222 research outputs found

    Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    Get PDF
    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error)

    Low Cost Inertial Sensors for the Motion Track-ing and Orientation Estimation of Human Upper Limbs in Neurological Rehabilitation

    Get PDF
    This paper presents the feasibility of utilizing low cost inertial sensors such as those found in Sony Move, Nintendo Wii (Wii Remote with Wii MotionPlus) and smartphones for upper limb motion mon-itoring in neurorehabilitation. Kalman and complementary filters based on data fusion are used to estimate sensor 3D orientation. Furthermore, a two-segment kinematic model was developed to estimate limb segment position tracking. Performance has been compared with a high-accuracy measurement system using the Xsens MTx. The experimental results show that Sony Move, Wii and smartphones can be used for measuring upper limb orientation, while Sony Move and smartphones can also be used for specific applications of upper limb segment joint orientation and position tracking during neurorehabilitation. Sony Move’s accuracy is within 1.5° for Roll and Pitch and 2.5° for Yaw and position tracking to within 0.5 cm over a 10 cm movement. This accuracy in measurement is thought to be adequate for upper limb orientation and position tracking. Low cost inertial sensors can be used for the accurate assessment/measurement of upper limb movement of patients with neurological disorders and also makes it a low cost replacement for upper limb motion measurements. The low cost inertial sensing systems were shown to be able to accurately measure upper limb joint orienta-tion and position during neurorehabilitation

    Reconstruction of Angular Kinematics From Wrist-Worn Inertial Sensor Data for Smart Home Healthcare

    Get PDF
    This paper tackles the problem of the estimation of simplified human limb kinematics for home health care. Angular kinematics are widely used for gait analysis, for rehabilitation, and more generally for activity recognition. Residential monitoring requires particular sensor constraints to enable long-term user compliance. The proposed strategy is based on measurements from two low-power accelerometers placed only on the forearm, which makes it an ill-posed problem. The system is considered in a Bayesian framework, with a linear-Gaussian transition model with hard boundaries and a nonlinear-Gaussian observation model. The state vector and the associated covariance are estimated by a post-regularized particle filter (constrained-extended-RPF or C-ERPF), with an importance function whose moments are computed via an extended Kalman filter (EKF) linearization. Several sensor configurations are compared in terms of estimation performance, as well as power consumption and user acceptance. The proposed constrained-EKF (CERPF) is compared to other methods (EKF, constrained-EKF, and ERPF without transition constraints) on the basis of simulations and experimental measurements with motion capture reference. The proposed C-ERPF method coupled with two accelerometers on the wrist provides promising results with 19% error in average on both angles, compared with the motion capture reference, 10% on velocities and 7% on accelerations. This comparison highlights that arm kinematics can be estimated from only two accelerometers on the wrist. Such a system is a crucial step toward enabling machine monitoring of users health and activity on a daily basis

    Upper Limb Posture Estimation in Robotic and Virtual Reality-based Rehabilitation.

    Get PDF
    New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the measurements of their joint angles cannot be directly used to represent the posture of the patient limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming, we propose a method to estimate the posture of the human limb attached to the exoskeleton. We use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb to estimate the human limb joints angles. This paper presents (a) the mathematical formulation and solution to the problem, (b) the implementation of the proposed solution on a commercial exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic training. Results show that this method properly estimates the limb posture to (i) animate avatars that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment during elbow and wrist analytic rehabilitation

    Upper Limb Position Tracking with a Single Inertial Sensor Using Dead Reckoning Method with Drift Correction Techniques

    Get PDF
    Inertial sensors are widely used in human motion monitoring. Orientation and position are the two most widely used measurements for motion monitoring. Tracking with the use of multiple inertial sensors is based on kinematic modelling which achieves a good level of accuracy when biomechanical constraints are applied. More recently, there is growing interest in tracking motion with a single inertial sensor to simplify the measurement system. The dead reckoning method is commonly used for estimating position from inertial sensors. However, significant errors are generated after applying the dead reckoning method because of the presence of sensor offsets and drift. These errors limit the feasibility of monitoring upper limb motion via a single inertial sensing system. In this paper, error correction methods are evaluated to investigate the feasibility of using a single sensor to track the movement of one upper limb segment. These include zero velocity update, wavelet analysis and high-pass filtering. The experiments were carried out using the nine-hole peg test. The results show that zero velocity update is the most effective method to correct the drift from the dead reckoning-based position tracking. If this method is used, then the use of a single inertial sensor to track the movement of a single limb segment is feasible

    Drift Reduction for Inertial Sensor Based Orientation and Position Estimation in the Presence of High Dynamic Variability During Competitive Skiing and Daily-Life Walking

    Get PDF
    Nowadays inertial sensors are extensively used for gait analysis. They can be used to perform temporal event detection (i.e. step detection) and to estimate the orientation of the feet and other body segments to determine walking speed and distance. Usually, orientation is estimated from integration of the measured angular velocity. Prior to integration of measured acceleration to obtain speed, the gravity component has to be estimated and removed. During each integration small measurement errors accumulate and result in so-called drift. Since the first uses of inertial sensors for gait analysis methods have been presented to model, estimate and remove the drift. The proposed methods worked well for relatively slow movements and movements taking place in the sagittal plane. Many methods also relied on periodically occurring static phases such as the stance phase during walking to correct the drift. Inertial sensors could also be used to track higher dynamic movements, for example in sports. Potential applications focus on two aspects: performance analysis and injury prevention. To better explain and predict performance, in-field measurements to assess the coordination, kinematics, and dynamics are key. While traditional movement analysis (e.g. video analysis) can answer most of the questions related to both performance and injury, they are cumbersome and complex to use in-field. Inertial sensors, however, are perfectly suited since they allow to measure the movement in any environment and are not restricted to certain capture volumes. Nevertheless, most sports have very high movement dynamics (e.g. fast direction changes, high speeds) and are therefore challenging for computing reliable estimates of orientation, speed and position. The inertial measurements are compromised by noise and movements oftentimes don't provide static or slow phases used in gait analysis for drift correction. Therefore, the present thesis aimed to propose and validate new methods to model, estimate and remove drift in sports and for movements taking place outdoors in uncontrolled environments. Three different strategies were proposed to measure the movement of classical cross-country skiing and ski mountaineering, alpine ski racing, and outdoor walking over several kilometres. For each activity specific biomechanical constraints and movement dynamics were exploited. The proposed methods rely only on inertial sensors and magnetometers and are able to provide orientation, speed, and position information with an accuracy and precision close to existing gold standards. The most complete system was designed in alpine ski racing, probably one of the most challenging sports for movement analysis. Extreme vibrations, high speeds of over 120 km/h and a timing resolution below 0.01 seconds require maximum accuracy and precision. The athlete's posture and the kinematics of his centre of mass both in a relative athlete-centred frame and in a global Earth-fixed frame could be obtained with high accuracy and precision. Where 3D video analysis requires a very complex experimental setup and takes several hours of post processing to analyse a single turn of a skier, the proposed system allows to measure multiple athletes and complete runs within minutes. Thus, new experimental designs to assess performance and injury risk in alpine ski racing became feasible, greatly helping to gain further knowledge about this highly complex and risky sport

    Custom IMU-Based Wearable System for Robust 2.4 GHz Wireless Human Body Parts Orientation Tracking and 3D Movement Visualization on an Avatar

    Get PDF
    Recent studies confirm the applicability of Inertial Measurement Unit (IMU)-based systems for human motion analysis. Notwithstanding, high-end IMU-based commercial solutions are yet too expensive and complex to democratize their use among a wide range of potential users. Less featured entry-level commercial solutions are being introduced in the market, trying to fill this gap, but still present some limitations that need to be overcome. At the same time, there is a growing number of scientific papers using not commercial, but custom do-it-yourself IMU-based systems in medical and sports applications. Even though these solutions can help to popularize the use of this technology, they have more limited features and the description on how to design and build them from scratch is yet too scarce in the literature. The aim of this work is two-fold: (1) Proving the feasibility of building an affordable custom solution aimed at simultaneous multiple body parts orientation tracking; while providing a detailed bottom-up description of the required hardware, tools, and mathematical operations to estimate and represent 3D movement in real-time. (2) Showing how the introduction of a custom 2.4 GHz communication protocol including a channel hopping strategy can address some of the current communication limitations of entry-level commercial solutions. The proposed system can be used for wireless real-time human body parts orientation tracking with up to 10 custom sensors, at least at 50 Hz. In addition, it provides a more reliable motion data acquisition in Bluetooth and Wi-Fi crowded environments, where the use of entry-level commercial solutions might be unfeasible. This system can be used as a groundwork for developing affordable human motion analysis solutions that do not require an accurate kinematic analysis.This research has been partially funded by a research contract with IVECO Spain SL and by the Department of Employment and Industry of Castilla y LeĂłn (Spain), under research project ErgoTwyn (INVESTUN/21/VA/0003)

    Constructing a reference standard for sports science and clinical movement sets using IMU-based motion capture technology

    Get PDF
    Motion analysis has improved greatly over the years through the development of low-cost inertia sensors. Such sensors have shown promising accuracy for both sport and medical applications, facilitating the possibility of a new reference standard to be constructed. Current gold standards within motion capture, such as high-speed camera-based systems and image processing, are not suitable for many movement-sets within both sports science and clinical movement analysis due to restrictions introduced by the movement sets. These restrictions include cost, portability, local environment constraints (such as light level) and poor line of sight accessibility. This thesis focusses on developing a magnetometer-less IMU-based motion capturing system to detect and classify two challenging movement sets: Basic stances during a Shaolin Kung Fu dynamic form, and severity levels from the modified UPDRS (Unified Parkinson’s Disease Rating Scale) analysis tapping exercise. This project has contributed three datasets. The Shaolin Kung Fu dataset is comprised of 5 dynamic movements repeated over 350 times by 8 experienced practitioners. The dataset was labelled by a professional Shaolin Kung Fu master. Two modified UPDRS datasets were constructed, one for each of the two locations measured. The modified UPDRS datasets comprised of 5 severity levels each with 100 self-emulated movement samples. The modified UPDRS dataset was labelled by a researcher in neuropsychological assessment. The errors associated with IMU systems has been reduced significantly through a combination of a Complementary filter and applying the constraints imposed by the range of movements available in human joints. Novel features have been extracted from each dataset. A piecewise feature set based on a moving window approach has been applied to the Shaolin Kung Fu dataset. While a combination of standard statistical features and a Durbin Watson analysis has been extracted from the modified UPDRS measurements. The project has also contributed a comparison of 24 models has been done on all 3 datasets and the optimal model for each dataset has been determined. The resulting models were commensurate with current gold standards. The Shaolin Kung Fu dataset was classified with the computational costly fine decision tree algorithm using 400 splits, resulting in: an accuracy of 98.9%, a precision of 96.9%, a recall value of 99.1%, and a F1-score of 98.0%. A novel approach of using sequential forward feature analysis was used to determine the minimum number of IMU devices required as well as the optimal number of IMU devices. The modified UPDRS datasets were then classified using a support vector machine algorithm requiring various kernels to achieve their highest accuracies. The measurements were repeated with a sensor located on the wrist and finger, with the wrist requiring a linear kernel and the finger a quadratic kernel. Both locations achieved an accuracy, precision, recall, and F1-score of 99.2%. Additionally, the project contributed an evaluation to the effect sensor location has on the proposed models. It was concluded that the IMU-based system has the potential to construct a reference standard both in sports science and clinical movement analysis. Data protection security and communication speeds were limitations in the system constructed due to the measured data being transferred from the devices via Bluetooth Low Energy communication. These limitations were considered and evaluated in the future works of this project
    • …
    corecore