467 research outputs found

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Simultaneous identification, tracking control and disturbance rejection of uncertain nonlinear dynamics systems: A unified neural approach

    Get PDF
    Previous works of traditional zeroing neural networks (or termed Zhang neural networks, ZNN) show great success for solving specific time-variant problems of known systems in an ideal environment. However, it is still a challenging issue for the ZNN to effectively solve time-variant problems for uncertain systems without the prior knowledge. Simultaneously, the involvement of external disturbances in the neural network model makes it even hard for time-variant problem solving due to the intensively computational burden and low accuracy. In this paper, a unified neural approach of simultaneous identification, tracking control and disturbance rejection in the framework of the ZNN is proposed to address the time-variant tracking control of uncertain nonlinear dynamics systems (UNDS). The neural network model derived by the proposed approach captures hidden relations between inputs and outputs of the UNDS. The proposed model shows outstanding tracking performance even under the influences of uncertainties and disturbances. Then, the continuous-time model is discretized via Euler forward formula (EFF). The corresponding discrete algorithm and block diagram are also presented for the convenience of implementation. Theoretical analyses on the convergence property and discretization accuracy are presented to verify the performance of the neural network model. Finally, numerical studies, robot applications, performance comparisons and tests demonstrate the effectiveness and advantages of the proposed neural network model for the time-variant tracking control of UNDS

    Actuator fault diagnosis with neural network-integral sliding mode based unknown input observers

    Get PDF
    This paper proposes an integral sliding mode (ISM) based unknown input observer (UIO) which is able to perform fault diagnosis (FD) in condition of lack of knowledge of the plant model. In particular, a two-layer neural network (NN) is employed to estimate online the drift term of the system dynamics needed to compute the so-called integral sliding manifold. The weights of such a NN are updated online using adaptation laws directly derived from theoretical analysis, carried out in this paper. Finally, the proposal has been assessed in simulation relying on a benchmark model of a DC motor

    Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique

    Get PDF
    (is work presents a novel controller for the dynamics of robots using a dynamic variations observer. (e proposed controller uses a saturated control law based on sin(tg− 1(.)) function instead of tanh(.). Besides, this function is an alternative to the use of tanh(.) in saturation control, since it reaches its maximum value more gradually than the hyperbolic tangent function. Using this characteristic, the transition between states is smoother, with similar accuracy to tanh(.). (e controller is designed using a saturated SMC (sliding mode controller) and a dynamic variations observer based on GRNN (general regression neural network). (e originality of this work is the use of a combination of adaptive GRNN with a sliding mode controller (SMC) including a new saturation function. Finally, experiments based on trajectory tracking demonstrate the robustness and simplicity of this method.Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de AutomĂĄtica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; ArgentinaFil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de IngenierĂ­a QuĂ­mica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de AutomĂĄtica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de IngenierĂ­a QuĂ­mica; Argentin

    Dynamic Neural Networks for Motion-Force Control of Redundant Manipulators: An Optimization Perspective

    Get PDF
    Accurate position-force control is a core and challenging problem in robotics, especially for manipulators with redundant DOFs. For example, trajectory tracking based control usually fails for grinding robots due to intolerable impact forces imposed onto the end-effectors. The main difficulties lie in the coupling of motion and contact force, redundancy resolution and physical constraints, etc. In this paper, we propose a novel motionforce control strategy in the framework of projection recurrent neural networks. Tracking error and contact force are described in orthogonal spaces respectively, and by selecting minimizing joint torque as secondary task, the control problem is formulated as a quadratic-programming (QP) problem under multiple constraints. In order to obtain real-time optimization of joint toque which is non-convex relative to joint angles, the original QP is reconstructed in velocity level, where the original objective function is replaced by its time derivative. Then a dynamic neural network which is convergence provable is established to solve the modified QP problem online. This work generalizes projection recurrent neural network based position control of manipulators to that of position-force control, which opens a new avenue to shift position-force control of manipulators from pure control perspective to cross design with both convergence and optimality consideration. Numerical and experimental results show that the proposed scheme achieves accurate position-force control, and is capable of handling inequality constraints such as joint angular, velocity and torque limitations, simultaneously, consumption of joint torque can be decreased effectively

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes

    Get PDF
    International audiencePartitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design a feedforward control term for improving the tracking accuracy of the desired references. In addition, consideration of actuator dynamics is important for a robot with high-velocity movement and highly varying loads. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. Three actuator control modes are considered in this study: (i) a torque control mode in which the armature current is well controlled by a current servo amplifier and the motor torque/current constant is known, (ii) a current control mode in which the torque/current constant is unknown, and (iii) a voltage control mode with no current servo control being available. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Two case studies are used to prove the validity of the proposed controller: a two-link manipulator and a six-link biped robot
    • 

    corecore