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Preface

Robot is hailed as “the pearl at the top of manufacturing crown”, and it is an
important carrier of a new round of technological revolution and manufacturing
integration innovation. With the continuous improvement of robot intelligence,
human–robot integration has become the inevitable development direction of the
new generation of robots. Human and robot play their own advantages, through
various environments, operators and robot natural interaction, to complete complex
work. Robots with the ability of human–computer integration will play an impor-
tant role in intelligent manufacturing, family service, medical education, space
exploration and other fields, with a very broad research and application prospects.

In order to achieve human–robot integration, the ability of human–computer
cooperation and autonomous operation is required. In tasks such as human–com-
puter interaction and flexible assembly, the robot interacts with external environ-
ment directly, which requires the ability to accurately control the interaction force,
to ensure human–computer friendliness and task execution ability. On the other
hand, due to the unstructured environment, the workspace of robot is affected by
human beings and other objects. In order to ensure the safety of the system, the
robot must adapt to the time-varying space constraints: for instance, when human
beings enter the working space of robots, robots must be able to avoid human
beings so as to avoid collision. In the more extreme cases, after the collision
happened, the robot needs to be compliant with the collision. As to the robot itself,
restricted by the mechanical structure, driving system and other factors, the robot
must meet its own behavior constraints such as angle, angular speed limit, etc.; in
addition, in order to improve the flexibility of the system, the new generation robots
usually have redundant degrees of freedom, using their own structural character-
istics to achieve the optimization of specific performance indicators. Therefore, the
study of robot compliance control under complex space and behavior constraints is
one of the key technologies to achieve human–robot integration.

Neural network can simulate the working mechanism of biological neural sys-
tem, learn from the environment and realize information processing. Among them,
the dynamic neural network has the characteristics of adaptability, nonlinearity,
parallelism, distributed storage and so on. It can be used to deal with the complex

vii



problems which are difficult to be solved by traditional methods. At present,
dynamic neural network has made a great progress in deep learning, estimation and
prediction, image processing, complex system control and other fields.

In this book, mainly focusing on the safe control of robot manipulators, we
design dynamic neural network based control schemes for robots with redundant
Degrees of Freedom (DOFs). The control strategies include adaptive tracking
control for robots with model uncertainties, compliance control in uncertain envi-
ronments, obstacle avoidance in dynamic workspaces. The idea for this book on
solving safe control of robot arms was conceived during the industrial applications
and the research discussion in the laboratory. Most of the materials in this book are
derived from the authors’ papers published in journals, such as IEEE Transactions
on Industrial Electronics. The robots considered in this book include SCARA and
collaborative robots (such as Kinova JACO2 and LBR iiwa). Therefore, the control
methods developed in this book can be used in real applications after proper
modification. To make the contents clear and easy to follow, in this book, each part
(and even each chapter) is written in a relatively self-contained manner.

This book is divided into the following 6 chapters.
Chapter 1 In this chapter, an adaptive tracking controller is designed for

redundant manipulators. Model uncertainties and repeatability are considered. The
control scheme requires neither joint accelerations nor cartesian velocity, which is
more suitable in practical engineering. By using pseudo-inverse method, repeata-
bility is optimized in the null space of the Jacobian, the continuity of joint speed is
also guaranteed. Future studies will concentrate on the experimental validation
of the proposed controller.

Chapter 2 An adaptive kinematic identifier is used to learn kinematic parameters
online, and a dynamic neural network is presented to solve the redundancy reso-
lution problem. The interplay of the adaptive online identifier and the neural con-
troller makes it a coupled system with nonlinearity. Using the Lyapunov theory, the
global converges of tracking error is theoretically verified. Numerical experiment
results and comparisons based on a JACO2 robot arm illustrate the effectiveness
of the proposed algorithm and demonstrate advantages over existing ones. The
Jacobian adaption strategy together with recurrent neural network (RNN) achieves
task space tracking both in static and dynamic situations. Pseudo-inverse calcula-
tion of Jacobian matrix is avoided, so that the real-time performance of controller is
guaranteed. The boundedness of joint speed can also protect the robot and enhance
the safety performance. Before ending this chapter, it is worth pointing out that this
is the first kinematic regression based dynamic neural model for self-adaptive
redundant manipulator motion control, with provable convergence and guaranteed
performance bounds.

Chapter 3 In this chapter, we propose an adaptive admittance control method for
redundant manipulators based on RNN, in which model uncertainties of both
interaction model and physical parameters are taken into consideration. Theoretical
derivation using the Lyapunov technique shows the convergence of the proposed
adaptive RNN, and numerical results on a 7-DOF robot iiwa demonstrate the
effectiveness of the proposed control strategy. Compared with existing control
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methods, the proposed controller shows good performance not only in handling
physical constraints, but also in eliminating the calculation of pseudo-inversion. At
last, it is remarkable that this is the first time to extend RNN based method to the
case of force control for redundant manipulators, especially the ones with model
uncertainties. This study will be of great significance in industrial application such
as grinding robots, assembling robots, etc.

Chapter 4 In this chapter, a novel obstacle avoidance strategy is proposed based
on a deep recurrent neural network. The robots and obstacles are presented by sets
of critical points, then the distance between the robot and obstacle can be
approximately described as point-to-points distances. By understanding the nature
escape velocity methods, a more general description of obstacle avoidance strategy
is proposed. Using Minimum-Velocity-Norm (MVN) scheme, the obstacle avoid-
ance together with path tracking problem is formulated as a Quadratic Planning
(QP) problem, in which physical limits are also considered. By introducing model
information, a deep RNN with a simple structure is established to solve the QP
problem online. Simulation results show that the proposed method can realize the
avoidance of static and dynamic obstacles.

Chapter 5 In this chapter, a novel collision-free compliance controller is con-
structed based on the idea of QP programming and neural networks. Different from
existing methods, in this chapter, the control problem is described from an opti-
mization perspective, and the compliance control and collision avoidance are for-
mulated as equality or inequality constraints. The physical constraints such as
limitations of joint angles and velocities are also taken into consideration. Before
ending this chapter, it is worth pointing out that it is the first RNN based compliance
control method, which considers collision avoidance problem in real time, and also
shows great potential in handling physical limitations. In this chapter, simple
numerical simulations in MATLAB are carried out to verify the efficiency of the
proposed controller. In the future, we will check the control framework with dif-
ferent impedance models in physically realistic simulation environments, and then
consider machine vision technology and system delay problem on physical
experimental platforms.

Chapter 6 This paper focuses on motion–force control problem for redundant
manipulators, while physical constraints and torque optimization are taken into
consideration. Firstly, tracking error and contact force are modelled in orthogonal
spaces, respectively, and then the control problem is turned into a QP problem,
which is further rewritten in velocity level by rewriting objective function and
constraints. To handle multiple physical constraints, a RNN based scheme is
designed to solve the redundancy resolution online. Numerical experiment results
show the validity of the proposed control scheme. Before ending this paper, it is
noteworthy that this is the first paper to deal with motion–force control of redundant
manipulators in the framework of RNNs and redundant manipulators with force
sensitivity, e.g., grinding robots, can be readily controlled with the proposed RNN
model but cannot with existing RNN models in this field.
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At the end of this preface, it is worth pointing out that, in this book, some
distributed methods for the cooperative control of multiple robot arms and their
applications are provided. The ideas in this book may trigger more studies and
researches in neural networks and robotics, especially neural network based
cooperative control of multiple robot arms. There is no doubt that this book can be
extended. Any comments or suggestions are welcome, and the authors can be
contacted via e-mail: shuaili@ieee.org (Shuai Li).

Guangzhou, China Xuefeng Zhou
Guangzhou, China Zhihao Xu
Swansea, UK Shuai Li
Guangzhou, China Hongmin Wu
Guangzhou, China Taobo Cheng
Guangzhou, China
Feb 2020

Xiaojing Lv
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Chapter 1
Adaptive Jacobian Based Trajectory
Tracking for Redundant Manipulators
with Model Uncertainties in Repetitive
Tasks

Abstract Tracking control of manipulators, which is also called kinematic control,
has always been a fundamental problem in robot control, especially for redundant
robots with higher degrees of freedom. This problem would become more difficult
for systems with model uncertainties. This chapter presents an adaptive tracking
controller that considers uncertain physical parameters. Based on the realtime feed-
back of task-space coordinates, by updating themotion parameters online, a Jacobian
adaptive control strategy that does not require cartesian velocity and joint acceleration
is established, which makes the controller much simpler. Then the Jacobian pseudo-
inverse method is used to obtain the optimal repetitive solution as a secondary task.
Lyapunov theory is used to prove that the tracking error of the end effector could
asymptotically converge to zero. Numerical simulations verify the effectiveness of
the proposed method.

1.1 Introduction

Robots have been widely used in industrial, agricultural, aerospace and other fields.
Therefore, research on robotics, especially robot control technology, has been a hot
issue in recent decades [1–5]. In order to improve the operation accuracy of the robot,
tracking control has always been a fundamental problem in robot control, which has
attracted wide attention from researchers.

The tracking control of manipulators can be divided into two categories: joint
space tracking and task space tracking. The target of joint space tracking is to design
a controller to drive each joint of the robot to track a predetermined trajectory (see,
for example [6, 7] and references therein). Another direction of tracking control is
task space tracking, which is to establish the desired trajectory in cartesian space.
Since the control commands do not match the target (control commands are sent
to the actuators of each joint, and then the end effector is controlled to execute in
Cartesian space, the mapping between the two spaces is highly nonlinear), task-
space tracking is more difficult than joint space. Therefore, we should first solve the
kinematic inverse problem, that is, obtain the required joint space position or speed,
and realize task space tracking. This can be done off-line or online. The desired path
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2 1 Adaptive Jacobian Based Trajectory Tracking for Redundant …

in cartesian space is discretized into a set of key points, and the corresponding joint
configurations are determined in turn, and the desired joint velocity and acceleration
are obtained by interpolation [8]. Similar studies can be seen in [9, 10]. This method
is currently widely used in industrial applications, but it will have a certain impact
on the real-time performance of the system. For redundant manipulators, there is
an infinite section configuration corresponding to a particular Cartesian description.
Therefore, the second task can be accomplished by adjusting the joints, such as
avoiding obstacles and optimizing energy consumption.

With full knowledge of physical parameters, a series of studies on real-time con-
trollers can be found in [11–14]. In fact, robots usually have model uncertainties,
including kinematic uncertainties, which may be caused by processing and mea-
surement errors. On the other hand, robots may work with different tools, which
can also lead to model uncertainties. The parametric drift may lead to inaccuracy
in Jacobian, resulting in performance degradation or unpredictable response, which
should be compensated. Before designing the controller, several calibration methods
are proposed to determine the exact parameters [15, 16]. With the development of
optical technology, researchers could measure the exact position and direction of the
end-effector online. A series of real-time tracking controllers are proposed. Liu et
al. proposes an adaptive tracking scheme based on online learning of the Jacobian
matrix, by discussing the selection of control gain in detail, the authors prove the
stability of the closed-loop system [18]. In [19], a robust controller considering actu-
ator saturation is designed. Lyapunov theory indicates the semi-global stability of the
system. In [20], a dynamic regulation controller is also established, which consists of
a transposed Jacobian operator and a gravity compensator. When the required path
is variable, Cheah et al. propose a passive tracking controller [21], which proves the
global convergence of the tracking error. Liu et al. use the fuzzy logic system to
understand the uncertainty of the robot model, and design a tracking control scheme
based on sliding mode control. However, these studies require cartesian velocity or
joint acceleration, which is actually difficult to obtain due to hardware constraints.
Therefore, Wang et al. propose a tracking controller based on a low-pass filter, which
omits the cartesian velocity measurement [22]. Similar studies can be seen in [23–
25]. The above research mainly focuses on the general problems of position control,
the physical uncertainty of robots and ignores the secondary tasks.

Based on the above research, this chapter studies the motion control of redundant
manipulators, in which we take the uncertain kinematic parameters into account. In
practice, robots are usually scheduled to perform periodic tasks, therefore, we choose
repeatability as a secondary task. In order to avoid the measurement of velocity and
joint acceleration in task space, a new adaptive controller is designed, which achieves
secondary tasks by optimizing the functions in null space of Jacobian matrix. We
also provide stability analysis and numerical simulations.

The remainder of this chapter is organized as follows. In the second part, we
will introduce the basic kinematics of redundant robots and give several important
properties that will be used in the following sections. In the third part, the proposed
adaptive controller is discussed in detail, including an adaptivemethod and repeatable
optimization of model parameters. The convergence analysis of tracking error is
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discussed. In Sect. 1.4, we provide examples and numerical simulations to verify
the effectiveness of the proposed tracking method. Finally, Sect. 1.5 concludes the
chapter. Before concluding this section, we emphasize the main contributions of this
chapter as follows:

• This chaptermainly studies the adaptive kinematic control in the presence ofmodel
uncertainties, which is of great significance in practical engineering.

• In the controller design process, there is no need to measure the task space velocity
and joint acceleration. Therefore, the controller can be easily applied in actual
systems.

• The contribution also lies in that the proposed repeatability optimization scheme is
guaranteed by introducing a variable coefficient, which could ensure the continuity
of the joint speed.

1.2 Problem Formulation

Without loss of generality, the robot manipulator studied in this chapter is selected as
a serial robot, which ismost commonly used in industrial applications. The kinematic
model of a serial robot manipulator is

f (θ(t)) = x(t), (1.1)

where θ(t) ∈ R
n is the joint angles, and x(t) ∈ R

m is the vector describing the posi-
tion and orientation of the end-effector in cartesian space. f (•) : Rn → R

m is the
forward kinematic mapping of the robot. f (•) is a nonlinear function. Differentiating
x(t) with respect to time t , the cartesian velocity ẋ(t) is formulated as

ẋ(t) = J (θ(t), ak)θ̇(t), (1.2)

where J (qθ(t), ak) = ∂ f (θ(t), ak)/∂θ(t) ∈ R
m×n is the Jacobian matrix. As to a

redundant manipulator, n > m. ak ∈ R
l denotes the vector of kinematic parameters,

also called physical parameters, while in this chapter, mainly refers to length of each
joint. Therefore, ak is considered as a constant vector.

The movement of the end-effector J (θ(t), ak)θ̇(t) consists of two parts: phys-
ical parameter dependent term and joint angle-speed dependent term, and can be
described in the linearization-in-parameter form [21]:

J (θ(t), ak)θ̇(t) = Yk(θ(t), θ̇ (t))ak, (1.3)

where Yk(θ(t), θ̇ (t)) ∈ R
m×l is called kinematic regressor matrix.

In this chapter, to avoid measuring the task-space velocity, a low-pass filter is used
as follows

ẏ + λ1y = λ1 ẋ, (1.4)
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where λ1 is a positive constant and y is the filtered output of the task-space velocity
with initial value y(0) = 0. Rewriting (1.4) leads to

y = λ1 ẋ/(p + λ1), (1.5)

where p is the Laplace variable.
Combining (1.3) and (1.5), we have

y = Wk(t)ak, Wk(t) = λ1Yk(θ, θ̇ )/(λ1 + p), (1.6)

where Wk(0) = 0. For simplicity, we write J (θ), Yk(θ, θ̇ ) as J and Yk , respectively.

Remark 1.1 In real applications, ak has two different forms, which correspond to
different meanings. The first value is the actual value of ak , the other one is the
nominal value of ank . a

n
k is usually a non-calibrated measurement result of ak , which

is usually provided by themanufacturer or manual measurement. The real value of ak
is difficult to obtain in real applications, and ak is generally not the same as its nominal
value of ank . Due to assembly errors and long-term operations (such as friction, wear,
etc.,) besides, robots may operate different tools to perform tasks, which also leads
to motion uncertainty. In this case, the direct use of ank control method can lead to
control errors, which is unacceptable in high precision tracking control.

1.3 Main Results

In this section, we will show the detailed process of the controller design. Firstly,
the ideal case where all parameters are known is considered, then the basic idea
of parameter-updating-in-realtime is designed in the case where parameters are
unknown, and is then expanded to repeated optimization in null space. Finally, the
stability of the closed-loop system is discussed.

1.3.1 Adaptive Tracking Method

Define the tracking error in Cartesian space as

e(t) = x(t) − xd(t), (1.7)

(1) Known parameter case
When the kinematic parameters ak is perfectly known, the accurate Jacobian matrix
J can be obtained, therefore, the reference trajectory can be designed as

ẍ(t) = ẍd(t) + k1 ẋd(t) − k2e(t) − k1 J θ̇ (t), (1.8)
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where k1 and k2 are positive control gains. According to Eq. (1.2), the Eq. (1.8) can be
reformulated as ẍ(t) = ẍd(t) + k1 ẋd(t) − k2e(t) − k1 ẋ(t), by calculating the second
derivative of Eq. (1.7), and substituting Eq. (1.8), we have

ë(t) = ẍ(t) − ẍd(t)

= k1 ẋd(t) − k2e(t) − k1 ẋ(t). (1.9)

Eq. (1.9) can be rewritten as

ë(t) + k1ė(t) + k2e(t) = 0, (1.10)

it is obvious that is e(t) will eventually converge to zero, if k1 and k2 are Hurwitz.
Combining Eqs. (1.8) and (1.2), and letting initial joint velocity θ̇ (0) be 0, one can
easily derive the corresponding control signals of joint speed as below

θ̇ =θ̇ j + θ̇n (1.11a)

θ̇ j =
∫ t

0
J †

[
(ẍd + k1 ẋd − k2e − k1 J θ̇ ) − J̇ θ̇

]
dt (1.11b)

θ̇n =(I − J † J )α, (1.11c)

where I is n-dimensional identity matrix, J † = J T (J J T )−1 is the Pseudo-Inverse of
J , and θ̇n is a speed component in the null space of Jacobian,α canbe selected arbitrar-
ily. It is notable that J θ̇n = 0, indicating that the speed component in the null space
has no influence on the movement of end-effector. By getting the time-derivative
of Eq. (1.2) and substituting Eqs. (1.11), (1.2), (1.7), one can easily verify that the
error dynamics under kinematic controller Eq. (1.11) is the same as Eq. (refeq10),
the tracking error will gradually converge to 0.

Remark 1.2 Equation (1.8) gives fundamental description of reference trajectory in
the Cartesian space, it is notable that all the required information except J (θ, ak) on
the right side of the equation is easy to obtain. This inspires us to design a similar
control strategy with the existence of kinematic uncertainties.

(2) Unknown parameter case
In this situation, since the exact value of ak is unknown, J is unknown. Therefore,
in this case, we use Ĵ instead of J by replacing ak with its estimation âk , and let
âk(0) = ank , then the estimated ẋ(t) is ˆ̇x(t) = Ĵ θ̇ . By replacing ak by âk , according
to (1.3), the estimated cartesian speed ˆ̇x satisfies

ˆ̇x = Ĵ q̇ = Yk(q, θ̇ )âk, (1.12)

The modified reference trajectory is thus designed as

θ̇ (t) =
∫ t

0
{ Ĵ †[ẍd + (k1 + k2)ẋd − k1k2e − ˙̂J θ̇ − k3e] − (k1 + k2)θ̇}dt. (1.13)
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Since the accurate feedback of cartesian velocity ẋ is unavailable, the derivative of
tracking error ė = ẋ − ẋd is also unknown, therefore, we define the alternative value
of ė by using the estimated Cartesian speed ẋ :

Δ ˆ̇x = ˆ̇x − ẋd = Ĵ θ̇ − ẋd, (1.14)

then the updating law of kinematic parameters is designed as

˙̂ak = k1Y
T
k (Δ ˆ̇x + k1e) + k3Y

T
k e − WT

k (t)Γ1(Wk(t)âk − y), (1.15)

where Γ1 is a positive definite diagonal matrix, k1, k2 and k3 are positive control
gains.

Remark 1.3 Without loss of generality, the initial value of the estimated kinematic
parameters can be selected according to the nominal value, which can be obtained
from handbook or manual measurement. In fact, the adjustment of âk(0) does affect
the tracking process, which can be verified in the next section. The greater the error
between âk(0) and ak , the greater the initial simulation error. However, according
to (1.15), no matter what the exact value of âk(0), the estimated value of âk will
eventually converge to ak , which can be verified by stability analysis and numerical
experiments.

Now, we are ready to offer a theorem about the task-space tracking problem for
robots with uncertain physical parameters using the proposed adaptive controller as
below.

Theorem 1.1 The control error e(t) for a redundant manipulator described by (1.7)
would globally converge to 0, provided the joint speed controller described as (1.13),
along with the kinematic adaptation law (1.15).

Proof Differentiating (1.7) and substituting (1.3) and (1.12), we have

ė = ẋ − ˆ̇x + ˆ̇x − ẋd
= Ykak − Ykâk + ˆ̇x − ẋd
= −Ykãk + Δ ˆ̇x . (1.16)

Taking the time derivative of Δ ˆ̇x and combining Eqs. (1.14) and (1.16) derives

d

dt
(Δ ˆ̇x) = ˙̂J θ̇ + Ĵ θ̈ − ẍd

= (k1 + k2)ẋd − k1k2e − k3e − k2 Ĵ θ̇ − k1 Ĵ θ̇

= k2 ẋd − k2 Ĵ θ̇ − k1k2e − k3e + k1 ẋd − k1(ẋd + ė + Ykãk)

= −k2Δ ˆ̇x − k2k1e − k3e − k1Ykãk − k1ė, (1.17)

where ãk = ak − âk represents the difference between the real value of physical
parameters ak and the estimated one âk . Eq. (1.17) can be written as
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d

dt
(Δ ˆ̇x − k1e) = −k2(Δ ˆ̇x + k1e) − k3e − k1Ykãk . (1.18)

Select a Lyapunov function candidate as follows

V = (Δ ˆ̇x + k1e)
T(Δ ˆ̇x + k1e)/2 + k3e

Te/2 + ãT
k ãk/2. (1.19)

By taking the time derivative of (1.19) and combing (1.15), (1.16) and (1.17), we
have

V̇ = (Δ ˆ̇x + k1e)
Td(Δ ˆ̇x + k1e)/dt + k3e

Tė + ãTk
˙̃ak

= (Δ ˆ̇x + k1e)
T(−k2(Δ ˆ̇x + k1e) − k3e − k1Ykãk) + ãTk (k1Y

T
k (Δ ˆ̇x + k1e) + k3Y

T
k e

−WT
k (t)Γ1(Wk(t)âk − y) + k3e

T(−Ykãk + Δ ˆ̇x)
= −k2(Δ ˆ̇x + k1e)

T(Δ ˆ̇x + k1e) − k1k3e
Te − ãTk WT

k (t)Γ1Wk(t)ãk
≤ 0. (1.20)

Then we can obtain that Δ ˆ̇x , e and ãk are all bounded. Based on Eqs. (1.14) and
(1.3), Ĵ θ̇ , âk and Ykãk are also bounded. Notably that Wk(t)ãk is the output of a
stable system with bounded input Yk(t)ãk , we have Wk(t)ãk is also bounded. Then
according to Eq. (1.15), ˙̂ak is bounded. DifferentiatingWk(t)ãk with respect to time,
we have

d

dt
(Wk(t)ãk) = λ1(Yk − Wk(t))ãk + Wk(t) ˙̂ak . (1.21)

d(Wk(t)ãk)/dt is also bounded. Thenwe have ė, d(Δ ˆ̇x)/dt and d(Wk(t)ãk)/dt are all
bounded, which means the time derivative of (1.20), V̈ is bounded. Using Barbalat’s
Lemma, we have Δ ˆ̇x + k1e → 0 , e → 0 , as t → ∞ .

Remark 1.4 We have proved the convergence of the tracking error under the con-
dition of kinematic uncertainties. In fact, when ak is perfectly known, Eq. (1.13) will
be degenerated as

θ̇ (t) =
∫ t

0
[J †(ẍd + (k1 + k2)ẋd − k1k2e − J̇ q̇ − k3e) − (k1 + k2)θ̇]dt, (1.22)

which has the similar form compared with Eq. (1.11). Therefore, known parameter
case described in Eq. (1.11) can be considered as a special form of Eq. (1.13).

Remark 1.5 The control velocity q̇ in Eq. (1.13) is not the final result of this chapter.
The velocity component in null space is ignored, although it has no effect on the
movement of end-effector as well as the stability proof, this part can not be neglected,
because the redundancymechanism is of great engineering significance to themanip-
ulator.
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Algorithm 1 The proposed tracking method
Input: Parameters k1, k2, k3, K , Γ1, ε, initial states θ̇ (0) = 0, θ(0), nominal kinematic parame-

ter âk(0), desired path xd(t), ẋd(t) and ẍd(t), task duration Te, feedback of end effector x(t),
analytical expressions of estimated Jacobian matrix Ĵ and kinematic regressor matrix Yk .

Output: To achieve task-space tracking of the redundant manipulator
1. Initialize ak(0) ← ank .
2. x , θ , q̇ ← Sensor readings
3. Calculate e, y, and Wk(t) by Equation (1.7), (1.5) and (1.6)
4. Update K by Equation (1.27)
5. Update θ j by θ̇ j ← Equation (1.26b)
6. Update θn by θ̇n ← Equation (1.26c)
7. calculate the output θ̇ by Equation (1.26a)
8. Update âk by ˙̂ak ← by Equation (1.26d)
Until(t > Te)

(3) Repeatability optimization
In this subsection, in order to make full use the of redundant design of a redundant
manipulator, a repeatability optimization scheme is developed in the null space of
the Jacobian matrix, which is helpful to improve the stability and reliability of robots
in periodic tasks.

Define a following function to describe a robot’s repeatability as

F(θ) = −K (θ − θini )
T(θ − θini )/2, (1.23)

where K is a positive parameter scaling the weight of repeatability optimization, θini
is the initial value of the joint angles. By using gradient descent method, a velocity
component in null space can be calculated as

α = [∂(F(θ))/∂(θ1), · · · , ∂(F(θ))/∂(θn)]. (1.24)

Combining Eqs. (1.24) and (1.23), we have

α = [θint (1) − θ(1), · · · , θint (i) − θ(i), · · · , θint (n) − θ(n)]T. (1.25)

where θini (i) and θ(i) represent the i th element of θint and θ , respectively, i =
1, · · · , n.

Then the complete form of the proposed adaptive controller is

θ̇ =θ̇ j + θ̇n (1.26a)

θ̇ j =
∫ t

0
[J †(ẍd + (k1 + k2)ẋd − k1k2e − J̇ θ̇ − k3e) − (k1 + k2)θ̇ ]dt (1.26b)

θ̇n =(I − J † J )[θint (1) − θ(1), · · · , θint (i) − θ(i), · · · , θint (n) − θ(n)]T (1.26c)

˙̂ak =k1Y
T
k (Δ ˆ̇x + k1e) + k3Y

T
k e − WT

k (t)Γ1(Wk(t)âk − y) (1.26d)
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Fig. 1.1 change curve of K with time t

Remarkable that at the beginning stage of the tracking cycle, the repeatability is
less important, and then it rises as the task continues. To this end, we set K as a
variable:

K =
{
0 NT ≤ t < NT + T/2,

K ∗ 2NT + T

2
< t < (N + 1)T

, (1.27)

where K ∗ = Kmax (1 − cos(π(t − NT − T/2)/T ), N = 0, 1, 2, . . . are natural
numbers, T is the period of cyclic motion. If t < NT + T/2, the robot has just
left the initial state to perform a task, thus we let K = 0, this will cause α = 0, the
joint control velocity is the same as (1.13). When t > NT + T/2, K increases from
0 to maximum value Kmax with time, forcing the robot to repeat the initial state. The
change curve of K with time is shown in Fig. 1.1.

Remark 1.6 The main reason for this selection of K is to ensure the continuity
of joint speed signals during a motion cycle. Notable that the discontinuities of K
still appear at the moment T = NT . If the robot can repeat the initial joint state,
θ − θini would converge to 0, so α can be also regarded as continuous. Therefore,
the definition of K in (1.27) is acceptable.

1.4 Numeral Simulations

In this section, several groups of numerical experiments are carried out to show the
effectiveness of the designed controller. Firstly, a comparative simulation is given
to show that the adaptive tracking law could achieve a satisfing performance with
the existence of kinematic uncertainties. Secondly, we will check the performance
in periodic tasks. Finally, more general trajectories are discussed to show the adap-
tiveness and robustness of the control algorithm.



10 1 Adaptive Jacobian Based Trajectory Tracking for Redundant …

Fig. 1.2 The 4-DOF redundant manipulator to be simulated in this chapter. Left: Physical structure
of the 4-link robot manipulator. Right: D-H parameters

1.4.1 Simulation Settings

The vector of initial joint angles is selected as θini = [π/2,−π/2, 0, 0]Trad, and
the corresponding cartesian position is xini = [0.6, 0.3]T. Since the exact value of
kinematic parameters (see di in Fig. 1.2), we assume the nominal values to be ank =
[0.25, 0.25, 0.12, 0.18]Tm, and let âk(0) = ank . The control gains k1, k2 and k3 are set
to be k1 = 50, k2 = 50, k3 = 50, Γ = 10. As to the repeatable tasks, the parameter
scaling the velocity component in the null space is selected as Kmax = 10. The time
constant of low-pass filter is λ = 40. It is notable that matrix Ĵ is essential in the
proposed tracking controller, which is used to estimate the actual Jacobian matrix
J (q, ak). To further show the detail of the proposed controller, analytical expression
of Ĵ is given in Appendix.

1.4.2 Verification of Parameter Estimation

Comparative simulations is firstly carried out to show the effectiveness of the pro-
posed updating law (1.15). The desired path to be tracked is defined as xd(t) =
0.4 + 0.2cos(2t), yd(t) = 0.3 + 0.2sin(2t). In the first simulation, the nominal val-
ues are used directly in the tracking control according to Eq. (1.13). By contrast, âk
is updated using (1.15) in the comparable simulation, and α is set to be zero (i.e.,
we didn’t use repeatability in this part). Simulation results are shown in Fig. 1.3.
Both controllers ensure the boundedness of the tracking error. When ak is known,
benefiting from the closed-loop control mechanism, the tracking errors along two
axes are much less than 5 mm. The tracking errors with parameter estimation are less



1.4 Numeral Simulations 11

0 5 10

Tr
ac

ki
ng

 e
rro

r(m
)

10-3

-5

0

5
ex
ey

t(s)
(a)

0 5 10

Tr
ac

ki
ng

 e
rro

r(m
)

10-3

-5

0

5
ex
ey

t(s)
(b)

0 5 10

N
or

m
 o

f t
ra

ck
in

g 
er

ro
r(m

2 ) 10-3

-5

0

5
Identified
Unidentified

t(s)
(c)

Fig. 1.3 Error profile with and without parameter estimation when tracking a circle. a Track-
ing errors without parameter estimation. b Tracking errors with parameter estimation. c Norm of
tracking errors with and without parameter estimation

than 1 mm. Fig. 1.3c shows comparative results of tracking error norm correspond-
ing to known and unknown ak , intuitively showing the effectiveness of the proposed
controller under the condition of unknown models.

1.4.3 Verification of Repeatability Optimization

Then we check the effectiveness of repeatability optimization. Based on the simula-
tionof the previous part,we introduce the proposed repeatability optimization scheme
(i.e., the controller is the same as the adaptive tracking controller in the previous part
except α �= 0.) Simulation results are shown in Fig. 1.4. The curve of tracking error
e is the same as the one when α = 0, showing the property that the velocity com-
ponent in null space have no influence on the cartesian movement (Fig. 1.4a). The
estimated kinematic parameters âk are shown in Fig. 1.4b, which slowly converges to
ak with time. The error norm ||Ykâk − ẋ ||2 of the estimated cartesian speed reduced
to zero quickly, as shown in Fig. 1.4c. The curve of the repeatability function is
shown in Fig. 1.4d, we can observe that when t = T, 2T, · · · , ||q − qini ||2 equals to
zero. This is to say, when repeatability optimization is used, ||q − qini ||2 changes
periodically. Figure1.4e shows the motion trajectory tracked by its end-effector of
the robot manipulator, illustrating the precise tracking of the circle desired trajectory.

1.4.4 Cardioid Tracking

To further verify effectiveness of the proposed control scheme, the manipulator is
required to track a cardioid trajectory in 2-Dworkspace. The desired path is defined as
xd(t) = 0.1(2sin(2t) − sin(4t)) + 0.6 m, yd(t) = 0.1(2cos(2t) − cos(4t)) + 0.2
m. Simulation results are shown in Fig. 1.5. The motion trajectory achieved by its
end-effector of the manipulator is shown in Fig. 1.5a. The corresponding tracking
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(a) (b) (c)

(d) (e)

Fig. 1.4 Simulation results with parameter estimation when tracking a circle. a Tracking error
profile. b Estimated parameter âk . c Difference between the estimated value Ykâk and the real one.
d ||q − qini ||2 with repeatability optimization. e Motion trajectory

errors are given in Fig. 1.5b, showing that the robot successfully tracks the given
trajectory. ||q − qini ||2 is guaranteed to 0 when t = T, 2T, 3T (Fig. 1.5e), and the
estimated kinematic parameters are shown in Fig. 1.5c. All in all, the proposed con-
troller ensures stable tracking under the condition of model uncertainties, and the
repeatability is also achieved.

1.5 Summary

In this chapter, an adaptive tracking controller is designed for redundantmanipulators.
Model uncertainties and repeatability are considered. The control scheme requires
neither joint accelerations nor cartesian velocity, which is more suitable in practical
engineering. By using the pseudo-inverse method, repeatability is optimized in the
null space of Jacobian, the continuous of joint speed is also guaranteed. Future studies
will concentrate on the experimental validation of the proposed controller.
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Fig. 1.5 Simulation results when tracking a cardioid curve. aMotion trajectory of the manipulator.
b Tracking error. c Estimated parameter âk . d Difference between the estimated value Ykâk and the
real one. e ||q − qini ||2 with repeatability optimization

Appendix

Given the joint angle θ = [θ1, θ2, θ3, θ4]T and the estimated âk = [âk(1), âk(2),
âk(3), âk(4)]T. By simplifying cos(θi ) = ci , sin(θi ) = si , âk(i) = ai , the analyti-
cal expression of Ĵ is given as below.

Ĵ (1, 1) = −a1s1 − a2s12 − a3s123 − a4s1234,
Ĵ (1, 2) = −a2s12 − a3s123 − a4s1234
Ĵ (1, 3) = −a3s123 − a4s1234
Ĵ (1, 4) = −a4s1234
Ĵ (2, 1) = a1c1 + a2c12 + a3c123 + a4c1234
Ĵ (2, 2) = a2c12 + a3c123 + a4c1234
Ĵ (2, 3) = a3c123 + a4c1234
Ĵ (2, 4) = a4c1234.

Based on the analytical expression of Ĵ given above, ˙̂J can be formulated as
follows.˙̂J (1, 1) = −a1c1θ̇1 − a2c12(θ̇1 + θ̇2) − a3c123(θ̇1 + θ̇2 + θ̇3)

− a4c1234(θ̇1 + θ̇2 + θ̇3 + θ̇4)˙̂J (1, 2) = −a2c12(θ̇1 + θ̇2) − a3c123(θ̇1 + θ̇2 + θ̇3) − a4c1234(θ̇1 + θ̇2 + θ̇3 + θ̇4)˙̂J (1, 3) = −a3c123(θ̇1 + θ̇2 + θ̇3) − a4c1234(θ̇1 + θ̇2 + θ̇3 + θ̇4)˙̂J (1, 4) = −a4c1234(θ̇1 + θ̇2 + θ̇3 + θ̇4)
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˙̂J (2, 1) = −a1s1θ̇1 − a2s12(θ̇1 + θ̇2) − a3s123(θ̇1 + θ̇2 + θ̇3)

− a4s1234(θ̇1 + θ̇2 + θ̇3 + θ̇4)˙̂J (2, 2) = −a2s12(θ̇1 + θ̇2) − a3s123(θ̇1 + θ̇2 + θ̇3) − a4s1234(θ̇1 + θ̇2 + θ̇3 + θ̇4)˙̂J (2, 3) = −a3s123(θ̇1 + θ̇2 + θ̇3) − a4s1234(θ̇1 + θ̇2 + θ̇3 + θ̇4)˙̂J (2, 4) = −a4s1234(θ̇1 + θ̇2 + θ̇3 + θ̇4).
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Chapter 2
RNN Based Trajectory Control for
Manipulators with Uncertain Kinematic
Parameters

Abstract Among tracking control of redundant manipulators, potential limitations
such as model uncertainties and physical limitations may exist. Conventional solu-
tions may fail when model parameters differ from nominal ones. In this chapter,
a novel kinematic controller with the capability of self-adaptation is proposed
to address this challenging issue. Based on the coordinate feedback, a Jacobian
adaption strategy is firstly built by updating kinematic parameters online. Using
Karush–Kuhn–Tucker conditions, the redundancy solution problem is then turned
into a quadratic optimization one, and a recurrent neural network based controller
is designed to derive the optimal solution recurrently. Theoretical analysis demon-
strates the global convergence of the tracking error. Comparedwith existingmethods,
kinematic model uncertainty of the robot is allowed in this chapter, and the pseudo-
inverse of Jacobian matrix is avoided, with the consideration of physical limitation
in a joint framework. Numerical experiments based on Kinova JACO2 show the
effectiveness of the proposed controller.

2.1 Introduction

With the development of mechanics, electronics and computer technology advance,
using robot manipulators is becoming popular in modern manufacturing such as
welding, painting, assembling, etc [1–4]. Among these applications, tracking control
of manipulators, focusing on the calculation of control actions to drive the robot to
move along the user-defined trajectory in Cartesian space, is always a core problem
in robot control, and has been studied intensively by researchers in recent decades.

Redundant manipulators have more degrees of freedom (DOFs) than those
required to accomplish a given task [5], and have shown great potentials in enhancing
robot flexibility, dexterity, and versatility, avoiding obstacles [6–9], and optimizing
energy consumption [10]. However, the nonlinear function description from the joint
to Cartesian space, as well as the redundancy in DOFs, makes it a challenging prob-
lem to achieve precise tracking control of redundant manipulators.

In recent decades, some results on resolving the redundancy of manipulators have
been reported. In most approaches, the problem is solved at the velocity or accelera-
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tion level, namely, to derive the corresponding joint velocity or acceleration according
to the trajectory description in Cartesian space. Masayuki et al. [12] propose a redun-
dancy solutionmethod for a S-R-S redundant manipulator at the angle level, in which
analytic solutions are firstly derived, and analytical methods for joint avoidance is
then considered. However, thismethod is effective only for robotswith a specific con-
figuration and is not scalable to manipulators with a general mechanical structure. To
solve the kinematic control problemwith general configurations, some controllers are
proposed, including adaptive control methods [13, 14], barrier-Lyapunov-function
based methods [15, 16], and Jacobian-matrix-pseudo-inverse (JMPI) methods [17–
19]. In [17], an asymmetric barrier Lyapunov function-based method is introduced
to handle the output limitation. This method consists of a full state feedback con-
troller and an output feedback controller. Using the JMPI method, one can get the
control signals in joint space according to the desired path and the pseudo-inverse
of the Jacobian matrix. For a redundant manipulator, there is a null space for the
Jacobian matrix [20], which is helpful to design controllers considering a secondary
task. Therefore, JMPI basedmethods have beenwidely used in redundancy solutions.
Galicki [21] proposes a JMPI based tracking controller, and an alternative method
around the singular point is discussed. In [22], a weighted damped least-squares
method is developed to calculate pseudo-inverse around the singularity, an appro-
priate damping factor is derived according to the minimum singular value. In [23],
pseudo-inverse of Jacobian is calculated online by a Taylor-type discrete-time neural
network, which is composed of T-ZNN-K and T-ZNN-U models. In [24], a special
type of nonlinear function based neural network is designed for tracking control of a
PA10manipulator, and the finite-time convergence of tracking error is also analyzed.

Although the above-mentioned methods have achieved great success, those meth-
ods are afflicted with several major limitations in scenarios that require higher per-
formance of real-time ability, accuracy, and self-adaptation. Firstly, the precise kine-
matic parameters are required in existing works. Describing the mapping from the
joint movement in joint space to the movement of the end-effector in Cartesian
space, the Jacobian matrix contains kinematic characteristics, such as configuration
and kinematic parameters. For a specified robot, the configuration can be derived, but
it is usually difficult to obtain accurate kinematic parameters. For example, because
of the manufacturing error, different operation tools, etc., the DH parameters may
differ to the reference ones in official guidebooks [25]. In this case, the Jacobian
matrix based on the inaccurate parameters would cause errors in pseudo-inverse cal-
culation and even instability of the system [26]. On the other hand, the calculation of
pseudo-inverse operation is time-consuming, which would lead to a huge cost in real
applications which requires pseudo-inverse calculation in every control cycle. Addi-
tionally, due to mechanical reasons, the robot manipulator is suffered from physical
constraints, such as joint angular and speed limitations.

In terms of the kinematic control in the presence of model uncertainties, the real-
time feedback of the end-effector enables closed-loop control for researchers. This
can be done by high performance measuring devices such as high precision cameras
and laser trackers [27]. In [28], based on the parameter linearization property, a
robust controller is proposed, which shows semi-global stability in regulation control
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in fix-point control. As to the tracking control of manipulators, Hou proposes a
neural network based control strategy, in which the position/orientation of the robot
is described by a unit quaternion, and the network is used to learn the unknown
nonlinear part of the system.Onemain contribution of the research is that singularities
associated with three-parameter representation can be avoided. Cheah et al. propose
several adaptive controllers for manipulators in different industrial applications, such
as visual tracking, force tracking and trajectory tracking [30–34]. In [35], Chen and
Zhang design a new adaptive controller in the acceleration level, the basic idea is
that the Jacobian matrix is updated in realtime rather than kinematic parameters.
One major drawback of the strategy is that the controller requires the actual values
of end velocity and acceleration, which may contain noise in actual applications. In
order to reduce the influence of noise in sensor feedback, Wang introduces a low-
pass filter, and then an adaptive torque calculation controller is designed in the inner
loop [36]. Xu develops a modified controller [37], in which the joint command is
deigned at the acceleration level. It is verified that the controller does not require
measurement of end velocity and joint acceleration. The influence of the control
parameters on tracking errors and convergence rate is also discussed. The above
methods mainly focus on the uncertain model parameters, and the redundancy of the
manipulators is not considered. Despite the pseudo-inverse can be used instead of
traditional inverse calculation of Jacobian matrix, the disadvantage of JMPI methods
remains unresolved. In order to overcome the limitations based on the JMPI method,
researches transform this problem into a quadratic programming problem, with the
aim of obtaining an optimal solution with the specified evaluation index under the
physical constraint. Physical constraints can be formulated into equation constraints
or inequality constraints. Zhang et al. [38] develops a dual neural network to solve
quadratic programming problems, and it is shown that this strategy is suitable for
redundancy solutions. Based on the idea, a series of research is reported in eliminating
the position error accumulation [39], nonconvex optimization [40], acceleration-level
compliance [41], parallel robots [42] and multiple robot systems [43].

Inspired by the above literature, in this chapter, we focus on the adaptive tracking
problem for redundant manipulators. The remained of this chapter is arranged as
below. In Sect. 2.2, fundamental robot kinematics together with useful properties are
given, we also show the control objective. In Sect. 2.3, an adaptive Jacobian method
is designed by updating kinematic parameters online, and a RNN is used to achieve
redundant resolution based on the estimated Jacobianmatrix, convergence analysis of
the tracking error in Cartesian space is also discussed. In Sect. 2.4, numerical results
and comparisons are conducted on a 6DOF robot JACO2. Finally, conclusions are
drawn in Sect. 2.5. Before ending the introductory section, we highlight the main
contributions of this chapter as below:

• As far as we know, for the first time, this chapter proposes an RNNbased controller
via kinematic regressing for redundant manipulator subject to model uncertainties.

• Using the Lyapunov theory, the convergence of tracking error is proved in the case
of uncertain parameters.
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• In this chapter, there is no need to calculate the pseudo-inverse of the Jacobian
matrix, which can avoid singularity problems effectively, and also reduce compu-
tational load.

• The minimum velocity solution is derived by the proposed control scheme, thus
the safety of both humans and robots can be also guaranteed.

2.2 Problem Formulation and Existing Results

2.2.1 Robot Kinematics

Without loss of generality, we consider serial robot manipulators in this chapter. The
kinematic model for robot manipulators is described as follows:

f (θ(t)) = x(t), (2.1)

where θ(t) ∈ R
n represents the vector of the joint angles at time t , and x(t) ∈ R

m

represents the Cartesian coordinate vector of the end effector. For a specific robot
manipulator, f (•) : Rn → R

m is used to describe the forward kinematics from joint
space to Cartesian space, which is a continuous nonlinear mapping containing kine-
matic parameters and structure information.

By differentiating x(t) with respect to time t , we can get the relationship between
Cartesian velocity ẋ(t) ∈ R

m and joint velocity (or joint control signal) θ̇ (t) ∈ R
n

as follows:
J (θ(t), ak)θ̇(t) = ẋ(t), (2.2)

with J (θ(t), ak) = ∂ f (θ(t), ak)/∂θ(t) being the Jacobian matrix, and ak ∈ R
l

denotes the vector of kinematic parameters.
Once the physical structure of manipulator is determined, its kinematic equation

(2.2) satisfies the following linearization property [43], which describes the relation-
ship between the robot’s end velocity and its kinematic parameters:

J (θ(t), ak)θ̇(t) = Yk(θ(t), θ̇ (t))ak, (2.3)

where Yk(θ(t), θ̇ (t)) ∈ R
m×l is called kinematic regressor matrix. Remarkable that

Yk(θ(t), θ̇ (t)) is the function of θ(t) and θ̇ (t), and has no relation with ak .

2.2.2 Control Objective

In this chapter, we consider the task space tracking problem for redundant manipula-
tors, where precise values of kinematic parameters are unavailable. The measurable
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states are joint angles θ(t) and the end coordinates x(t). The desired Cartesian path
xd(t) ∈ R

m and its time derivative ẋd(t) are accessible, both xd(t) and ẋd(t) are
bounded. The nominal value of the kinematic parameter vector is also available,
which is denoted as ank .

The control objective is to generate joint velocity command in real-time, e.g.,
designing θ̇ (t) to drive the end-effector of a redundant robot to track xd(t) , in the
sense that f (θ(t)) = x(t) → xd(t). During the whole tracking process, velocity of
every joint θ̇i (t) should not exceed its limits θ̇ i

min, θ̇
i
max.

2.3 Main Results

In this section, we will show the detailed process of the controller design. When con-
trolling a redundant robot, one important problem is tomake use of its flexibility, such
as avoiding obstacles, optimizing energy consumption, and avoiding Singularities,
etc. In this chapter, when the kinematic controller is designed to achieve task-space
tracking in the presence of physical uncertainties, we consider the energy-saving
problem at speed level. Therefore, the secondary task in set to minimize the veloc-
ity norm uTu. The control strategy consists of three parts: a position controller in
the outer-loop, a Jacobian adaption part which is capable of handling kinematic
uncertainties online, and an RNN which is used to solve the redundancy resolution
problem. The stability of the closed-loop system will be also discussed.

2.3.1 Position Controller

Firstly, a precisemeasurement of actual coordinate x in real-time t is taken to build the
closed-loop system. The difference between the desired path and the corresponding
feedback can be defined as

e(t) = xd(t) − x(t). (2.4)

In order tomake e(t) converge to 0, by using the zeroing dynamics [53], the derivative
of e(t) is designed as

ė(t) = −ke(t), (2.5)

with k > 0 being a positive constant scaling the convergence rate of e(t). Combining
(2.4) and (2.5) yields

ẋ(t) = ẋd(t) + k(xd(t) − x(t)). (2.6)

Let θ̇ (t) = u(t), according to (2.6), if u(t) is properly designed to make the robot’s
end-effector move at a speed of ẋ(t), in the sense that ẋ(t) = J (θ(t), ak)u(t), the
tracking error e(t) in task-space would convergence to zero exponentially.
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When ak is unknown, the precise Jacobianmatrix described in (2.2) is unavailable.
The redundancy solution can not be achieved by using J (θ, ak). Therefore, we use the
estimate Jacobian J (θ(t), âk) by replacing the unknown parameters ak in J (θ(t), ak)
with its estimate âk , and the initial value of âk is set as âk(0) = ank , the estimate error
is defined as ãk = âk − ak . Using J (θ(t), âk) and the control signal θ̇ (t), we can
estimate the velocity of the end-effector as

ˆ̇x(t) = J (θ(t), âk(t))u(t). (2.7)

Remarkable that the linearization property described in (2.3) still holds for estimated
âk :

J (θ(t), âk(t))u(t) = Yk(θ(t), u(t))âk(t), (2.8)

this property will be used in the following stability proof. The adaptive Jacobian
method by updating its kinematic parameters âk is thus developed as

˙̂ak(t) = −Γ1Y
T
k (θ(t), u(t))e(t), (2.9)

where Γ1 ∈ R
l×l is a diagonal positive definite matrix, e(t) is the tracking error

in Cartesian space as defined in (2.4), and u(t) is the bounded joint speed vector
satisfying J (θ(t), âk)u(t) = ẋ(t), which will be designed later. Unless otherwise
specified, J (θ(t), âk) is simplified as Ĵ .

Remark 2.1 Figure2.1 gives a brief framework of the proposed control scheme for
redundant manipulators with uncertain kinematic parameters. The desired trajectory
of the end-effector is specified by xd(t) and ẋd(t). The desired trajectory together

Fig. 2.1 Framework of the proposed scheme for redundantmanipulators with uncertain kinematics,
in which the neural control algorithm includes three interactive modules, i.e., position control
module, parameter identification module, and redundancy resolution module
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with feedback x(t) are fed into the position controller (2.6). The tracking error e(t)
and joint speed θ̇ (t) are used to learn the kinematic parameters online by identifier
(2.9). According to the output of the position controller, identified parameter âk ,
feedback of the manipulator and physical limits, an RNN based controller is used to
achieve the redundancy solution problem.

2.3.2 Redundant Solution Using RNN

In this subsection, we focus on redundancy resolution problem based on Jacobian
adaption method introduced in Sect. 2.3.1. The main purpose of redundancy res-
olution is to find an optimal joint speed u(t) to make equation J (θ(t), ak)u(t) =
ẋd(t) + k|e(t)|ρsgn(e(t)) hold, at the same time, a secondary task can be also
achieved. The redundancy resolution problem can be converted into a quadratic
optimization one with specified constraints. To minimize the kinetic energy of the
robot, we select velocity norm uTu = θ̇Tθ̇ as an object function to be optimized, the
joint range θ i

min ≤ θi ≤ θ i
max and joint speed limits θ̇ i

min ≤ θ̇i ≤ θ̇ i
max are regarded as

inequality constrains. Because J (θ, ak) is unavailable, we use Ĵ instead of J (θ, ak),
and rewrite ẋ = b0. Then the redundancy resolution problem is reformulated as the
following quadratic optimization formulations:

min uTu, (2.10a)

s.t. b0 = Ĵ u, (2.10b)

u ∈ Ω, (2.10c)

where Ω = {u ∈ R
n|uimin ≤ ui ≤ uimax} is a convex set describing the physical

constraints, where uimin = max{α(θ i
min − θi ), θ̇

i
min}, uimax = min{α(θ i

max − θ), θ̇ i
max},

α > 0 is a positive constant. The convex set ensures the boundedness of both joint
angles and speed [44]. According to the Karush−Kuhn−Tucker condition [45], an
equivalent description of the optimal solution to the quadratic optimization as shown
in (2.10) is described as

u = PΩ(u − ∂L/∂u), (2.11a)

b0 = Ĵ u, (2.11b)

where PΩ(•) is a projection operation to the set Ω , PΩ(x) = argminy∈Ω ||y − x ||,
and L = L(u, λ) is a Lagrange function defined as L(u, λ) = uTu/2 + λT(b0 − Ĵ u),
where λ ∈ R

m is a Lagrange multiplier corresponding to the equality constraint.
Note that the difference between Ĵ and J would lead to extra error, which will

result in tracking failure. To resolve the quadratic optimization problem (2.11), we
are ready to present the RNN based controller together with the updating kinematic
parameters online:
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Algorithm 1 The proposed tracking method

Input: Parameters k, α,Γ , ε, joint angle limits θ imax, θ
i
min, joint speed limits θ̇ imax, θ̇

i
min, initial states

u(0), θ(0), nominal kinematic parameter âk(0), desired path xd(t), ẋd(t), task duration T , feedback
of end effector x(t), analytical expressions of estimated Jacobian matrix Ĵ and kinematic regressor
matrix Yk .
Output: To achieve task-space tracking of the redundant manipulator
1: Initialize λ(0), ak(0) ← ank .
2: Repeat
3: x , θ ← Sensor readings
4: Calculate tracking error e ← Equation (2.4)
5: Position loop controller b0 ← Equation (2.6)
6: Update control output u by u̇ ← Equation (2.12a)
7: Update state variable λ by λ̇ ← Equation (2.12b)
8: Update model parameter âk by ˙̂ak ← Equation (2.12c)
Until (t > T )

εu̇ = −u + PΩ(− ĴTλ), (2.12a)

ελ̇ = Ĵ u − b0, (2.12b)

˙̂ak = −Γ1Y
T
k (θ, u)e, (2.12c)

where ε is a positive factor scaling the convergence of RNN. The proposed control
scheme is shown in Algorithm 2.3.2.

Remark 2.2 It is worth pointing that although the proposed RNN in (2.12a) and
(2.12b) looks similar to existing ones (e.g., [46, 47]), the modification is very mean-
ingful. The proposed RNN is capable of handling kinematic uncertainties. When the
kinematic parameters ak in known, Ĵ is equal to J , (2.12a) and (2.12b) have the
same expression with traditional ones, which shows that a known parameter case is
only a special form of our control scheme, thus the proposed RNN is more general.
The proposed control scheme offers an important expansion to model uncertainties,
which is of universal significance in engineering applications.

Remark 2.3 Using the proposed RNN based controller, the control command u(t)
can be derived according to (2.12a), which is capable of optimizing uTu, mean-
while, the projection operation Pω(•) handles inequality constraints. (2.12b) plays
an important role in task-space tracking. By referring to (2.12c), we update the Jaco-
bian indirectly by renewing its kinematic parameters online based on the property
(2.3), which is different with other Jacobian adaption mathods (e.g., [48]), where
joint acceleration is required. The necessary values of our updating law are joint
angle θ , joint speed u and tracking error e, therefore, the proposed control strategy
can be realized easily.
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2.3.3 Convergence Analysis

In this part, we conduct theoretical analysis on the convergence of tracking error
under theRNNbased tracking controller (2.12a) and (2.12b) alongwith the kinematic
parameter updating law described in (2.12c).

Firstly, two Lemmas are offered as below, which will be used in the proof process
of convergence analysis.

Lemma 2.1 For any closed convex set � ∈ R
p, (x − P�(x))T(P�(x) − y) ≥ 0,

∀y ∈ �, ∀x ∈ R
p, and the equality holds only if x ∈ � [49].

Lemma 2.2 For any closed convex set� ∈ R
p, (x − P�(x))T(x − y) ≥ 0, ∀y ∈ �,

∀x ∈ R
p, and the equality holds only if x ∈ � [47].

Based on Lemma 1 and 2, we can obtain the following theorem about convergence
of tracking error under the proposed redundancy resolution scheme (2.12).

Theorem 2.1 The control error e(t) defined in (2.4) for a redundant manipulator
globally converges to 0, provided the RNN based redundancy resolution (2.12a) and
(2.12b), along with the kinematic adaptation law (2.12c).

Proof: The convergence analysis includes two parts. Firstly, we will prove that
the output u of proposed RNN (2.12a), (2.12b) would reach the optimal solution
of (2.11). Secondly, we will show the convergence of tracking error e along with
the adaptation law (2.12c). Note that the proof bears similarity to that with known
parameters, but the extra dynamics on parameter adaptation makes it necessary to
analyze the joint stability, which constructs the main difference of this proof from
existing works.

Part I. By defining ξ = [uT, λT]T, controller (2.12a), (2.12b) can be reformulated
as

εξ̇ = −ξ + PΩ̄ (ξ − R(ξ)), (2.13)

where Ω̄ = {(u, λ)|u ∈ Ω,λ ∈ R
m}, and R(ξ) = [u − ĴTλ,−b0 + Ĵ u]T. Define

∇R = ∂R(ξ)/∂ξ , we have

∇R =
[
I − ĴT

Ĵ 0

]
,

where I is a n-dimensional identity matrix, and ∇R ∈ R
(m+n)×(m+n) is a skew sym-

metric matrix. The transpose matrix of ∇R is defined as ∇TR. Remarkable that ∇R
satisfies the following positive semi-definite property:

yT∇Ry = yT(∇R + ∇TR)y/2 ≥ 0, ∀y ∈ R
m+n . (2.14)

This property will be used later. Define the following Lyapunov function candidate
as

V1 = ||ξ − PΩ̄ (ξ)||22/2. (2.15)
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It is obvious that V1 = 0 if and only if ξ ∈ Ω̄ . According to the result of reference
in E.9, ∂||ξ − PΩ̄ (ξ)||22/∂ξ = 2(ξ − PΩ̄ (ξ)). Differentiating V1 with respect to time
and substituting (2.13) yield:

V̇1 =(ξ − PΩ̄ (ξ))Tξ̇

= − (ξ − PΩ̄ (ξ))T(ξ − PΩ̄ (ξ − R(ξ)))/ε. (2.16)

There is no doubt that PΩ̄ (ξ − R(ξ)) ∈ Ω̄ , according to Lemma 2, ∀ξ ∈ R
m+n sat-

isfies the inequality (ξ − PΩ̄ (ξ))T(ξ − PΩ̄ (ξ − R(ξ))) ≥ 0. Then we have V̇1 ≤ 0
because ε > 0, and V̇1 = 0 only if ξ ∈ Ω̄ . Based on to LaSalle’s invariance principle
[50], it can be proved that ξ gradually converges into Ω̄ , which indicates u converges
into Ω , the boundedness of joint angles and speed is thus guaranteed. Note that the
equilibrium point ξ ∗ satisfies

ξ ∗ = PΩ̄ (ξ ∗ − R(ξ ∗)). (2.17)

According to definition 1 and Lemma 1 in [51], ξ ∗ satisfies the following property

(y − ξ ∗)TR(ξ ∗) ≥ 0, ∀y ∈ Ω̄. (2.18)

Define function V2 as

V2 =(ξ − PΩ̄ (ξ − R(ξ)))TR(ξ) + ‖ξ − ξ ∗‖22/2
− ||ξ − PΩ̄ (ξ − R(ξ))||22/2 + V1. (2.19)

Some mathematical calculations on the first and third items of the definition (2.19)
give

(ξ − PΩ̄ (ξ − R(ξ)))TR(ξ) − ‖ξ − PΩ̄ (ξ − R(ξ))‖22/2
≥(ξ − PΩ̄ (ξ − R(ξ)))TR(ξ) − ‖ξ − PΩ̄ (ξ − R(ξ))‖22
=(ξ − R(ξ) − PΩ̄ (ξ − R(ξ)))T(PΩ̄ (ξ − R(ξ)) − ξ). (2.20)

Noticing that ξ would gradually converge into the convex set Ω̄ , then we get ξ ∈ Ω̄ .
According toLemma1, inequality (ξ − PΩ̄ (ξ − R(ξ)))T · (PΩ̄ (ξ − R(ξ)) − ξ) ≥ 0
holds for any ξ − R(ξ) ∈ R

m+n . Recalling the definition of V2, we have

V2 ≥ ||ξ − ξ ∗||22/2 + V1. (2.21)

Thus V2 is a Lyapunov function candidate. Differentiating V2 with respect to time
and combining (2.13) yields:

V̇2 =(ξ − PΩ̄ (ξ − R(ξ)))T∇Rξ̇ + ξ̇TR(ξ) + (ξ − ξ ∗)Tξ̇
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− (ξ − PΩ̄ (ξ − R(ξ)))Tξ̇ + V̇1

= − (ξ − PΩ̄ (ξ − R(ξ)))T∇R(ξ − PΩ̄ (ξ − R(ξ)))/ε

− (ξ − R(ξ) − PΩ̄ (ξ − R(ξ)))T(PΩ̄ (ξ − R(ξ)) − ξ ∗)/ε

− (ξ − ξ ∗)TR(ξ)/ε + V̇1. (2.22)

Remarkable that ξ ∗ ∈ Ω̄ , according to Lemma 1, inequality (ξ − R(ξ) − PΩ̄ (ξ −
R(ξ)))T(PΩ̄ (ξ − R(ξ)) − ξ ∗) ≥ 0 holds for any ξ − R(ξ) ∈ R

m+n .Using (2.14),we
have −(ξ − PΩ̄ (ξ − R(ξ)))T∇R(ξ − PΩ̄ (ξ − R(ξ)))/ε ≤ 0 since ε > 0. Accord-
ing to mean value theorem, we have

R(ξ) − R(ξ ∗) = ∇R(ξ ′)(ξ − ξ ∗), (2.23)

where ξ ′ ∈ [ξ, ξ ∗]. After some mathematical calculations on the following polyno-
mials and substituting (2.23), we have

(ξ − ξ ∗)TR(ξ)

=(ξ − ξ ∗)T∇R(ξ ′)(ξ − ξ ∗) + (ξ − ξ ∗)TR(ξ ∗). (2.24)

Using the properties (2.14) and (2.18), we have (ξ − ξ ∗)T∇R(ξ ′)(ξ − ξ ∗) ≥ 0 and
(ξ − ξ ∗)TR(ξ ∗) ≥ 0, then

(ξ − ξ ∗)TR(ξ) ≥ 0. (2.25)

Combining inequalities (2.16), (2.24) and (2.25) yields V̇2 ≤ 0, and V̇2 = 0 only
if ξ ∈ Ω̄ , which indicates (ξ − PΩ̄ (ξ − R(ξ)))T∇R(ξ − PΩ̄ (ξ − R(ξ))) = 0, (ξ −
R(ξ) − PΩ̄ (ξ − R(ξ)))T(PΩ̄ (ξ − R(ξ)) − ξ ∗) = 0 and (ξ − ξ ∗)TR(ξ) = 0. From
(2.24), we get (ξ − ξ ∗)T∇R(ξ ′)(ξ − ξ ∗) and (ξ − ξ ∗)TR(ξ ∗) = 0. Notable that ξ =
ξ ∗ is the solution of the above equations. Based on LaSalle’s invariance principle, we
arrive at a conclusion that ξ would gradually reach its equilibrium point ξ ∗, i.e., u(t)
would converge to its optimal solution of redundancy resolution problem (2.10).

Part II. Consider the Lyapunov function candidate

V3 = eTe/2 + ãTk Γ −1
1 ãk/2. (2.26)

Differentiating V3 with respect to time and substituting (2.4), (2.8) and (2.9), we have

V̇3 =eT(ẋd − ẋ) + ãTk Γ −1
1

˙̃ak
=eT(ẋd − J (θ, ak)u + (1 − 1)k|e|ρsgn(e) + ãTk Γ −1

1
˙̂ak

=eT(b0 − Yk(θ, u)(âk − ãk) − k|e|ρsgn(e)) − ãTk Y
T
k (θ, u)e

=eT(b0 − Ĵ u + Yk(θ, u)ãk) − k|e|ρ+1 − ãTk Y
T
k (θ, u)e. (2.27)

As proved above, using the neural network (2.12), uTu will be minimized under the
constraints b0 = Ĵ u and u ∈ Ω . Notable that ãTk Y

T
k (θ, u)e is a scalar value, we have

ãTk Y
T
k (θ, u)e = eTYk(θ, u)ãk . Then (2.27) can be rewritten as
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V̇3 =eTYk(θ, u)ãk − k|e|ρ+1 − ãTk Y
T
k (θ, u)e

= − k|e|ρ+1 ≤ 0. (2.28)

Then we have e = xd − x is bounded. Taking the time derivative of V̇3, we have:

V̈3 = − k(ρ + 1)|e|ρsgn(e)ė
= − k(ρ + 1)|e|ρsgn(e)(ẋd − J (θ, ak)u). (2.29)

Since J (θ, ak) is composed of trigonometric functions of θ and kinematic parameters
ak , J (θ, ak) is bounded. ẋd is also bounded. As illustrated in part I, u is bounded,
thus V̈3 is guaranteed to be bounded. Using Barbalat’s lemma [52], we have V̇3 → 0
as t → ∞. Then e → 0 as t → ∞. This completes the Proof. �

Remark 2.4 The convergence analysis shows the stability of the proposed control
strategy.The tracking errorwouldglobally convergence to0.Theproof also illustrates
that the control command u(t) is ensured u(t) ∈ Ω , ∀t ≥ 0, provided u(0) ∈ Ω , the
boundedness of joint speed is thus guaranteed all the time.

2.4 Illustrative Examples

2.4.1 Numerical Setup

We consider the position tracking problem in task space, then JACO2 can thus be
regarded as a functional redundant manipulator. The architecture of JACO2 is shown
in Fig. 2.2, and the DH parameters are shown in Table 2.1. Noticing that the last 3
joints of JACO2 do not intersect at a single point, these joints cannot be simplified
as spherical joint, therefore the configuration of JACO2 is more general than other
6DOF manipulators, e.g., the PUMA 560. The initial state of joint position vector

Fig. 2.2 The physical
structure of JACO2
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Table 2.1 DH parameters of the Kinova JACO2 robot manipulator

Link ai (m) di (m) αi (rad) θi (rad)

1 0 0.2755 π/2 θ1

2 0.41 0 π θ2 + π/2

3 0 −0.0098 π/2 θ3 − π/2

4 0 −0.2501 π /3 θ4

5 0 −0.0856 π /3 θ5 + π

6 0 −0.2028 π θ6 − π/2
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Fig. 2.3 Results of regulation control on JACO2 to a fixed point [0.3, 0.4, 0.4]m in the Cartesian
space. a Motion trajectory of end effector (red curve) and the corresponding incremental con-
figurations of JACO2. b Error-time curve along three directions. c Angle-time curve of 6 joints.
d Command-time curve of joint velocity u
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Fig. 2.4 Results when
JACO2 tracks a given circle
in Cartesian space. a Motion
trajectory of end effector (red
curve) and the corresponding
incremental configurations
of JACO2. b Error-time
curve along three directions.
c Angle-time curve of 6
joints. d Command-time
curve of joint velocity u.
e The first Cartesian velocity
input b0(x-axis direction)
described by (2.6) and the
corresponding output Ĵ u(1).
f The second Cartesian
velocity input b0(y-axis
direction) described by (2.6)
and the corresponding output
Ĵ u(2). g The third Cartesian
velocity input b0(z-axis
direction) described by (2.6)
and the corresponding output
Ĵ u(3). h The Euclidean
norm of the manipulator’s
joint velocity
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θ(0) is randomly set as [0.5, 0, 1.5, 0, 0, 0]Trad, and the initial joint speed u(0)
is selected to be zero. The nominal values of kinematic parameters are selected as
âk(0) = [0.25, 0.2, 0,−0.2,−0.1,−0.2]Tm. The setΩ describing joint speed limits
are set to be [−2, 2]6rad/s. The control gain k is set to be 8, and the gain matrix Γ1

is selected as 0.5I , where I is a 6-dimensional identity matrix (Fig. 2.4).
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2.4.2 Fixed-point Regulation

In order to verify the proposed tracking strategy, a set value adjustment experiment
is carried out. Set the desired fixed position of the end-effector to [0.3, 0.4, 0.4]Tm,
select the zoom factor to be ε = 0.008. The simulation results are shown in Fig. 2.3.
The adjustment error converges to zero, and the convergence time is about 0.5s, as
shown in Fig. 2.3b. Therefore, the joint angle θ reaches a set of constant values, as
shown in Fig. 2.3c. The combined velocity u(t)reaches the limit at the beginning of
the simulation, making the end-effector move toward the target as fast as possible,
and slowing down rapidly when the end-effector approaches the target. During the
whole simulation process, u is guaranteed not to exceed its limit, as shown in Fig.
2.3d. Finally, as shown in Fig. 2.3a, the robot successfully reaches the fixed point
under the proposed control scheme.

2.4.3 Circular Trajectory

In this section, tracking of a smooth circular trajectory using the control scheme is
carried out. The end effector of JACO2 is expected to move at an angular speed of
0.5rad/s along a circular trajectory. The desired circle is centered at [0.3, 0.3, 0.3]T
with a radius of 0.1732m, and has a revolute angle of 45◦ around the x-axis. The
scaling coefficient is selected as ε = 0.008The convergence time is about 0.5s,which
is similar to the regulation case. As shown in Fig. 2.4d, when the simulation begins,
the robot moves at the maximum speed when the tracking error is big (Fig. 2.3a),
which makes the end effector move close to the desired circle. Then the robot moves
at a low speed periodically, and correspondingly, the joint angle θ changes with the
same frequency (Fig. 2.4b), meanwhile, the tracking error is already close to zero
(Fig. 2.4a), which means that the robot has successfully tracked the desired circular
trajectorywith time.According to (2.6), the reference speed vector of the end-effector
b0 can be derived, and its components along x−, y−, and z− directions are shown
as blue lines in Fig. 2.4e–g, in which red lines represent the corresponding values
of Ĵ u. The red lines quickly converge to blue ones, demonstrating that the proposed
control strategy is able to track the given trajectory under kinematic uncertainties.
The joint velocity norm ||u||22 is shown in Fig. 2.4h.

2.4.4 Square Trajectory

In this section, the JACO2 is used to track a square trajectory. The corners of the
desired square in the Cartesian space are set to be [0.3, 0.4, 0.4]T, [0.4, 0.3, 0.4]T,
[0.3, 0.2, 0.2]T,and [0.2, 0.3, 0.3]T. The motion period is 12.56s. The velocity norm
of desired path ||ẋd(t)|| keeps constant, which means that the expected velocity
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Fig. 2.5 Results when
JACO2 tracks a square
trajectory in Cartesian space.
a Motion trajectory of end
effector (red curve) and the
corresponding incremental
configurations of JACO2. b
Error-time curve along three
directions. c Angle-time
curve of 6 joints. d
Command-time curve of
joint velocity u. e The first
Cartesian velocity input
b0(x-axis direction)
described by (2.6) and the
corresponding output Ĵ u(1).
f The second Cartesian
velocity input b0 (y-axis
direction) described by (2.6)
and the corresponding output
Ĵ u(2). g The third Cartesian
velocity input b0(z-axis
direction) described by (2.6)
and the corresponding output
Ĵ u(3). h The Euclidean
norm of the manipulator’s
joint velocity
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of end effector ẋd(t) remains constant between two adjacent vertices, while ẋd(t)
changes discontinuously at the four corners. The scaling coefficient is selected as
ε = 0.008. Numerical results are shown in Fig. 2.5. In the initial stage, the tracking
error approaches zero over time after a short transient state, at the same time, the joint
speed remains within the set Ω at all times (Fig. 2.5d). The output of the position
controller (2.6) and the resulting responses under the proposed control scheme along
the x−, y−, and z−directions are shown inFig. 2.5e–g.The red lines converge to blue
ones quickly both at the beginning of simulation and after discontinuous change of the
desired velocity, and the joint speed also switches at these moments, as shown in Fig.
2.5d. As a result, there exist vibration on the error curve at time t = 3.14, 6.28, 9.24,
12.56, 15.7, 18.8 s,with themaximumvalue of [4 × 10−3, 2 × 10−3, 1.5 × 10−3]Tm.
The joint velocity norm ||u||22 is shown in Fig. 2.5h (Table2.2).
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Table 2.2 Comparisons among different tracking controllers on manipulators

Method Exact
model

JMPI Initial Joint Regulation Tracking Real-time

Exact
model

Position Velocity Error error Control

This
chapter

Not
required

No Any Limited Zero Zero Yes

Controller
in [28]

Not
required

Yes Any Unlimited Zero Failed Yes

Controller
in [35]

Not
required

Yes Any Unlimited Zero Zero Yes

Controller
in [39]

Required No Any Limited Zero Zero Yes

Controller
in [40]

Required No Any Limited Zero Zero Yes

Controller
in [61]

Required No Any Unlimited Zero Failed No

Controller
in [62]

Required No Restrictive Limited Failed Zero Yes

2.4.5 Comparison

In this section, we compare the proposedmethodwith the performance of the existing
redundant robot tracking controller as shown in Table2.2. JMPI [28, 35] and RNN
policy-based tracking controller [39, 40, 61, 62]. In the reference [28, 35] and our
study, the exact kinematic model of the robot is not needed, which can be used
to solve the kinematic uncertainty problem.The controllers proposed [28, 35, 40,
61] are calculated according to the speed level, while the controllers proposed [39,
62] are designed according to the acceleration level.In this chapter, we develop a
speed-level controller. The controller obtains the control command in [28, 35] by
computing the pseudo-inverse of the jacobian. These strategies cannot be used when
the robot is in a singular configuration. Although DLS [22] and other improved
methods are introduced, the convergence of tracking error of singular configuration
cannot be guaranteed, and its physical limitations are not considered. In addition
to referencing [62], the initial position of the end-effector can be set randomly in
the controller, which needs to be on the desired path when referencing [62]. The
controllers kin [39, 40, 62] based on RNN can guarantee the boundedness of the
control command. The three controllers can track the time-varying trajectory, but
the position adjustment fails in [62]. In summary, our controller can achieve stable
tracking under both regulation and path tracking, and it does not need the accurate
kinematic model and pseudo-inverse calculation of the Jacobian matrix, so it has
good flexibility and adaptability to the uncertain environment.
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2.5 Summary

This chapter studies the kinematic control of redundant robots with uncertain kine-
matics. A dynamic neural network is proposed to solve the redundancy problem by
using an adaptivemotion identifier to learnmotion parameters online. The interaction
between the adaptive online identifier and the neural controller makes it a nonlinear
coupled system. The global convergence of tracking error is verified by the Lyapunov
theory. Numerical experiments and comparisons based on JACO2 robot arm demon-
strate the effectiveness of the algorithm and its superiority over existing algorithms.
Thismethod is combinedwith RNN to realize static and dynamic task space tracking.
The pseudo-inverse computation of the Jacobian matrix is avoided and the real-time
performance of the controller is guaranteed. The boundedness of joint speed can also
protect the robot and improve safety performance. Before concluding this chapter,
it is worth pointing out that this is the first dynamic neural model of motion con-
trol for a manipulator with adaptive redundancy based on kinematic regression, with
demonstrable convergence and guaranteed performance limits.

Appendix

According to (2.3), the analytical expression of JACO′
2s kinematic regressor matrix

Yk ∈ R
3×6 is given as follows.

Y11 = 0,
Y12 = −θ̇2c1c2 + θ̇1s1s2,
Y13 = −θ̇1c1,
Y14 = θ̇2(c1c2c3 + c1s2s3) + θ̇1(c2s1s3 − c3s1s2) − θ̇3(c1c2c3 + c1s2s3),
Y15 = (θ̇1((

√
3c1c4)/2 + (

√
3s4(s1s2s3 + c2c3s1))/2 + (c2s1s3)/2 − (c3s1s2)/2) −

θ̇4((
√
3s1s4)/2+(

√
3c4(c1c2c3+c1s2s3))/2)+θ̇2((c1c2c3 + c1s2s3)/2)−(

√
3s4(c1c2s3 −

c1c3s2))/2 + (c1s2s3)/2) − θ̇3((c1c2c3)/2 − (
√
3s4(c1c2s3 − c1c3s2))/2),

Y16 = (θ̇5((
√
3c5(s1s4 + c4(c1c2c3 + c1s2s3)))/2 + (

√
3s5((c4s1)/2 − (s4(c1c2c3

+ c1s2s3))/2 + (
√
3(c1c2s3 − c1c3s2))/2))/2) − θ̇4((

√
3s1s4)/4 − (

√
3c5((s1s4)

/2 + (c4(c1c2c3 + c1s2s3))/2))/2 − (
√
3s5(c4s1 − s4(c1c2c3 + c1s2s3)))/2 +

(
√
3c4(c1c2c3 + c1s2s3))/4) + θ̇1((

√
3c1c4)/4 + (

√
3s5(c1s4 − c4(s1s2s3 + c2c3

s1)))/2 − (
√
3c5((c1c4)/2 − (

√
3(c2s1s3 − c3s1s2))/2 + (s4(s1s2s3 + c2c3s1))/2))

/2 + (
√
3s4(s1s2s3 + c2c3s1))/4 + (c2s1s3)/4 − (c3s1s2)/4) + θ̇2(+(

√
3(c1c2c3

+ c1s2s3))/2))/2(
√
3c5((s4 · (c1c2s3 − c1c3s2))/2 − (

√
3s4(c1c2s3 − c1c3s2))/4 +

(c1c2c3)/4 + (c1s2s3)/4 + (
√
3c4s5(c1c2s3 − c1c3s2))/2) − θ̇3((

√
3c5((s4(c1c2s3

− c1c3s2))/2 + (
√
3(c1c2c3 + c1s2s3))/2))/2 − (

√
3s4(c1c2s3 − c1c3s2))/4 +

(c1c2c3)/4 + (c1s2s3)/4 + (
√
3c4s5(c1c2s3 − c1c3s2))/2)),

Y21 = 0,
Y22 = −θ̇1c1s2 − θ̇2c2s1,
Y23 = −θ̇1s1,
Y24 = θ̇2(s1s2s3 + c2c3s1) − θ̇3(s1s2s3 + c2c3s1) − θ̇1(c1c2s3 − c1c3s2),
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Y25 = θ̇2((s1s2s3)/2 + (c2c3s1)/2 − (
√
3s4(c2s1s3 − c3s1s2))/2) − θ̇3((s1s2s3)

/2 + (c2c3s1)/2 − (
√
3s4(c2s1s3 − c3s1s2))/2) + θ̇1((

√
3c4s1)/2 − (

√
3s4(c1c2c3 +

c1s2s3))/2 − (c1c2s3)/2 + (c1c3s2)/2) + θ̇4((
√
3c1s4)/2 − (

√
3c4(s1s2s3 +

c2c3s1))/2),
Y26 = θ̇1((

√
3c4s1)/4 − (

√
3c5((c4s1)/2 − (s4(c1c2c3 + c1s2s3))/2 + (

√
3(c1c2

s3 − c1c3s2))/2))/2 + (
√
3s5(s1s4 + c4(c1c2c3 + c1s2s3)))/2 − (

√
3s4(c1c2c3 +

c1s2s3))/4 − (c1c2s3)/4 + (c1c3s2)/4) − θ̇5((
√
3c5(c1s4 − c4(s1s2s3 + c2c3s1)))

/2 + (
√
3s5((c1c4)/2 − (

√
3(c2s1s3 − c3s1s2))/2 + (s4(s1s2s3 + c2c3s1))/2))/2) +

θ̇2((s1s2s3)/4 + (
√
3c5((

√
3(s1s2s3 + c2c3s1))/2 + (s4(c2s1s3 − c3s1s2))/2))/2 +

(c2c3s1)/4 − (
√
3s4(c2s1s3 − c3s1s2))/4 + (

√
3c4s5(c2s1s3 − c3s1s2))/2) −

θ̇3((s1s2s3)/4 + (
√
3c5((

√
3(s1s2s3 + c2c3s1))/2 + (s4(c2s1s3 − c3s1s2))/2))/2 +

(c2c3s1)/4 − (
√
3s4(c2s1s3 − c3s1s2))/4 + (

√
3c4s5(c2s1s3 − c3s1s2))/2) −

θ̇4((
√
3c5((c1s4)/2 − (c4(s1s2s3 + c2c3s1))/2))/2 − (

√
3c1s4)/4 + (

√
3s5(c1c4 +

s4(s1s2s3 + c2c3s1)))
/2 + (

√
3c4(s1s2s3 + c2c3s1))/4),

Y31 = 0,
Y32 = −θ̇2s2,
Y33 = 0,
Y34 = θ̇3(c2s3 − c3s2) − θ̇2(c2s3 − c3s2),
Y35 = θ̇3((c2s3)/2 − (c3s2)/2 + (

√
3s4(c2c3 + s2s3))/2) − θ̇2((c2s3)/2 − (c3s2)

/2 + (
√
3s4(c2c3 + s2s3))/2) + (

√
3θ̇4c4(c2s3 − c3s2))/2,

Y36 = θ̇5((
√
3s5((

√
3(c2c3 + s2s3))/2 + (s4(c2s3 − c3s2))/2))/2 − (

√
3c4c5

(c2s3 − c3s2))/2) + θ̇4((
√
3c4(c2s3 − c3s2))/4 + (

√
3s4s5(c2s3 − c3s2))/2 −

(
√
3c4c5(c2s3 − c3s2))/4) − θ̇2((c2s3)/4 − (c3s2)/4 + (

√
3c5((

√
3(c2s3 − c3s2))

/2 − (s4(c2c3 + s2s3))/2))/2 + (
√
3s4(c2c3 + s2s3))/4 − (

√
3c4s5(c2c3 + s2s3))

/2) + θ̇3((c2s3)/4 − (c3s2)/4 + (
√
3c5((

√
3(c2s3 − c3s2))/2 − (s4(c2c3 + s2s3))

/2))/2 + (
√
3s4(c2c3 + s2s3))/4 − (

√
3c4s5(c2c3 + s2s3))/2).

References

1. X. Li, Z. Xu, S. Li, H. Wu, X, Zhou, Cooperative kinematic control for multiple redundant
manipulators under partially known information using recurrent neural network. IEEE Access
8(1), 40029–40038 (2020)

2. Z. Xu, S. Li, X. Zhou, Y. Wu, T. Cheng, D. Huang, Dynamic neural networks based kinematic
control for redundant manipulators with model uncertainties. Neurocomputing 329(1), 255–
266 (2019)

3. Z. Xu, S. Li, X. Zhou, T. Cheng, Dynamic neural networks based adaptive admittance control
for redundantmanipulatorswithmodel uncertainties. Neurocomputing 357(1), 271–281 (2019)

4. Z. Xu, S. Li, X. Zhou, W. Yan, T. Cheng, H. Dan, Dynamic neural networks for motion-force
control of redundantmanipulators: an optimization perspective. IEEE transactions on industrial
electronics Early access (2020). https://doi.org/10.1109/TIE.2020.2970635

5. Z. Zhang,A.Beck,N.Magnenat-Thalmann,Human-LikeBehaviorGenerationBased onHead-
ArmsModel for Robot Tracking External Targets andBody Parts. IEEETransactions onCyber-
netics 45(8), 1390–1400 (2015)

https://doi.org/10.1109/TIE.2020.2970635


36 2 RNN Based Trajectory Control for Manipulators …

6. D. Guo, Y. Zhang, “A New Inequality-Based Obstacle-AvoidanceMVN Scheme and Its Appli-
cation to Redundant Robot Manipulator,” IEEE Transactions on Systems, Man, and Cybernet-
ics. Part C (Applications and Reviews) 42(6), 1326–1340 (2012)

7. H. Wu, Y. Guan, J. Rojas, A latent state-based multimodal execution monitor with anomaly
detection and classification for robot introspection. Applied Sciences. 9(6), 1072 (2019 Jan)

8. H. Wu, Z. Xu, W. Yan, Q. Su, S. Li, T. Cheng, X. Zhou, Incremental Learning Introspective
Movement Primitives From Multimodal Unstructured Demonstrations. IEEE Access. 15(7),
159022–36 (2019 Oct)

9. H. Wu, Y. Guan, J. Rojas, Analysis of multimodal Bayesian nonparametric autoregressive
hidden Markov models for process monitoring in robotic contact tasks. International Journal
of Advanced Robotic Systems. 16(2), 1729881419834840 (2019 Mar 26)

10. Y. Zhang, Inverse-free computation for infinity-norm torque minimization of robot manipula-
tors. Mechatronics 16(3), 177–184 (2006)

11. Z. G. Hou and L. Cheng andM. Tan,Multicriteria Optimization for Coordination of Redundant
Robots Using a Dual Neural Network,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40,
no. 4, pp. 1075–1087 (2010)

12. M. Shimizu, H. Kakuya, W.K. Yoon, K. Kitagaki, K. Kosuge, Analytical Inverse Kinematic
Computation for 7-DOF Redundant Manipulators With Joint Limits and Its Application to
Redundancy Resolution. IEEE Trans. Robot. 24(5), 1131–1142 (2008)

13. E. Tatlicioglu, M. McIntyre, D. Dawson, I. Walker, “Adaptive Nonlinear Tracking Control of
Kinematically Redundant Robot Manipulators with Sub-Task Extensions,” in Proc (Miami, FL,
USA, Dec, IEEE Int. Conf. Dec. Cont., 2008), pp. 1131–1142

14. J. Na and X. Ren and D. Zheng, “Adaptive Control for Nonlinear Pure-Feedback SystemsWith
High-Order SlidingMode Observer,” IEEE Trans. Neur. Net., Lear., vol. 24, no. 3, pp. 370–382
(2013)

15. Z. Li, H. Su, H. Zhang, C.Y. Su, T. Chai, “Barrier Lyapunov Based Control of dual-arm
exoskeleton robots performing asymmetric bimanual tasks,” in Proc (Luoyang, China, Aug,
IEEE Int. Conf. adv. Mechatron. Syst., 2014), pp. 370–382

16. W.He, Z.Yin, C. Sun,Adaptive neural network control of amarine vesselwith constraints using
the asymmetric barrier Lyapunov function. IEEE Trans. Cybern. 47(7), 1641–1651 (2017)

17. X. Liang, X. Huang, M. Wang, X. Zeng, Adaptive Task-Space Tracking Control of Robots
Without Task-Space- and Joint-Space-Velocity Measurements. IEEE Trans. Robot. Automat.
26(4), 733–742 (Aug. 2010)

18. N. Kumar, J.H. Borm, V. Panwar, J. Chai, Tracking control of redundant robot manipulators
using RBF neural network and an adaptive bound on disturbances. Int. J. Precis. Eng. Man.
13(8), 1377–1386 (Aug. 2012)

19. Zhijia Zhao, Choon Ki Ahn, Han-Xiong Li. “Deadzone Compensation and Adaptive Vibration
Control of Uncertain Spatial Flexible Riser Systems, IEEE/ASME Transactions onMechatron-
ics, in press, DOI:https://doi.org/10.1109/TMECH.2020.29755672020.

20. E. Castillo, A.J. Conejo, R.E. Pruneda, C. Solares, State estimation observability based on the
null space of the measurement Jacobian matrix. IEEE Trans. Power Syst. 20(3), 1656–1658
(Aug. 2005)

21. M. Galicki, Inverse-free control of a robotic manipulator in a task space. Rob. Auton. Syst.
62(6), 131–141 (2014)

22. O. Egeland and J. R. Sagli and I. Spangelo and S. Chiaverini, “ A damped least-squares solution
to redundancy resolution,” in Proc. IEEE Int. Conf. Robot. Automat., Sacramento, Ca, USA.,
Apr. 1991, pp. 945-950

23. L. Jin, Y. Zhang, Discrete-time Zhang neural network of O(3) pattern for time-varying matrix
pseudoinversion with application to manipulator. Neurocomputing 142, 165–173 (2014)

24. D. Guo, Y. Zhang, Li-function activated ZNN with finite-time convergence applied to
redundant-manipulator kinematic control via time varying Jacobian matrix pseudoinversion.
Appl. Soft Comput. 24, 158–168 (2014)

25. L. Cheng, Z.G. Hou, M. Tan, Adaptive neural network tracking control for manipulators with
uncertain kinematics, dynamics and actuator model. Automatica 45(10), 2312–2318 (2009)

https://doi.org/10.1109/TMECH.2020.29755672020.


References 37

26. S. Ma, A new formulation technique for local torque optimization of redundant manipulators.
IEEE Trans. Ind. Electron. 43(4), 462–468 (1996)

27. A. Nubiola, I. Bonev, Absolute calibration of an ABB IRB 1600 robot using a laser tracker.
Robotics and Computer Integrated Manufacturing 29(1), 236–245 (2013)

28. W.E. Dixon, Adaptive Regulation of Amplitude Limited Robot Manipulators With Uncertain
Kinematics and Dynamics. IEEE Trans. Automat. Contr. 52(3), 488–493 (2007)

29. L. Cheng, Z.G. Hou, M. Tan, “Adaptive neural network tracking control of manipulators using
quaternion feedback,” in Proc (Pasadena, CA, May, IEEE Int. Conf. Robot. Automat., 2008),
pp. 3371–3376

30. C.C. Cheah, S.P. Hou, Y. Zhao, J.J.E. Slotine, Adaptive Vision and Force Tracking Control
for Robots With Constraint Uncertainty. IEEE/ASME Transactions on Mechatronics 15(3),
389–399 (2010)

31. C.C. Cheah, C. Liu, J.J.E. Slotine, “Adaptive Vision based Tracking Control of Robots with
Uncertainty inDepth Information,” inProc (Roma, Italy,Apr, IEEE Int. Conf. Robot.Automat.,
2007), pp. 2817–2822

32. J. Ren, B. Wang, M. Cai and J. Yu, “Adaptive Fast Finite-Time Consensus for Second-Order
Uncertain Nonlinear Multi-Agent Systems With Unknown Dead-Zone,” IEEE Access, vol. 8,
No. 1, pp. 25557-25569, 2020

33. D. Chen, S. Li, Q.Wu, X. Luo, Super-twisting ZNN for coordinated motion control of multiple
robot manipulators with external disturbances suppression. Neurocomputing 371(1), 78–90
(2020)

34. Dechao Chen, Shuai Li, “A recurrent neural network applied to optimal motion control of
mobile robots with physical constraints,” Applied Soft Computing, to be published, 2019, doi:
https://doi.org/10.1016/j.asoc.2019.105880.

35. D. Chen and Y. Zhang and S. Li, “Tracking Control of Robot Manipulators with Unknown
Models: A Jacobian-Matrix-Adaption Method” IEEE Trans Ind. Informat., early paper, doi:
https://doi.org/10.1109/TII.2017.2766455.

36. H. Wang, Y. Xie, Adaptive inverse dynamics control of robots with uncertain kinematics and
dynamics. Automatica 46(7), 2114–2119 (2009)

37. Z.Xu,X. Zhou, T.Cheng,K. Sun,D.Huang,“Adaptive task-space tracking for robotmanipula-
tors with uncertain kinematics and dynamics and without using acceleration,” in Proc (Macau,
China, Dec, IEEE Int. Conf. on Robotics and Biomimetics., 2017), pp. 669–674

38. S. Zhang, A.G. Constantinides, Lagrange programming neural networks. IEEE Trans. Circuits
Syst. II. 39(7), 441–452 (1992)

39. S. Li, Y. Zhang, L. Jin, Kinematic Control of Redundant Manipulators Using Neural Networks.
IEEE Trans. Neur. Net. Lear. 28(10), 2243–2254 (2017)

40. Y. Zhang and S. Li and J. Gui and X. Luo, “Velocity-Level Control With Compliance to
Acceleration-Level Constraints: A Novel Scheme for Manipulator Redundancy Resolution,”
IEEE Trans Ind. Informat., vol. 14, no. 3, pp. 921-930, March. 2018

41. S. Li, S. Chen, B. Liu,Y. Li, Y. Liang,Decentralized kinematic control of a class of collaborative
redundant manipulators via recurrent neural networks. Neurocomputing. 91(1), 1–10 (2012)

42. R.F. Stengel, Optimal Control and Estimation, Optimal Control and Estimation (Dover, New
York, NY, USA, 1994)

43. C.C. Cheah, C. Liu, J.J.E. Slotine, Adaptive tracking control for robotswith unknown kinematic
and Dynamic Properties. Int. J. Robt. Res. 25(3), 283–296 (2006)

44. Y. Zhang, Z. Zhang,RepetitiveMotion Planning andControl of Redundant RobotManipulators
(Springer-Verlag, New York, 2013)

45. S. Boyd and L. Vandenberghe, “Convex Optimization”, Cambridge, U.K: Cambridge Univ.
Press, 2004.

46. S. Li, Y. Zhang, L. Jin, Kinematic Control of Redundant Manipulators Using Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems 28(10), 2243–2254 (2017)

47. Y. Zhang, S. Li, J. Gui, X. Luo, Velocity-Level ControlWith Compliance to Acceleration-Level
Constraints: A Novel Scheme for Manipulator Redundancy Resolution. IEEE Transactions on
Industrial Informatics 14(3), 921–930 (2018)

https://doi.org/10.1016/j.asoc.2019.105880.
https://doi.org/10.1109/TII.2017.2766455.


38 2 RNN Based Trajectory Control for Manipulators …

48. D. Chen, Y. Zhang, S. Li, Tracking control of robot manipulators with wnknown models: a
Jacobian-matrix-adaption method. IEEE Transactions on Industrial Informatics 14(7), 3044–
3053 (2018)

49. D. Kinderlehrer, G. Stampcchia, An Introduction to Variational Inequalities and Their Appli-
cations (Academic, New York, USA, 1980)

50. H. Khalil, Nonlinear Systems (Prentice Hall, New Jersey, USA, 1996)
51. D. Guo, Y. Zhang, Acceleration-level inequality-basedMAN scheme for obstacle avoidance of

redundant robot manipulators. IEEE Transactions on Industrial Electronics 61(12), 6903–6914
(2014)

52. J. Slotine, W. Li, Applied Nonlinear Control (China Machine Press, Beijing, China, 2004)
53. Y. Zhang, L. Xiao, Z. Xiao, and M. Mao, Zeroing Dynamics, Gradient Dynamics, and Newton

Iterations. Boca Raton, FL, USA.: Springer-Verlag, 2015
54. Y. Zhang, D. Guo, Zhang Functions and Various Models (CRC Press, Berlin, Germany, 2015)
55. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge Univ. Press, Cambridge, U.K.,

2004)
56. D. Kinderlehrer and G. Stampcchia, An Introduction to Variational Inequalities and Their

Applications. New York, USA.: Academic, 1980
57. J. Dattorro, Convex Optimization And Euclidean Distance Geometry (Meboo Publishing, Cal-

ifornia, USA, 2016)
58. H. Khalil, Nonlinear systems.New Jersey, USA.: Prentice Hall, 1996
59. D. Guo, Y. Zhang, Acceleration-Level Inequality-BasedMANScheme for Obstacle Avoidance

of Redundant Robot Manipulators. IEEE Trans. Ind. Electron. 61(12), 6903–6914 (2014)
60. J.J.E. Slotine, W. Li, Applied nonlinear control (China Machine Press, Beijing, China, 2004)
61. B. Aghbali, A. Yousefi-Koma, A.G. Toudeshki, A. Shahrokhshahi, “ZMP trajectory control

of a humanoid robot using different controllers based on an off line trajectory generation,” in
Proc (Tehran, Iran, Feb, IEEE Int. Conf. Rob. Mechatron., 2013), pp. 530–534

62. Y. Xia, G. Feng, and J. Wang, “A primal-dual neural network for online resolving constrained
kinematic redundancy in robot motion control,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 35, no. 1, pp. 54-64, Feb. 2005

63. Y.S. Xia, G. Feng, J. Wang, “A Primal-Dual Neural Network for Online Resolving Constrained
Kinematic Redundancy in Robot Motion Control”, IEEE Transactions on Systems, Man and
Cybernetics. Part B (Cybernetics) 35(1), 54–64 (2005)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 3
RNN Based Adaptive Compliance
Control for Robots with Model
Uncertainties

Abstract Position-force control is challenging for redundant manipulators, espe-
cially for the ones considering both joint physical limitations and model uncer-
tainties. In this chapter, we considered adaptive motion-force control of redundant
manipulators with uncertainties of the interaction model and physical parameters.
The whole control problem is formulated as a QP equation with a set of equality
and inequality constraints, where based on admittance control strategy, the desired
motion-force task is combined with the kinematic property of redundant manipula-
tors, corresponding to an equality constraint in the formed QP equation. Moreover,
the uncertainties of both system model and physical parameters are also considered,
together with the complicated joint physical structure constraints, formulating as a
set of inequality constraints. Then an adaptive recurrent neural network is designed
to solve the QP problem online. This control scheme generalizes recurrent neural
network based kinematic control of manipulators to that of position-force control,
which opens a new avenue to shift position-force control of manipulators from pure
control perspective to cross design with both convergence and optimality consider-
ation. Numerical results on a 7-DOF manipulator LBR iiwa and comparisons with
existing methods show the validity of the proposed control method.

3.1 Introduction

A manipulator is called redundant if its DOFs are greater than those required to
complete a task. The redundant DOFs enable the robot to maintain the position and
direction of the end actuator to complete a given task and adjust its joint configuration
to complete a secondary task. Take advantage of this feature, typical manipulator
systems such as collaborative robots, space robotic arms, dexterous hands [1, 2] are
all designed as redundant ones.

In Chaps. 1 and 2, we mainly focus on kinematic problems, in which we assume
the end-effector of a manipulator could move freely in cartesian space. In fact, in
industrial applications, the interaction between robot and external environment must
be considered, for example, in tasks such as grinding, human-robot interaction, not

© The Author(s) 2020
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only the high-precision motion control to a given trajectory should be guaranteed,
but also the contact force exerted by the external environment should be guaranteed.

There are several approaches to achieve force control for robot manipulators. By
introducing series elastic actuators as flexible units, force control can be realized by
adjusting the compliance of joint angles. In [3], in order to overcome the discon-
tinuous friction and complexity problem of traditional back-stepping based meth-
ods, a modified command-filter is introduced, and then an adaptive back-stepping
controller is designed. Experimental results show the effectiveness of the proposed
method. Other control schemes realize force in cartesian space. The most widely
used method is called impedance control [4], where the robot and environment are
regarded as impedance and admittance, respectively. The interactionmodel (which is
also called impedance model) can be a spring-mass-damper system, spring-damper
system, etc. Besides, a series of hybrid position-force controllers are designed in
[5, 6], which consist of two independent loops, namely position loop, and force
loop. By designing control schemes separately, the final control efforts can be for-
mulated as the sum of the output of the independent loops. Similar research can be
found in [7–9].

In industrial applications, the accurate value of the impedance model can hardly
be obtained. for example, the stiffness parameter may be sensitive to environmen-
tal factors such as temperature, humidity, etc. Besides, the uncertainties in physical
parameters would also affect control performance. In order to due with the uncertain-
ties in the interaction model, in [10], an adaptive impedance controller is designed, in
which a neural network is used to learn the nonlinear dynamics of the interaction part.
In [11], by considering the influence of unknown dynamics of the external environ-
ment, and a radial basis function based controller is proposed, in which an objective
function is used to regulate the torque and an adaptive admittance technique is used
to minimize path tracking errors. In [12], a human-like-learning based controller
is designed for interaction with environmental uncertainties. It is proved that the
controller is capable of handling unstable situations such as tool switching, and can
finally achieve an expected stability margin. Besides, contact force sensors are not
required. Using the approximation ability of artificial neural networks, some intelli-
gent controllers are reported in [13–17]. As to physical uncertainties, in [18], a fixed
point controller is proposed based on robust adaptive control theory, the controller
also ensures the bounded-ness control torque. Cheng et al. propose a unit quaternion
based controller based on neural networks [19], which shows good performance in
eliminating singularities, and semi-global stability is proved by theoretical results. In
[20], a Jacobian adaptation method based on zeroing dynamics is proposed, in which
the Jacobian matrix is updated according to the information of desired and actual
accelerations. Other feasible adaptive strategies are reported in [21–24], in which the
Jacobian is estimated by updating physical parameters online. As to physical con-
straints, in [42], an adaptive neural network control scheme is designed for systems
with non-symmetric input dead-zone, as well as output constraints and model uncer-
tainties. The output constraints are guaranteed by the barrier Lyapunov function. In
[43], a boundary adaptive robust controller is established for flexible rise systems, in
which an auxiliary system is introduced to suppress vibrational offset, and an estima-
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tor is constructed to observe to upper-bound of disturbances. The controller achieves
the global convergence of control errors. Although the above-mentioned controllers
could handle uncertainties in the interaction model or physical parameters, few stud-
ies have considered both uncertainties at the same time. More importantly, those
controllers rarely consider the secondary task, let alone the redundancy resolution
problem. Besides, the boundary of joint states is ignored, which is essential in pro-
tecting the robot.

In order to accomplish the secondary task in the reliable physical range, a kine-
matic control method of redundant manipulator based on QP is proposed [25–28].
The objective function is based on the secondary task, and the constraints describe the
basic properties and physical constraints of the system [29]. Because of the high effi-
ciency of parallel computing, the recurrent neural network is often used to solve the
redundancy decomposition problem based on QP. In recent years, research shows
that RNN based controller has good performance in motion control of redundant
manipulator [30]. In [31], in order to achieve task space tracking, the joint velocity
command is designed to ensure the boundary of joint angle, velocity, and acceler-
ation. In the paper [32], by maximizing the indirectness of its time derivative, an
operational optimization scheme is proposed. Numerical experiments show that the
average increase in this method is 40%. In [33], different levels of redundancy res-
olution are discussed. Recently, RNN based methods have been extended to control
examples of flexible robots, multi-robot systems, andmethods such as [34–40]. How-
ever, as far as we know, there is no existing dynamic neural network (including RNN
and DNN) protocol for the force control of redundant manipulators. It is necessary
to consider not only the trajectory tracking problem of free-motion direction, but
also the precise control of the contact force, especially for the system with model
uncertainty. In addition, from the literature review, one of the research directions
of a dynamic neural network is to extend the protocol of redundant manipulator of
motion control task to those aspects that need precise control of tracking ability and
contact force.

Based on the above observation results, we propose the first RNNbased redundant
manipulator position force controller, which considers the uncertainty of the interac-
tion model and physical parameters. In this paper, the ideal case of the known model
parameters is discussed, and then an adaptive admittance control scheme based on
RNN is established. It ensures the boundary of joint angle and velocity. The effective-
ness of the proposed controller is verified by the theoretical derivation and numerical
results of LBR iiwa. Before concluding this chapter, themain contributions compared
to the existing work are as follows

• As far as we know, this is the first time to focus on the motion-force control
of redundant manipulators with model uncertainties based on the framework of
RNNs, comparing to researches on kinematic control, the research is an important
extension in the theoretical framework of dynamic neural networks.

• Different from traditional methods, an optimization-based controller is proposed,
while ensuring the stability of the system, physical limitations are also guaranteed.
Which is very helpful to improve the security of the system.
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• The controller proposed in this chapter is able to learn uncertain model param-
eters online, which has better robustness and adaptability to uncertain working
conditions.

• The proposed method is pseudo-inversion-free, which can save computing costs
effectively.

3.2 Preliminaries

3.2.1 Problem Formulation

When a robot is controlled to perform a given operational task, the forward-
kinematics of a serial manipulator is formulated as

x(t) = f (θ(t)), (3.1)

with θ ∈ R
n being the generalize variable of the robot, and x(t) ∈ R

m being the
description of end-effector′s coordinate in task space. Without loss of general-
ity, in this chapter, we assume that all joint are rotational joints. Therefore, θ

represents the vector of joint angles. In the velocity level, the Jacobian matrix
J (θ, ak) = ∂ f (θ(t), ak)/∂θ(t) ∈ R

m×n is used to describe the relationship between
ẋ(t) and θ̇ as

ẋ(t) = J (θ(t), ak)θ̇(t), (3.2)

where ak ∈ R
l is a vector of physical parameters. In terms with (3.2), an important

property which will be used in the controller design is given as below

J (θ(t), ak)θ̇(t) = Y (θ, θ̇ )ak, (3.3)

with Y (θ, θ̇ ) ∈ R
m×l being the kinematic regressor matrix.

The physical parameters are very essential in describing the robot’s kinematic
model, for example, as the most common physical parameters, the length of robot
links affects the DH parameters directly, which are fundamental in the controller
design. In this chapter, the physical parameters refer to the length of robot links.

Figure3.1 shows the interaction between the robot and environment, the contact
force between the robot and workpiece is required to be precisely controlled. When
the fixed contact surface is known, according to the idea of admittance control, the
interaction model can be described as a spring-damping system as

F = Kp(x − xd) + Kd(ẋ − ẋd), (3.4)

where Kp ∈ R
3×3 and Kd ∈ R

3×3 are the corresponding damping and stiffness coef-
ficients, xd is the desired trajectory. If Kp and Kd are known, the desired contact
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Fig. 3.1 Spring-damper
model of interaction

force Fd can be obtained by designing the reference velocity of the end-effector ẋr
based on ẋd, xd, x and Fd according to Eq. (3.4).

ẋr = K−1
d F − K−1

d K p(xd − x) + ẋd. (3.5)

Remark 3.1 In this chapter, we only consider the contact force on the vertical direc-
tion of the contact surface, and friction force is ignored, therefore F is aligned with
the normal direction of the surface. When the surface is priorly known, by defining
a rotational matrix R between the tool coordinate system and based coordinate sys-
tem, Kp and Kd can be formulated as Kp = diag(0, 0, kp)R, Kp = diag(0, 0, kd)R,
respectively. Then Kp and Kd can be described as single parameters.

In practical applications, the real values of system parameters such as ak , Kp and
Kd are usually unavailable. In terms of ak , due to machining and installation error,
the length of robot′s links may be different from the nominal value, and the robot
may hold uncertain tools, which would lead to uncertainties in ak . As to Kp and
Kd , the real values are even more difficult to obtain. Kd and Kp are related to the
material and structure of the workpiece, furthermore, those parameters would change
in different environmental conditions. Therefore, it is a challenging issue to achieve
precise force control in the presence of parameter uncertainties.

For a redundant manipulator, the redundant DOFs can enhance the flexibility of
the robot, and this property can be used to achieve a secondary task. In industrial
applications, by minimizing the norm of joint speed, the kinematic energy can be
optimized. Therefore, in this chapter, the objective function is selected as

H(θ) = θ̇Tθ̇ . (3.6)

In order to save energy consumption in the control process, a smaller value of H(θ)

is preferred.

Remark 3.2 The objective function H(θ̇) is a typical function to describe the sec-
ondary task in redundant resolution problems, as reported in [21, 25]. In actual imple-
mentations, this function can be defined according to the designer’s preferences or
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actual requirements. In this chapter, we propose a generalized RNN based force con-
trol strategy with simultaneous optimization ability. Based on the proposed control
strategy, similar controllers can be easily designed by defining different objective
functions.

3.2.2 Control Objective and QP Problem Formulation

Before pointing out the control objective, it is noteworthy that the robot must satisfy
certain constraints. For example, due to the physical structure, every joint angle θi
must not exceed its limitations i.e., the lower bound θ−

i and upper bound θ+
i . Fur-

thermore, limited by actual performance of actuators, joint speed θ̇ is also restricted,
i.e., θ̇− ≤ θ̇ ≤ θ̇+.

When the actual parameters of interaction model are unknown, the control objec-
tive of this chapter is to design a force controller with adaptation ability, i.e., to
realize accurate force control along the predefined contact surface, in the sense that
F → Fd, at the same time, physical constraints of joint angles and velocities must be
ensured. According to (3.2), (3.5) and (3.6), the control objective can be described
in the view of optimization as

min H(θ) = θ̇Tθ̇ , (3.7a)

s.t. ẋr = J (θ, ak)θ̇ , (3.7b)

ẋr = K−1
d Fd − K−1

d K p(x − xd) + ẋd, (3.7c)

θ− ≤ θ ≤ θ+, (3.7d)

θ̇− ≤ θ̇ ≤ θ̇+. (3.7e)

Remark 3.3 So far, we have arrived at a generalized description of admittance con-
trol for redundant manipulators in the QP problem. Apparently, there exist parameter
uncertainties in J (θ, ak), kp and kd as formulated in (3.7b) and (3.7c). In the next
chapter, we will solve the problem (3.7) with the aid of RNNs.

3.3 Main Results

In this chapter, an recurrent neural network based adaptive admittance controller
is proposed to solve (3.7). An ideal situation where real values of system model
are perfectly known is firstly considered, which lays the foundation of the later
discussion. Then an adaptiveRNN is proposed to achieve force control in the presence
of model uncertainties. We also show the stability of the control method.
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3.3.1 Nominal Design

In order to explain the proposed adaptive control scheme more clearly, an ideal case
in which all parameters are perfectly known is firstly discussed. It can be regarded as
a special case of uncertain parameter ones. In this case, both Kd and Kp are available,
then the real value of ẋr is available according to (3.5).

Let ω = θ̇ and define a Lagrange function as L1 = ωTω + λT(Jω − FdK
−1
d +

KpK
−1
d (x − xd) − ẋd), with λ being the Lagrange multiplier. Similar to [25], a RNN

with provable convergence can be designed as

εω̇ = −ω + PΩ(−JTλ), (3.8a)

ελ̇ = −K−1
d Fd + K−1

d K p(x − xd) − ẋd, (3.8b)

where ε is a positive constant and Pω(•) is a projection operator to set Ω as
Pω(x) = argminy∈Ω ||y − x ||, and the setΩ = {ω ∈ R

n|ωi
min ≤ ωi ≤ ωi

max} is a con-
vex set describing the modified speed constraints based on escape velocity method
[29], and ωmin = max{α(θmin − θ), θ̇min}, umax = min{α(θmax − θ), θ̇max}, α > 0.
The stability of system can be readily proved, which is similar in [25], is omitted
here.

3.3.2 Adaptive Control Method Based on RNN

Basedon theprevious description, in this subchapter, by learning theuncertain param-
eters online, an adaptive RNN is established to solve the force control problem with
gravity torque optimization under model uncertainties, the stability of the system is
also proved.

3.3.2.1 Adaptive RNN Design

In order to handle the uncertain interaction parameters Kp and Kd , let K̂ p and K̂d

be their estimates. Although Kp and Kd are unknown, they are considered to be
constant. Then the estimated reference velocity ˆ̇xr can be derived by replacing Kp,
Kd with K̂ p and K̂d respectively according to (3.5)

ˆ̇xr = K̂−1
d Fd − K̂−1

d K̂ p(x − xd) + ẋd. (3.9)

Let η = [x − xd, ˆ̇xr − ẋd]T, W = [Kp, Kd ]T and Ŵ = [K̂ p, K̂d ]T. Then we can
rewrite (3.9) as Fd = ŴTη. However, due to the uncertainties in Kd and Kp, in the
actual process, the resulting contact force F using ˆ̇xr directly is F = WTη, it is
noteworthy that the contact force F can be measured by force/torque sensors.
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As to the uncertain ak , the alternative Jacobian matrix J (θ, âk) is used by substi-
tuting ak with its estimate âk , then J (θ, ak) in equality constraint (3.7b) is replaced
by J (θ, âk). Therefore, the force control problem with joint speed optimization con-
sidering model uncertainties can be formulated as

min H(ω) = ωTω, (3.10a)

s.t. J (θ, âk)ω = K̂−1
d Fd − K̂−1

d K̂ p(x − xd) + ẋd, (3.10b)

θ− ≤ θ ≤ θ+, (3.10c)

ω− ≤ ω ≤ ω+. (3.10d)

To solve (3.10), by defining a Lagrange function as L = ωTω + λ(J (θ, âk)ω −
ẋr ), the adaptive RNN is designed as

εω̇ = −ω + PΩ(− ĴTλ), (3.11a)

ελ̇ = J (θ, âk)ω − ˆ̇xr , (3.11b)

˙̂W = −Γ1η(Fd − F)T, (3.11c)

˙̂ak = −Γ2Y
T(J (θ, âk)ω − ẋ), (3.11d)

where ε,Γ1 andΓ2 are positive gains. Figure3.2 shows the framework of the proposed
adaptive RNN in real-time force control with uncertain parameters. In order to learn
the uncertain parameters, the neurons Ŵ and âk update their values based on desired
signals xd, ẋd and Fd and the feedback of x , ẋ and F . The output of the RNN is
exactly the joint speed command ω. By designing proper updating laws, λ and ω

achieve both stability of the inner loop and the optimization of H(ω).

Remark 3.4 In this chapter, we consider the case where m = 6, n = 7 (where m is
the dimension of the cartesian space, and n is the number of joint angles). Since only
the contact force on the vertical direction of the surface is considered, the dimension
of Kd and KP are all 1(the contact surface if known). As illustrated in Fig. 3.2, the
proposed adaptive RNN has a typical one-layer architecture, and the total number of
neurons is n + l + m + 2.

Remark 3.5 The proposed adaptive RNN (3.11) can be regarded as a generalized
form of the nominal RNN (3.8), when Ŵ = W and âk = 0, it can be obtained that
˙̂W = 0 and ˙̂ak = 0 from (3.3) and (3.9). Then (3.11) is the same as (3.8). However,
it is remarkable that adaptive RNN is capable of dealing with model uncertainties.
On the other hand, unlike the adaptive RNNs based kinematic control strategies in
[21, 22], the proposed controller can achieve both precise control of both position
and contact force.
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Fig. 3.2 A schematic framework of the proposed RNN based force controller

3.3.2.2 Stability Analysis

So far, a theorem about the convergence of the force control problem using proposed
adaptive RNN in presence of model uncertainties can be summarised as below

Theorem 3.1 Consider the force control problem for a category of redundantmanip-
ulators described in (3.1)–(3.4) with model uncertainties, the state variable ω of the
proposed adaptive RNN will converge the optimal solution of (3.7), i.e., the force
control error will converge to 0, and the norm of joint speed will be optimized simul-
taneously.

Proof The proof consists of three steps. Firstly, we will prove that Ŵ and âk could
learn the model parameters online, and then the stability in the inner-loop is also
analyzed.

Step 1. Define the estimate error of concatenated form ofW as W̃ = Ŵ − W , and
e f = F − Fd be the error between the contact force and the desired signal. From
(3.9), e f can be formulated as e f = ŴTη − WTη = W̃Tη. Consider the Lyapunov
function as V1 = tr(W̃TW̃ )/2, which tr(•) is the trace of a matrix. Calculating the
time derivative of V1 yields

V̇1 = tr(W̃T ˙̃W ) = tr(−Γ1W̃
Tη(Fd − F)T)

= tr(−Γ1e f e
T
f ) = −Γ1e

T
f e f ≤ 0. (3.12)

From (3.12) and (3.10) and usingLaSalle′s invariance principle [41], we have eTf e f =
0, as t → ∞. In other words, the state variable Ŵ ensures the convergence of force
error e f by modifying the end-effector′s reference speed ˆ̇xr according to (3.5).

Step 2. Define the estimate error of ak as ãk = âk − ak , and let V2 = ãTk ãk/2. It is
notable that during the control process, ak can be regarded as constant, then we have˙̃ak = ˙̂ak . Actually, using the property described in Eq. (3.3), based on linearization
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Algorithm 3 The proposed adaptive RNN based force controller
Input: Nominal values of interaction model Kn

p , K
n
d and physical parameters ank . Physical range

of joint angles and joint velocities θ imax, θ imin, θ̇ imax, θ̇ imin. The desired trajectory xd, ẋd and the
desired contact force Fd. Positive control gains α, Γ1, Γ2, ε. Sensor readings of contact force F and
movement of the end-effector x , ẋd . Task duration T .
Output: To achieve position-force control in presence of model uncetainties
1: Initialize λ(0), âk(0) ← ak , Ŵ (0) ← [Kn

p; Kn
p]

2: Repeat
3: x , ẋ , θ , θ̇ , F ← Sensor readings
4: Obtain the Jacobian matrix J (θ, âk) and kinematic regressor matrix Y (θ, θ̇)

5: Calculate the modified reference trajectory ˆ̇xr by Equation (3.9)
6: Update interaction parameters Ŵ by Equation (3.11c)
7: Update physical parameters âk by Equation (3.11d)
8: Update state variable λ by Equation (3.11b)
9: Update joint velocity command ω by Equation (3.11a)
Until (t > T )

descriptions of θ̇ and ak , respectively, the task-space velocity ẋ has two equivalent
descriptions, namely J (θ, ak)θ̇ and Y (θ, θ̇ )ak . As a result, the estimated value ˆ̇x also
has two similar descriptions, depending on the estimated value of kinematic parame-
ter âk . Therefore, the updating lawEq. (3.11) is equivalent to−Γ2Y T(Y (θ, ω)âk − ẋ).
Then it follows from (3.2) and (3.3) that

˙̂ak = −Γ2Y
T(J (θ, âk)ω − J (θ, ak)ω)

= −Γ2Y (θ, ω)TY (θ, ω)ãk . (3.13)

In light of (3.13), V̇2 can be rewritten as

V̇2 = ãTk
˙̂ak

= −Γ2ã
T
k Y (θ, ω)TY (θ, ω)ãk ≤ 0. (3.14)

Then it can be readily obtained that Y (θ, ω)ãk → 0 as t → ∞. From (3.3) and and
definition of ãk , J (θ, âk)ω will eventually converge to J (θ, ak)ω, i.e., the equality
constraint (3.10b) will eventually be equivalent to (3.7b).

Step 3. Then we will prove the stability of inner-loop system. According to (3.11),
the dynamics of ω and λ can be reformulated as

εξ̇ = −ξ + PΩ̄ [ξ − F(ξ)], (3.15)

with ξ = [ωT, λT]T, Ω̄ = {(ω, λ)|ω ∈ Ω,λ ∈ R
m}, and

F =
[

ω + JTλ

− Ĵω − Fd K̂
−1
d + K̂ p K̂

−1
d (x − xd) − ẋd

]
.

Define ∇F = ∂F(ξ)/∂ξ , we have
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∇R =
[
I − ĴT

Ĵ 0

]
,

with I being the identity matrix. Then it can be readily obtained that∇F + (∇F)T is
positive semi-definite.According to the definition in [32], F is amonotone function of
ξ . From thedescriptionof (3.11) and (3.15), PΩ̄ canbe formulated as PΩ̄ = [PΩ; PR],
where PR ∈ R

m is a projection operator ofλ to set R, with the upper and lower bounds
being ±∞. Therefore, PΩ̄ is a projection operator to closed set Ω̄ . Based on Lemma
1 in [32], the adaptive RNN (3.11) is stable, and the will be ultimately equivalent to
the solution of (3.7). This completes the Proof. �

Remark 3.6 Till now, we have shown the stability of the proposed RNN based
adaptive admittance control strategy in the presence of uncertain model parameters.
The established adaptive RNN is capable of maintaining the boundedness of system
states and avoiding calculating the pseudo-inversion of the Jacobian matrix.

3.4 Illustrative Examples

In this chapter, numerical results on a 7-DOF robot manipulator LBR iiwa are carried
out. The physical structure and D-H parameters of iiwa are shown in Fig. 3.3. All
we all know, up to 6 DOFs (3 DOFs of position and another 3 DOFs of orientation)
are required to fulfill a given task in engineering applications, therefore, the iiwa
is a typical redundant manipulator in the force control when considering both the
position andorientation of the end-effector.As to the contact force, the contact surface
is selected as a plane in the workspace, as shown in Fig. 3.3a. The end-effector is
controlled to offer a desired contact force on the contact surface while tracking a
given path on it. In the control process, the orientation of the end-effector is wished
to keep constant.

This chapter mainly consists of three parts, firstly, a comparative simulation
between the proposed controller and pseudo-inverse of Jacobian matrix(PJMI) based
method is firstly discussed, and then the effectiveness of the proposed adaptive con-
troller is checked via more cases. In addition, more discussion about the superiority
of the proposed method is carried out to enlighten the contribution of this chapter.

3.4.1 Simulation Setup

In this chapter, the initial value of joint angles is set as θ0 = [0, π/3, 0, π/3, 0,
π/3, 0]Trad, and the corresponding coordinate of the end-effector is noted as P0. The
initial value of joint velocity is set as θ̇0 = [0, 0, 0, 0, 0, 0, 0]Trad/s. The contact sur-
face is defined as a horizontal plane with z = 0.094m, and the physical parameters of
the interactionmodel are set as Kp = 5000, Kd = 20, respectively. The limitations of
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Fig. 3.3 The architecture of 7-DOF manipulator iiwa. a Physical structure. b Table of D-H param-
eters

joint angles and velocities are selected as θ− = [−2,−2,−2,−2,−2,−2,−2]Trad,
θ+ = [2, 2, 2, 2, 2, 2, 2]Trad, θ̇− = [−2,−2,−2,−2,−2,−2,−2]Trad/s and θ̇+ =
[2, 2, 2, 2, 2, 2, 2]Trad/s, respectively. The control gains of the proposed ARNN are
set as ε = 0.002, Γ1 = diag(5000, 3000), Γ2 = 100I , α = 8, respectively.

3.4.2 Comparative Simulation Between PJMI Methods

Firstly, a comparative simulation between the proposed control strategy and tradi-
tional Jacobian-inverse based methods is carried out to show the superiority of the
RNN based controller. The robot is expected to provide a contact force of 20N at a
fixed point P1 = [0.2, 0.6, 0.094]Tm, without considering the orientation control of
the end-effector. In traditional PJMI basedmethods, the joint commands are obtained
by directly calculating the inverse of the Jacobian matrix online, and only the spe-
cial solution is considered. Simulation results are shown in Fig. 3.4. Both controllers
can guarantee the convergence of positional and force errors. Using the same con-
trol gain in the outer loop, although the controller based on PJMI achieves a faster
convergence of control errors, its output is big at the beginning of the simulation
(with the Euclidean norm of joint velocity being about 20 rad/s), moreover, as shown
in Fig. 3.4c, the joint angle θ6 exceeds its upper bound during 0.2–1 s. In contrast,
using the RNN based controller, both joint angles and velocities are ensured not to
exceed their limits. It is worth noting that at about t = 0.6s, θ6 reaches its upper
limit (Fig. 3.4e), correspondingly, the joints move a relatively big range, as shown
in Fig. 3.4f, as a result, θ6 stops increasing and then converges to a group of certain
values via self-motion.
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Fig. 3.4 Numerical results of comparative simulation between the proposed scheme and PJMI
based methods. a Profile of position and force errors. b Euclidean norm of joint velocities. c Profile
of joint angles using PJMI method. d Profile of joint velocities using PJMI method. e Profile of
joint angles using the proposed method. f Profile of joint velocities using the proposed method

3.4.3 Force Control Along Predefined Trajectories with
Model Uncertainties

In this subchapter, we will carry out a group of experimental tests to further ver-
ify the validity of RNN based admittance controller (3.11). In terms of the inter-
action parameters, we assume the nominal values of Kp and Kd is 4500 and 15,
respectively. As to the kinematic parameters, the nominal value of ak is set to be
âk(0) = [D̂1(0), D̂3(0), D̂5(0), D̂7(0)]T = [0.36, 0.4, 0.42, 0.25]Tm.



52 3 RNN Based Adaptive Compliance Control for Robots with Model Uncertainties

(1) Force Control On Fixed Points
Similar to Sect. 3.4.2, a motion-force control at fixed points is studied first. When
simulation begins, the target point is set as P1 = [0.2,−0.6, 0.094]Tm, at t = 5s,
the target point is reset to P2 = [0.2,−0.4, 0.094]Tm. During the simulation, the
contact force between the end-effector and contact surface is selected as Fd = 20N.
Numerical results are shown in Figs. 3.5 and 3.6.

The position error when the simulation begins is about 0.2 m, accordingly, the
proposed RNN based controller generates a large output, which ensures the quick
convergence of both motion and force errors. The stabilization time is about 0.5 s.
At t = 5s, the target point is switched to P2, leading to an instantaneous change of
position error. Using the adaptive admittance controller (3.11), the robot adjusts its
joint configurations quickly and then slows down with the convergence of errors. It
is remarkable that the second joint reaches its maximum value, and during the whole
process, the joint velocities are guaranteed not to exceed the predefined limits. The
estimated values of K̂ p and K̂d are shown in Fig. 3.5f, although the exact values of
Kd and Kp are unknown, by updating K̂ p and K̂ p online according to (3.11), precise
control of control is achieved. The difference between the task-space speed ẋ and
its estimate value Y âk is shown in Fig. 3.5g, correspondingly, D̂1, D̂2, D̂3 and D̂4

converge to a group of constant value.

(2) Force Control Along A Circular Path
In this example, the end-effector is controlled to offer constant contact force
Fd = 20N while tracking a circular trajectory on the contact surface, this trajec-
tory is defined as xd = [−0.1 + 0.1cos(0.5t),−0.6 − 0.1sin(0.5t), 0.094]Tm, and
the orientation is required to remain the same as the initial state. Numerical results
are shown in Figs. 3.7 and 3.8. As shown in Fig. 3.7a, the robot tracks the desired
path successfully, and both position and orientation errors converge to zero in less
than 1 s, the expected contact force is also obtained. Because of the periodicity of
the desired commands, the robot′s joint angles and angular velocities change peri-
odically, at the same time, boundedness of θ and θ̇ is also guaranteed. On the other
hand, the smooth change of θ and θ̇ shows that the proposed controller is very stable.
Based on the adaptive strategy (3.11d), the system shows great robustness against
uncertain system parameters.

(3) Force Control Along A Rhodonea Path
In this example, we consider the casewhere the robot provides a time-varying contact
force while tracking a Rhodonea path. The desired contact force is set to be Fd =
20 + 5sin(0.2t)N, and the Rhodonea path is defined as

xdX (t) = 0.1sin(0.4t)cos(0.2t),

xdY (t) = 0.15sin(0.4t)sin(0.2t) − 0.6,

xdZ (t) = 0.094.
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Fig. 3.5 Numerical results of force control at fixed points with uncertain model parameters. a
Profile of positional error. b Profile of orientational error. c Profile of contact force. d Profile of
joint angles. e Profile of joint speed. f Profile of the estimated interaction coefficients. g Profile of
||Y âk − ẋ ||22. h Profile of the estimated physical parameters
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Fig. 3.6 Snapshots when iiwa offers a constant contact force at fixed points. a Snapshot when
t = 2s. b Snapshot when t = 7s

Numerical results are shown in Figs. 3.9 and 3.10. Figure3.9a, b show the positional
and orientational errors the end-effector respect to the desired path, respectively. In
the steady-state, accuratemotion control is realized using the proposed controller, and
the operation force between the end-effector and contact surface is shown in Fig. 3.9c.
At the beginning stage, the joint speed is high,which enables the end-effector tomove
toward the desired path rapidly. As the end-effector approached the expected path,
the robot moves at a low speed periodically and smoothly, correspondingly, the joint
angles changes at the same frequency. TheEuclidean normofY âk − ẋ is illustrated in
Fig. 3.9g, the proposed RNNbased control strategy could calculate control command
ω online with subject to model uncertainties. The estimated model parameters are
given in Fig. 3.10f, h.

3.4.4 Comparison

To further illustrate the contribution of the proposed force control strategy,we provide
a comparison between the proposed method and the existing related methods, as
shown in the Table3.1. In [11], an adaptive admittance control scheme based on
neural network approximation capability is proposed and the admittance adaptive
tracking error is optimized. However, no physical constraints are considered. In
[10], although the established impedance controller can guarantee input saturation,
the controller still needs to calculate the pseudo-inverse of the jacobian. In [25, 32],
a pseudo-inverse-free controller based on RNN is designed to realize the task space
tracking of redundant robots, and its convergence is proved. Convex optimization
and non-convex optimization are also obtained. Considering physical uncertainties,
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Fig. 3.7 Numerical results of force control along a circular curve with uncertain model parameters.
a Profile of positional error. b Profile of orientational error. c Profile of contact force. d Profile of
joint angles. e Profile of joint speed. f Profile of the estimated interaction coefficients. g Profile of
the estimated physical parameters. h Profile of the objective function ||ω||22
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Fig. 3.8 Snapshots when iiwa offers a constant contact force along a circular curve. a Snapshot
when t = 8s. b Snapshot when t = 15s

Table 3.1 Comparisons among different tracking controllers on manipulators

Method Handling
model
uncertainties

Pseudo-
inverse
Required

Force
tracking
versus
trajectory
tracking

Handling
inequality
constraints

Convergence Secondary
task

This chapter Yes No Force Yes Yes Yes

[10]
Yes Yes Force Restrictivea Yes Yes

[11]
Yes Yes Force No Yes No

[21, 22]
Restrictiveb No Kinematic Yes Yes Yes

[25, 32]
No No Kinematic Yes Yes Yes

a In [10], only the input saturation is considered
b In [21, 22], the authors only consider the uncertainties of physical parameters, while the contact
force is ignored

two different adaptive strategies are proposed in [21, 22]. This is the first RNN-based
force controller in this chapter. On the other hand, this control scheme is suitable for
the case of model uncertainty, so it is no longer necessary to calculate the pseudo-
inverse of the Jacobian matrix and has great application potential in force control.

3.5 Summary

In this chapter, we propose an adaptive admittance control method for redundant
robots based on a recursive neural network. The convergence of the adaptive RNN
is proved by the theoretical derivation of the Lyapunov technique, and the effective-
ness of the control strategy is verified by numerical simulation on the 7-DOF robot
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Fig. 3.9 Numerical results of force control along a Rhodonea curve with uncertain model parame-
ters. a Profile of positional error. b Profile of orientational error. c Profile of contact force. d Profile
of joint angles. e Profile of joint speed. f Profile of the estimated interaction coefficients. g Profile
of ||Y âk − ẋ ||22. h Profile of the estimated physical parameters



58 3 RNN Based Adaptive Compliance Control for Robots with Model Uncertainties

Fig. 3.10 Snapshots when iiwa offers a constant contact force along a Rhodonea curve. a Snapshot
when t = 4s. b Snapshot when t = 19s. c Snapshot when t = 27s

iiwa. Compared with the existing control methods, the controller not only has better
performance in dealing with physical constraints but also has better performance in
eliminating pseudo-inversion calculation. Finally, it is worth noting that this is the
first time that an RNN-based approach has been extended to force control for the
redundant manipulator, especially for model uncertainty manipulators. The research
of this subject is of great significance to grinding robot, assembly robot and industrial
application.
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Chapter 4
Deep RNN Based Obstacle Avoidance
Control for Redundant Manipulators

Abstract In this chapter, we consider the obstacle avoidance problem of redundant
robot manipulators with physical constraints compliance, where static and dynamic
obstacles are investigated. Both the robot and obstacles are abstracted as two crit-
ical point sets, respectively, relying on the general class-K functions, the obstacle
avoidance problem is formulated into an inequality in speed level. The minimal-
velocity-norm (MVN) is regarded as the cost function, converting the kinematic
control problem of redundant manipulators considering obstacle avoidance into a
constraint-quadratic-programmingproblem, inwhich the joint angles and joint veloc-
ity constraints are built in velocity level in form of inequality. To solve it, a novel
deep recurrent neural network based controller is proposed. Theoretical analyses and
the corresponding simulative experiments are given successively, showing that the
proposed neural controller does not only avoid collision with obstacles, but also track
the desired trajectory correctly.

4.1 Introduction

With development of intelligent manufacturing and automation, the research on
robot manipulators is obtaining increasing attention from a large number of scholars,
numerous fruits have been reported on painting, welding and assembly [1, 2] and
so on. With the popularization of robots, higher requirements such as flexibility and
execution ability are imposed on robots, especially working in the complicated envi-
ronment [3]. Consequently, more and more scholars cast light on redundant robots
which show better flexibility, responsiveness [4, 5].

Stem from the considerationof human-machine collaboration, robots are no longer
arranged in a separate area [6–8], which makes the obstacle avoidance for robots
become an important part of kinematic control of the robot manipulators. There
has reported many obstacle avoidance methods applicable to robot manipulators. A
modifiedRRT basedmethod, namely Smoothly RRT,was proposed in [9]. This paper
established a maximum curvature constraint to obtain a smooth curve when avoiding
obstacles. Compared to the traditional RRT based method, the proposed method
achieves faster convergence. In [10], Hsu investigated the probabilistic foundations
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of PRM based methods, obtaining a conclusion that the visibility properties has a
heavier impact on the probability, and the convergence would be faster if extract
partial knowledge could be introduced. However, due to the heavy computational
burdens, those methods can be hardly used online.

Apart from stochastic sampling based algorithms mentioned above, the artificial
potential fieldmethod is also a potentialmethod for obstacle avoidance, andhave been
found their application in [11–15]. Taking advantage of redundant DOFs, obstacles
can be avoided by the self-motion in the null space. Using pseudo-inverse of Jacobian
matrix, the solution can be built as the sum of a minimum-norm particular solution
and homogeneous solutions [16–18].

With parallelism and easier to implement in hardware, neural networks have been
a powerful tool in robot control. Artificial intelligence algorithms based on neural
networks provide a new view for robotic control, these methods are very promising
due to neural networks’ excellent learning ability [19]. For example, in [20], a neural
network based learning scheme was proposed to handle functional uncertainties.
In [21], a bio-mimetic hybrid controller was designed, where the control strategy
consist of an RBF neural network based feed-forward predictive machine and a
feedback servomachine based on a proportional-derivative controller. In [22], a fuzzy
logic controller is proposed for long-term navigation of quad-rotor UAV systems
with input uncertainties. Experiment results show that the controller can achieve
better control performance when compared to their singleton counterparts. In [23],
an online learning mechanism is built for visual tracking systems. The controller
uses both positive and negative sample importance as input, and it is shown that the
proposed weighted multiple instance learning scheme achieves wonderful tracking
performance in challenging environments. The systemmodel of robotmanipulators is
highly nonlinear, however, if the prior information of the model is known in advance,
the neural network can be optimized. This is to say, on one hand, the number of nodes
in neural networks can be reduced. In addition, the excellent learning efficiency
is maintained simultaneously [24]. Therefore, to achieve the real-time control of
robot manipulators, a series of dynamic neural network are proposed, such as [25–
27]. For kinematic control of redundant manipulators, such a time-varying problem
will be transformed into a quadratic programming from perspective of optimization,
where nonlinear mapping from joint space to cartesian space is abstracted as a linear
equation. Dynamic neural networks can be used to solve the quadratic-programming
problem online, therefore, the kinematic control of manipulators is achieved when
the formulated linear equation is ensured. More importantly, these methods can
also handle inequality constraints considering joint physical constraints, and model
uncertainties [28–32]. There are few works on obstacle avoidance using dynamic
neural network. In [33], the obstacle avoidance problem is considered as an equality
constraint, however the parameters of the escape velocity is not easy to get. In [34],
the distance between the robot and obstacles are formulated as a group of distances
from critical points and robot links. On this basis, an improved method is proposed
by Guo et. al. in [35], which can suppress undesirable discontinuity in the original
solutions.
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Motivated by the above observations, in this chapter, a RNN-based obstacle avoid-
ance strategy was proposed for redundant robot manipulators. Both the robot and
obstacles are abstracted as two critical point sets, respectively, relying on the class-K
functions, the obstacle avoidance problem is formulated into an inequality in speed
level. Theminimal velocity-norm (MVN) is regarded as the cost function, converting
the kinematic control problemof redundantmanipulators considering obstacle avoid-
ance into a constraint-quadratic-programming problem, in which the joint angles and
joint velocity constraints are built in velocity level in form of inequality. To solve it, a
novel deep recurrent neural network based controller is proposed. Theoretical anal-
yses and the corresponding simulative experiments are given successively, showing
that the proposed neural controller does not only avoid collision with obstacles, but
also track the desired trajectory correctly. The main contributions of this chapter are
summarized as below:

• A deep RNN-based controller is proposed. Four objectives are achieved at the
same time, i.e, the desired path tracking, obstacle avoidance, physical constraints
compliance considering joint angles and velocity constraints and optimality of
cost functions.

• Relying on a class-K function, a novel obstacle avoidance strategy is given, where
robots and obstacles are abstracted into a set of critical point sets, the distance
between them can be described as the point-to-point distance.

• Numerical results show that the effectiveness of the designed RNN controller, i.e,
the static and dynamic obstacles can be avoided while tracking the desired motion
trajectory.

4.2 Problem Formulation

4.2.1 Basic Description

When a redundant robot is controlled to track a particular trajectory in the cartesian
space, the positional description of the end-effector can be formulated as

x = f (θ), (4.1)

where x ∈ R
m and θ ∈ R

n are the end-effector′s positional vector and joint angles,
respectively. In the velocity level, the kinematic mapping between ẋ and θ̇ can be
described as

ẋ = J (θ)θ̇ , (4.2)

where J (θ) ∈ R
m×n is the Jacobian matrix from the end-effector to joint space.

In engineering applications, obstacles are inevitable in the workspace of a robot
manipulator. For example, robot manipulators usually work in a limited workspace
restricted by fences, which are used to isolate robots from humans or other robots.



66 4 Deep RNN Based Obstacle Avoidance Control for Redundant Manipulators

Fig. 4.1 The basic idea of
obstacle avoidance in this
chapter

This problem could be even more acute in tasks which require collaboration of
multiple robots. Let C1 be the set of all the points on a robot body, and C2 be the
set of all the points on the obstacles, then the purpose of obstacle avoidance of a
robot manipulator is to ensure C1 ∪ C2 = ∅ at all times. By introducing d as a safety
distance between the robot and obstacles, the obstacle avoidance is reformulated as

|Oj Ai | ≥ d, ∀Ai ∈ C1,∀Oi ∈ C2. (4.3)

where |Oj Ai | = √
(Ai − Oj )T(Ai − Oj ) is the Euclidean norm of the vector Ai O j .

Equation (4.3) gives a basic description of obstacle avoidance problem in form
of inequalities. However, there are too many elements in sets C1 and C2, the vast
majority of which are actually unnecessary. Therefore, by uniformly selecting points
of representative significance from C1 and C2, and increasing d properly, Eq. (4.3)
can be approximately described as below

|Oj Ai | ≥ d, (4.4)

with Ai , i = 1, . . . , a and Oj , j = 1, . . . , b being the representative points of the
robot and obstacles, respectively. The schematic diagram of Eq. (4.4) in shown in
Fig. 4.1.

4.2.2 Reformulation of Inequality in Speed Level

In order to guarantee the inequality (4.4), by defining D = |Oj Ai | − d, an inequality
is rebuilt in speed level as

d(|Oj Ai |)/dt ≥ −sgn(D)g(|D|), (4.5)

in which g(•) belongs to class-K . Remarkable that the velocities of critical points
Ai can be described by joint velocities
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Ȧi = Jai (θ)θ̇ , (4.6)

where Jai ∈ R
m×n is the Jacobian matrix from the critical point Ai to joint space. If

Oj is prior known, the left-side of Eq. (4.5) can be reformulated as

d

dt
(|Oj Ai |) = d

dt
(

√
(Ai − Oj )T(Ai − Oj ))

= 1

|Oj Ai | (Ai − Oj )
T( Ȧi − Ȯ j )

=−−−−→|Oj Ai |T Jai (θ)θ̇ − −−−−→|Oj Ai |T Ȯ j , (4.7)

where
−−−−→|Oj Ai | = (Ai − Oj )

T/|Oj Ai | ∈ R
1×m is the unit vector of

−−−−−→
Ai − Oj . There-

fore, the collision between critical point Ai and object Oj can be obtained by ensuring
the following inequality

Joi θ̇ ≤ sgn(D)g(|D|) − −−−−→|Oj Ai |T Ȯ j , (4.8)

where Joi = −−−−−→|Oj Ai |T Jai ∈ R
1×n . Based on the inequality description (4.8), the

collision between robot and obstacle can be avoided by ensuring

Joθ̇ ≤ B, (4.9)

where Jo = [JT
o1, · · · , JT

o1︸ ︷︷ ︸
b

, · · · , JT
oa, · · · , JT

oa︸ ︷︷ ︸
b

]T ∈ R
ab×n is the concatenated form

of Joi considering all pairs between Ai and Oj , B = [B11, · · · , B1b, · · · , Ba1,

· · · , Bab]T ∈ R
ab is the vector of upper-bounds, in which Bi j = sgn(D)g(|D|) −−−−−→|Oj Ai |T Ȯ j .

Remark 4.1 According to Eq.4.5 and the definition of class-K functions, the origi-
nal escape velocity based obstacle avoidance methods in [34, 35] can be regarded as
a special case of 4.5, in which G(|D|) is selected as G(|D|) = k|D|. Therefore, in
this chapter, the proposed obstacle avoidance strategy ismore general than traditional
methods.

4.2.3 QP Type Problem Description

As to redundant manipulators, in order to take full advantage of the redundant DOFs,
the robot can be designed to fulfill a secondary task when tracking a desired trajec-
tory. In this chapter, the secondary task is set to minimize joint velocity while avoid-
ing obstacles. In real implementations, both joint angles and velocities are limited
because of physical limitations such as mechanical constraints and actuator satura-
tion. Because of the fact that rank(J ) < n, theremight be infinity solutions to achieve



68 4 Deep RNN Based Obstacle Avoidance Control for Redundant Manipulators

kinematic control. In this chapter, we aim to design a kinematic controller which is
capable of avoiding obstacles while tracking a pre-defined trajectory in the Cartesian
space. For safety, the robot is wished to move at a low speed, in addition, lower
energy consumption is guaranteed. By defining an objective function scaling joint
velocity as θ̇Tθ̇/2, the tracking control of a redundant manipulator while avoiding
obstacles can be described as

min θ̇Tθ̇/2, (4.10a)

s.t. x = xd, (4.10b)

θ− ≤ θ ≤ θ+, (4.10c)

θ̇− ≤ θ̇ ≤ θ̇+, (4.10d)

Joθ̇ ≤ B. (4.10e)

It is remarkable that the constraints Eq. (4.10b)–(4.10e) and the objective function
(4.10a) to be optimized are built in different levels, which is very difficult to solve
directly. Therefore, we will transform the original QP problem (4.10) in the velocity
level. In order to realize precise tracking control to the desired trajectory xd, by
introducing a negative feedback in the outer-loop, the equality constraint can be
ensured by letting the end-effector moves at a velocity of ẋ = ẋd + k(xd − x). In
terms with (4.10c), according to the escape velocity method, it can be obtained by
limiting joint speed as α(θ− − θ) ≤ θ̇ ≤ α(θ+ − θ), where α is a positive constant.
Combing the kinematic property (4.2), the reformulated QP problem is

min θ̇Tθ̇/2, (4.11a)

s.t. J (θ)θ̇ = ẋd + k(xd − x), (4.11b)

max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+, α(θ+ − θ)), (4.11c)

Joθ̇ ≤ B. (4.11d)

It is noteworthy that both the formula (4.11a) and (4.11d) are nonlinear. The
QP problem cannot be solved directly by traditional methods. Using the parallel
computing and learning ability, a deep RNN will be established later.

4.3 Deep RNN Based Solver Design

In this chapter, a deep RNN is proposed to solve the obstacle avoidance problem
(4.11) online. To ensure the constraints (4.11b), (4.11c), and (4.11d), a group of state
variables are introduced in the deep RNN. The stability is also proved by Lyapunov
theory.



4.3 Deep RNN Based Solver Design 69

4.3.1 Deep RNN Design

Firstly, by defining a group of state variables λ1 ∈ R
m , λ2 ∈ R

ab, a Lagrange function
is selected as

L = θ̇Tθ̇/2 + λT
1 (ẋd + k(xd − x) − J (θ)θ̇) + λT

2 (Joθ̇ − B), (4.12)

λ1 and λ2 are the dual variables corresponding to the constraints (4.11b) and (4.11d).
According to Karush-Kuhn-Tucker conditions, the optimal solution of the optimiza-
tion problem (4.12) can be equivalently formulated as

θ̇ = PΩ(θ̇ − ∂L

∂θ̇
), (4.13a)

J (θ)θ̇ = ẋd + k(xd − x), (4.13b)
{

λ2 > 0 if Joθ̇ = B,

λ2 = 0 if Joθ̇ ≤ B,
(4.13c)

where PΩ(x) = argminy∈Ω ||y − x || is a projection operator to a restricted interval
Ω , which is defined as Ω = {θ̇ ∈ R

n|max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+, α(θ+ −
θ))}. Notable that Equation (4.13c) can be simply described as

λ2 = (λ2 + Joθ̇ − B)+, (4.14)

where (•)+ is a projection operation to the non-negative space, in the sense that
y+ = max(y, 0).

Although the solution of (4.13) is exact the optimal solution of the constrained-
optimization problem (4.11), it is still a challenging issue to solve (4.13) online since
its inherent nonlinearity. In this chapter, in order to solve (4.13), a deep recurrent
neural network is designed as

εθ̈ = −θ̇ + PΩ(JTλ1 − JT
o λ2), (4.15a)

ελ̇1 = ẋd + k(xd − x) − J (θ)θ̇ , (4.15b)

ελ̇2 = −λ2 + (λ2 + Joθ̇ − B)+, (4.15c)

with ε is a positive constant scaling the convergence of (4.15).

Remark 4.2 As to the established deep RNN (4.15), the first dynamic equation is
also the output dynamics, which combines the dynamics of state variables λ1 and
λ2, as well as the physical limitations including joint angles and velocities. State
variable λ1 is used to ensure the equality constraint (4.11b), as shown in (4.15b), λ1

is updated according to the difference between reference speed ẋd + k(xd − x) and
actually speed J (θ)θ̇ . Similarly, λ2 is used to ensure the inequality constraint (4.11d),
which will be further discussed later. It is remarkable that ε plays an important role in
the convergence of the deep RNN. The smaller ε, the faster the deep RNN converges.
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Remark 4.3 By introducing the model information such as J , Jo, etc., the estab-
lished deep RNN consists of three class of nodes, namely θ̇ , λ1 and λ2, and the total
number of nodes is n + m + ab. Comparing to traditional neural networks in [19],
the complexity of neural networks is greatly reduced.

4.3.2 Stability Analysis

In this part, we offer stability analysis of the obstacle avoidance method based on
deep RNN based. First of all, some basic Lemmas are given as below.

Definition 4.1 A continuously differentiable function F(•) is said to be monotone,
if ∇F + ∇FT is positive semi-definite, where ∇F is the gradient of F(•).

Lemma 4.1 A dynamic neural network is said to converge to the equilibrium point
if it satisfies

κ ẋ = −ẋ + PS(x − ρF(x)), (4.16)

where κ > 0 and ρ > 0 are constant parameters, and PS = argminy∈S||y − x || is a
projection operator to closed set S.

Lemma 4.2 [37] Let V : [0,∞) × Bd → R be a C1 function, α1, α2 be class-K
functions defined on [0, d) which satisfy α1(||x ||) ≤ V (t, x) ≤ α2(||x ||), ∀(t, x) ∈
[0, d) × Bd, then x = 0 is a uniformly asymptotically stable equilibriumpoint if there
exist some class-K function g defined on [0, d), to make the following inequality hold

∂V

∂t
+ ∂V

∂x
f (t, x) ≤ −α(||x ||),∀(t, x) ∈ [0,∞) × Bd , (4.17)

About the stability of the closed-loop system, we offer the following theorem.

Theorem 4.1 Given the obstacle avoidance problem for a redundant manipulator
in kinematic control tasks, the proposed deep recurrent neural network is stable and
will globally converge to the optimal solution of (4.10).

Proof The stability analysis consists of two parts: firstly, we will show that the
equilibrium of the deep RNN is exactly the optimal solution of the control objective
described in (4.11), which prove that the output of deep RNN will realize obstacle
avoidance while tracking a given trajectory, and then we will prove that the deep
recurrent neural network is stable in sense of Lyapunov.

Part I. As to the deep recurrent neural network (4.15), let (θ̇∗, λ∗
1, λ

∗
2) be the

equilibrium of the deep RNN, then (θ̇∗, λ∗
1, λ

∗
2) satisfies

−θ̇∗ + PΩ(JTλ∗
1 − JT

o λ∗
2) = 0, (4.18a)

ẋd + k(xd − x) − J (θ)θ̇∗ = 0, (4.18b)

−λ∗
2 + (λ∗

2 + Joθ̇
∗ − B)+ = 0, (4.18c)
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with θ̇∗ be the output of deep RNN. By comparing Equation (4.18) and (4.13), we
can readily obtain that they are identical, i.e., the equilibrium point satisfies the KKT
condition of (4.10).

Then we will show that the equilibrium point (output of the proposed deep RNN)
is capable of dealing with kinematic tracking as well as obstacle avoidance problem.
Define a Lyapunov function V about the tracking error e = xd − x as V = eTe/2,
by differentiating V with respect to time and combining (4.11b), we have

V̇ = eTė = eT(ẋd − J (θ)θ̇∗)

= −keTe ≤ 0, (4.19)

in which the dynamic equation (4.18b) is also used. It can readily obtained that the
tracking error would eventually converge to zero.

It is notable that the dynamic equation (4.18c) satisfies

λ∗
2 + Joθ̇

∗ − B − (λ∗
2 + Joθ̇

∗ − B)+ = Joθ̇
∗ − B. (4.20)

According to the property of projection operator (•)+, y − (y)+ ≤ 0 holds for any
y, then we have Joθ̇∗ − B ≤ 0, together with (4.5), the inequality (4.5) is satisfied.
Notable that (4.5) can be rewritten as

Ḋ ≥ −sgn(D)g(|D|). (4.21)

As to (4.21), we first consider the situation when equality holds. Since g(|D|)
is a function belonging to class K, it can be easily obtained that D = 0 is the only
equilibrium of Ḋ = −sgn(D)g(|D|). Define a Lyapunov function as V2(t, D) =
D2/2, and select two functions as α1(|D|) = α2(|D|) = D2/2. It is obvious that
α1(|D|) = α2(|D|) belongs to class-K, and the following inequality will always hold

α1(|D|) ≤ V2(t, D) ≤ α2(|D|). (4.22)

Taking the time derivative of V2(t, D), we have

∂V2

∂t
+ ∂V

∂D
Ḋ = −|D|g(|D|) ≤ 0. (4.23)

According to Lemma 4.2, the equilibrium x = 0 is uniformly asymptotically sta-
ble. Then we arrive at the conclusion that if the equality d(|Oj Ai |)/dt = −sgn(D)g
(|D|) holds, |D| = 0will be guaranteed, i.e., |Oj Ai | − d for all i = 1 · · · a,= 1 · · · b.
Based on comparison principle, we can readily obtain that |Oj Ai | ≥ d when
d(|Oj Ai |)/dt ≥ −sgn(D)g(|D|).

Part II. Then we will show the stability of the deep RNN (4.15). Let ξ =
[θ̇T, λT

1 , λ
T
2 ]T be the a concatenated vector of state variables of the proposed deep

RNN, then (4.15) can be rewritten as
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εξ̇ = −ξ + PΩ̄ [ξ − F(ξ)], (4.24)

where PS(•) is a projection operator to a set S, and F(ξ) = [F1(ξ), F2(ξ), F3(ξ)]T ∈
R

n+m+ab, in which ⎡

⎣
F1

F2

F3

⎤

⎦ =
⎡

⎣
θ̇ − JTλ1 + JT

o λ2

J θ̇ − ẋd − k(xd − x)
−Joθ̇∗ − B

⎤

⎦ .

Let ∇F = ∂F/∂ξ , we have

∇F(ξ) =
⎡

⎣
I −JT JT

o
J 0 0

−JT
o 0 0

⎤

⎦ . (4.25)

According to the definition of monotone function, we can readily obtain that F(ξ) is
monotone. From the description of (4.24), the projection operator PS can be formu-
lated as PS = [PΩ; PR; P�], in which PΩ is defined in (4.13), PR can be regarded
as a projection operator of λ1 to R, with the upper and lower bounds being ±∞,
and P� = (•)+ is a special projection operator to closed set Rab+ . Therefore, PS is a
projection operator to closed set [Ω;Rm;Rab+ ]. Based on Lemma 4.1, the proposed
neural network (4.15) is stable and will globally converge to the optimal solution of
(4.10). The proof is completed. �

4.4 Numerical Results

In this chapter, the proposed deep RNN based controller is applied on a planar 4-
DOF robot. Firstly, a basic case where the obstacle is described as a single point
is discussed, and then the controller is expanded to multiple obstacles and dynamic
ones. Comparisons with existing methods are also listed to indicate the superiority
of the deep RNN based scheme.

4.4.1 Simulation Setup

The physical structure of the 4-link planar robot to be simulated is shown in
Fig. 4.2, in which the critical points of the robot are also marked. As shown in
Fig. 4.2, critical points A2, A4, A6 are selected at the joint centers, and A1, A3, A5,
A7 are selected at the center of robot links. It is notable that Ai and the Jacobian
matrix Joi are essential in the proposed control scheme. Based on the above descrip-
tion of Ai , the D-H parameters of A1 is a1 = 0.15, a2 = a3 = 0, α1 = α2 = α3 = 0,
d1 = d2 = d3 = 0, then both the position and Jacobianmatrix Ja1 of A1 can be calcu-
lated readily. Based on the definition in Eq. (4.8), Jo1 can be obtained. Ai and Joi can
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Fig. 4.2 The planar robot to
be simulated in this chapter

be calculated similarly. The control parameters are set as ε = 0.001, α = 8, k = 8.
As to the physical constraints, the limits of joint angles and velocities are selected
as θ−

i = −3rad, θ+
i = 3rad, θ̇−

i = −1rad/s, θ̇+
i = 1rad/s for i = 1 . . . 4. The safety

distance d is set to be 0.1 m.

4.4.2 Single Obstacle Avoidance

In this simulation, the obstacle is assumed to be centered at [−0.1, 0.2]Tm, the
desired path is set as xd = [0.4 + 0.1cos(0.5t), 0.4 + 0.1sin(0.5t)]Tm, and the ini-
tial joint angles are set to be θ0 = [π/2,−π/3,−π/4, 0]Trad. The class-K function
is selected as G(|D|) = K1|D| with K1 = 200. In order to show the effectiveness
of the proposed obstacle avoidance method, contrast simulations with and without
inequality constraint (4.10e) are conducted. Simulation results are shown in Fig. 4.3.
When ignoring the obstacle, the end-effector trajectories and the corresponding incre-
mental configurations are shown in Fig. 4.3a, although the robot achieves task space
tracking to xd, obviously the first link of the robot would collide with the obstacle.
After introducing obstacle avoidance scheme, the robotmoves other joints rather than
the first joint, and then avoids the obstacle effectively (Fig. 4.3b). Simultaneously,
the tracking errors when tracking the given circle are shown in Fig. 4.3c. From the
initial state, the end-effector moves towards the circle quickly and smoothly, after
that, the tracking error in stable state keeps less than 1 × 10−4m, showing that the
robot could achieve kinematic control as well as obstacle avoidance tasks. To show
more details of the proposed deep RNN based method, some important process data
is given. As the obstacle is close to the first joint, critical points A1 and A2 are more
likely to collide with the obstacle, therefore, as a result, the distances between the
obstacle O1 and A1, A2 are shown in Fig. 4.3d, from t = 2s to t = 6.5s, ||A1O1||
remains at the minimum value d = 0.1, that is to say, using the proposed obstacle
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Fig. 4.3 Numerical results of single obstacle avoidance. a is the motion trajectories when ignor-
ing obstacle avoidance scheme, b is the motion trajectories when considering obstacle avoidance
scheme, c is the profile of tracking errors when considering obstacle avoidance scheme, d is the
profile of distances between critical points and obstacle, e is the profile of joint velocities, f is the
profile of joint angles

avoidance method, the robot maintains minimum distance from the obstacle. The
profile of joint velocities are shown in Fig. 4.3e, at the beginning of simulation, the
robot moves at maximum speed, which leads to the fast convergence of tracking
errors. The curve of joint angles change over time is shown in Fig. 4.3f.

4.4.3 Discussion on Class-K Functions

In this part, we will discuss the influence of different class-K functions in the avoid-
ance scheme (4.5). Four functions are selected as G1(|D|) = K |D|2, G2(|D|) =
K |D|,G3(|D|) = K tanh(5|D|),G4(|D|) = K tanh(10|D|), Fig. 4.4a shows the com-
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Fig. 4.4 Discussions on different obstacle avoidance functions. a is the comparative curves of
different obstacle avoidance functions. b is the profile ofminimumdistance of the robot and obstacle
using different obstacle avoidance functions

parative curves the these functions. Other simulation settings are the same as the
previous one. Simulation results are shown in Fig. 4.4b. When selecting the same
positive gain K , the minimum distance is about 0.08 m, which shows the robot can
avoid colliding with the obstacle using the avoidance scheme (4.5). The close-up
graph of the tracking error is also shown, it is remarkable that the minimum distance
deceases, as the gradient of the class-K function increases near zero. Therefore, one
conclusion can be drawn that the function can be more similar with sign function, to
achieve better obstacle avoidance.

4.4.4 Multiple Obstacles Avoidance

In this part, we consider the case where there are two obstacles in the workspace. The
obstacles are set at [0.1, 0.25]Tm and [0, 0.4]Tm, respectively. Simulation results are
shown in Fig. 4.5. The desired path is defined as xd = [0.45 + 0.1cos(0.5t), 0.4 +
0.1sin(0.5t)]T. The initial joint angle of the robot is selected as θ0 = [1.5,−1 −
1, 0]T. To further show the effectiveness of the proposed obstacle avoidance strategy
4.5, g|D| is selected as g|D| = K1/(1 + e−|D|) − K1/2 with K1 = 200. When λ2

is set to 0, as shown in Fig. 4.5a, the inequality constraint (4.11d) will not work,
in other words, only kinematic tracking problem is considered rather than obstacle
avoidance, in this case, the robot would collide with the obstacles. After introducing
online training of λ2, the simulation results are given in Fig. 4.5b–h. The tracking
errors are shown in Fig. 4.5c, with the transient time being about 4s, and steady state
error less than 1 × 10−3m. Correspondingly, the robot moves fast in the transient
stage, ensuring the quick convergence of the tracking errors. It is remarkable that
the distances between the critical points and obstacle points are kept larger than
0.1m at all times, showing the effectiveness of the proposed method. At t = 14s,
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Fig. 4.5 Numerical results of multiple obstacle avoidance. a is the motion trajectories when ignor-
ing obstacle avoidance scheme. b is the motion trajectories when considering obstacle avoidance
scheme. c is the profile of tracking errors when considering obstacle avoidance scheme. d is the
profile of distances between critical points and obstacles. e is the profile of joint velocities. f is the
profile of λ2. g is the profile of joint angles. h is the profile of λ1
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from Fig. 4.5d and g, when the distance between A3 and O1 is close to 0.1m, the
corresponding dual variable λ2 becomes positive, making the inequality constraint
(4.11d) hold, and the boundary between the robot and obstacle is thus guaranteed.
After t = 18s, ||A3O1|| becomes greater, then λ2 converges to aero. Notable that
although λ1 and λ2 do not converge to certain values, the dynamic change of λ1 and
λ2 ensures the regulation of the proposed deep RNN.

4.4.5 Enveloping Shape Obstacles

In this part, we consider obstacles of general significance. Suppose that there is a
rectangular obstacle in the workspace, with the vertices being [0, 0.5]T, [0.4, 0.5]T,
[0.4, 0.6]T and [0.5, 0.6]T, respectively. By selecting the safety distance d = 0.1m,
and obstacle points as O1 = [0.05, 0.55]T, O2 = [0.15, 0.55]T, O3 = [0.25, 0.55]T
and O4 = [0.35, 0.55]T. It can be readily obtained that the rectangular obstacle is
totally within the envelope defined by Oi and d. The incremental configurations
when tracking the path while avoiding the obstacle are shown in Fig. 4.6b, in which
a local amplification diagram is also given, showing that the critical points A3 is
capable of avoiding O2 and O3. It is worth noting that by selecting proper point
group and safety distance, the obstacle can be described by the envelope shape
effectively. Figure4.6c, h also give important process data of the system under the
proposed controller, including tracking errors, joint angles, angular velocities, and
state variables of deep RNNs. We can observe that the physical constraints as well
as kinematic control task are realized using the controller.

4.4.6 Comparisons

To illustrate the priority of the proposed scheme, a group of comparisons are carried
out.As shown inTable4.1, all the controllers in [12, 16, 34, 35] achieve the avoidance
of obstacles. Comparing to APFmethod in [12, 16] and JP based method in [12, 16],
the proposed controller can realize a secondary task, at the same time, we present a
more general formulation of the obstacle avoidance strategy,which is helpful to gain a
deeper understanding of the mechanism for avoidance of obstacles. Moreover, in this
chapter, both dynamic trajectories and obstacles are considered. The comparisons
above also highlight the main contributions of this paper.
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Fig. 4.6 Numerical results of enveloping shape obstacles. a is the motion trajectories when ignor-
ing obstacle avoidance scheme. b is the motion trajectories when considering obstacle avoidance
scheme. c is the profile of tracking errors when considering obstacle avoidance scheme. d is the
profile of distances between critical points and obstacles. e is the profile of joint velocities. f is the
profile of joint angles. g is the profile of λ2. h is the profile of λ1
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Table 4.1 Comparisons among different obstacle avoidance controllers on manipulators

Method Convergence Secondary
task

Physical
constraints
satisfied

Dynamic
obstacles

Obstacle
avoidance
description

This paper Yes Considered Yes Considered Inequalities

[35]
Yes Considered Yes * Inequalities**

[34]
Yes Considered Yes * Inequalities**

[12]
Yes Not

considered
No Considered Repulsion

[16]
Yes Not

considered
No * Null space

* In [34, 35] and [16], dynamic obstacles are not considered
** Regular escape velocity method is used, which is only a special case of 4.5

4.5 Summary

In this chapter, a novel obstacle avoidance strategy is proposed based on a deep
recurrent neural network. The robots and obstacles are presented by sets of criti-
cal points, then the distance between the robot and obstacle can be approximately
described as point-to-points distances. By understanding the nature escape veloc-
ity methods, a more general description of obstacle avoidance strategy is proposed.
Usingminimum-velocity-norm (MVN) scheme, the obstacle avoidance togetherwith
path tracking problem is formulated as a QP problem, in which physical limits are
also considered. By introducing model information, a deep RNN with simple struc-
ture is established to solve the QP problem online. Simulation results show that the
proposed method can realize the avoidance of static and dynamic obstacles.
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Chapter 5
Optimization-Based Compliant Control
for Manipulators Under Dynamic
Obstacle Constraints

Abstract The research on force control among manipulators has attracted more
and more attention from a large of scholars and researcher. In this chapter, from
perspective of optimization, we investigated the collision-free compliance control
of redundant robot manipulators using recurrent neural network. The position-force
control is constructed as an equality constraint in velocity level togetherwith the kine-
matic property of robots. Both the joint angles and joint speed limitations on robots
physical structure are also considered, and are described by a group of inequality con-
straints. To avoid collision between robots and obstacles, they are described as two
set of points, the Euclidean norm of distance between robots and obstacles, greater
than zero, is established as the condition of collision-free occurrence. Minimizing
joint velocities as the secondary task, a time-varying QP-type problem description
is given with equality and inequality constraints, then an RNN-based controller is
designed to solve it. Based on theoretical analysis and simulative experiments, the
effectiveness of the designed controller is validated.

5.1 Introduction

With development of industry society, robot manipulators are required to be more
flexible and intelligent, to satisfy the increasing personalized and customized pro-
duction requirement [1]. Compared to non-redundant manipulators, redundant ones
showmoreflexibility due to itsmoreDOFs that exceed the required number to accom-
plish the given task [2]. On the other hand, position control scheme on robots would
show lower performance for some complicated tasks [3]. For example, the control
methods that only considers position usually ignore the contact-force between robot
and workpieces, with high safety challenge, resulting from the excessive system
stiffness would bring the unpredictable responses [4]. Therefore, control of contact
force between redundant robots and workpieces should be considered.

In the light of different robot structure and control signals, until now, a number
of methods have been proposed. Imitating the muscle-tendon tissue of animal joints,
compliance units such as series elastic actuators (SEA), variable stiffness actuators
and so on, are introduced into the robots. In [5], Pan et al. proposed a compliance
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controller for SEA-based systems, achieving torque output control. As to the inter-
action between the robot and workpieces, Hogan proposes a basic idea of impedance
control, in which the robot and environment usually bear as an impedance and admit-
tance, respectively [6]. Generally speaking, the contact force and relative movement
of the robot and workpieces can be described as a combination of mass-spring-
damper systems. Therefore, the contact force can be controlled by designing motion
commands indirectly. Another representative approach is hybrid position-force con-
trol, the controller is usually designed in the torque loop of the joint space, in which
both contact forces and movement of the robot are modelled based on dynamic anal-
ysis. Then the controller can be described as a combination of control efforts which
achieve position and force control respectively [7]. Similar research can be found in
literature such as [8–13].

During the operation, the robot may collide with the environment because the
manipulator usually needs to keep in touch with the workpiece. In addition, the
working space of the robot is limited [14]. For example, in a production line with
multiplemanipulators, each robot is in a fixed position. In order to avoid interference,
the working space of the robot is limited by hardware (fences, obstacles, [emph],
etc.) or software constraints (pre planned space). In the case of human-computer
cooperation, the robot shall not collide with people. Therefore, it is very important to
avoid obstacles in the process of operation. In current reports, the desired trajectory
is usually obtained by offline programming, which is limited by the efficiency of
programming. In order to achieve real-time obstacle avoidance control, the artificial
potential field method has been widely used. The basic idea is that when an obstacle
repels the robot, the target acts as an attractive pole, and then the robot will be con-
trolled to converge to the target without colliding with the obstacle [15]. In [16], a
modified method is proposed, which describes the obstacles by different geometri-
cal forms, both theoretical conduction and experimental tests validate the proposed
method. Considering the local minimum problem that may caused by multi-link
structures, in [17], a two minima is introduced to construct potential field, such that
a dual attraction between links enables faster maneuvers comparing with traditional
methods. Other improvements to artificial potential field method can be found in [18,
19]. A series of pseudo-inverse methods are constructed for redundant manipulators
in [20], in which the control efforts consists of a minimum-norm particular solution
and homogeneous solutions, and the collision can be avoided by calculating a escape
velocity as homogeneous solutions. By understanding the limited workspace, the
obstacle avoidance can be described in forms of inequalities, which opens a new
way in realtime collision avoidance. In [21], the robot is regarded as the sum of sev-
eral links, and the distances between the robot and obstacle is obtained by calculating
distances between points and links. Then Guo [22] improves the method by modify-
ing obstacle avoidance MVN scheme, and simulation results show that the modified
control strategy can suppress the discontinuity of angular velocities effectively.

To solve the problem of robot compliance control, the controller should be
designed according to the required command and system characteristics. That is
to say, robots must follow constraints to achieve compliance control, while ensuring
unequal constraints to avoid obstacles. Obviously, the control problem involves sev-
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eral constraints, including equal constraints and unequal constraints. By using the
idea of constraint optimization, the control problem with multiple constraints can
be well dealt with. In recent years, the application of recurrent neural network in
robot control has been studied extensively, and it shows the great efficiency of real-
time processing [23–27]. In those literatures, analysis in dual space and a convex
projection are introduced to handle inequality constraints.

Recently, taking advantage of parallel computing, neural networks are used to
solve the constraint-optimization, and have shown great efficiency in real-time pro-
cessing. In [28, 29], controllers are established in joint velocity/acceleration level, to
fulfill kinematic tracking problem for robot manipulators. In [30], tracking problem
with model uncertainties is considered, and an adaptive RNN based controller is
proposed for a 6DOF robot Jaco2. Discussions on multiple robot systems, parallel
manipulators, time-delay systems using RNN can be found in [30–33].

Based on the above observations, a RNN based collision-free compliance control
strategy is proposed for redundant manipulators. The remainder of this chapter is
organized as follows. In Chap. 2, the control objective including the position-force
control as well as collision avoidance is pointed out, and then rewritten as a QP
problem. In Chap. 3, the RNN based controller is proposed, and the stability of the
system is also analyzed. A number of numerical experiments on a 4-DOF redundant
manipulator including model uncertainties and narrow workspace are carried out in
Chap. 4, to further verify effectiveness of the proposed control strategy. Chapter 5
concludes the chapter. The contributions of this chapter are summarized as below

• To the best of the author′s knowledge, there is few research on compliance control
using recurrent neural networks, the study in this chapter is of great significance
in enriching the theoretical frame of RNN.

• The proposed controller is capable of handling compliance control, as well as
avoiding obstacles in realtime, which does make sense in industrial applications,
besides, physical constraints are also guaranteed.

• Comparing to traditional neural-network-based controllers used in robotics, not
only control errors but model information is considered, therefore, the proposed
RNN has a simple structure, and the global convergence can be ensured.

5.2 Problem Formulation

5.2.1 Robot Kinematics and Impedance Control

Without loss of generality, we consider series robot manipulators with redundant
DOFs, and the joints are assumed as rotational joints. Let θ ∈ R

n be the vector of
joint angles, the description of the end-effector in the cartesian space is

x = f (θ), (5.1)
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where x ∈ R
m is the coordination of the end-effector. In the velocity level, the forward

kinematic model can be formulated as

ẋ = J (θ)θ̇ , (5.2)

inwhich J (θ) = ∂x/∂θ is Jacobianmatrix.As to redundantmanipulators, J ∈ R
m×n ,

rank(J ) < n.
In industrial applications, position control based operation mode has many lim-

itations: due to the lack of compliance, pure kinematic control methods may cause
unexpected consequences, especially when the robot is in contact with the envi-
ronment. To enhance the compliance and achieve precise control of contact force,
according to impedance control technology, the interaction between robot and envi-
ronment can be described as a damper-spring system [34].

F = KpΔx + Kdd(Δx)/dt, (5.3)

where Kp and Kd are interaction coefficients, and Δx = x − xd is the difference
between the actual response x and desired trajectory xd. By referring to Eqs. (5.2)
and (5.3), we have

ẋ = K−1
d F − KpK

−1
d Δx + ẋd. (5.4)

When the real values of Kp and Kd are known, F can be obtained by adjusting
the velocity ẋ of the end-effector according to Eq. (5.4).

5.2.2 Obstacle Avoidance Scheme

In the process of robot force control, there is a risk of collision as the robot may
contact with workpieces. Besides, robot manipulators usually work in a limited
workspace restricted by fences, which are used to isolated robots from humans or
other robots. This problem could be even more acute in tasks which require col-
laboration of multiple robots. Therefore, obstacle avoidance problem must be taken
into consideration. When collision does not happens, the distance between robot
and obstacles keeps positive. By describing the robot and obstacles as two separated
sets, namely SA = {A1, . . . , Aa}, SB = {B1, . . . , Bb}, where Ai , i = 1, · · · , a and
Bj , j = 1, · · · , b are points on the robot and obstacles, respectively. Then the suffi-
cient and necessary condition of obstacle avoidance problem is that the intersection of
A and B is an empty set. That is to say, for any point pair Ai on the robot and Bj on the
obstacle, the distance between Ai and Bj is always positive, i.e., ||Ai B j ||22 > 0, for
all i = 1, . . . , a, j = 1, · · · , b, where || • ||22 is the Euclidean norm of vector Ai B j .
For sake of safety, let d > 0 be a proper value describing the minimum distance
between robot and obstacles, the collision can be avoided b ensuring ||Ai B j ||22 ≥ d.
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Remark 5.1 In fact, both SA and SB consist of infinite points. However, by evenly
selecting representative points from the robot link and obstacles, SA and SB can be
simplified significantly. Besides, the safety distance d can be appropriately increased.
Despite that this treatment will sacrifice some workspace of the robot (the inequality
||Ai B j ||22 ≥ d would consider some areas that collisions do not happen, due to a big-
ger d is considered), this sacrifice is meaningful: the number of inequality constraints
can be reduced greatly, which is helpful for constraint description and solution.

In real applications, the key points of the robot manipulator is easy to select.
Cylindrical envelopes are usually used to describe the robotic links, then the key
points can be selected on the axes of the cylinders uniformly, and the distance between
those points can be defined the same as the radius of the cylinder. As to the obstacles
with irregular shapes, the key points can be selected based on image processing
techniques, such as edge detection, corrosion, etc.

5.2.3 Problem Reformulation in QP Type

From the above description, the purpose of this chapter is to build a collision-free
force controller for redundant manipulators, to achieve precise force control along a
predefined trajectory, in the sense that F → Fd, x → xd, and ||Ai B j ||22 ≥ d for all
i = 1, · · · , a, j = 1, . . . , b.

As to a redundant manipulator, there exist redundant DOFs, which can be used to
enhance the flexibility of the robot. When the robot gets close to the obstacles, the
robot must avoid the obstacle without affecting the contact force and tracking errors.
In addition,when there is no risk of collision, the robotmaywork in an economicway,
by minimizing the joint velocities, energy consumption can be reduced effectively.
Therefore, by defining an objective function as ||θ̇ ||22, the control objective can be
summarized as

min ||θ̇ ||22, (5.5a)

s.t. x = xd, (5.5b)

F = Fd, (5.5c)

||Ai B j ||22 ≥ d, (5.5d)

where ||θ̇ ||22 is the Euclidean norm of θ̇ . It is noteworthy that in actual industrial
applications, the robot is also limited by its own physical structures. For instance,
the joint angles are limited in a fixed range, and the upper/lower bounds of joint
velocities are also constrained due to actuator saturation. By combing Eq. (5.4), the
control objective rewrites as
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min ||θ̇ ||22, (5.6a)

s.t. J θ̇ = K−1
d F − KpK

−1
d Δx + ẋd, (5.6b)

||Ai B j ||22 ≥ d, (5.6c)

θ− ≤ θ ≤ θ+, (5.6d)

θ̇− ≤ θ̇ ≤ θ̇+, (5.6e)

with θ−, θ+, θ̇−, θ̇+ being the upper/lower bounds of joint angles and velocities,
respectively. However, the optimization problem is described in different levels, i.e.,
joint speed level or joint angle level, which remains challenging to solve Eq. (5.6)
directly. Therefore, we will rewrite this formula in velocity level. As to the key points
Ai on the robot, let xAi be the coordination of Ai in the cartesian space, both xAi and
ẋ Ai are available:

xAi = f Ai (θ), (5.7a)

ẋ Ai = JAi θ̇ , (5.7b)

where f Ai (•) is the forward kinematics of point Ai , and JAi is the corresponding
Jacobian matrix from Ai to joint space. Let us consider the following equality

d

dt
(||Ai B j ||22) = k(||Ai B j ||22 − d), (5.8)

in which k is a positive constant. It is obviously that the equilibrium point of Eq. (5.8)

is ||Ai B j ||22 = d. By letting
d

dt
(||Ai B j ||22) ≥ 0, the inequality (5.5d) can be readily

guaranteed. Taking the time-derivative of ||Ai B j ||22 yields
d

dt
(||Bj Ai ||22) = d

dt
(

√
(Ai − Bj )T(Ai − Bj ))

= 1

||Bj Ai ||22
(Ai − Bj )

T( Ȧi − Ḃ j )

=−−−→|Bj Ai |T JAi (θ)θ̇ − −−−→|Bj Ai |T Ḃ j , (5.9)

where
−−−→|Bj Ai | = (Ai − Bj )

T/||θ̇ ||22 is a unit vector from Bj to Ai , and Ḃ j is the
velocity of key point Bj on the obstacles. By Eqs. (5.9) and (5.6c), the inequality
description of obstacle avoidance strategy is

−−−→|Bj Ai |T JAi (θ)θ̇ ≥ k(||Ai B j ||22 − d) + −−−→|Bj Ai |T Ḃ j , (5.10)

Remark 5.2 In this part, we have shown the basic idea of obstacle avoidance scheme
in velocity level, whose equilibrium point is described in Eq. (5.8). It is notable that
the right-hand side of Eq. (5.8) is only a common form to realize obstacle avoidance.
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Generally speaking, the right-hand side of Eq. (5.8)may have different forms, such as
k(||Ai B j ||22 − d), k(||Ai B j ||22 − d)3, etc. From Eq. (5.10), the value of the response
velocity to avoid obstacles is related to the two parts, the first part is the difference
between the actual and safety distance, the other part depends on the movement of
the obstacles.

In terms of the physical constraints of joint angles, according to escape veloc-
ity method, inequalities (5.6d) and (5.6e) can be uniformly described as max
(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+, α(θ+ − θ)). So far, the position-force control prob-
lem together with obstacle avoidance strategy in velocity level is as below

min ||θ̇ ||22, (5.11a)

s.t. J θ̇ = K−1
d F − KpK

−1
d Δx + ẋd, (5.11b)

max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+, α(θ+ − θ)), (5.11c)

Joθ̇ ≤ B. (5.11d)

where (5.11c) is a rewritten inequality considering (5.6d) and (5.6e) based on escape
velocity scheme , Jo = [−−−−→|B1A1|T JA1; · · · ; −−−−→|Bb A1|T JAb︸ ︷︷ ︸

b

, · · · ,
−−−−→|B1Aa |T JTAa; · · · ; −−−−→|Bb Aa |T JAb︸ ︷︷ ︸

b

] ∈

R
ab×n is the concatenated form of JAi considering all pairs between Ai and Bj ,

B = [B11, · · · , B1b, · · · , Ba1, · · · , Bab]T ∈ R
ab is the vector of upper-bounds, in

which −k(||Ai B j ||22 − d) − −−−→|Bj Ai |T Ḃ j . From the definition of Jo, B, inequal-

ity (5.11d) in equivalent to
−−−−→|B1A1|T JA1(θ)θ̇ ≥ k(||A1B1||22 − d) + −−−−→|B1A1|T Ḃ1,...−−−−→|BbAa|T JAa(θ)θ̇ ≥ k(||AaBb||22 − d) + −−−−→|BbAa|T Ḃb, which is the cascading form of

the inequality description (5.10) for all points pairs Ai B j , i.e., if (5.11d) holds, the
obstacle avoidance can be achieved. It is notable that a larger number of key points
do help to describe the information of the obstacle more clearly, but it would lead to
a computational burden, since the number of inequality constraints also increases.
Therefore, the distance of the key points on the obstacle can be selected similar to
those of the manipulator.

5.3 RNN Based Controller Design

In previous parts, we have transform the compliance control as well as obstacle
avoidance problem into a constraint-optimization one. However, because that the
QP problem described in Eq. (5.11) contains equality and inequality constraints,
moreover, both Eq. (5.11b, d) are nonlinear, it is difficult to solve directly, especially
in industrial applications in realtime. Based on the parallel computation ability, an
RNN is established to solve Eq. (5.11) online, and the stability of the closed-loop
system is also discussed.
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5.3.1 RNN Design

In terms with the QP problem Eq. (5.11), although the analytical solution can be
hardly obtained, by defining a Lagrange function as

L = ||θ̇ ||22 + λT
1 (K

−1
d F − KpK

−1
d Δx + ẋd − J (θ)θ̇) + λT

2 (Joθ̇ − B), (5.12)

where λ1 and λ2 are state variables, respectively. According to Karush-Kuhn-Tucker
(KKT) conditions, the inherent solution of Eq. (5.11) satisfies

θ̇ = PΩ(θ̇ − ∂L

∂θ̇
), (5.13a)

J θ̇ = K−1
d F − KpK

−1
d Δx + ẋd, (5.13b)

λ2 = (λ2 + Joθ̇ − B)+, (5.13c)

where PΩ(x) = argminy∈Ω ||y − x || is a projection operator of θ̇ to convex Ω , and
Ω = {θ̇ ∈ R

n|max(α(θ− − θ), θ̇−) ≤ θ̇ ≤ min(θ̇+, α(θ+ − θ))}. In Eq. (5.13c), the
operation function (•)+ is defined as a mapping to the non-negative space. Equa-
tion(5.13c) can be rewritten as

{
λ2 > 0 if Joθ̇ = B,

λ2 = 0 if Joθ̇ ≤ B,
(5.14)

When Joθ̇ ≤ B, the inequality Eq. (5.11d) holds, then λ2 stays zero. Instead, if
the inequality reaches a critical state, λ2 becomes positive to ensure Joθ̇ = B. In
order to obtain the inherent solution in real time, a recurrent neural network is built
as follows

εθ̈ = −θ̇ + PΩ(θ̇ − θ̇/||θ̇ ||22 + JTλ1 − JT
o λ2), (5.15a)

ελ̇1 = K−1
d F − KpK

−1
d Δx + ẋd − J (θ)θ̇ , (5.15b)

ελ̇2 = −λ2 + (λ2 + Joθ̇ − B)+, (5.15c)

with ε being a positive constant scaling the convergence of Eq. (5.15).
The proposed RNNbased algorithm is shown inAlgorithm 5.3.1. Based on escape

velocity method, the convex set of joint speed can be obtained based on the positive
constant α and physical constraints θ−, θ+, θ̇−, θ̇−. After initializing state variables
λ1 and λ2, the reference velocity can be obtained based on the desired command and
actual responses according to Eq. (5.4) then the output of RNN (which is also the
control command) can be calculated based on Eq. (5.15a), at the same time, both λ1

and λ2 can be updated according to Eqs. (5.15b) and (5.15c).
In real applications, the nonlinear system can be hardly approximated completely.

Therefore, the approximate error is inevitable, which would influence the perfor-
mance of the proposed controller. However, the approximate error is a small value
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Algorithm 4 Collision-Free position-force controller based on RNN
Input: Positive control gains α, ε, and interaction coefficients Kp , Kd . Initial states q̇(0) = 0, q(0),

desired path xd(t), ẋd(t) and operation force Fd(t), task duration Te, feedback of end effector′s
coordination x(t) and contact force F , joint angles θ , Jacobian matrix J (θ), information of the
obstacles Bj and Ḃ j = 1, · · · , b. Location of key points Ai , i = 1, · · · , a on the robot, and the
corresponding Jacobian matrices JAi . Physical limitations θ−, θ+, θ̇−, θ̇+. Safety distance d.

Output: To achieve position-force control without colliding with obstacles
1. Initialize λ1 = 0, λ2 = 0.
2. x , q, F , θ̇ ← Sensor readings
3. Calculate xAi , ẋ Ai and JAi by Equation (5.7)
4. Calculate matrices Jo, B by Equation (5.11d)
5. Update upper and lower bounds of joint velocities by Equation (5.11c)
6. Update output of RNN (joint velocity) by θ̈ using Equation (5.15a)
7. Update λ1 by λ̇1 using Equation (5.15b)
8. Update λ2 by λ̇2 using Equation (5.15c)
Until(t > Te)

of higher order, and the influence can be suppressed based on the negative feedback
scheme in the outer-loop, as shown in Eq. (5.4).

Remark 5.3 The output dynamics of the proposed RNN is given in Eq. (5.15a),
in which the projection operator PΩ(•) plays an important rule in handling physi-
cal constraints Eq. (5.11c), the updating of θ̇ depends on three parts: the first part
−θ̇/||θ̇ ||22 in used to optimize the objective function ||θ̇ ||22, and the second item JTλ1

guarantees the equality constraint Eq. (5.11b) by adjusting the dual state variable λ1

according to Eq. (5.15b), and the last item −JT
o λ2 ensures the inequality constraint

Eq. (5.11d). The RNN consists of three kinds of nodes, namely, θ̈ , λ1 and λ2, with
the number of neurons being n + ab + m.

It is remarkable that the proposed controller is based on the information of system
models such as J , Jo, Kp, etc., which is helpful to reduce computational cost. As
to the constraint-optimization problem Eq. (5.11), the main challenge is to solve it
in real-time, since the parameters in constraints Eqs. (5.11b) and (5.11d) are time
varying. From Eq. (5.15), the control effort is obtained by calculating its updating
law, which is based on the historical data and model information, i.e., it is no longer
necessary to solve the solution of Eq. (5.11) as every step, and the computational
cost is thus reduced. In the following section, we will also show the convergence of
the RNN based controller.

In this chapter, wemainly concern the obstacle avoidance problem in force control
tasks. It is notable that force control is mainly based on the idea of impedance control
theory, which is similar to existing methods in [35, 36]. The main challenge of the
proposed control scheme lies in the limitation of sampling ability of cameras, which
are used to capture the obstacles. To handle the measurement noise or disturbances,
a larger safety distance d can be introduced to ensure the performance of obstacle
avoidance.
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5.3.2 Stability Analysis

Lemma 1 (Convergence for a class of neural networks) [37] A dynamic neural
network is said to converge to its equilibrium point if it satisfies

κ ẋ = −ẋ + PS(x − 
F(x)), (5.16)

where κ > 0 and 
 > 0 are constant parameters, and PS = argminy∈S||y − x || is a
projection operator to closed set S.

Definition 1 For a given function F(•) which is continuously differentiable, with
its gradient defined as ∇F , if ∇F + ∇FT is positive semi-definite, F(•) is called a
monotone function.

About the stability of the closed-loop system, we offer the following theorem.

Theorem 1 Given the collision-free position-force controller based on a recurrent
neural network, the RNN will converge to the inherent solution (optimal solution) of
Eq. (5.11), and the stability of the closed-loop system is also ensured.

Proof Define a vector ξ as ξ = [θ̇; λ1; λ2] ∈ R
n+m+ab, according to Eq.(5.15), the

time derivative of ξ satisfies

εξ̇ = −ξ + PΩ̄ [ξ − F(ξ)], (5.17)

in which ε > 0, and F(ξ) = [F1(ξ), F2(ξ), F3(ξ)]T, where F1 = θ̇/||θ̇ ||22 − JTλ1 +
JT
o λ2, F2 = J θ̇ − K−1

d F + KpK
−1
d Δx − ẋd, F3 = −Joθ̇ + B. By calculating the

gradient of F(ξ), we have

∇F(ξ) =
⎡
⎣
I/||θ̇ ||22 −JT JT

o
J 0 0

−JT
o 0 0

⎤
⎦ . (5.18)

It is obviously that ∇F(ξ) is positive definite. According to Definition 1, F(ξ) is a
monotone function. From the description of (5.17), the projection operator PS can
be formulated as PS = [PΩ; PR; P�], in which PΩ is defined in (5.13a), PR can be
regarded as a projection operator of λ1 to R, with the upper and lower bounds being
±∞, and P� = (•)+ is a special projection operator to closed set Rab+ . Therefore,
PS is a projection operator to closed set [Ω;Rm;Rab+ ]. Based on Lemma 5.1, the
proposed neural network (5.15) is stable and will globally converge to the optimal
solution of (5.11).

Notable that the equality constraint (5.11b) describes the impedance controller,
and the convergence can be found in [38]. Similarly, the establishment of inequal-
ity constraint enables obstacle avoidance during the whole process. The proof is
completed. �
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Remark 5.4 It is remarkable that the original impedance controller described in
(5.11b) bears similar with traditional methods in [39] the main contribution of the
proposed controller is that the controller can not only realize the force control, but also
realize the obstacle avoidance, besides, the control strategy is capable of handling
inequality constraints, including joint angles and velocities.

5.4 Numerical Results

In this part, a series of numerical simulations are carried out to verify the effectiveness
of the proposed control scheme. First, the pure force control experiment is carried
out to show the effectiveness of the force controller, and then the control scheme
is further verified by testing the system response after the introduction of obstacles.
Then, we examine the control performance in more general cases, including model
uncertainty and multiple obstacles.

5.4.1 Simulation Settings

First of all, the planar robot used in the simulation is the same as the previous
chapters. It is worth noting that in the force control task, the final actuator needs to
keep contact with the workpiece, so it is necessary to distinguish between necessary
contact and unnecessary collision. In this chapter, the proposed controller can handle
this problem by properly selecting key points. As a result, the final effector is not
considered critical in order to be in contactwith an obstacle (or external environment).
In order to avoid obstacles, the set of key points of the robot is defined as A1, · · · , A7,
in which A1, A3, A5 and A7 locate at the center of the links, and A2, A4 and A6 are
defined to be at J2, J3 and J4. The lower and upper bounds of joint angles and
joint velocities are defined as θ−

i = −3rad, θ+
i = 3rad, θ̇−

i = −1rad/s, θ̇+
i = 1rad/s

for i = 1 . . . 4, respectively. The safety margin is selected as 0.01m. The coefficients
describing the contact force are selected as Kd = 50, Kp = 5000. For simplicity, let
b0 = K−1

d F − KpK
−1
d Δx + ẋd.

5.4.2 Force Control Without Obstacles

First of all, an ideal case where there is no obstacles in the workspace is considered,
and the parameters Kd and Kp are assumed to be known. The robot is wished to offer
a constant contact force on a given plane. The contact force is set to be 20N, while the
direction of contact force is alignedwith the y-axis of the tool coordination system. In
this example, the y-axis of is [1,−1]T in the base coordination. The pre-defined path
on the contact plane is xd = [0.4 + 0.1cos(0.5t), 0.5 + 0.1cos(0.5t)]. The initial
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Fig. 5.1 Numerical results of compliance control without obstacles. a is the robot′s tracking path
and the corresponding joint configurations. b is the profile of position error along the free-motion
direction. c is the profile of contact force. d is the profile of ||θ̇ ||22

state of the robot system is set as θ0 = [1.57,−0.628,−0.524,−0.524]Trad, θ̇0 =
[0, 0, 0, 0]Trad/s. The control gains of the proposed RNN controller are α = 8,ε =
0.02, respectively. Numerical results are shown in Fig. 5.1. The tracking error along
the contact plane is given in Fig. 5.1b, the transient is about 1 s.At the beginning stage,
since the end-effector is not in contact with the surface, the contact force stays zero
before 0.5 s. As the end-effector approaches the surface, the contact force converges
to 20 N, showing the convergence of both positional and force errors. The Euclidean
norm of joint velocities (which is also output of the established RNN) is shown in
Fig. 5.1d, ||θ̇ || changes periodically, with the same cycle as the expected trajectory.
The time history of the end-effector′s motion trajectory and the corresponding joint
configurations are shown in Fig. 5.1a, in which the red arrow indicates the direction
of the contact force, and the blue arrow shows the direction of the end-effector′s
free-motion. All in all, the proposed controller can achieve the position-force control
precisely.

5.4.3 Force Control with Single Obstacles

In this chapter, a stick obstacle is introduced into the workspace, which is defined
as x = −0.05 m. The initial states and expected values of xd, Fd are the same as
Chap.5.4.2.
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Fig. 5.2 Control performance of the proposed controller while avoiding a wall obstacle. a is the
robot′s tracking path and the corresponding joint configurations. b is the profile of position error
along the free-motion direction. c is the profile of contact force. d is the profile of joint angles, r
is the profile of joint velocities. f is the profile of the closest distance to the obstacle of each key
points Ai , i = 1, · · · , 7

Remark 5.5 In Eq. (5.10), we have shown the basic idea of calculating the distance
between the robot and obstacles, i.e., by abstracting key points form the robot and
obstacles, the distances can be the robot and obstacle can be described approximately
at a set of point-to-point distances. In this example, the distance can be obtained in a
simpler way. However, the obstacle avoidance strategy is essentially consistent with
Eq. (5.10).

Simulation results are given in Figs. 5.2 and 5.3. The output of RNN is shown
in Fig. 5.2e, when simulation begins, θ̇ reaches its maximum value, driving the end-
effector to move towards the desired path. And then the robot slows down quickly
(after t ≈ 0.5s), the robot move smoothly, as a result, the position error successfully
converges to 0, and simultaneously, the contact force converges to 20 N. It is notable
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Fig. 5.3 Simulation results of the established RNNwhile avoiding awall obstacle. a is the profile of
λ1. b is the profile of λ2. c is the profile of ||J θ̇ − b0||22. d is the profiles of the desired and reference
trajectory along x-axis. e is the profiles of the desired and reference trajectory along y-axis. f is the
profiles of the objective function of the proposed controller and JPMI based method

that at t = 1.2 s, the key point A2 of the robot gets close to the obstacle, as shown
in Fig. 5.2f. Based on the obstacle avoidance strategy Eq. (5.15c), the state variable
λ2(2) becomes positive, and then the output of the RNN varies with λ2 (Fig. 5.3b).
Correspondingly, an error (about 1 × 10−3m) occurs in the positional tracking, and
so as the contact force (force error is about 2N). However, the RNN converges
to the new equilibrium point(since the equilibrium point would change when the
inequality constraint works), and both ex and e f converges to 0. By comparing
Figs. 5.2a and 5.1a, after introducing the obstacle, the robot is capable of adjusting
its joint configuration to avoid the obstacle. The distances between the key points
A1 − A7 to the obstacle are shown in Fig. 5.2d, a minimum value of about 0.01m is
ensured during thewhole process. Using impedancemodel, the force control problem
is transferred into a kinematic control one bymodifying the reference speed Eq.(5.4).
Consequently, the resulting trajectory xr together with xd are as shown in Fig. 5.3d, e.
As an important index in the proposed control scheme, the norm of joint speed ||θ̇ ||22
is wished as small as possible. Therefore, we introduce a comparative simulation,
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in which the solution is obtained based on pseudo-inverse of Jacobian matrix and
physical limitations are not considered.Comparative curves of the objective functions
are as shown in Fig. 5.3f. The RNN based controller can optimize the objective
function, it is remarkable that a difference appears at about t = 1.2 − 5 s, which
is mainly caused by obstacle avoidance (which is not considered in JMPI based
method). Since the output of RNN θ̇ is used to approximate the reference speed b0,
the approximate error ||J θ̇ − b0||22 is shown in 5.3c, demonstrating the effectiveness
of the established RNN.

5.4.4 Force Control with Uncertain Parameters

In this example, we check the control performance of the proposed control scheme
in presence of model uncertainties. Similar with previous simulations, the ini-
tial states of the robot are also θ0 = [1.57,−0.628,−0.524,−0.524]Trad, θ̇0 =
[0, 0, 0, 0]Trad/s. In real implementations, the interaction model is usually unknown,
and the nominal values of Kd and Kp are not accurate. Without loss of generality,
we select the nominal values of Kd and Kp as K̂d = 80, K̂ p = 4000, respectively.
In order to handle model uncertainties in the interaction coefficients, an extra node
is introduced into (5.15). Then the modified RNN can be formulated as

εθ̈ = −θ̇ + PΩ(θ̇ − θ̇/||θ̇ ||22 + JTλ1 − JT
o λ2),

ελ̇1 = K−1
d F − KpK

−1
d Δx + ẋd − J (θ)θ̇ ,

ελ̇2 = −λ2 + (λ2 + Joθ̇ − B)+,

˙̂W = −Kinη(Fd − F)T,

in whichW = [Kp; Kd ], η = [x − xd; ẋ − ẋd], and the positive coefficient Kin scal-
ing the updating rate is defined as Kin = diag(500, 20). Simulation results are shown
in Fig. 5.4 and Fig. 5.5. Although the exact values of Kd and Kp are unknown, the
closed-loop system is still stable, which can be shown from the convergence of track-
ing error ex and contact force F in Figs. 5.4a and 5.4b. The change curves of joint
angles and joint velocities with respect to time are shown in Fig. 5.4c, d, in which
the bounded-ness of joint angles and velocities are guaranteed. The observed inter-
action coefficients K̂d and K̂ p are shown in Fig. 5.4e, indicating that both K̂d and
K̂ p converge to their real values. Figure5.5a shows the distances between the key
points and the obstacle, it is obvious that all key points keep at a safe distance from
the obstacle (the closest key point is A2). Euclidean norm of b0 − J θ̇ is illustrated in
Fig. 5.5c, despite fluctuation occurs at about t = 1.5s, the proposed controller could
handle model uncertainties. The impedance model based reference trajectory and
the original desired trajectory are shown in Fig. 5.5d and Fig. 5.5e. Although xr and
xd are different, the tracking error ex along the direction of free motion and force
error eF converges to zero, as shown in Fig. 5.4a, b. The objective function ||θ̇ ||22 to
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Fig. 5.4 Control performance of the proposed controller while avoiding a wall obstacle with uncer-
tain Kp and Kd . a is the robot′s tracking path and the corresponding joint configurations. b is the
profile of position error along the free-motion direction. c is the profile of contact force. d is the
profile of joint angles. e is the profile of joint velocities. f is the profile of the closest distance to the
obstacle of each key points Ai , i = 1, . . . , 7

be optimized is given in Fig. 5.5f. The convergence of the established RNN is shown
in Fig. 5.5c, despite the uncertain parameters, using the adaptive updating law, the
established RNN is capable of learning the optimal solution. The spikes are mainly
because of the change of λ2 when obstacle avoidance scheme is activated.

5.4.5 Manipulation in Narrow Space

In this part, we discuss a more general case of motion-force control task, in which the
workspace is defined in a limited narrow space. The robot is limited by two parallel
lines, namely, y1 = 0.15 and y2 = −0.15 m. Considering the safety distance, all
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Fig. 5.5 Simulation results of the established RNN while avoiding a wall obstacle with uncertain
Kp and Kd . a is the profile of λ1. b is the profile of λ2. c is the profile of ||J θ̇ − b0||22. d is the profiles
of the desired and reference trajectory along x-axis. e is the profiles of the desired and reference
trajectory along y-axis. f is the profiles of the objective function of the proposed controller and
JPMI based method

key points except A8 must satisfy the workspace description −0.14 ≤ y ≤ 0.14m.
The initial joint angles are set to be θ0 = [0.393,−1.05, 1.57,−0.785]T rad, and
θ̇0 = [0, 0, 0, 0]T rad/s. The desired path is selected as xd = [0.8 + 0.1cos(0.5t),−
0.15]Tm, and the expected contact force is Fd = 20 N, with the direction vector
being [0,−1]T. Simulation results are given in Figs. 5.6 and 5.7. When simulation
begins, the initial position error is about 0.1 m, and the converges to zero, with the
transient being about 0.5 s. Simultaneously, the contact force also converges to 20 N.
In Fig. 5.7a, minimum distances between the key points to y1 and y2 are represented
by blue and red curves, respectively. The tracking trajectory and the corresponding
joint configurations are shown in Fig. 5.6a. During t = 1 − 1.5s and t = 6 − 13s,
point A2 gets close to y1, during t = 4 − 7s, A4 is close to y2. Remarkable that there
exist fluctuations in positional and force errors at t = 1s and t = 4s, (i.e., when A2

and A4 get close to the bounds), respectively. Similar to the previous simulations, the
reference trajectories are given in Fig. 5.5c, d, and the objective functions are shown
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Fig. 5.6 Control performance of the proposed controller in a narrow workspace. a is the robot′s
tracking path and the corresponding joint configurations. b is the profile of position error along the
free-motion direction. c) is the profile of contact force, d is the profile of joint angles. (e) is the
profile of joint velocities. (f) is the profile of the closest distance to the obstacle of each key points
Ai , i = 1, · · · , 7

in Fig. 5.5e. Using the proposed RNN controller, the robot can realize both position
and force control in limited narrow space.

5.4.6 Comparisons

In this part, comparisons among the proposed control scheme and existing methods
are given to show the superiority of the RNN based strategy. The comparisons are
shown inTable5.1. In [22], anRNNbased controller is designed for redundantmanip-
ulators, both obstacle avoidance and physical constraints are considered. However,
the controller only focus on kinematic control problem. In [40] and [16], force control
together with obstacle avoidance are taken into account, but the physical constraints
are ignored. [23] develop an adaptive admittance control strategy, which is capable
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Fig. 5.7 Simulation results of the established RNN in a narrow workspace. a is the profile of λ1,
b is the profile of λ2, c is the profiles of the desired and reference trajectory along x-axis. d is the
profiles of the desired and reference trajectory along y-axis. e is the profiles of the objective function
of the proposed controller and JPMI based method

Table 5.1 Comparisons among The Proposed Controller and Existing Methods

Method Provable
convergence

Optimize in
realtime

Physical
limitations

Force versus
kinematic
control

Collison
avoidance

This chapter Yes Yes Considered Force control Yes

Method in
[22]

Yes Yes Considered kinematic
control

Yes

Method in
[40]

Yes Yes Ignored Force control Yes

method in [23] Yes Yes Considered Force control No

method in [16] Yes No Ignored Force control Yes
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of dealing with force control under model uncertainties, physical constraints and
real-time optimization. It is remarkable that the proposed strategy focus on real-time
obstacle avoidance in force control tasks, and the controller is capable of ensuring
the boundedness of joint angles and velocities. At the same time, simulations have
shown the potential of optimization ability of norm of joint speed.

5.5 Summary

This chapter constructs a new collision free compliance controller based on the
concept ofQPprogramming andneural network.Different from the existingmethods,
this chapter describes the control problem from the perspective of optimization,
taking compliance control and conflict avoidance as equal or inequality constraints.
Physical constraints, such as joint angle and speed constraints, are also considered.
Before concluding this chapter, it is worth noting that it is the first RNN based
compliance control method, which considers collision avoidance in real time and
shows great potential in dealing with physical constraints. In this chapter, Matlab
is simulated to verify the efficiency of the controller. In the future, we will check
the control framework of different impedance models in the physical real simulation
environment, and then consider the machine vision technology and system delay on
the physical experiment platform.
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Chapter 6
RNN for Motion-Force Control of
Redundant Manipulators with Optimal
Joint Torque

Abstract Precise position force control is the core and difficulty of robot technology,
especially for robots with redundant degrees of freedom. For example, track-based
controls often fail to grind the robot due to the intolerable impact force applied
to the end-effector. The main difficulties lie in the coupling of motion and contact
forces, redundancy analysis and physical constraints. In this chapter, we propose a
new motion force control strategy under the framework of recursive neural network.
The tracking error and contact force are described respectively in the orthogonal
space. By choosing the minimum joint torque as the secondary task, the control
problem is transformed into the QP problem under multi-constraint conditions. In
order to obtain real-time optimization of the joint torque relative to the non-convex
joint angle, the original QP is reconstructed at the velocity level, and the original
objective function is replaced by the time derivative. Then a convergent dynamic
neural network is established to solve the improved QP problem online. The robot
position control based on recursive neural network is extended to the robot position
control based on position force, which opens a new way for the robot to turn from
simple control angle to crossover designwith convergence and optimality. Numerical
results show that the proposed method can realize precise position force control, deal
with inequality constraints such as joint angular velocity and torque limitation, and
reduce joint torque consumption by 16% on average.

6.1 Introduction

Redundant manipulators, which have more DOFs than those required to complete a
given task, are more flexible than non-redundant ones. The redundant DOFs enable
manipulators to realize the fault tolerant control, improve operation performance
and enhance reliability. Therefore, redundant manipulators have been widely used
in industry, agriculture, military, space exploration, etc. Consequently, the research
on the redundant manipulator has been studied intensively [1–4].

Motion control and force control are two main modes of redundant manipulator
control. In motion control problems, a basic assumption is that there is no contact
between the robot and the environment, that is, the robot can move freely in the
workspace [5]. This problem is well-reflected in coating, welding, stacking, stacking
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and other applications. Then the core problem is to design control commands that
drive the robot to follow a predetermined trajectory. The control command may be
joint angular sequence [6], velocity sequence [7], acceleration sequence [8, 9] or
torque sequences [10–12]. The redundancy resolution is usually used to achieve a
secondary task, such as avoiding obstacles [13], avoiding singularities [14], etc. Dif-
ferent from motion control, force control involves the direct interaction between a
robot and its environment. The control of contact force can enhance the robustness
and flexibility of the robot in the weak structure environment, so as to enhance the
robot′s operation ability [15]. Corresponding typical applications in polishing, grind-
ing, assembly, polishing, polishing and other fields [16, 17]. In [18], the theoretical
framework of impedance control is proposed. The basic idea is to use the environment
as admittance and the robot as impedance.By maintaining the dynamic relationship
between force and motion, the controller is represented as a spring-mass-damping
system. In [19], a hybrid position force controller is proposed which combines posi-
tion informationwith force information to realize the simultaneous control of position
constraint and force constraint. Based on these two control frameworks, a series of
controllers are proposed and verified by simulation or experiments [20–22].

Although the above work has achieved great success in motion force control
of non-redundant robots, the control of redundant robots has not attracted enough
attention. It is worth noting that the redundancy of the manipulator provides an
opportunity to meet secondary objectives, but also sets up mathematical difficulties.
In [23], in order to realize the flexible control of unknown obstacles, a position
force control strategy is proposed. The motion of the robot is completely decoupled
into two parts, namely the motion of the end-effector and the internal motion. The
motion of the end-effector is controlled to achieve positional force control over the
environment, while the internal motion is designed to avoid obstacles by minimizing
impact. In [24], a robust control strategy with the ability to adjust contact force and
apparent impedance is designed. The controller has strong robustness in dynamic
and kinematic uncertainties. In [25], Patel et al. proposed a hybrid impedance control
scheme based on pseudo inverse jacobian. The limitation of joint angle is avoided by
defining a function that scales the difference between joint angle and its boundary.
However, these literatures require continuous computation of the pseudo inverse of
the jacobian matrix, which brings huge computational burden and is difficult to deal
with multiple constraints [26].

In order to solve the redundant solution problem of redundant robots, a feasi-
ble method is to transform the control problem into an optimization problem under
constraints [27]. The objective function is established according to the secondary
task, and the constraint conditions are established according to the primary task and
physical constraints. This optimization problem is often described as a QP problem
[28]. Because of the high efficiency of parallel computing, recursive neural network
is often used to solve QP-based redundant solutions online [29]. In recent years, the
controller based on recursive neural network (RNN) has been introduced into the
motion control of redundant robots. A new redundancy decomposition method is
proposed, which constructs a robust neural network at the velocity level to guarantee
the boundary of joint acceleration [30]. In [31], RNN is improved to allow projection
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operations on non-convex sets, avoiding the accumulation of tracking errors to sys-
tem noise. In [32], a method is proposed to realize operational optimization through
indirect maximization of time derivative. In [33], cooperative control of distributed
multi-robot is studied. Recently, RNN has been extended to control flexible robots,
model uncertainties and other issues [34–37]. Although the motion control of redun-
dant robot based on RNN has obtained good research results, as far as we know, there
is no research report on the application of RNN in motion force control of robot.

On this basis, we propose a position force control scheme based on RNN, which
is an important extension of recursive neural network in robot control. Table6.1 pro-
vides a brief comparison between the proposed and existing programmes. Unlike
[25] and [23], in this chapter the motion force controller is established in the joint
velocity stage and allows for multiple inequality constraints. The non-convex opti-
mization problem is studied without loss of generality. With [31, 32, 34] the existing
similar motion controller, the proposed motion force controller is no longer needed
the pseudo inverse Jacobian.

This chapter mainly studies the following aspects. In the second part, the tracking
error and contact force are modeled, and the control problem is written as QP prob-
lem. In Chap. 3, QP is reformulated at the velocity level by rewriting the objective
function and constraints. In the fourth part, we set up an RNN to solve the redun-
dant resolution problem. Stability has also been demonstrated. In the fifth part, the
numerical experiments of 4-DOF planar manipulator are carried out. Finally, the
sixth part carries on the summary to the full text. By the end of this section, the main
contributions are as follows:

• As far as we know, this is the first research to study the motion force control of
redundant robots in the framework of RNNs. It is worth noting that force sensitive
manipulators, such as milling robots and polishing robots, cannot successfully
control the use of existing results in RNNs, while the RNN model built in this
work can do this.

• In the proposed control scheme, themotion-force control problem aswell as redun-
dancy resolution problem are reconstructed to facilitate practical implementations.

• The controller is capable of handling multiple inequality constraints, including but
not limited to angle constraints, angular velocity constraints and torque constraints.
This is of great significance in improving system security.

• The contribution of this chapter also lies in the realization of real-time optimization
of joint torque, which is helpful to save energy in industrial applications.

6.2 Problem Formulation

6.2.1 Problem Formulation

In this chapter, we focus on position-force control problem for redundant manipula-
tors. Figure6.1 gives a brief introduction of a redundant robot and its operation on an
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Table 6.1 Comparisons among the Proposed Motion-force Control Scheme and Existing Ones

Nonconvex Motion-force Control Pseudo-
inverse

Handling
Multiple

Control Command Required Inequality
Constraints

This chapter No Yes Joint Velocity No Yes

Methods [31,
32]

No No Joint Velocity No Yes

Method [25] † Yes Joint Torque Yes No

Method [23] † Yes Joint Torque Yes Restrictive‡

Methods [34] Yes No Joint Velocity No Yes

† In [25] and [23], no projection operations are introduced in those control strategies
‡ In [23], only some certain kinds of inequalities can be handled by [23]

Fig. 6.1 A brief diagram of
a planar redundant
manipulator and its operation
on a workpiece

workpiece. The robot is expected to offer a desired contact force in the vertical direc-
tion of the contact surface, at the same time, the end-effector is required to track a pre-
defined trajectory along the surface. In the base coordinate frame R0(00, x0, y0, z0),
forward kinematics of a serial manipulator can be written as

f (θ(t)) = x(t), (6.1)

where θ ∈ R
n is the vector of joint angles, and x ∈ R

m represents the end-effector′s
coordinate vector in frame R0, f (•) : Rn → R

m is used to describe the forward
kinematics operator. For a redundant manipulator, we have n > m.

By differentiating x(t) with respect to time t , we can get the relationship between
Cartesian velocity ẋ(t) ∈ R

m and joint velocity (or joint control signal) θ̇ (t) ∈ R
n

as follows:
J (θ(t))θ̇(t) = ẋ(t), (6.2)

where J (θ(t)) = ∂ f (θ(t))/∂θ(t) is called Jacobian matrix.
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In position-force control tasks, the end-effector′s motion is constrained by the
contact surface. For simplicity, we define a tool coordinate system as Rt (xt , yt , zt ),
in which the axis zt is set in alignment with the vertical direction of the contact
surface. Obviously, the motion of end-effector can be specified along xt and yt .
In this chapter, frictional force between the robot and contact surface is ignored,
therefore, the contact force F is in alignment with zt .

In the tool coordinate system Rt , let δXt be the displacement between effector
and its position command, then the contact force Ft can be formulated as

Ft = k f ΣtδXt , (6.3)

where k f > 0 is the stiffness coefficient, Σt = diag(0, 0, 1). Diagonal matrix Σt

describes the relationship between the contact force and relative displacement along
different axes: 1 means that displacement component along zt affects the contact
force, and 0 otherwise.

Similarly, in tool coordinate system Rt , the position tracking error et can bewritten
as

et = Σ̄tδXt , (6.4)

where Σ̄t = I − Σ f = diag(1, 1, 0), 1 means there is a DOF of movement along
the corresponding direction, and 0 otherwise.

When the contact surface is prior known, Rt can be obtained from R0 by a rotation
matrix St . Let F , e0 and δX be the corresponding description of Ft , et and δXt in
coordinate frame R0, thenwe have F = STt Ft , et = Ste0 and δXt = StδX . Therefore,
F and e0 can be rewritten as {

F = k f S
T
t Σt StδX,

e0 = STf Σ̄t S f δX.
(6.5)

Notable that in frame R0, the displacement δX can be described as δX = x − xd,
where xd is the desired position signals described in R0. Using (6.1), (6.5) can be
rewritten as {

F = k f S
T
t Σ f St ( f (θ) − xd),

e0 = STt Σ̄ f St ( f (θ) − xd).
(6.6)

Remark 6.1 Equation (6.6) gives the unified description of the relationship between
the contact force F , position tracking error e0 and displacement δX in R0. δX will
lead to contact force F in the vertical direction, and position tracking error e0 along
the contact surface.

In real implementations, given the desired contact force Fs and trajectory com-
mand xd, the manipulator′s end-effector is expected to offer contact force Fd while
tracking xd, i.e., F → Fd, e0 → 0. For the convenience of writing in the following
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sections, let A = [k f STt Σt St ; STt Σ̄ f St ], r = [FT, eT0 ]T, and rd = [Fd; 0]. Then (6.6)
can be reformulated as

A( f (θ) − xd) = r. (6.7)

Therefore, the control objective of position-force control is to adjust the joint
angles θ , to ensure r → rd.

6.2.2 Joint Torque and Physical Constraints

When the end-effector offers a contact force F , the corresponding torque is provided
by motors at every joint. The relationship between contact force F and the joint
torque τ can be formulated as

τ = JT(θ)F. (6.8)

In the control of redundant manipulators, there would be infinite groups of solu-
tions to a certain control task. In order to save energy during the control process,
we select a objective function scaling energy consumption as τTτ/2. The smaller
τTτ/2, the less energy consumption.

In real implementations, the system is limited by physical constraints. For exam-
ple, the joint angles θ and velocities θ̇ must not exceed their limits: θmin,θmax, θ̇min,
θ̇max, since the possible collisions or overheating of motor would lead to irreversible
damages. At the same time, considering the bounded torque output of the motors,
the limitation of joint torque τ is described as τmin ≤ τ ≤ τmax.

6.2.3 Optimization Problem Formulation

According to the descriptions above, the position-force control problem for redundant
manipulators considering torque optimization can be formulated as

min G1 = τTτ/2, (6.9a)

s.t. τ = JTF, (6.9b)

rd = A( f (θ) − xd), (6.9c)

θmin ≤ θ ≤ θmax, (6.9d)

θ̇min ≤ θ̇ ≤ θ̇max, (6.9e)

τmin ≤ τ ≤ τmax, (6.9f)

with θ being the decision variable. Equation (6.9a) is the cost function to be mini-
mized, the equality constraint (6.9b) describes the relationship between the resulting
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joint torque τ and contact force F . The force and motion tasks of the robot are
described in (6.9c), and inequality constraints (6.9e), (6.9d) and (6.9f) show the
physical limitations to be satisfied. By substituting (6.9b) into (6.9a), the optimiza-
tion problem can be rewritten as

min G1 = FT J (θ)JT(θ)F/2, (6.10a)

s.t. rd = A( f (θ) − xd), (6.10b)

θmin ≤ θ ≤ θmax, (6.10c)

θ̇min ≤ θ̇ ≤ θ̇max, (6.10d)

τmin ≤ τ ≤ τmax. (6.10e)

To solve (6.10), there are two main challenges. Firstly, as an objective function to
be minimized, FT J (θ)JT(θ)F/2 is usually non-convex relative to θ , because it is a
function of J (θ). Secondly, the equation constrain (6.10b) is highly nonlinear, and
at the same time, it remains difficult to handle the inequality constraints, especially
(6.10d) and (6.10e).

6.3 Reconstruction of Optimization Problem

In this section, in order to overcome the above difficulties, the redundancy resolution
problem (6.10) will be reconstructed. The objective function is firstly redefined, and
both equality and inequality constrains are rebuilt in velocity level.

6.3.1 Reconstruction of Objective Function

As to FT J (θ)JT(θ)F/2, we will replace F with the desired value Fd. Therefore, the
optimization function can be formulated as G2 = FT

d J (θ)JT(θ)Fd/2.

Remark 6.2 There are two main reasons: firstly, according to the control objective,
the contact force F is expected to track Fd, if the controller is proper designed, F
will eventually converge to Fd, consequently, FT

d J (θ)JT(θ)Fd/2 will be equivalent
to FT J (θ)JT(θ)F/2. Secondly, Fd is independent of θ , this replacement will reduce
the computational complexity in the control process.

Differentiating G2 with respect to time, we have

Ġ2 = (JT(θ)Fd)
T d(J

T(θ)Fd)

dt
. (6.11)

Obviously, Ġ2 describes the change of G2. By minimizing Ġ2, the system will be
compelled to develop in the direction of decreasing G2. Therefore, in this chapter,
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we use Ġ2 instead of G2 as the new objective function. Notable that d(JT(θ)Fd)/dt
can be formulated as

d

dt
(JT(θ)Fd) =

n∑
i=1

∂(JT(θ)Fd)

∂θi
θ̇i + JT(θ)Ḟd

= [Hi , · · · , Hn]θ̇ + JT(θ)Ḟd,

(6.12)

where Hi ∈ R
n is

Hi = ∂(JT(θ)Fd)

∂θi
=

⎡
⎢⎢⎣

∑m
j=1(∂(J ( j, 1)Fd( j))/∂θi )∑m
j=1(∂(J ( j, 2)Fd( j))/∂θi )

· · ·∑m
j=1(∂(J ( j, n)Fd( j))/∂θi )

⎤
⎥⎥⎦ .

Let H = [H1, · · · , Hn], then (6.11) can be converted as

Ġ2 = FT
d J H θ̇ + FT

d J J
T Ḟd. (6.13)

It is worth pointing that the second term of (6.13) is independent of θ̇ , therefore, the
objective function is equivalent to FT

d J H θ̇ .

6.3.2 Reconstruction of Constraints

In this part, we will transform the constrains into velocity level. First of all, we
define a concatenated vector describing force and position errors as e = r − rd =
[F − Fd; e0], according to (6.7), e can be formulated as

e = A( f (θ) − xd) − rd. (6.14)

Differentiating e and combing (6.2) yields

ė = A(J θ̇ − ẋd) − ṙd. (6.15)

To ensure that e converges to zero, a simple controller can be designed as ė = −ke,
where k > 0 is a positive constant. According to (6.14), (6.15), the equality constrains
can be converted in velocity level as

AJ θ̇ = ṙd + Aẋd − k(A f (θ) − xd). (6.16)

As to the inequality constraints (6.10c) and (6.10d), according to [27], let ω = θ̇

and define α ≥ 0 as a constant parameter to scale the negative feedback to conform
the joint constraints, these two constraints can be formulated in the speed level as
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ωmin ≤ ω ≤ ωmax, (6.17)

where ωmin = max{α(θmin − θ), θ̇min}, and ωmax = min{α(θmax − θ), θ̇max}.
Similarly, (6.10e) can be built indirectly by limiting its derivative: β(τmin − τ) ≤

τ̇ ≤ β(τmax − τ),whereβ is a positive constant.By combing (6.12), the boundedness
of joint torque can be rewritten as an inequality constraint about a function g(ω) as

g(ω) ≤ 0, (6.18)

where g(ω) = [β(τmin − τ) − JT Ḟd − Hω, Hω − β(τmax − τ)JT + Ḟd]T ∈ R
2n .

6.3.3 Reformulation and Convexification

According to the above description, in order to achieve position-force control of
redundant manipulators, instead of solving (6.10) directly, one feasible solution is to
solve the optimization problem in velocity level as

min FT
d J Hω, (6.19a)

s.t. rr = AJω, (6.19b)

g(ω) ≤ 0, (6.19c)

ω ∈ Ω, (6.19d)

where rr = ṙd + Aẋd − k(A f (θ) − xd), Ω = {ω ∈ R
n|ωmin

i ≤ ωi ≤ ωmax
i } is a con-

vex set. It is remarkable that the objective function described in (6.19a) is non-convex
relative to ω. Therefore, (6.19b) is introduced to convexity (6.19a). The final form
of optimization problem is described as

min FT
d J Hω + (AJω − rr )

T(AJω − rr ), (6.20a)

s.t. rr = AJω, (6.20b)

g(ω) ≤ 0, (6.20c)

ω ∈ Ω. (6.20d)

So far,we have reconstructed the position-force controlwith joint torque optimization
problem into a quadratic programming issue under constraints. However, the QP
problem (6.20) cannot be solved directly.
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6.4 RNN Based Redundancy Resolution

In this chapter, in order to solve the optimization problem (6.20), an expanded recur-
rent neural network is built to obtain the optimal solution of (6.20). Stability will be
also discussed.

6.4.1 RNN Design

Firstly, letλ1 ∈ R
2m andλ2 ∈ R

2n be dual variables to constraints (6.20b) and (6.20c),
a Lagrange function is defined as

L =FT
d J Hω + (AJω − rr )

T(AJω − rr )

+ λT
1 (rr − AJω) + λT

2g(ω). (6.21)

According to Karush−Kuhn−Tucker condition, the optimal solution of the opti-
mization problem (6.20) can be equivalently formulated as

ω = PΩ(ω − ∂L

∂ω
), (6.22a)

rr = AJω, (6.22b)

λ2 = (λ2 + g(ω))+, (6.22c)

where PΩ(x) = argminy∈Ω ||y − x || is a projection operation to convex set Ω , and
(x)+ = (x+

1 , · · · , x+
2n)

T, x+
i = max(xi , 0).

In order to solve (6.22), an expanded recurrent neural network is designed as

εω̇ = − ω + PΩ(ω − HT JTFd − JTAT(AJω − rr )

+ JTATλ1 − ∇gλ2), (6.23a)

ελ̇1 =rr − AJω, (6.23b)

ελ̇2 =(λ2 − (λ2 + g(ω))+), (6.23c)

where∇g = (
∂g1
∂ω

, · · · ,
∂g2m
∂ω

) = [−HT, HT] ∈ R
n×2n , ε is a positive constant scal-

ing the convergence of (6.23). The pseudo code of the RNN-based strategy is shown
in Algorithm 5.
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Algorithm 5 The RNN based position-force controller
Input: Control parameters ε, k, α, stiffness coefficient k f , prior knowledge of the contact surface
St ,Σt and Σ̄t . The robot′ joint limits θmax

i , θmin
i and joint speed limits θ̇max

i , θ̇min
i , initial joint angles

θ̇ (0), desired tracking trajectory rd(t), ṙd(t), and contact force Fd. Feedback of actual coordinate
x(t), contact force F(t), and joint angle θ , task duration T .
Output: To achieve position-force control of the redundant manipulator and optimize joint torque
1: Initialize λ1(0), λ2(0)
2: Repeat
3: On-line feedback of F , θ , x ← from sensors
4: Calculate the weight matrix A
5: Calculate the reference command rr ← Eq. (6.19)
6: Update joint velocity command ω by ω̇ ← Eq. (6.23a)
7: Update state variable λ1 by λ̇1 ← Eq. (6.23b)
8: Update state variable λ2 by λ̇2 ← Eq. (6.23c)
Until (t > T )

6.4.2 Stability Analysis

In this part, theoretical analysis of stability and convergence of closed-loop system
using the proposed neural network (6.23).

First of all, several important definitions and Lammas are presented, which is very
useful in stability analysis.

Definition 6.1 A continuously differentiable function F(•) is said to be monotone
if ∇F + ∇FT is positive semi-definite, where ∇F is the gradient of F(•).

Lemma 6.1 [38] A dynamic neural network is said to converge to the equilibrium
point if it satisfies

κ ẋ = −ẋ + PS(x − �F(x)), (6.24)

where κ > 0 and � > 0 are constant parameters, and PS = argminy∈S||y − x || is a
projection operator to closed set S.

So far, a theorem about the convergence of the redundancy resolution problem
can be described as follows

Theorem 6.1 Given the motion-force control problem for redundant manipulators
with torque optimization under physical constraints as (6.20), the recurrent neural
network (6.23) is stable and will globally converge to the optimal solution of (6.20).

Proof Let ξ = [ωT, λT
1 , λ

T
2 ]T, the proposed RNN (6.23) can be written as

εξ̇ = −ξ + PΩ̄ [ξ − F(ξ)], (6.25)
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where F(ξ) = [F1(ξ), F2(ξ), F3(ξ)]T ∈ R
2m+3n , in which

⎡
⎣F1

F2

F3

⎤
⎦ =

⎡
⎣HT JTFd + JTAT(AJω − rr ) − JTATλ1 + ∇gλ2

λ1 − rr + AJω

−g(ω)

⎤
⎦ .

Let ∇F(ξ) = ∂F/∂ξ , we have

∇F(ξ) =
⎡
⎣JTATAJ −JTAT ∇g

AJ I 0
−(∇g)T 0 0

⎤
⎦ . (6.26)

It is remarkable that

∇F(ξ) + (∇F(ξ))T =
⎡
⎣2JTATAJ 0 0

0 2I 0
0 0 0

⎤
⎦ . (6.27)

From Definition 6.1, F(ξ) is a monotone function of ξ .
According to the description of (6.23) and (6.25), PΩ̄ can be formulated as PΩ̄ =

[PΩ; PR; P�], where PR ∈ R
2m is a projection operator of λ1 to set R, with the

upper and lower bounds being ±∞. Furthermore, (•)+ is a special case of P�, in
which � = R

2n+ is the nonnegative quadrant of R2n . Therefore, PΩ̄ is a projection
operator to closed set Ω̄ . Based on Lemma 6.1, the proposed neural network (6.23)
is stable and will globally converge to the optimal solution of (6.20). The proof is
completed. �

6.5 Illustrative Examples

In this chapter, taking the planar 4-DOF manipulator as an example, numerical cal-
culation is carried out to verify the effectiveness of the proposed control scheme.
First, we will check the control performance without joint torque optimization by
making HT JTFd in (6.23a) be 0. Secondly, a dynamic simulation example of joint
torque optimization is introduced to illustrate the superiority of the control strategy.
Finally, the adaptability and optimization performance of this method are verified by
simulation experiments under different initial conditions.

6.5.1 Simulation Setup

As shown in Fig. 6.2, a contact surface in the workspace can be described as y = 0,
the end-effector can move freely along the horizontal axis, and the desired con-
tact force Fd is aligned with the vertical direction. The stiffness coefficient k f is
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Fig. 6.2 Physical structure
of the 4-link robot
manipulator

set to be 1000N/mm. Control positive control gains are set as α = 10, β = 10,
k = 8, ε = 0.005, respectively. Physical constraints of joint angles, velocities and
torque are defined as θmin = [−2,−2,−2,−2]T rad, θmax = [2, 2, 2, 2]T rad, θ̇min =
[−2,−2,−2,−2]T rad/s, θ̇max = [2, 2, 2, 2]T rad/s, τmin = [−10,−10,−10,−10]T
Nm, τmax = [10, 10, 10, 10]T Nm, respectively.

6.5.2 Position-Force Control Without Optimization

In this part, the robot is controlled to offer a constant contact force on the surfacewhile
tracking a given trajectory. It is remarkable that joint torque optimization is not inves-
tigatedyet. The initial joint angles are selected as θ0 = [1.57,−1.26,−0.52,−0.52]T
rad. The desired trajectory is defined as xd = [0.25 + 0.1cos(0.5t), 0]T, and the con-
tact force is defined as Fd = [0,−1]T N. Numerical results are shown in Fig. 6.3.
When simulation begins (t < 0.5s), the position error is big, and there is no contact
between the robot and surface. Correspondingly, both contact force and result torque
are zero. Under the RNN based controller (6.23), joint velocities reach the maximum
value, the end-effector approaches to the surface rapidly from the initial position, and
the tracking error converges to zero quickly, the corresponding joint configurations
are shown in Fig. 6.3a. As the robot approaches the contact surface, the robot slows
down quickly, and the contact force rises from zero, the then converges to the desired
value smoothly. In the stable state (t > 2 s), both contact force F and end-effector
track the desired command, the tracking errors are zero, whichmeans the robot tracks
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Fig. 6.3 Numerical results when tracking a time varying force command along a trajectory without
optimization. a Profiles of the end-effector (black dashed line) and the corresponding joint config-
urations. b Profiles of position error. c Profiles of contact force. d Profiles of joint angles. e Profiles
of joint velocities. f Profiles of joint torque

both desired trajectory and force successfully. Correspondingly, joint angles change
periodically, which enables the robot to achieve dynamic tracking. This will also lead
to a periodic change in result torque in joint space, as shown in Fig. 6.3f. During the
whole process, boundary of joint angles, velocities and torque are all ensured.
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6.5.3 Position-Force Control with Optimization

In this part, joint torque optimization is introduced to make full use of redundancy
resolution. The proposed position-force control scheme is firstly validated in a fixed
point case, and then extended to dynamic cases.

(1) Position-Force Control on A Fixed Point
In this simulation, the robot iswished to offer a constant contact force Fd = [0,−10]T
at a fixed point xd = [0.3, 0]T. The initial values of joint angles are also θ0 =
[1.57,−1.26,−0.52,−0.52]Trad. Numerical results are shown in Fig. 6.4. At the
beginning of simulation, the robot moves at its maximum speed (2 rad/s), making
the regulation error converge quickly. Then it slows down as the regulation error
is small. At t = 0.5 s, robot touches the surface, which leads to the emergence of
contact force. Using the proposed controller, both control error of motion and force
converge to zero smoothly. Correspondingly, the Euclidean norm of joint torque
also converges to a constant value (3.7 N2/m2). From Fig. 6.4e, f, joint angles and
velocities do not exceed their limits, showing that the proposed scheme could handle
inequality constraints effectively. To further demonstrate the validity of the optimiza-
tion scheme, comparative simulations without optimization are also carried out. The
obtained Euclidean norm of joint torque without optimization is shown as the red
dashed line (4.3 N 2/m2 in stable state). After introducing joint torque optimization
strategy, 16% off of torque consumption is achieved.

(2) Position-Force Control Along A Straight Line
Then we check the optimization scheme in dynamic control. Both the desired
path xd and desired force Fd are time varying. The expected signals are defined
as xd = [0.25 + 0.1cos(0.5t), 0]T, Fd = [0, 20 − 2cos(0.5t)]T N, respectively. The
initial values of joint angles are the same as the previous case. Numerical results
are shown in Fig. 6.5. We also define a index to scale the torque consumption as
Jτ = ∫ T

0 ||τ(t)||22dt .
When simulation begins, high joint speed ensures the fast convergence of tracking

error, which is very similar to the previous simulation. After t = 2s, high precision
trajectory tracking is realized by the control strategy, as well as the contact force.
Comparative simulation without joint torque optimization is carried out. Figure6.5d
shows the comparison of Euclidean norms of joint torque with and without optimiza-
tion. Correspondingly, Jτ decreases 16.2% from 142 to 119, showing the validity
of the proposed scheme. It is notable that all physical constraints are guaranteed.
Dynamic change of joint configurations is shown in Fig. 6.5a.

(3) Position-Force Control Along An Arc Surface
In this part, the end-effector is controlled to track a quarter-circular surface, which
is centered at [0.3, 0.3]Tm with radius 0.2 m, and is provided a constant force of
10N in the vertical direction. The initial values of joint angles are selected as θ0 =
[1.5708,−0.9851,−1.1714, 0]Trad. Numerical results are shown in Fig. 6.6. The
trajectory of end-effector is shown in Fig. 6.6a, while in Fig. 6.6b, optimization is not
introduced. The proposed controller enables the robot to achieve precision control
of both position and force, and at the same time, by adjusting its joint angles, the
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Fig. 6.4 Numerical results when the robot is controlled to offer constant force at a fixed point. a
Profiles of the end-effector (black dashed line) and the corresponding joint configurations. b Profiles
of position error. c Profiles of contact force. d Comparison of Euclidean norm of joint torque with
and without optimization. e Profiles of joint angles. f Profiles of joint velocities

joint torque consumption is reduced, i.e., Jτ decreases 17.6% from 88.1 to 72.6. It
is remarkable that the physical constraints are also guaranteed.

(4) Adaptability to Different Initial Settings
To further illustrate the joint optimization scheme, another fixed-point control is
presented. Desired signals are set as xd = [0.3, 0]T and Fd = [0,−10]T. The initial
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Fig. 6.5 Numerical results when tracking a time varying force command along a straight line with
optimization. a Profiles of the end-effector (black curve) and the corresponding joint configurations.
b Profiles of position error. c Profiles of contact force. d Comparison of Euclidean norm of joint
torque with and without optimization. e Profiles of joint anges. f Profiles of joint velocities

values of joint angles is selected as θ0 = [1.8850,−1.8850,−1.2566, 0]T rad, con-
sequently, the corresponding position of the end-effector is exactly the same as xd. As
shown in Fig. 6.7a, the robot adjusts its posture and stops in final state, while keep-
ing its end-effector on the fixed point. This phenomenon is similar to the null-space
movement based onpseudo-inversemethods.However, differentwith pseudo-inverse



122 6 RNN for Motion-Force Control of Redundant Manipulators …

y(
m
)

x(m)

0.5

0.3

0.1

-0.1
-0.2 0 0.2 0.4 0.6 0.8

(a)

y(
m
)

x(m)

0.5

0.3

0.1

-0.1
-0.2 0 0.2 0.4 0.6 0.8

(b)

t(s)

C
on

ta
ct

fo
rc
e

N

0
0

2

4

6

8

12

5

10

10 15 20

(c)
t(s)

ex
ey

m

Tr
ac
ki
ng

er
ro
r

0.3

0.1

-0.1

0

0

0.2

0.4

5 10 15 20

(d)

with optimization
without optimization

t(s)

N2/m2

N
or
m

of
jo
in
tt
or
qu

e

0
0

2

4

6

5 10 15 20

(e)
t(s)

q1

q2

q3

q4

Jo
in
ta

ng
le
s

rad

0

0

1

2

5 10 15 20

-1

-2

-3

(f)

Fig. 6.6 Numerical results when tracking a time varying force command along an arc surface with
optimization. a Time history of the end-effector (black curve) and the corresponding joint config-
urations with optimization. b Time history of the end-effector (black curve) and the corresponding
joint configurations without optimization. c Profiles of contact force. d Profiles of position error.
e Comparison of Euclidean norm of joint torque with and without optimization. f Profiles of joint
angles

based method, the RNN based motion-force controller is capable of handling phys-
ical inequalities, at the same time, joint torque optimization is achieved from 4.3 to
3.7. Further more, there in no need to calculate pseudo-inverse of Jacobian matrix,
which will save computing cost effectively.
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Fig. 6.7 Numerical results when the initial position of end-effector locates on the desired fixed
point. a Profiles of joint configurations. b Profiles of Euclidean norm of joint torque with and
without optimization. c Profiles of joint angles. d Profiles of joint velocities

Finally, a group of verifications for fixed point position-force controlwith different
initial joint angles are carried out, the desired signals are the same as the previous
simulation. As shown in Fig. 6.8, although the initial joint angles are different, at
steady state, the robot reaches the same joint angle, which shows the adaptability of
the RNN based control strategy.

6.6 Question and Answer

Q1: “What’s the complexity of the proposed RNN?”
Answer: The network is organized in a one-layer architecture, which consists of

2m + 3n neurons, namely ω ∈ R
n , λ1 ∈ R

2m and λ2 ∈ R
2n . Despite the difference

between the proposedneural networkwith traditional recurrent neural networks, from
both the mathematical description Eq. (23) and the architecture, one characteristic of
the established neural network can be found that the neural network uses its historical
information to calculate the output at current moment, which is also a typical feature
of recurrent neural networks.
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Fig. 6.8 Time history of robot′s joint configurations in fixed point control from different initial
joint angle θ0. a θ0 = [0.9,−0.75,−1.5,−1.6]T rad. b θ0 = [1.8,−0.3,−1.6, 0.6]T rad. c θ0 =
[1.9,−1.5,−1.6,−0.6]T rad. d θ0 = [0.5,−0.5,−1.6,−0.6]T rad. e θ0 = [0.7,−0.3,−2, 0.2]T
rad. f θ0 = [0.3,−1.5,−1.6,−0.6]T rad

Q2: “As described in Section II, the matrices Σ f and Σ̄ f are crucial in the
controller design, however, the authors didnt show the details. How to obtain those
matrices in actual applications requires detailed description.”

Answer: Σ f and Σ̄ f are used to realize the decoupling of the contact force and
tracking error of the end-effector.When the contact surface is known, the combination
of Σ f , Σ̄ f and St enables the normalized description of the control tasks.

Q3: “Limited stiffness of the manipulator elements can lead to state variables
oscillations. Have you observed such work of the object?”

Answer: The limited stiffness of the manipulator elements can lead to state vari-
ables oscillations. In this chapter, the QP type formulation is obtained based on static
modeling method, and inertial force is not taken into account. The condition of the
modelingmethod is that the process is quasi-static. In otherwords, the relativemotion
of the end-effector and the workpiece is very slow. In the experiment tests, we also
found that some oscillation would occur if some parameters are appropriately tuned.
In this case, a damping coefficient can be introduced to handle the oscillations.

Q4: “In real manipulator significant issue is related to control of electric drives.
In mentioned structures, internal control loop, related to torque control, introduces
some delays for external speed controllers. Have you considered such problem?”

Answer: In this chapter, we mainly focus on projection RNN based controller
design in kinematic level, and the control command is selected as joint velocity
signals. Therefore, we assume that the robot controller can provide an ideal response
to the joint velocity command. Although the delay is unavoidable for real systems,
when the control frequency is set as 100 Hz, experimental results could show the
effectiveness of the proposed controller. From Eq. (23), it can be observed that the
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force control is realized by adjusting the joint velocities base on the RNN, which is
consistent with the idea of admittance control. In our experiment, the velocity control
in the inner loop is done by the robot controller, and we assume that it provide an
ideal response to the joint velocity command. It is remarkable that the uncertainties
in the dynamic level such as friction and disturbances do affect the performance of
position-force control in the outer loop, but these uncertainties can be suppressed by
the closed-loop control mechanism of the controller itself.

Q5: “Could you explain real impact of projection operator PR on work of the
control system?”

Answer: The projection operator PΩ plays an important role in guaranteeing the
bounded-ness of the output of neural network i.e., the boundedness of ω can be
ensured introducing PΩ . As described in Eq. (17), based on escape velocity method,
both the boundedness of joint angles and velocities are guaranteed.

Q6: “RNN uses delays during data processing, so the calculation step size seems
to be important for overall work. Have you considered such issue?”

Answer:We did consider this problem. The faster the RNN calculates, the better
performance can be achieved. But at the same time, it would also lead to a increase
of computational burden, which may make the system unstable. In our experiment,
the control period is set to be 10 ms.

6.7 Summary

This chapter focuses on motion-force control problem for redundant manipulators,
while physical constraints and torque optimization are taken into consideration.
Firstly, tracking error and contact force are modeled in orthogonal spaces respec-
tively, and then the control problem is turned into a QP problem, which is further
rewritten in velocity level by rewriting objective function and constraints. To han-
dle multiple physical constraints, an RNN based scheme is designed to solve the
redundancy resolution online. Numerical experiment results show the validity of the
proposed control scheme. Before ending this chapter, it is noteworthy that this is
the first chapter to deal with motion-force control of redundant manipulators in the
framework of RNNs and redundant manipulators with force sensitivity, e.g., grind-
ing robots, can be readily controlled with the proposed RNN model but cannot with
existing RNN models in this field.
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