounded in yellow [34].
(b), (d) and (f) Classification maps generated by the SVM multiclass classifier implementation. Normal, tumor,
hypervascularized and background classes are represented in green, red, blue, and black color, respectively.
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Abstract: Recently, advances in technology have enabled embedded systems to be adopted for a
variety of applications. Some of these applications require real-time 2D graphics processing running
on limited design specifications such as low power consumption and a small area. In order to satisfy
such conditions, including a specific 2D graphics accelerator in the embedded system is an effective
method. This method reduces the workload of the processor in the embedded system by exploiting
the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time.
Therefore, a variety of applications that require 2D graphics processing can be implemented with an
embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems.
The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm.
The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing
and to perform the line-drawing instead of the system processor. Moreover, the accelerator also
distributes the workload of the processor core by removing the need for the core to access the
frame buffer memory. We measure the performance of the accelerator by implementing the processor,
including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility
of realization by synthesizing using the 180 nm CMOS process.

Keywords: 2D graphics accelerator; embedded system; line-drawing; Bresenham’s algorithm; alpha-
blending; anti-aliasing

1. Introduction

Recently, as advances in computer technology and semiconductor process technology
lead a processor to high performance and high integration density, the overall performance
of an embedded system, such as computing performance and energy efficiency, has been
increased [1,2]. Due to the progress of embedded systems, the demand for adopting
embedded systems for a variety of applications is also increasing [3–9]. Some of these
applications, such as user-centric applications, require communication with users through
2D graphics [10]. Therefore, an embedded system used in these applications requires
the functions to process graphics data and write data on the display device. In order to
perform these functions, an embedded system, which includes a general-purpose processor
(GPP), generally utilizes the GPP or additional graphics processing units (GPUs) with
a graphics library [3]. However, performing a graphics process in real-time using these
methods requires a high-performance GPP or GPU due to the execution of a large number
of instruction codes in a limited time. For this reason, these methods are not appropriate
for applications that have limited design specifications such as low power consumption or
a small area [10–12].

In order to solve these issues, 2D graphics accelerators, which perform 2D graph-
ics processing implemented in hardware, were proposed for embedded systems [13,14].
These accelerators are connected to the processor in the embedded system through var-
ious kinds of interfaces such as PCI Express and memory bus. Unlike the core of a GPP,
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which requires a long execution time because it performs only simple operations with one
instruction, a hardware accelerator can perform complex operations relatively fast [15–19].
Moreover, the accelerators have a relatively small area because of the limited and optimized
execution logic [20–24]. Therefore, including and exploiting the 2D graphics accelerator
allows for a variety of applications that require 2D graphics operations to be implemented
with low power and small size. As applying architecture to the system that contains a
specific accelerator is an efficient way to satisfy the design specifications of the embedded
system, research to design the accelerator for image processing has been performed [25].

Line-drawing is one of the methods to visualize the graphics. As every image is repre-
sented as a collection of lines, line-drawing is a basic means of drawing an image [26,27].
Accordingly, the line-drawing operation can deal with various kinds of graphics process-
ing [28,29]. Although this approach is not the most efficient way for all situations, this
approach is significantly efficient when the data to be displayed are in the form of points
and lines. In this point of view, some research was performed to utilize line-drawing for
image processing [27]. Nevertheless, there is not a lot of research using line-drawing as a
core algorithm for a graphics accelerator. Our research motivation starts with the idea to
apply line-drawing for a graphics accelerator.

In this paper, we present a 2D graphics accelerator for embedded systems. The acceler-
ator performs a 2D graphics process with a line-drawing operation based on Bresenham’s
algorithm. Furthermore, the accelerator provides anti-aliasing and alpha-blending features.
The accelerator is directly connected to the memory bus to communicate with the core of
the processor in the embedded system. Based on this structure, the accelerator can be con-
trolled through reading or writing to certain memory addresses. Moreover, the accelerator
is directly connected to the frame buffer, which has the memory to send 2D graphic data
to a display device. This architectural characteristic reduces workloads by offloading the
burden of the processor to have access to the frame buffer. We analyzed the performance
of the accelerator by simulating and implementing the processor including the 2D graphics
accelerator on a field-programmable gate array (FPGA). In addition, we ascertained the
feasibility of the accelerator by synthesizing the accelerator with the Synopsys design
compiler using the 180 nm CMOS process.

The paper consists of the following: Section 2 describes the preliminaries, which are
essential to implement the features of the accelerator. The preliminaries are composed
of Bresenham’s algorithm, alpha-blending, and anti-aliasing. Section 3 explicates the
architecture of the 2D graphics accelerator and explains the reasons for adopting the
architecture. Section 4 describes the hardware implementation results, the analysis results
of the accelerator through a sample application running on implemented hardware, and the
synthesis results through the Synopsys design compiler. Section 5 summarizes our entire
work and presents future work.

2. Preliminaries

A line-drawing algorithm is an essential element to implement the presented 2D
graphics accelerator. As the algorithms vary according to the design architecture and
resource usage of the hardware, choosing an appropriate algorithm is important. We
chose Bresenham’s algorithm and optimized it for the hardware accelerator [30]. Moreover,
in order to provide advanced visualization, supporting additional features such as alpha-
blending and anti-aliasing are needed.

2.1. Bresenham’s Line Algorithm

Bresenham’s line algorithm is one of the line-drawing algorithms and is typically used
in raster graphics systems [31,32]. The algorithm calculates the position of the pixels to draw
the lines. As this process performs only with integer arithmetic calculation, the process
has low complexity and a fast calculation speed [33]. In raster graphics, lines are drawn
as a way of painting pixels between the start point and end point. Figure 1 represents the
various types of lines by Bresenham’s algorithm. The two lines in Figure 1a are the type
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that the x coordinates of the painting pixels always increment by one while drawing lines,
and the two lines in Figure 1b are the type that the y coordinates of the drawing pixels
always increment. The type of the line depends on the slope of the line. The slope, marked
as letter m, represents the y-coordinate change, marked as dy, compared to the x-coordinate
change, marked as dx, of the line, expressed by dividing dy by dx. The expression of the
line is as shown in expression (1) because of the slope attribute as m and the line including
the start point (x1, y1).

m =
dy
dx

, y = m(x− x1) + y1 (1)

1 
 

 

(a) 

 

(b) 

 Figure 1. Various lines by Bresenham’s algorithm. (a) Lines when dx > dy; (b) Lines when dx < dy.

Figure 2 presents the fundamentals of the algorithm for drawing each type of line.
The algorithm proceeds by selecting the next point to paint based on the current point,
marked as (xi, yi). Figure 2a shows the case of x coordinates of the points always increment
while drawing lines. In this case, choosing the y coordinate of the next point between
being changed and not being changed is needed. This job is executed by the following
operations. Calculate where the real value y at point (xi + 1, y) is close to yi or yi + 1,
change the y coordinate when y is close to yi + 1. The algorithm repeats these operations
until the current point reaches the end point. In the case of y coordinates of the points
always increment, the algorithm proceeds by similar operations as shown in Figure 2b.
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Although the algorithm can be implemented in hardware as it is, optimizing the
algorithm for hardware reduces the resource usage. Accordingly, the algorithm should
be optimized for hardware implementation by the transformation of the pseudo-code.
The following pseudo-code can be obtained through the appropriate transformation of
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this process as shown in Algorithm 1. In order to optimize the algorithm, binary division,
which has a high cost in hardware implementation, is fully excluded by the transformation.
This optimization allows the implemented hardware of the algorithm to achieve the design
specifications for embedded systems such as low power consumption and less area.

Algorithm 1: Bresenham’s line algorithm pseudo-code
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2.2. Bresenham’s Circle Algorithm

When the width of the line to draw is greater than one pixel’s width, drawing the
edge of the line to a certain shape increases the quality of the visualization. The circle
shape is one of the proper choices. In order to draw circle shapes, we adopt Bresenham’s
circle algorithm. The algorithm proceedings are similar to Bresenham’s line algorithm.
Figure 3 shows the rough fundamentals of Bresenham’s circle algorithm. Based on the
current point (xi, yi), the algorithm selects the next painting point between p1(xi,+1, yi)
and p2(xi + 1, yi − 1). In order to select the point, calculate the result of the expression (2)
by input (xi + 1, yi − 0.5). The next point is p2 when the result is lower than 0. Otherwise,
the next point is p1.

f = x2 + y2 − r2 (2)
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2.3. Alpha-Blending

In order to provide drawing graphics with transparency and blending with the original
image, alpha-blending is needed. Figure 4 shows the description of alpha-blending. Each
pixel’s data in the image to draw has an alpha value α to express the transparency. Alpha-
blending blends the graphics to draw and the original image by reading the color value of
each pixel of the original image and graphics to draw, calculating the new pixel value of
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the image frame by expression (3). As the color of the digital image is composed of three
color elements—red, green, and blue—the calculation of the new color of pixel p requires
calculating each three-color axis.

pnew = αpdraw + (1− α)poriginal (3)
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ualization of the aliasing-generated lines, such as the line shown in Figure 5a, by blurring 
the rough edges at the borders of the line. Blurring can be done by decrementing the alpha 
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2.4. Anti-Aliasing

When expressing a graphical object that has a higher pixel density than the target
graphics system, aliasing can be generated because the raster graphics system has limited
pixel density. As the line to draw is an ideal graphical object that has unlimited pixel
density, the generation rate of aliasing is very high. Anti-aliasing is a technique to deal
with this problem. Figure 5 shows the description of anti-aliasing. Anti-aliasing improves
visualization of the aliasing-generated lines, such as the line shown in Figure 5a, by blurring
the rough edges at the borders of the line. Blurring can be done by decrementing the alpha
value of the rough edges sequentially as shown in Figure 5b.
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The anti-aliasing process starts with detecting the borders of the line. Akin to Bre-
senham’s line algorithm, the anti-aliasing has two types of lines to process, which are
related to the slope value. Figure 6 shows the progression of the anti-aliasing process.
The anti-aliasing starts with detecting the start point and end point of each border segment.
The detection is executed while drawing a line with Bresenham’s line algorithm by check-
ing the generated coordinates. Next, as the start point ends and the end point of the border
segment is clarified, the process applies the decremental alpha value to each point of the
border segment. The following pseudo-code presents the process to apply the alpha value
when the slope is lower than or equal to one. The alpha value of the pixel is quantified by
three bits, maximum of seven, to reduce the area of the circuit by minimizing the arithmetic
calculation.
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3. 2D Graphics Accelerator

The 2D graphics accelerator provides the 2D graphic processing features including
line-drawing, alpha-blending, and anti-aliasing. In order to perform the execution with
those features, the accelerator receives setup data, such as start point, end point, the width
of the line, bit per pixel (BPP), other configurations, and start flag, from the core of the
processor. After the setup data are received and the start instruction is sent, the accelerator
operates independently to the core during execution. When the line-drawing process
is completed, the accelerator sends the interrupt signal to the interrupt handler of the
processor, letting the core recognize the line-drawing process is completed. Based on this
characteristic, the workload of the processor is reduced by making it unnecessary for the
processor to continuously check what the accelerator completed.

3.1. Line-Drawing Process

Figure 7 presents the progression of the line-drawing process. The setup first receives
the line configuration from the core, such as start point, end point, and line width. The mod-
ule generates the aligned coordinate, slope, line width, and point of the edges from the line
configuration and transfers to edge builder. The edge builder sets up the borders of the line
by generating the coordinates. The accelerator has three cap modes called perpendicular,
vertical, and circle for drawing line caps. Line caps are created by submodules in edge
builder. The submodules transfer the minimum and maximum value of x and y coordinates
to the line detector module. The line detector starts to process line-drawing by determining
what coordinates are borders. The painter generates the coordinates to paint, which are
inside the borders, and executes the anti-aliasing process when the anti-aliasing option is
set. Finally, the blender paints the pixels with alpha-blending through options transferred
from the setup and coordinates from the painter by writing the color to the frame buffer.

3.2. Optimized Architecture

Figure 8 shows the architecture of the processor including the proposed 2D graphics
accelerator. As shown in Figure 8a, the accelerator is connected to the core through the
memory bus of the processor. For this reason, the core controls the accelerator through
memory access instructions. Moreover, the frame buffer is directly connected to the
accelerator and connected to the memory bus. Based on this architecture, the core can deal
with the conditions that line-drawing is inefficient to process 2D graphics, such as loading
a bitmap image to the frame buffer. This characteristic enables the processor to respond
flexibly and efficiently to various conditions. Figure 8b presents the architecture of the 2D
graphics accelerator.
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The accelerator contains the following six modules, called config register, setup, edge
builder, line detector, painter, and blender. Config register is a module to save the line
configuration and options, such as anti-aliasing and cap mode, from the memory bus.
The other modules perform the line-drawing process with options saved in the config
register. The five modules, which perform the line-drawing process, operate as a pipelined
architecture. Therefore, the accelerator provides high throughput.
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In the setup module, the operation to generate the coordinates of the four edges is
executed based on the width of the line and the distance between the start point and end
point. These coordinates are used for the edge builder module, which is the next pipelined
stage. Figure 9 is a block diagram to explain the operations of the edge builder. The edge
builder receives the following data signals: minimum and maximum (x, y) coordinates of
the points, the distance between the start point and end point (dx, dy), width of the circle
to paint when the cap mode is circle, line width, and cap mode. The module generates
coordinates of the borders with these signals and submodules. Figure 10 shows all of
the cap modes. The edge builder has three selectable cap modes, perpendicular, vertical,
and circle, to paint the line caps. The circle submodule generates the coordinates to paint a
pixel, which is circular-shaped on edges. The cap submodule generates the coordinates that
are parallelogram-shaped, and rectangle-shaped. The line submodule generates borders
of the line except for the edges. The entire submodule operates in parallel to provide fast
execution. The generated coordinates are sent to the line detector module.
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As the circle submodule generates the whole circular edge, removing the coordinates
that are inside the borders is required. This process is done by the line detector mod-
ule. The line detector receives the coordinates from the edge builder and detects which
coordinate is a valid border. Then, it transfers the valid borders, and the minimum and
maximum value of the coordinates, to the painter module. The painter module generates
the coordinates inside the borders and paints the pixels of generated coordinates by writing
the RGBA data to the memory at a certain address. The address to write the RGBA data
can be configured by writing the address to the config register through the memory bus.
In addition, the module smooths the pixels at borders through the anti-aliasing when
anti-aliasing mode is set on the config register. The written RGBA data are used by the
blender module. The blender is a module to draw the line to the display device. As the
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frame buffer has the previous image drawn, blending the drawing line with the image is
required. Therefore, the blender performs the alpha-blending with the previous image and
the coordinates of the line to draw. Finally, the blender writes the updated image to the
frame buffer, and provides the images to be shown to the display device.

4. Implementation and Analysis

In order to implement and verify the 2D graphics accelerator, we verified the algo-
rithms that are required for the 2D graphics accelerator by programming software. We
describe the scripts using MATLAB to verify the algorithms, which are line-drawing, anti-
aliasing, alpha-blending, and drawing various line caps. As the algorithms are verified,
we transformed the algorithms in accordance with the register-transfer level (RTL) and
designed the accelerator with Verilog HDL.

In order to evaluate the 2D graphics accelerator, we integrated the accelerator into
the processor, which includes Cortex M0 as a core, by interfacing the accelerator and the
core with an AHB-Lite bus. Furthermore, the function that generates the interrupt request
signal when the drawing of one line is complete is added. Next, before synthesizing the
processor to hardware, we simulated the processor on Vivado 2020.1 version to verify
the functionality of the accelerator by executing a customized testbench with a sample
program included in the internal ROM of the processor. The embedded program performs
the same work as previous MATLAB scripts. The interrupt request signal is generated
when the accelerator completes the drawing of one line, and the next configuration of the
line is performed by the program.

The synthesis and implementation were executed with the same Vivado tool with
a Xilinx xc7z010clg400 FPGA. Table 1 shows the resource utilization of the 2D graphics
accelerator and the processor. The result presents that the resource usage of the 2D graphics
accelerator is suitable for embedded systems as the utilization of the processor containing
the 2D graphics accelerator does not exceed eighty percent of the programmable logic.

Table 1. Resource utilization of the processor including 2D graphics accelerator.

Resource Synthesis Utilization %

2D graphics Accelerator
LUTs 1 5050 28.69

Flip-Flops 2 3087 8.77
DSP 3 3 3.75

Processor
LUTs 13,923 79.10

Flip-Flops 4501 12.79
DSP 4 5

1 total of 17,600 2 total of 35,200, 3 total of 80.

Table 2 presents the performance of the accelerator on 1024 × 768 resolution at
30 frames per second. In order to evaluate the line-drawing performance, we set up
the start point and end point as (50, 50) and (700, 900), which are almost the top-left and
bottom-right edges of the display, and tested for various conditions such as operating
frequency and line width. The result shows that even if the width is as thick as 50 pixels,
line-drawing can be performed with more than one line per frame when the operating
frequency is more than 50 MHz. According to this result, the accelerator is suitable for a
wide range of applications that have resource limitations and line-drawing-based features
such as a real-time scope. However, as the results of Table 2 indicate that the drawing
efficiency decreases when the width of the line is small, applying the accelerator to complex
graphics applications that are not based on line-drawing can be a challenge.
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Table 2. Performance of the 2D graphics accelerator.

1024 × 768 @ 30 fps
Width

1 px 50 px

Clock cycles per line 21,634 246,613
Operating frequency (MHz) 50 100 120 50 100 120

Times per line (ms/line) 0.43 0.22 0.18 4.93 2.47 2.06
Lines per frame (line/frame) 77 154 185 7 14 16

In order to test the features of the accelerator, line-drawing with various cap modes,
anti-aliasing, and alpha-blending, we ran the test firmware on the processor that draws
the various kinds of lines by controlling the 2D graphics accelerator with memory access.
The processor contains the video graphics array (VGA) controller to display the image
in the frame buffer to a display device through a VGA protocol. Consequently, the 2D
graphics features, namely line-drawing, alpha-blending, and anti-aliasing, are visually
identified by the display device as shown in Figure 11.
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One of the essential things in verifying the feasibility of the 2D graphics accelerator
is to identify the area of the actual synthesized circuit. In order to identify the area,
we synthesize the accelerator by Synopsys design compiler N-2017.09-SP2 version using
the 180 nm CMOS process. Table 3 summarizes the synthesis result. The result shows
that the total area of the accelerator is 742,494 um2, which is around 75K gate counts.
The results from Tables 2 and 3 show that the accelerator can be realized through a chip
with acceptable performance, drawing more than one line per frame. Therefore, attaching
the 2D graphics accelerator to the embedded processor can be a suitable solution to deal
with design specifications when the application of the system can effectively be composed
with line-drawing features.

Table 3. Synthesis result of the 2D graphics accelerator.

Process Technology 180 nm CMOS

Operating frequency (MHz) 100

Area (um2) 742,494.25

Estimated gate count 75,406

5. Conclusions

In this paper, we proposed a 2D graphics accelerator, based on line-drawing, for
embedded systems. As line-drawing can be a basic element of image drawing in specific
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applications, defining required 2D graphics as a set of multiple lines is an effective way
to implement graphic features rather than other methods. The accelerator provides the
basic line-drawing features and user-centric features that improve visualization, such as
alpha-blending and anti-aliasing. In order to implement these 2D graphics features, we
analyzed the line-drawing algorithm and required functions. Moreover, we optimized the
algorithm and functions for hardware realization. By transforming the binary division
and reducing the size of arithmetic calculation in the algorithm, the algorithm can be
implemented with fewer arithmetic units and enables the hardware to operate with low
power and few resources. We also constructed a system-on-a-chip including the accelerator
for embedded systems. We also included the designed accelerator in the processor, which is
used for embedded systems. The accelerator is connected to the core through the memory
bus of the processor to receive line configuration and start signals from the core. As the
accelerator is directly connected to the frame buffer, the accelerator works independently
of the core while performing the line-drawing process. Based on these characteristics of
the architecture, the core can execute other jobs while the accelerator performs graphics
processes. As a result, the overall performance of the processor with applications using 2D
graphics can be improved. In addition, the results of the FPGA implementation and the
synthesis using the 180 nm CMOS process show that the accelerator is feasible to realize.

In future work, we will apply our 2D graphics accelerator to a variety of applications
that are implemented on embedded systems, compare the performance of the accelerator
with other methods, such as implementation with a GPP or GPU. As the drawing per-
formance of the accelerator is not suitable for complex, microscopic graphic processes,
classifying and finding the applications that have appropriate conditions to apply the
accelerator is necessary. We expect that applying the 2D graphics accelerator based on
line-drawing to the processor can be effective in a variety of embedded systems.
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