9 research outputs found

    Recoverable Robust Timetable Information

    Get PDF
    Timetable information is the process of determining a suitable travel route for a passenger. Due to delays in the original timetable, in practice it often happens that the travel route cannot be used as originally planned. For a passenger being already en route, it would hence be useful to know about alternatives that ensure that his/her destination can be reached. In this work we propose a recoverable robust approach to timetable information; i.e., we aim at finding travel routes that can easily be updated when delays occur during the journey. We present polynomial-time algorithms for this problem and evaluate the performance of the routes obtained this way on schedule data of the German train network of 2013 and simulated delay scenarios

    On The Recoverable Robust Traveling Salesman Problem

    Get PDF
    We consider an uncertain traveling salesman problem, where distances between nodes are not known exactly, but may stem from an uncertainty set of possible scenarios. This uncertainty set is given as intervals with an additional bound on the number of distances that may deviate from their expected, nominal value. A recoverable robust model is proposed, that allows a tour to change a bounded number of edges once a scenario becomes known. As the model contains an exponential number of constraints and variables, an iterative algorithm is proposed, in which tours and scenarios are computed alternately. While this approach is able to find a provably optimal solution to the robust model, it also needs to solve increasingly complex subproblems. Therefore, we also consider heuristic solution procedures based on local search moves using a heuristic estimate of the actual objective function. In computational experiments, these approaches are compared. Finally, an alternative recovery model is discussed, where a second-stage recovery tour is not required to visit all nodes of the graph. We show that the previously NP-hard evaluation of a fixed solution now becomes solvable in polynomial time

    Path Finding Strategies in Stochastic Networks

    Get PDF
    We introduce a novel generic algorithmic problem in directed acyclic graphs, motivated by our train delay research. Roughly speaking, an arc is admissible or not subject to the value of a random variable at its tail node. The core problem is to precompute data such that a walk along admissible arcs will lead to one of the target nodes with a high probability. In the motivating application scenario, this means to meet an appointment with a high chance even if train connections are broken due to train delays. We present an efficient dynamic-programming algorithm for the generic case. The algorithm allows us to maximize the probability of success or, alternatively, optimize other criteria subject to a guaranteed probability of success. Moreover, we customize this algorithm to the application scenario. For this scenario, we present computational results based on real data from the national German railway company. The results demonstrate that our approach is superior to the natural approach, that is, to find a fast and convenient connection and to identify alternative routes for all tight train changes where the probability that the change breaks due to delays is not negligible

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design

    Robust Routing in Urban Public Transportation: Evaluating Strategies that Learn From the Past

    Get PDF

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Algorithm Engineering for Adaptive Route Planning

    Get PDF

    Recoverable Robust Timetable Information ∗

    No full text
    Timetable information is the process of determining a suitable travel route for a passenger. Due to delays in the original timetable, in practice it often happens that the travel route cannot be used as originally planned. For a passenger being already en route, it would hence be useful to know about alternatives that ensure that his/her destination can be reached. In this work we propose a recoverable robust approach to timetable information; i.e., we aim at finding travel routes that can easily be updated when delays occur during the journey. We present polynomial-time algorithms for this problem and evaluate the performance of the routes obtained this way on schedule data of the German train network of 2013 and simulated delay scenarios
    corecore