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Abstract

Previous works of traditional zeroing neural networks (or termed Zhang neu-
ral networks, ZNN) show great success for solving specific time-variant prob-
lems of known systems in an ideal environment. However, it is still a challeng-
ing issue for the ZNN to effectively solve time-variant problems for uncertain
systems without the prior knowledge. Simultaneously, the involvement of
external disturbances in the neural network model makes it even hard for
time-variant problem solving due to the intensively computational burden
and low accuracy. In this paper, a unified neural approach of simultaneous
identification, tracking control and disturbance rejection in the framework of
the ZNN is proposed to address the time-variant tracking control of uncertain
nonlinear dynamics systems (UNDS). The neural network model derived by
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the proposed approach captures hidden relations between inputs and out-
puts of the UNDS. The proposed model shows outstanding tracking perfor-
mance even under the influences of uncertainties and disturbances. Then, the
continuous-time model is discretized via Euler forward formula (EFF). The
corresponding discrete algorithm and block diagram are also presented for
the convenience of implementation. Theoretical analyses on the convergence
property and discretization accuracy are presented to verify the performance
of the neural network model. Finally, numerical studies, robot applications,
performance comparisons and tests demonstrate the effectiveness and ad-
vantages of the proposed neural network model for the time-variant tracking
control of UNDS.

Keywords: Zhang neural netowrks (ZNN), Time-variant tracking control,
Time-variant problems, Robustness, Identification
2010 MSC: 62G35, 92B20, 93B51

1. Introduction

Many practical systems in real world are nonlinear dynamics systems
(NDS) [1], such as servo motor systems [2], autonomous underwater vehicles
systems [3], and robot manipulator systems [4, 5]. It is well known that
finding an effective solution to the NDS is a challenging issue due to their
high nonlinearity and complicated dynamics nature [6]. Therefore, the in-
vestigation of NDS, including the time-variant problem solving of NDS, has
been a hot scientific topic in recent years for the wide applications [7, 8]. For
examples, Fu et al. [9] developed a new optimal control approach with an
observer-critic structure for the nonlinear-singularly-perturbed system with
unknown dynamics as well as input constraints. In [10], the authors ob-
tained a general result that there exist global finite-time observers for an
uniformly observable as well as globally Lipschitzian single output nonlinear
system. Na et al. [11] introduced an effective adaptive control framework
for the nonaffine pure feedback nonlinear systems with unknown dynamics.
Such an alternative adaptive control framework in [11] avoided the use of the
back-stepping control for pure feedback systems to address the explosion of
complexity. Hu et al. [12] introduced a novel adaptive visual servo tracking
control method to complete the asymptotic tracking of the design trajectory.
Li et al. [13] developed a new model predictive control strategy combining the
neural dynamic optimization for tracking control of mobile robots, which is a
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typical kind of nonlinear affine system. In [14], a novel real-time adaptive ap-
proximate approach was investigated to handle the optimal tracking control
of an uncertain nonlinear dynamics system (UNDS). Chen et al. [15] pro-
posed a new control strategy on the basis of uncertainties-and-disturbances
estimator. The control strategy mitigates the effect of hysteresis nonlinearity
and also improves the performance of the tracking control.

Recent studies in [16, 17] show that recurrent neural networks (RNN) pro-
vide alternative solutions to the UNDS [18]. Hopfield and Tank [19] firstly
proposed a new RNN for handling the quadratic optimization in 1985. This
is an early work of the RNN. The corresponding RNN was also implemented
on analog circuits in [20]. After that, numerous RNN have been introduced
and investigated for handling various time-variant problems since such a sem-
inal work [21, 22]. For examples, Xia et al. [23] proposed an RNN to handle
the quadratic programming as well as the linear-piecewise equations. Shen
[24] investigated the asymptotic stability issue for delayed RNN considering
time-variant delays. Liu and Wang [25] developed an effective RNN possess-
ing only one layer with the discontinuous activation function for the linear
program. Zhang et al. [26] presented an RNN for handling Sylvester equa-
tion possessing the time-variant coefficient matrix. In addition, a novel RNN
was developed for time-variant redundancy-resolution of redundant robot
arms with joint angle constraints and velocity constraints in [27]. Being de-
rived from the RNN, Zhang neural networks (ZNN) raised by Zhang et al.
[28] possess the ability to handle problems with multiple-state dimensions.
Those RNNs are able to zero out each element of the designed error function
in terms of neural network models [28]. By exploiting a vector-valued or
matrix-valued error function together with the time derivative coefficients of
the involved systems, the related ZNN ensure the exponential convergence
property to the solution [29, 30]. The ZNN design method has been deemed
as an effective and systematic scheme for dealing with different time-variant
problems [31, 32] (including time-variant tracking control problems) [33, 34].
For examples, Cai and Zhang [35] addressed the inverse kinematic issue of
redundant robot arms by using the gradient neural network (GNN) as well
as ZNN. In addition, Zhang et al. [36] proposed an effective discrete time
ZNN model to handle time-variant quadratic minimization. For accelerating
ZNN models to finite time convergence, Xiao [37] proposed an effective design
formula. This new formula makes a breakthrough in the research of conver-
gence performance of the ZNN. For the discretization and application of the
ZNN, Guo et al. [38] newly introduced a discrete time ZNN (DTZNN) to
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handle time-variant matrix inversion with application to the motion tracking
of robot arms.

Despite the great success of traditional ZNN in time-variant problem
solving, finding an effective solution to the UNDS is still a challenging is-
sue. Because of the involvements of system uncertainties and external dis-
turbances may heavily destroy the convergence performance, and also lead
to heavy computational overhead [39]. Therefore, very few breakthroughs
have been made on the robustness research on the ZNN concerting both the
system uncertainties and external disturbances at the same time. It is also
worth pointing out here that the model designed in a unified neural approach
possesses the advantages compared with those via quadratic program based
approaches as the following facts. Firstly, a neural network model has an
explicit analytical solution. In contrast, the quadratic program based ap-
proaches may possess only the optimal solution, which should be found by
an optimization solver [40]. Secondly, it is readily and directly to analyze the
convergence performance of a neural network model since it has the explicit
analytical solution. On the contrary, the theoretical analyses of the quadratic
program based approaches are more complicated, which require the theoreti-
cal basis such as the duality theory and Karush-Kuhn-Tucker condition [41].
Last but not least, the optimization solution of the quadratic program based
approaches may possess the high order nonlinearity [42]. This would make
the tracking performance of the involved systems unstable in complex ap-
plications while a neural network model with an explicit analytical solution
would possess more stable tracking performance.

The exploration of input-output response of the UNDS, early attempt was
made by using identification approaches [43, 44]. Motivated by the inspiring
works [43, 44], in this paper, a unified neural approach of simultaneous iden-
tification, tracking control and disturbance rejection in the framework of the
ZNN is developed for designing neural network model to address the time-
variant tracking control of UNDS. Note that the proposed neural network
model is a typical kind of Hopfield neural network [26], which does not need
offline learning in advance. In addition, the model designed in a unified neu-
ral approach can be readily implemented on circuits such as very large-scale
integration [20]. With the superiorities of parallel processing distributed fea-
ture, high performances in large-scale real-time applications, as well as the
convenience of hardware implementations, the dynamic model designed in a
unified neural approach with the form of RNN has been focused intensively
for time-variant linear or nonlinear dynamic systems handling [1, 45]. Such
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a unified neural approach is now regarded as a powerful alternative for real-
time computation as well as optimization. As for this specific work, to make
progresses along the direction of neural network models for system control
in complex applications, a novel neural network model is developed. Such
a neural network model derived by the proposed approach captures hidden
relations between inputs and outputs of the UNDS, and shows outstanding
tracking performance even under the influence of system uncertainties and
external disturbances, simultaneously. To the best of the authors’ knowledge,
the proposed neural network model designed by the novel approach that can
elegantly and simultaneously handle the system uncertainties and external
disturbances for the UNDS has not been reported and investigated in the
existing literature.

The rest of the paper is structured as below. Section 2 presents prelimi-
naries on time-variant tracking control of UNDS. The neural network model
is designed by the proposed approach together with theoretical analyses pre-
sented in Section 3. In Section 4, simulation studies including two robot
applications together with performance comparisons and tests are shown.
Section 5 concludes the paper. The main contributions of the work are sum-
marized as below.

• Unlike existing ZNN works for solving specific time-variant problems
of known systems in an ideal environment, a unified neural approach of
simultaneous identification, tracking control and disturbance rejection
is proposed to address the time-variant tracking control of UNDS. This
paper makes new progresses on the frontier of the robustness research
on the ZNN by concerning both the system uncertainties and model
disturbances, simultaneously.

• The proposed approach provides a complete and universal neural net-
work model design process for the general UNDS. The neural network
model derived by the proposed approach captures hidden relations
between inputs and outputs of UNDS, and shows outstanding track-
ing performance even under system uncertainties and external distur-
bances.

• Theoretical analyses on convergence property and discretization ac-
curacy are provided to guarantee the validity of the proposed neural
network model for the time-variant tracking control of UNDS.
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• Simulation studies including two practical applications, i.e., applica-
tions to serial robot manipulators and parallel robot manipulators, to-
gether with performance comparisons and tests substantiate the effi-
cacy of the proposed neural network model.

2. Preliminaries

Consider a general form of continuous-time NDS described as follows [43]:
{

ẋ(t) = s(x(t),u(t)),

y(t) = h(x(t)),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are the system state vector,
input vector, and output vector of NDS, respectively. In addition, functions
s : Rn × Rm → Rn and h : Rn → Rm are continuous and smooth nonlinear
mappings.

Note that system (1) investigated in this work is a common form of
continuous-time NDS [43]. System (1) can be deemed as a general descrip-
tion in mathematic. As for a specifical application for such an NDS, such as
the time-variant tracking control, NDS (1) can be reformulated with practi-
cal application meanings. The realization of time-variant tracking control of
NDS (1) in practical applications is to obtain a neural network model with
the prior knowledge from the real system. By constructing a dynamic map-
ping u(t)→ y∗(t), it can identify the system dynamics of NDS (1) by using
only the input-output measurements and minimizing ‖y∗(t)− y(t)‖2, where
y∗(t) is the desired output vector of the NDS, and ‖ · ‖2 is Euclidean norm
of a vector [44]. With the above practical application objective in mind, a
class of NDS is transformable to the following optimization problem:

min ‖y∗(t)− y(t)‖2, (2)

s.t. ẋ(t) = f(x(t))ẏ(t), (3)

y(t) = h(x(t)). (4)

Note that mapping f : Rn → Rn×m is a nonlinear function corresponding to
the system information, and mapping h : Rn → Rm satisfies f(∂h/∂x) = I
and is corresponding to a specific tracking effector with a certain physical
structure and parameter to receive control signals and generate the real-time
output trajectory y(t), which is fixed and explicit during the hold tracking
process.
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Under the influence unexpected impacts, e.g., the lack of prior knowledge
from the real system, nonlinear mapping f(·) would become an unknown
mapping due to the system uncertainties. In addition, external disturbances
usually occur during the tracking process of a given system in practical ap-
plications. Therefore, a practical form of time-variant tracking control of
UNDS with external disturbances is described as follows:

min ‖y∗(t)− y(t)‖2, (5)

s.t. ẋ(t) = f̃(x(t))(ẏ(t) + σ(t)), (6)

y(t) = h(x(t)), (7)

where f̃ : Rn → Rn×m is the unknown mapping, and vector σ(t) ∈ Rm

denotes the external disturbances for the UNDS. In practical applications,
the objective of time-variant tracking control of UNDS (5)–(7) is to design
an effective control law such that the output y(t) tracks a given path y∗(t).
According to [39, 43] as well as to lay a basis for further investigation, two
assumptions are presented.

Assumption 1: The real-time system state vector x(t), tracking output
trajectory y(t) and its first order time derivative ẏ(t), second order time
derivative ÿ(t) are measurable during the whole tracking process. In addition,
unknown nonlinear mapping f̃(·) is continuously differentiable with respect
to time t.

Assumption 2: The external disturbances σ(t) are the continuous and
bounded random-form time-variant disturbances during the whole tracking
process t ∈ [0, Td] with Td being the task duration. Time-variant disturbances
could be considered to vanish after the tracking task duration, i.e., σ(t) = 0
with t > Td.

Remark 1: To handle the system uncertainties of the UNDS (5)–(7) in
this work, a continuously differentiable nonlinear mapping f̃(·) is required to

calculate ˙̃f(x(t)) for updating the nonlinear mapping f̃(·) in real-time t. It
is required to make an assumption that the nonlinear mapping f̃(·) is con-
tinuously differentiable to formulate the proposed neural network model. It
is worth mentioning here that such an assumption is commonly applied in
practice such as the tracking control of serial and parallel robot manipulators
[46, 47]. As for the special case that the nonlinear mapping f̃(·) is discon-

tinuous, the real-time ˙̃f(x(t)) would not exist in the discontinuous point.
Therefore, the whole neural network model would not be designed via the
proposed unified neural approach in this case.
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Remark 2: Due to the complexity of the tracking process, the system
uncertainties and external disturbances are unavoidable for the dynamics
systems in real-world applications. Many tracking control processes of in-
dustrial systems can be formulated as the UNDS (5)–(7), such as aircraft
systems [2], underwater vehicle systems [3], and robot systems [46], which
covers many common nonlinear systems [48].

3. Neural network model design

As preliminaries, the tracking control problem formulation of the UNDS
is shown in Section 2. In this part, we propose a unified neural approach of
simultaneous identification, tracking control and disturbance rejection and
its associated neural network model to address time-variant tracking control
of UNDS. Then, the continuous-time neural network model is discretized
together with the algorithm description and block diagram shown for the
convenience of implementation. Moreover, theoretical analyses are presented
in detail to prove the effectiveness of the proposed approach and neural net-
work model.

3.1. Tracking control

To solve the time-variant tracking control problem of UNDS (5)–(7) under
the influence external disturbances, a continuous-time neural network model
is designed by the following approach.

Firstly, to monitor the tracking process of the UNDS (5)–(7), an error
function can be defined as below:

e(t) = y∗(t)− y(t), (8)

where y∗(t) ∈ Rm is the predefined path for the UNDS effector. Then, a
ZNN-based error function can be defined as below:

z1(t) =

∫ t

0

e(τ)dτ. (9)

To make each element ei(t) of the error function (8) converge to zero for
i = 1, 2, · · · ,m, by exploiting unified ZNN design formula ż1(t) = −γz1(t)
with γ ∈ R denoting a predefined parameter to adjust the rate of convergence
[26], one can obtain:

e(t) = −γ
∫ t

0

e(τ)dτ. (10)
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Define a second ZNN-based error function:

z2(t) = −e(t)− γ
∫ t

0

e(τ)dτ. (11)

Substituting (11) into the ZNN design formula ż2(t) = −λz2(t) with λ ∈
R being a predefined parameter to adjust the convergence rate, it has the
following dynamical equation:

ė(t) = −(γ + λ)e(t)− γλ
∫ t

0

e(τ)dτ. (12)

Predefined design parameters γ ∈ R+ and λ ∈ R+ are set for the convergence
as well as stability of the proposed neural network model. By substituting
error function (8) into dynamical equation (12), the following equation is
attained:

ẏ∗(t)− ẏ(t) =− (γ + λ)(y∗(t)− y(t))

− γλ
∫ t

0

y∗(τ)− y(τ)dτ.
(13)

On the basis of equation (6) of UNDS, one can further obtain:

ẋ(t) =f̃(x(t))

(
ẏ∗(t) + ρ1(y

∗(t)− y(t))

+ ρ2

∫ t

0

y∗(τ)− y(τ)dτ + σ(t)

) (14)

with γ + λ = ρ1 ∈ R+ and γλ = ρ2 ∈ R+.

3.2. Identification

For the real-time identification of the unknown mapping f̃(x(t)) in (14),
a vector-valued error function can be defined:

ε(t) = ẋ(t)− f̃(x(t))ẏ(t) (15)

with vector ε(t) ∈ Rm. By utilizing the ZNN design formula again:

ε̇(t) = −νε(t), (16)
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where ν ∈ R+ is another predefined parameter to adjust the rate of conver-
gence for identification, the following dynamical equation for the real-time
identification of UNDS is obtained:

ẍ(t)− ˙̃f(x(t))ẏ(t)− f̃(x(t))ÿ(t) = −ν(ẋ(t)− f̃(x(t))ẏ(t)). (17)

Equation (17) can be explicitly rewritten as

˙̃f(x(t)) =
(
ẍ(t)− f̃(x(t))ÿ(t) + ν(ẋ(t)− f̃(x(t))ẏ(t))

)
ẏ†(t), (18)

where superscript † denotes the pseudo-inverse of a vector or matrix. Note
that equation (18) is for real-time identification of UNDS (5)–(7). Hence,
the whole neural network model is attained as follows:





ẋ(t) = f̃(x(t))

(
ẏ∗(t) + ρ1(y

∗(t)− y(t))

+ ρ2

∫ t

0

y∗(τ)− y(τ)dτ + σ(t)

)
,

˙̃f(x(t)) =
(
ẍ(t)− f̃(x(t))ÿ(t)

+ ν(ẋ(t)− f̃(x(t))ẏ(t))
)
ẏ†(t).

(19)

Definition 1. For solving a time-variant tracking control problem of UNDS
(5)–(7) considering both the system uncertainties and external disturbances,
initially starting from a neural network state y(0), the output trajectory y(t)
synthesized by a neural network model is said to be convergent to the prede-
fined path y∗(t) if it satisfies

y(t)→ y∗(t), as t→∞.

Theorem 1. For a time-variant tracking control of UNDS (5)–(7) in con-
sideration of both system uncertainties together with continuous-and-bounded
random-form disturbances, initially starting from a neural network state y(0),
the output trajectory y(t) synthesized by the continuous-time neural network
model (19) is convergent to the desired output y∗(t) with each element of
steady-state error satisfying limt→∞ ei(t) = 0, where i = 1, 2, · · · ,m.

Proof. Note that the ZNN-based error function e(t) ∈ Rm is a vector with
its each element being ei(t). The Laplace transformation [49] can be utilized
from the time domain with real variable t to frequency domain with complex
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variable s for scalar form systems. So the theoretical analysis process is
presented with the ith subsystem of the vector form neural network model
(19). According to the definition of the error function, the ith subsystem (or
termed element) of the continuous-time neural network model (19) can be
written as follows:

ėi(t) = −ρ1ei(t)− ρ2
∫ t

0

ei(τ)dτ + σi(t). (20)

Then, within the region of convergence (ROC), one can readily make the
Laplace transformation (represented by F(s)) for both sides of equation (20)
as below:

F(s) = L(ėi(t)) = L
(
− ρ1ei(t)− ρ2

∫ t

0

ei(τ)dτ + σi(t)

)
, (21)

where operator L(·) is a Laplace transformation for index i = 1, 2, · · · ,m.
Therefore, the ith subsystem has the transformation form in frequency do-
main with complex variable s as

F(s) = sei(s)− ei(0) = −ρ1ei(s)−
ρ2
s
ei(s) +

∫ +∞

0

σi(t)exp(−st)dt, (22)

where
∫ +∞
0

σi(t)exp(−st)dt is a Laplace transformation of σi(t). Now we
have finished the Laplace transformation of the ith subsystem of the proposed
neural network model from the time domain with real variable t to frequency
domain with complex variable s. Then, we continue the theoretical analysis
process in frequency domain as follows. Equation (22) is rewritten as below:

(s2 + sρ1 + ρ2)ei(s) = sei(0) + s

∫ +∞

0

σi(t)exp(−st)dt.

On the basis of the final-value theorem [49], for |σi(t)| ≤ σmax for t ∈ [0, Td],
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and σi(t) = 0 for t > Td with i = 0, 1, · · · ,m, it has:

∣∣∣ lim
t→∞

ei(t)
∣∣∣ =

∣∣∣lim
s→0

sei(s)
∣∣∣ =

∣∣∣∣∣∣
lim
s→0

s2
(
ei(0) +

∫ +∞
0

σi(t)exp(−st)dt
)

s2 + sρ1 + ρ2

∣∣∣∣∣∣

=

∣∣∣∣∣∣
lim
s→0

s2
(
ei(0) +

∫ Td

0
σi(t)exp(−st)dt

)

s2 + sρ1 + ρ2

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
lim
s→0

|s2|
(
|ei(0)|+

∣∣∣
∫ Td

0
|σi(t)|exp(−st)dt

∣∣∣
)

|s2 + sρ1 + ρ2|

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
lim
s→0

|s2|
(
|ei(0)|+ σmax

∣∣∣
∫ Td

0
exp(−st)dt

∣∣∣
)

|s2 + sρ1 + ρ2|

∣∣∣∣∣∣

=

∣∣∣∣lims→0

|s2| |ei(0)|+ σmax|s| |(1− exp(−sTd))|
|s2 + sρ1 + ρ2|

∣∣∣∣
= 0.

Thus, it obtains | limt→∞ ei(t)| = limt→∞ ei(t) = 0 with i = 1, 2, · · · ,m.
Considering vector-valued error function (8) with its each element satisfying
the above results, we finally obtain the following result:

y(t)→ y∗(t), as t→∞. (23)

According to Definition 1, one can readily obtain the conclusion that the
system output trajectory y(t) via the proposed neural network model (19) is
convergent to the predefined output y∗(t). This completes the proof. �

3.3. Discretization

Note that the above neural network model (19) is a continuous-time
model. For better implementation, the following EFF [50] is employed:

v̇k ≈
vk+1 − vk

ς
, (24)

where v denotes the vector-valued or matrix-valued variable that needs to
be discretized, and ς is a sampling period. In addition, k is an update index
with t = kς.
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Note that the EFF is the first one and also the simplest one of discretiza-
tion formula that is widely applied in engineering for decades [50]. The
discretization of the neural network model using the EFF would make the
discrete-time model be simplification. Different from the EFF, the Euler
backward formula (EBF) requires the priori knowledge of the state, i.e., vk−1,
to calculate the current state vk. Such priori knowledge may be difficult to
be obtained in advance for the EBF. In addition, other improved discretiza-
tion formulas, such as the multiple step discretization formulas [33, 51], it is
required to additionally design or choose the coefficients, which makes the
discretization process be complicated. Therefore, the EFF is selected to dis-
cretize the continuous-time neural network model in this work to focus on
the proposed neural network model itself. Accordingly, we have the following
theoretical analyses on the accuracy of the discrete algorithm.

Theorem 2. Assume that v and its first two derivatives are continuous on
[a, b] and that kς, (k + 1)ς ∈ [a, b]. Given a sampling period ς, EFF (24) for
neural network model (19) has a truncation error of O(ς).

Proof. Using the Taylor expansion theorem [52] yields:

v̇k =
vk+1 − vk

ς
+ etru(ς), (25)

where etru(ς) denotes the truncation error of EFF (24). Then, it obtains:

etru(ς) = −ςv
(2)(c)

2
= O(ς) (26)

with c being a constant between vk and vk+1, and O(ς) is a vector with each
element being O(ς). The proof is thus completed. �

Considering the integral term
∫ t

0
y∗(τ)−y(τ)dτ in neural network model

(19), EFF (24) can not being used directly for the discretization. To discretize
the neural network model (19) and integral term

∫ t

0
y∗(τ) − y(τ)dτ in the

same way, we define r(t) =
∫ t

0
y∗(τ) − y(τ)dτ . Thus, neural network model

(19) is rewritten in a matrix form as follows:




ẋ(t)
ṙ(t)

˙̃f(x(t))


 =




p(t) + ρ1f̃(x(t))(y∗(t)− y(t))
y∗(t)− y(t)

q(t)ẏ†(t)


 , (27)
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Figure 1: Block diagram of the UNDS (5)–(7) for the time-variant tracking control in the
kth update index.

where p(t) = f̃(x(t))ẏ∗(t) + ρ2f̃(x(t))r(t) + f̃(x(t))σ(t) and q(t) = ẍ(t) −
f̃(x(t))ÿ(t) + ν(ẋ(t)− f̃(x(t))ẏ(t)).

According to EFF (24), the continuous-time matrix-form model (27) can
be discretized as follows:




xk+1

rk+1

f̃k+1


 =



ςpk + ςρ1f̃k(y∗k − yk)

ς(y∗k − yk)

ςqkẏ
†
k


+




xk

rk
f̃k


 , (28)

where h = ςρ1 ∈ R+ denotes the step size. Besides, pk = f̃kẏ
∗
k +ρ2f̃krk + f̃kσk

and qk = ẍk − f̃kÿk + ν(ẋk − f̃kẏk).

Corollary 1. For a time-variant tracking control problem of UNDS (5)–
(7) considering system uncertainties together with continuous and bounded
random-form disturbances, initially starting from a neural network state y0,
the discrete-time neural network model (28) converges to the theoretical solu-
tion of UNDS (5)–(7). The steady-state residual error satisfies limk→∞ ‖ek‖2
of the discrete-time neural network model (28) discretized via EFF (24) with
step size bing h ∈ (0, 2) being of order O(ς).

Proof. It can be generalized from the proofs of Theorems 1 and 2. �

For better understanding, the corresponding algorithm description about
the implementation of the discrete-time neural network model (28) is pre-
sented in the algorithm part. Besides, the block diagram of UNDS (5)–(7)
for the real-time tracking control in the kth update index is also presented in
Fig. 1. Note that the whole UNDS with the proposed neural network model
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Algorithm 1 Implementation of Neural Network Model (28)
1 Initialize: The update index k = 0 with initial state vector x0

and initial unknown mapping f̃0
2 Set: The tracking task duration Td, the sampling period ς, the

design parameters γ, λ and ν
3 Input: The desired path y∗k and its first-order derivative ẏ∗k
4 Read: The real-time output trajectory yk, and its first-order and

second-order derivatives ẏk and ÿk, and the second-order
derivative of state vector ẍk

5 Calculate: The time derivative of present state vector in the

presence of disturbances via ẋk = pk + ρ1f̃k(y∗k − yk)
6 Calculate: The time derivative of the unknown mapping via

˙̃fk = qkẏ
†
k

7 Update: The unknown mapping via f̃k+1 = f̃k + ς ˙̃fk
8 Update: The state vector via xk+1 = xk + ςẋk

9 Output: The real-time xk+1 as control signals for tracking effector
10 if k > Td/ς then
11 Stop updating
12 else
13 k ← k + 1 and go to step 3
14 end

is a typical closed-loop system that can take full advantage of the feedback
information of the task execution. In addition, for the identification of un-
known mapping f̃k with system uncertainties, the model input given by the
users and the system effector outputs measured by the corresponding sensors
are also fully utilized in real time (see also Fig. 1). The block diagram clearly
illustrates the main principle and control strategy of the whole UNDS with
the proposed discrete-time neural network model (28).

4. Simulation studies

To validate the efficacy of the proposed neural network model, we succes-
sively consider three tracking examples for a general UNDS, a serial robot
manipulator, and a parallel robot manipulator, respectively. Without losing
generality, dimensions n = 6 and m = 3 are considered in the simulations.
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Figure 2: Synthesized tracking outputs by the proposed neural network model (28) for the
effector of general UNDS tracking the desired paths. (a) Trajectories of y1(t) and y∗1(t).
(b) Trajectories of y2(t) and y∗2(t). (c) Trajectories of y3(t) and y∗3(t).

Figure 3: Synthesized tracking errors by the proposed neural network model (28) for the
effector of general UNDS tracking the desired paths. (a) Profile of e1(t). (b) Profile of
e2(t). (c) Profile of e3(t).

We conduct the tracking process based on an inaccurate mapping f̃ = f + υ
containing the unknown biases υ caused by system uncertainties. Moreover,
to further investigate the tracking performance of discrete-time neural net-
work model (28), comparisons as well as tests are illustrated in terms of the
tracking accuracy and computational complexity. The simulation studies are
carried out in MATLAB R2012b environment implemented on a personal-
digital computer with the CPU being Inter(R) Core(TM) i5-7200U @ 2.50
GHz, 4.00 GB memory as well as the Windows 10 Ultimate operating system.

4.1. Real-time tracking control of general UNDS

In this part, the time-variant tracking control of a general UNDS (5)–(7)
with external disturbances is considered, of which the real-time desired paths
are set as follows:

y∗(t) =



y∗1(t)
y∗2(t)
y∗3(t)


 =




0.01(sin(2t) + cos(t))
0.1 sin(t) cos(t)
0.12 exp(−t)


 .

In addition, the external disturbances are set to be

σ(t) =




0.05 sin(0.5t)
0.06 sin(0.8t)

0.03 sin(t)


+




0.02 exp(−2t)
0.03 exp(−5t)
0.01 exp(−t)


 .
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Figure 4: Synthesized motion results by the proposed neural network model (28) for the
effector of a serial robot manipulator tracking a circular path. (a) Motion trajectories of
the serial robot manipulator. (b) Profiles of the actual trajectory and the desired path.
(c) Profiles of the position error.

Figure 5: Synthesized motion results by the proposed neural network model (28) for
the effector of a parallel robot manipulator tracking an infinity-sign path. (a) Motion
trajectories of the parallel robot manipulator. (b) Profiles of the actual trajectory and the
desired path. (c) Profiles of the position error.

The tracking task duration is set to be Td = 5 s. The designed parameters
are set to be γ = 5, λ = 5 and ν = 50 in this tracking task.

The corresponding simulation results of the general UNDS to track the
desired path y∗(t) synthesized by the neural network model (28) are presented
in Fig. 2 as well as Fig. 3. Figure 2 illustrates the real-time tracking
outputs synthesized by neural network model (28). All the outputs y1(t),
y2(t) and y3(t) track the desired paths y∗1(t), y∗2(t) and y∗3(t) precisely within
a short time even under the influences of system uncertainties and external
disturbances. From Fig. 3, the tracking errors quickly converge to zero
with the steady-state tracking error being small values, which illustrates the
great tracking performance of the proposed neural network model for the
UNDS. The above results also verify that the system’s effector tracking task
is completed effectively and well.

4.2. Application to serial robot manipulators

In the above subsection, the effectiveness of the proposed neural net-
work model for time-variant tracking control of a general UNDS is substan-
tiated. In this subsection, we present a practical application about the time-
variant tracking control of an uncertain serial robot manipulator with exter-
nal disturbances to further verify the efficacy of the proposed model. The
PUMA560 is a conventional kind of serial robot manipulators with six inde-
pendent control joints, which has been broadly applied in different robotic
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fields [46]. In this practical application, the effector of the serial robot ma-
nipulator is utilized to track a circular path in 3D space. The detailed
kinematics system of the PUMA 560 can be found in [46]. According to
the forward kinematics y(t) = h(Θ(t)) of serial robot manipulators with
Θ(t) ∈ R6 = x(t) being the robot joint-angle state, the dynamical equation
of the serial robot system at velocity level is depicted as Θ̇(t) = J̃†(Θ(t))ẏ(t),
where J̃†(Θ(t)) ∈ R6×3 = f̃(x(t)) is an unknown pseudo-inverse of Jacobian
matrix with uncertain robot system information such as physical parameter
biases. Without losing generality, the tracking task duration is set to be
Td = 20 s. Predefined parameters are set to be γ = 5, λ = 5 and ν = 50
in this tracking task. The initial value of joint angle vector is set to be
Θ(0) = [0,−π/4, 0, 2π/3,−π/4, 0]T rad, and the initial value of joint velocity
vector is set to be Θ̇(0) = [0, 0, 0, 0, 0, 0]T rad/s. In addition, desired circular
path for the effector is depicted as below:

y∗(t) =




ι cos(2π sin2(0.5πt/Td))− ι
ι cos(π/6) sin(2π sin2(0.5πt/Td))
ι sin(π/6) sin(2π sin2(0.5πt/Td))


 ,

with geometry parameter being set to be ι = 0.1 m in the serial robot ma-
nipulators tracking task. In addition, the external disturbances are set to
be

σ(t) =




0.03 cos(0.3t)
0.05 sin(0.7t)

0.01 sin(t)


+




0.02 exp(−4t)
0.03 exp(−3t)
0.01 exp(−t)


 .

The corresponding simulation results of serial robot manipulator tracking
the circular path synthesized by the proposed neural network model (28) are
illustrated in Fig. 4. Specifically, the motion result of serial robot manipu-
lator in 3D space during the tracking process is shown in Fig. 4(a). It can
be readily found that the actual trajectory of the effector and the desired
path are both circular paths. The effector of the serial robot manipulator
successfully tracks the desired circular path in 3D space. As illustrated in
Fig. 4(b), the actual trajectory of the effector of the serial robot manipulator
is sufficiently close to the desired circular path. From Fig. 4(c), the maximal
absolute value of effector position error e = [eX, eY, eZ]T (i.e., the difference
between the desired path and the actual trajectory in X-, Y-, and Z-axes) is
less than 5 × 10−3 m (i.e., less than 1.25% with the whole motion diameter
of the task space being about 0.4 m), which illustrates the high accuracy
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of tracking process. The above results illustrate that the effector’s path-
tracking task is completed well synthesized by the proposed neural network
model (28).

4.3. Application to parallel robot manipulators

In the application, the time-variant tracking control of parallel robot ma-
nipulators is considered. Note that parallel robot manipulators are widely
used in many engineering applications because of the inherent high carry-
ing capacity and quick respond speciality [47]. As a typical parallel robot
manipulator, Stewart platform contains a mobile platform as well as a fixed
base connected together through six independently controlled prismatic legs.
The effector locates on the top and center of the mobile platform which can
execute the time-variant tracking task. The effector of an uncertain parallel
robot manipulator with disturbances is utilized to track an infinity-sign path.
According to forward kinematics y(t) = h(l(t)) of parallel robot manipula-
tors with l(t) ∈ Rn = x(t) being the robot leg-length state, the dynamical
equation of the parallel robot system is described as l̇ = C̃(l(t))ẏ(t), where
C̃(l(t)) ∈ Rn×m = f̃(x(t)) is an unknown coefficient matrix with uncertain
robot system information. Without losing of generality, the tracking-task
duration is set to be Td = 2 s. The designed parameters are set to be γ = 10,
λ = 10 and ν = 50 in this tracking task. The value of leg length vector
is initially set as l(0) = [1.184, 1.184, 1.184, 1.184, 1.184, 1.184]T m, and the
value of leg velocity vector is initially set as l̇(0) = [0, 0, 0, 0, 0, 0]T m/s. In
addition, desired circular path for the effector is described as

y∗(t) =




cos(π/2), 1,− sin(π/2)
sin(π/2), cos(π/2), 0
sin(π/2), 0, cos(π/2)


×




η cos(π(t+ 0.5))
η

−(η/2) sin(2π(t+ 0.5))


 ,

with the geometry parameter being set as η = 0.24 m in the parallel robot
manipulators tracking task. In addition, the external disturbances are set to
be

σ(t) =




0.05 sin(0.5t)
0.04 sin(0.2t)
0.03 cos(0.6t)


+




0.02 exp(−2t)
0.03 exp(−5t)
0.01 exp(−t)


 .

The related results of the parallel robot manipulator tracking the infinity-
sign path synthesized by the proposed neural network model (28) are shown
in Fig. 5. Specifically, Fig. 5(a) presents the tracking motion of the parallel
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robot manipulator in the 3D space during the tracking process. It can be
readily found that the actual trajectory of the effector and the desired path
are both infinity-sign paths. The effector for the parallel robot manipulator
successfully tracks the desired infinity-sign path. As detailedly zoomed in Fig.
5(b), the actual trajectory of the effector of the parallel robot manipulator
in the application is also sufficiently close to the desired infinity-sign path.
Besides, the maximal absolute value of effector position error e = [eX, eY, eZ]T

shown in Fig. 5(c) is less than 5 × 10−3 m (i.e., less than 0.625% with the
whole motion diameter of the task space being about 0.8 m). The results
indicate that the predefined infinity-sign path tracking objective is conducted
well even under the system uncertainties and external disturbances.

Note that external disturbances are all considered in three tracking con-
trol examples, i.e., tracking control problems of general UNDS, serial robot
manipulator, and parallel robot manipulator. Different external disturbances
are investigated in different tracking control examples with specifical descrip-
tions. Therefore, different specifical external disturbances in different specif-
ical examples exhibit different specifical tracking errors in Fig. 3, Fig. 4(c)
and Fig. 4(c), respectively. Three tracking control examples are run inde-
pendently. In addition, the simulation results keep sable and reproducible
for the same simulation condition and the same external disturbances. Each
tracking error synthesized by the proposed neural network model remains
almost the same in a specifical tracking control example with specifical ex-
ternal disturbances. So we do not need to calculate mean tracking errors for
each specifical tracking control example.

Remark 3: Generally, there unavoidably exist various forms of exter-
nal time-variant disturbances and system uncertainties for the tracking con-
trol of UNDS, such as serial and parallel robot manipulators. Generally,
different forms of external time-variant disturbances can be described as
different forms of mathematical expressions. For examples, the offset er-
rors in robot control system hardware implementation can be deemed as
the linear-form time-variant disturbances. During the robot signal process-
ing and transmission, the external signals interference, e.g., electromagnetic
interference, can be deemed as the superposition of sine-form time-variant
disturbances with unknown frequency and magnitude. The instantaneous
decline of power sources equipped in the robot control module can be de-
scribed as the exponential-decay-form time-variant disturbances. In this
work, without losing of generality, we consider the superposition of sine-form
and exponential-decay-form time-variant disturbances in simulation studies
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Figure 6: Comparisons on tracking outputs by the CRNN model (29) for the effector
of general UNDS tracking the desired paths. (a) Trajectories of y1(t) and y∗1(t). (b)
Trajectories of y2(t) and y∗2(t). (c) Trajectories of y3(t) and y∗3(t).

Figure 7: Comparisons on tracking errors by the CRNN model (29) for the effector of
general UNDS tracking the desired paths. (a) Profile of e1(t). (b) Profile of e2(t). (c)
Profile of e3(t).

to testify the robustness of the neural network model. Moreover, internal
system uncertainties such as parameter deviation usually occur in robot con-
trol systems due to the diversity and complexity of the control environment,
which can also be deemed as the offset errors in robot control system with
linear-form mathematical expression. The above discussions are the rationale
of considering external time-variant disturbances and system uncertainties in
this work.

4.4. Comparisons with other models

To highlight the advantages on robustness of the proposed neural net-
work model, comparisons on the proposed neural network model (28) with
existing conventional recurrent neural network (CRNN) model are performed
in this part. Note that the CRNN model is also a typical kind of Hopfield
neural network [26], which can be readily implemented on circuits such as
very large-scale integration. The CRNN model for solving the time-variant
tracking control problem of the UNDS (5)–(7) under the influence external
disturbances can be described as follows:

ẋ(t) = f(x(t))(ẏ∗(t) + δ(y∗(t)− y(t)) + σ(t)) (29)

with δ > 0 ∈ R denoting a predefined parameter to adjust the convergence
rate related to the CRNN model (29). Specifically, the comparison results
on the proposed neural network model (28) with CRNN model (29) are pre-
sented in Fig. 6 through Fig. 9. All the comparative studies are performed
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Figure 8: Comparisons on motion results by the CRNN model (29) for the effector of a
serial robot manipulator tracking a circular path. (a) Motion trajectories of the serial
robot manipulator. (b) Profiles of the actual trajectory and the desired path. (c) Profiles
of the position error.

Figure 9: Comparisons on motion results by the CRNN model (29) for the effector of a
parallel robot manipulator tracking an infinity-sign path. (a) Motion trajectories of the
parallel robot manipulator. (b) Profiles of the actual trajectory and the desired path. (c)
Profiles of the position error.

with the same simulation conditions. The corresponding comparison results
of the general UNDS to track the desired path y∗(t) synthesized by the CRNN
model (29) are presented in Fig. 6 as well as Fig. 7. Figure 6 comparatively
shows the real-time tracking outputs synthesized by the CRNN model (29).
All the outputs y1(t), y2(t) and y3(t) can not track the desired paths y∗1(t),
y∗2(t) and y∗3(t) precisely with non-ignorable errors under the influences of
system uncertainties and external disturbances. From Fig. 7, the tracking
errors also can not converge to zero with the steady-state tracking error hav-
ing an error bound. Such comparative results are different from the results of
the outstanding tracking performance of the proposed neural network model
(28) for the UNDS.

The corresponding comparison results of serial and parallel robot manip-
ulators tracking the circular path and the infinity-sign path synthesized by
the CRNN model (29) are illustrated in Fig. 8 and Fig. 9. Specifically, the
motion results of serial and parallel robot manipulators in 3D space during
the tracking process are shown in Fig. 8(a) and Fig. 9(a). One can readily
find that the actual trajectories of effectors are not the exact circular and
infinity-sign paths. The effectors of robot manipulators can not successfully
track the desired paths in 3D space. As magnified in Fig. 8(b) and Fig.
9(b), the actual trajectories of the effector of robot manipulators can not
track the predefined path. From Fig. 8(c) and Fig. 9(c), the maximal abso-
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Table 1: Performance comparisons among different neural network models for solving
the time-variant tracking control of UNDS.

Model Anti-disturbance Uncertainty rejection Convergence performance Tracking accuracy‡
Proposed (28) Yes Yes Convergence to zero High
CRNN (29) No No With error bound Low

[1] Yes No With error bound Low
[5] No No With error bound Low
[53] No Yes With error bound Low
[54] No No With error bound Low

Note: ‡The tracking control tasks for UNDS are under the influence of both system
uncertainties and external disturbances.

Figure 10: Synthesized residual errors by the proposed neural network model (28) with
different values of sampling period ς and step size h = 0.2 for the effector of different UNDS
tracking different desired paths shown in Section 4.1 through Section 4.3. (a) Residual
errors of tracking task in Section 4.1. (b) Residual errors of tracking task in Section 4.2.
(c) Residual errors of tracking task in Section 4.3.

lute value of effector position errors can not converge to zero with relatively
big error bounds, which illustrates the low accuracy of tracking process un-
der the influences of system uncertainties and external disturbances. All the
above comparison results illustrate that the advantages on robustness of the
proposed neural network model (28).

Moreover, to fully verify the advantages of the proposed neural network
model (28), performance comparisons among different existing neural net-
work models for tracking control of UNDS with both system uncertainties
and external disturbances are illustrated in Table 1. As compared in the
table, the proposed neural network model (28) can achieve the tracking con-
trol task and simultaneously handle both system uncertainties and external
disturbances. The robustness together with outstanding convergence per-
formance and high tracking control accuracy have been illustrated via three
tracking control examples in the above simulation studies, which are superior
to other neural network models in existing literatures [1, 5, 53, 54] (see also
Table 1).

4.5. Performance Tests

To deeply study the tacking performance of the proposed neural network
model, extensive tests are conducted. Firstly, we conduct the simulation tests
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Table 2: Operational complexity of the proposed model (28) for time-variant tracking
control of UNDS (5)–(7) with f̃k ∈ Rn×m and xk ∈ Rn.

Component Number Complexity

Multiplications/divisions 7mn+ 6m+ 1 O(mn)
Additions/subtractions 7mn+ 8m O(mn)

in terms of the tracking accuracy under different values of sampling period
ς. The residual errors ‖ek‖2 of three tracking tasks in Section 4.1 through
Section 4.3 with different values of sampling period ς are shown in Fig. 10.
Specifically, as shown in Fig. 10(a), the maximal steady-state residual errors
(MSSREs) decrease 10 times (from about 5 × 10−4 m to 5 × 10−5 m and
further to 5× 10−6 m) as the values of sampling period ς reduce by 10 times
(from 1× 10−2 s to 1× 10−3 s and further to 1× 10−4 s). That is to say, the
MSSREs synthesized by the discrete-time neural network model (28) change
in an O(ς) pattern. Such graphical results are consistent with the theoretical
results in Section 3.3. Thus, by choosing appropriate values of sampling
period ς, the proposed neural network model (28) potentially possesses high
enough computational accuracy and tracking performance.

Then, the computational complexity of neural network model is further
investigated. The numbers of matrix operations, i.e., multiplications/divisions
and additions/subtractions, required in applying the proposed model (28) are
listed in Table 2. In general, the operational complexity of model (28) for
time-variant tracking control of UNDS (5)–(7) per update is of order O(mn).
Specifically, as for the serial robot manipulator (with m = 3 and n = 6) in
Section 4.2, model (28) performs 145 multiplications/divisions and 150 addi-
tions/subtractions per update. Such an operational complexity is acceptable
in most practical applications. Moreover, the time complexity of model (28)
is also illustrated in Table 3. Restricted by the computer operating environ-
ment, the total update duration (TUD) of model (28) for handling different
tracking tasks is much smaller than the whole task duration Td. Further-
more, the average-computing-time per updating (ACTPU) (being of order
10−4 s) is also smaller than the shortest sampling period ς = 0.001 s. Such
a computational speed fulfills the requirements of the real-time applications
[26].
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Table 3: Time complexity of the proposed model (28) for time-variant tracking control of
different UNDS in terms of TUD and ACTPU.

UNDS Td TUD ACTPU

General UNDS 5 s 0.1293 s 2.5875× 10−4 s
Serial robot manipulator 20 s 0.5637 s 2.8189× 10−4 s

Parallel robot manipulator 2 s 0.4947 s 2.4739× 10−4 s

5. Conclusion

In this paper, a unified neural approach of simultaneous identification,
tracking control and disturbance rejection in the framework of the ZNN has
been proposed for designing neural network model to address the time-variant
tracking control issue of the UNDS. By following this approach, the proposed
neural network model has featured the full utilization of the information
from the input and output measurements of the UNDS, and has shown an
outstanding tracking performance even simultaneously restricted by system
uncertainties and external disturbances. Then, the discrete-time model has
been further derived via the EFF. The algorithm description and its block
diagram representation have been presented for the implementation conve-
nience of practitioners. Besides, theoretical analyses have been presented to
guarantee the validity of such model for the time-variant tracking of UNDS.
Moreover, simulation results of a general tracking example, two robot appli-
cations as well as performance comparisons and tests have demonstrated the
effectiveness and advantages of the proposed neural network model.
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