

Exploring resource/performance trade-offs for streaming
applications on embedded multiprocessors
Citation for published version (APA):
Yang, Y. (2012). Exploring resource/performance trade-offs for streaming applications on embedded
multiprocessors. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR733434

DOI:
10.6100/IR733434

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.6100/IR733434
https://doi.org/10.6100/IR733434
https://research.tue.nl/en/publications/524cfa0f-bea7-40b6-b803-cd9930b27be5

Exploring Resource/Performance Trade-offs
for Streaming Applications on Embedded

Multiprocessors

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op maandag 2 juli 2012 om 16.00 uur

door

Yang Yang

geboren te Sichuan, China

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. T. Basten
en
prof.dr. H. Corporaal

Copromotor:
dr.ir. M.C.W. Geilen

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Yang, Yang

Exploring Resource/Performance Trade-offs
for Streaming Applications on Embedded Multiprocessors
/ by Yang Yang. - Eindhoven : Technische Universiteit Eindhoven, 2012.
A catalogue record is available from
the Eindhoven University of Technology Library
ISBN: 978-90-386-3170-7
NUR 959
Trefw.: multiprogrammeren / elektronica ; ontwerpen / multiprocessoren /
ingebedde systemen.
Subject headings: data flow graphs / electronic design automation /
multiprocessing systems / embedded systems.

Exploring Resource/Performance Trade-offs
for Streaming Applications on Embedded

Multiprocessors

Committee:

prof.dr.ir. T. Basten (promotor, TU Eindhoven)
prof.dr. H. Corporaal (promotor, TU Eindhoven)
dr.ir. M.C.W. Geilen (copromotor, TU Eindhoven)
prof.dr.ir. A.C.P.M Backx (chairman, TU Eindhoven)
prof.dr.ir. M.J.G. Bekooij (University of Twente, NXP Semiconductors)
prof.dr.ir. C.H. van Berkel (TU Eindhoven, ST Ericsson)
Prof.Dr. S. Chakraborty (TU München)

This work has been carried out as part of the Octopus project with Océ
Technologies B.V. under the responsibility of the Embedded Systems Institute.
This project was partially supported by the Netherlands Ministry of Economic
Affairs under the Bsik program.

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 257.

c© Yang Yang 2012. All rights are reserved. Reproduction in whole or in part is
prohibited without the written consent of the copyright owner.

Printing: Printservice Technische Universiteit Eindhoven

Abstract
Exploring Resource/Performance Trade offs for Streaming
Applications on Embedded Multiprocessors

Embedded system design is challenged by the gap between the ever increasing
customer demands and the limited resource budgets. The tough competition
demands ever shortening time to market and product lifecycles. To solve or, at
least to alleviate, the aforementioned issues, designers and manufacturers need
model based quantitative analysis techniques for early design space
exploration to study trade offs of different implementation candidates.
Moreover, modern embedded applications, especially the streaming
applications addressed in this thesis, face more and more dynamic input
contents, and the platforms that they are running on are more flexible and
allow runtime configuration. Quantitative analysis techniques for embedded
system design have to be able to handle such dynamic adaptable systems.

This thesis has the following contributions:

A resource aware extension to the Synchronous Dataflow (SDF) model of
computation.
Trade off analysis techniques, both in the time domain and in the iteration
domain (i.e., on an SDF iteration basis), with support for resource sharing.
Bottleneck driven design space exploration techniques for resource aware
SDF.
A game theoretic approach to controller synthesis, guaranteeing performance
under dynamic input.

As a first contribution, we propose a new model, as an extension of static
synchronous dataflow graphs (SDF) that allows the explicit modeling of
resources with consistency checking. The model is called resource aware SDF
(RASDF). The extension enables us to investigate resource sharing and to
explore different scheduling options (ways to allocate the resources to the
different tasks) using state space exploration techniques. Consistent SDF and
RASDF graphs have the property that an execution occurs in so called
iterations. An iteration typically corresponds to the processing of a meaningful
piece of data, and it returns the graph to its initial state. On multiprocessor

platforms, iterations may be executed in a pipelined fashion, which makes
performance analysis challenging. As the second contribution, this thesis
develops trade off analysis techniques for RASDF, both in the time domain
and in the iteration domain (i.e., on an SDF iteration basis), to dimension
resources on platforms. The time domain analysis allows interleaving of
different iterations, but the size of the explored state space grows quickly. The
iteration based technique trades the potential of interleaving of iterations for a
compact size of the iteration state space. An efficient bottleneck driven design
space exploration technique for streaming applications, the third main
contribution in this thesis, is derived from analysis of the critical cycle of the
state space, to reveal bottleneck resources that are limiting the throughput. All
techniques are based on state based exploration. They enable system designers
to tailor their platform to the required applications, based on their own specific
performance requirements. Pruning techniques for efficient exploration of the
state space have been developed. Pareto dominance in terms of performance
and resource usage is used for exact pruning, and approximation techniques
are used for heuristic pruning.

Finally, the thesis investigates dynamic scheduling techniques to respond to
dynamic changes in input streams. The fourth contribution in this thesis is a
game theoretic approach to tackle controller synthesis to select the appropriate
schedules in response to dynamic inputs from the environment. The approach
transforms the explored iteration state space of a scenario and resource aware
SDF (SARA SDF) graph to a bipartite game graph, and maps the controller
synthesis problem to the problem of finding a winning positional strategy in a
classical mean payoff game. A winning strategy of the game can be used to
synthesize the controller of schedules for the system that is guaranteed to
satisfy the throughput requirement given by the designer.

I

Contents
1 INTRODUCTION ..1

1.1 The emergence of embedded streaming applications.1

1.2 The challenges in embedded system design. ..4

1.3 The trends in embedded system design. ...6

1.4 Problem Statement..10

1.5 Contributions ..16

1.6 Thesis Overview ...18

2 DATAFLOWMODELS ..19

2.1 Overview..19

2.2 Synchronous Dataflow Graphs...21

2.3 Scenario aware Dataflow Graphs...26

2.4 Resource Aware Synchronous Dataflow Graphs...................................31

2.5 Scenario and Resource Aware Synchronous Dataflow Graphs..........38

2.6 Reflections and Related Work...41

2.7 Summary..43

3 METRICS AND TRADE OFFS ..45

3.1 Overview..45

3.2 Throughput..45

3.3 Resource Usage ...49

3.4 Generalization of Metrics...52

3.5 Conversion from executions to strong static order schedules..............54

3.6 Trade offs and Pareto Optimization ..59

3.7 Summary..61

4 TIME DOMAIN ANALYSIS ..63

4.1 Overview..63

4.2 Operational Semantics of RASDF...64

II

4.3 Exploring the state space of RASDF ..70

4.4 Heuristic Search ..75

4.5 Bottleneck driven Design Space Exploration..78

4.6 Case Studies...88

4.7 Related Work ..99

4.8 Summary..102

5 ITERATION DOMAINANALYSIS..103

5.1 Introduction...103

5.2 Max plus Algebra and its relation to RASDF104

5.3 Iteration based Execution ..108

5.4 Exploration Techniques ...113

5.5 Case Studies...122

5.6 Summary..126

6 PLAYINGGAMESWITH SARASDF..129

6.1 Introduction...129

6.2 An Illustrative Example ...131

6.3 Preliminaries of Game Theory ..134

6.4 Translation to a mean payoff game..137

6.5 Solving the mean payoff game ...142

6.6 Case Studies...148

6.7 Related work ...149

6.8 Summary..151

7 CONCLUSIONS ANDOUTLOOK ...153

7.1 Conclusions ...153

7.2 Open Questions and Future Work ...155

APPENDIX ...159

BIBLIOGRAPHY ...171

ACKNOWLEDGEMENTS ...189

III

..193

LIST OF PUBLICATIONS..195

IV

1 INTRODUCTION

“A journey of a thousand miles begins with a single step.”

– Lao Tzu

Nowadays, the modern life of mankind is more or less defined by the devices
someone uses in his or her daily life, such as a mobile phone, portable media
player, e book reader, and so on. Most of these devices are dedicated to a few
functions and hide computer systems inside so that the computer systems are
invisible to users. These hidden computers are called Embedded Systems and
have become ubiquitous in our lives. The wide use of embedded systems
digitizes our life and pushes us into the so called post PC era.

1.1 The emergence of embedded streaming applications.

The design of many embedded systems requires domain specific
knowledge. In many of these embedded systems, one can find signal
processing algorithms, ranging from data fusion of sensor nodes to radar
imaging on satellites. A lot of core functions of consumer electronics, industrial
products, and defense systems are based on knowledge from the signal
processing domain. Since the data of these signal processing applications are
continuously flowing through the systems like streams, these applications are
also called streaming applications [154]. Example streaming applications
include audio/video codecs in portable MP3/MPEG4 players, image processing
systems such as cameras and printers, and communication systems such as
mobile phones and base stations. Design of streaming applications on
embedded systems is an important subdomain of embedded system design.

The software design of streaming applications is driven by the dataflow
paradigm. When designing streaming applications on embedded systems,
block diagrams are frequently used for application description. The algorithm
designers are used to describe their signal processing algorithms as block
diagrams on paper, in which data are flowing through and are processed by
these blocks. Since these blocks and the connections among those blocks only
capture high level information of the system, they are easy to understand and
change relatively slowly when compared to their underlying implementations.
So the block diagrams are frequently used as media for documenting and
communicating algorithm designs among the designers. For example, Figure

2

1.1 shows a block diagram of an MPEG2 encoder from a design white paper
provided by CoFluent® Design. The block diagram clearly shows the flow of
image frame data and the processing steps of the MPEG2 encoder [26].

Figure 1.1 Block diagram of the MPEG2 Encoder [26]

The hardware design of streaming applications is driven by the progress of
manufacturing technology and the utilization of the nature of streaming
applications. The progress in hardware manufacturing technology so far
manages to make the integration of digital circuits adhere to Moore’s law. By
scaling geometrically, we transit from the single core era to a multi/many core
era while keeping power consumption under physical limits. The innovation of
hardware architecture turns the advance in the integration level to a gain in
performance. Many of those architecture innovations, such as Application
Specific Instruction set Processor (ASIP) [71], Very Long Instruction Word
(VLIW) [50], Single Instruction, Multiple Data (SIMD) [78], Reconfigurable
Computing [32] architectures, are driven by observations from the streaming
application domain. Through heterogeneous integration, different functional
units of an embedded system such as sensors, processing units and memories
are put on the same chip, resulting in a System on Chip (SoC). From mobile
phones to complex communication networks, SoCs are widely used in these
final products for performance/power efficiency and cost reduction. Moreover,
non digital parts such as sensors, actuators and biochips are also starting to be
integrated into the system; the system is then called a system in package (SiP).
Integration level is raised with both “more Moore” (increasing digital
integration by scaling down logic gates) and “more than Moore” (increasing
non digital contents integration such as MEMS) [175].

3

Embedded streaming applications always need to satisfy tight and strict
performance requirements. In many cases, the streaming data of these
applications must be processed within a tight time budget to meet their
throughput constraints to ensure customer satisfaction or good user experience.
For example, depending on the profiles, the video bit rate of H.264/AVC ranges
from 64 kbps to 240 Mbps [161]. Meanwhile, the resource limitations on many
embedded systems constrain the options of design and implementation.
System designers have to balance between performance requirements and
resource constraints, and obtain the optimal solutions based on customer needs,
which requires careful mapping between signal processing algorithm blocks
and hardware components. The better the match between the mathematical
operations of the software blocks and their underlying hardware
implementations, the higher the probability that the given performance/power
requirements of whole system are reached. A good design always implies a
good mapping between an application and its architecture.

Both industry and academic worlds show great interest in streaming
applications in the last two decades. Commercial tools for developing
streaming applications include Signal Processing Worksystem (SPW) [9, 123]
from Cadence (later acquired by Coware, in turn acquired by Synopsis),
COSSAP [129] (later merged into Cocentric System Studio, formerly called El
Greco [22]) from Synopsis, ADS [122] (formerly EEsof from HP) and
SystemVue [139] from Agilent, Labview [90] from National Instruments and
System Canvas [111] from Angeles Design Systems. Researchers around the
world also develop academic tools for modeling and analysis purposes, such as
Ptolemy [23] from U.C. Berkeley, DIF [83] from University of Maryland,
StreamIt [154] from MIT, PeaCE [149] from Seoul National University and SDF3

[146] from Eindhoven University of Technology.

In a nutshell, a good embedded streaming application system design needs
to consider application (software), architecture (hardware) and mapping
(hardware/software codesign) aspects together. But none of the aspects is easy
in embedded system design due to the increasing complexity. Both industry
and academia put a lot of effort in investigating the problem, i.e. how to design
and implement embedded streaming systems in a systematic and better way.
We list below the challenges in designing streaming applications on embedded
systems and the trends of solutions for the challenges that we think are most
important.

4

1.2 The challenges in embedded system design.

The ever increasing complexity and the ever shortening time to market: The
increasing capabilities of embedded systems, together with the perhaps even
more dramatic increase in their application in everyone’s daily life causes the
design complexity of embedded system to grow sharply. Designers cannot
simply consider different parts of a system separately and then try to put them
together in a naive way. All those different parts now are connected to each
other and influence each other. To make things even worse, the fast evolution
of technology and fierce competition in the market also shorten the patience of
customers. The ever shortening time to market puts additional pressure on
designers while they are handling design complexities that they have never
seen before. The International Technology Roadmap for Semiconductor (ITRS)
showed in its report of 2009 [86] the ever enlarging design gap between
HW/SW productivity and manufacturability.

Figure 1.2 Hardware and Software design gap versus Time (based on [86])

Figure 1.2 shows a design gap prediction graph based on the ITRS report.
The complexity of the design of software/hardware is measured in a
logarithmic scale. The technology capabilities such as manufacturing process
advances or new materials are not necessarily turned into benefits for end
producers because of the ever enlarging design gap between the productivity
of developers and the capabilities of technology. The increasing design cost
might eventually stifle the whole industry if a sustainable product
development cycle becomes economically impossible due to the gap.

5

The ever increasing development cost: For consumer electronics, we already
got used to the phenomenon that the prices of new products drop sharply a
few month later to give way to even newer products that are more powerful
and efficient. Moreover, the fine segmented market also limits the volume of a
single product and narrows the profit margin of the product. At the same time,
the Non Recurring Engineering (NRE) cost of products, i.e. one time cost
during the research, design, development, and testing phases just keeps
soaring with the increasing complexities of products no matter the products
are consumer electronics or professional and industrial products. The progress
in manufacturing technology drops the price of hardware every year. However,
the salary and productivity of programmers for both software/hardware keeps
more or less stable or slowly grows. As a result, the share of “software”
(including software and programmable hardware code) in the total cost of
products keeps increasing. The designers have to increase their productivity to
make a sustainable profit from their products.

The multi objective and non functional requirements: In the nature of
embedded system design, there are many design constraints other than
functional correctness. Due to the deployment environment, resource
restrictions on implementations, constraints on performance related metrics,
many non functional requirements need to be taken into consideration when
designing an embedded system, such as performance, power and reliability.
Compared to well developed methodologies that ensure functional correctness
of systems, we still lack systematic ways of designing systems to satisfy non
functional requirements. Moreover, we frequently find that we have to design
a product that has to satisfy multiple objectives while some objectives are in
conflict with each other.

The multi/many core era: In order to complete many different tasks or react to
different types of input in real time, embedded systems are running multiple
applications or multiple tasks of one application on so called Multi Processor
System on Chip (MPSoC) platforms at the same time. In order to enable
parallel applications, the underlying architectures also have some kinds of
parallel features, from multi/many cores at the system level to VLIW or SIMD
at the instruction level. Keeping the parallelism intellectually manageable, i.e.,
ensuring that designers are capable of designing, debugging and deploying
such kinds of systems, is very challenging [107].

6

The environment: Last but not least, the environment is also one of the most
important design constraints for embedded systems. Embedded systems aim
to embed into products and react to the environment in one way or the other.
The environment influences the behavior of an embedded system by providing
all kinds of inputs. In a streaming application, the environment will feed input
as a data stream while the type and content of data might change depending
on the situation. Taking the environment into consideration not only makes the
design more reliable and predictable, but also makes the design more efficient.
However, it also requires more effort from designers due to the consideration
of this new dimension.

To conclude, the challenges faced by embedded system designers are
caused by the gap of ever increasing desires of customers and the relatively
slow growing design capability that can satisfy the desires. The success of past
designs of embedded systems boosts the expectation for future embedded
systems. The tension between the means and ends will continue as embedded
systems already become an important part of our daily lives.

1.3 The trends in embedded system design.

In order to solve the aforementioned challenges, the research and practice on
design methodologies for embedded systems also made progress in the last
few decades. There are a few noticeable trends in current embedded system
design that we discuss below.

Model based Design: The computer industry advances by introducing models
and raising the abstraction level. By doing so, we manage to understand and
solve complex problems at different levels. Instead of designing a product
directly with unnecessary details, a model based approach provides a way to
design products at a different abstraction level with only essential information.
Depending on their abstraction levels, models approximate the behavior of
final products in different ways and are used for different purposes. The
models can be viewed as virtual prototypes of products and are used by
designers for evaluation and estimation. Comparing to long and expensive
procedures to develop physical prototypes for evaluation or very primitive
spreadsheet calculations which are based on designers’ experiences, the model
based approach is much faster, effective and accurate. The most aggressive
model based design approaches even support generating implementations
directly from models. For streaming applications, different types of dataflow

7

models are proposed for performance and resource usage evaluations, such as
Real time Calculus [152], Event Model [69], and Synchronous Dataflow [101].
Many commercial products are already developed for functional simulation or
fast prototyping purposes such as SymTA/S [76] and SPW [9].

Separation of Concerns: Due to the increasing complexity of embedded
systems, designers can handle all aspects neither at the same time nor within
the same person. Instead, approaches that try to separate concerns such an
aspect oriented [97, 132] or domain specific approach [81, 108], or the Y chart
methodology [8, 98] are proposed. A complex embedded system design
problem is divided into many different orthogonal or loosely coupled
subproblems, which are solved separately and efficiently by aspect/domain
experts with their domain specific knowledge. Then system designers or a
central design system are responsible for integrating all components together.
On the one hand, an aspect oriented approach maximizes the efficiency of
designers; on the other hand, it allows modification of one aspect with as few
as possible side effects to other aspects. Aspect oriented or domain specific
design is rooted in a problem solving skill of human beings with a long history:
divide and conquer. Obviously, the loose coupling to other design aspects and
efficient and holistic integration are key challenges for the approach. The Y
chart methodology is another good example of separating embedded system
design concerns. It separates application functionality aspects (typically
designed in software) from platform aspects (typically hardware) and the
mapping of application functionality onto the platform. There are many
commercial tools that provide domain specific languages for specifying
requirements or modeling behaviors [18, 35, 79]. The domain specific
languages allow designers to improve their productivity while utilizing
domain specific information for efficient optimization [4, 81].

Hardware/Software Co design: While splitting loosely coupled concerns into
different aspects, considered separately, we have to consider tightly coupled
aspects all together as a whole. Since the line between hardware and software
is blurred due to introduction of high level synthesis tools, the
Hardware/Software Co design approaches [19–21] became popular in current
embedded system design. Designers can choose to map a computation task on
an acceleration unit (hardware implementation) or on a general purpose
processing unit (software implementation), the only difference being the
processing time and resource usage. By careful design, end users will not be
aware of the difference. The Hardware/Software Co design approach also

8

requires designers to use high level specifications that abstract from
implementation details since the final implementation can vary significantly. In
order to support Hardware/Software Co design, model based or virtual
platform based design methodologies are developed. Model based exploration
allows fast evaluation of implementation choices since both software and
hardware components are modeled and can interact with each other through
well defined interfaces. Virtual platforms provide cycle level models or faster
transaction level hardware models in the early stage of software design for
hardware/software co design.

System Level Exploration and Early Design Space Exploration: Abstraction
and a model based design approach enable designers to perform design space
exploration at system level. We can do early design space exploration as soon
as we have system level models. Even though the system level models do not
contain many details, we can still make some important and crucial decisions
at the early stages of embedded system design. For example, [86] predicts that
the contribution of ESL design to system power minimization will account for
80% in 2015. Early design space exploration [70] is very important in the whole
design cycle since it helps designers to identify the important decisions at
system level so that they can figure out a way to properly handle concerns
early on. By reducing the problems at the system level at an early stage, the
number of iterations for a design can decrease noticeably. In turn, it is possible
to shorten the time to market.

Correct by construction: Traditional approaches verify the correctness of a
system at the final stage, which might be too late for any meaningful remedies
if a design error is found. On the contrary, correct by construction design [43,
44] that is proposed by Prof. E.W. Dijkstra stresses that the correctness of
systems should be ensured by the way of constructing the system, i.e., through
formal methods [45]. For example, Design by Contract [109] is a well known
technique for software engineering that, by enforcing formal and verifiable
interface specifications for software modules, ensures the correctness of the
system. The techniques for correct by constructions have their roots in formal
specification and verification [7, 92].

Trade off aware design: Since designing for multiple objectives [177] such as
performance and energy efficiency becomes common in embedded system
design and some of these objectives might be in conflict with each other, it is
very useful for a design method to provide trade offs for designers to select

9

one implementation among different design options. Even more, the trade offs
can be used for tailoring existing designs for different customer needs or
configuring running applications for different environments.

Reusable, Adaptable and Adaptive design: In order to improve productivity,
reusing existing designs or adapting them for new situations is good practice.
Intellectual Property (IP) libraries and Platform based design [106, 134] try to
reuse at component level and platform level respectively. Though the
requirements of a product are heavily dependent on time, locations, and
individual needs, we can always find some requirements/functions that are the
same or similar to existing designs. By reusing existing designs, we can
construct the known part quickly and focus our efforts on new functional parts
and their interface to reused parts. An ideal design can adapt to changes, no
matter whether the changes that happen at design time (adaptable) or runtime
(adaptive). The changes may even cross different generations of the product or
different markets of the product. At design time, an adaptable design should
be able to be adapted to changes in requirements or modifications of different
aspects of the specification. At run time, an adaptive design should be able to
adapt to different environment inputs and react with different strategies, such
as different schedules, operating frequencies or voltages. Adaptable and
adaptive design can alleviate the problem of soaring NRE cost by amortizing
cost over similar products that target different customers and different
generations of the same products. Moreover, an environment sensitive design
can ensure the efficiency of products and achieve efficiency that is not
achievable through a static approach [3, 48]. By tailoring platform resource
configurations for different needs at design time [96] or by changing
configuration at runtime to react to environment changes [17], the investment
of reusable, adaptable and adaptive parts and the experience and knowledge of
designers are preserved and utilized.

More design automation: One limiting factor that causes the productivity gap
is the lack of enough manpower for design. There are two reasons: the first one
is the lack of skilled designers to manage the ever increasing complexity; the
second one is the huge amount of complex design tasks generated from the
ever increasing demands on embedded systems. While improving our
education system can solve the first problem, more design automation is the
remedy for the second one. By shifting well defined and automatable design
tasks to computers, the hands of designers can be liberated for those less well
defined and highly creative design tasks. The prosperity of the last few

10

decades of semiconductor industry is largely due to the progress that was
made in design automation. The future of the industry needs the continuation
of the success.

Tackling emerging needs: The advances of embedded systems lead to new
design techniques to tackle emerging problems such as thermal aspects [85,
153], security [160, 173], reliability [159], resource management [17, 72], and
concurrency [135, 168]. The variety of design issues raised in embedded
system design reflects the influence of embedded systems in our life. The need
to solve these emerging issues leads the trends in the design automation
research and development.

We list many design trends for embedded systems above. Some of them
have already become practice in industry and may still be improved while
others need further research to reach industrial strength for real applications.
Moreover, all these trends are not independent from each other, but closely
related. The progress of one will also improve the other. How to turn those
“nice to have” research tools to some really “reducing design pains” tools is
one of the most important motivations behind design automation research.

In this thesis, we are motivated by the challenges faced by embedded
system design and are inspired by the design trends shown in the past decades.
We are investigating the problem of designing streaming applications on
embedded platforms. Given the wide use of streaming applications and
complexity of the design problem, this thesis is only a small step of this long
journey, but we believe it is a constructive one.

1.4 Problem Statement

To solve the challenges facing embedded system design is not an easy journey.
Here, we focus in particular on a specific subdomain of embedded system
design: streaming applications.

1.4.1 The performance versus resource cost trade off

A key issue for developing streaming applications is the analysis of
performance and resource usage of a streaming application. The two aspects,
performance and resource usage, are tightly related to each other. Normally,
higher performance requires more resources. Embedded system designers face
the natural dilemma to increase resources for more performance or to decrease

11

resources for a more economic implementation. This dilemma, the so called
trade off problem (or opportunity cost problem in economics), is widely seen
in many engineering fields, i.e., there typically is no single optimal option, but
instead there are a lot of different options, each with its own advantages and
disadvantages. The trade offs are Pareto optimal options [56] in their
corresponding design space. The goal of trade off analysis is to find these
Pareto optimal options in the design space for which there is no alternative
option that is strictly better in all aspects.

1.4.2 Approaches for performance and resource usage analysis

There is a lot of work that studies performance and resource usage for
streaming application systems. Models of Computation (MoCs) are models that
are used to study this type of problems related to computation. We discuss a
few MoCs below.

Network Calculus and Real Time Calculus: Network Calculus (NC) [19, 33,
34] is developed as a deterministic queuing theory for computer networks. It
applies min plus algebra to networking systems where the addition is replaced
by computation of minimum and the multiplication is replaced by addition. It
can be used to reason about timing properties of event streams in queue
networks. The envelope of event streams can be captured by arrival curves [33,
34]. Since streaming application systems can be viewed as a network of
processing blocks, NC can be used for analyzing end to end delays, event rates
and buffer requirements (backlog in NC terminology) between processing
blocks. In NC, latency rate () server [143] is introduced to model and
analyze traffic scheduling in communication networks. The behavior of a
server is determined by two parameters, the latency () and the allocated
service rate () for the input traffic stream. Several scheduling algorithms such
as Round Robin scheduling can be classified as servers. It can be used to
analyze performance of SoC architectures [155] in which tasks are captured as a
set of traffic flows with associated latency constraints.

Real Time Calculus (RTC) [152] is an extension of NC. A detailed
comparison between NC and RTC can be found in [20]. In contrast to NC, RTC
uses so called interval bound functions to characterize both event streams and
available resources. By applying interval analysis on event streams, i.e., sliding
an interval window over event streams and counting the maximum (upper
arrival curve) and minimum (lower arrival curve) number of events appearing

12

during the interval . Resources are indirectly captured by service curves
which denote numbers of input events have been served to a so called greedy
processing unit. RTC is used to study the schedulability and buffer
requirements of real time system.

Modular Performance Analysis (MPA) [27, 156] is an analysis framework
developed on top of RTC. In this framework, a system is composed by a
number of building blocks of which the inputs and outputs are characterized
by pairs of upper and lower arrival curves and service curves. The building
blocks can connect their own inputs and outputs, for events and services, with
other blocks’ outputs and inputs respectively. The framework allows interface
based design and provides modular analysis. A case study is given in [157] to
show how to apply MPA for embedded system performance analysis.

Event Models: An Event Model (EM) [69, 76, 127] is a set of event streams that
share common qualitative properties such as a period , jitter and deadline
etc. A system is viewed as a set of processing blocks that can be independently
scheduled and be analyzed locally. These blocks communicate or interact via
event streams. Event streams represent the interface between blocks and sub
systems. Two category functions are defined for event streams to capture the
properties of a stream. One is that returns the number of possible event
occurrences within a time interval of size and the other is that returns
the time distance between successive events in the stream. Actually, the
event stream function can be converted to the upper bound and lower
bound arrival curves for the event stream [127]. The inputs and outputs of
processing blocks are captured by the EM. The Event Model Interface (EMI) is
developed for connecting different event models. In [128, 133], techniques are
developed for hierarchical scheduling analysis of hierarchical event stream
system. A EM based commercial tool SymTA/S is developed for performance
and scheduling analysis [76].

Dataflow approach: For streaming application design, the Synchronous
Dataflow (SDF) graph model is one of the most popular models both in
academic and industrial communities. Among the reasons for its popularity,
the two most important ones are its expressiveness, i.e., the ability to capture
system behaviors accurately, and analyzability, i.e., the ability to reason about
system properties efficiently. A given streaming application can be converted
to an SDF graph with moderate abstraction and modeling efforts. Task
concurrency and data parallelism in parallel application specifications on

13

multi/many core systems can be naturally captured by SDF graphs. A system
is viewed as a set of actors, i.e. processing blocks, that communicate with each
other through channels. Fixed amounts of data (called rates) are consumed and
produced by each actor for every execution. With fixed data rates, we can
define an iteration of a graph to contain a number of actor firings that returns
the graph to its initial condition. An iteration typically corresponds to
processing a meaningful unit of data in the physical world such as an image
frame in an image processing application or an audio frame in music players.
With the definition of an iteration, we can define the metric throughput as the
number of iterations completed per time unit to measure the performance of
streaming applications modeled by SDF graphs. The constraint on data rates of
actors enables powerful analysis of SDF graphs. For single processor platforms,
it is quite easy to construct a schedule with fixed execution orders and
bounded buffer requirements [101]. For multi processor platforms, state based
and max plus based analysis techniques are developed for performance
analysis and trade off analysis [64, 144]. SDF graphs normally only model
distributed and non shared resources such as FIFOs. In order to capture
resource sharing among actors, specific techniques are required. For instance,
runtime scheduling of actors on shared resources whose starvation free arbiters
(e.g. Round Robin arbiter) can be modeled as servers. [11, 164, 165] model
each task as a component that consists of two dataflow actors that capture
latency and resource allocation rate based on the model of the
corresponding resource arbiter.

Comparison of the three approaches: All approaches are able to model and
analyze the streaming behavior of an embedded system while each has its own
strengths and weaknesses. NC/RTC/MPA and EM/SymTA/S are trace driven
models, i.e., they need knowledge about the timing properties of inputs
collected from traces to reason about the whole system. EM targets real time
scheduling and translates periodical event logs with jitters and deadlines into
stream event functions such as and . After conversion of the event
stream to event functions, EM and NC/RTC/MPA can use the same analysis
techniques since they both use arrival and service curves based on min plus
and max plus algebras. Both NC/RTC/MPA and EM do performance analysis
by local component analysis and global iterative fixed point analysis. They are
able to provide closed form analysis. Recently they also are able to analyze
cyclic dependencies in applications [91]. In contrast to NC/RTC/MPA and EM,
SDF is not dependent on trace information and can easily handle cyclic

14

dependencies. The topological structure of SDF is very close to the application
itself. It does have to know the processing tasks to fix the data rates of each
input and output. The constraint of fixed rates for input and output is a
double edged sword. On the one hand, it allows fast and accurate analysis. On
the other hand, it lacks the flexibility of the arrival curves of NC/RTC/MPA and
EM to handle dynamism. There is some recent research work that tries to
extend classical SDF with the ability to handle dynamism [147, 163]. In
NC/RTC/MPA, the resource availability is captured by service curves. A
greedy processing component (GPC) takes the resource service curve as input
and outputs a remaining resource service curve as output. The outputted
remaining resource service curve then feeds into the next GPC that needs the
same resource. This models priority based arbitration and the order of
connection of GPCs decides the priority of tasks sharing the same resource. In
dataflow modeling, the resource sharing is handled by static order schedules
fixed at design time [37] or models such as servers for starvation free
runtime schedulers [164]. The static order can be modeled by additional edges
in the dataflow graph while servers can be modeled as a dataflow
component [11, 37, 140, 164, 165]. Static order scheduling uses at design time
the known data dependencies within one application to generate more efficient
schedules compared to run time schedulers. The static order schedulers can
typically give tighter performance bounds than static analysis of dynamically
scheduled behavior with server models. An embedded system often runs
multiple streaming applications, the data dependencies only exist within an
application itself. The resource sharing among multiple applications can only
be scheduled at runtime. One solution is to do static order scheduling within
one application while using the server model to analyze multiple
independent applications [110]. A goal of this thesis is developing more
efficient static order schedules for a single application in the case of shared
resources.

Last but not least, we want to point out that some analysis techniques for
the three models share the same mathematical structure of min plus and max
plus algebra. The similarities between the analysis techniques hint that the
MoCs can be unified in a general framework. There is already some work on
interface theory that explores such possibilities [60, 138].

We use the SDF graph model as our tool for analyzing streaming
application systems since it naturally represents streaming applications.

15

Moreover, we can analyze it both in the state based approach or in the max
plus algebra approach. It gives us flexibility for exploring our trade off analysis
problem.

1.4.3 The problems faced in dataflow modeling

Our research questions are derived from the two aspects of SDF:
expressiveness and analyzability. For expressiveness, we noticed that almost
all existing work on SDF handle resources in the following two ways. In the
first way, it makes implicit resource assumptions. For example it assumes that
resources are unlimited so that they do not have to be taken into consideration.
In the second way, it modifies dataflow graphs to embedded scheduling
decisions on shared resources. For example, it assumes that resources are used
in a fixed order so that the resources can be modeled as data tokens that are
communicated between actors [37]. Or it uses dataflow components to replace
one task actor to capture starvation free schedulers in the server class [164].
If we change the underlying assumptions and make the amount of resources
that we are interested in limited and the order in which they are used more
flexible, can we still model it. For this, we need a new MoC to explicitly handle
resource concerns. If we express our resource concerns in a new MoC, how
should we analyze it? The extension of expressiveness will impact the
analyzability of the new model and requires reconsidering existing techniques
for the well known SDF MoC.

For example, a common trade off for streaming applications is throughput
vs. buffer resources. The SDF model has efficient analysis algorithms for
throughput and distributed buffer size [144, 148]. However, for more generic
resources that are expressed by the new MoC, analysis methods for the trade
offs between throughput and resource usage have to be explored. Are there
efficient algorithms for the analysis of trade offs? In general, trade off analysis
is an important research question for such a new model.

Last but not least, if we add a new design dimension, input of a system, into
the modeling process besides its resources dimension, how should we handle it?
Can we utilize the knowledge on inputs to predict the performance and
resource usage of streaming applications more precisely? For streaming
applications, we can sometimes model the inputs and the transitions among
inputs with a Markov Chain or Finite State Machine (FSM). For example, the
MPEG 2 decoder has three types of different input, I, B, P frames. The

16

processing steps and execution times for these frames are different. The
transition from input with one frame type to another follows some rules. In
[116, 141], a Markov Chain is used to model the traffic in MPEG 2 Video. In [62,
151] performance prediction of streaming applications is improved with input
models that are Markov Chains and FSMs. Is it possible for us to react to the
inputs at runtime for more efficient resource usage or higher performance? For
example, we can allocate the same resource to different tasks based on the
context, or change operating voltage or frequency based on the predication of
input. So the dynamic environment is another challenge for our research.

To summarize, the thesis focuses on the following three major questions:

1. How to extend the SDF model with a (shared) resource aspect for
streaming applications on an embedded platform while still
maintaining the possibility of efficient analysis techniques?

2. How to efficiently explore trade offs in mapping of a streaming
application on its platform with the new model?

3. How to model the environmental aspect (i.e., input) and find an
efficient way to adapt to environmental changes at runtime?

The above research questions have motivated our work and our thesis to
answer them. Through investigation of the above three questions, we made
contributions, which we introduce in the next section, to the existing work.

1.5 Contributions

By addressing the questions posed in the previous section, we made the
following contributions:

Resource Aware Synchronous Dataflow (RASDF):We propose the Resource
Aware Synchronous Dataflow model as an extension to the well known SDF
model. It explicitly models the shared resource aspects of a streaming
application. An SDF graph is consistent if its production and consumption
rates are such that the SDF graph can execute indifferently without deadlock
and within bounded memory. The concept of consistency of SDF is extended to
include consistency of resource usage. The resource consistency of a given
RASDF is necessary for the existence of a schedule for the RASDF without
deadlock and with bounded resource requirements. The explicit modeling of
resources without specifying their order of use enables a more flexible analysis.
Since resources can be shared by multiple actors, the resource allocation order

17

will impact the execution order of actors of an application, i.e., the schedule of
the application, and therefore impact the performance of the application. Better
trade offs are possible when compared to SDF analysis. This work has been
published in [170].

Trade off analysis techniques: We developed trade off analysis techniques
for RASDF. We use state space exploration techniques, both in the time
domain [169, 170] and on an iteration basis [171]. These techniques make use of
the concept of Pareto dominance for pruning redundant explorations. The
time domain analysis allows better schedules due to interleaving of iterations,
but the size of the explored state space grows quickly. The iteration based
technique trades the interleaving of iterations for a more compact size of the
state space. The work has been published in [171].

Bottleneck driven DSE: We developed automatic bottleneck driven design
space exploration techniques for efficient dimensioning of the required
resources. By exploring the state space of an RASDF graph and analyzing the
dependencies between actor firings, bottleneck resources that are limiting the
throughput are identified through analysis of dependencies involving limited
resources. With this bottleneck information, the design space can be more
efficiently explored. This work is published in [169] and [171].

Game theoretic controller synthesis: We exploit an analogy of the controller
synthesis problem for a streaming application to a game between a controller
player and the application environment player. The controller player decides
the runtime schedule corresponding to the input decided by the environment
player and context at the decision time. By mapping the synthesis problem to
the well known mean payoff game, synthesizing a controller can be reduced to
finding a winning strategy for the controller player. We consider the role of the
environment into our modeling efforts and combine a parameterized RASDF
with a specification of scenarios of input behavior, in a combined model called
Scenario and Resource Aware SDF (SARA SDF). The resulting analysis
approach draws from the studies of automata (such as SDF, RASDF, SARA
SDF), max plus algebra, and decision and game theory, which hints at new
research directions for streaming application modeling research. The work is
published in [172].

18

1.6 Thesis Overview

This thesis is organized as follows. Figure 1.3 shows the structure of the thesis.
Chapter 2 introduces the new MoCs: RASDF and SARA SDF that are used
throughout the thesis with their related parent models. Chapter 3 introduces
the metrics that we use for measuring the performance and resource usage of
streaming applications, the concept of Pareto optimality and dominance, and
the trade offs that we are interested in. Chapter 4 develops the analysis
techniques for RASDF in the time domain. Pruning techniques and heuristics
are discussed for avoiding an explosion of the state space. It also develops a
bottleneck driven design space exploration technique for efficient exploration
of the design space. Chapter 5 explores the design space through an alternative
view, i.e., on an iteration basis. Techniques for handling resources and pruning
are introduced. Chapter 6 studies the controller synthesis problem for
streaming systems from a game theoretic view. Chapter 7 concludes the thesis
and points out directions for future work. The appendix includes some
dataflow graphs used in this thesis.

Figure 1.3 Overview of the structure of the thesis

2 DATAFLOWMODELS

“The whole of science is nothing more than a refinement of everyday thinking”

Albert Einstein

In this chapter, two new MoCs, i.e., RASDF and SARA SDF are discussed. In
Section. 2.1 we give an overview of the relations between these two MoCs and
other existing dataflow models. From Section 2.2 to Section 2.5, we introduced
SDF, SADF, RASDF and SARA SDF respectively. In Section 2.6, we discuss
related work. Section 2.7 concludes with a summary of the chapter.

2.1 Overview

Models of Computation (MoCs) [49, 89, 136] are tools that we use to study
aspects of the physical objects that perform computations, such as the
functionality, the communication, synchronization, and timing behavior of the
computations. MoCs are formal abstractions of the computation objects that
get rid of all non relevant characteristics and only keep essential ones for a
given purpose like performance predication or property verification. The
formal description of a MoC allows us to rigorously study the computation
performed by the physical objects.

Compared to general models of computation such as Turing Machines that
are used to study computability and complexity, some specialized models of
computation are used for specific purposes. Finite state machines (FSMs), for
instance, are used for circuit synthesis, synchronous languages for designing
safety critical controller systems, timed automata for verification of real time
systems, or Petri nets for description and analysis of distributed systems. The
specializations of MoCs often allow efficient analysis of problems in specific
target domains.

Streaming applications are widely used in our daily life. And there are
many open problems for design and implementation of such applications. In
order to satisfy the performance requirements and resource constraints of
streaming applications on embedded systems, developers have to exploit
different levels of parallelism and engage in concurrent programming (both
software and hardware) for implementation while keeping resource usage
within budget. However, traditional MoCs can neither capture such concurrent

20

activities easily (e.g. Turning Machines or FSMs), nor concisely capture the
activities for efficient analysis (e.g. Petri nets). This leads to difficulties in
analysis and implementation. New MoCs are needed to solve these problems
for streaming applications.

Researchers develop different types of MoCs [89, 142, 174] to study the
problems faced by streaming applications and to investigate how to analyze
them efficiently. One important category of MoCs are dataflow models of
computation. Depending on the expressiveness and analyzability, different
variants of dataflow models are proposed [147]. By using different types of
dataflow models, we are able to analyze the performance (how much time does
it take?) and the resource usage (how much processing, storage,
communication resources does it use?) of streaming applications and we can
explore the options to implement an application efficiently.

Figure 2.1 Venn diagram of dataflow models of computation

Figure 2.1 shows an overview of the dataflow models that will be discussed
in detail in this chapter (SDF, PSDF, SADF, RASDF and SARA SDF) and their
relations with each other. All these models can be viewed as subclasses of the
Petri nets MoC [118, 119]. Synchronous Dataflow (SDF) [101] is the basic model
that allows to capture static, multi rate signal processing systems. PSDF [13, 63]
allows data dependent, dynamic digital signal processing (DSP) systems to be
modeled with parametric rates and execution times. Scenario Aware Dataflow
(SADF) [59, 151] uses an FSM to capture dynamic changes among different
inputs and allows to analyze performance for data dependent applications.

21

Resource Aware Synchronous Dataflow (RASDF) (developed in this thesis)
specifies dataflow systems with explicit resource awareness and models
shared resources to allow more flexible scheduling. Scenario and Resource
Aware Synchronous Dataflow (SARA SDF) (developed in this thesis) combines
the resource aspect of RASDF and the data dependent aspect of SADF together
to study the interplay between an application and its environment. The thesis
is developed around the last two models, RASDF and SARA SDF, and their
analysis techniques.

2.2 Synchronous Dataflow Graphs

The behavior of certain streaming applications can be captured and analyzed
by Synchronous Dataflow (SDF) graphs. SDF graphs are rooted in
Computation Graphs (CG) [95] and it is equivalent to a subclass of Petri nets,
so called Weighted Marked Graphs (WMG) [31, 150]. The reason of the
popularity of SDF is its specific combination of expressiveness and
analyzability. It is very easy to capture certain static streaming applications
with SDF graph, to decide whether a schedule with desired performance exists
or not and to determine the size of FIFO buffers to avoid deadlocks.

Figure 2.2 shows an example of an untimed SDF graph. The circular nodes
are actors and represent computations. Actor computations are atomic and
performed repeatedly. Actors transfer information to each other through FIFO
channels (solid directed edges) via data items called tokens (black dots). Each
actor firing represents one computation and consumes a fixed number of input
tokens from each connected input channel and produces a fixed number of
output tokens to each connected output channel. These numbers of consumed
and produced tokens are called rates. The fixed rate is an essential property of
SDF graph. When the rates of all actors of an SDF graph are equal, we call it a
homogeneous SDF (HSDF) graph. It is a specialization of normal SDF graph.

Figure 2.2 An example of a Synchronous Dataflow (SDF) graph

22

SDF graph is very important since many dataflow models are derived from
it. There are many extensions to SDF graph, such as CSDF [117], BDF [24],
VRDF [162], SADF [62, 151], to capture more complex behavior of some
streaming applications. Our RASDF and SARA SDF are extensions of the basic
SDF model with different trade offs of expressiveness and analyzability.

We can now give a formal definition of untimed SDF graph that is similar to
the definition in [65, 145].

Definition 2.1: Untimed Synchronous Dataflow Graph (Untimed SDF)

An untimed SDF graph is a tuple that consists of a set of actors, a set
of directed channels, a read function that annotates (the sink of)

each channel with a positive integer that denotes the rate of consuming input from the
channel, and a write function that annotates (the source of) each channel
with a positive integer that denotes the rate of producing output to the channel.

Note that we do not allow multiple channels between the same pair of
actors since the channels can be replaced by one equivalent channel of which
input (output) rates are equal to the sum of input (output) rates attached to
multiple channels.

We use a channel quantity to capture the numbers of tokens on each channel
of an SDF graph.

Definition 2.2: Channel Quantity

A channel quantity associates with each channel an amount of tokens.

For a weighted and directed graph, we can use a topology matrix [101] to
represent its topology or structure, in which matrix row entries correspond to
channels and column entries correspond to the actors. The topology matrix
shows the input and output relations among actors and channels. We can
represent the input and output relations in two matrices and
respectively, and derive the topology matrix from the two matrices. We use a
function , to denote the source actor of a channel , and a
function , to denote the sink actor of a channel . The elements
of the two matrices are defined in the following two equations.

23

and

Then the topology matrix is defined as:

So the elements of the topology matrix of SDF graph are given by the
following equations:

When a channel of an SDF graph has the same actor as both its
source actor and its sink actor, i.e., , then the channel is
called a self edge of the actor .

Consider the example of Figure 2.2. Let the columns of the matrix
correspond to the actors and the rows of the matrix to the channels

in ; then and are given below:

and

For example, the element in the first row of (that corresponds to
channel) and the first column of (that corresponds to actor) is 2. It
denotes that actor writes 2 tokens to the channel after each firing.

The topology matrix of the example SDF graph is as follows:

Given the topology matrix, we can define many useful properties and make
use of these properties in our analysis. More importantly, the extensions of SDF
discussed in this thesis can be derived from different variations of the topology
matrix as we will see in the following discussions.

24

When an actor in an SDF graph fires, it consumes tokens from its input
channels and produces tokens to its output channels. If a channel is a self
edge of an actor in an SDF graph, has to be the same as .
Otherwise, the number of tokens in the self edge channel will during system
execution eventually be either 0 (leading to deadlock in the system) or grow
towards infinity (which implicates that a buffer overflow will eventually
happen in the system). More generally, we can check whether a system
modeled by an SDF graph is consistent or not by solving the balance equation:

The equation is called the balance equation since it means that after a
certain number of actor firings, given by , the number of tokens that are read
from each channel equals the number of tokens that are written to each channel.
Consistency is a necessary condition to avoid deadlocks and buffer overflows.

If a non trivial integer solution vector exists, i.e., the elements in are
positive and coprime, the SDF graph is said to be consistent and the vector q is
defined to be the repetition vector. Note that the consistency of an SDF graph
does not imply it is deadlock free. Deadlock can still happen if the number of
initial tokens is not enough on some channels. The existence of repetition
vector is only a necessary condition for deadlock free. The number of initial
tokens needs to be sufficient to avoid deadlock. The repetition vector of the
example SDF graph is . It corresponds to 2 firings of , 1
firing of , 3 firings of and 2 firings of . With enough initial tokens, the
application will return to the initial situation after 2 firings of , firing of ,
firings of and 2 firings of . For a given deadlock free SDF graph, after a
number of firings that corresponds to its repetition vector, the graph returns to
its initial situation. This allows us to construct a periodic schedule that can
repeat infinitely often.

An execution of an SDF graph is defined as a sequence of actor firings. A
sequence of actor firings is called an iteration if it contains a number of firings
of each actor that equals the corresponding element in the repetition vector of
the SDF graph.

We can convert an SDF graph to a homogeneous SDF (HSDF) graph with
conversion algorithms from [58, 101, 142]. The HSDF graph preserves actor
firings (under a straight forward homomorphism). The advantage of HSDF
graph is its regular structure, i.e., all read and write rates are equal. The length

25

of an iteration, i.e., the total number of firings in an iteration equals the number
of actors in the HSDF graph. The transformation of an SDF graph to an HSDF
graph is sometimes needed for analysis purpose. Figure 2.3 shows the
homogeneous SDF (HSDF) graph of the example SDF graph.

Figure 2.3 HSDF graph of the example in Figure 2.2

Many performance properties of SDF graphs, such as throughput [63, 64],
latency, and order sensitive resource usage, cannot be inferred without timing
information. Throughput itself is defined with time while exact resource usage
is determined by the order of start and end of actor firings, which depends on
time. (A detailed discussion on these metrics follows in Chapter 3.) So actors
are annotated with execution times for the purpose of analysis. The execution
time of an actor is defined as the constant duration between the start of actor
firing and the end of actor firing and is annotated inside the circle that denotes
the actor. With the execution times of actors, we can analyze the timing of an
execution of SDF.

Definition 2.3: Timed Synchronous Dataflow Graph (Timed SDF)

A timed SDF is a tuple that consists of an untimed SDF
and an execution time function that assigns to every actor non negative
real number that denotes its execution time.

Figure 2.4 shows an example of timed SDF graph. For example, the
execution time of actor is 2 time units. Figure 2.5 shows the behavior of one
firing of actor . Before time point , actor is waiting for input tokens on
channel (grey area). Once the number of tokens on is sufficient for one
firing at , the actor starts its firing. After 2 time units of execution, actor
writes 6 and 2 output tokens to channels and respectively. The
performance of a timed SDF graph, i.e., its throughput, can be represented by
the average number of actor firings during a fixed period of time.

26

Figure 2.4 An example timed SDF graph

Figure 2.5 Execution behavior of one firing of

Performance metrics of SDF graph and other dataflow models are discussed
in Chapter 3. Operational semantics of SDF and its extensions are discussed in
the time domain (Chapter 4), the iteration domain (Chapter 5) and for input
sensitive situations (Chapter 6).

2.3 S

In the SDF model, the execution times of actors are usually based on worst case
assumptions, i.e., they are so called worst case execution times (WCETs). This
assumption may lead to very conservative performance estimation. Many
streaming applications show data dependent behavior, meaning that actor
execution times may vary with the data being processed. The concept of a
scenario [66] is derived from the observation that the behavior of streaming
applications is stable while processing the same type of data units, but vary
among different types of data units. The type of data may decide the execution
paths of programs and results in different execution times on different paths.
By clustering and classifying those data dependent behaviors into different
scenarios, we can have a timed SDF for each scenario.

Scenario aware SDF (SADF) [59, 151] extends SDF with a scenario FSM that
captures input/environment changes and provides worst case execution times

27

for different input types. It enables us to improve the quality of performance
and resource usage analysis by refining the analysis for data dependent
behavior. Figure 2.6 shows an example of an SADF. It is composed by three
parts: a parametric SDF (as shown in the top part of Figure 2.6), a scenario FSM
(as shown in the bottom part of Figure 2.6), and a parameter table of the
parametric SDF for different scenario state.

Scenarios Rates Execution times Status

3 2 0 0 0 2 3 0 disabled
2 1 1 1 2 1 2 1 enabled

Figure 2.6 An example SADF graph

A scenario FSM captures all scenarios and transitions among scenarios in a
streaming application by a Finite State Machine. Figure 2.7 shows an example
scenario FSM. It has two states (and) and two scenarios (and). is
the initial state of the scenario FSM. The directed edges between states are
possible scenario transitions and each transition edge is labeled with the
probability of the transition and its corresponding scenario. For example, from
the initial state , the system has probability 2/3 to receive input and to
transit to state with scenario ; it has probability 1/3 to receive input and
stay at the same state with scenario .

28

Figure 2.7 An example scenario FSM

Definition 2.4: Scenario FSM

A scenario FSM is a tuple that consists of a regular FSM, i.e.,
finite set of states, an initial state , and a transition relation
together with a scenario labeling where is the set of
probabilities of the transitions in and is a set of scenarios with its subscript
being a set of input types. Each scenario corresponds to a specific timed SDF graph.

Note that a scenario FSM can also be viewed as a finite state Markov chain
plus scenario labeling. In order to capture all timed SDF graphs in one model,
we use a single SDF graph template to capture timed SDF graph instances of all
possible scenarios; the SDF graph template is called a parametric SDF graph.
Our definition of a parametric timed SDF graph is a combination of the
definitions in [13, 63] by parameterizing both execution times and rates.

Definition 2.5: Parametric Synchronous Dataflow Graph (PSDF)

A parametric timed SDF graph is a tuple that consists of a finite set of
actors, a finite set of channels, and a template function

that maps each scenario state in the scenario FSM to a set of
SDF parameters, in which contains the execution times of all actors, the element
from contains the read/write rates for all channels, and the element from

contains the active status of actors in the given scenario .

(a) (b)

Figure 2.8 Timed SDF graphs for two scenarios and

29

Figure 2.8 shows two timed SDF graphs for two different scenarios and
. Figure 2.8 (a) is a timed SDF graph for input while Figure 2.8 (b) is a

timed SDF graph for input .

We use a parametric SDF graph to capture the two graphs, the template is
shown in Figure 2.9. The template function of the parametric SDF graph is
given in the parameter table of Figure 2.6. For simplicity, we only show
parameters that vary. Using the parameter table, we can instantiate a timed
SDF graph from a parametric SDF graph for a given scenario. For example, for
scenario , we disable actor and remove actor and all channels linked to it.
Then we replace the parameters in Figure 2.9 with its values in the table.

Figure 2.9 Parametric SDF graph for scenarios and

Analogous to normal SDF graph, parametric SDF graph also has
parameterized output rate and input rate matrices and . For the example
in Figure 2.9, we have

and

From the two matrices, we can derive the parameterized topology matrix:

We define a topology matrix function that maps each possible
scenario to a topology matrix, in which is the set of topology matrices for all
timed SDF graph instances. For the example in Figure 2.8, we have

and

30

Obviously, the topology matrix of each scenario is an instantiation of the
parameterized topology matrix of the parametric SDF graph. A parametric SDF
graph is consistent if and only if all its instances that are instantiated from the
scenarios in its template function table are consistent, i.e., every topology
matrix has a non trivial repetition vector. For instance, the example parametric
SDF graph has repetition vector for scenario and repetition
vector for scenario . The parametric SDF graph can capture
the behavior for each scenario. However, it does not capture the dynamism
introduced by input changes, i.e. the transition between different scenarios. By
integrating scenario FSM, SADF graph can capture such dynamism.

Definition 2.6: Scenario Aware Synchronous Dataflow Graph

A Scenario Aware SDF (SADF) graph is a tuple that includes a
parametric SDF graph and a scenario FSM .

Scenarios Rates Execution times Status

3 2 0 0 0 2 3 0 disabled
2 1 1 1 2 1 2 1 enabled
Figure 2.10 An example FSM based SADF graph

While the probability labels of transitions of the scenario FSM are relevant
for long run average performance analysis [62, 151]. For worst case throughput
analysis, we can simplify the scenario FSM by ignoring the probabilities, i.e. the
scenario labeling only maps transitions to scenarios. This specialization

31

is called FSM SADF graph [59, 62, 147]. Figure. 2.10 shows an FSM based
SADF graph simplified from the example in Figure. 2.6.

FSM SADF graph is very close to the HDF model that is proposed in [67]
with added execution times. This addition comes with efficient algorithms [59,
62] for analyzing the worst case performance of an FSM SADF graph.

2.4 Resource Aware Synchronous Dataflow Graphs

One reason that SDF is popular is its efficient analysis algorithms such as
performance analysis [63, 64] and buffer sizing [148]. However, the possibilities
for resource modeling are limited and implicit. Only recently, there is work
that encodes resource scheduling in SDF [37, 164]. In [11, 164, 165], a dataflow
component that consists of two actors is used to model resources scheduled by

servers. In [37], it only targets a specific type of static order schedule:
Periodic Static Order Schedules (PSOS).

Figure 2.11 An example system with fixed mapping

We need to extend SDF to handle different ways of using resources. For
example, Figure 2.11 shows a system with an application that consists of two
actors , and an architecture that consists of two processors , and one 3
token sized communication FIFO. In the application, is the producer and is
the consumer. Actor claims two tokens space at the start of firing and
produces two tokens at the end of firing while the consumer consumes one
token each firing and releases the one token space at the end of firing. The
communication buffer is a FIFO buffer that can store 3 tokens. The mapping
assigns actor to processor , actor to processor and the communication

32

edge to the FIFO. The execution times of actors and the buffer size constraint
on communication channels are annotated with the mapping edges.

Figure 2.12 Timed SDF model of the example in Figure 2.11

Figure 2.12 shows the timed SDF for the example system in which all
resources in the system are modeled implicitly. The processors are modeled as
self edges of actors with one initial token (enforcing that multiple firings of the
same actor cannot execute in parallel, i.e., auto concurrency is one). The size
constraint of 3 on the FIFO is modeled as an edge in the opposite direction with
three initial tokens. Thus, all resources are modeled with extra channels, where
the amount of resources is captured by the number of initial tokens in these
channels.

However, when it comes to modeling resources shared among many actors,
SDF graphs lack expressiveness for such a situation. For example, the way to
model a processor shared by three actors , and of a system like that in
Figure 2.13 (a), is depicted in Figure 2.13 (b). The processor is modeled as a
resource token that is handed over among 3 actors in a fixed order (i.e., first a,
then b, and then c) through a ring that is composed of three channels. The
disadvantage is that you have to specify and fix the order explicitly.

(a) 3 actors share 1 processor (b) Corresponding SDF graph

Figure 2.13 Modeling resource sharing with SDF

33

This way of modeling encodes fixed firing orders of actors into the SDF
graph by introducing resource dependencies through channels. Thus it is
limited for expressing flexibilities such as a change of firing order of actors
across different iterations. Moreover, when an actor has multiple firings in one
iteration, then the resource scheduling has to be specified explicitly at the
HSDF graph level by complex resource token routing among those actors. For
the given examples, we can see the weakness of SDF graphs for modeling
resources: it over specifies the way that resources are used, i.e., resources can
only be handed over between two actors and the order to use resources is fixed.
If we want to model some resources beyond FIFOs between two actors, it is
almost impossible to use SDF graph to capture the system.

Another way to model the resource sharing in Figure 2.13 (a), is to assume
that processor is scheduled by a starvation free scheduler modeled as a
server, e.g., a time division multiplexing (TDM) scheduler. Figure 2.14 shows
the time slice allocation of actor in a time wheel and its corresponding
server dataflow model that consists of two actors [164]. Note that, a more tight
dataflow model consisting of more actors can also be used instead of
server, such as the model introduced in [140] to model a bi rate server.

(a) Time wheel for TDM (b) Latency rate server dataflow model
Figure 2.14 Latency rate server dataflow model for TDM schedule [164]

The latency and resource allocation rate in the dataflow model depends
on the type of scheduler. In Figure 2.14, we assume the period of the time
wheel is , the size of the time slice allocated to actor is , and the worst case
execution time of actor is . From [164], we know that

and gives a conservative model. By using

the server dataflow model, the performance of applications that use
starvation free schedulers can be approximated. It cannot handle schedulers

34

that do not belong to the server class (e.g. schedulers without guaranteed
resource budget). The data dependencies of application that we know at design
time can be used for generating static order schedule with better performance.

In order to analyze complex resource scheduling in streaming applications,
we have to overcome the above limitations and improve the expressiveness by
extending the model. The goal is to generate efficient static order schedule for a
single application with shared resources at design time. The resource sharing
between multiple independent applications at run time can be done by
servers. The two methods together, can provide a solution to design streaming
applications with shared resources.

The Resource Aware SDF (RASDF) model is proposed for solving the
problem. First, we have to separate design concerns, i.e., we have to model
resources explicitly and divide the whole system specification into three
aspects: application, architecture, and mapping. By mapping the application to the
architecture, we obtain the system specification. It follows the Y Chart
methodology proposed in [8, 98].

Figure 2.15 An example resource aware SDF graph

Figure 2.15 shows an example RASDF graph. Real life resources are
abstracted as a set of integers that represent the amount of resources and are

35

denoted in the graph as a set of rectangles that are annotated with their
corresponding resource names and resource amounts. The amounts of
resources that are claimed or released by users (actors) are viewed as requests
and are denoted by dashed bi directional edges between actors and resources.
For example, there is a memory resource with quantity 10 and actor claims 2
units of memory tokens when it starts firing and releases 4 units (2 units
claimed by actor and 2 units claimed by actor at their start) when it ends
firing. There are two important assumptions here: first, actors always claim
resources when they start and release resources when they end; second, the
same resources can be claimed and released by different actors.

Definition 2.7: Resource Aware SDF

A Resource Aware SDF (RASDF) graph is a tuple that
consists of three aspects of a system, i.e., the application graph , the architecture

and the mapping . In , is a set of resources and is the
resource function that specifies the initial amount for each resource. In the mapping
tuple , is the execution time function, the same as in timed SDF, and

is a mapping that maps each actor resource pair to a pair of
integers that denotes the resource claim, at the start of actor firing and the
resource release, at the end of actor firing. We define two functions
and to map each actor resource pair, i.e., a request edge, to its
corresponding claim and release amounts respectively.

An RASDF graph combines application (SDF graph), architecture (resources)
and mapping (requests) aspects of a system into one graph.

Similarly to the channel quantity we defined for SDF graph, we can define
resource quantity to represent the used resource tokens for an RASDF graph.

Definition 2.8: Resource Quantity

A resource quantity that associates with each resource an amount of
resource tokens.

Similarly to the two token topology matrices and in SDF graph, we can
define the resource claim and release topology matrices and , which
have a row for each resource and a column for each actor.

36

Note that the definition of the and functions is different from the
definition of the and functions in SDF since resources can be shared by
multiple actors while the channels only have one reader and one writer. For
example, if we assume that resource is the first row, resource is the
second row, and resource is the last row, while actor corresponds to the
first column, actor corresponds to the second column and actor to the last
column. Then the and for the example SDF is given as:

and

The element in the first row and the first column of matrix is 1, which
denotes that actor (the first column) claims 1 unit from resource (the
first row). Similarly, the element in the third row and the second column is 4,
which denotes that actor (the second column) releases 4 units from resource

(the third row).

The mapping topology matrix defines the net effect of an actor firing on the
resource quantities. It is defined as So the mapping
topology matrix of the example is

Note that the mapping topology matrix is underdetermined since
, which means that there exist two linearly independent

possible firing vectors that satisfy . However, when we take the
application topology matrix of the example RASDF, i.e., the topology matrix of
the SDF graph part into consideration, the number of linearly independent
firing vectors is one. In the example RASDF, the application topology matrix is

We define a combined topology matrix of the whole system specification of
the example as follows:

37

Now we can define resource consistency similarly to data consistency in an
SDF graph, i.e., the amount of available resources should remain the same after
one iteration of actor firings. So if there exists a non trivial repetition vector
such that it solves the balance equation , then we say the RASDF
graph is consistent. Resource consistency is necessary to construct a periodic
schedule that is deadlock free and has bounded resource usage. Inconsistent
RASDFs will run out of resources eventually or it is impossible to realize
because more resources are released than claimed.

Consistency is a very important property of RASDF graph. Many analysis
algorithms need to check consistency upfront. In order to check it efficiently,
we first check the consistency for the SDF graph part of the RASDF graph,
then verify the resource consistency; since the SDF part of a consistent RASDF
graph has to be consistent. The consistency of an SDF graph can be efficiently
checked by using recursion [100]. If the number of linearly independent firing
vectors of the topology matrix of the SDF graph part is more than one (i.e.,
is underdetermined, which implies that it has multiple strongly connected
component), we can then take the mapping topology matrix into
consideration to further reduce the number of linearly independent firing
vectors that solve the balance equation. If there does not exist such a firing
vector, then the given RASDF is not consistent. The resource dependencies
between the strongly connected components may then make the
determined. If there is exactly one solution, then the SDF graph is data
consistent and we can simply test the resulting vector to see the graph is also
resource consistent.

Figure 2.16 shows the interpretation of RASDF graph in terms of the Y chart
methodology. The application is modeled as an SDF graph. The architecture
that the application is running on is viewed as a provider of a set of resources.
Through mapping, the execution times and resource requirements of actors are
specified. The whole system is specified as an RASDF graph that includes all
necessary information for analysis. Then we can analyze the metrics of the
specification (introduced in Chapter 3) with methods that are introduced in

38

Chapter 4 and Chapter 5. Based on the analysis results, we can change
application, architecture, mapping or all of them to meet the design
requirements.

The argument here is to extend traditional SDF with explicit resource
modeling to enable versatile analysis possibilities. The Y chart methodology
shows we can feed back the analysis results for tuning different aspects of the
system. By modeling resources explicitly, we can analyze the resource usage
(cost of streaming applications) in a more flexible way.

Figure 2.16 Decomposition of RASDF in the Y chart methodology

2.5 Scenario and Resource Aware Synchronous Dataflow
Graphs

When we consider the changes in the environment of the system (input
variation) and the usage of resources (resource requests) together, a natural
extension to the existing models is to combine SADF and RASDF into Scenario

39

and Resource Aware Synchronous Dataflow (SARA SDF) graphs. In this new
extension, the resource aware SDF is replaced by its parametric version, a
parametric resource aware SDF that has to keep resource consistency as well as
data consistency in each scenario and a scenario FSM that captures the
transitions between scenarios.

Definition 2.9: Scenario and Resource Aware SDF (SARA SDF)

A Scenario and Resource Aware SDF (SARA SDF) graph is a tuple
that contains a parametric resource aware SDF graph and its

corresponding scenario FSM.

Scenarios Rates Execution times Status
v w x y z
1 1 2 4 2 2 1 disabled
0 0 3 2 0 2 2 enabled

Figure 2.17 An example SARA SDF graph

Figure 2.17 shows an example SARA SDF graph. Its parameters for different
scenarios are given in the table below the graph. The scenario changes in
scenario FSM influence not only the execution times and rates of actors, but
also the amount of resources claimed and released by actors.

40

A consistent SARA SDF graph should keep the instances of parametric
RASDF consistent in all scenarios. If a SARA SDF is consistent, its available
resources will stay the same over an iteration of a scenario and after every
possible scenario transitions (i.e., in every scenario, the corresponding RASDF
is consistent), for instance, there is no memory leak between scenario
transitions. Similar to SADF, we can also abstract from the probabilities of
scenario transitions in SARA SDF graph and obtain FSM SARA SDF graph.

When we take input changes into consideration, we are able to figure out
strategies for the controller of a system to optimize performance or resource
usage. It can be used to analyze the worst case input sequence and synthesize
performance guaranteed controller (in Chapter 6).

Figure 2.18 The role of input and controller in Y chart methodology

Figure 2.18 shows the roles of input and controller in the Y chart
methodology in which they influence the mapping (execution times and
resource requirements of actors) and further impact the performance and
resource usage of streaming application. Based on the performance analysis of
the specification, a designer can tune the actors of the application, the resources
in the architecture, the mapping pairs between actors and resources in the
mapping, the controller strategy to select different schedules or resource
allocations.

41

2.6 Reflections and Related Work

In this chapter, we have introduced five existing and new MoCs: SDF, PSDF,
SADF, RASDF and SARA SDF. The reason for introducing new models is to
improve the combined expressiveness and analyzability of models for new
design concerns such as resource and environment aspects of embedded
systems. When compared to the traditional SDF model, the improved
expressiveness is necessarily at the expense of losing some analyzability. For
example, modeling resources and resource sharing explicitly results in many
alternative actor scheduling options. The introduction of a scenario FSM for
SARA SDF makes the performance and resource usage analysis more complex
than the analysis for a single scenario case. In a nutshell, the introduction of
new models means trading off between expressiveness and analyzability.

Figure 2.19 Expressiveness of Dataflow models (modified from [147])

42

In [147], the expressiveness, implementation efficiency and analyzability of
different types of dataflow MoCs are discussed in detail. Figure 2.19 shows the
expressiveness of RASDF and SARA SDF models compared to existing
dataflow models. Because of the introduction of the resource aspect, the new
resource aware models are arranged on a new vertical line. RASDF is more
expressive than Computation Graphs (CGs) while FSM SARA SDF and SARA
SDF are more expressive than their counterparts FSM SADF and SADF
without resource consideration. [147] gives a detailed discussion comparing
dataflow models. Generally speaking, these models are different from each
other in rates and execution times. HSDF or Marked Graphs (MGs) has a single
and fixed rate for all actors while SDF or Weighted Marked Graphs (WMGs)
allows fixed rates, possibly different per actor and channel. Computation
Graphs (CGs) allow that the number of tokens to enable a firing is different
from the number of tokens to be consumed. RASDF allows selection when
multiple actors are enabled but cannot fire at the same time due to lack of
resources. CSDF allows rate changes in fixed patterns for a sequence of actor
firings. Parametric SDF [13, 63] has parameterized rates and execution times so
that symbolic analysis is possible. Variable Rate Dataflow (VRDF) [162] and
Variable Phased Dataflow (VPDF) [163] allow actor rates to vary for each firing
while keeping strong consistency. FSM SADF, BDF, SADF, FSM SARA SDF
and SARA SDF all allow data dependent behavior and are thus capable of
capturing dynamism that is caused by input data. The rates of these models are
determined by the input data. However, by defining the way rates change
according to the input data, we generate different types of dataflow models
with different levels of expressiveness and analyzability. KPN [93], DDF [24],
RPN [61] and Petri nets can model system behaviors that change at runtime.
They are more expressive than their counterparts but more difficult to analyze.
It is easy to verify that SDF, FSM SADF, SADF are special cases of RASDF,
FSM SARA SDF and SARA SDF, respectively. The introduction of explicit
resource modeling allows choices in resource allocation and makes models
harder to analyze than their counterparts. However, the improved
expressiveness allows us to explore larger design spaces and further optimize
our implementations.

The dataflow models are nothing more than a series of abstractions of
streaming applications that we use every day. However, by abstraction, we
keep the essence of the streaming applications that allows us to analyze the
behaviors of applications and in turn improve the performance or reduce
resource usage of streaming applications. The selection of different models is a

43

trade off among expressiveness and analyzability. The introduction of
resources into the modeling of dataflow allows us to explore in a larger design
space.

2.7 Summary

In this chapter, we introduced the two dataflow MoCs that we analyze in the
coming chapters. While keeping the core concept of consistency of the dataflow
model, we extend the basic SDF model with resource awareness and
environment awareness. The new MoCs are capable of modeling generic
resources and dynamic input changes. Their relation with existing models such
as SADF is shown through links between their topology matrices. We gave a
brief overview of different kinds of dataflow models. In the coming chapters,
we introduce the analysis techniques for the new possibilities that are
introduced by these new models.

44

3 METRICS AND TRADE OFFS

“Have no fear of perfection, you’ll never reach it.”

– Salvador Dali

3.1 Overview

Design activity itself is an art of compromising. Just like any design activities,
designing streaming applications on embedded systems also has to trade
among many conflicting but significant design parameters, such as
performance, cost and power consumption.

In the early design stages of streaming applications, even the requirements
themselves are obscured and can be flexible within certain ranges. It is
important to identify the trade offs in the design space and tune the design
parameters later when uncertainties on requirements are narrowed.

Moreover, the awareness of trade offs helps us to tailor a system to adapt to
customers’ needs more specifically, both at design time and at runtime. At
design time, the identified trade offs can help us tune the system in the cost
performance perspective to satisfy different requirements. At runtime, trade
offs can help us to select operating points to adapt to the preferences of
different users or to different environments.

In this chapter, we first discuss the important design parameters of
streaming applications, and then the trade offs for streaming applications on
embedded systems.

3.2 Throughput

An intuitive way to evaluate the performance of streaming applications is to
measure the amount of data processed per time unit. However, since the
processing time of one unit of data depends on the content of the data and the
context of the system at runtime, such a performance number may vary.
Instead of measuring instantaneous numbers, we measure the average number
of data units processed by a system over time as the throughput of the system.
Since guaranteed performance is needed for applications to meet timing
constraints and user expectations, system designers have to know the

46

guaranteed throughput of their models. We define the exact meaning of
guaranteed throughput in mathematical form in the following discussions.

Dataflow models may have multiple output actors with different output
rates; or they may have different scenarios with different output rates. If we
define throughput as the average amount of data produced by a specific actor
per time unit, we obtain different throughput numbers for different actors. In
order to define the throughput for the dataflow models as a whole, we first
need an abstraction of the general unit of data that does not associate with any
specific actor and can be used for different kinds of streaming applications. The
concept of an iteration is an ideal abstraction for this. There are two reasons for
using iteration as the abstraction. First, an iteration normally corresponds to a
unit of data (such as a video frame or image to be printed) processed by
streaming applications in a physical system and the length of a repetitive
schedule for the system is a whole number of iterations. Second, it is a generic
definition that can be applied to all introduced dataflow models.

For a given RASDF graph there can be multiple, different, executions (for
example, due to different scheduling rules). We use to denote one of its
executions. Different executions may exhibit different throughputs, so we have
to distinguish the throughput of one execution, i.e., from the throughput
of the graph, i.e., . We first define the throughput of an execution.

Definition 3.1: Throughput of a dataflow graph execution

The throughput of a dataflow graph execution is defined as the eventually lower
bound of the average number of iterations that is completed per time unit during the
execution of the application, i.e., in which is the
number of iterations that are finished before time t of the execution .

Recall that we want to find guaranteed throughput. We define the
throughput of an execution as a property obtained eventually (i.e., when time
approaches infinity). However, that limit may not exist. We then use the so
called eventually lower bound, i.e., , to compute the throughput. (
equals the limit if it exists.) The throughput definition uses the lower bound of
the average number of iterations, so it is a conservative meaning of throughput.

For example, for an RASDF graph shown in Figure 3.1, a possible execution
that repeats a fixed pattern (and) after the first iteration (after

47

time unit 10) and the number of iterations completed up to time in the
execution are shown in Figure 3.2.

Figure 3.1 A running example RASDF

(a) An example execution that repeats and after 10

(b) Number of iterations completed up to time

Figure 3.2 An execution of the running example in Figure 3.1

In Figure 3.2 (a), we can see that the completion time of each iteration
depends on its resource allocation (e.g. actor uses a different amount of
resource units of R) and schedule (e.g. the order of actor and). In the given

48

execution , the graph follows a fixed schedule pattern (and) after
the first iteration, the completion time increases by 6 and 8 alternatingly after
every iteration beyond the second one (as shown in Figure 3.2 (b)). So we can
describe the iteration completion time of for iteration as follows:

=

So the throughput of the example execution in Figure 3.2 (a) is

A graph can have different executions with different throughput. For the
same graph in Figure 3.1, we can also construct an execution that always
repeats the schedule such that actor uses a different resource unit after
the first iteration (as shown in Figure 3.3).

Figure 3.3 An execution of the running example repeats the schedule

The iteration completion time of for iteration as follows:

So the throughput of the execution is

If an execution of the example graph randomly selects its iteration
schedules from the two patterns and and lets the completion times
increase by 6 or 8 accordingly, the throughput of execution will be a value
between and Since a dataflow graph can have multiple executions
with different throughput, we also have to define the throughput of a dataflow
graph.

49

Definition 3.2: Throughput of a dataflow graph

The throughput of a dataflow graph is defined as the highest throughput among all
possible executions of , i.e.,

So the throughput of a model is the best throughput that any of its
executions can reach. The throughputs of executions in Figure 3.1 can be ,

or anything in between, or even below 1/8 (by inserting idle time slots to
delay actor firings). The throughput of the graph is the best attainable
throughput, .

3.3 Resource Usage

For designing a system, we are not only interested in the performance of the
system, but we also care about how much we have to pay for achieving the
performance. An important indicator of the system cost is its resource usage.
Normally, the more resources that are used, the more expensive (such as
memory cost) or less efficient (such as power consumption) the system is.
Thus, designers are interested in minimization of resource usage.

In concrete systems, there are different kinds of resources, such as
memories, processors, and buses. In order to perform computations, actors
need to claim certain amounts of resources before computations start and
release them or hand them over to other actors after computations end. In
Chapter 2, we introduced the abstraction of resources as a set of numerical
quantities in the RASDF model. Each resource is abstracted as an integer
quantity that represents the amount of available resource. For real
implementations, the resource allocation and de allocation can happen at any
time during an actor firing. For simplicity, we conservatively assume that the
resource claims happen at the start of actor firings and the releases happen at
the end of actor firings so that the amount of resource used and the duration of
resource usage of the model are not shorter than the amount and duration in
real implementation.

For a resource , the resource usage increases units after a claim request
that claims units of the resource and decreases units after a release request
that releases units of the resource. For a claim request that happens at time

50

and claims units of resource , we use to denote the resource
usage change where

Similarly, the resource usage change after a release request that happens at
time and releases units resource is . For any resource, the
resource usage can be defined as the combination of the basic functions.

Definition 3.3: Resource Usage Function

For a given execution, we sort its resource claim and release requests in time order. If
claim and release requests happen at the same time, we assume the release requests are
issued first in any order, followed by the claim requests in any order. Assume the
requests occur at times , where is the index ranging over the sorted list of requests.
The resource usage function of a resource for a given execution is defined as:

in which is positive if request type is claim,
otherwise is negative if the request type is release and where is the
amount of resource claimed or released by the th request.

2 2

3

1

Figure 3.4 Decomposition of the resource usage function of an example.

51

Figure 3.4 illustrates the resource usage function of an example execution
which claims 2 units of resource at time 2 and time 4 respectively and
releases 3 units of at time 5 and 1 unit of at time 7 respectively. A resource
request at time is denoted by an arrow at whose length denotes the amount
requested and its direction denotes the type of request (up for claim and down
for release.) The resource claimed and released is denoted by two functions: a
resource claim function (red curve) and a resource release function (blue curve).
The resource usage function is denoted by summing up the release and claim
changes.

Let us use to denote the amount of resource claimed at the th claim
request that happens at time , and use to denote the amount of resource
released at the th release request that happens at time . Then we can
compute the resource usage function of an execution as follows:

For an execution, we are normally interested in the maximal value of the
resource usage function since it is the least amount of resource that we have to
allocate for the execution.

Definition 3.4: Resource Usage of a Resource

The resource usage of resource R in an execution is the maximal value of its resource
usage function: .

Note that, for a finite number of claim and release requests, the maximal
resource usage in the above equation is only determined by the order of
addition and subtraction. The order of subsequent subtractions does not
change the max value. The maximal resource usage is not determined by the
exact time of the requests. For example, the maximal resource usage of
execution in Figure 3.4 is 4, which happens from time 4 to 5. The maximal
resource usage will not change as long as the two release events happen after
the two claim events and the order of the two release events does not change
the maximal resource usage. If release events happen earlier than claim events,
the maximal resource usage will be less than 4 but never more than 4.

52

As mentioned, the usage of resource in an execution only depends on the
order of claim and release requests. Since we assume the execution times of
actors in the model to be the worst case execution times in a realization, the
release events may happen earlier. However, as long as the order of claim and
release requests is preserved, the execution will have the same resource usage.
If released events happen earlier, the resource usage might be less but never
more than the analyzed result. Moreover, the order among release events (or
claim events) has no impact on the maximal resource usage as the order
between claims and releases does not change. For example, we change the
order of release events in Figure 3.4 while keeping their orders with the claim
events; the maximal resource does not change and the resource usage is shown
in Figure 3.5.

2 2

3

1

Figure 3.5 Resource usage with different firing order

3.4 Generalization of Metrics

In the previous sections, we discussed important metrics such as throughput
and resource usage for a given execution. In this section, we generalize these
metrics to cover other interesting metrics such as power consumption and latency.

53

An observation about throughput and resource usage is that they can be
expressed as average and max functions over its execution. Throughput for
example, is the average number of iterations per time unit of an execution.

We can define for some cost (or benefit or reward), a cumulative cost
function that, for a given execution , denotes the cumulative cost of the
execution until time . Since diverges to infinity when time increases,
we are often interested in average cost over time.

Definition 3.5: AVG Quantity

An Quantity is defined as the average cost per time unit until time is

For example, the average number of iterations per time unit until time t is an
Average Quantity. We can also define for some cost, e.g. resource usage, a non
cumulative cost function , which denotes the non cumulative cost of the
execution at time . In such cases we are typically interested in the maximum
and minimum value of the costs.

Definition 3.6: MAX/ MIN Quantity

A / Quantity is defined as the max/min cost until time t, i.e.,
and .

Note that both and are monotone functions.

For cumulative cost functions, we are normally interested in the long term
stable behavior, i.e., the limit of these quantities or the eventually lower bound
or eventually upper bound of the quantities.

Definition 3.7: Eventually Lower/Upper Bound of an Average Quantity

We denote the eventually lower bound of an average quantity as
, and the eventually upper bound of average quantity as

.

For / Quantities, since the quantity functions are monotonous, the
limits always exist (here we accept both and as the possible limits.) So
we can directly use the limit and do not need or .

54

and

After we defined the generalized metrics, we can replace the general cost
function with specialized cost functions to obtain the normal metrics that we
are interested in.

Name of Metric Cost Function Metric Definition
Average
Metrics

Throughput : Iterations
finished before

Power
Consumption

: Power
consumption up to

Max/Min
Metrics

Resource Usage Resource
usage up to t

Latency Max length of
one iteration before t

Table 3.1 Some metrics in general form.

In Chapter 4, we investigate the properties that we deduced from
generalized metrics and apply them directly to two specialized instances, i.e.,
throughput and resource usage. Table 3.1 shows some metrics that can be
classified into the two categories. For example, we can annotate the energy
consumed by each actor firing to our model; then, we can derive the average
power consumption of the application. We can also observe the latency, i.e.,
length of every iteration, and use the maximal latency to determine the latency
of the execution. We will discuss how to compute the throughput and resource
usage metrics in Chapter 4, but the techniques can be similarly used to other
average or min/max properties.

3.5 Conversion from executions to strong static order
schedules

In the next three chapters we discuss how to explore the schedules of RASDF
and SARA SDF graphs. The results obtained from explorations cannot be
directly used as schedules. We have to convert executions to schedules when
implementing them in a system. We can reconstruct the start times of actor
firings. This can be directly translated into a static timed schedule in which all
actors are fired at exactly the time indicated by the schedule, even when they
are enabled earlier. We here discuss how to relax a static timed schedule for
possible better performance.

55

A static timed schedule puts tight constraints on actor firings. The worst
case execution time assumption underlying these static timed schedules might
lead to pessimistic performance results since the execution times of actors may
be less than the worst case. An earlier end of one firing might lead to an earlier
start of another firing, which is not allowed in static timed schedule. An earlier
firing start might lead to a higher performance.

(a) An example SDF graph with worst case execution times

(b) An execution with actor ’s execution time equals to 3

(c) An execution with actor ’s execution time equals to 1

Figure 3.6 Two executions of an SDF graph with different execution times

Without shared resources, SDF graph adhere to the so called monotonicity
property for its executions, i.e., decreasing execution times of actors results in
non increasing start times of actors. Or in other words, an earlier actor start
time cannot lead to worst performance. So we can use a static order schedule to
replace a static timed schedule for plain SDF graphs. As long as the order of

56

actor firing in an SDF graph is preserved, actors can start as early as possible
since no actor will start late. For example, Figure 3.6 gives an example of an
SDF graph and lists two executions in which the actor has different execution
times. The execution time of actor in Figure 3.6 (b) equals the worst case
execution time specified in Figure 3.6 (a) while it is less than the worst case
execution time in Figure 3.6 (c). The decreasing of the execution time of actor
does not cause an increasing firing time of any actor in the graph.

(a) An example RASDF graph with worst case execution times

(b) An execution with actor ’s execution time equals to 3

(c) An execution with actor ’s execution time equals to 1

Figure 3.7 Two executions of an RASDF graph with different execution times

Due to resource sharing, the monotonicity of SDF graphs does not hold
anymore. If the firing of one actor may occupy resources allocated to a firing of
another actor early, then it may delay the firing of the other actor. The delay

57

might degrade performance. Figure 3.6 gives two executions of the example
RASDF graph with different execution times of actor . The decreasing
execution time of actor leads to the earlier firing of actor . Since actor and
actor share resource , at any one time only one actor instance is able to run.
The earlier firing of actor occupies the resource and delays the firing of actor
(so we do not have monotonicity anymore). The delay of actor in turn

downgrades the performance since the periodic execution takes longer time in
Figure 3.7 (c) than periodic execution in Figure 3.7 (b). For resource usage, the
earlier actor firing can also lead to additional resource usage. For instance, if
actor and actor both require a resource for execution, the earlier firing of
actor causes a resource usage of resource of 2 in the execution in Figure 3.7
(c) rather than 1 in the execution in Figure 3.7 (b).

To make performance and resource usage predictable for RASDF and
SARA SDF graphs without a static timed schedule, we have to keep the order
of claim and release events of resources to ensure that the maximal resource
usage of relaxed schedules at any point in time cannot exceed the resource
usage of a static timed schedule. We call this schedule type a strong static
order schedule. From the analysis of resource usage patterns in Section 3.3, we
derive the following rules when we relax the static timed order schedule to a
strong static order schedule. First, a claim event of a resource cannot happen
earlier than the release events of the same resource before it in the static timed
schedule. Any actor firing with an earlier claim event than the release events
found in the static timed schedule will lead to more resource usage. Second, a
release event of an actor firing can happen as early as possible, i.e., the
execution time of an actor is less than its worst case execution time, since it
brings no side effect due to the first rule.

For instance, the static timed schedule corresponding to the execution in
Figure 3.7 can be noted down as a sequence of actor firings with start times, i.e.,

. Since we assume claim events to
happen at the beginning of actor firings while release events happen at the end
of actor firings, the static timed schedule can be translated to an ordered
schedule of claim and release events with time information as shown in Figure
3.8 (a). Here we use filled dots to denote the actor start firings, respectively,
and circles to denote the actor end firings, respectively. We can relax the static
timed schedule to a partial order description of claim and release events of
actor firings. In Figure 3.8 (b), we see that we add resource dependencies at
time points 5 between release events and claim events of resources and to

58

avoid the claim event at this point to start earlier than the release events of
these resources before time point 5. Then we can remove the time information
and obtain the strong static order schedule. The execution of the example
RASDF graph with actor ’s execution time 1 is shown in Figure 3.9 with the
same performance and resource usage as the execution in Figure 3.7 (b).

(a) Static timed schedule

(b) Strong static order schedule
Figure 3.8 Static timed schedule and Strong static order schedule

Figure 3.9 An execution of example that follows strong static order schedule

In implementation, we have to implement event monitors to ensure the
order specified by the strong static order schedule. The resulting throughput of

59

the system under a strong static order schedule is at least as good as the
throughput under the static timed schedule.

3.6 Trade offs and Pareto Optimization

When we have multiple design objectives, our design space also becomes
multi dimensional and our design problem becomes a multi objective
optimization problem. The multi objective nature of designing a streaming
application on an embedded system introduces trade offs, i.e., a number of
design alternatives exist and usually none of them is strictly better than the
others on all aspects. To explore the trade offs and to tailor systems for specific
needs are challenging tasks for system designers.

Pareto optimality is a qualitative measure of the efficiency used in many
domains with multi objective optimization problems, such as economics,
system design, and game theory. We can use Pareto optimality to evaluate
design alternatives of streaming applications in a multi dimensional design
space. A design alternative is Pareto optimal if no other alternative is strictly
better than it in any of its design metrics.

Figure 3.10 Trade offs of two different architectures

For example, assume we have two different architectures (denoted with
and) for a streaming application with buffer size still tunable, the design

60

points with different buffer sizes and throughputs are given in Figure. 3.10, in
which the cross points are for architecture and the square points are for
architecture . For each architecture, there are sets of trade off points, i.e.,
different compromises between throughput and buffer size. Note that we use
the reciprocal of throughput on the vertical axis to make sure that the lower the
number is, the better the solution is on both horizontal and vertical axes. With
the given throughput and buffer size constraints (denoted with dashed lines),
we can select only design points within the lower left corner area, i.e., the white
space below the throughput constraint line and on the left side of the buffer
size constraint line. Apparently, the design points of architecture (squares)
dominate the design points of architecture (crosses) since no design point of
is better than points of . The Pareto optimal solutions, here the design

points of , are called the Pareto front of the design space. The grey area below
the Pareto front is called the infeasible region, as there are no (known) design
solutions in this space. The trade off points of architecture that are within
the constraints can be further pruned for the final decision when more
constraints such as user preferences or product budget are given. The trade
offs keep flexibility in the early design stage, which is crucial for the later
design activities.

We want to find the metrics that we are interested in in the early design
stages, and form the Pareto front of the design space of a given specification
(an RASDF model). In order to keep the trade off discussion simple, we limit
our metrics to throughput and resource usage in discussions in Chapter 4 and
Chapter 5. However, it is not difficult to generalize the conclusion to other
metrics as long as we can classify them into average quantities (throughput) or
max/min quantities (resource usage).

In Figure 3.6, the trade offs of architecture are fully dominated by the
trade offs of architecture . However, in many cases, the trade offs from two
candidate architectures do not fully dominate each other. In order to compare
the quality of the trade offs provided by two different architectures, we have to
evaluate the quality of the trade offs quantitatively. Quality evaluation for
Pareto points found by multi objective exploration is lacking a single standard.
A few methods are proposed. Among different evaluation methods, the
Average Distance to Reference Set (ADRS) [36] method and the indicator
method [177] are the most common choices in literature. We use these two
methods for evaluation of our experimental results in the next two chapters.
Generally speaking, ADRS is often used to evaluate the quality of a set of

61

points to approximate a known reference set of Pareto optimal points while the
indicator is used to compare two different point sets.

Here we use the two sets of points in Figure 3.5 to illustrate the approach.
We use to denote the set of 4 square points, i.e., ;
and we use to denote the set of 4 cross points, i.e., .

In the ADRS approach, the average distance of a set of Pareto points to the
reference set of Pareto points is measured. The distance function does not
necessarily have to be the geometric distance function and it can be customized
for an application. Here, we define the distance between two points as the
maximal ratio of value change among all objective dimensions. The distance of
point of a set to another set is the minimal distance of to all points in
the set . For example, we use as reference set since it is optimal. The
distance of point in to is:

min(max(4,3),max(3,2),max(2,0),max(0,1))=1.

The ADRS of to reference set is .

In the indicator approach, we use to define by how much the
points in need to be scaled so that they are all dominated by points in .
Here, we define the ratio between two points as the maximal ratio of value
change among all objective dimensions. The ratio of a point of a set to
another set is the minimal ratio of to all points in the set . The
indicator is the maximal ratio of all points in . Loosely speaking,
the set is better than the set when is larger than . If

is larger than 1, then contains new Pareto points compared to .
In Figure 3.6, since fully dominates and does not have to be scaled, we
have . And 1.2 since the scaled set is

is fully dominated by .

3.7 Summary

In this chapter, we discussed the metrics of interest for streaming applications.
Further we generalized the two metrics throughput and resource usage to the
more generic form of average and maximal quantities. We introduced the
concept of trade offs and Pareto optimality in design space exploration and its
usage in early design stages. In the coming chapters, we discuss how to use the

62

models introduced in Chapter 2 to explore the metrics and trade offs that have
been introduced in this chapter.

4 TIME DOMAIN ANALYSIS

“But there is no point in making mistakes
unless thereafter we are able to learn from them. “

–E.W.Dijkstra

4.1 Overview

Dataflow models are used to help us to analyze streaming applications. With
dataflow models introduced in Chapter 2, we can specify the structure of
streaming applications in an intuitive way. The models help engineers to have
an overview of the applications and ease the communication with each other.
However, with the structural information of a dataflow graph, we only know
static information of a model, such as which actors communicate to each other
or how much data is communicated. In order to obtain metrics introduced in
Chapter 3, such as throughput and resource usage, we need to know the
operational semantics of a dataflow model and infer its behavioral information
based on the semantics. With both structural and behavioral information of the
model, engineers can communicate with each other without ambiguity and can
utilize all kinds of analysis techniques to determine the metrics of interest.

RASDF is different from the traditional SDF since it explicitly takes
resources into consideration. The behavior of a single actor is quite simple as
illustrated in Figure 4.1. The firing of an actor is enabled when both the
numbers of input and resource tokens are sufficient. At the start of actor firing,
the actor reads input tokens and claims resources. After a finite amount of
execution time, the firing ends, it writes the output tokens at the end of firing
and releases resources.

Figure 4.1 Operational semantics of an actor firing in RASDF

64

This extension of SDF with resources, i.e., RASDF, has both positive and
negative impacts on analysis. The positive side is that the explicit modeling of
resources enables analysis of resource sharing and may lead to more resource
efficient results. For instance, different FIFO channels can share the same
physical memory location at different times to reduce the total memory usage.
The negative side is that the sharing of resources may lead to potential conflicts
among actors, increasing the complexity of analysis. Due to resource
contention, multiple actors are enabled but they cannot fire at the same time,
multiple firing options are open for exploration, and their firing order may
impact performance, which results in a larger state space and longer
exploration time. The advantage and disadvantage of RASDF drive us to
develop techniques to make the analysis of RASDF more efficient.

In this chapter, we introduce the analysis of RASDF in the time domain and,
in the next chapter, the analysis of RASDF in the iteration domain. In Section
4.2, the operational semantic of RASDF is introduced for analyzing it formally.
In Section 4.3, it is explained how to explore the state space of an RASDF model.
In Section 4.4, a heuristic approach is introduced to explore the state space
more efficiently. In Section 4.5, a bottleneck driven approach is built on top of
the heuristic approach. In Section 4.6, we do case studies on a few RASDF
graphs. Section 4.7 discusses related work and Section 4.8 concludes this
chapter.

4.2 Operational Semantics of RASDF

In order to analyze an RASDF graph, we introduce some terminology and
definitions to formally describe the execution of an RASDF graph.

Definition 4.1: State

Given an RASDF graph with a state of the
graph is a triple that consists of a channel quantity that denotes the amount
of data tokens in the channels of the graph at that state, a resource quantity that
denotes the amount of used resource tokens in that state, and a function that
associates with each actor a multiset of numbers representing the remaining
times of different active firings of .

We assume that the initial state of an RASDF is given by an initial channel
quantity , i.e., some initial token distribution, an initial resource usage (not
necessarily zero since there may exist some resource allocation for initial data.)

65

and no actor firings. So we can use as initial state: , with
denoting the empty mutliset. The use of a multiset of numbers to keep track

of actor progress allows multiple simultaneous firings of the same actor (auto
concurrency). The auto concurrency is limited by the amount of available
resources.

Recall that we define and for each channel in Chapter 2 (see
Definition 2.1) as well as and functions for each resource (see Definition
2.7). For an actor operation on channel quantity and , we define the
following functions:

a function that maps each actor to a channel quantity,
i.e., the amount of tokens read from channels when a firing starts;
a function that maps each actor to a channel quantity
i.e., the amount of tokens written to channels when a firing ends;
a function that maps each actor to a resource quantity,
i.e., the amount of tokens claimed from that resource when a firing
starts;
a function that maps each actor to a resource quantity
i.e., the amount of tokens released from that resource when a firing
ends.

Note that the four functions are vector form of the , , and
functions.

The effect of an actor firing on a state of an RASDF graph can be denoted by
addition and subtraction of the corresponding quantities of the state. To check
whether an actor is enabled or not, we have to compare channel and resource
quantities. Here, we define the dominance relation between two quantities.

Definition 4.2: Comparison between two quantities

Given two channel (resource) quantities and , if the number of tokens for any
channel (resource) of is the same or less than the number of tokens for the
corresponding channel (resource) of , we denoted the relation by ,

The dynamic behavior of an RASDF during execution is described by
transitions. There are three different types of transitions in the time domain:
start of an actor firing, end of an actor firing, and time progress through
discrete clock ticks.

66

Definition 4.3: Transition

A transition of an RASDF from a state to another state

is denoted by where label
denotes the type of transition.

There are three types of transitions:

transition: Label corresponds to the firing start of
actor . This transition results in ,

and (where denotes multiset
union). It may occur only if and , where
is the amount of available resource in the RASDF graph; and when

no end transition is enabled.
transition: Label corresponds to the firing end of

actor This transition results in
and (where denotes

multiset difference). It is enabled if .
transition: Label denotes a clock transition which is

enabled if no end transition is enabled. This transition results in
, and where

denotes a multiset of natural numbers containing the elements of
which are all strictly positive, reduced by one.

Due to resource constrains, not all start transitions with sufficient input
tokens may actually be able to start simultaneously, i.e., before the next

transition. There may exist multiple combinations of start transitions of
actors with sufficient input tokens that can start at the same time and keep
resource usage within resource constraints for the resulting starts. Note that
end transitions are not constrained by resources and are always enabled and
executed eagerly. In Chapter 2, we define an execution as a sequence of actor
firings. With the definitions of state and transition, we can formally define the
execution as below.

Definition 4.4: Execution

An execution of an RASDF graph is a finite or infinite alternating sequence of states

and transitions, i.e., . We use to denote the completion time
of . We use to denote the th state of an execution .

67

An execution does not necessarily start with the initial state of the RASDF.
It can represent an execution that starts from any state. When the labels are not
relevant, we can also write it as . We use to denote the length of
the execution, i.e., the number of transitions. if the execution is infinite.
We use to denote the number of transitions in . We use to
denote an execution that consists two executions and , where stands for
concatenation.

transitions only release resources, and the data produced by
transitions will be available to enable new start firings of actors. Therefore, we
give transitions priority over other transitions. If a number of subsequent

transitions are taken at the same time, the order in which they are taken
has no impact on the resource usage or resulting state. When no more
transitions are selected, a transition occurs, possibly leading to new
transitions and so on.

We call the process that controls the execution of an RASDF graph its
execution engine. The execution engine of an RASDF can be illustrated as an
infinite execution flow chart in Figure 4.2.

The execution engine of an RASDF graph starts from an initial state .
Since the initial state can be any state during an execution of the RASDF graph.
The RASDF graph first executes all enabled transitions until all
transitions are finished. Then, the execution engine go to check whether there
are started transitions, it will select some enabled actors to fire, such that the
resource usage of these actors are within the amount of available resources.
The selection is based on a cost function on the numbers of completed firings
that will be discussed later. It may be beneficial to start fewer actors than
resources allow to achieve higher throughput. An example is given in Figure
4.4 (b). After firing the selected actors, the execution engine will perform a
transition and then return to the beginning to check whether transitions
are enabled and repeat the steps again. Since we assume streaming
applications have unlimited amount of input, the execution engine also execute
infinitely. In next section, we discuss how to explore the state space of an
RASDF graph.

Compared to self timed execution discussed in [64, 144], the major
difference between a self timed execution of an SDF graph and an execution of
an RASDF graph is that a self timed execution will fire all enabled actors when

68

actors have enough input tokens while the execution of an RASDF graph
selects some enabled actors due to resource constraints. This difference leads
to multiple possible paths for RASDF graph execution, where an execution of
an SDF graph is determinate.

Figure 4.2 Flow chart of the execution engine of RASDF graph

69

Figure 4.3 An example RASDF graph with a resource conflict

Figure 4.3 shows an example RASDF graph (rates equal to one are omitted
for simplicity) with resource conflicts between actors and , i.e. actors and
cannot execute at the same time since they both require 5 units of memory for
execution.

(a) Execution that fire actor as soon as possible

(b) Execution with delaying actor firing
Figure 4.4 Two possible executions of the example in Figure 4.3

70

Figure 4.4 shows two possible executions for the example RASDF in Figure
4.3. Once firing of actor has ended, both actor and actor are enabled for
firing. If we fire both actors, actor will be delayed due to lack of units of
memory. In the end, the throughput of the system is only due to the delay
in critical path, i.e., the gap between actors and due to execution of actor
(see Figure 4.4(a)). However, if we select a different scheduling strategy, and
delay the firing of actor until the firing of is ended, we can have a better
throughput (see Figure 4.4(b)). From this example, we can see that
resource constraints can influence the order of actor execution and further
influence the throughput of an application. In order to find Pareto optimal
executions in the design space, we have to explore multiple possible executions.

4.3 Exploring the state space of RASDF

In the previous section, we saw there can be multiple executions for an RASDF
graph. This will influence the state space exploration techniques that we use.
From the definition of state of an RASDF graph, we can easily see that the size
of the state space is finite if the amount of data and resource tokens is bounded,
i.e., and are bounded. The bounded resources limit the degree of auto
concurrency of actors, thus limit the size of . The execution times of actors are
also limited. So the number of different combinations of remaining execution
times is also finite. Since are all finite, the number of different states
is also finite.

For a finite state space, an important property of an infinite execution is that
the execution revisits at least one state infinitely often. For example, Figure 4.5
shows the state space of the example RASDF graph shown in Figure 4.3. The
initial state
When actor starts firing, it consumes the initial tokens on and , claims
processor and its state goes from the initial state to state

Then the time
advances for the minimal remaining execution time of any of the active actors.
This is one time unit in this example. Actor then ends firing, produces 1
token on both and , and releases . Resource conflicts (e.g., and
compete for) and scheduling freedom (e.g., the firing order of and) for
the system allow multiple possible transitions and lead to different executions
of the system. The state has 3 possible transitions that lead to state , and

respectively. In general, during a state transition from one state to another
state, some actors end firing, produce tokens on channels and release occupied

71

resources while some other actors start firing, consume tokens and claim
required resources.

Figure 4.5 State space of example RASDF in Figure 4.3

We recall the quantity and quantities introduced in Chapter 3
(see Definitions 3.5 and 3.6). We can define the basic quantity as a function of
state, i.e., . Then the quantity for for a given execution
is . An important property of this type of
quantity is monotonicity. For example, given an execution , we
always have . The resource usage of an execution of an
RASDF graph, i.e., is a quantity.

Similarly, an quantity of of an execution can also be defined as a

function of states, i.e., where is the completion

time for the execution . The throughput of an execution can be viewed as an
quantity.

Definition 4.5: Simple Execution

A simple execution is an infinite execution starting from the
initial state of an RASDF graph that is composed of two parts: a finite length
prefix execution , not containing any duplicate states, and an infinite
periodic repetition of execution that is a cycle that starts and ends in the
same state and has no duplicate states either. There are no shared states
between and .

72

For example, Figure 4.5 shows multiple simple executions, such as
and both with empty prefix. A simple

execution generates a finite schedule consisting of a prefix schedule and a
periodic schedule.

An important property of a simple execution is that the value
of quantities such as throughput are fully determined by the periodic part

, i.e., . For a consistent RASDF graph, the value of
quantities is determined by the prefix part and periodic part together,
i.e., .

Definition 4.6: Pareto Optimal Execution

An execution dominates another execution if and only if is not worse
than in any of the metrics of interest. An execution is Pareto optimal if and
only if it is not dominated by any other execution.

When we explore the design space of an RASDF graph, we want to find
good executions that can satisfy our design constraints. All possible executions
are the target design space that we want to explore. A Pareto optimal execution
with its metric values is called a Pareto point in the design space. In order to
find Pareto points in the design space without redundant exploration, we have
to use some rules to prune our exploration paths. We discuss pruning
techniques for efficient exploration of the state space below. Due to the
monotonicity of quantities, it is easy to prove the following proposition. It
is illustrated in Figure 4.6 (a).

Proposition 4.1:

Given two finite (partial) executions and that start from the same state
and end in the same state , if for a quantity ,

then for any execution execution has
.

Proof: Since

,

it follows that quantities do not have the monotonicity
property of quantities. So which execution ending in the same state is
better may depend on the future execution sequence. In order to decide locally

73

at any given state whether an execution is guaranteed to be better, we have to
use more strict conditions than those for quantities. The corresponding
proposition is illustrated in Figure 4.6 (b).

(a) MAX Quantity (b) AVG Quantity
Figure 4.6 Pruning redundant executions in a state space.

Proposition 4.2:

Given two finite (partial) executions and that start in the same state
and end in the same state . If and
for an quantity , then for any execution , execution

has .

Proof: Let and .

Then

The above two propositions can be used for pruning redundant executions.

When considering and quantities simultaneously for searching
Pareto optimal executions, the conditions given by Prop. 4.1 and Prop. 4.2 have

74

to be satisfied at the same time in order to discontinue the exploration of partial
execution .

We show that exploring simple executions is enough to obtain Pareto
optimal trade offs with one property and multiple properties in a
design space since the trade offs obtained by non simple executions are always
dominated by simple executions. If there is more than one property, the
simple executions cannot cover all the trade offs, since alternating execution of
two simple executions affects the averages and thus may lead to extra Pareto
optimal points. Note that with multiple quantities, trade offs between
these quantities can be achieved if two different schedules with different values
for quantities can be alternatively applied in arbitrary ratios.

Proposition 4.3:

Given an arbitrary infinite execution of an RASDF graph, , and a
metric space consisting of one quantity and an arbitrary number of
quantities . Then there exists a simple execution that dominates
in this metric space.

Proof: The states in can be divided into two sets: (transient set) and
(revisit set), such that states in are only visited finitely often while the states
in are visited infinitely often. As the number of states in is finite, after a
finite length of execution, , new state transitions only happen in . The
infinite path through states of essentially consists of (possibly nested)
repeated visits of simple cycles in the state space. As the number of the states in

is also finite, the number of different simple cycles is also finite. Assume we
find simple cycles for after transitions. From the
property of , we have:

where and is the number of complete visits of simple
cycle after states.

So where
Let be an execution such that is a prefix of , which
eventually visits simple cycle infinitely often, where is the cycle with

75

maximum property value . Then and
.

Furthermore, , where

So, dominates .

From Proposition 4.3, we know that we only have to consider simple
executions, because for arbitrary executions, we can always find a simple
execution that dominates it. So we can use a Depth First Search (DFS) based
algorithm to find all simple cycles and use conditions from Propositions 4.1
and 4.2 to prune the search space during exploration.

If we encounter a state which is already on the DFS stack, we have closed a
simple cycle and we can analyze the cycle for its quantity, store the result
(if not dominated), and back track. Moreover, if we encounter a state which is
not on the DFS stack, but which we have visited before, then we check Pareto
dominance of any of the previous visits of the state over the current visit. If it is
dominated, we back track; otherwise, we have to revisit the state. It is easy to
see the approach terminates because there is only a finite number of states, thus
the number of simple executions are finite.

4.4 Heuristic Search

In this section, we discuss the heuristics that we made for the implementation
of our exploration algorithms. It is based on the exploration method proposed
in the previous section, but it implements several features to facilitate the
exploration of large state spaces. The price to be paid for using these heuristics
is (potential) loss of optimality, but the exploration times are reduced.

We use a hash table as the data structure to store the visited states for quick
checking. However, to allow exploration of large state spaces efficiently, we
cannot only depend on a good data structure. We have to limit the size of the
explored state space to keep our tool fast while ensuring that the exploration
can find enough interesting design points.

The heuristic options for exploration are listed in Table 4.1. The options are
divided into 3 groups: scheduling constraints, resource constraints and
exploration algorithm constraints.

76

Heuristic Category Option

Scheduling constraints

Limit of stack size
Limit of number of iterations
Rules for branch selection

Limit on number of branches
Priorities for actors

Channel quantities bounds
Resource constraints Resource quantities bounds

Exploration algorithm
constraints

Back track step
Number of found simple cycles

Exploration time
Table 4.1 Heuristic options for exploration

In the scheduling constraints category, the length of the resulting schedules
is often an important design constraint for embedded systems. The constraint
on stack size will limit the depth of the DFS algorithm and thereby constrains
the length of schedules. Similarly, for an RASDF graph with repetition vector ,
by limiting the number of iterations to , the schedule length, i.e., the number
of actor firings, is no longer than .

The rules for branch selection and the maximal number of explored
branches limit the number of branches explored during DFS. We implemented
a rule to guide the exploration. We use a rule to guide the algorithm to select
branches based on a cost function which is computed from the repetition
vector of the RASDF graph. The cost of a decision is , with

the number of firing starts of actor in decision and the cost
of one firing of actor , where is the accumulated firing count of actor since
the start of execution. The larger the cost of one actor, the more firings of one
actor have been executed and the higher the selection cost of the actor for the
next firing start when there are resource conflicts. The fairness rule can avoid
that the algorithm selects actors greedily based on the order in the data
structure when exploring the state space partially. By selecting the minimal
cost firing, we ensure fairness in actor firings, i.e., the percentage of firings of
every actor in one iteration should be balanced during execution. Another
scheduling constraint that maybe defined is a priority ordering among actors.
When actors compete for the same resource, they will be assigned according to
their priority. The search algorithm will only explore options that satisfy the
priority order when resource conflicts happen. For actors with the same
priority, the selection of firing is decided by the fairness rule. Bounds on

77

channel quantities constrain the buffer size for each communication channel
and can be specified with back edges. This can provide another constraint on
the explored executions. By limiting the maximum number of tokens that can
be stored in each channel, the number of enabled actor firings is smaller, thus
the available schedules will also be limited.

The constraints on resource amounts influence the scheduling of an RASDF
graph and results in different throughputs. By setting resources to
configurations we are interested in, we can limit the search space and explore
the interesting resource region.

The search algorithm itself can also be configured. Since the size of the state
space may remain large, we use the back track step to avoid that the search
becomes trapped into some local regions. By doing this, we only explore
executions with a specific execution prefix a few times rather than explore all
possible executions all with the same specific prefix execution. For example, we
can set the back track step to 5, and the search algorithms will back track at
least 5 states before it starts forward exploration again.

Each simple execution corresponds to a design point in the design space. A
time limit for one exploration with a fixed resource constraint is a natural
termination condition for designers to control the time budget of the
exploration. The advantage of a time limit is that it is easy to estimate the total
exploration time for a given number of explorations while the exploration time
for other constraints are graph dependent.

In experiments, it turns out that the exploration results are sensitive to the
selected searching options and resource bounds. To ensure we cover the
interesting range of the design space, we use a grid search strategy to explore
the combinations of these heuristic search options and resource bounds, i.e., so
called configurations. Each configuration is treated as one grid point in the
design space, and the design space exploration algorithm iterates every grid
point. We assign each configuration some exploration time and explore all
possible configurations on a multiprocessor system with processors
since each search is independent from each other search and can be executed in
parallel. This strategy has two advantages. First, it can be distributed on a
parallel system and thus allows parallel search. Secondly, the total exploration

time where is the overhead for each configuration, which is

very useful for designers to estimate the total exploration time needed. For

78

large state spaces, the overhead can be omitted as the exploration time per
configuration dominates.

We show results in the experimental evaluation of Section 4.6. In the next
section, we discuss how to use the knowledge that we find during exploration
to accelerate the exploration process.

4.5 Bottleneck driven Design Space Exploration

In the grid search strategy, the search algorithm iterates over all exploration
configurations exhaustively, including all different resource configurations.
However, we observe that only few resource configurations are really
necessary to be explored for obtaining all trade offs in the design space.
Bottleneck driven design space exploration tries to explore the design space
more efficiently by identifying resource bottlenecks and by guiding the
exploration in specific directions, i.e., by only increasing the amount of
bottleneck resources rather than increasing the amount of all resources one by
one. Compared to exhaustive searching, the bottleneck driven DSE can reduce
the number of configurations considerably.

Although the identification of bottlenecks depends on the problem at hand,
the design flow of many bottleneck driven DSEs can be seen as a specialization
of the well known Y chart method [98]. In general, given a system design
problem, design alternatives of the application and the architecture are
represented via a set of parameters, and the metrics of interest are defined.
Next the metrics are evaluated and the bottleneck parameters are identified.
With this information, the system parameters are tuned. By iterating these
steps, optimal parameter settings and metrics can be found in the design space.

For a streaming system, application, architecture or mapping are
sometimes fixed beforehand and only the amount of resources can be tuned for
performance. Developers have to dimension the amounts of resources for
efficient resource usage while meeting performance constraints.

Figure 4.7 shows an overview of the flow for DSE of systems modeled by
RASDF. The flow can be divided into 4 steps. First, we capture the system with
an RASDF graph (1. specification). Then we execute the model and evaluate its
throughput (performance metric) from its state space (2. performance
evaluation). Through the analysis of the state space, we construct the data and
resource dependencies between actors (to be explained later) and identify the

79

potential bottlenecks of the system (3. bottleneck identification). Then we
increase the amount of identified bottleneck resources and iterate the above
steps to obtain the profile of the design space of the given system (4.
dimensioning and tuning). For example, for resource configuration ,
we deduce that the actors and depend on the availability of in the

. Given that is a potential bottleneck, we increase the amount
of to generate a new configuration which potentially has a
better performance. We apply the new configuration to the example and repeat
the above procedure automatically until the design space of the example
RASDF graph has been explored. We explain the details of the techniques in
the following text.

Figure 4.7 Bottleneck driven DSE for RASDF

80

The maximal throughput of a system may be limited by the amount of
available resources (e.g. the number of processors, the size of memory, the
bandwidth of a bus). In [144, 148], techniques based on a dependency graph
are introduced to capture the dependencies on channel capacities between
actor firings of an SDF graph. The dependencies are used to analyze the
bottleneck in channel capacities. In this thesis, we adapt those techniques to
find bottleneck resources in RASDF graphs. In an execution, for example, one
or more actors may not be able to start firing while waiting for the other
running actors to end firing and release resources, so that they can claim the
released resources. Increasing the amount of resources may enable the waiting
actors to start firing earlier and possibly increase the throughput. We would
like to detect such situations as indications of a potential bottleneck. The
dependency of the start of firing of an actor on a resource released or tokens
produced by the end of firing of another actor is called a causal dependency.

Definition 4.7: Causal Dependency

A firing of actor causally depends on a firing of actor if and only if the firing of
claims resources or consumes tokens that are released respectively produced by the
firing end of without any time progress between the firing start of and the firing
end of .

The causal dependencies can be classified into two types, data dependencies and
resource dependencies.

Definition 4.8: Data Dependency

A causal dependency caused by producing and consuming tokens on channel is a
data dependency, denoted by , or to make the involved firings of actor and
explicit.

Definition 4.9: Resource Dependency

A causal dependency caused by releasing and claiming resource is a resource
dependency, denoted by or to make the involved firings of actors and
explicit.

A data dependency only exists between two consecutive actor firings of
actors that are connected to the same channel, and can thus be easily detected
by checking and transitions of the pair of actors during execution. If

81

the tokens produced by the source actor are immediately consumed by the
destination actor, there is a data dependency between the two actors.

Compared to data dependency detection, the detection of a resource
dependency depends on how the resource is shared. If it is only shared
between two actors, it can be detected very easily. For a resource shared by
more than two actors, the resource dependencies cannot be easily detected as
the released resource tokens have no information about the actors that release
them. Instead, we assume that dependencies exist among all the actors that
produce tokens and the actors that consume tokens.

Given a resource that is shared by more than two actors and a time
instant , the producer set contains firings that end and produce at and
the consumer set contains firings that start and consume at . Without
losing any resource dependencies, we assume that the resource dependency
exists between every firing in and every firing in if and only if the
available amount of resource , i.e. , at the time before release is less
than the total amount of that is claimed, i.e., exists for every pair

if and only if . This assumption
simplifies the detection of resource dependencies, but it also introduces false
positive dependencies for actor firings that only use already available resources,
as discussed later in detail.

Definition 4.10: Causal Dependency Graph

Given a simple execution of an RASDF graph with repetition
vector and the periodic execution part that contains iterations of the
graph, the causal dependency graph contains a node

, for the th firing of the actor in an iteration of ; the set of
dependency edges contains an edge from to

denoted by or if and only if there exists a causal
dependency for channel or resource between firings and in such
that and .

Figure 4.8 shows the process of building the dependency graph for an
execution of the RASDF graph in Figure 4.3. It shows the
resource allocations of the execution in the top part of the figure while the
dependency between firings is shown in the bottom part of the figure. At state
, actor finishes its first firing , outputs tokens to channels and and

82

releases resource . Actors and start their first firings , and
consume tokens from and and claims resource when they start
firing at state . So we have dependency relations among actor firings
which are shown below state in Figure 4.8 as part of the causal dependency
graph. Similarly, at state , actor outputs tokens and releases but no
actors need the tokens and resource immediately, so no dependency exists
at state We repeat checking dependencies every state until we reach
recurrent state . We can build the causal dependency graph for the execution
by collecting the dependencies from Figure 4.8 as shown in Figure 4.9 (a).

Figure 4.8 Dependency detection for an execution

The size of the dependency graph can be very large. For example, the
minimal number of actor firings in one period of the sample rate graph of [16]
is 612. Therefore, we use an abstraction of the dependency graph to capture all
dependencies between the firings in . Figure 4.9 (b) shows the abstract
dependency graph of Figure 4.9 (a). The transformation from dependency
graph to abstract dependency graph maps actor firings to actors and maps the
dependencies between firings to dependencies between actors. Since the
abstract dependency graph does not discern firings, the nodes of the same
actor in the dependency graph merge into one node in the abstract dependency
graph while keeping their dependency relations with other nodes. The
dependencies between firings of the same actor are kept by self edges. For

83

example, the dependency between and in Figure 4.9 (a) turns into the self
edge in Figure 4.9 (b).

(a) Dependency Graph (b) Abstract Dependency Graph
Figure 4.9 Causal Dependency Graph and Abstract Dependency Graph

Definition 4.11: Abstract Dependency Graph

Given a causal dependency graph , the abstract dependency graph
contains a node for each actor and a dependency edge

between actor and for each dependency edge .

Dependencies between actor firings in the periodic part of a simple
execution can form cyclic dependencies, called a causal dependency cycles; data
dependencies cannot be changed. In this example, the cycle indicates that both

and are potential bottlenecks. By increasing these resources, the
dependency cycle may disappear.

Definition 4.12: Causal Dependency Cycle

A causal dependency cycle is a simple cycle in the dependency graph.

The throughput of a simple execution is limited by some of those cycles in
the dependency graph. For example, the throughput of the execution in Figure
4.8 is limited by the dependency cycle, i.e.,

in Figure 4.9(a), that contains
. If a resource dependency appears in a causal dependency cycle,

for some , the throughput may increase if we can remove the dependency

84

by increasing the amount of resource , e.g. the increase of allows and
to fire at the same time. Resource dependencies that do not occur in cycles are
not critical to the performance. For example, is not on a
dependency cycle in Figure 4.9 (a) and is not critical for the execution. If we
delay one time unit, the throughput remains the same.

Definition 4.13: Bottleneck

A resource in an RASDF graph is a bottleneck of execution under
resource configuration if and only if increasing in resource configuration
is needed for an increase of the throughput of the graph.

By construction, any dependency cycle in the dependency graph gives a
dependency cycle in the abstract graph. Note however, that a simple cycle need
not remain simple. For example, the simple cycle in Figure 4.9 (a), i.e.,

corresponds to two cycles in Figure 4.9 (b), i.e., and e due to
the merge of the two firings of actor . Dependency edges related to bottleneck
resources thus appear at least once in a dependency cycle of the abstract
dependency graph. Therefore, the abstract dependency graph contains
sufficient information to identify potential bottlenecks (step 3 in Figure 4.7).

Causal dependencies are defined based on firings. However, an execution
may enter into a deadlock state, where no actor is able to fire. We need to refine
the causal dependency concept to handle the deadlock case, because lack of
resources in the chosen resource configuration may be the cause of the
deadlock. With the adapted definition, an abstract dependency graph can be
derived as before.

Definition 4.14: Causal Dependency In Deadlock

In a deadlock state, a firing of actor causally depends on a firing of actor if
an only if the firing of needs tokens that may be produced by or resources
that may be released by a firing of actor .

The dependency assumption in the shared resource case and the use of the
abstract dependency graph instead of the dependency graph can lead to false
positive dependencies detected during exploration. Figure 4.10 shows two
examples of false dependencies. In Figure 4.10 (a), the available amount of
resource is 3 units in a specific state while actor is running and ready to end
its firing. The end of firing releases 6 units at the same time, the next two

85

firings of and claim 5 and 2 units of resource respectively. If firing uses
the available amount of and uses the amount of released by , then only
depends on and can start earlier before ends. However, since we do not
identify the producer of tokens, i.e., whether the tokens come from firing or
are just available resource, we can only assume there is also a dependency
between and . In Figure 4.10 (b), there is no cycle in the dependency graph,
but a false dependency cycle exists in the abstract dependency graph. The false
dependencies in the abstract dependency graph can cause some non bottleneck
resources to be detected as bottleneck resources and may lead to redundant
exploration (but not to wrong results).

(a) False resource dependency (b) False dependency cycle
Figure 4.10 False dependencies

Normally, there are multiple simple executions in the state space of an
RASDF graph, and each execution may have an abstract dependency graph of
its own. Often, bottleneck resources are the same. For efficiency, we build only
a single dependency graph for the entire state space exploration that merges all
dependency graphs into one graph by adding dependencies whenever cycles
are encountered anywhere in the statespace. This may again lead to false
dependency cycles. Again, real bottleneck resource dependencies are always
detected. By tolerating those false detections, we keep the exploration to not
lose real resource bottlenecks while making it more efficient.

Proposition 4.4:

If a resource is a bottleneck, then the abstract dependency graph has a
dependency cycle containing a resource dependency for .

86

Proof: If resource is a bottleneck as defined in Definition 4.12, there is at least
one resource dependency edge between two firings in a dependency cycle. If
not, then throughput is fully determined by data cycles and cannot be
improved anymore. We assume the two firings in the dependency cycle are
and . So there exist two paths from to and from to . Obviously, in
the abstract dependency graph, there exist two paths from to and from to

So a resource dependency on also exists in a dependency cycle of the
abstract dependency graph. Since a cycle in the dependency graph is preserved
in the abstract dependency graph, the resource dependency edge of
dependency graph is also preserved in the abstract dependency graph.

(a) (b) (c)
Figure 4.11 Bottleneck identification

The bottleneck information for an RASDF graph is embedded in its abstract
dependency graph. We can compute the graph’s maximal achievable
throughput without resource limitations efficiently from its strongly connected
components through state space analysis using techniques of [64]. In [144, 148],
channel buffer capacity bottlenecks of an SDF graph are detected through an
abstract dependency graph and used to guide the exploration of buffer
configurations to find optimal buffer sizes. Similarly, we also use the inferred
bottleneck information to increase the amount of relevant resources until the
graph reaches the maximal throughput or the maximal resource configuration
that we are willing to explore. For example, in the abstract dependency graph
of Figure 4.11 (a), and are identified as potential bottlenecks. We
choose to increase and raise its amount from 9 to 10. The
dependency edge disappears and only dependency edges still exist in the
new abstract dependency graph shown in Figure 4.11 (b). When increasing

from 1 to 3, all resource dependencies disappear and the maximal

87

throughput is reached. The corresponding abstract dependency graph is
shown in Figure 4.11 (c).

Figure 4.12 Bottleneck driven DSE flow

88

Figure 4.12 shows the DSE algorithm. It uses an initial resource
configuration to configure an RASDF graph and explores the state space of the
configured graph. Upon detecting a cycle in the state space, throughput and
resource usage of the execution are computed. Pareto optimal design points
among all explorations are kept as the output of the DSE. When detecting a
cycle, causal dependencies are added to the abstract dependency graph. As
multiple cycles can exist in the state space, the abstract dependency graph is
complete only after the state space exploration stops. Bottleneck analysis is
then performed by identifying resource dependencies in strongly connected
components of the abstract dependency graph. Identified bottleneck resources
are each increased by a minimal step, specified by the user. The reason to set
the step size by user is because a minimal amount of resource increase may be
very small and may lead to a large exploration time since the bottleneck
resource has to be increased multiple times. Thus, a new set of unexplored
configurations is generated and pushed into the configuration queue. Breadth
first search is used to search the configuration space. Dynamic programming is
used to avoid redundant explorations of configurations that have already been
explored. The algorithm terminates if the configuration queue is empty.

4.6 Case Studies

To evaluate the analysis techniques that we introduced in this chapter, we
experiment with a set of DSP, multimedia and printer datapath models on an
Intel 2.2 GHz CoreTM 2 with 4GB RAM Desktop PC. We first compare our
trade off analysis techniques to existing techniques that cannot handle resource
sharing among multiple actors. The purpose of the experiment is to show that
our analysis allows efficient use of memory and enables better trade off points.
We also include a case study about analyzing multiple use cases on a given
printer architecture with shared resources. Then the trade offs of the printer
architecture for a specific use case are shown. We do experiments to compare
the exploration times for analysis without and with bottleneck aware
techniques. Finally, a comparison between genetic algorithm based DSE and
bottleneck driven DSE is discussed. The experiment graphs are divided into
two categories: the graphs of the first category (see the appendix) are from the
literature and include an example graph from [144], an artificial bipartite graph
from [16], a modem [16], a satellite receiver [131], a sample rate converter [16],
an MP3 decoder [144] and an H.263 decoder [144]; the graphs of the second
category are from an industrial case study provided by Océ (www.oce.com)

89

where the design space of the digital datapath of a professional printer is
explored.

For each graph, we explore the trade offs between throughput and buffer
size requirement. The search parameters of our algorithm are set as follows.
For most streaming applications, we want to have a short schedule, i.e., cycles
in the state space, only after a few iterations. So we set the range of the iteration
number from 1 to 3. For DFS, the number of branches and the backtrack step
directly impact the exploration time. The large number of branches makes
exploration only capable of exploring a small part of the space. We therefore
set the number of branches from 2 to 3 and the backtrack step range from 1 to 2.
The fairness rule is used to avoid firing the same actor greedily. The memory
scan range is from the lower bound of [57] (lowest possible memory for an
execution under a shared memory assumption) to the upper bound of [144]
(highest possible memory for maximal throughput under distributed memory
assumption) and is uniformly divided into a few steps (we use 10) for our grid
search. The time budget for each exploration is 1 second for the first part of the
experiment and 60 seconds for the second part. So the total exploration time for
an RASDF graph is controlled to less than an hour (the worst possible
exploration time is). Though we cannot compare
the results with the optimal results with shared memory, as they are not
known, we compare our results with the experimental results when exploring
longer (60s) for each configuration.

Figure 4.13 Pareto points of Modem

90

For example, Figure 4.13 shows the Pareto points of the Modem graph. The
blue squares are Pareto points found by [144] for distributed buffers. The green
and red points are Pareto points found by our algorithm with different time
limits, 1 second and 60 seconds respectively. The comparison of the results
shows that the results can be improved for some graphs by using a longer
exploration time. However, the total time spent on the exploration is increasing
very quickly.

In order to quantity the difference between two results, we define the
average memory reduction as a metric to compare a Pareto set (our
result) with a reference Pareto set (the optimal Pareto points for the
distributed memory model found by the algorithm in [144]). The memory
reduction for each reference point is the maximal memory reduction of
its counterpart which has throughput not less than
throughput .

where is the number of points in the set and

For example, in Figure 4.13, the set of trade off points found by grid search
(time limit 1 second) is
while the reference trade off points set for distributed case are

.

, ,

, ,

,

We use the average of the maximal reduction of each reference point to
compute the average memory reduction .

To investigate the impact of sharing resources, we compare our results with
[144] which is known to be optimal when memory cannot be shared. The

91

results of the experiment are summarized in Table 4.2. It shows the number of
actors and channels in each graph (2nd row), the minimal buffer space (4th row)
for the smallest positive throughput (3rd row) that can be achieved, i.e., buffer
sizes that make the graph deadlock free). It also shows the minimal buffer
space (6th row) for the highest possible throughput (5th row). It also shows the
number of Pareto points (7th row), the execution time of the tools (8th row) and
the max (9th row), min (10th row), average (11th row) and standard deviation
(12th row) of memory reductions achieved by sharing memory. The 60 seconds
results are shown in parentheses if they are different from the 1 second results.
The results in Table 4.2 show that by sharing memory among actors, the
required memory can be reduced by 3% to 50%. The average 3% memory
reduction is obtained for the H263(QCIF) case, shown in Figure 4.14. Since the
shared memory case only has a low memory reduction when compared to a lot
of points of the distributed memory case around the upper right corner of
Figure 4.14, it leads to low average memory reduction. The fact that minimally
obtained resource reduction is positive in all cases shows that for the
experiment we can always achieve the same throughput as the throughput
found by [144]. Although 60 seconds results are sometimes better than 1
second results, a 60 seconds budget needs much longer overall analysis times.

Figure 4.14 Pareto points of H.263(QCIF)

92

Ta
bl
e
4.
2

Ex
pe
ri
m
en
ta
lr
es
ul
ts
of
gr
ap
hs
fr
om

lit
er
at
ur
e

U
se
C
as
e
N
o

1
2

3
4

5
6

7
8

9
10

11
12

A
ct
or
/c
ha
nn
el
s

5/
6

12
/1
5

9/
9

3/
3

3/
3

8/
8

9/
9

11
/1
3

14
/1
9

14
/1
9

5/
6

8/
8

Ex
ec
ut
io
n

tim
e(
s)

0.
87
6

0.
84
6

54
.9
94

0.
36
5

0.
29
7

0.
25
4

0.
25
7

0.
30
4

6.
58
7

0.
30
6

0.
38
5

0.
24
4

St
at
e
co
un
t

22
04

18
88

12
65
1

85
4

42
2

10
11

38
3

34
70

34
6

94
6

10
Ta
bl
e
4.
3
A
na
ly
si
s
of
pr
in
te
ru
se
ca
se
s

Ex
am
pl
e

Bi
pa
rt
ite

Sa
m
pl
e
R
at
e

M
od
em

Sa
te
lli
te

M
P3

H
.2
6(
Q
C
IF
)

A
ct
or
s/
ch
an
ne
ls

3/
2

4/
4

6/
5

16
/1
9

22
/2
6

13
/1
2

4/
3

M
in
.T
hr

1.
25
×1
0

1
3.
09
×1
0

3
1.
00
(1
.0
2)
×1
0

3
5.
56
×1
0

2
7.
60
×1
0

4
1.
90
×1
0

7
1.
52
×1
0

6

M
in
.B
uf
fe
rS
iz
e

4
26

23
16
(1
3)

96
2

11
59
5

M
ax
.T
hr

2.
50
×1
0

1
3.
97
×1
0

3
1.
04
×1
0

3
6.
25
×1
0

2
9.
47
×1
0

4
2.
68
×1
0

7
3.
01
×1
0

6

M
in
.B
uf
fe
rS
iz
e

7
32

31
19
(1
7)

12
20

14
11
90

Pa
re
to
Po
in
ts

4
7

7(
5)

3(
4)

3
3

3
Ex
ec
.T
im
e(
m
in
)

0.
45
(0
.4
5)

1.
17
(2
.5
5)

5.
52
(1
47
)

2.
34
(2
4.
7)

5.
56
(1
47
)

5.
18
(9
5.
5)

2.
22
(1
8.
6)

M
ax
.M
em

R
ed
uc
tio
n

22
.2
%

13
.3
%

30
.3
%

59
%
(6
5.
8%

)
37
.7
%

50
.0
%

50
.1
%

M
in
.M
em

R
ed
uc
tio
n

10
.0
%

7.
1%

8.
8%

(2
8.
2%

)
52
.5
%
(5
7.
5%

)
21
.0
%

46
.2
%

0.
5%

A
vg
.M
em

R
ed
uc
tio
n

14
.9
%

10
.7
%

22
.4
%
(2
9.
2%

)
56
.5
%
(6
1.
6%

)
29
.4
%

48
.1
%

3.
2%

St
d.
D
ev
ia
tio
n

0.
05

0.
02

0.
10
(0
.0
1)

0.
02
(0
.0
3)

0.
08

0.
02

0.
08

93

The substantial memory reduction and obtained throughput together with
the analysis efficiency indicate that our technique performs well. In Table 4.2,
we also notice that the H.263 decoder has low average reduction. The reason
for this is due to the fact that the large number of Pareto points found by the
algorithm of [144] are dominated by the nearby Pareto point found by our tool
by a small margin while the single, lower throughput point is improved quite a
lot. The average memory reduction metric defined above does not capture this
situation very well. The execution time of our method is reasonable. The Pareto
points found by our tool are more resource efficient compared to the Pareto
points found by [144] which does not allow sharing memory among channels.

In the printer case study, the processing units of the data path share
memory and the memory bus. Twelve use cases such as print, scan and copy
which are frequently seen in daily printer use are investigated. The models
cannot be disclosed in detail due to confidentiality reasons. In [87], some
simplified printer data path use cases are analyzed. An example modeled as an
SDF graph is shown in Figure 4.15. The use case captures a loop to print a
document from a data store. It performs two image processing steps (IP1 and
IP2) and several USB and control actions. The printer architecture model is
shown in Figure 4.17. We model the twelve considered use cases as RASDF
graphs and analyze them with our tool.

Figure 4.15 ProcessFromStore use case from [87]

The first set of experiments considers single use case analysis for one
specific architecture configuration, so in this particular case, we are not looking
for trade offs, but only to evaluate metrics in a particular design solution. The
metrics we are interested in are the peak and average usage of resource in the
data path and the throughput of the datapath for those use cases. From the

94

previous section, we know that the throughput and average resource usage can
be easily computed from the prefix and periodic part of the execution. Table 4.3
shows the execution time of our algorithm and the number of states of the
execution. For most of the use cases the execution time of the algorithm is less
than 1 second. The two exceptions are use cases with actors that have large but
slightly different execution times. For these two cases, for a number of
iterations, the states are different slightly. It causes a periodic execution phase
with a large number of states and a longer execution time for analysis.

The second set of experiments concerns the design space exploration of
printer architectures. We study the trade offs among peak memory and
bandwidth usage with performance (throughput), obtained by different
schedules. By using our grid search method, we can get a profile of the design
space of a specific architecture, which can help a system designer make
decisions on questions like how much memory and how much bandwidth are
needed for some specific performance requirements. Figure 4.16 shows the
normalized 3 dimensional Pareto space in the design space of a particular use
case for some platform configuration, the trade off points are throughputs
under two configurable resources: Bandwidth and Memory. The figure clearly
shows how the change of resources impacts the performance of the printer. The
results of this case study show that our tool is sufficiently flexible to support
design space exploration: it allows us to explore the trade offs between several
objectives.

Figure 4.16 Normalized design space of a printer use case

95

To evaluate the efficiency of bottleneck driven DSE, we compare our
bottleneck driven implementation with the regular grid search implementation
without bottleneck information. Through bottleneck analysis, we expect that
many grid points do not need to be searched by the bottleneck driven DSE,
and the exploration times are reduced.

In the first experiment, we compare the execution times of the approaches
on the six RASDF graphs in the first category. For each graph, we explore the
trade offs between throughput and the size of the shared memory. As the state
spaces of RASDF graphs are often large, we also enforce some resource limits
to confine the search. The exploration options are the same as the grid search
without bottleneck driven guidance. The column for each graph in Table 4.4
gives execution times and the number of explored configurations for both the
bottleneck driven search (BD) and full grid search (Non BD).

The results show that bottleneck driven DSE has two effects on the
execution time. On the one hand, it avoids the exploration of some unnecessary
resource configurations. One the other hand, the bottleneck analysis brings
some overhead. For Bipartite graph, the two approaches explore the same
configurations and the number of simple executions for each configuration is
very large, so the bottleneck driven approach is actually worse. For Modem,
many unnecessary configurations can be avoided by bottleneck driven DSE
and the analysis overhead is more than compensated by the reduction in
configurations. The other graphs give results in between those two extremes.

To test the bottleneck analysis for multiple resources and large
configuration spaces, we did experiments with distributed memory. For MP3,
for example, we divided the channels to three different buffers. The right
column for each graph in Table 4.4 gives the results. Substantial reductions are
obtained in all cases. As expected, the performance of bottleneck driven DSE
improves with an increasing number of resources.

Then we do the printer case study provided by Océ. We aim to dimension
the memory and bus usage of printer architectures as shown in Figure 4.17.
There are three options: one reference architecture, one with faster processing
units, and one with additional processing units (denoted by dash lined blocks).

96

Figure 4.17 Printer architecture for exploration

(a) (b) (c)
Figure 4.18 Abstract dependency graphs during printer architecture exploration

Figure 4.18 shows three abstract dependency graphs visualized by dot
(www.graphviz.com). The tasks of the targeted application are denoted by
circles annotated with the corresponding task id. The green edges denote
resource dependencies and are annotated with the corresponding resource ids
while the blue edges denote data dependencies. The figure shows different

97

bottlenecks that exist at different exploration stages for the printer application
on one of the given printer architecture configurations in Figure 4.17. In Figure
4.18 (a), both memory size and bus bandwidth are bottlenecks. When
bandwidth is increased, the memory size is the remaining bottleneck resource
in Figure 4.18 (b). When memory size and bus bandwidth both are large
enough, the scanner of the printer is the new bottleneck of the system.

Table 4.5 shows that bottleneck analysis reduces the number of explored
configurations, and even if the overhead for bottleneck analysis is substantial
(Arch 3), the overall execution time reduction is still good.

The configuration space of grid search with and without bottleneck analysis
for the first printer architecture is shown in Figure 4.19. The (blue) squares are
configurations explored without bottleneck analysis. The (green) triangles are
configurations explored with bottleneck analysis. Thanks to the bottleneck
identification, exploration stops increasing specific resources if they are no
longer a potential bottleneck of the system. The (red) circles show the resource
usage of the Pareto points found. They do not coincide with grid points
because the optimal resource usage may be off the configured grid.

Figure 4.19 Comparison between Configuration Spaces

98

Bi
pa
rt
ite

Sa
m
pl
er
at
e

M
od
em

Sa
te
lli
te

M
P3

H
.2
63
(Q
C
IF
)

N
o.
of
Sh
ar
ed
bu
ff
er
s

1
2

1
3

1
2

1
2

1
3

1
2

C
on
fN
o.
N
on
BD

16
8

28
6

28
8

11
76

33
6

12
5

26
4

24
5

40
8

36
0

26
4

45
Ex
ec
Ti
m
e
N
on
BD
(s
)

13
4.
3

92
.4

52
3.
7

40
4.
8

35
9.
2

83
.5

56
2.
2

58
5.
4

57
7.
9

23
7.
8

25
2.
5

85
.7

C
on
fN
o.
BD

16
8

16
8

21
6

18
1

89
19

90
27

11
8

89
26
4

14
Ex
ec
Ti
m
e
BD

(s
)

18
1.
9

86
.1

49
6.
5

89
.3

11
6.
8

16
.0

20
7.
9

62
.9

23
5.
3

14
5.
6

25
9.
3

19
.5

C
on
fR
ed
uc
tio
n

0%
41
%

25
%

85
%

73
%

85
%

66
%

89
%

71
%

75
%

0%
69
%

Ex
ec
Ti
m
e
R
ed
uc
tio
n

35
%

6%
5%

78
%

67
%

80
%

63
%

89
%

59
%

39
%

3%
77
%

Ta
bl
e
4.
4
Ex
pl
or
at
io
n
al
go
ri
th
m
co
m
pa
ri
so
n
fo
rg
ra
ph
s
fr
om

lit
er
at
ur
e

A
rc
h
1

A
rc
h
2

A
rc
h
3

C
on
fN
o.
N
on
BD

11
0

11
0

11
0

Ex
ec
Ti
m
e
N
on
BD
(s
)

71
.9

12
8.
2

12
0.
0

C
on
fN
o.
BD

37
44

58
Ex
ec
Ti
m
e
BD

(s
)

40
.2

78
.3

10
0.
0

C
on
fR
ed
uc
tio
n

66
%

60
%

47
%

Ex
ec
Ti
m
e
R
ed
uc
tio
n

44
%

39
%

20
%

Ta
bl
e
4.
5
Ex
pl
or
at
io
n
al
go
ri
th
m
co
m
pa
ri
so
n
fo
r3
Pr
in
te
ra
rc
hi
te
ct
ur
es

99

Finally, in [102], a comparison between our bottleneck driven approach and
DSE using evolutionary algorithms (EA) are discussed. The comparison uses
the six multimedia graphs that we used in the first experiment. It uses the
Strength Pareto Evolutionary Algorithm [178] (SPEA2) and the Non dominated
Sorting Genetic Algorithm [41] (NSGA II) tools for tuning exploration
parameters while using the same state based analysis tool for RASDF analysis.
It uses a binary string to encode both state space analysis algorithm parameters
(branching number, iteration number etc.) and the resource configuration of
the RASDF graph. The DSE is performed through mutation of the encoded
information. The comparison is made for the twelve cases also discussed in
Table 4.4. In terms of the quality of results measured by the indicator (see
Section 3.6), in 6 out of 12 cases the bottleneck driven approach is better than
the EA approach, in 5 out of 12 cases the bottleneck driven and EA approaches
give equal or incomparable results, and in one case (Samplerate with a single
buffer) the EA approach is better. [102] also makes a comparison on execution
times between the bottleneck driven approach and both SPEA2 and NSGA II.
The bottleneck driven approach is faster than SPEA2 and NSGA II approach in
many cases. Generally speaking, using the bottleneck driven approach is thus
preferred over the EA approach.

4.7 Related Work

There are many works on analysis of SDF graphs and optimization of their
schedules subject to one or more criteria [14, 15, 57, 68, 75, 112, 113, 130, 167]. In
order to minimize code size for single processor, Single Appearance
Scheduling (SAS) is proposed in [7]. In an SAS, every actor appears only once
within a looped schedule. In [14, 15], buffer size minimization techniques are
developed while preserving the minimal code size property of SAS. In [112,
113], more efficient buffer usage for SAS are obtained by sharing memory
through lifetime analysis of memory tokens. However, SASes are not
necessarily optimal when other objectives than code size are to be optimized,
such as performance or energy consumption. The single appearance constraint
on schedules is relaxed in [167] by exploiting some trade offs through code
sharing and memory efficiency and code size efficiency to obtain more buffer
size reduction. In [75], buffer lifetime analysis and layout selection are used to
select schedules (not limited to SASes) for memory usage reduction. We are

100

motivated by the result that sharing resources can significantly reduce resource
usage and introduce resource sharing explicitly into our RASDF model.

For multi processor platforms, where the schedule length does not
necessarily lead to extra code size, non SAS schedules can be better than SAS in
performance since actors can firing concurrently In [130], the context switch
cost is minimized instead of schedule length while the vectorization is
maximized, and the generated schedule is so called Single Appearance
Minimized Activation Scheduling (SAMAS). By allowing consume and
produce multiple times of rates data tokens, the number of activation actor
code is reduced. However, this leads to larger data memory usage. In [68],
linear constraints on the firing time of actors and on buffer requirements are
formulated and linear programming is used to solve the “Minimizing Buffer
requirements under Rate Optimal schedules” problem. In [57], an exact
method for exploring arbitrary schedules and generating minimum memory
requirements for an SDF graph is given by using model checking tool SPIN to
explore the possible state space.

Throughput analysis has been studied extensively in [39, 40, 64]. [39, 40] use
Maximum Cycle Mean (MCM) analysis to compute throughput. This can only
be used for HSDF graph. Conversion from an SDF graph to an HSDF graph is
possible, but frequently leads to a sharp increase of the graph size making the
algorithms of [39, 40] fail to be efficient. In [64], the costly conversion is
avoided by analyzing the state space of the self timed execution of SDF graph.
We focus on throughput and extend [64] by relaxing the self timed scheduling
constraint and are capable of analyzing resource sharing cases.

Trade off analysis for SDF graph is mostly limited to single processor
platforms [16, 176]. [16] explores the trade off between code size and data
memory. [176] gives a CD2DAT example to show the trade off between code,
data memory and execution time for SAS, based on an evolutionary algorithm.
Only recently, trade offs for SDF graphs on multiprocessor platforms are
investigated [144, 148]. [144] gives an exact method to explore the trade offs
between total buffer size and throughput for multiprocessor platforms based
on techniques taken from [57, 64]. In [148], it is extended to include CSDF
graphs and provides a fast approximation algorithm to tackle graphs with
many similar Pareto points. Our work generalizes [144, 148] with respect to
SDF graph analysis to considering trade offs between throughput and shared
resources.

101

A design space exploration (DSE) framework for multiprocessor systems
on chip based on SDF specifications is proposed in [99]. The framework
focuses on a single objective, i.e, make span of an SDF graph, and SDF models
are limited to HSDF graphs without cyclic dependencies. The Y chart
methodology [8, 98] is widely used to analyze embedded systems and as the
basis for DSE [10, 105, 121]. However, [105, 121] formulate the DSE problem as
an integer programming problem and solve it with evolutionary algorithms.
These approaches do not work for problems that cannot be formulated as an
integer programming problem (e.g. throughput analysis for SDF graphs).
Bottleneck analysis is an important aspect of system performance analysis [88].
In [8, 98], the bottleneck information obtained from the performance analysis
stage is used to guide the adaption of application, architecture and mapping
aspects. Hardware optimization [51, 84] identify bottlenecks in hardware to
guide architecture improvement. In [51], an event counter model that counts
cache miss, branch misprediction, and resource contention events is used to
monitor system behavior and identifity bottlenecks in different phases. The
larger the counter at a time, the higher possibility that a resource is the
bottleneck of the system. In [2], bottlenecks for parallelization of program are
identified from the program trace. Each instruction of a program is represented
by a set of nodes: dispatch nodes, execution nodes, commit nodes.
Dependencies between nodes are identified and a program dependency graph
is built. The program dependency graphs are used for analysis of the impact of
bottlenecks. Throughput and buffer trade off analysis [144, 148] extract the
dependency graph from the state space of an SDF graph. By analyzing the
critical cycles in the dependency graph, bottleneck buffers and trade offs
between buffer size and throughput are found. However, they only allow
distributed resources and only deterministic self timed execution is possible. In
[170], we propose RASDF graph as a generic resource aware dataflow model
for trade off analysis and propose a bottleneck driven DSE technique for
RASDF graphs for automatic system dimensioning [169]. This material is the
basis of the current chapter.

We use state based exploration techniques for trade off analysis. The model
properties, such as throughput and resource usage are derived from its state
space. This technique has its root in model checking [7, 92]. Model checking is
widely used in system verification such as hardware verification and protocol
verification. It is also used for scheduling and scheduling related problems [1, 5,
57, 179]. In [57], model checking is used to explore the schedule space of
untimed SDF graph to find schedules with minimized buffers. In [1], the job

102

shop scheduling problem is modeled as a timed automaton, and finding
optimal path becomes finding the shortest path problem in the timed
automaton. In [5], the schedule synthesis problem is modeled with Petri nets
and finding a schedule is finding a path in its state space that satisfies a specific
property. In [179], model checking is used to optimize the length of static tasks
and bus accesses schedules. Multi objective model checking is only studied
recently such as via qualitative property verification [47] for stochastic models
and for the routing problem with multiple constraints [124]. In [137], a SAT
solver is incorporated with evolutionary algorithm for an SDF task graph
model and it uses list scheduling to find a feasible schedule. We leverage the
knowledge from dataflow models and multi objective optimization to solve the
trade off analysis problem as a multi objective model checking problem. The
goal is to find multiple execution paths that are Pareto optimal in throughput
(derived from cycles) and resource usage (derived from the whole execution
path).

4.8 Summary

In this chapter, we consider the trade off analysis problem for RASDF graphs
and use state based analysis to obtain Pareto optimal points in their design
space. Pareto dominance and SDF specific information are used to prune the
search space. We implemented an algorithm with many configuration options
that enable users to customize for their own needs. Our tool allows analyzing
the throughput memory trade off when memory can be shared among
channels. Case studies show that our tool can explore the design space very
quickly while providing a good characterization of the available trade offs. We
further developed a bottleneck driven DSE approach to explore the design
space. The approach guides the search by information, the dependency graph,
collected during the evaluation of metrics of interest. Experimental results
show that, for systems with multiple resources and large configuration spaces,
the bottleneck driven approach saves up to 89% in analysis time compared to a
brute force approach.

5 ITERATION DOMAIN ANALYSIS

“Every truth has two sides; it is as well to look at both,
before we commit ourselves to either”

–Aesop

In this chapter, we investigate trade off analysis techniques for RASDF graph
from a different perspective than the time domain introduced in Chapter 4, i.e.,
using an iteration by iteration approach to analyze an RASDF graph.

5.1 Introduction

In a streaming application, input is a stream of data that is organized with its
own logical structure. For example, the input stream of an MPEG 4 decoder is
encoded in frames while the input of an image processing pipeline in a printer
is processed in pages. In the single core era, applications can only process one
unit of data at a time and the start of processing a new unit has to wait for the
finish of processing of the previous unit. In the multi core/processor era,
pipelined processing and data parallel processing become common practice.
Now the processing of new units no longer needs to wait for the finish of
processing of a previous unit. However, logically, the execution of an
application can still be conveniently partitioned into separate, but pipelined or
paralleled units, iterations.

In Chapter 2, we already saw that a sound RASDF graph requires
consistency and has a non trivial repetition vector if and only if it is
consistent. For any sequence of actor firings that conforms to , i.e. an iteration,
the number of data tokens in the channels as well as the number of resource
tokens in the resources after the sequence of firings are equal to their numbers
before the sequence.

The time domain analysis of RASDF graph (Chapter 4) does not exploit the
fact that the data of streaming applications are processed unit by unit, i.e., that
the system execution occurs in iterations corresponding to the logical structure
of the application, such as frames or pages. In this chapter, we introduce an
iteration based trade off analysis technique for RASDF graph, aiming for an
improved quality of the results and improved efficiency of the analysis to
complement the techniques in the time domain. The approach is rooted in

104

max plus algebra [6, 25, 77] to capture the iteration based execution of RASDF
graph and is developed to model the resource sharing situation in RASDF
graph.

5.2 Max plus Algebra and its relation to RASDF

In this section, we introduce the basic concepts and definitions for max plus
algebra and its relation with our dataflow models. In the iteration domain, the
progress of an execution is measured in firings rather than clock ticks. The
effect of a firing in an RASDF graph is the change of time stamps and locations
of tokens, which is naturally captured in max plus algebra.

Max plus algebra is an algebra on the real numbers extended with ,
i.e., . It can easily express the concept of synchronization and
is commonly used for analysis of discrete event models. In the following
sections, we use the notations in max plus algebra to capture the executions of
RASDF graphs and derive the way to compute or approximate its throughput.

In max plus algebra, for elements , the operations and are
defined as

and

The zero element (also known as absorbing element) of addition is
(often written as in max plus literature. The identity element of addition is

(also known as neutral element). In addition to that, is also the neutral
element of the max operation. One defines and

for any element , which using max plus
notation are written as:

and

Similarly, , which is written as .

We can find that the roles of and for the and operators are similar
to 0 and 1 for the conventional operations (addition) and (multiplication)
respectively on the set . The set together with the operations
(maximization operator) and (addition operator) is called max plus algebra
and is denoted by . It is an example of a so called
semiring.

105

The algebra on is further extended to an algebra on matrices and
vectors. For a vector , a vector norm is defined as follows.

. A vector is called normalized if . For a non
normalized vector , with a norm larger than , we can obtain its normalized
vector as follows. in
which the largest element is 0.

For more details on max plus algebra, we refer interested readers to [6, 25,
77].

(a) Before firing (b) After firing
Figure 5.1 Max plus semantics for an actor firing

Figure 5.1 shows an SDF actor and its token status before actor firing and
after actor firing. The firing consumes two data tokens (black dots) from two
separated input channels and outputs one token to an output channel. In this
chapter, we annotate tokens with their production times, with so called time
stamps. The time stamps for the input tokens have some values, say and
(in Figure 5.1 (a)). Because the actor executes in a self timed manner, it starts
firing as soon as both tokens are available, i.e., at time and thus it
completes its firing after executing for time units and produces a new token
at time with time stamp (Figure 5.1 (b)). Hence the
process of the SDF actor firing and the time stamp values of the output token
can be captured by the following max plus algebra equation:

Note that data tokens in SDF graph are always consumed in a first come
first served way. When it comes to resource tokens in RASDF graph, this is not
necessarily the case. The time stamps of output tokens depend on the tokens
selected, which may be decided by some resource allocation technique. Figure
5.2 shows the status of tokens before an actor firing in RASDF graph. There are
two data tokens, one with time stamp at channel and one with at

106

channel , and two resource tokens with time stamps and at resource .
The actor only consumes one resource token for one firing, so it can select
one of the two resource tokens. However, the selection may lead to different
time stamps for the output tokens.

Figure 5.2 Token status before an actor firing in a RASDF

Figure 5.3 shows the possible token status after actor firing if the actor
selects different resource tokens. We use a multiset of time stamps to denote
the token status. Before the actor firing, the status is
which denotes the time stamps on channels , and on resource
respectively. The different selections lead to two different statuses after the
actor firing: in which and

in which .

(a) after selecting in Figure 5.2 (b) after selecting in Figure 5.2
Figure 5.3 Tokens status for an actor selected different resource token

107

In the iteration domain, we define an execution of a consistent RASDF
graph as a sequence of actor firings compared to a sequence of transitions, i.e.,

, , and , in the time domain. In an execution, every actor firing can
be captured by two operations on a set of time stamps: first a (maximization)
operation on time stamps of data tokens consumed and time stamps of selected
resource tokens and then a (addition) with the actor execution time.

Definition 5.1: Firing State

For an RASDF graph, we can denote its firing state by a multiset of locations and time
stamps of all its tokens, including both data and resource tokens. The firing operates on
the set of time stamps and produces a multiset of new tokens to new locations with new
time stamps. The multiset of new time stamps of produced tokens together with the
time stamps of unconsumed tokens constitute a new state for the next actor firing.

Note that the firing state does not capture the state of execution at a specific
instant in time. Instead, it captures the state of an execution after some number
of firings and contains information from multiple different instants in time.

Definition 5.2: Execution in the Iteration Domain

An execution in the iteration domain is denoted as a sequence of actor firings,
including the firing actor, the time the firing starts and a multiset of selected resource
tokens.

For example, the firing in Figure 5.3 (a) is denoted as
while the firing in Figure 5.3 (b) is denoted as . The
execution of an RASDF graph consists of a sequence of actor firings denoted in
this form such that also contains resource allocation information.

In order to compare the progress of different executions that start from the
same state in the iteration domain, we can only compare their states after the
same number of actor firings so that the numbers of tokens in each location for
different executions are the same. We use a firing count vector to count the
number of actor firings.

Definition 5.3: Firing Count Vector

A firing count vector with the set of actors denotes the total
number of firings of each actor in the execution .

108

The comparable states of different executions have the same number of
tokens at the same locations, channels and resources. Hence, they also have the
same number of time stamps. We order the time stamps of a state into a vector
by firstly ordering them to follow the order of the types, i.e., channels and

resources, then sorting them according to the value of the time stamps (only
needed for resource tokens, channels tokens are already sorted).

5.3 Iteration based Execution

In this section, we use a running example to illustrate the semantics of
iteration based execution. Assume we have a streaming application that
consists of 3 tasks and . We map the application to a platform with
multiple processors and a shared memory for which neither the size of the
memory () nor the number of cores () are decided. Figure 5.4 shows its
system model as an RASDF graph. In this running example, one iteration
consists of three firings of , two of , and one of , i.e. its repetition vector is

Figure 5.4 A running Example for dimensioning the resources

Figure 5.5 shows one of the executions of the example graph with memory
size and processors, in which the horizontal axis is time and the
vertical axis shows resources and actors. We separate different resources (mem,
proc) on the vertical axis of the chart, into their individual tokens. Above the
horizontal dashed line, it shows a Gantt chart with the individual actor firings.
Below the horizontal dashed line, it shows the occupation times of resource
tokens with round cornered rectangles. The acquisition happens at the left side
of the rectangle and the release happens at the right side. We use different
shades to distinguish different iterations (the first iteration is darker grey and
the second iteration is lighter grey). The small circles with enclosed numbers

109

denote the beginning and end of the iterations of the graph and indicate when
that resource token is ultimately released for the execution of the iteration; the
number inside the circle is the iteration count. For example, the two processor
tokens are released at time 7 and 9 respectively after the first iteration finished.
After the second iteration, we observe that the resource release times are
identical to the release times after the first iteration, except that they are all
shifted forward by 8 time units. Thus, we can use this periodical part as a valid
periodic schedule, reproducing this behavior forever with period 8.

Figure 5.5 Execution chart of the running example

The execution in Figure 5.5 is written as a sequence of actor firings, i.e.,
. In

iteration based analysis, we maintain time stamps of tokens indicating their
first moment of availability. The execution of a consistent RASDF graph is
captured by the evolution of time stamps of tokens, i.e., so called firing state
(the location and timestamp of tokens) after every firing. Note that the state
describes the overlapping of concurrent firings instead of information at some
given point of time. For instance, this representation can express the state of the
graph after the first iteration in Figure 5.5, where in the timed view, this is not
possible.

Although the number and locations of tokens may vary with the firings
within an iteration, they return to their original number and places at the end
of the iteration (recall the definition of consistency). Then only the time stamps
have changed. We use the notation to
denote the time stamps of the tokens in the channel after in a compact way,
in which means that there are tokens with the same time stamp .

110

For a resource , we define in the same way. The state of an RASDF
graph after a finite execution in iteration view is defined by the combination
of the state of the channels and the state of the resources , as

For example, in Figure 5.5, the initial state of the running example with an
empty execution (denoted by) is

Its state after a finite execution , the first three actor
firings in Figure 5.5, is:

At this state, there is one token in channel with time stamp 2, one in
channel with time stamp 4, 3 memory resource tokens with time stamps 4,
one still unused processor with time stamp , and one processor resource token
with time stamp 4. In Figure 5.5, the state includes information at time point 4
for all memory tokens and 1 processor token, and 1 processor token at the
beginning.

With a fixed ordering of the channels and representing individual tokens,
we can alternatively represent states in vector form for simplicity. For example,
the above state can be rewritten as the following vector using the order

:

The first entry in the vector corresponds to the channel token element
from the state . The third, fourth and fifth elements correspond to

the memory tokens . In general, each entry in the state
gets expanded into entries in the vector each with value . We

111

use to denote the th state (the state after the first actor firings) of an
execution and to denote its corresponding time stamp vector.

From the definition of the norm in maxplus algebra, we know that we can
use the norm of a timestamps vector to denote the maximal time stamp in the
timestamps vector. Since the maximal time stamp denotes the finish time of the
last firing, we can use it to denote the completion time of an execution.

Definition 5.4: Completion time of an execution

The completion time of an execution is denoted by the norm of the time stamp vector of
an execution , i.e., , i.e., the maximal element in the time stamp vector, also
the finish time of the last firing.

For example, the completion time of the execution
is

. We can see in Figure 5.5 that the
last firing of i.e., the firing of actor completes and the last tokens are
returned at time 4.

When two time stamp vectors and have the same length and for all
, it holds that , then we say that dominates and we use

to represent this. So, if and are vectors of time stamps from
comparable states, we use to denote that the time stamps of state are
all no later than the time stamps of the corresponding tokens in state . For two
executions that contain the same number of actor firings, we can compare their
time stamp vectors to check whether an execution completes all its actor firings
earlier than the other.

During an execution of an RASDF graph, every firing generates a new state,
i.e., a time stamp vector. The collection of all reachable time stamp vectors
consists of the state space of the RASDF graph in the iteration domain. Similar
to the performance analysis in the time domain, we find recurrent states in an
execution, to find periodic parts of executions, to determine the throughput of
the execution. Since the time stamps in the subsequent states of an execution
keep growing as the execution continues and time progresses, we normalize
the time stamps of the state to check for recurrence in the visited states by only
comparing the relative differences of the time stamps of the states since the
recurrent states have the same relative differences. We therefore store the max
plus normalization of the vector in memory during state space exploration.

112

For a consistent RASDF graph, the tokens return to their original location
after every iteration only with different time stamps. And if there exists a
recurrent state, the actor firings between the recurrences of that state must be
an integer number of iterations. This implies that we only need to check for
recurrence of a state after each whole iteration to determine the throughput.
For an execution , we use to denote the execution up to iterations.
Assume the execution first visits its recurrent state after the iteration and
revisits it after the th iteration, then the execution between the th and th
iteration forms a cycle in the state space. Assume after iteations of execution,
this cycle has been repeated times, so that k . The
completion time of the th iteration is the norm of , i.e. . We can
compute its throughput (the average number of iterations per time unit) with
the following equation:

For example, in Figure 5.5, the time stamp vector for the first iteration is
(the first 5 elements for tokens and the last 2

elements for tokens), the recurrent state, i.e., the time stamp vector for the
second iteration is and

, and so
the throughput of the execution is

In the iteration based view, the state vector contains the time stamps of all
available resource tokens. All resource token time stamps are initialized to .
The time stamp of a resource token that was ever used has become larger than
. Hence, the number of initial tokens minus the number of time stamp
tokens at a state for resource is the amount of used resource at the state

and denoted by . So the resource usage of resource in an

113

execution is , for all states in . We use to
denote the vector . In Figure 5.5, the execution up to the first
iteration is contains 6 actor firings, , and the firings generate 6
subsequent states as follows:

,

, ,

So the resource usage of are

Similarly, we have , since the execution repeats the periodic

schedule between and , so the resource usage of the execution is
.

In the next section, we discuss about the techniques for trade off
exploration in the iteration domain.

5.4 Exploration Techniques

Different executions of an RASDF graph may lead to different cycles in the
state space of the graph and have different throughput and resource usage
properties. To explore the design space of a given RASDF graph, we need to
explore all different executions and compute their corresponding metrics:
throughput and resource usage. Though the number of different executions
can be very large, we can explore the design space as efficiently as possible by
exploiting some properties of executions.

Recall that the recurrent states of a state in the iteration domain can only
happen after a whole number of iterations. Since the numbers and locations of
data and resource tokens do not change after any number of complete

114

iterations (due to consistency), to detect recurrent states, we only need to
compare the time stamps of data and resource tokens.

We use a nested exploration strategy that first explores the scheduling
possibilities inside a single iteration (intra iteration exploration) and only then
constructs a state space of iteration states (inter iteration exploration), i.e., the
iteration state space. We evaluate throughput and resource usage of an
execution in the iteration state space during exploration, when recurrent states,
cycles are found in the iteration statespace.

Note that we add a constraint for exploration in the nested exploration
strategy, i.e., we can only explore one iteration each time during intra iteration
exploration. This constraint allows us to only overlap different iterations while
forbidding interleaving them. It is a double edged sword. It simplifies
exploration and boosts the speed of exploration on the one hand, while
potentially sacrificing performance gain and efficient resource usage by
interleaving multiple iterations on the other hand.

(a) Interleaving firings of two iterations for resource allocation

(b) Overlapping firings of two iterations for resource allocation

Figure 5.6 Interleaving and overlapping firings for resource allocation

115

Figure 5.6 shows two different executions of an RASDF graph which
contain two iterations. The interleaving of firings between two iterations in
Figure 5.6 (a) leads to more efficient resource usage and higher throughput
compared to the overlapping of firings of two iterations in Figure 5.6 (b)
without interleaving them. However, the execution in Figure 5.6 (b) keeps the
boundary between two iterations which allows us to use a nested exploration
strategy, i.e., first exploring inside every iteration, then exploring directly on
iteration states.

Figure 5.7 State space of the running example using iteration based exploration

Figure 5.7 shows the state space of the running example using the nested
exploration strategy with maximal memory size and processor number

. On the left side is the iteration state space of the example. We use to
identify different iteration states (triangular nodes in Figure 5.7) in the iteration
state space and edges with arrows denote single iterations according to specific
schedules. The right side of the figure zooms into the iterations starting from
states and and illustrates the nested exploration within an iteration. Note
that it shows two, separate nested explorations, one starting from and one
starting from . The zoomed figure shows the intra iteration states labeled

116

(jth iteration explored) and arrows labeled with actor names
(individual actor firings).

Dashed edges from black circles to triangles denote the transitions between
states to their normalized iteration states whose time stamp vectors are the
normalization of the original states. The transitions can be occurrences of
recurrent states in the state space (for instance, the revisited iteration state
the normalized version of state) or a transition from one iteration into the
next new iteration (for instance, the newfound iteration state is the
normalized state of). The iteration period is the (average) time taken for
one iteration and is thus inversely proportional to the throughput. For example,
an execution may reach state after its first iteration (denoted as). At the
end of the rd iteration of , i.e. after , it may reach , which is scaled from
for 11 time units (. The cycle

contains two iterations with
time durations, i.e. the norm of end states, of 6 and 5 respectively. The cycle
can be repeated forever. For this cycle, the average number of time units per
iteration is , the resource usage is 7 for the memory and 3 for the
processors. For this example, we use a 3 value point to denote the
found Pareto points. The first value is the average time per iteration (i.e., the
inverse of throughput), the second value is the memory usage, and the third is
the processor usage. The found Pareto point is .

By applying Pareto minimization on the metric points that we obtain from
the exploration of the state space such as , we can find the different
trade off points between throughput and resource usage, i.e., the Pareto points
in the metric space. In the exploration in Figure 5.7, we can find 4 different
executions with different Pareto points and different memory usage and
throughput: . The point is not Pareto
optimal since it is dominated by . All these points use the same number
of processors (3), but reach different throughputs with different memory
usages.

Iteration based exploration can save the space for storing intra iteration
states during exploration. This property sharply reduces checks for recurrent
states and the size of the state space stored compared to the traditional state
space exploration approach in the time domain (see Chapter 4). For example,
only 123 iteration states need to be stored for full exploration of the example
when using the iteration based exploration, in comparison to 220 states when

117

using time domain exploration to explore the state space to a depth of just 4
iterations.

So far, we know that different firing orders and resource allocations for
actors may generate different states. The number of choices can grow
exponentially. The success of this method depends on efficiently pruning the
state space. We discuss our efficient pruning techniques of the state space of an
RASDF graph from the two aspects.

Pruning Based on Actor Firing Order:

Under the same resource constraints, two executions may have the same
number of firings for each actor, and only differ in the order of actor firings
leading to different token time stamps at the end of the two executions. If all
time stamps of an execution are larger than or equal to some other
execution , while and have the same actor firings and resource usage,
then is slower than . Therefore is redundant in a search for optimal
executions and can be pruned.

Proposition 5.1:

Given two executions and such that the actor firing count vectors are equal,
and , then for any infinite execution , infinite

execution can reach the same throughput with the same or lower resource
usage.

Proof: Since , the numbers and locations of data and resource
tokens are identical between and . They only differ in time stamp values,
which in are no later than in (since). So any actor
firing that is possible in after is also enabled in after . So for any
execution after , we can have the same execution for Once execution
visits a recurrent state and enters into a periodical part, we can guarantee to
construct an execution with the same firing sequence but every state
dominates the corresponding state in the periodical part of . So the
throughput of , i.e., . Since ,

we have So we only need to
explore execution with prefix

From Proposition 5.1 we know that, if we find that the time stamp vector of
a state is dominated by a time stamp vector already existing in the state space

118

with the same firing counting vector and resource usage, the exploration can
backtrack since further exploration cannot lead to a better result. This pruning
rule is used in both inter iteration exploration and intra iteration exploration.

Pruning Based on Resource Allocation:

Proposition 5.1 is used to prune executions with different firing orders.
Among executions with the same firing order, the resource allocations can be
different. We use an example in Figure 5.8 to illustrate the impact of different
resource allocations on executions.

Figure 5.8 Different resource allocations

119

Figure 5.8 shows the same firing sequence of a part of an RASDF graph
that starts from the same initial state with different resource allocations. For
the firing of actor , it can select either the resource token with time stamp 3 or
with 5. It is enabled at time 6 (determined by the data token on).
Depending on its resource selection, the execution can have two different
execution paths shown in Figure 5.8. Then we schedule the firing of actor to
select the left resource tokens (5 or 3 depending on the selection of actor). If it
selects 5, it chooses the top execution path in Figure 5.8; otherwise it selects 3
and chooses the bottom execution path. From the proposition 5.1, we know
that since the state (top part) is dominated by the state

(bottom part) after firing ; the bottom execution path is better.

We can extract the resource allocation rule from the example of Figure 5.9 as
the As New As Possible (ANAP) policy. Let us consider a general case as shown
in Figure 5.9: an actor is ready to be fired (i.e. enabled) at time , i.e., the
maximal time stamp of data and resource tokens, which denotes the moment
when all data and resource token requirements are satisfied. The resource
tokens are sorted in order of time stamps and shown in Figure 5.9 as a list of
tokens annotated with their time stamps from small to large. Let be the
earliest time at which the actor is enabled. The resource tokens it needs are
available at . We know that the enable time of the actor . We always
select the tokens with the largest time stamps that are equal to or less than .
Since the selected order of firing in state space exploration is not necessarily
the time order of firing. ANAP leaves the earlier resource tokens to be used by
other actor firings which may thus be able to fire earlier and so improve
performance (e.g. actor in Figure 5.8 can fire earlier). Since the time stamps
are the newest tokens that are available at , we call the resource token
selection policy ANAP:

Figure 5.9 Optimal resource allocation policy

120

Proposition 5.2:

The resource allocation policy is throughput optimal.

Proof: Given an execution at state , and an actor with execution time that
is selected for firing at state . Assume the actor enabling time is . Then the
output data and released resource tokens of the actor are time stamped

since the firing starts at . The time stamps for output data tokens
and released resource tokens are the same for all resource allocation policies.
We only need to compare the time stamps of unused tokens. The data tokens
are consumed in FIFO order, so no matter how the resource tokens are selected
the remaining data token time stamps are the same for any resource allocation
policy. By using the policy, the time stamps of unused resource tokens
are the smallest since ANAP always chooses the time stamps closest to with
the highest values. So, the time vector generated by always dominates
time vectors generated by another resource allocation policy. From Proposition
5.1, it then follows that is the optimal resource allocation policy.

Proposition 5.2 shows that the resource allocation policy generates a
time stamp vector that dominates other resource allocation policies and in turn
can provide an execution that at least has the same throughput as executions
from other resource allocation policies. It thus prunes other resource allocation
choices for executions with the same firing sequence.

Throughput approximation:

In practice, we store the found schedule as a list with a prefix firing
sequence and a periodic part repeated forever. The total length of prefix plus
periodic part is limited due to storage constraints. Even though the state space
of an RASDF graph is finite, the execution can take a number of iterations to
reach the periodic part and the resulting schedule may exceed the constraint on
the length of the firing sequence. In order to compute throughput for an
execution that has reached the length limit and still has not reached the
periodic part during exploration, we need to compute a conservative
approximation for the throughput of the explored partial execution .

Figure 5.10 shows how to compute such a conservative approximation.
Assume the execution length limit of an exploration is iterations. We have an
execution that after its th iteration reaches a state with time stamp vector
(denoted by the grey dots in Figure 5.10), which has not been visited before

121

(not a recurrent state). Since we have to compute throughput from a periodic
part, we need to construct a periodic schedule.

Figure 5.10 Throughput Approximation

We can construct a periodic schedule by repeating the schedule from an
intermediate iteration state , denoted by black dots) to the last
iteration (denoted by grey dots) by computing the offset such that

in which and is the minimal value that satisfies
. This means that we can delay the firings of a new iteration

and use the tokens at times that are specified by the time stamp vector
(denoted by the grey dots with dashed edge) so that the execution

enters into a periodic phase. Then we can always achieve a throughput
. We can iterate the intermediate iteration state in the

execution path and estimate the approximated throughput for all of them. So
for all stored iteration states from to , we estimate the throughput based
on that state and since we know they are all lower bounds on throughput, we
keep the largest one as the throughput estimate.

Proposition 5.3:

The truncated throughput estimation is conservative, i.e., the schedule found with the
above approximation, leads to a throughput which is no smaller than the approximated
throughput.

Proof: Assume that the highest approximated throughput is
obtained from the periodic part of an execution by repeating the part that
contains iterations between the th iteration (timestamps vector) and the

iteration (timestamps vector) and adding firing delays for the

122

new iteration at the end of the th iteration to satisfy the time stamp
constraints of tokens for repeating from . The constructed
schedule is simply repeat the firing sequence of without delaying firings, i.e.,
the iteration timestamps vector is . Since the constructed schedule
never generates later timestamps vector, its throughput is no smaller than

.

5.5 Case Studies

We implemented the iteration based algorithm and tested it on two sets of
RASDF graphs, the same as the graphs used in Chapter 4, to evaluate the
iteration based approach, one set from literature and one from Océ. The
experimental setup is the same as the setup in Chapter 4. We compare the
results of the iteration based approach with the time based approach
developed in Chapter 4.

For iteration based exploration, we can also apply the bottleneck analysis
technique developed in Chapter 4. During exploration we annotate the
resource tokens with the actors that released them. If the enable time of an
actor is equal to the time stamps of data tokens outputted by or resource
tokens released by a previous firing of actor , then is dependent on . We
can build a dependency graph and do dependency analysis the same way as in
Chapter 4.

We use a grid search approach as in Chapter 4 to search all the
configurations with different iteration length and branching number. Each
configuration has a fixed time budget (here we use 1 second so that estimated
total exploration time is around a few minutes). We compare the number of
explored configurations and the Pareto points obtained. We use two
approaches proposed in [36, 177] to evaluate the quality of results. Both
approaches are explained in Section 3.6. The quality of the Pareto points
obtained from both approaches is compared using Indicator [177] and using
Average Distance to Reference Set (ADRS) [36]. The first one is typically used
to compare two different point sets while the second one is often used to
evaluate the quality of a method to approximate a known Pareto optimal front.

Figure 5.11 illustrates the Indicator for the MP3 case. In this case, we have
to scale a factor of 1.09 to ensure that the scaled time based results (red
triangles) are dominated by the iteration based results (blue stars). On the
other hand, we have to scale by a factor of 1.156 to get the scaled iteration

123

based results (blue plus) dominated by the time based results (red squares).
We can conclude that none of the results are strictly better than the other (both
scaling factors are larger than 1), but if we have to make a choice based on the
Indicator, we would prefer the iteration based set for this case.

As explained in Chapter 3, in ADRS, the average distance (distance function
is user defined) of Pareto points to each Pareto point in the reference set is
measured. In our experiment, the combined results of the two approaches are
used as the reference set. For example, the three green circles in Figure 5.11 are
the combined results of the two approaches and are used as points of the
reference set. For every point in the reference set, we compute the minimal
distance to the points in the selected set. The distance between two points
and is defined as the maximal positive ratio of distance change compared to

in the reference set among all objective dimensions, i.e.,

. For example, we can compute the ADRS of the

iteration based approach as follows. For two reference points, which overlap
with the points in the iteration based approach, the minimal distance is 0. For
the left upper green circle, the minimal distance of a point to it is 0.0929. So the
ADRS is (0.0929+0+0)/3=0.031.

Figure 5.11 Comparison of trade offs of MP3 with one shared buffer

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8
x 106

Shared Buffer Size

C
yc

le
s

pe
r I

te
ra

tio
n

Trade-offs in MP3

time-based
iter-based
scaled-timed
scaled-iter

I (iter,time)=1.09

I (time,iter)=1.56

124

Since both approaches do not fully explore the design space of large
examples, they may miss optimal points. The iteration based approach cannot
exploit the interleaving of iterations (see Figure 5.6), i.e., firings in earlier
iterations must use the resources before the corresponding firings in later
iterations. The time based approach can in principle exploit the opportunity of
interleaving iterations. However, in practice, the size of the state space that can
be explored is limited. As the size of the state space grows rapidly with the
length of an iteration and slows down the exploration, the iteration based
approach typically completes faster than the time based approach. Tables 5.1
and 5.2 show the comparison between iteration and time based approaches.
Table 5.1 shows the trade off analysis results for the printer architecture case
study provided by Océ. Table 5.2 includes a set of dataflow graphs from
literature with different buffer sharing configurations.

Arch 1 Arch 2 Arch 3
No. of Pareto Points (time based) 5 9 9
Conf No. (time based) 147 66 137
Exec Time (time based) (s) 144.6 65.4 134.8
No. of Pareto Points (iter based) 8 5 13
Conf No. (iter based) 60 6 57
Exec Time (time based) (s) 9.3 1.0 15.4
(time,iter)/(iter,time) 3.0/1.092 2.0/1.811 2.137/1/075

Exec Time Reduction 94% 98% 86%
Table 5.1 Iteration based approach vs. time based approach for printer architecture

In both tables, we compare the number of Pareto points found and the
number of configurations explored by both approaches. The execution time
and quality of results are compared. Since there is no reference set of Pareto
points, in this first comparison, we only use the Indicator as the quality
indicator.

125

Bipartite
M
odem

Sam
ple

R
ate

M
P3

Satellite
H
.263

(Q
C
IF)

N
o.ofShared

buffers
1

2
1

3
1

3
1

3
1

3
1

2
N
o.ofPareto

Points
(tim

e
based)

7
8

4
1

6
2

2
4

1
1

2
3

N
o.ofC

onf(tim
e
based)

10
69

30
34

15
250

9
104

11
27

65
43

Exec
Tim

e
(tim

e
based)(s)

7.8
1.7

29.7
6.7

15.3
47.9

9.3
57.2

11.4
27.4

60.9
30.9

N
o.ofPareto

Points
(iterbased)

7
8

4
1

3
2

4
2

2
3

1
1

N
o.ofC

onf(iterbased)
10

91
11

34
15

250
9

106
9

9
3

4
Exec

Tim
e

(iterbased)(s)
6.7

2.2
7.2

1.7
8.9

37.0
9.5

11.3
21.4

64.2
2.7

0.7

(tim
e,iter)/(iter,tim

e)
1/1

1/1
1/1.0625

1/1
1.024/1.035

1/1
1.156/1.09

1.156/1
1.019/1

1.019/1
1/1.074

1/2
Exec

Tim
e
R
eduction

14%
30%

75%
75%

60%
23%

2%
80%

87%
134%

95%
98%

Table
5.2
Iteration

based
approach

vs.tim
e
based

approach
forgraphs

in
literature

126

We see in our experiments that a considerable exploration time reduction is
obtained in 11 out of 15 cases (3 printer architecture cases plus 12 multimedia
related dataflow graphs) and new Pareto points are found with the iteration
based approach in 8 cases. Also in 8 cases, however, the time based approach
yields Pareto points not found by the iteration based approach. For 4 use cases
(Bipartite with two shared buffers, MP3 with one shared buffers, and two
Satellite cases), the exploration time reduction is negative. This is due to the
exploration in iteration domain at least having to explore two iterations to
identify recurrent states if approximation is not used while the exploration in
time based domain may find recurrent states earlier before two iterations are
finished.

There does not seem to be a systematic way to predict which of the
approaches performs better in specific cases. The two approaches do
strengthen each other. Running both analyses yields the best results, as
illustrated for example in Figure 5.12.

Table 5.3 compares the combined approach with both individual, iteration
based and time based, approaches. We can use the combined results as
reference set and evaluate the ADRS quality indicator. The combined approach
obviously dominates the two individual approaches quality wise, with
acceptable execution times ranging from a few seconds to just over 2.5 minutes.
It suggests that in trade offs analysis, we can combine both methods to obtain
better results.

5.6 Summary

In this chapter, we investigate the trade off analysis in RASDF schedules from
a different angle when compared to the time based analysis in Chapter 4: the
iteration based statespace exploration approach. We exploit the consistency of
RASDF graph and dominances of time stamp vectors of the iteration based
execution to explore the state space on an iteration by iteration basis. The
experimental results on our RASDF graphs show that the new iteration based
approach and the traditional analysis in the time domain complement each
other. The new approach finds new trade off configurations not found by the
traditional approach in 8 of 15 cases and it is often faster. Combining the two
approaches is feasible and yields the highest quality results. The iteration
based approach allows for easy modeling of dynamic execution time changes
between iterations, as in SADF graph. In the next chapter, we discuss the

127

adaption of our iteration based analysis for input dependent RASDF graph, i.e.
SARA SDF graph.

128

Bi
pa
rt
ite

M
od
em

Sa
m
pl
e

R
at
e

M
P3

Sa
te
lli
te

H
.2
63

(Q
C
IF
)

A
rc
h

1
A
rc
h

2
A
rc
h

3
N
o.
of
Sh
ar
ed

bu
ff
er
s

1
2

1
3

1
3

1
3

1
3

1
2

Tr
ad
e
of
fs
N
o.

(c
om
bi
ne
d)

7
8

4
1

5
2

3
2

2
3

2
3

10
14

18

Ex
ec
Ti
m
e

(c
om
bi
ne
d)
(s
)

14
.5

3.
9

36
.9

8.
4

24
.2

84
.9

18
.8

68
.5

32
.8

91
.6

63
.6

31
.6

15
3.
3

66
.4

15
0.
2

(it
er
,c
om
b)
/

(c
om
b,
ite
r)

1/
1

1/
1

1.
06
25
/

1
1/
1

1.
03
5/

1
1.
04 /1

1.
09
/1

1/
1

1/
1

1/
1

1.
08
/

1
2/
1

1.
09
2/

1
1.
81
/1

1.
05
/1

(ti
m
e,
co
m
b)
/

(c
om
b,
tim

e)
1/
1

1/
1

1/
1

1/
1

1.
02
4/

1
1/
1

1.
16
/1

1.
16 /1

1.
02 /1

1.
02
/

1
1/
1

1/
1

3.
0/
1

2.
0/
1

2.
14
/1

A
D
R
S(
tim

e,
ite
r)

/(i
te
r,t
im
e)

0/
0

0/
0

0/
0.
15
6

0/
0

0.
00
6

/0
.0
19

0/ 0.
04

0.
09
/

0.
03
1

0.
08 /0

0.
01 /0

0.
01
3/

0
0/

0.
03
7

0/
0.
03
6

0.
39
/

0.
01
6

0.
26
5/

0.
31
0

0.
30
/

0.
01

Ta
bl
e
5.
3
C
om
bi
ne
d
ap
pr
oa
ch
vs
.t
im
e
ba
se
d
an
d
ite
ra
tio
n
ba
se
d
ap
pr
oa
ch
es
fo
rg
ra
ph
s
in
lit
er
at
ur
e

6 PLAYING GAMES WITH SARA SDF

“…beautiful mathematics eventually tends to be useful,
and useful mathematics eventually tends to be beautiful.”

Carl D. Meyer

6.1 Introduction

Emerging streaming applications have to adapt to environmental changes for
implementation efficiency. Environmental awareness enables systems to
achieve higher performance and lower resource usage in comparison to
implementations without such environmental awareness. By knowing
information such as the bits allocation needs of macro blocks in MPEG4 [3], or
the network status in a wireless sensor network [48], or the environment and
internal state of a cognitive radio system [104], system designers can achieve
better designs such as achieving better perceptual quality with stable buffer
levels, or an optimal flow rate for the network, or a flexible and autonomous
next generation communication network. Many streaming applications show
data dependent behaviors, i.e., their execution times and resource usages are
highly dependent on the properties of the input, which implies that we can
utilize these properties for better implementation.

At the same time, advances in computer engineering allow both software
and hardware to adapt their own behaviors at runtime in response to changes
in the environment. For example, software can change its scheduling policy
and grant resources to tasks in different orders while hardware can adapt its
processors’ voltages and frequencies, i.e., so called Dynamic Voltage and
Frequency Scaling (DVFS) [38, 120]. Progress in programmable hardware
allows hardware implementation changes at runtime, with some overhead. For
example, by downloading different bit streams at runtime, reconfigurable
computing platforms can dynamically configure their FPGAs with different
functionalities optimized for their corresponding input data [32].

To summarize, an adaptive system has the following two features: detecting
changes of the environment (cognitive ability) and adapting its
software/hardware aspects accordingly in time for efficiency
(reconfigurability). As a result, the design of an adaptive system needs to
answer the following two questions: “How to model the environment change?”

130

and “How to reconfigure software/hardware to guarantee design objectives in
response to the given environment change?”

To answer the first question, we can use the fact that the properties of input
data can be known beforehand and that these properties are embedded into the
input data as metadata. Hence, we can model the environment changes with
Markov Chains [151] or FSMs [59]. For example, in the MPEG 2 standard, the
input image frames of a decoder can be identified as I frames, P frames or B
frames respectively. For raw input without embedded information that helps
identification, we can use techniques such as machine learning to classify them.
Classification and detection of input data is studied extensively in literature [66,
103, 158]. We assume that we can capture (if necessary, over approximate) the
environment changes with a finite state machine (FSM). Here we mainly focus
on the second question using a throughput target as our design objective.

We use the model introduced in Chapter 2, i.e., SARA SDF graphs, to model
the system with dynamic input. The input types are represented by scenarios
and captured by the scenario FSM in a SARA SDF graph. Input sequences and
the state changes of a system are captured by the scenario sequences that are
encoded by the scenario FSM. For different input scenarios, the controller of a
system fires different actors and allocates different amounts of resources, such
as processors and buffers. The reaction of the controller to different scenarios
may lead to different processing times for different inputs. The interaction
between the system and its environment is modeled as a formal, so called
mean payoff game. In such a game, a good controller corresponds to a player
in the game with a winning strategy, i.e., a way to react to different inputs and
achieve a given throughput constraint. The strategy can be captured by an FSM
whose transitions correspond to a reaction of the controller. On the one hand,
finding a winning strategy becomes finding an FSM, i.e., synthesizing a
controller, that satisfies the throughput constraint. This is a controller synthesis
problem. On the other hand, the winning strategy of an environment is the
worst case input of the system. Based on this model, we solve both the
controller synthesis problem under resource and throughput constraints as
well as the worst case environment identification problem.

To give some intuition for the question that we are trying to answer, i.e.,
how to synthesize a controller that satisfies a given throughput constraint, it is
useful to walk through an example.

131

6.2 An Illustrative Example

Assume an application with four actors and data dependencies among
those actors. The parameters of actors, i.e., execution times and data/resource
rates, are dependent on the type of application input and are represented as
scenarios: . The four actors use the same resource with using two units
at a time. Figure 6.1 shows the RASDF models for two possible types of input
respectively, while the execution times of the actors, the amount of resources
and the data/resource rates are annotated with the models. (Rates equal to 1 are
omitted for clarity.)

a,2

b,4

c,2

R,2

d,22

2

(a) Input (b) Input
Figure 6.1 RASDF model under two different types of inputs

It is not very hard to see that, in (a), actors and cannot be executed in
parallel since the resource constraint of does not allow this to happen. So the
schedule of the RASDF model under input (i.e., the execution order of actors
and) can be reconfigured based on the context (the two options are shown

in Figure 6.2). In this example, reconfiguration means a change of the execution
order of conflicting actors, i.e., changing the schedule.

(a) Schedule (b) Schedule
Figure 6.2 Different schedules of the example application under input

132

In general, a system can reconfigure many properties to adapt its behavior.
Besides adapting its schedule to different scenarios, it may for example change
the frequency and voltage, or resource allocation. We assume that the changes
of behaviors after reconfiguration can be modeled as changed execution times
and data/resource rate changes in RASDF. We call the entity that determines
when to execute changes of behavior the controller. We model the behavior of
RASDF graphs under different input types together as a SARA SDF graph (see
Section 2.5) with parameterized execution times and data/resource rates. Figure
6.3 shows the SARA SDF graph of the example application of Figure 6.1 that
captures system behaviors with both input and input .

Scenarios Rates Execution Times Status
x y
1 1 2 4 2 enabled
2 0 3 2 6 disabled

Figure 6.3 SARA SDF graph of the running example

The design objective, i.e., throughput of the example application, is
determined by the combination of inputs and the schedules of the application
together. To determine the obtainable throughput of the system, we have to
consider the roles of both inputs and schedules. The question that we have to
answer contains the following three sub questions.

What is the highest throughput that we can obtain no matter what
input sequence is encountered?

133

What is the best strategy of the controller to reconfigure the system to
obtain the highest throughput?
What is the worst possible input sequence of the environment that we
can have no matter what policy we use to configure system?

In this chapter, we approach the answers to these questions from a game
theoretic point of view. Figure 6.4 illustrates the approach. The problem is
viewed as a game played by two players: environment and controller. The
environment player decides on the input sequence that feeds into the system
while the controller player decides the schedule for every input. The worst case
situation refers to when the input sequence leads to the lowest throughput no
matter how the controller reacts to it. The goal of controller player is to
maximize the throughput while the ‘goal’ of the environment player is to
minimize it (for worst case analysis). Since we cannot really decide inputs for
environment, we put ‘goal’ in quotes.

Figure 6.4 Game theoretic view interpretation of embedded system design

134

Figure 6.4 shows the design problem in three different views:

In the physical view, a designer has to design an embedded system that
processes a sequence of different types of input data. The performance
requirement gives a throughput constraint that must be satisfied. Since the
concrete sequence of types of input data is not predictable at design time, a
designer has to design a controller that, for reason of efficiency, can control or
reconfigure the system parameters such as scheduling or resource allocations
based on the type of input data encountered.

In the model view, the system itself is specified as an operational model (a
parameterized RASDF graph) and the types of data (scenarios) that it supports,
i.e., as a SARA SDF graph. The goal of the designer is to synthesize a controller
that reconfigures the system based on the encountered input, while satisfying
the throughput constraint. The possible input sequences are captured by the
scenario FSM in the SARA SDF. The controller is also modeled as an, initially
unknown, to be determined, FSM that gives schedules or configurations based
on the current input and history of inputs.

Intuitively, we can interpret the interaction between two FSMs: scenario
FSM and controller FSM as a game played between the environment player
and the controller player. We call this the game view, and use knowledge of
game theory to quantitatively analyze the SARA SDF graph and synthesize a
controller that is guaranteed to meet the throughput constraint.

To summarize, the problem is to find a winning strategy for the controller
player (a controller FSM) to satisfy the throughput constraint of the embedded
system no matter what its environment player (a scenario FSM) does, i.e., no
matter what sequence of input data types are encountered.

In the following section, we briefly introduce some basic concepts of game
theory, required for our approach.

6.3Preliminaries of Game Theory

Game theory was originally developed as a mathematical tool to analyze
games and economic behavior. Since then, it finds wide application in
economics, communication, control and many other scientific disciplines where
the interaction among multiple parts plays a central role in system behaviors.
For embedded systems, by definition, the environment plays an important role.

135

With the advance of reconfigurability in embedded systems, game theory also
became increasingly relevant in design and analysis of the interaction between
environment and components of the platform [3, 48]. We briefly introduce
some basics of game theory in this section that relate to the problem that we are
interested in. For more mathematical backgrounds on game theory, we refer to
[125].

A game [115] is a decision process that involves multiple decision makers,
so called players. The outcome of the game is determined by the actions of the
players. The strategy of a player is a procedure or function that decides his
response to the actions of other players during the game. Normally, we attach
some rewards to the actions of players, and call it the payoff of the action. A
game is called non cooperative [114] if players make decisions independently.
A zero sum game is a, typical non cooperative, game in which the sum of the
payoff of players in the game is zero. The combination of strategies of all
players in the game is called a joint strategy of the game. For a multiple player
game, if no player can achieve higher payoff by unilaterally switching to
another strategy, the joint strategy of the game is called aNash equilibrium.

A turn based game assumes players make moves by taking turns one at a
time. In our context, we assume the environment and controller play a turn
based game and the environment is the first player to make a move.

The task of synthesizing a controller for a system with desired throughput
can be viewed as a turn based game of infinite duration between two players:
the environment player that provides different types of input and the
controller player that configures the system with different schedules or other
parameters in response to input observed. The winning condition of the game
is given by the system specification. The goal is to find a strategy for the
controller such that all sequences of inputs and configurations that can be
produced according to the strategy satisfy the specification. The strategy itself
can be seen as an implementation of the controller, i.e., the controller
implementation always follows the actions decided by the winning strategy.
For our kind of embedded systems, since environment and controller take their
actions independently, the game is classified as a non cooperative game.

Use of games as models for analysis and synthesis problems first occurs in
[21], in which a specification is translated into a deterministic automaton and
the circuit synthesis problem to the computation of a strategy on a finite game

136

graph. Here, we use a very similar approach, i.e., we translate the controller
synthesis problem to finding a winning strategy for a well known game, a so
called mean payoff game on a bipartite game graph.

Definition 6.1: Bipartite game graph

A bipartite game graph is a tuple that consists of a set
of environment vertices, a set of controller vertices, a set of action edges

where , i.e., a set of edges from environment vertices
to controller vertices, and , i.e., a set of edges from controller
vertices to environment vertices, a starting vertex and a payoff function

. The sets and are disjoint. We use to denote the set
of all vertices.

A play on bipartite game graph is a sequence of vertices, such
that for all and a finite play with length is denoted
by .

In a bipartite game graph, we define the payoff function of player on the
th edge as follows:

where is environment player or controller player .

We use to denote the total payoff of a player in the
play . We are interested in plays of infinite duration (for streaming
applications, we assume the input is infinite). Therefore, we assume that each
vertex has at least one successor. For an infinite play sequence , the total
payoff of the play need not converge and may be growing forever for
increasingly long prefix of . Therefore, instead of total payoff, we are
interested in themean payoff

Definition 6.2: Mean Payoff Game

A mean payoff game is a game that is played by two players on a bipartite game
graph and both players try to maximize the eventually lower bound of their
mean payoffs in the game.

137

A strategy for the environment player in bipartite game graph is a
function (is the set of all finite prefixes of plays) and such that

in which is the history of visited vertices during the play and is
the current vertex. The strategy for the controller can be defined symmetrically
by swapping and . In many cases, a simple strategy that only depends on
the current position, i.e., can already be optimal. Such a strategy is
called a positional strategy and sometimes also called a memory less strategy.

We have introduced the required basic concepts of game theory and mean
payoff games. In the next section, we show the link between the game and the
controller synthesis problem that we want to solve for SARA SDF.

6.4 Translation to a mean payoff game

In Figure 6.5, there are two scenarios, and . For scenarios and , the
repetition vectors are and respectively. Figure 6.5
shows an execution of the running example for scenario sequence ,
in which the axis represents time, and the axis is for resource tokens,
denotes the completion time of the th iteration and denotes the latency
between two consecutive iteration completion times. We use a state based
execution model from the iteration view (see Chapter 5) to capture the
execution of a SARA SDF. Every channel or resource token has a time stamp
which represents the time instant it was produced or released. The time stamps
of all tokens at the end of an iteration are collectively captured by a time stamp
vector representing the state. For example, the time stamp vector for each
iteration in the example execution in Figure 6.5 is denoted by circles annotated
with their iteration numbers. This gives us time stamp vectors (similar to
dater functions in timed Petri nets and the time stamp vectors of SADF).

Figure 6.5 An Execution of Example SARA SDF

The time stamp vector together with the scenario FSM state , are used as
the iteration state of a SARA SDF graph. The time stamp vector includes the

138

available times of all tokens while the scenario FSM state specifies all
admissible inputs. An iteration state is thus denoted by a pair . The time
stamps of all tokens in the initial state are zero.

The exploration of an iteration state space of a SARA SDF graph can be
listed as the following three steps.

Scenario selection and initialization: Before every new iteration of a SARA
SDF graph, one of the transition edges in the scenario FSM is selected (scenario
selection) and its corresponding scenario parameters are used to instantiate the
RASDF graph (initialization).

Intra iteration exploration: For each instantiated SARA SDF graph, i.e., an
RASDF graph, we can compute the repetition vector of the selected scenario
and the scheduling of actor firings in the iteration following the rules given in
the RASDF graph for iteration based exploration in Chapter 5. For a given
execution according to a specific scenario sequence, we use to denote
the time stamp vector after the th iteration. We use to denote the
schedule applied by the controller during the th iteration by means of the
effect it has on the state, in the form of an operator such that .
From initial state of a SARA SDF graph, we have to anticipate every
possible scenario that accepts (for which it has a transition) and explore
different schedules inside one iteration for each scenario. This generates
different new iteration states.

Figure 6.6 shows the part of the iteration state space corresponding to the
example execution in Figure 6.5. For example, at the initial state, all tokens are
available at time 0 and it is in state of the scenario FSM which accepts both
input types and . The environment player gives input type and the
controller decides to use schedule and the completion time compared to the
start is 11.

Recall the maxplus algebra notations that we used in Chapter 5.
denotes the maximal time stamp in , which captures the completion time

of the schedule for the th input. The latency of the th iteration is the
completion time difference between and , i.e., . In the
example execution, the normalized vector of is the same as the normalized
vector of , i.e., and they have the same input state .
Therefore the schedule results in a back edge from to .
The cycle in the state space allows for a periodic execution

139

. We will see that best and worst case performance is found
on such cycles in the state space.

Figure 6.6 Part of the iteration state space for the example execution

Checking recurrent states and approximation: For every new generated
iteration state, we will check it with the previously generated iteration states to
avoid redundant exploration. If the current iteration state after normalization
equals the normalization states of some already existing state, there will no
further exploration on this visited state. Then the exploration backtracks to the
previous state and tries to explore other possible input scenarios until all
scenarios that that previous state accepts are tried. If a predefined iteration
limit is reached and no recurrent states are found, a similar approximation to
that in Chapter 5 is used to approximate some visited iteration state. The only
difference here is that the approximated state needs to have the same scenario
state as the current state.

By this process, we can construct the iteration state space of a given SARA
SDF graph. Figure 6.7 shows the whole iteration state space of the running
example. Due to different schedule possibilities, there are multiple different
execution paths from the same iteration state, e.g., can select either schedule

or schedule for input type .

140

Figure 6.7 Iteration state space of the running example.

Like the throughput computation in Chapter 5, we can also compute the
throughput of an execution of a SARA SDF graph from its state space. Given a
SARA SDF graph and some execution , the
throughput of is, as usual, defined as the infimum limit of the number of
iterations completed, divided by their completion time, or equivalently, as the
reciprocal of the average latency, i.e.,

The throughput of the execution with periodic input scenario sequence
in Figure 6.5 is .

The throughput of a system depends on the choices of the controller. Let
denote all possible controllers of a given SARA SDF graph, and let be a
particular controller. The throughput of controller is defined as the infimum
(worst case) of throughputs of all executions that are generated from arbitrary
input scenario sequences, denoted by .

141

Then, in turn, we can define the throughput of a SARA SDF graph as
the best possible throughput any controller can achieve, the supremum of the
throughputs of all possible controllers of .

Note that, although the use of supremum suggests that a controller
achieving the throughput need not exist, we will see in the following part that
it always does.

Input scenarios and controller decisions thus form opposing forces that in
their interaction determine the actual throughput. In the following, we
explicitly model this in order to synthesize an optimal throughput controller
that responds to different scenarios and to check whether it can satisfy the
given performance constraints using the shared resources.

We use the latency of an iteration, i.e., , as the payoff of the environment
move (while is the corresponding payoff of the controller move), then the
average latency of an execution (the reciprocal of the throughput) is the mean
of the payoffs of all iterations in a play of the game.

Figure 6.8 Bipartite game graph

142

Figure 6.8 shows the bipartite game graph constructed from the iteration
state space of the running example (we explain below how it is constructed).
The operation of a system controller on a given (infinite) input sequence can be
viewed as a play of the game with infinite duration between two players on the
graph: one iteration in an execution is one round of the game that includes an
environment turn and a controller turn. The environment player (circular
nodes) provides types (scenarios) of input (outgoing edges annotated with
scenarios) and the controller player (square nodes) configures the system with
different settings, schedules or other parameters (edges annotated with the
corresponding schedules and with resulting latencies).During the state space
exploration, we create a new environment node for every new iteration state
that we encounter and label the new node with the iteration state (normalized
time stamp vector and state of the scenario FSM). For every environment node,
and each possible next input scenario from that state, a new controller node is
created with an edge between the environment node and the new controller
node, annotated with the selected input type. Next, we perform an intra
iteration exploration in which we explore different scheduling possibilities. For
every new schedule found, we compute the normalized time stamp vector at
the end of the iteration and check recurrence with existing environment nodes.
An edge is created between the controller node and a newly created or
revisited node. The edge is labeled with its schedule and the latency of the
iteration. Note that it is not necessarily optimal to simply select the schedule
with the smallest latency as the resulting end state may have a negative effect
on future behavior.

6.5 Solving the mean payoff game

Once the bipartite game graph is built, we can analyze it. For a mean payoff
game, the adversarial environment player wants a strategy to maximize the
average payoff per move, i.e., maximize average latency, no matter how the
controller player reacts, i.e., no matter which schedule policy is chosen, the
average latency is the largest. (Recall that this player’s ‘desire’ to win and play
an optimal strategy captures worst case environment behavior. We do not
assume that the environment providing input data has any real intention to
lower throughput.) At the same time, the controller player wants to minimize
the average loss per move, i.e., minimize average latency, no matter how the
environment player reacts, i.e., no matter what type of input is given, the average
latency is minimal. In a nutshell, both environment player and controller

143

player do not want to change their policies unless both sides change together,
i.e., they reach a Nash equilibrium.

For controller synthesis, we prefer to find a strategy that only depends on
the current state and not on the history of previous states, i.e., a positional
strategy on the bipartite game graph. It is shown in [46] that there exist optimal
positional strategies for both environment and controller to obtain a Nash
equilibrium point with some mean payoff [114]. And [180] shows the time
complexity to find such an optimal positional strategy. So the optimal strategy
of the controller to obtain maximal throughput, i.e., the reciprocal of the mean
latency, is found by solving the mean payoff (i.e., mean latency) game. We use
the algorithm from [42] to synthesize such an optimal positional strategy. The
algorithm works by means of a process called policy iteration that has been first
used in finding optimal policies for Markov Decision Processes (MDP). The
steps of the policy iteration algorithm are illustrated in Figure 6.10 for the
example bipartite game graph in Figure 6.8 and are as follows.

Step 1 (Initialization): First, we initialize a randomly selected environment
strategy and a randomly selected controller strategy on the bipartite
game graph, i.e., each node of the environment and controller players
randomly select exactly one outgoing edge as their next move for a given
location. . The red edges are the moves of the environment player while the
green edges are the schedules of the controller player (black edges are non
preferable actions of players. (see Figure 6.10 (a)).

Step 2 (Performance evaluation): After initialization, we traverse the game
graph by following the initialized input types and schedules in depth first
search (DFS) manner. The DFS is started from all the nodes without any
incoming strategy edges. Since the number of nodes in the game graph is finite
(Recall that the iteration state space of an RASDF graph is finite) and every
node has a unique successor node when the strategies are being followed, we
always end up in a cycle using DFS from which we can compute the cycle
mean, denoted by , i.e., the mean payoff (1/throughput) of the chosen
environment controller joint strategy. The larger is, the lower the throughput
is. The goal of the controller player is to obtain the maximal throughput, i.e.,
the minimal while the goal of environment player is to obtain the minimal
throughput, i.e., the maximal . We annotate the first found revisited node
during DFS with a pair of numbers in which is the offset to reaching the
cycle mean from the annotated note and is the cycle mean of the cycle

144

reached. Since the revisited node is the first node to be annotated, the offset to
the cycle mean is zero.

Step 3 (Value Propagation): We propagate the computed cycle mean (average
latency) of a cycle to all nodes that will reach the cycle, in a reversed order, i.e.,
start from the revisited node and visit parent nodes in a DFS manner. Nodes
obtain the same throughput if they can reach the same cycle, since they have
the same cycle mean. The delay for controller node is computed by

in which is the offset of , i.e., the successor node of and
is the latency attached to the edge between and . The offset for

environment node is equal to the delay of its successor controller node since
it only decides on input. Figure 6.9 shows an execution given by Figure 6.10 (c)
that starts from controller node and repeats between and for input
sequence . It is not hard to see that the offset to the cycle mean of each
controller node is the vertical distance between controller node and the dashed
line where the slope of the dashed line is the cycle mean. The propagation of
the cycle mean and delay ends when all nodes are updated.

Figure 6.9 An execution given by bipartite game graph

Step 4 (Environment policy iteration): After value propagation, we start to
iterate the environment policy. If the environment node can obtain a better
payoff (larger cycle mean or equal cycle mean but with larger offset which
leads to larger latency of one iteration), by changing input type, it will change
its strategy, i.e., it will select the outgoing edge that leads to the larger cycle
mean or higher delay. Note that, the larger cycle mean has higher priority than
offset. Only when the cycle means to possible successors are equal which

145

means they can reach the same throughput, then the offsets start to play a role
in strategy choosing (see Figure 6.10 (d)).

Step 5 (Controller policy iteration): When the environment strategy does not
change anymore, and is optimal for the given controller strategy, we start to
evaluate the strategy of the controller. If a controller node can obtain better
payoff (i.e., smaller cycle mean, then less delay) by changing its scheduling
strategy, it changes it policy and chooses the schedule explored during
iteration state space exploration that can reach less cycle mean or equal cycle
mean but with less delay. When no controller nodes can improve their decision
anymore, we find the best controller strategy for the current environment
strategy (see Figure 6.10 (f)). We repeat the steps 2 to 5 until neither controller
nor environment player can improve their own strategies (see Figure 6.10 (g) to
6.10 (i)). This must eventually happen and we reach a Nash equilibrium of joint
strategies for both environment and controller players (see Figure 6.10 (j)).

(a) Initialization (b) Performance evaluation

(c) Value propagation (d) Environment policy iteration

146

(e) Performance evaluation &
Value propagation

(f) Controller policy iteration

(g) Performance evaluation &
value propagation

(h) Environment policy iteration

(i) Performance evaluation &
value propagation

(j) Nash equilibrium

Figure 6.10 Policy iteration on a bipartite game graph

147

The controller obtained for the example graph is given in Figure 6.11.
Figure 6.12 gives all the schedules executed by the controller in response to
input from the environment. The grey blocks in figure denote the state before a
new input arrives. For example, when the controller received input with type
at state , it would choose schedule that starts firing before firing
instead schedule that starts firing before firing . If both environment and
controller follow their optimal strategies, they enter into a cycle, i.e.,

. The guaranteed throughput of this controller is (the cycle
mean of the cycle) under the worst case input sequence . Note that the
controller strategy also specifies schedules in response to non worst case input
scenarios.

Figure 6.11 Synthesized controller of the running example

(a) M1 (b) M2

148

(c) M3 (d) M4

(e) M5 (f) M6

(g) M7 (h) M8

(i) M9 (j) M10

Figure 6.12 Synthesized controller of the running example

6.6Case Studies

We implemented the proposed approach and tested it on four applications that
are specified as SARA SDF graphs and we have synthesized their controllers.
The first test graph is the SARA SDF running example detailed in this chapter.
The others are a system specification of an MP3 decoder application, a system
specification for an MPEG 4 SP decoder, and a system specification of a printer
image processing pipeline taken from a real industrial case study. The PC used

149

for the experiments is a 64 bit Linux system with an Intel 2.8GHz CoreTM i7
with 8GB memory.

Table 6.1 shows the experimental results of the controller synthesis for four
cases. The SARA SDF graphs are shown in the appendix. We use similar
techniques to those in Chapter 5 to prune the design space. Limits were
imposed on the iteration depth and on schedule branches to reduce the size of
the iteration state space, and therefore also the size of the synthesized
controller. The synthesized controllers can reach the throughputs given in the
table. The throughput results are optimal. For MP3 and MPEG 4 SP, the
synthesized controllers reach the same throughputs as we know from [62].
MPEG 4 SP has a long exploration time due to its large repetition vectors
(many actor firings need to be scheduled in each iteration). The execution time
results show that the algorithm spends most of its time on constructing the
game graph and that the controller synthesis part is only a small fraction of the
total analysis time. A more efficient game graph construction method would be
a beneficial future development. Note that the refinement of execution times
with smaller time units and the involvement of more resources will lead to a
larger state space size.

Example MP3 MPEG 4 SP Printer
Iteration depth limit 2 3 3 5
Branching limit 4 4 4 4
State space size 4 309 26 609
Game graph size 12 1854 260 3654
Graph construction time (ms) 409 126387 224927 74881
Synthesis time (ms) 1 36 5 89
Throughput

Table 6.1 Controller synthesis results

6.7Related work

The work in this chapter has developed based on integrating results from the
following three fields: decision and game theory, max plus algebra and
automata theory or more specifically dataflow models.

The game we investigated can be classified as a non cooperative game, as
introduced by John Nash [114]. Our environment and controller converge to
fixed policies that represent a Nash equilibrium point, which means neither

150

can improve their strategy on the current opponent strategy. [46] introduces
mean payoff games and shows the existence of optimal positional (memory
less) strategies. Our throughput game is modeled as a so called infinite mean
payoff game with perfect information. [180] investigates the complexity of
solving mean payoff games and shows the complexity is in NP co NP by
reducing it to a simple stochastic game. Karp’s algorithm [94] can be used for
playing against a known positional strategy, which amounts to computing the
maximal cycle mean (MCM) of the game graph.

The technique of policy iteration was invented by Howard to solve
stochastic control problems [82], so called Markov Decision Processes [12].
Later, it was generalized to stochastic games [80]. However, the generalization
requires strictly positive transition probabilities and cannot be directly applied
to deterministic games. The applications of policy iteration to deterministic
games appeared later in the study of min max functions [28, 53, 73, 74].

A game theoretic approach is also widely used in controller synthesis for
automata. The approach using games as a model for the synthesis problem has
been proposed in [21] in which the specification is translated into a
deterministic automaton. The synthesis problem is reduced to the computation
of a strategy on a finite game graph. Priced timed automata [126], for instance,
are used to model costs and real time constraints and it is shown that the
problem of finding a winning strategy can be modeled as a reachability
problem.

In the study of control theory, max plus algebra [6] is widely used in
performance analysis of systems with synchronization primitives, such as
timed Petri nets [52, 54, 55]. Heaps of Pieces is a model that combines Max
plus analysis and automata for performance analysis [52, 55]. Spectral analysis
techniques [6, 29, 54] are used to analyze the asymptotic timing behavior of
such timed Petri nets. [28, 29, 42, 53] provide practical algorithms for spectral
analysis, to compute the max cycle means of graph which are faster than
Karp’s algorithm in practice.

SDF is a special subclass of Petri nets (corresponding to Weighted Marked
Graphs) and the data and resource consistency can be expressed as place
invariants of Petri nets. [151] introduces scenarios of dataflow behavior in
SADF graphs using Markov Chains and introduces state based methods to
analyze performance. [13] introduces parameterized SDF graphs for functional

151

analysis of different scenarios. [62] utilizes the iteration concept and uses max
plus algebra and max plus automata to analyze the performance of SADF
graph in worst case scenarios.

The work described in this chapter proposed a new dataflow model, i.e., so
called SARA SDF to model streaming applications with dynamic inputs and
resource sharing. By reducing the controller synthesis problem to a mean
payoff game on a bipartite game graph converted from the iteration state space
explored, we can directly use the algorithm developed in [30, 42] to find the
Nash equilibrium, i.e., giving the throughput and strategy for both controller
and environment.

6.8Summary

The chapter introduces a new design approach from a game theoretic
viewpoint to tackle the controller synthesis problem of an embedded system
with dynamic inputs. The novelties of our method are the following: modeling
of dynamics in resource sharing streaming applications, and capturing the
environment controller interaction as a mean payoff game, yielding a method
to synthesize a throughput guaranteeing controller and to identify the worst
case situation of scenarios. The experimental results show synthesis results; the
controller synthesis time is only a small fraction of the construction time of the
game graph. Faster construction of the game graph by limiting the scheduling
options or iterating known scheduling techniques will be investigated in the
future. Analyzing each scenario separately and combining their iteration state
space together to generate a game graph can be a very good candidate
approach. The adversarial environment player can be replaced by a stochastic
environment player; the game then becomes a stochastic game that can be used
to analyze average performance of a system with known input distribution.
Existing results for Markov Decision Processes and reinforcement learning can
be investigated for this type of game. This chapter and the discussion of related
work show strong links among studies in game theory, max plus algebra and
automata models such as SDF. Since the future of embedded system design
will be challenged by more and more dynamic environments, a systematic way
of applying the results of the three fields to tackle the challenges seems very
promising.

152

7 CONCLUSIONS AND OUTLOOK

“The philosophers have only interpreted the world; the point is to change it.”

Karl Marx

In this chapter, we give our conclusions on our work and discuss interesting
future work directions.

7.1 Conclusions

The better your understanding about your system, the more efficient system
you can design. In order to design streaming applications efficiently, we have
to take the context of these streaming applications into consideration, i.e., the
resource constraints on them and the inputs for them, For this reason, we
explicitly model resources and inputs with Synchronous Dataflow (SDF)
graphs and introduce two new variants of SDF graphs in this thesis: Resource
Aware SDF (RASDF) graphs and Scenario and Resource Aware SDF (SARA
SDF) graphs. By carefully choosing the operational semantics, i.e., fixed rates
for resource production and consumption and the timing properties for RASDF
graphs and SARA SDF graphs, the consistency and iteration concept known
from SDF graphs are preserved into the new models.

This thesis studies the Design Space Exploration (DSE) problem, i.e., how to
find non Pareto dominated design points (so called trade off points) in a multi
dimensional metric space, for a streaming application system modeled by
RASDF graphs. Throughput and resource usage are chosen as two metrics for
trade off analysis of a streaming application. Trade off analysis techniques for
RASDF graphs are developed in Chapter 4 in the time domain. The execution
of an RASDF graph is interpreted as an alternating sequence of states and
transitions. The introduction of resource sharing to SDF graphs provides
opportunities of more resource efficient executions; it also implies that the
execution path is no longer unique but that there may be multiple possible
schedules with different actor firing orders. The Pareto optimality criterion
helps us to accelerate analysis by pruning redundant executions. The case
studies show explorations with larger but still very reasonable exploration
times, normally a few minutes, caused by the much larger state space due to
resource sharing options. The case studies also show that resource sharing can
reduce resource usage by more than 50% compared to the non sharing

154

resource case. In order to efficiently explore resource configurations for RASDF
graphs, we developed a bottleneck driven approach for design space
exploration. The bottleneck driven approach can be seen as a feedback driven
approach in which the algorithm identifies the resource bottleneck in periodic
executions by constructing dependency graphs and detecting dependency
cycles in the dependency graphs. These potential bottlenecks (resources in the
dependency cycles) are used to determine the next resource configuration to be
explored. This bottleneck driven approach significantly reduces the
exploration time compared to a non bottleneck driven approach.

In Chapter 5, we try to solve the trade off analysis problem from a different
angle, i.e., the iteration based point of view. We only have to store the iteration
states, i.e., the states of every new iteration start rather than all the states within
every iteration. This reduction leads to a lower memory footprint for analysis
and speeds up the analysis. However, there are some disadvantages too. The
separation between iterations at their boundaries does not allow us to
interleave activities from different iterations for potentially more efficient
resource usage. This may cause the iteration based analysis to lose some trade
offs. On the other hand, also the time based analysis may not be able to find all
trade off points, because also the time based analysis needs pruning heuristics
in order to scale to realistic models. Designers can decide whether a schedule
with interleaving is allowed or not. The choice of applying time based,
iteration based or the combination of the methods is a trade off that can be
made by designers themselves. An important advantage of the iteration based
approach is that it provides the basis to analyze dynamic behavior of streaming
applications caused by different input types in Chapter 6,

Dynamic behavior such as data dependent execution times is always a
challenge for performance analysis providing both guaranteed and tight
bounds on timing and resource usage. Iteration based analysis allows to
capture data dependent or, more precisely, scenario dependent behavior. The
scenario concept helps us to describe behaviors that are dependent on some
parameters that are stable for some period; the period can be expressed either
in terms of time or in terms of iterations. SARA SDF graphs combine the
scenario concept of Scenario Aware Dataflow (SADF) and resource awareness
of RASDF. Performance analysis of SARA SDF graphs is different from existing
performance analysis of FSM SADF graphs or SADF graphs. Due to multiple
possible execution paths caused by arbitration decisions of conflicting actor
firings on shared resources, the performance is not only decided by the

155

environment input but also by the decisions of controllers, i.e., the firing order
of actors on shared resources. How to find a controller that guarantees a certain
throughput no matter what kind of input is given by the environment?
Chapter 6 investigates this question from a game theoretic view and reduces
the controller synthesis problem to the problem of finding an optimal
positional strategy for a mean payoff game on a bipartite game graph. By
translating the iteration state space of a SARA SDF graph to a bipartite game
graph of a mean payoff game played by the environment and the controller, a
throughput guaranteed controller can be synthesized from a policy iteration
algorithm developed in the field of game theory.

In summary, we have made important steps in the development of analysis
and synthesis methods for SDF models of dynamic streaming applications
executing on multi processor platforms with resource sharing. The methods
provide a basis for platform dimensioning and design space exploration, and
for synthesizing controllers that provide guaranteed performance under
workload variations.

7.2 Open Questions and Future Work

The work in this thesis provides some interesting observations and open
questions for future investigations.

Fixed point analysis: The throughput analysis, resource usage evaluation, and
controller strategy synthesis developed in this thesis can be classified as fixed
point computation problems, i.e., the value being computed is over time
converging to a specific fixed point, in performance, resource space or strategy
space. One interesting direction for future work is to investigate the findings
in fixed point theory and to find mappings between the results of fixed point
theory in mathematics to the analysis of properties in the embedded systems
domain.

Parameterized analysis:Many important system parameters are changing with
time or inputs. We can either know the range of parameter values or the rule of
how they change. One exhaustive way to analyze such a system is to list values
for these parameters and to iterate each combination of parameters to evaluate
system. Compared to such an exhaustive analysis, a smarter way would be to
analyze the system symbolically, i.e., analyze executions of a system on
symbolic parameters directly. For throughput and consistency analysis of SDF
graphs, some work in this direction was already done [13, 63].

156

Interfacing theory for different dataflow analysis models: There exist quite a
lot of different models of computation for performance analysis, Petri nets, SDF
graphs, Events models, Network Calculus, Real time Calculus, etc. There will
likely be many more new models in the future. While new models may be
useful, because they can express some aspects more efficiently or allow
analysis more efficiently, they also lack capabilities to efficiently analyze or
exactly analyze problems fitted better into other models. The designers have to
make a trade off and choose a specific model for their purposes. For example,
SDF graphs are more efficient for performance analysis while Petri nets are
more expressive; Events models allow easy analysis of jitter in systems while it
is difficult to handle loop carried dependences. It would be beneficial if we can
interface different models seamlessly and use strong aspects of different
models to solve different problems. For instance, the resource usage requests in
RASDF graphs can be viewed as an arrival curve in Network Calculus; the
throughput analysis of SDF graphs can be viewed as the frequency analysis of
linear bounds in max plus algebra for Petri nets. By developing interfacing
theory, we may model sub systems or different levels of systems with their
most appropriate models. Tools such as Ptolemy II project [23] in Berkeley and
Octopus toolset [10] from TU/e are examples of research work that try to
interface different models.

Besides the general questions raised by the research work presented in this
thesis, we also see some specific questions related to RASDF and SARA SDF.

Probabilistic analysis: It will be a very interesting extension to SARA SDF to
allow analysis on scenario FSMs that are annotated with probabilities on every
scenario transition, i.e., using Markov chains to model inputs transitions. How
will this influence our controller synthesis to reach better performance and
resource usage? Markov decision processes may be used for controller
synthesis for the probabilistic analysis case.

Parametric and multi objective analysis based on a game theoretic approach:
The interaction between dynamic inputs and the controller of an embedded
system is viewed as a game between two players in this thesis. We find some
interesting directions to continue this approach. For instance, we may treat
parametric analysis of RASDF graphs as a parametric game on a parametric
bipartite game graph. The multi objective analysis may be treated as a multi
player game in which multiple players compete with their individual goals.
The trade offs in multi dimensional space may be interpreted as multiple Nash

157

equilibriums in the strategy space of the multiple players, compared to only
one Nash equilibrium for the controller synthesis problem discussed in this
thesis. The players can cooperate for switching among trade off points (from
one Nash equilibrium to another).

Hierarchical modeling and analysis: Real world systems can be very large and
the modeling process may involve many designers. Can we build RASDF or
SARA SDF models for subsystems, analyze them compositionally, connect the
component analyses together, and generate the results (performance, resource
trade offs, controllers) for the whole system?

A model based approach to system design allows us to have a deeper
understanding of existing questions and find interesting new questions. The
goal of modeling embedded systems is not only to interpret the real system,
but also to change the existing design process and allow better designs. The
complexity of embedded systems and the context they are embedded in makes
it impossible for our thesis to cover all interesting aspects. Instead, streaming
applications and SDF models were chosen as our focus. You can never reach
perfection in every aspect; there are only trade offs!

158

In this appendix, we include six SDF graphs: an artificial bipartite graph
from [16], a sample rate converter [16], a modem [16], a satellite receiver [131],
an MP3 decoder [144] and an H.263 decoder [144]. Since their corresponding
RASDF graphs contain a lot of request edges, we show these request edges in
the tabltabular formate for clarity reasons. For each SDF graph, there are two
corresponding RASDF graphs, one with only one shared buffer and the other
with two or three shared buffers. We also put the three SARA SDF graphs used
in Chpater 6 in this appendix and provide their scenario parameters. All
models are also available through http://www.es.ele.tue.nl/sdf3.

Bipartite Graph

One shared buffer: Buffer 1
actor resource claim release
a Buffer 1 7 0
b Buffer 1 5 0
c Buffer 1 0 8
d Buffer 1 0 12

Two shared buffers: Buffer 1 and Buffer 2
actor resource claim release
a Buffer 1 3 0
a Buffer 2 4 0
b Buffer 1 1 0
b Buffer 2 4 0
c Buffer 1 0 8

160

d Buffer 2 0 12

Sample Rate Graph

One shared buffer: Buffer 1
actor resource claim release
a Buffer 1 1 0
b Buffer 1 2 1
c Buffer 1 2 3
d Buffer 1 8 7
e Buffer 1 5 7
f Buffer 1 0 1

Three shared buffers: Buffer 1, Buffer 2 and Buffer 3
actor resource claim release
a Buffer 1 1 0
b Buffer 1 2 1
c Buffer 1 2 3
d Buffer 1 0 7
d Buffer 2 8 0
e Buffer 2 0 7
e Buffer 3 5 0
f Buffer 3 0 1

161

Modem Graph

One shared buffer: Buffer 1
actor resource claim release
fork1 Buffer 1 2 1
biq1 Buffer 1 1 1
biq2 Buffer 1 1 1
add Buffer 1 1 2
sc Buffer 1 2 1
fork2 Buffer 1 2 1
conj Buffer 1 2 2
mul1 Buffer 1 2 4
mul2 Buffer 1 2 4
in Buffer 1 1 0
filt Buffer 1 1 1
hil Buffer 1 2 8
eq Buffer 1 2 6
deci Buffer 1 5 2
deco Buffer 1 1 2
out Buffer 1 0 1

162

Three shared buffers: Buffer 1, Buffer 2 and Buffer 3
actor resource claim release
fork1 Buffer 1 2 1
biq1 Buffer 1 1 1
biq2 Buffer 1 1 1
add Buffer 1 1 2
sc Buffer 1 2 1
fork2 Buffer 1 2 1
conj Buffer 1 2 2
mul1 Buffer 1 2 4
mul2 Buffer 1 2 4
in Buffer 2 1 0
filt Buffer 2 1 1
hil Buffer 1 2 0
hil Buffer 2 0 8
eq Buffer 1 2 6
deci Buffer 1 3 2
deci Buffer 3 2 0
deco Buffer 3 1 2
out Buffer 3 0 1

163

Satellite Graph

One shared buffer: Buffer 1
actor resource claim release
a Buffer 1 1 0
b Buffer 1 1 4
c Buffer 1 11 11
d Buffer 1 1 0
e Buffer 1 1 4
f Buffer 1 11 11
g Buffer 1 1 1
h Buffer 1 11 1
i Buffer 1 10 11
j Buffer 1 2 1
k Buffer 1 1 1
l Buffer 1 11 1
m Buffer 1 10 11
n Buffer 1 2 1
p Buffer 1 2 4

164

q Buffer 1 240 240
r Buffer 1 240 240
s Buffer 1 1 1
t Buffer 1 1 1
u Buffer 1 1 2
v Buffer 1 240 240
w Buffer 1 0 3

Three shared buffers: Buffer 1, Buffer 2 and Buffer 3
actor resource claim release
a Buffer 1 1 0
b Buffer 1 1 4
c Buffer 1 11 11
d Buffer 2 1 0
e Buffer 2 1 4
f Buffer 2 11 11
g Buffer 1 1 1
h Buffer 1 11 1
i Buffer 1 10 11
j Buffer 1 2 1
k Buffer 2 1 1
l Buffer 2 11 1
m Buffer 2 10 11
n Buffer 2 2 1
p Buffer 1 1 2
p Buffer 2 1 2
q Buffer 1 240 240
r Buffer 2 240 240
s Buffer 2 0 1
s Buffer 3 1 0
t Buffer 1 0 1
t Buffer 3 1 0
u Buffer 3 1 2
v Buffer 3 240 240
w Buffer 1 0 1
w Buffer 2 0 1
w Buffer 3 0 1

165

MP3 Graph

One shared buffer: Buffer 1
actor resource claim release
huffman Buffer 1 4 0
req0 Buffer 1 2 1
reorder0 Buffer 1 1 1
req1 Buffer 1 2 1
reorder1 Buffer 1 1 1
stereo Buffer 1 4 4
aliasreduct0 Buffer 1 1 1
imdct0 Buffer 1 1 2
freqinv0 Buffer 1 1 1
synth0 Buffer 1 0 1
aliasreduct1 Buffer 1 1 1
imdct1 Buffer 1 1 2
freqinv1 Buffer 1 1 1
synth1 Buffer 1 0 1

Three shared buffers: Buffer 1, Buffer 2 and Buffer 3
actor resource claim release
huffman Buffer 1 4 0
req0 Buffer 1 2 1
reorder0 Buffer 1 1 1
req1 Buffer 1 2 1
reorder1 Buffer 1 1 1
stereo Buffer 1 0 4
stereo Buffer 2 2 0

166

stereo Buffer 3 2 0
aliasreduct0 Buffer 2 1 1
imdct0 Buffer 2 1 2
freqinv0 Buffer 2 1 1
synth0 Buffer 2 0 1
aliasreduct1 Buffer 3 1 1
imdct1 Buffer 3 1 2
freqinv1 Buffer 3 1 1
synth1 Buffer 3 0 1

H.263 (QCIF) Graph

One shared buffer: Buffer 1
actor resource claim release
vld Buffer 1 594 0
iq Buffer 1 1 1
idct Buffer 1 1 1
mc Buffer 1 0 594

Two shared buffers: Buffer 1, Buffer 2
actor resource claim release
vld Buffer 1 594 0
iq Buffer 1 0 1
iq Buffer 2 1 0
idct Buffer 1 1 0
idct Buffer 2 0 1
mc Buffer 1 0 594

167

M
P3

SA
RA

SD
F

a
b

c
d

e
f

t1
t2

t3
t4

t5
t6

t7
t8

t9
t10

ss
1

1
0

1
1

0
139325

69385
139325

69385
58239

N
A

1005408
1005408

N
A

2915000
ll

0
0

1
0

0
1

110785
N
A

N
A

110785
73618

407520
N
A

N
A

407520
2320000

ls
0

1
1

0
1

0
110785

N
A

139325
69385

19
407520

N
A

1005408
N
A

2915000
sl

1
0

0
1

0
1

139325
69385

N
A

110785
19

N
A

1005408
N
A

407520
2320000

m
0

0
1

1
1

1
60594

26269
64527

942570
64527

942570
25470

25470
942570

2880000

168

M
PE

G
4
SA

RA
SD

F x
u

z
y

t 1
t2

t3
t4

I
0

1
0

99
40

17
0

35
0

P0
0

0
0

0
40

17
0

0
P3
0

1
1

30
30

40
17

90
25
0

P4
0

1
1

40
40

40
17

14
5

25
0

P5
0

1
1

50
50

40
17

19
0

25
0

P6
0

1
1

60
60

40
17

26
5

32
0

P7
0

1
1

70
70

40
17

23
5

30
0

P8
0

1
1

80
80

40
17

31
0

32
0

P9
9

1
1

99
99

40
17

39
0

32
0

169

PrinterPipeline
SA

RA
SD

F

t1
t2

t3
t4

t5
I1

303
105

208
82

82
I2

254
198

115
44

44
I3

433
169

519
228

228
I4

600
422

633
177

177
I5

35
25

21
11

11

170

[1] Abdeddaïm, Y. et al. 2001. Job-shop scheduling using timed automata. 13th
International Conference on Computer Aided Verification, CAV ’01,
Proceedings, in LNCS, Springer (Berlin, Heidelberg, Jul. 2001), 478-492.

[2] Agarwal, M. and Frank, M.I. 2009. SPARTAN: A software tool for
Parallelization Bottleneck Analysis. 2nd ICSE Workshop on Multicore
Software Engineering, Proceedings, IEEE (May. 2009), 56-63.

[3] Ahmad, I. and Jiancong, L. 2006. On using game theory to optimize the rate
control in video coding. IEEE Transactions on Circuits and Systems for Video
Technology. 16, 2 (Feb. 2006), 209-219.

[4] Alexander, P. 2007. Rosetta: language support for system-level design. 22nd
International Conference on Automated software engineering, ASE ’07,
Proceedings, ACM (New York, New York, USA, Nov. 2007), 577-577.

[5] Altisen, K. et al. 1999. A framework for scheduler synthesis. 20th IEEE Real-
Time Systems Symposium, RTSS ’99, Proceedings, IEEE (1999), 154-163.

[6] Baccelli, F.L. et al. 1993. Synchronization and Linearity: An Algebra for
Discrete Event Systems (Wiley Series in Probability and Statistics). John Wiley
& Sons.

[7] Baier, C. and Katoen, J.-P. 2008. Principles of Model Checking. The MIT Press.

[8] Balarin, F. et al. 1997. Hardware-software co-design of embedded systems: the
POLIS approach. Kluwer Academic Publishers.

[9] Barrera, B. and Lee, E. a. 1991. Multirate signal processing in Comdisco’s
SPW. 16th International Conference on Acoustics, Speech, and Signal
Processing, ICASSP ’91, Proceedings, IEEE (1991), 1113-1116.

[10] Basten, T. et al. 2010. Model-driven design-space exploration for embedded
systems: the octopus toolset. 4th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation, ISoLA ’10, in
LNCS 6415, (2010), 90-105.

[11] Bekooij, M. and Wiggers, M. 2006. Latency-Rate servers & Dataflow models.

172

[12] Bellman, R. 1957. A Markovian Decision Process. Journal of Mathematics and
Mechanics 6. (Apr. 1957).

[13] Bhattacharya, B. and Bhattacharyya, S.S. 2001. Parameterized dataflow
modeling for DSP systems. IEEE Transactions on Signal Processing. 49, 10
(2001), 2408-2421.

[14] Bhattacharyya, S.S. et al. 1993. A scheduling framework for minimizing
memory requirements of multirate DSP systems represented as dataflow graphs.
Workshop on VLSI Signal Processing, Proceedings, IEEE (1993), 188-196.

[15] Bhattacharyya, S.S. et al. 1996. Software Synthesis from Dataflow Graphs (The
Springer International Series in Engineering and Computer Science). Springer.

[16] Bhattacharyya, S.S. and Murthy, P.K. 1999. Synthesis Of Embedded Software
From Synchronous Dataflow Specifications. Journal on VLSI Signal Process.
Syst. 21, 2 (1999), 151-166.

[17] Bini, E. et al. 2011. Resource Management on Multicore Systems: The
ACTORS Approach. IEEE Micro. 31, 3 (2011), 72-81.

[18] Black, D.C. et al. 2009. SystemC: From the Ground Up, Second Edition
[Hardcover]. Springer; 2nd Edition. edition.

[19] Le Boudec, J.Y. and Thiran, P. 2001. Network calculus: a theory of
deterministic queuing systems for the internet. Springer-Verlag.

[20] Bouillard, A. et al. 2009. Service curves in Network Calculus: dos and don’ts.

[21] Buchi, J.R. and Landweber, L.H. 1969. Solving Sequential Conditions by
Finite-State Strategies. Transactions of the American Mathematical Society.
138, (Apr. 1969), 295.

[22] Buck, J. and Vaidyanathan, R. 2000. Heterogeneous modeling and simulation
of embedded systems in El Greco. 8th International Workshop on
Hardware/Software Codesign, CODES ’00, Proceedings, ACM (2000), 142-
146.

[23] Buck, J.T. et al. 1994. Ptolemy: A framework for simulating and prototyping
heterogeneous systems. Int. Journal of Computer Simulation. 4, (1994), 155-
182.

173

[24] Buck, J.T. and Lee, E.A. 1993. Scheduling dynamic dataflow graphs with
bounded memory using the token flow model. IEEE International Conference
on Acoustics Speech and Signal Processing. (1993), 429-432 vol.1.

[25] Butkovi, P. 2010. Max-linear Systems: Theory and Algorithms (Springer
Monographs in Mathematics). Springer.

[26] Calvez, J.-P. and Perrier, V. 2005. Digital Multimedia System Architecting
With CoFluent Studio: A CoFluent Design White Paper.

[27] Chakraborty, S. et al. 2003. A general framework for analysing system
properties in platform-based embedded system designs. 6th Conference on
Design Automation and Test in Europe, DATE ’03, Proceedings, IEEE (2003),
190-195.

[28] Cochet-Terrasson, J. et al. 1999. A constructive fixed point theorem for min-
max functions. Dynamics and Stability of Systems. 14, 4 (Dec. 1999), 407-433.

[29] Cochet-Terrasson, J. et al. 1998. Numerical computation of spectral elements in
max-plus algebra. IFAC Conference on Syst. Structure and Control (1998), 1-7.

[30] Cochet-Terrasson, J. and Gaubert, S. 2000. Policy iteration algorithm for
shortest path problems. (2000), 1-14.

[31] Commoner, F. et al. 1971. Marked directed graphs. Journal of Computer and
System Sciences. 5, 5 (1971), 511–523.

[32] Compton, K. and Hauck, S. 2002. Reconfigurable computing: a survey of
systems and software. ACM Computing Surveys. 34, 2 (Jun. 2002), 171-210.

[33] Cruz, R.L. 1991. A calculus for network delay. I. Network elements in isolation.
IEEE Transactions on Information Theory. 37, 1 (1991), 114-131.

[34] Cruz, R.L. 1991. A calculus for network delay. II. Network analysis. IEEE
Transactions on Information Theory. 37, 1 (1991), 132-141.

[35] Cuenot, P. et al. 2011. The EAST-ADL Architecture Description Language for
Automotive Embedded Software. Model Based Engineering of Embedded
Real-Time Systems. H. Giese et al., eds. Springer. 297-307.

174

[36] Czyz ak, P. and Jaszkiewicz, A. 1998. Pareto simulated annealing—a
metaheuristic technique for multiple objective combinatorial optimization.
Journal of Multi Criteria Decision Analysis. 7, 1 (Jan. 1998), 34-47.

[37] Damavandpeyma, M. et al. 2012. Modeling Static-Order Schedules in
Synchronous Dataflow Graphs. 15th Design, Automation & Test in Europe
Conference, DATE ’12, Proceedings, (2012), 775-780.

[38] Dantu, K. and Pedram, M. 2002. Frame-based dynamic voltage and frequency
scaling for a MPEG decoder. International Conference on Computer Aided
Design, ICCAD ’02, Proceedings, IEEE (2002), 732-737.

[39] Dasdan, A. 2004. Experimental analysis of the fastest optimum cycle ratio and
mean algorithms. ACM Transactions on Design Automation of Electronic
Systems. 9, 4 (Oct. 2004), 385-418.

[40] Dasdan, A. and Gupta, R.K. 1998. Faster maximum and minimum mean cycle
algorithms for system-performance analysis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. 17, 10 (1998), 889-899.

[41] Deb, K. et al. 2000. A fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II. 6th Conference on Parallel Problem
Solving from Nature, PPSN ’00, Proceedings (2000), 849-858.

[42] Dhingra, V. and Gaubert, S. 2006. How to solve large scale deterministic
games with mean payoff by policy iteration. 1st International Conference on
Performance evaluation methodolgies and tools , Valuetools ’06, Proceedings
(New York, New York, USA, 2006), 12.

[43] Dijkstra, E.W. 1968. A constructive approach to the problem of program
correctness. BIT Numerical Mathematics. 8, 3 (1968), 174–186.

[44] Dijkstra, E.W. 1970. Notes on structured programming. Eindhoven University
of Technology.

[45] Edwards, S. et al. 1997. Design of embedded systems: formal models,
validation, and synthesis. Proceedings of the IEEE. 85, 3 (Mar. 1997), 366-390.

[46] Ehrenfeucht, A. and Mycielski, J. 1979. Positional strategies for mean payoff
games. International Journal of Game Theory. 8, 2 (Jun. 1979), 109-113.

175

[47] Etessami, K. et al. 2008. Multi-Objective Model Checking of Markov Decision
Processes. Logical Methods in Computer Science. 4, (2008), 21.

[48] Fang, Z. and Bensaou, B. 2004. Fair bandwidth sharing algorithms based on
game theory frameworks for wireless ad-hoc networks. 23rd International
Conference of the IEEE Computer and Communications Societies,
INFOCOMM’ 04, Proceedings, IEEE (2004), 1284-1295.

[49] Fernandez, M. 2009. Models of Computation: An Introduction to Computability
Theory (Undergraduate Topics in Computer Science). Springer.

[50] Fisher, J.A. et al. 2005. Embedded computing: a VLIW approach to
architecture, compilers and tools. Elsevier.

[51] Gao, F. and Sair, S. 2006. Long-term Performance Bottleneck Analysis and
Prediction. 24th International Conference on Computer Design, ICCD ’06,
Proceedings, IEEE (Oct. 2006), 3-9.

[52] Gaubert, S. 1995. Performance evaluation of (max,+) automata. Automatic
Control, IEEE Transactions on. 40, 12 (1995), 2014–2025.

[53] Gaubert, S. and Gunawardena, J. 1998. The duality theorem for min-max
functions. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics.
326, 1 (1998), 43–48.

[54] Gaubert, S. and Mairesse, J. 1999. Asymptotic analysis of heaps of pieces and
application to timed Petri nets. Proceedings 8th International Workshop on
Petri Nets and Performance Models (Cat. No.PR00331) (1999), 158-169.

[55] Gaubert, S. and Mairesse, J. 1999. Modeling and analysis of timed Petri nets
using heaps of pieces. IEEE Transactions on Automatic Control. 44, 4 (Apr.
1999), 683-697.

[56] Geilen, M. et al. 2007. An algebra of Pareto points. Fundamenta Informaticae.
(2007), 88-97.

[57] Geilen, M. et al. 2005. Minimising buffer requirements of synchronous
dataflow graphs with model checking. 42nd Design Automation Conference,
DAC ’05, Proceedings, ACM (New York, New York, USA, Jun. 2005), 819-
824.

[58] Geilen, M. 2009. Reduction techniques for synchronous dataflow graphs. 46th
Design Automation Conference, DAC ’09, Proceedings, ACM (2009), 911-916.

176

[59] Geilen, M. 2010. Synchronous dataflow scenarios. ACM Transactions on
Embedded Computing Systems. 10, 2 (Dec. 2010), 1-31.

[60] Geilen, M. et al. 2011. The earlier the better: a theory of timed actor interfaces.
14th International Conference on Hybrid systems: computation and control,
HSCC ’11, Proceedings, ACM (2011), 23–32.

[61] Geilen, M. and Basten, T. 2004. Reactive process networks. 4th International
Conference on Embedded software, EMSOFT ’04, Proceedings, ACM (New
York, New York, USA, 2004), 137-146.

[62] Geilen, M. and Stuijk, S. 2010. Worst-case performance analysis of
synchronous dataflow scenarios. 8th International Conference on
Hardware/software codesign and system synthesis, CODES+ISSS ’10,
Proceedings, IEEE (2010), 125–134.

[63] Ghamarian, A.H. et al. 2008. Parametric throughput analysis of synchronous
data flow graphs. 11th Conference on Design, Automation & Test in Europe,
DATE ’08, Proceedings, IEEE (2008), 116-121.

[64] Ghamarian, A.H. et al. 2006. Throughput Analysis of Synchronous Data Flow
Graphs. 6th International Conference on Application of Concurrency to System
Design, ACSD’06, Proceedings, IEEE (2006), 25-36.

[65] Ghamarian, A.H. 2008. Timing analysis of synchronous data flow graphs.
Technische Universiteit Eindhoven.

[66] Gheorghita, S.V. et al. 2005. Automatic scenario detection for improved
WCET estimation. 42nd Design Automation Conference, DAC ’05,
Proceedings, ACM (New York, New York, USA, 2005), 101-104.

[67] Girault, A. et al. 1999. Hierarchical finite state machines with multiple
concurrency models. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 18, 6 (1999), 742–760.

[68] Govindarajan, R. et al. 1994. Minimizing memory requirements in rate-optimal
schedules. International Conference on Application Specific Array Processors,
ASAP’94, Proceedings, IEEE (1994), 75-86.

[69] Gresser, K. 1993. An Event Model for Deadline Verification of Hard Real-
Time Systems. 5th Euromicro Workshop on Real-Time Systems, ECRTS ’93,
Proceedings, IEEE (1993), 118-123.

177

[70] Gries, M. 2004. Methods for evaluating and covering the design space during
early design development. Integration, the VLSI Journal. 38, 2 (Dec. 2004),
131-183.

[71] Gries, M. and Keutzer, K. 2005. Building ASIPs: the MESCAL methodology.
Springer.

[72] Guha, R. et al. 2009. Resource management and task partitioning and
scheduling on a run-time reconfigurable embedded system. Computers
Electrical Engineering. 35, 2 (2009), 258-285.

[73] Gunawardena, J. 1994. Cycle times and fixed points of min-max functions.
11th International Conference on Analysis and Optimization of Systems (1994),
266–272.

[74] Gunawardena, J. 2003. From max-plus algebra to nonexpansive mappings: a
nonlinear theory for discrete event systems. Theoretical Computer Science. 293,
1 (Feb. 2003), 141-167.

[75] Hahn, J. and Chou, P.H. 2007. Buffer optimization and dispatching scheme for
embedded systems with behavioral transparency. 7th International Conference
on Embedded software, EMSOFT ’07, Proceedings, ACM (New York, New
York, USA, Sep. 2007), 94-103.

[76] Hamann, A. et al. 2004. Symta/s-symbolic timing analysis for systems. 16th
Euromicro Conference on Real-Time Systems, ECRTS’04, Proceedings, IEEE
(2004), 17–20.

[77] Heidergott, B. et al. 2005. Max Plus at Work: Modeling and Analysis of
Synchronized Systems: A Course on Max-Plus Algebra and Its Applications
(Princeton Series in Applied Mathematics). Princeton University Press.

[78] Hennessy, J.L. and Patterson, D.A. 2006. Computer Architecture: A
Quantitative Approach, 4th Edition [Paperback]. Morgan Kaufmann; 4 edition.

[79] Hiroyuki Tomiyama, A.H. 1999. Architecture Description Languages for
Systems-on-Chip Design. 6th Asia Pacific Conference on Chip Design
Language, ACM (1999), 109-116.

[80] Hoffman, A.J. and Karp, R.M. 1966. On Nonterminating Stochastic Games.
Management Science. 12, 5 (Jan. 1966), 359-370.

178

[81] Hoffmann, A. et al. 2001. A methodology for the design of application specific
instruction set processors (ASIP) using the machine description language LISA.
International Conference on Computer-aided design, ICCAD ’01, Proceedings,
IEEE (Nov. 2001), 625-630.

[82] Howard, R.A. 1960. Dynamic Programming and Markov Processes
(Technology Press Research Monographs). The MIT Press.

[83] Hsu, C.-J. et al. 2005. Software synthesis from the dataflow interchange format.
Workshop on Software and compilers for embedded systems, SCOPES ’05,
Proceedings, ACM (New York, New York, USA, 2005), 37-49.

[84] Hu, J. et al. 2006. System-Level Buffer Allocation for Application-Specific
Networks-on-Chip Router Design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems. 25, 12 (Dec. 2006), 2919-2933.

[85] Hung, W.-L. et al. 2005. Thermal-Aware Task Allocation and Scheduling for
Embedded Systems. 8th Conference on Design Automation and Test in Europe,
DATE ’05, Proceedings, IEEE (2005), 898-899.

[86] ITRS 2009. International Technology Roadmap for Semiconductors, 2009
Edition. Executive Summary. Semiconductor Industry. (2009).

[87] Igna, G. et al. 2008. Formal modeling and scheduling of datapaths of digital
document printers. 6th International Conference on Formal Modeling and
Analysis of Timed Systems, FORMATS ’08, Proceedings, (2008), 170-187.

[88] Jain, R.K. 1991. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and Modeling.
Wiley.

[89] Jantsch, A. 2003. Modeling Embedded Systems and SoC’s: Concurrency and
Time in Models of Computation (Systems on Silicon). Morgan Kaufmann.

[90] Johnson, G.W. 1997. LabVIEW Graphical Programming: Practical
Applications in Instrumentation and Control. Mcgraw-Hill.

[91] Jonsson, B. et al. 2008. Cyclic dependencies in modular performance analysis.
8th International Conference on Embedded software, EMSOFT’08,
Proceedings, ACM (2008), 179–188.

[92] Jr., E.M.C. et al. 1999. Model Checking. The MIT Press.

179

[93] Kahn, G. 1974. The semantics of a simple language for parallel programming.
Information Processing, Proceedings, North Holland, Amsterdam (1974), 471-
475.

[94] Karp, R.M. 1978. A characterization of the minimum cycle mean in a digraph.
Discrete mathematics. 23, 3 (1978), 309–311.

[95] Karp, R.M. and Miller, R.E. 1966. Properties of a model for parallel
computations: Determinancy, termination, queueing. SIAM Journal on Applied
Mathematics. 14, 6 (1966), 1390–1411.

[96] Keutzer, K. et al. 2000. System-level design: orthogonalization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. 19, 12 (2000), 1523-1543.

[97] Kiczales, G. et al. 1997. Aspect-oriented programming. 11th European
Conference on Object-Oriented Programming, ECOOP ’97, Proceedings,
volume 1241 in LNCS, Springer (1997), 220–242.

[98] Kienhuis, B. et al. 1997. An approach for quantitative analysis of application-
specific dataflow architectures. International Conference on Application-
Specific Systems, Architectures and Processors, ASAP’ 97, Proceedings, IEEE
(1997), 338-350.

[99] Lee, C. et al. 2009. A Systematic Design Space Exploration of MPSoC Based
on Synchronous Data Flow Specification. Journal of Signal Processing
Systems. 58, 2 (Mar. 2009), 193-213.

[100] Lee, E.A. 1991. Consistency in dataflow graphs. IEEE Transactions on
Parallel and Distributed Systems. 2, 2 (1991), 223–235.

[101] Lee, E.A. and Messerschmitt, D.G. 1987. Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing. IEEE Transactions on
Computers. C-36, 1 (Jan. 1987), 24-35.

[102] Lensen, B.J.P. 2010. Automated Design-Space Exploration of resource-aware
Synchronous Dataflow Graphs using multi-objective evolutionary algorithms.
Eindhoven University of Technology.

[103] Lombardo, A. et al. 1998. An accurate and treatable Markov model of MPEG-
video traffic. 17th International Conference of the IEEE Computer and
Communications Societies, INFOCOMM’ 98, Proceedings, IEEE (1998), 217-
224.

180

[104] Lotze, J. et al. 2011. A Model-Based Approach to Cognitive Radio Design.
IEEE Journal on Selected Areas in Communications. 29, 2 (2011), 455-468.

[105] Lukasiewycz, M. et al. 2008. Efficient symbolic multi-objective design space
exploration. Asia and South Pacific Design Automation Conference, ASP-DAC’
08, Proceedings, IEEE (Jan. 2008), 691-696.

[106] Madisetti, V. and Arpnikanondt, C. 2005. A platform-centric approach to
system-on-chip (SoC) design. Springer.

[107] Martin, G. 2006. Overview of the MPSoC design challenge. 43rd Design
Automation Conference. DAC ’06, Proceedings, ACM (2006), 274-279.

[108] Martin, G. 2002. UML for Embedded Systems Specification and Design:
Motivation and Overview. 5th Conference on Design, Automation & Test in
Europe, DATE’ 02, Proceedings, IEEE (Mar. 2002), 773-775.

[109] Mitchell, R. and McKim, J. 2001. Design by Contract, by Example. Addison-
Wesley Professional.

[110] Moreira, O. and Valente, F. 2007. Scheduling multiple independent hard-real-
time jobs on a heterogeneous multiprocessor. 7th International Conference on
Embedded software, EMSOFT ’07 Proceedings, ACM (New York, New York,
USA, 2007), 57-66.

[111] Murthy, P.K. et al. 2001. System Canvas: a new design environment for
embedded DSP and telecommunication systems. 9th International Symposium
on Hardware/Software Codesign. CODES ’01, Proceedings, ACM (2001), 54-
59.

[112] Murthy, P.K. and Bhattacharyya, S.S. 2006. Memory Management for
Synthesis of DSP Software. CRC Press.

[113] Murthy, P.K. and Bhattacharyya, S.S. 2001. Shared buffer implementations of
signal processing systems using lifetime analysis techniques. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.
20, 2 (2001), 177-198.

[114] Nash, J. 1951. Non-cooperative games. The Annals of Mathematics. 54, 2
(1951), 286–295.

181

[115] Neumann, J.V. and Morgenstern, O. 2007. Theory of Games and Economic
Behavior (Commemorative Edition)(Princeton Classic Editions). Princeton
University Press.

[116] Ni, J. et al. 1996. Source modelling, queueing analysis, and bandwidth
allocation for VBR MPEG-2 video traffic in ATM networks. IEE Proceedings
- Communications. 143, 4 (1996), 197-205.

[117] Parks, T. et al. 1995. A comparison of synchronous and cyclo-static dataflow.
29th Asilomar Conference on Signals, Systems and Computers,
ASILOMAR ’95, Proceedings, IEEE (1995), 1-7.

[118] Peterson, J.L. 1977. Petri nets. Computing Surveys. 9, 3 (Jan. 1977), 223-252.

[119] Petri, C.A. 1962. Communication with Automata (in german). Institute für
instrumentelle Mathematik.

[120] Pillai, P. and Shin, K.G. 2001. Real-time dynamic voltage scaling for low-
power embedded operating systems. ACM SIGOPS Operating Systems Review.
35, 5 (Dec. 2001), 89.

[121] Pimentel, A.D. et al. 2006. A systematic approach to exploring embedded
system architectures at multiple abstraction levels. IEEE Transactions on
Computers. 55, 2 (Feb. 2006), 99-112.

[122] Pino, J.L. and Kalbasi, K. 1998. Cosimulating synchronous DSP applications
with analog RF circuits. 32nd Asilomar Conference on Signals, Systems and
Computers, Asilomar ’98, Proceedings, IEEE (1998), 1710-1714.

[123] Powell, D.B. et al. 1992. Direct synthesis of optimized DSP assembly code
from signal flow block diagrams. 17th International Conference on Acoustics,
Speech, and Signal Processing, ICASSP ’93, Proceedings, IEEE (1992), 553-
556.

[124] Puri, A. and Tripakis, S. 2002. Algorithms for routing with multiple constraints.
Workshop on Planning and Scheduling using Multiple Criteria, AIPS ’02,
Proceedings (2002), 7–14.

[125] R.Apt, K. and Gradel, E. eds. 2011. Lectures in Game Theory for Computer
Scientists. Cambridge Press.

182

[126] Rasmussen, J.I. et al. 2004. Resource-optimal scheduling using priced timed
automata. Tools and Algorithms for the Construction and Analysis of Systems.
(2004), 220–235.

[127] Richter, K. 2004. Compositional scheduling analysis using standard event
models. Technical University of Braunschweig.

[128] Richter, K. and Ernst, R. 2002. Event Model Interfaces for Heterogeneous
System Analysis. 5th Conference on Design, Automation & Test in Europe,
DATE’ 02, Proceedings, IEEE (Mar. 2002), 506-513.

[129] Ritz, S. et al. 1992. High level software synthesis for signal processing systems.
International Conference on Application Specific Array Processors, ASAP ’92,
Proceedings, IEEE (1992), 679–693.

[130] Ritz, S. et al. 1993. Optimum vectorization of scalable synchronous dataflow
graphs. International Conference on Application Specific Array Processors,
ASAP ’93, Proceedings, IEEE (1993), 285-296.

[131] Ritz, S. et al. 1995. Scheduling for optimum data memory compaction in block
diagram oriented software synthesis. 20th International Conference on
Acoustics, Speech, and Signal Processing, ICASSP ’95, Proceedings, IEEE
(1995), 2651-2654.

[132] Robinson, D. 2007. Aspect-Oriented Programming with the e Verification
Language: A Pragmatic Guide for Testbench Developers. Morgan Kaufmann.

[133] Rox, J. and Ernst, R. 2008. Modeling event stream hierarchies with hierarchical
event models. 11th Conference on Design, Automation and Test in Europe,
DATE’08, Proceedings, IEEE (2008), 492–497.

[134] Sangiovanni-Vincentelli, A. and Martin, G. 2001. Platform-based design and
software design methodology for embedded systems. IEEE Design & Test of
Computers. 18, 6 (2001), 23-33.

[135] Satish, N.R. et al. 2008. Scheduling task dependence graphs with variable task
execution times onto heterogeneous multiprocessors. 7th International
Conference on Embedded software, EMSOFT ’08, Proceedings, ACM (New
York, New York, USA, 2008), 149-158.

[136] Savage, J.E. 1998. Models of Computation: Exploring the Power of Computing.
Addison-Wesley Pub (Sd).

183

[137] Schlichter, T. et al. 2006. Improving System Level Design Space Exploration
by Incorporating SAT-Solvers into Multi-Objective Evolutionary Algorithms.
Computer Society Annual Symposium on Emerging VLSI Technologies and
Architectures, ISVLSI’06, Proceedings, IEEE (2006), 309-316.

[138] Schliecker, S. et al. 2007. Performance analysis of complex systems by
integration of dataflow graphs and compositional performance analysis. 10th
Conference on Design, Automation and Test in Europe, DATE ’07,
Proceedings, IEEE (Apr. 2007), 273-278.

[139] Silage, D. 2006. Digital Communication System Using System VUE
[Paperback]. Laxmi Publications.

[140] Siyoum, F. et al. 2011. Resource-Efficient Real-Time Scheduling Using Credit-
Controlled Static-Priority Arbitration. 17th International Conference on
Embedded and Real-Time Computing Systems and Applications,RTCSA ’11,
IEEE (Aug. 2011), 309-318.

[141] Skelly, P. and Schwartz, M. 1993. A histogram-based model for video traffic
behavior in an ATM multiplexer. Networking, IEEE/ACM. 1, 4 (1993), 446-
459.

[142] Sriram, S. and Bhattacharyya, S.S. 2009. Embedded Multiprocessors:
Scheduling and Synchronization, Second Edition (Signal Processing and
Communications). CRC Press.

[143] Stiliadis, D. and Varma, A. 1998. Latency-rate servers: a general model for
analysis of traffic scheduling algorithms. IEEE Transactions on Networking. 6,
5 (1998), 611-624.

[144] Stuijk, S. et al. 2006. Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. 43rd Design
Automation Conference, DAC ’06, Proceedings, ACM (2006), 899-904.

[145] Stuijk, S. 2007. Predictable mapping of streaming applications on
multiprocessors. Technische Universiteit Eindhoven.

[146] Stuijk, S. et al. 2006. SDF^3: SDF For Free. 6th International Conference on
Application of Concurrency to System Design, ACSD’ 06, Proceedings, IEEE
(2006), 276-278.

[147] Stuijk, S. et al. 2011. Scenario-Aware Dataflow: Modeling, Analysis and
Implementation of Dynamic Applications. 11th International Conference on

184

Embedded Computer Systems: Architectures, Modeling and Simulation, IC-
SAMOS ’11, Proceedings, IEEE (2011), 404-411.

[148] Stuijk, S. et al. 2008. Throughput-Buffering Trade-Off Exploration for Cyclo-
Static and Synchronous Dataflow Graphs. IEEE Transactions on Computers.
57, 10 (Oct. 2008), 1331-1345.

[149] Sung, W. et al. 1997. Demonstration of hardware software codesign workflow
in PeaCE. 5th International Conference on VLSI and CAD, ICVC ’97,
Proceedings, IEEE (1997).

[150] Teruel, E. et al. 1992. On weighted T-systems. Application and Theory of Petri
Nets 1992, in LNCS, Springer Berlin. 616, (1992), 348–367.

[151] Theelen, B.D. et al. 2006. A scenario-aware data flow model for combined
long-run average and worst-case performance analysis. 4th International
Conference on Formal Methods and Models for Co-Design, MEMOCODE ’06,
Proceedings, IEEE (2006), 185-194.

[152] Thiele, L. et al. 2000. Real-time calculus for scheduling hard real-time systems.
International Symposium on Circuits and Systems. Emerging Technologies for
the 21st Century, Proceedings, IEEE (2000), 101-104.

[153] Thiele, L. et al. 2011. Thermal-aware system analysis and software synthesis
for embedded multi-processors. 48th Design Automation Conference ,
DAC ’11, Proceedings, ACM (2011), 268.

[154] Thies, W. et al. 2002. StreamIt: A language for streaming applications. 11th
International Symposium on Compiler Construction, CC ’02, Proceedings,
volume 2304 in LNCS, Springer-Verlag, (2002), 179-196.

[155] Vink, J.P. et al. 2008. Performance analysis of SoC architectures based on
latency-rate servers. 11th Conference on Design, Automation & Test in Europe,
DATE ’08, Proceedings, IEEE (New York, New York, USA, 2008), 200-205.

[156] Wandeler, E. 2006. Modular performance analysis and interface-based design
for embedded real-time systems. SWISS FEDERAL INSTITUTE OF
TECHNOLOGY ZURICH.

[157] Wandeler, E. et al. 2006. System architecture evaluation using modular
performance analysis: a case study. International Journal on Software Tools
for Technology Transfer. 8, 6 (Jul. 2006), 649-667.

185

[158] Wang, Z. and O’Boyle, M.F.P. 2010. Partitioning streaming parallelism for
multi-cores: a machine learning based approach. 19th Internation Conference
on Parallel Architecture and Compiler Techniques, PACT ’10, Proceeding,
IEEE (2010), 307–318.

[159] Wattanapongskorn, N. and Coit, D. 2007. Fault-tolerant embedded system
design and optimization considering reliability estimation uncertainty.
Reliability Engineering System Safety. 92, 4 (2007), 395-407.

[160] Werner, J. et al. 2007. Integrating Security Modeling in Embedded System
Design. 14th Conference on Engineering of Computer-Based Systems,
ECBS ’07, Proceedings, IEEE (2007), 221-228.

[161] Wiegand, T. et al. 2003. Overview of the H.264/AVC video coding standard.
IEEE Transactions on Circuits and Systems for Video Technology. 13, 7 (Jul.
2003), 560-576.

[162] Wiggers, M.H. et al. 2008. Buffer capacity computation for throughput
constrained streaming applications with data-dependent inter-task
communication. Real-Time and Embedded Technology and Applications
Symposium, 2008. RTAS’08. IEEE (Apr. 2008), 183–194.

[163] Wiggers, M.H. et al. 2010. Buffer capacity computation for throughput-
constrained modal task graphs. ACM Transactions on Embedded Computing
Systems. 10, 2 (Dec. 2010), 1-59.

[164] Wiggers, M.H. et al. 2007. Modelling run-time arbitration by latency-rate
servers in dataflow graphs. Workshop on Software & compilers for embedded
systems - SCOPES ’07 (New York, New York, USA, 2007), 11-22.

[165] Wiggers, M.H. and Bekooij, M.J.G. 2009. Monotonicity and run-time
scheduling. 7th International Conference on Embedded software,
EMSOFT ’09, Proceedings, ACM (2009), 177-186.

[166] Wolf, W.H. 1994. Hardware-software co-design of embedded systems.
Proceedings of the IEEE. 82, 7 (Jul. 1994), 967-989.

[167] Wonyong, S. and Soonhoi, H. 2000. Memory efficient software synthesis with
mixed coding style from dataflow graphs. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems. 8, 5 (Oct. 2000), 522-526.

186

[168] Wu, D. et al. 2003. Scheduling and Mapping of Conditional Task Graph for the
Synthesis of Low Power Embedded Systems. Computers and Digital
Techniques IEE Proceedings. 150, 5 (2003), 262-273.

[169] Yang, Y. et al. 2010. Automated bottleneck-driven design-space exploration of
media processing systems. 13th Conference on Design, Automation & Test in
Europe, DATE ’10, Proceedings, IEEE (2010), 1041–1046.

[170] Yang, Y. et al. 2009. Exploring trade-offs between performance and resource
requirements for synchronous dataflow graphs. 7th Workshop on Embedded
Systems for Real-Time Multimedia, ESTMEDIA ’09, Proceedings, IEEE (Oct.
2009), 96-105.

[171] Yang, Y. et al. 2011. Iteration-based Trade-off Analysis of Resource-aware
SDF. 14th Euromicro Conference on Digital System Design, DSD ’11,
Proceedings, IEEE (2011), 567-574.

[172] Yang, Y. et al. 2012. Playing Games with Scenario- and Resource-Aware SDF
Graphs Through Policy Iteration. 15th Conference on Design, Automation &
Test , DATE ’12, Proceedings, IEEE (2012).

[173] Zafar, S. and Dromey, R.G. 2005. Integrating Safety and Security
Requirements into Design of an Embedded System. 12th Asia Pacific Software
Engineering Conference, APSEC ’05, Proceedings, IEEE (2005), 629-636.

[174] Zhai, J.T. et al. 2011. Modeling adaptive streaming applications with
Parameterized Polyhedral Process Networks. 47th Design Automation
Conference, DAC ’11, Proceedings, ACM (2011), 116-121.

[175] Zhang, G. 2009. More than Moore: Creating High Value
Micro/Nanoelectronics Systems. Springer-Verlag.

[176] Zitzler, E. et al. 2000. Evolutionary algorithms for the synthesis of embedded
software. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
8, 4 (Aug. 2000), 452-455.

[177] Zitzler, E. et al. 2003. Performance assessment of multiobjective optimizers: an
analysis and review. IEEE Transactions on Evolutionary Computation. 7, 2
(Apr. 2003), 117-132.

[178] Zitzler, E. et al. 2001. SPEA2 : Improving the Strength Pareto Evolutionary
Algorithm. Evolutionary Methods for Design, Optimisation and Control with

187

Application to Industrial Problems, EUROGEN ’01, Proceeding (2001), 95-
100.

[179] Zonghua, G. et al. 2007. Optimization of Static Task and Bus Access Schedules
for Time-Triggered Distributed Embedded Systems with Model-Checking.
44th Design Automation Conference, DAC ’07, Proceedings, ACM (2007),
294-299.

[180] Zwick, U. 1996. The complexity of mean payoff games on graphs. Theoretical
Computer Science. 158, 1-2 (May. 1996), 343-359.

188

PhD study is like a thousand miles trip to an unknown destination. Without
the help from many people, I might still wander halfway or even have lost my
faith to finish it. I would like to thank all those people who have supported me
during my PhD study.

In the past five years, I have been coached by my first promoter Twan Basten.
Since the first day that he picked me up at the train station and drove me to my
first apartment in Eindhoven, he has provided a lot of advices both on my
research and my life. One thing that I appreciate the most is his tireless efforts
on my draft conference papers and this thesis. From his corrections of my
grammar mistakes, his checking on the consistency of terminologies and his
insightful comments, I learned how to do research in a serious way.

I would also like to thank my second promoter Henk Corporaal. He was
always able to point out some ignored points in my draft papers in a short time
so that I could improve the drafts before submitting them to a conference. I
would also like to thank my co promoter and daily supervisor Marc Geilen.
The daily discussions with him always shed a light on my research. And he
always asked a lot of ‘why’s on my drafts and pushed me to answer them in a
way that could satisfy him and finally also the reviewers.

I would also like to thank Marco Bekooij, Kees van Berkel and Samarjit
Chakraborty for being part of my PhD committee. Your thorough review of,
and constructive comments on, the draft version of this thesis were very
helpful. Also Ton Backx is thanked for being the chairman of the PhD
committee.

I would also like to thank my two officemates Sander Stuijk and Ahsan Shabbir.
We spent more than four years in the same office, PT 9.10. They set an example
of hard working for me. They helped me on many things, from improving my
research to fixing my broken bicycle.

In the last few years, I have had a lot of discussions with people in the weekly
Promes Meetings. I would like to thank Bart Theelen, Amir Hossein
Ghamarian, Majid Nabi Najafabadi, Rob Hoes, Morteza Damavandpeyma,

190

Maarten Wiggers, Marcel Steine, Milos Blagojevic, and Nikola Trcka. I also
learned a lot from them.

Working in the Electronic Systems Group has been quite fun to me. I always
enjoyed discussion with our group leader Ralph Otten. I would like to thank
secretaries Marja and Rian, they were always helpful when I forgot my office
key and when I was filling the reimbursement forms. I would also like to thank
my Chinese friends in our group. Hao Hu and Yu Pu gave me suggestions at
the beginning of my PhD study. Yifan He and his wife Songyue Chen invited
me to their house many times and I really enjoyed their hospitality and
delicious food. I also enjoyed my discussions with Dongrui She on a wide
range of topics. I would also like to thank Zhenyu Ye, Wei Tong and Bo Liu. I
also want to thank the other group members at the coffee table. The
conversations with Akash Kumar, Mathias Funk, Raymond Frijns, Bart
Mesman, Yahya Jan, Cedric Nugteren, Roel Jordans, and other members were
relaxed and fun.

I would like to thank many people that I worked with in the Octopus project.
Frans Reckers took me to the R&D department of Océ many times with his car.
I would like to thank Roelof Hamberg and Jacques Verriet for their feedback
on my presentations given at Océ. I would like to thank Lou Somers and
Sebastian de Smet for hosting me at Océ, for their feedback, and their help to
get my papers approved by Océ. I would also like to thank Georgeta Igna,
Venkatesh Kannan, and Marc Voorhoeve who also worked on the LoA1
research track. The discussions on different modeling tools with them helped
me develop my understanding about my own research. I would like to thank
Klemens Schindler for his ResVis tool and Brian Lensen for his work on genetic
algorithms.

I would like to thank my former colleague Chunyang Gou, who gave me
suggestions on PhD study in Netherlands. I would also like to thank my
Chinese friends in Eindhoven, especially the people in the Chinese student and
scholar association, ACSSE. They are Ping Li, Jing Li, Chenyang Ding,
Xiaoping Chen, Wei Xu, Yuzhong Lin, Kang Zhao, Ziqiang Yan, Dujuan Yang,
Zhengjie Lu, Jinfan Man, Peng Zhang, Rui Zhang, Hao Gao, Shiqi Li, Yi Wang,
You Peng. Special Thanks to Rui Zhang and Kang Zhao, I visited their
apartment many times and had many delicious dinners there. They partially
contributed to my weight gain.

191

Finally, I would like to thank my family. I would like to thank my twin brother
He Yang and his wife Yalan Hu and their support in these years. No matter
how far we are from each other, our hearts are always close. Their
encouragements always give me strength to move on. I would like to thank my
grandma, may you find peace in heaven. I would like to thank my parents
Jianxing Yang and Wanhua Shi, their support and sacrifices make what I am
today. I am always in debt to them.

Yang Yang May 20, 2012

2012 5 20

192

Yang Yang was born in Jin Tang county, Si Chuan Province, China, on Oct 2nd,
1981. He got his Bachelor degree in Electrical Engineering at the Beijing
Normal University in 2004. Then he started a Master study in the High speed
Signal Processing Lab, Electrical Engineering Department of Tsinghua
University. He received his Master degree in Electrical Engineering at the
Tsinghua University in 2007.

In October 2007, he started working towards a Ph.D. degree within the
Electronics Systems group at the department of Electrical Engineering of the
Eindhoven University of Technology. His research was funded by the Octopus
project with Océ Technologies B.V. under the responsibility of the Embedded
Systems Institute. This project was partially supported by the Netherlands
Ministry of Economic Affairs under the Bsik program. The research focused on
trade off analysis for multicore embedded systems. It has led among others to
several publications and this thesis.

194

First author

Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Playing
throughput games with scenario and resource aware SDF graphs through
policy iteration”, in 15th Conference on Design, Automation and Test in
Europe, DATE ’12, Proceedings, IEEE, 2012. (pp. 194 199)

Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Iteration
based trade off analysis of resource aware SDF”, in 14th Euromicro
Conference on Digital System Design, DSD ’11, Proceedings, IEEE,
2011. (pp. 567 574)

Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Automated
bottleneck driven design space exploration of media processing systems”, in
13th Conference on Design, Automation and Test in Europe, DATE ’10,
Proceedings, IEEE, 2010. (pp. 1041 1046).

Y. Yang, M. Geilen, T. Basten, S. Stuijk, and H. Corporaal, “Exploring
tradeoffs between performance and resource requirements for synchronous
dataflow graphs”, in 7th Workshop on Embedded Systems for Real Time
Multimedia, ESTIMedia ‘09, Proceedings, IEEE, 2009. (pp. 96 105).

Co author

T. Basten, E. van Benthum, M. Geilen, M. Hendriks, F. Houben, G. Igna,
F.J. Reckers, S. de Smet, L.J.A.M. Somers, E. Teeselink, N. Trcka, F.W.
Vaandrager, J.H. Verriet, M. Voorhoeve, Y. Yang “Model driven design
space exploration for embedded systems: the Octopus toolset“ in 4th
International Symposium on Leveraging Applications of Formal
Methods, Verification, and Validation, ISoLA ’10, Proceedings,
Springer, in Lecture Notes in Computer Science, Vol. 6415, (pp. 90 105).

G. Igna, K. Venkatesh, Y. Yang, T. Basten, M. Geilen, F. Vaandrager, M.
Voorhoeve, S. de Smet, L.J.A.M Somers “Formal modeling and scheduling
of datapaths of digital document printers”, in 6th International Conference

196

on Formal Modeling and Analysis of Timed Systems, FORMATS ’08,
Proceedings, Springer, in Lecture Notes in Computer Science, Vol.
5215 , (pp. 170 187).

	Abstract
	Contents
	1. INTRODUCTION
	2. DATAFLOW MODELS
	3. METRICS AND TRADE-OFFS
	4.TIME-DOMAIN ANALYSIS
	5. ITERATION-DOMAIN ANALYSIS
	6. PLAYING GAMES WITH SARA SDF
	7. CONCLUSIONS AND OUTLOOK
	Appendix
	Biblography
	Acknowledgements
	Curriculum Vitae
	List of Publications

