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1 Preface

1.1 Introduction

The application of mathematical optimization techniques to real-world problems often
bears difficulties, since the calculated solutions are in many cases not suitable for the
respective application. There are many reasons for this obstacle, two of which are that
most real-world problems are of multi-objective nature and that the input data is either
not known beforehand or is subject to change.

For some motivational examples, first, consider being a farmer deciding which crops to
grow in the coming years on your short rotation coppice. For this, you have to consider
multiple objectives, such as maximizing your harvest or minimizing the harvesting diffi-
culties. These objectives are contradictory, since the bigger the crops grow, the harder to
harvest they become. Obviously, you are not sure what your harvest will be in the next
years and also the difficulties when harvesting might increase due to different weather
conditions, rigidity of the soil, etc. Thus, deciding which crops to grow requires the
optimization of multiple objectives under uncertainty.

Another example is buying a car. Here, you would want to buy the car with the
highest comfort and lowest energy consumption for the cheapest price. Furthermore,
both price and consumption might be uncertain, as you have to decide between gas or
electric drive, and you do not know how the oil and electricity prices develop in the next
years or what tax benefits you might get for owning an eco-friendly car. Therefore, also
choosing a car is a decision optimizing multiple objectives under uncertainty.

For another example, imagine being a software developer. For your next project, you
can decide between different games you want to publish in the coming years. All these
games take different (uncertain) times to develop, and have different impact factors
on the respective communities (e.g., strategy or action). You want to minimize the
production cost (which is uncertain due to the uncertain time horizon) and maximize
the impact factor (which is also uncertain due to the ever changing nature of human
desires). Again, multiple objectives have to be optimized under uncertainty.

Another application are timetable information systems which often use shortest path
algorithms. Here, one would have to deal with delays of the vehicles, resulting in an un-
certain travel time or uncertain number of transfers. Multi-objective shortest path prob-
lems have already been studied algorithmically in Disser et al. (2008), Müller-Hannemann
and Schnee (2007), while uncertain shortest path problems in public transportation have
been studied, e.g., by Goerigk et al. (2013a,b).

It is clear that the optimization of multiple objectives under uncertainty is applicable
in various fields of real life. Both multi-objective optimization techniques and techniques
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Chapter 1 Preface

to handle uncertainties in the problem formulation have been developed by the respective
mathematical communities.

In this thesis, a connection between the two fields of multi-objective and robust op-
timization is presented which can be a helpful tool to approach real-world optimization
problems of both multi-objective and uncertain nature, as is shown in Chapter 2.5 on a
practical example. The structure of the thesis is as follows. In Chapter 1.2.1 and Chap-
ter 1.2.2, we give a short literature review of uncertain single objective and uncertain
multi-objective optimization and present an introduction into the various approaches
which can be found in the literature to handle uncertain data in both single and multi-
objective problems. In Chapter 1.3, we repeat basic concepts, notation, and solution
techniques from deterministic multi-objective optimization and introduce our notation
for uncertain multi-objective optimization. In Chapter 1.3.3, we also give an introduction
into the field of set-valued optimization, which is connected to uncertain multi-objective
optimization as is investigated in Chapters 2.3 and 2.4.

In Chapter 2, the publications contributing to this thesis’ results are summarized and
the key results are presented. In Chapter 3, the common theme between the publications
is discussed as well as the obtained results and their scientific value. The thesis ends
with a conclusion in Chapter 4, pointing out open questions and aspects of future work.

1.2 Literature Review

1.2.1 Uncertain Single Objective Optimization

In mathematical optimization, handling uncertainties in the problem formulation is an
important step before the obtained solutions are applicable in reality. Therefore, it is
necessary to analyze the sensitivity of an (optimal) solution against disturbances of the
input data. In the literature on uncertain single objective optimization problems, this is
often done as an a posteriori step, namely sensitivity analysis. For an overview of this
topic, see Saltelli et al. (2000).

In contrast to the a posteriori step of sensitivity analysis, stochastic programming
and robust optimization provide tools for considering the uncertainty already in the
optimization phase itself. In stochastic optimization, some probabilistic information
about the different realizations of the uncertain input data is given or assumed. The
new objective is then to optimize, e.g., the mean objective value over all scenarios, the
variation over all scenarios, and a combination of both. Various approaches to stochastic
optimization exist, for an overview and introduction, see, e.g., Birge and Louveaux
(2011).

Robust optimization, on the other hand, does not assume any kind of probabilistic
information about the various realizations (also called scenarios) of the uncertain input
data. Instead, it minimizes a worst case and is therefore applied when it is required to
hedge against all possible realizations of the uncertain input data.

Whether stochastic or robust optimization is applied is highly dependent on the spe-
cific application and its needs.
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Literature Review Section 1.2

In this thesis, we concentrate on the topic of robust optimization. Initially developed
for single objective optimization problems, many concepts of what is considered to be a
robust solution to an uncertain optimization problem have been presented in the liter-
ature. One of the most famous concepts is the concept of minmax robustness, initially
presented by Soyster (1973) and extensively researched, see, e.g., Ben-Tal et al. (2009)
for many results on this topic.

The idea of the concept of minmax robustness is to find a solution which is feasible
to the problem in every scenario and hedges against the worst case of all scenarios.
Finding minmax robust optimal solutions is therefore a two-stage problem which is hard
to handle in general. However, many results for special classes of optimization problems
can be found in the literature. Ben-Tal and Nemirovski (1999) considered uncertain
linear single objective optimization problems and were able to reformulate the two-stage
problem of finding minmax robust optimal solutions (minimizing the worst case of all
scenarios over the feasible set) as a one-stage linear optimization problem. Ben-Tal and
Nemirovski (1998) considered quasiconvex single objective optimization problems and
were able to significantly reduce the set of scenarios to be considered. More results
concerning this concept of robustness can be found, e.g., in Ben-Tal et al. (2009).

Many other interpretations of robustness for single objective optimization problems
exist. Worst case regret robustness, see, e.g., Kouvelis and Yu (1997), is a second very
prominent concept. Here, a solution is seen as robust optimal if it is feasible for every
scenario and minimizes the worst case regret, i.e., the maximal difference between the
objective value of the robust solution and the best possible objective value in each
scenario.

Both the concepts of minmax robustness and of worst case regret robustness are rather
conservative since they both hedge against a worst case and do not take into account
any information about the solution’s performance in the other scenarios.

To overcome this strictness, various other concepts have been proposed in the liter-
ature, see, e.g., Fischetti and Monaci (2009), Schöbel (2013) for the concept of light
robustness. For this concept, a nominal scenario is defined, which is seen as the most
important scenario for the respective application, e.g., the most likely scenario or some
kind of standard. A solution is then feasible for the light robust version of the problem
if its objective value in the nominal scenario does not differ more than a pre-defined
threshold from the optimal objective value of the nominal scenario. Out of all these
feasible solutions the one minimizing the worst case or worst case regret is chosen.

Another concept is called recovery robustness, see, e.g., Erera et al. (2009), Goerigk
and Schöbel (2011), Liebchen et al. (2009) for different notions. Here, the problem
formulation usually includes two types of variables. The variables of the first type are
to be fixed already in the optimization step, while the other variables can be adjusted
after the actual scenario is known. With this, the strictness of a solution being feasible
for every possible scenario is overcome.

Recently, an overview of the different robustness concepts for single objective opti-
mization problems has been presented by Goerigk and Schöbel (2013).
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Chapter 1 Preface

1.2.2 Uncertain Multi-Objective Optimization

As pointed out in Chapter 1.1, real-world optimization problems often are of a multi-
objective nature (more examples can be found, e.g., in Stewart et al. (2008)). Thus,
besides being of uncertain nature, many problems require a multi-objective approach as
well.

However, handling uncertainties in multi-objective optimization problems is a rather
young field of research. The first investigations in this area did not concentrate on the
classical concepts of robustness. Most of the work in this area is related to the con-
cept of robustness presented by Branke (1998) initially for single objective optimization
problems. Here, the objective function is replaced by its mean value, namely the average
function value of a pre-defined neighborhood of the considered point.

Based on this concept, Deb and Gupta (2006) introduced two concepts of robustness
for multi-objective optimization problems. In the first one, the objective vector is re-
placed by the vector consisting of the mean values of each original component. Deb and
Gupta (2006) then call efficient solutions to the resulting multi-objective optimization
problem robust solutions to the original problem. The second concept includes the mean
functions into the constraints as the respective objective components are not allowed
to differ from their respective mean value by more than a pre-defined threshold. The
authors consider the latter approach to be more practical as the user is able to control
the desired level of robustness by the pre-defined threshold.

Deb and Gupta’s concepts have been extended by several other authors. E.g., Barrico
and Antunes (2006) introduce the degree of robustness by measuring how far a pre-
defined neighborhood of a solution can be extended while containing only solutions
which do not differ from the objective value of the original solution more than a certain
threshold. Moreover, Gunawan and Azarm (2005) introduce the so-called sensitivity
region in the space of the uncertain parameters, which defines how far the uncertain
parameters may vary without the objective value of the solution violating pre-defined
variation constraints. The authors also introduce a worst case sensitivity region, namely
a maximum circle in the sensitivity region in order to overcome the difficulty of the
sensitivity region being asymmetric.

A different approach has been adopted by Dellnitz and Witting (2009), Witting et al.
(2012), and extensively studied by Witting (2012). They consider the uncertainty in the
objective function to be given as a parameter and use numerical path-following methods
and multi-objective optimization techniques in order to construct paths in the sets of
substationary points dependent on the uncertain parameter. A minimizer of the length
of the resulting path is then called a robust solution.

Another approach to concepts of robustness for multi-objective optimization prob-
lems would be an extension of the classical concepts of robustness for single objective
optimization problems. However, this approach has only been adopted very recently,
when some extensions of the classical concept of minmax robustness for single objective
optimization problems have been presented throughout the literature. Kuroiwa and Lee
(2012) presented a first approach for this extension, where they replace each objective
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function by their respective worst case over all scenarios and thus obtain a vector of worst
cases. An efficient solution to the resulting deterministic multi-objective optimization
problem is called a robust solution. This approach has been adopted also by others.
Fliege and Werner (2014) apply this concept in order to treat uncertain multi-objective
portfolio selection problems, an application in uncertain game theory is presented by Yu
and Liu (2013), and an application of uncertain multi-objective optimization problems
in proton therapy for cancer treatment, using this concept of robustness is presented by
Chen et al. (2012).

Doolittle et al. (2012) present another approach to extend concepts of robustness for
single objective optimization problems which is equivalent to the approach of Kuroiwa
and Lee (2012). Similar as Ben-Tal and Nemirovski (1998) for single objective op-
timization problems, Doolittle et al. (2012) reformulate the uncertain multi-objective
optimization problem with additional variables, each modeling the worst case of one ob-
jective function. These new variables form a new objective vector and efficient solutions
to the resulting optimization problem are called robust.

A different extension of minmax robustness to uncertain multi-objective optimization
problems has been presented by Avigad and Branke (2008). Here, the worst case of
the objective vector is not applied to each component, but to the vector itself, yielding
a deterministic multi-objective optimization problem over the uncertainty set, thus the
worst case is in fact a set of scenarios. The authors then present an evolutionary al-
gorithm for computing robust solutions, i.e., solutions where the worst case set is not
dominated by another worst case set. More precisely, such solutions are not contained
in the set resulting from a different set of worst case solutions with the negative orthant
of Rk fixed to it. This is also one of the approaches followed in this thesis and will be
explained in more detail in Chapter 2.1.

Before summarizing the publications contributing to this thesis in Chapter 2, we
shortly introduce some notation in Chapter 1.3. After introducing the notation for
deterministic multi-objective optimization as well as repeating some solution techniques
for deterministic multi-objective optimization problems in Chapter 1.3.1, we introduce
an uncertain multi-objective optimization problem and the terminology connected to this
problem in Chapter 1.3.2. In Chapter 1.3.3, we introduce the terminology of set-valued
optimization, which will be important later on for Chapters 2.3 and 2.4.

1.3 Notation

Throughout the thesis, we shorten the text by using a [././.] notation. This can be
understood as follows. Instead of writing “The tall tree is 15m high, the medium-sized
tree is 10m high, and the small tree is 5m high.”, we shorten this by writing “The
[tall/medium-sized/small] tree is [15/10/5]m high.”.
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1.3.1 Deterministic Multi-Objective Optimization

In this thesis, we consider a standard deterministic multi-objective optimization problem
P for a given feasible set X ⊆ Rn, and an objective vector f : X 7→ Rk to be given as

P min f(x)
s.t. x ∈ X .

Due to the lack of a total order on Rk, in multi-objective optimization, one usually uses
the following order relations, given two points y1, y2 ∈ Rk (see, e.g., Ehrgott (2005)).

y1 5 y2 :⇔ y2i ∈ [y1i ,∞) ∀ i ∈ {1, . . . , k},
y1 ≤ y2 :⇔ y1 5 y2 and y1 6= y2,

y1 < y2 :⇔ y2i ∈ (y1i ,∞) ∀ i ∈ {1, . . . , k}.

Here, we say that a point y1 is [strictly/·/weakly] non-dominated, if there does not exist
another point y2 with y2[5 / ≤ / <]y1.

Now, based on the initial idea of Pareto (1909), the goal of the problem P is to
find [strictly/·/weakly] efficient solutions x ∈ X , i.e., solutions whose objective vector is
[strictly/·/weakly] non-dominated in the set of objective vectors of all solutions x ∈ X .

There exist various solution techniques for finding [strictly/·/weakly] efficient solu-
tions, for an overview, see, e.g., Ehrgott (2005). We want to point out three of these
techniques, namely the weighted sum scalarization method, the ε-constraint method,
and the weighted Tschebyscheff method, since these techniques are extended to solve
uncertain multi-objective optimization problems in Chapter 2.

Given a scalar vector λ ∈ Rk, the weighted sum scalarization method combines the
respective objective functions fi(x) in a weighted sum

k∑

i=1

λifi(x),

and replaces the objective vector f with this sum. We obtain a deterministic single
objective optimization problem

WP(λ) min
∑k

i=1 λifi(x)
s.t. x ∈ X

which is then to be solved. Now, an optimal solution to the single objective problem
WP(λ) is an efficient solution to P.

Theorem 1.3.1 (see, e.g., Ehrgott (2005), Proposition 3.9). Given λ ∈ Rk [≥/>/≥]. If
x ∈ X is [the unique/an/an] optimal solution to WP(λ), then x is [a strictly/an/a
weakly] efficient solution to P.

Furthermore, if for every i ∈ {1, . . . , k}, fi and X are convex, then the weighted sum
scalarization does find every efficient solution to P.

6



Notation Section 1.3

Theorem 1.3.2 (see, e.g., Ehrgott (2005), Proposition 3.10). Let X be a convex set,
and let fi be convex for every i ∈ {1, . . . , k}. For every weakly efficient solution x to P,
there exists λ ∈ Rk≥, such that x is an optimal solution to WP(λ).

Another important technique for calculating efficient solutions to deterministic multi-
objective optimization problems is the ε-constraint method. Given a scalar vector ε ∈ Rk≥,
for every i ∈ {1, . . . , k}, we define the single objective optimization problem

εCP(ε, i) min fi(x)
s.t. fj(x) ≤ εj ∀ j 6= i

x ∈ X .

An optimal solution to εCP(ε, i) is a [strictly/weakly] efficient solution to P.

Theorem 1.3.3 (see, e.g., Ehrgott (2005), Propositions 4.3 and 4.4). Given some ε ∈
Rk≥, [the unique/an] optimal solution x ∈ X to εCP(ε, i) for some i ∈ {1, . . . , k} is a
[strictly/weakly] efficient solution to P.

Furthermore, the ε-constraint method is in fact able to find all efficient solutions to
an arbitrary multi-objective optimization problem.

Theorem 1.3.4 (see, e.g., Ehrgott (2005), Proposition 4.5). Given some ε ∈ Rk≥, a
solution x ∈ X is an efficient solution to P if and only if it is an optimal solution to
εCP(ε, i) for all i ∈ {1, . . . , k}.

The weighted Tschebyscheff method, presented by Steuer and Choo (1983), also de-
fines a new single objective optimization problem in order to calculate efficient solutions
to a multi-objective optimization problem.

Theorem 1.3.5 (Steuer and Choo (1983), Theorem 3.1). Given a multi-objective opti-
mization problem P, λ ∈ Rk= with

∑k
i=1 λi = 1, ε ∈ Rk=, and a reference point

z(ε) =




min
x∈X

f1(x)

...
min
x∈X

fk(x)


− ε.

If x ∈ X is the uniquely optimal solution to

TP(z, λ) min max
i∈{1,...,k}

λi(fi(x)− zi(ε))
s.t. x ∈ X ,

then x is an efficient solution to P.

In order to overcome the strong assumption that x is uniquely optimal for TP(z, λ),
Steuer and Choo (1983) introduced the augmented Tschebyscheff method, which adds
an additional term to the objective function.
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Theorem 1.3.6 (Steuer and Choo (1983), Theorem 3.7). Given a multi-objective opti-
mization problem P, ε ∈ Rk=, and a reference point

z(ε) =




min
x∈X

f1(x)

...
min
x∈X

fk(x)


− ε.

Then, for ρ > 0 and λ ∈ Rk=, if x is an optimal solution to

T aP (z, λ) min max
i∈{1,...,k}

λi(fi(x)− zi(ε)) + ρ

k∑

i=1

(fi(x)− zi(ε))

s.t. x ∈ X ,

then x is an efficient solution to P.

In Chapter 2, we extend the presented solution techniques for solving deterministic
multi-objective optimization problems in order to compute efficient solutions to uncertain
multi-objective optimization problems.

1.3.2 Uncertain Multi-Objective Optimization

In this thesis, as done usually in single objective robust optimization, we consider the
uncertain input data contaminating the formulation of a multi-objective optimization
problem to be given as an uncertainty set U ⊆ Rm, containing all the possible scenarios
(or realizations) of the uncertain input data. For every scenario ξ ∈ U , we obtain a
different multi-objective optimization problem

P(ξ) min f(x, ξ)
s.t. x ∈ X

with f : X × U 7→ Rk.

Remark 1.3.7. Note that the uncertainty only concerns the objective function in this
setting but not the constraints. This is motivated by the fact that in the classical concept
of minmax robustness, a solution is only seen as feasible to the robust problem, if it is
feasible for every scenario. Thus, if we consider X to be uncertain as well (yielding a
different feasible set X (ξ) for every ξ ∈ U), every robust solution x to the uncertain
problem has to satisfy the constraint x ∈ ⋂ξ∈U X (ξ). Therefore, redefining

⋂
ξ∈U X (ξ)

to be the feasible set of our uncertain optimization problem would yield an optimization
problem where the uncertainty only affects the objective function.

Now, given an uncertainty set U ⊆ Rm, a feasible set X ⊆ Rn, and an objective vector
f : X × U 7→ Rk, we define an uncertain multi-objective optimization problem P(U) as
the family

P(U) := (P(ξ), ξ ∈ U)

8



Notation Section 1.3

of optimization problems P(ξ). We denote an uncertain single objective optimization
problem (which is just a special case of an uncertain multi-objective optimization prob-
lem) by Ps(U). Furthermore, given a solution x ∈ X to P(U), we denote the set of
images of x under all scenarios by

fU (x) := {f(x, ξ) : ξ ∈ U}.

1.3.3 Set-Valued Optimization

Set-valued optimization considers optimization problems, where the objective value of a
solution is not a single point, but a whole set of points. Given a linear topological space
Y , we denote such an objective function by f : X ⇒ Y , indicating that the image f(x)
of every x ∈ X under f is not necessarily a singleton, but possibly a set f(x) ⊆ Y . Now,
minimizing f over a feasible set X is not intuitively clear, since one has to define an
order relation between the objective sets of the different solutions x ∈ X , i.e., between
the sets f(x) ⊆ Y .

Relations between sets are often defined with the help of cones, therefore, we repeat
some essential definitions.

Definition 1.3.8. Given a linear topological space Y . The dual space Y ∗ of Y is the
set of all linear maps y∗ : Y 7→ R. We call a set C ⊂ Y a cone if

∀y ∈ C, ∀λ ∈ R≥ : λy ∈ C.

A cone C is called pointed if 0 ∈ C. It is called proper if for all y ∈ C

(y ∈ C ∧ −y ∈ C)⇔ y = 0.

The dual cone to C is defined as the set

C∗ := {y∗ ∈ Y ∗| ∀y ∈ C : y∗(y) = 0},

and the quasi-interior of C∗ is defined as the set

C# := {y∗ ∈ C∗| ∀y ∈ C \ {0} : y∗(y) > 0}.

In the literature concerned with set-valued optimization, various order relations (we
denote an arbitrary order relation by �), i.e., definitions of the dominance of sets, have
been introduced (see, e.g., Eichfelder and Jahn (2012), Kuroiwa (1998, 1999), Nishnian-
idze (1984), Young (1931)). For giving an idea of the various order relations, we present
the upper-type set-relation, introduced by Kuroiwa (1998, 1999).

Definition 1.3.9 (Upper-Type Set-Relation, see Kuroiwa (1998, 1999)). Given a linear
topological space Y , let A,B ⊆ Y be arbitrarily chosen sets and C ⊂ Y a proper closed
convex and pointed cone. Then the upper-type set-relation �uC is defined by

A �uC B :⇐⇒ A ⊆ B − C ⇐⇒ ∀a ∈ A ∃b ∈ B : a ∈ b− C.

9
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Considering these definitions, the formulation of a set-valued optimization problem is
as follows.

Given a linear topological space Y , an order relation �, some feasible set X , and a
set-valued objective function f : X ⇒ Y , a set-valued optimization problem is to find a
solution x ∈ X such that there is no solution x ∈ X \ {x} such that f(x) � f(x).

The connection of set-valued optimization and uncertain multi-objective optimization
is investigated in Chapters 2.3 and 2.4.
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2 Cumulative Part of the Dissertation

In this Chapter, we summarize five publications contributing to this thesis’ scientific
value. In Chapter 2.1, Ehrgott et al. (2014) (see Addendum A) is summarized. Here, the
concept of minmax robustness is extended from single objective optimization problems to
multi-objective optimization problems using a different approach than Kuroiwa and Lee
(2012). The new approach is investigated closely, and several algorithms for calculating
the respective solutions are presented.

Chapter 2.2 considers the publication Ide and Schöbel (2013) (see Addendum B),
where other concepts of robustness for multi-objective optimization problems are in-
troduced, namely the concepts of highly, flimsily, and lightly robust efficiency. These
concepts are compared with each other as well as with the concept of minmax robustness
from Chapter 2.1, and the concept of robustness presented by Kuroiwa and Lee (2012).

Ide and Köbis (2013) (Chapter 2.3, see Addendum C) study the connection between
uncertain multi-objective optimization, as introduced by Ehrgott et al. (2014) and set-
valued optimization. From this connection, they derive other concepts of efficiency
for uncertain multi-objective optimization problems and present algorithms for finding
respective solutions. These concepts are extended by Ide et al. (2014) (Chapter 2.4,
see Addendum D) to general spaces. Furthermore, the authors extend algorithms for
calculating the respective solutions to general spaces and cones, and by this are able to
formulate algorithms for solving special classes of set-valued optimization problems.

Finally, in Ide et al. (2013) (Chapter 2.5, see Addendum E), a real-world application of
uncertain multi-objective optimization is presented. The authors describe the modeling
process and investigate on the practical value of minmax robust efficient solutions as
presented in Ehrgott et al. (2014).

The connection between the publications is pointed out throughout this chapter, and
discussed in detail in Chapter 3.

2.1 Minmax Robustness for Multi-Objective Optimization
Problems

In this section, the publication Ehrgott et al. (2014) (see Addendum A) is summarized.
The publication is joint work with Prof. Dr. Matthias Ehrgott and Prof. Dr. Anita
Schöbel. The author’s own contribution is summarized at the end of the section.

In Ehrgott et al. (2014), the authors introduce an extension of the concept of minmax
robustness for single objective optimization problems, as introduced by Soyster (1973)
and studied, e.g., by Ben-Tal and Nemirovski (1998). Given an uncertain single objective
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optimization problem Ps(U), the general idea of this classical concept of robustness is
to search for solutions which minimize the worst case that can occur, i.e., solutions to
the problem

min sup
ξ∈U

f(x, ξ)

s.t. x ∈ X .
Now, assuming f to be not single objective, but multi-objective, the authors point out
that the definition of a worst case is not clear anymore due to the lack of a total order
on Rk. Thus, an extension of the concept of minmax robustness to multi-objective
optimization problems is not directly possible.

Therefore, the authors introduce an extension of minmax robustness to multi-objective
problems, namely the concept of robust efficiency, in a different way. They use the set
of respective objective values of a solution under all the different scenarios and obtain
the following definition.

Definition 2.1.1 (Robust Efficiency, see Ehrgott et al. (2014), Definition 3.1). Given
an uncertain multi-objective optimization problem P(U), a solution x ∈ X is called

• robust weakly efficient, if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk>;

• robust efficient, if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk≥;

• robust strictly efficient, if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk=.

Since we introduce several definitions of robust efficiency in this thesis, and in order
to be consistent with the notation of the other publications, in the following, we denote
this concept by minmax robust efficiency.

The authors show that these definitions fit into the existing frameworks of both robust
and multi-objective optimization, i.e., for the special cases |U| = 1 or k = 1, the definition
of minmax robust efficiency reduces to the definition of efficiency for deterministic multi-
objective optimization problems (see Ehrgott et al. (2014), Lemma 3.5) and to the
definition of minmax robustness for single objective optimization problems, respectively
(see Ehrgott et al. (2014), Lemma 3.6).

Furthermore, algorithms for computing minmax robust efficient solutions are devel-
oped. First, the authors extend the well-known weighted sum scalarization method
from deterministic multi-objective optimization (see Chapter 1.2.2) to the weighted sum
scalarization method for calculating minmax robust efficient solutions to uncertain multi-
objective optimization problems.

To this end, the following (deterministic single objective) optimization problem is
defined (compare Ehrgott et al. (2014), Section 4.1) for a given λ ∈ Rk≥.

12
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WP(U)(λ) min sup
ξ∈U

∑k
i=1 λifi(x, ξ)

s.t. x ∈ X
Again, the authors show that this weighted sum formulation fits into both the frame-
work of multi-objective optimization and robust optimization, since in the deterministic
(multi-objective) case, the problem is the same as the optimization problem obtained
by using the deterministic weighted sum scalarization method, and in the single objec-
tive (uncertain) case, it is equivalent to the robust counterpart of the original problem
(compare Ehrgott et al. (2014), Remark 4.2).

In Theorem 4.3, the authors then show that solving WP(U)(λ) in fact yields minmax
robust efficient solutions.

Theorem 2.1.2 (Ehrgott et al. (2014), Theorem 4.3). Given an uncertain multi-objective
optimization problem P(U), the following statements hold.

a) If x ∈ X is the unique optimal solution to WP(U)(λ) for some λ ∈ Rk≥, then x is
minmax robust strictly efficient for P(U).

b) If x ∈ X is an optimal solution toWP(U)(λ) for some λ ∈ Rk> and max
ξ∈U

∑k
i=1 λifi(x, ξ)

exists for all x ∈ X , then x is minmax robust efficient for P(U).

c) If x ∈ X is an optimal solution toWP(U)(λ) for some λ ∈ Rk≥ and max
ξ∈U

∑k
i=1 λifi(x, ξ)

exists for all x ∈ X , then x is minmax robust weakly efficient for P(U).

Using this theorem, the authors present a first algorithm for computing minmax robust
efficient solutions (Ehrgott et al. (2014), Method 1), and illustrate the solutions obtained
with this method in a small example (Ehrgott et al. (2014), Example 4.5). The ques-
tion, whether the weighted sum scalarization method (as in deterministic multi-objective
optimization, see Theorem 1.3.2) does find all efficient solutions to an uncertain multi-
objective optimization problem if f and X are convex, is raised but not answered (this
in fact holds true as shown in Chapter 2.3). In Remark 4.4, the authors point out that
even though it is not possible to give an idea of the complexity of WP(U)(λ) in general,
for a linear uncertain multi-objective optimization problem P(U), WP(U)(λ) is a linear
optimization problem with 1 additional variable and |U| additional linear constraints for
each λ ∈ Rk≥.

A second approach for calculating minmax robust efficient solutions is presented in Sec-
tion 4.2. Here, the well-known ε-constraint scalarization method for calculating efficient
solutions to (deterministic) multi-objective optimization problems (see Chapter 1.2.2) is
extended to uncertain multi-objective optimization problems.

To this end, for a given ε ∈ Rk≥, and an i ∈ {1, . . . , k}, a (deterministic single objective)
optimization problem is defined, namely

εCP(U)(ε, i) min sup
ξ∈U

fi(x, ξ)

s.t. fj(x, ξ) 5 εj ∀ j 6= i, ∀ ξ ∈ U
x ∈ X .

13
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Again, it is shown that optimal solutions to this optimization problem are minmax robust
efficient solutions to P(U):

Theorem 2.1.3 (Ehrgott et al. (2014), Theorem 4.7). Given an uncertain multi-objective
optimization problem P(U), the following statements hold.

a) If x ∈ X is the unique optimal solution to εCP(U)(ε, i) for some ε ∈ Rk and some
i ∈ {1, . . . , k}, then x is minmax robust strictly efficient for P(U).

b) If x ∈ X is an optimal solution to εCP(U)(ε, i) for some ε ∈ Rk and some i ∈ {1, . . . , k}
and max

ξ∈U
fi(x, ξ) exists for all x ∈ X , then x is minmax robust weakly efficient for

P(U).

Analogous to Theorem 2.1.2, the authors use Theorem 2.1.3 to develop a second
algorithm (Ehrgott et al. (2014), Method 2) for computing minmax robust efficient
solutions. As for the weighted sum scalarization method, an example is given in which the
solutions obtained via this method are illustrated (Ehrgott et al. (2014), Example 4.9).
In this example, the authors also show that in contrast to the setting of deterministic
multi-objective optimization (see Theorem 1.3.4), the ε-constraint method does not find
all efficient solutions to an uncertain multi-objective optimization problem. In Remark
4.8, they point out that even though it is again not possible to give an idea of the
complexity of εCP(U)(ε, i) in general, for a linear uncertain multi-objective optimization
problem P(U), εCP(U)(ε, i) is a linear optimization problem with 1 additional variable

and k · |U| additional linear constraints for each ε ∈ Rk≥ and each i ∈ {1, . . . , k}.
The third method for computing minmax robust efficient solutions presented in Ehrgott

et al. (2014) is the objective-wise worst case method. For this, the authors define the
same (deterministic) multi-objective optimization problem as Kuroiwa and Lee (2012)
used for their concept of multi-objective robustness, namely

OWCP(U) min fowcU (x)

s.t. x ∈ X ,

where

fowcU (x) :=




sup
ξ∈U

f1(x, ξ)

sup
ξ∈U

f2(x, ξ)

...
sup
ξ∈U

fk(x, ξ)



.

Ehrgott et al. (2014) show in Remark 4.10 that OWCP(U) fits into the existing frame-
works of both (deterministic) multi-objective and (single objective) robust optimization.
After that, it is shown that [strictly/weakly] efficient solutions to OWCP(U) are also
minmax robust [strictly/weakly] efficient solutions to P(U) in Theorem 4.11.

14
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Theorem 2.1.4 (Ehrgott et al. (2014), Theorem 4.11). Given an uncertain multi-
objective optimization problem P(U).

a) Let x ∈ X be a strictly efficient solution to OWCP(U). Then x is minmax robust
strictly efficient for P(U).

b) Let max
ξ∈U

fi(x, ξ) exist for all i ∈ {1, . . . , k} and all x ∈ X . Let x be a weakly efficient

solution to OWCP(U). Then x is minmax robust weakly efficient for P(U).

Similarly as before, the authors use Theorem 2.1.4 to develop a third algorithm
(Ehrgott et al. (2014), Method 3) for computing minmax robust efficient solutions and
illustrate the solutions obtained by this method in Example 4.13. In Remark 4.12, they
point out that even though it is again not possible to give an idea of the complexity of
OWCP(U) in general, for a linear uncertain multi-objective optimization problem P(U),
using the (deterministic) weighted sum scalarization method for solving OWCP(U) yields
a linear single objective optimization problem with k additional variables and k ·|U| addi-
tional linear constraints for each λ ∈ Rk≥. Using the (deterministic) ε-constraint method
for solving OWCP(U) yields k linear single objective optimization problems with 1 addi-

tional variable and k · |U| additional linear constraints for each ε ∈ Rk≥.

Comparing the three methods for calculating minmax robust efficient solutions, the
authors show in Examples 4.5 and 4.9 that there are both solutions, which can be
obtained by the ε-constraint method, but not by the weighted sum scalarization method,
and solutions, which can be obtained by the weighted sum scalarization method, but
not by the ε-constraint method. Furthermore, they develop a strong connection between
Methods 2 and 3.

Theorem 2.1.5 (Ehrgott et al. (2014), Theorem 4.15). Every minmax robust (strictly/
weakly) efficient solution x ∈ X to P(U) found by the ε-constraint method (Method 2)
can also be found by the OWC-method (Method 3). Furthermore, every minmax robust
(strictly/weakly) efficient solution x ∈ X to P(U) found by the OWC-method using the
(deterministic) ε-constraint method can also be found by Method 2.

Concluding the comparison of the methods, the authors show in Remark 4.16, that
there exist minmax robust efficient solutions which cannot be obtained by any of the
presented methods.

In Section 5, the authors introduce the special class of objective-wise uncertain multi-
objective optimization problems, namely uncertain multi-objective optimization prob-
lems, where the uncertainties in the objective functions are independent of each other.

Definition 2.1.6 (Objective-wise uncertainty, see Ehrgott et al. (2014), Definition 5.1).
An uncertain multi-objective optimization problem P(U) is of objective-wise uncertainty,
if the uncertainties of the objective functions f1, . . . , fk are independent of each other,
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namely if U = U1 × · · · × Uk with Ui ∈ Rmi such that
∑k

i=1mi = m and

f(x, ξ) =



f1(x, ξ1)

...
fk(x, ξk)


 ,

where ξi ∈ Ui.
This special class of optimization problems has some interesting properties, as the

authors show in the following. First, finding minmax robust efficient solutions to P(U)
is equivalent to finding efficient solutions to OWCP(U).
Theorem 2.1.7 (Ehrgott et al. (2014), Theorem 5.4). Given an uncertain multi-objective
optimization problem P(U) of objective-wise uncertainty, where max

ξ∈U
fi(x, ξ) exists for

all x ∈ X and i ∈ {1, . . . , k}. Then

x is minmax robust [strictly/·/weakly] efficient for P(U)

⇔
x is [strictly/·/weakly] efficient for OWCP(U).

From this Theorem, the authors deduce that for problems of objective-wise uncer-
tainty, the ε-constraint method (Method 2) is in fact able to find all the minmax robust
efficient solutions.

Corollary 2.1.8 (Ehrgott et al. (2014), Corollary 5.6). Given an uncertain multi-
objective optimization problem P(U) of objective-wise uncertainty, where max

ξ∈U
fi(x, ξ)

exists for all x ∈ X and all i ∈ {1, . . . , k}. Then x ∈ X is minmax robust efficient for
P(U) if and only if there is an ε ∈ Rk such that x is an optimal solution to εCP(U)(ε, i)
for all i.

Furthermore, the authors show that a solution to an uncertain multi-objective opti-
mization problem of objective-wise uncertainty with a convex uncertainty set, is minmax
robust efficient if and only if it is minmax robust efficient to the uncertain multi-objective
optimization problem obtained by replacing the uncertainty set with its vertices (as done
similarly by Ben-Tal and Nemirovski (1998) for uncertain single objective optimization
problems).

Theorem 2.1.9 (Ehrgott et al. (2014), Theorem 5.9). Given an uncertain multi-objective
optimization problem P(U) of objective-wise uncertainty, where U = {ξ1, . . . , ξm} and

f1(x, ξ), . . . , fk(x, ξ) : Rn × conv (U)→ R

are quasiconvex in ξ. Then

x is minmax robust [strictly/·/weakly] efficient for P(U)

⇔
x is minmax robust [strictly/·/weakly] efficient for P(conv (U)).
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Section 5 is finalized with some examples showing that neither of the assumptions in
Theorem 2.1.9 of objective-wise uncertainty of P(U) and quasiconvexity of the objective
functions in ξ can be dropped (Examples 5.10-5.13).

In Section 6, some illustrations of minmax robust efficient solution sets are presented
and solutions found by the different solution techniques are compared. Furthermore, an
insight into the ε-constraint method is given in Figure 9. The paper concludes with a
short summary of the results and future work (Section 7).

Own contribution:
While the general idea of the concept of minmax robust efficiency was developed

together with the other authors of the paper, the majority of the proofs and theorems
were set down by myself (of course with consultation of the other authors). The examples
throughout the paper were provided by myself and also the illustrations of the different
minmax robust efficient sets found by the various techniques were done by myself. In
summary, the major part of this publication is my own work.

2.2 Robustness for Uncertain Multi-Objective Optimization

In this section, the publication Ide and Schöbel (2013) (see Addendum B) is summa-
rized, which is joint work with Prof. Dr. Anita Schöbel and, again, the author’s own
contribution is summarized at the end of the section.

In this publication, again uncertain multi-objective optimization problems are consid-
ered.

The authors recall the concept of minmax robust efficiency, as presented by Ehrgott
et al. (2014), which they call set-based minmax robust efficiency. Furthermore, they
repeat the concept of robustness introduced by Kuroiwa and Lee (2012), which they call
point-based minmax robust efficiency. In this concept, a solution is called point-based
minmax robust efficient, if it is an efficient solution to OWCP(U), as seen in Chapter 2.1.

Furthermore, in Ide and Schöbel (2013), the author introduce new interpretations of
robustness, namely the concepts of flimsily and highly robust efficiency. Moreover, they
extend lightly robust efficiency, introduced by Kuhn et al. (2012) for uncertain multi-
objective optimization problems with only one uncertain objective function, to general
uncertain multi-objective optimization problems.

The concepts of flimsily and highly robust efficiency are rather intuitive.

Definition 2.2.1 (Ide and Schöbel (2013), Definitions 3.1 and 3.2). A solution x ∈ X
is called flimsily robust efficient, if it is efficient for P(ξ) for at least one ξ ∈ U .

A solution is called highly robust efficient, if it is efficient for P(ξ) for all ξ ∈ U .

Obviously, every highly robust efficient solution to P(U) is also flimsily robust efficient.
Furthermore, in Lemma 3.6, the authors present a class of uncertain multi-objective
optimization problems for which always a highly robust efficient solution exists, namely
problems for which at least one of the objective functions is not uncertain and has a
unique minimizer.
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The third concept introduced in this publication is the concept of lightly robust effi-
ciency, which is an extension of the concept of lightly robust efficiency presented in Kuhn
et al. (2012) to general uncertain multi-objective optimization problems. The concept
of lightly robust efficiency is derived from the concept of light robustness for uncer-
tain single objective optimization problems (compare, e.g., Fischetti and Monaci (2009),
Schöbel (2013)). For the concept of light robustness, a nominal scenario is defined, i.e.,
a scenario which is for some reason seen to be most important or most likely. Then,
out of all the solutions whose objective value does not differ from the optimal objective
value in the nominal scenario by more than a predefined threshold, the one minimizing
the worst case objective is chosen.

Ide and Schöbel (2013) generalize this concept for uncertain single-objective optimiza-
tion problems to uncertain multi-objective optimization problems as follows.

Definition 2.2.2 (Lightly Robust Efficiency, see Ide and Schöbel (2013), Definition
3.17). Given an uncertain multi-objective optimization problem P(U) with a nominal
scenario ξ̂ ∈ U , some ε ∈ Rk�, and the set of efficient solutions XE(ξ̂) to P(ξ̂). Then
a solution x ∈ X is called lightly robust efficient for P(U) w.r.t. ε, if it is set-based
minmax robust efficient for

min f(x, ξ)

s.t. fi(x, ξ̂) ≤ fi(x̂, ξ̂) + εi ∀i ∈ {1, . . . , k}
x ∈ X

for some x̂ ∈ XE(ξ̂).

lightly r.e. w.r.t. every ε � 0

lightly r.e. w.r.t. some ε � 0

highly r.e.

s.-b. minmax r.e. p.-b. minmax r.e.

flimsily r.e.

  

 

  
 

 

  

Figure 2.1: Relationships between the various concepts of robust efficiency for the
general setting (from Ide and Schöbel (2013), Figure 9)

18



Robustness for Uncertain Multi-Objective Optimization Section 2.2

The authors investigate the connections and implications between the concepts of
point-based minmax, set-based minmax, highly, flimsily, and lightly robust efficiency.
The various findings and counterexamples are summarized in Figure 2.1, which is cited
from their publication (all implications not marked in the figure follow by transitivity).

The authors point out that a lot of implications do not hold in general (as indicated
in Figure 2.1). Therefore, they consider the question if there are classes of uncertain
multi-objective optimization problems, for which more of these implications hold. In
particular, they investigate if the concept of highly robust efficiency implies all other
concepts of robustness which does not hold in general, as we can see from Figure 2.1.

To this end, the authors investigate the class of objective-wise uncertain optimization
problems as presented in Ehrgott et al. (2014) and Chapter 2.1. As it turns out, in fact
various of the implications which do not hold for the general case do hold for problems
of objective-wise uncertainty. The various results are summarized in Figure 2.2, which
again is cited from Ide and Schöbel (2013).

lightly r.e. w.r.t. every ε � 0

lightly r.e. w.r.t. some ε � 0

highly r.e.

s.-b. minmax r.e. p.-b. minmax r.e.

flimsily r.e.

 

 

  

Figure 2.2: Relationships between the various concepts of robust efficiency for
objective-wise uncertain multi-objective optimization problems (from
Ide and Schöbel (2013), Figure 12)

The authors also investigate, if the reduction of the uncertainty set (as done for set-
based minmax robust efficiency in Theorem 2.1.9) is also possible for the concepts of
flimsily, highly and lightly robust efficiency. Even though the reduction is not possible
for the concept of flimsily robust efficiency (Ide and Schöbel (2013), Remark 4.17), it is
possible for lightly robust efficiency.

Corollary 2.2.3 (Ide and Schöbel (2013), Corollary 4.13). Given a discrete uncertainty
set U = {ξ1, . . . , ξm} and an uncertain multi-objective optimization problem P(conv (U))
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of objective-wise uncertainty where

f1(x, ξ), . . . , fk(x, ξ) : Rn × conv (U)→ R

are quasiconvex in ξ. Then

x is lightly robust efficient for P(U)

⇔
x is lightly robust efficient for P(conv (U))

The same holds for highly robust efficiency, whereas for this concept, f has to be affine
in ξ, quasiconvexity is not sufficient.

Theorem 2.2.4 (Ide and Schöbel (2013), Theorem 4.14). Let U = {ξ1, . . . , ξm} and
P(conv (U)) a problem of objective-wise uncertainty where

f1(x, ξ), . . . , fk(x, ξ) : Rn × conv (U)→ R

are affine in ξ. Then

x is highly robust efficient for P(U)

⇔
x is highly robust efficient for P(conv (U))

As done in Ehrgott et al. (2014), the authors show by some counterexamples (Ex-
amples 4.15 and 4.16) that the assumptions in Corollary 2.2.3 and Theorem 2.2.4 can
not be dropped. In the last section of the publication, the authors present an uncertain
bi-objective shortest path problem and use it to illustrate the various concepts and their
advantages and disadvantages.

Own contribution:
While the general idea of the concept of lightly robust efficiency was developed together

with Prof. Dr. Schöbel, the other concepts and the majority of the proofs and theorems
were set down by myself (of course with the consultation of Prof. Dr. Schöbel). The
examples throughout the paper were provided by myself and the summarizing Figures 9
and 12 were done by myself. In summary, the major part of this publication is my own
work.

2.3 Concepts of Efficiency for Uncertain Multi-Objective
Optimization Problems based on Set Order Relations

In the following, the publication Ide and Köbis (2013) (see Addendum C) is summa-
rized, which is joint work with Elisabeth Köbis. The author’s own contribution is again
summarized at the end of the section.
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Ide and Köbis (2013) investigate the connection between the concept of minmax ro-
bust efficiency, as presented in Ehrgott et al. (2014), and set-valued optimization. As
the authors point out, the definition of minmax robust efficiency (see Definition 2.1.1)
inherently implies a set order relation, namely the upper set less order relation (see Defi-
nition 1.3.9). In particular, they give the following definition of minmax robust efficiency
(they call it upper set less ordered efficiency due to its relation to the upper set less order
relation), which is a re-formulation of Definition 2.1.1 using the upper set less ordering
which can be seen directly from Definitions 1.3.9 and 2.1.1.

Definition 2.3.1 (Upper set less ordered efficiency, Ide and Köbis (2013), Definition 6).
Given an uncertain multi-objective optimization problem P(U), a solution x ∈ X is upper
set less ordered [strictly/·/weakly] efficient, if there is no x ∈ X \ {x}, such that

fU (x) �us fU (x) w.r.t. Rk[=/≥/>].

The authors present other concepts of robustness for multi-objective optimization
problems which can be obtained by replacing the upper-type set relation with other set
order relations from the literature.

The first concept presented is the concept of lower set less ordered efficiency, by
replacing the upper set less ordering with the lower set less ordering, originally introduced
by Kuroiwa (1998, 1999).

Definition 2.3.2 (Lower set less order relation, see Kuroiwa (1998, 1999)). Given two
arbitrarily chosen sets A,B ⊂ Rk. Then the lower set less order relation �ls with respect
to Rk[=/≥/>] is defined by

A �ls B ⇐⇒ A+ Rk[=/≥/>] ⊇ B (⇐⇒ ∀b ∈ B ∃a ∈ A : a [5 / ≤ / <] b) .

Using this order relation, the authors then introduce the concept of lower set less
ordered efficiency:

Definition 2.3.3 (Lower set less ordered efficiency, Ide and Köbis (2013), Definition 9).
Given an uncertain multi-objective optimization problem P(U), a solution x ∈ X is called
lower set less ordered [strictly/·/weakly] efficient, if there is no x ∈ X \ {x}, such that

fU (x) �ls fU (x) w.r.t. Rk[=/≥/>].

Having a close look at the definition of the lower set less ordered efficiency, we can see
that a solution x ∈ X satisfies this concept if no other solution x ∈ X \ {x} exists such
that for every scenario ξ ∈ U there is a scenario η ∈ U with

f(x, η)[5 / ≤ / <]f(x, ξ).

This would mean that the best cases of x would dominate the best cases of x. Therefore,
this concept of robustness for uncertain multi-objective optimization problems follows
a different approach than the classical concepts of robustness. Instead of minimizing a
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worst case, this concept implements the idea of minimizing a best case. A solution is
lower set less ordered efficient if its set of best case scenarios is not dominated by the
set of best cases of another solution. Therefore, this concepts represents an optimistic
approach instead of the classical pessimistic approaches of worst case analysis. Thus,
this approach would be suitable for a decision maker who is risk affine instead of risk
averse.

In order to compute lower set less ordered efficient solutions, the authors present var-
ious methods. They extend the weighted sum scalarization technique, the ε-constraint
scalarization technique and the objective-wise worst case method, presented in Chap-
ter 2.1 for calculating minmax robust (upper set less ordered) efficient solutions by
replacing the inner optimization problems

sup
ξ∈U

k∑

i=1

λifi(x, ξ) by inf
ξ∈U

k∑

i=1

λifi(x, ξ)

in Theorem 2.1.2 and
sup
ξ∈U

fi(x, ξ) by inf
ξ∈U

fi(x, ξ)

in Theorems 2.1.3 and 2.1.4, respectively. By this, they obtain analogous results as in
Theorems 2.1.2, 2.1.3, and 2.1.4 and are therefore able to formulate three methods for
computing lower set less ordered efficient solutions (see Ide and Köbis (2013), Theorems
2.4, 2.8, and 2.9).

In Remark 2.5, the authors point out that if the objective function and the feasible
set are convex, the weighted sum scalarization method does in fact find all lower set
less ordered efficient solution and that this also holds for upper set less ordered efficient
solutions which is an important result for the publication by Ehrgott et al. (2014).

They furthermore introduce a fourth method, namely the max-ordering scalarization
for computing lower set less ordered (strictly/weakly) efficient solutions.

Theorem 2.3.4. Given an uncertain multi-objective optimization problem P(U). For
every λ ∈ Rk>, we define the optimization problem

TP(U)(λ) min max
i=1,...,k

inf
ξ∈U

λifi(x, ξ)

s.t. x ∈ X

Now the following statements hold:

(a) If x0 is the unique optimal solution to TP(U)(λ) for some λ ∈ Rk>, then x0 is lower
set less ordered strictly efficient.

(b) If x0 is an optimal solution to TP(U)(λ) for some λ ∈ Rk> and

min
ξ∈U

λifi(x, ξ)

exists for all x ∈ X , i = 1, . . . , k, then x0 is lower set less ordered weakly efficient.
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As the authors point out, this max-ordering scalarization is in fact a weighted Tscheby-
scheff method with 0 as reference point (see Theorem 1.3.5). With this connection in
mind, they are able to develop an augmented Tschebyscheff method (compare Theo-
rem 1.3.6) in order to compute lower set less ordered efficient solutions.

Theorem 2.3.5. Given an uncertain vector-valued optimization problem P (U). Assume
that minξ∈U fi(x, ξ) exists for every x ∈ X , i = 1, . . . , k. For λ ∈ Rk= and ρ > 0, consider
the problem

T aP(U)(λ) min

(
max
i=1,...,k

min
ξ∈U

λifi(x, ξ) + min
ξ∈U

ρ
k∑

i=1

fi(x, ξ)

)

s.t. x ∈ X

Then it holds: If x0 solves T aP(U)(λ), then x0 is lower set less ordered efficient.

Starting from the concepts of upper and lower set less ordered efficiency, the authors
then are able to define two more concepts of efficiency, namely the set less ordered
efficiency, and the alternative set less ordered efficiency. Both concepts are obtained by
replacing the set order relation in Definition 2.1.1 with the set less order relation, and
the alternative set less order relation, respectively.

Definition 2.3.6 (Set less ordered efficiency and alternative set less ordered efficiency,
Ide and Köbis (2013), Definitions 18 and 24). Given an uncertain multi-objective op-
timization problem P(U), a feasible solution x ∈ X to P(U) is called set less ordered
[strictly/·/weakly] efficient, if there is no x ∈ X \ {x} such that

fU (x) �ls fU (x) and fU (x) �us fU (x)

with respect to Rk[=/≥/>]. A solution x ∈ X of P(U) is called alternative set less ordered

[strictly/·/weakly] efficient, if there is no x ∈ X \ {x} such that

fU (x) �ls fU (x) or fU (x) �us fU (x)

with respect to Rk[=/≥/>]

The authors point out that while the set of alternative set less ordered efficient solu-
tions is exactly the intersection of the sets of lower and upper set less ordered efficient
solutions (compare Ide and Köbis (2013), Lemma 26), the set of set less ordered efficient
solutions also contains solutions which are neither lower nor upper set less ordered effi-
cient solutions (compare Ide and Köbis (2013), Remark 22). Furthermore, they present
a method to compute set less ordered efficient solutions, which is also able to find set
less ordered efficient solutions which are neither lower nor upper set less ordered efficient
(compare Remark 22).

Theorem 2.3.7 (Ide and Köbis (2013), Theorem 2.14). Given an uncertain multi-
objective optimization problem P(U). For every λ ∈ Rk[≥/>] we define the following
optimization problem.
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BP(U)(λ) min




inf
ξ∈U

k∑

i=1

λifi(x, ξ)

sup
ξ∈U

k∑

i=1

λifi(x, ξ)




s.t. x ∈ X

Then the following statements hold:

• If x0 is strictly efficient for BP(U)(λ) for some λ ∈ Rk≥, then x0 is set less ordered
strictly efficient.

• If x0 is weakly efficient for BP(U)(λ) for some λ ∈ Rk[≥/>] and

min
ξ∈U

k∑

i=1

λifi(x, ξ) and max
ξ∈U

k∑

i=1

λifi(x, ξ)

exist for all x ∈ X , then x0 is set less ordered (·/weakly) efficient.

The last concept introduced in this work is the concept of certainly less ordered effi-
ciency.

Definition 2.3.8. Given an uncertain multi-objective optimization problem P(U). A
solution x0 to P(U) is called certainly less ordered (strictly/·/weakly) efficient, if there
is no x ∈ X \ {x0} such that

CMax fU (x) ∈ CMin fU (x0)− Rk[=/≥/>],

where

CMax fU (x) :=




sup
ξ∈U

f1(x, ξ)

...
sup
ξ∈U

fk(x, ξ)


 , and CMin fU (x) :=




inf
ξ∈U

f1(x, ξ)

...
inf
ξ∈U

fk(x, ξ)


 .

This concept mainly serves for ruling out solutions which are obviously a bad choice,
as its objective vector is dominated in every scenario by every objective vector of another
solution.

Throughout the paper, the authors illustrate the various concepts with the help of a
short example. They furthermore analyze the connection between the concepts, which
is summarized in Figure 2.3, cited from Ide and Köbis (2013).

In the end of the paper, the authors present some numerical results on the proba-
bility of a solution satisfying one of the respective concepts. For this, they randomly
generated 1000 uncertain multi-objective optimization problems by choosing a random
objective value for each of the solutions, scenarios, and objective functions. For each
of these uncertain multi-objective optimization problems, they then investigated, how
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alternative set less o.e.

lower set less o.e. upper set less o.e.

set less o.e.

certainly less o.e.

Figure 2.3: Relationship between the concepts, o.e. stands for ordered effi-
ciency, Ide and Köbis (2013), Figure 6

many solutions satisfy the respective concepts. An extract of their results (for a fixed
number of objectives and scenarios) is shown in Table 2.1 (the names of the concepts
are abbreviated with their respective initials. (l/u).s.l.o.e. indicates the union of lower
and upper set less ordered efficient solutions).

Table 2.1: #Objectives = 5, #Scenarios = 5, Ide and Köbis (2013), Table 2

# Solutions a.s.l.o.e. l.s.l.o.e. u.s.l.o.e. (l/u).s.l.o.e. s.l.o.e. c.l.o.e.

100 70.72% 78.03% 88.55% 95.86% 99.27% 100%
500 39.13% 46.73% 76.14% 83.74% 97.28% 100%
1000 25.37% 31.49% 69.42% 75.54% 95.64% 100%

Own contribution:

The general idea of combining multi-objective robust optimization with set-valued
optimization was developed together with Elisabeth Köbis and our supervisors, Prof. Dr.
Anita Schöbel and Prof. Dr. Christiane Tammer. The development and interpretation
of the new concepts of efficiency for uncertain multi-objective optimization problems
which were defined using set order relations was done by Elisabeth Köbis and myself, as
well as most of the proofs throughout the paper. The example, illustrating the different
concepts was done by myself as well as the numerical results on the various concepts. In
summary, a good half of this publication is my own work.
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2.4 The Relationship between Multicriteria Robustness
Concepts and Set Valued Optimization

In this section, the publication Ide et al. (2014) (see Addendum D) is summarized, which
is joint work with Elisabeth Köbis, Prof. Dr. Daishi Kuroiwa, Prof. Dr. Anita Schöbel,
and Prof. Dr. Christiane Tammer. The author’s own contribution is summarized at the
end of this section.

In Ide et al. (2014), the authors use the connection between uncertain multi-objective
optimization and set-valued optimization, presented in Chapter 2.3. The concepts of
efficiency for uncertain multi-objective optimization problems presented by Ide and Köbis
(2013) are extended from real vector spaces Rk together with the relation “�” to general
spaces and general dominance relations induced by cones.

They consider an uncertain multi-objective optimization problem P(U) to be given in
the same way as in Chapter 1.2.2, but with an objective function f : X ×U 7→ Y , where
Y is a linear topological space. The upper set order relation �uC is defined in the same
way as before.

Definition 2.4.1 (Kuroiwa (1998, 1999)). Let A,B ⊂ Y be arbitrary chosen sets and
C ⊂ Y a proper closed convex and pointed cone. Then the u-type set-relation �uC is
defined by

A �uC B :⇐⇒ A ⊆ B − C ⇐⇒ ∀a ∈ A ∃b ∈ B : a ≤C b.

Now, with this definition, the concept of minmax robust efficiency (as presented in
Ehrgott et al. (2014)) can be directly extended to the new setting.

Definition 2.4.2. Given an uncertain multi-objective optimization problem (P(U)), a
solution x ∈ X is called �uQ-robust for P(U) with Q = C, Q = C \ {0} and Q = intC,
respectively, if there is no solution x ∈ X \ {x} such that

fU (x) �uQ fU (x).

As well as this general definition of robustness (called�uC-robustness), also the weighted
sum scalarization technique for calculating minmax robust efficient solutions (see Chap-
ter 2.1) is extended to this setting.

Theorem 2.4.3 (Ide et al. (2014), Theorem 1). Given an uncertain multi-objective
optimization problem P(U) and the optimization problem

WSYP(U)(y∗) min sup
ξ∈U

y∗ ◦ f(x, ξ)

s.t. x ∈ X ,

where f : X × U → Y and y∗ ∈ C∗ \ {0}, i.e., y∗ : Y → R. Then, the following
statements hold:

a) If x0 ∈ X is a unique optimal solution toWSYP(U)(y∗), then x0 is a �uC-robust solution

to P(U).
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b) If y∗ ∈ C#, x0 ∈ X is an optimal solution to WSYP(U)(y∗), and max
ξ∈U

y∗ ◦f(x, ξ) exists

for all x ∈ X , then x0 is a �uC\{0}-robust solution to P(U).

c) If x0 ∈ X is an optimal solution to WSYP(U)(y∗), and max
ξ∈U

y∗ ◦ f(x, ξ) exists for all

x ∈ X , then x0 is a �uintC-robust solution to P(U).

In Remark 6, the authors note that C# is in fact not empty if Y = Rk.
Analogously to the extension of upper set less ordered efficiency, the authors also

extend the concept of lower set less ordered efficiency (which they call �ls-robustness).
Furthermore, they extend the weighted sum scalarization technique presented in Ide and
Köbis (2013) for calculating lower set less ordered efficient solutions.

Theorem 2.4.4 (Ide et al. (2014), Theorem 2). Given an uncertain vector optimization
problem P(U) and the optimization problem

WSY,infP(U)(y
∗) min inf

ξ∈U
y∗ ◦ f(x, ξ)

s.t. x ∈ X .

where f : X × U → Y and y∗ ∈ C∗ \ {0}, i.e., y∗ : Y → R. Then, the following
statements hold:

a) If x0 is a unique optimal solution of WSY,infP(U)(y
∗), then x0 is a �lC-robust solution to

(P(U)).

b) If y∗ ∈ C#, x0 is an optimal solution of WSY,infP(U)(y
∗), and min

ξ∈U
y∗ ◦ f(x, ξ) exists for

all x ∈ X , then x0 is a �lC\{0}-robust solution to (P(U)).

c) If x0 is an optimal solution of WSY,infP(U)(y
∗) and min

ξ∈U
y∗ ◦ f(x, ξ) exists for all x ∈ X ,

then x0 is a �lintC-robust solution to (P(U)).

Moreover, the authors extend the concept of set less ordered efficiency (they call it
�s-robustness) analogously to the extension of upper set less ordered efficiency (Defini-
tion 2.4.2).

Theorem 2.4.5 (Ide et al. (2014), Theorem 3). Given an uncertain vector optimization
problem P(U) and the bi-objective optimization problem

BYP(U)(y∗) min




inf
ξ∈U

y∗ ◦ f(x, ξ)

sup
ξ∈U

y∗ ◦ f(x, ξ)




s.t. x ∈ X .

where f : X × U → Y and y∗ ∈ C∗ \ {0}, i.e., y∗ : Y → R. Then, the following
statements hold:
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a) If x0 is a strictly efficient solution to BYP(U)(y∗), then x0 is �sC-robust.

b) If y∗ ∈ C#, x0 is a weakly efficient solution to BYP(U)(y∗), and both min
ξ∈U

y∗ ◦ f(x, ξ)

and max
ξ∈U

y∗ ◦ f(x, ξ) exist for all x ∈ X , then x0 is �sC\{0}-robust.

c) If x0 is a weakly efficient solution to BYP(U)(y∗) and for all x ∈ X both min
ξ∈U

y∗◦f(x, ξ)

and max
ξ∈U

y∗ ◦ f(x, ξ) exist, then x0 is �sintC-robust.

Finally, the authors extend the concept of alternative set less ordered efficiency (they
call it �as-robustness) analogously to the extension of, upper set less ordered efficiency
(Definition 2.4.2).

In the end of the paper, the connections between the various concepts is shown in Ide
et al. (2014), Figure 6 (the results are the same as in Figure 2.3) and it is pointed out
that the extended solution techniques can be used to solve a certain class of set valued
optimization problems, namely set valued optimization problems, where the set-valued
objective function f : X ⇒ Y can be described by a parameterized objective function
f : X × U 7→ Y with parameter set U , such that fU (x) = f(x).

Own contribution:
Some of the proofs were joint work of all the authors. Furthermore, most of the

structure of the publication was done by myself. In summary, around one fifth of the
publication is my own work.

2.5 An Application of Deterministic and Robust Optimization
in the Wood Cutting Industry

To conclude the cumulative part of this thesis, the publication Ide et al. (2013) (see
Addendum E) is summarized in this section which is joint work with Morten Tiedemann,
Prof. Dr. Stephan Westphal, and Felix Haiduk. This publication is a result of the
interdisciplinary work in the DFG Research Training Group 1703 “Resource Efficiency
in Interorganizational Networks”. As before, in the end of this section, the author’s own
contribution is summarized.

In Ide et al. (2013), the authors present a real world application problem of mathemat-
ical optimization. They consider an optimization problem from the veneer production
industry, namely the problem of deriving a suitable cutting pattern in order to minimize,
e.g., the cutoff wood and the loss of high quality wood. Here, a tree trunk is sized and
then peeled into a thin, very long veneer strip. This veneer strip has to be cut into
different widths and sorted into qualities, due to a given set of orders. The difficulty is
to form a cutting pattern, which uses all the wood of the different qualities in the tree
trunk, as the wood in a single trunk is of heterogeneous qualities. First, the authors
describe the formulation of the optimization problem and its difficulties, modeling step
by step a large deterministic single objective optimization problem. They point out
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that they were able to drastically reduce the problem size by reformulating the model
and deleting unnecessary dimensions and variables. Also, they present some numerical
results on the running time of the model as well as the benefit of its use.

In the second part of the paper, the authors apply the concept of minmax robust
efficiency as presented in Ehrgott et al. (2014) to a simplified version of the optimization
problem. As they point out, finding a suitable cutting pattern is in fact a multi-objective
optimization problem, due to the various goals, e.g., minimizing the cutoff, minimizing
the loss of quality, maximizing the usage of the cutting machine. Furthermore, it is also
an uncertain optimization problem, since the quality distribution in the tree trunk can
only be estimated at the time the cutting pattern is computed. Since the manufacturer
wants to hedge against the worst case objective over all the scenarios, the concept of
minmax robust efficiency is very suitable for this setting.

Due to the computational speed and desired simplicity of the obtained solutions, the
authors first present a simplified, yet bi-objective version of the optimization problem.
The considered objectives are minimizing the cutoff and minimizing the loss of high
quality wood. The model is presented and the uncertain parameters are pointed out.
The authors then present an uncertainty set of three different quality distributions which
they developed together with the manufacturer.

Subsequently, numerical results for this model are presented. For this, the authors
generated 59 small instances of orders from the data provided by the practice partner.
For each of this 59 instances and different weights λ ∈ R2

+, a minmax robust efficient
solution xrobλ was calculated using the weighted sum scalarization technique from Ehrgott
et al. (2014) (see also Chapter 2.1). Furthermore, for every scenario p ∈ U an optimal
solution xpλ to the according deterministic multi-objective optimization problem P(p)
via the deterministic weighted-sum scalarization with weight λ, namely

min
x

(λ1 · f1(x, p) + λ2 · f2(x, p))

was calculated. Then, for each p ∈ U , the two objective values

max
p′∈U

(
λ1 · f1(xrobλ , p′) + λ2 · f2(xrobλ , p′)

)
(2.1)

(independent of p) and

max
p′∈U

(
λ1 · f1(xpλ, p′) + λ2 · f2(xpλ, p′)

)
. (2.2)

are compared. The results are combined in Table 2.2, which is cited from Ide et al.
(2013).

The authors point out that it might seem unfair to compare (2.1) to (2.2) since usually
the manufacturer would use a solution to the nominal or most likely scenario. Therefore,
the authors also compare (2.1) against (2.2) for the optimal solution of the nominal
scenario, obtaining the results in Table 2.3.

In both cases, a significant improvement (5% on average and up to 36% in the maximal
case) of using a minmax robust efficient solution can be observed. The publication
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λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 5.45 3.87 3.32 2.64 1.45
max gain 35.66 34.31 33.69 32.65 7.94

Table 2.2: Gain of xrobλ against xpλ in percentage (Ide et al. (2013), Tables 2 and 3)

λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 4.72 3.22 2.87 2.59 1.36
max gain 8.80 7.59 6.60 5.78 3.50

Table 2.3: Gain of xrobλ against xp1λ in percentage (Ide et al. (2013), Tables 4 and 5)

concludes with the remark that these results motivate further investigation of the matter
since for this simplistic example the results are quite promising.

Own contribution:
While Prof. Dr. Stephan Westphal made contact with the veneer manufacturer and

gave a first idea on modeling the optimization problem, most of the work on this pa-
per was done by Morten Tiedemann and myself, as we constructed and improved the
deterministic optimization model and discussed in many iterations how to implement
the various boundary conditions the manufacturer pointed out. Applying the concept
of minmax robust efficiency to the simplified version of the optimization problem was
done by myself as well as obtaining the numerical results on the uncertain bi-objective
optimization problem. In summary, around 40% of this publication is my own work.
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The main contribution of this thesis are the several concepts of robustness for uncer-
tain multi-objective optimization problems. Two of these concepts are extensions of
classical concepts of robustness to the (uncertain) multi-objective setting. First, the
concept of minmax robustness (see, e.g., Ben-Tal et al. (2009)) has been extended to
the concept of minmax robust efficiency (see Chapter 2.1). As shown, this extension
is consistent with the literature in the sense that for the special cases of a determinis-
tic multi-objective optimization problem or an uncertain single-objective optimization
problem, the definitions reduce to the definitions of (deterministic) efficiency or robust
optimality, respectively. Second, the concept of light robustness (see, e.g., Fischetti and
Monaci (2009), Schöbel (2013)), another classical concept of robustness for uncertain
single-objective optimization problems, has been extended to the concept of lightly ro-
bust efficiency (see Chapter 2.2), and, again, this concept is consistent with the literature
on both uncertain single objective and deterministic multi-objective optimization, as it
reduces to the already known problems in the respective special cases (this follows di-
rectly from the definition presented in Chapter 2.2). Furthermore, it is also consistent
with the existing literature on uncertain multi-objective optimization, as it is a direct
extension of the concept of lightly robust efficiency presented by Kuhn et al. (2012) for
bi-objective optimization problems with one uncertain objective function.

Besides extending these two concepts of robustness for single-objective optimization
problems, several new concepts have been introduced, namely the concepts of highly
and flimsily robust efficiency (see Chapter 2.2), and the concepts of lower set less, set
less, alternative set less, and certainly less ordered efficiency (see Chapter 2.3). All
these new concepts are consistent with the literature in the sense that they each reduce
to the concept of efficiency in the deterministic multi-objective setting as shown in
Chapters 2.2 and 2.3. While the concepts of flimsily and highly robust efficiency are very
intuitive concepts and serve mainly for benchmark purposes (compare Chapter 2.2), the
various concepts of ordered efficiency provide tools for a decision maker following different
strategies. Furthermore, they can be obtained as a result of the connection between
uncertain multi-objective and set-valued optimization, investigated in Chapter 2.3.

The connection between Chapters 2.1, 2.2, and 2.3 is the concept of minmax robust
efficiency, introduced in Chapter 2.1 and used in Chapters 2.2 and 2.3 in order to mo-
tivate and compare the other concepts introduced in these chapters. Furthermore, in
Chapter 2.2, the practical use of the concept of minmax robust efficiency is investigated
theoretically, and illustrated on a first practical example together with a comparison to
the other concepts presented in that chapter. The same is done in Chapter 2.3 with the
concepts presented there. Thus, the connection between classical concepts of robustness
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and new concepts of efficiency for uncertain multi-objective optimization problems is
explored in various chapters of this thesis.

The algorithms presented throughout Chapters 2.1, 2.2, and 2.3 for calculating so-
lutions to the various concepts of efficiency for uncertain multi-objective optimization
problems are another important contribution to this thesis’ scientific value. Some of
these methods are extensions of well-known solution techniques for (deterministic) multi-
objective efficiency, namely the weighted sum scalarization and the ε-constraint method
(see Chapter 1.2.2) which were extended to calculate minmax robust and lower set
less ordered efficient solutions in Chapters 2.1 and 2.3, or the weighted and augmented
Tschebyscheff methods for calculating lower set less ordered efficient solutions (compare
Theorems 2.3.4 and 2.3.5). Additionally to these algorithms, various other algorithms
for calculating solutions satisfying the respective concepts have been presented. In The-
orem 2.1.4, a deterministic multi-objective optimization problem has been formulated in
order to calculate minmax robust efficient solutions. An analogous version of this solu-
tion technique has been used in Chapter 2.3 in order to calculate lower set less ordered
efficient solutions, strengthening the connection between the two chapters. Furthermore,
a deterministic bi-objective solution technique for calculating set less ordered efficient
solutions has been presented in Theorem 2.3.7.

The close connections between the two weighted sum scalarization methods for com-
puting minmax robust efficient solutions (Theorem 2.1.2) and lower set less ordered
efficient solutions (Ide and Köbis (2013), Theorem 2.4) on the one hand and the two
ε-constraint methods for computing minmax robust efficient solutions (Theorem 2.1.3)
and lower set less ordered efficient solutions (Ide and Köbis (2013), Theorem 2.8) on the
other hand , motivate investigating whether it is possible to also extend the Tschebyscheff
methods from Theorems 2.3.4 and 2.3.5 for calculating minmax robust efficient solutions.
In fact, this holds true as is shown in the following two theorems (in order to keep this
chapter readable the proofs have been moved to Addendum F).

Theorem 3.1 (Weighted Tschebyscheff Method for Minmax Robust Efficiency). Given
an uncertain multi-objective optimization problem P(U). For every λ ∈ Rk>, we define
the optimization problem

T upP(U)(λ) min max
i=1,...,k

sup
ξ∈U

λifi(x, ξ)

s.t. x ∈ X
Now the following statements hold:

(a) If x0 is the unique optimal solution to T upP(U)(λ) for some λ ∈ Rk>, then x0 is
minmax robust strictly efficient.

(b) If x0 is an optimal solution to T upP(U)(λ) for some λ ∈ Rk> and

max
ξ∈U

λifi(x, ξ)

exists for all x ∈ X , i = 1, . . . , k, then x0 is minmax robust weakly efficient.
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Theorem 3.2 (Augmented Tschebyscheff Method for Minmax Robust Efficiency). Given
an uncertain vector-valued optimization problem P (U). Assume that maxξ∈U fi(x, ξ) ex-
ists for every x ∈ X , i = 1, . . . , k. For λ ∈ Rk= and ρ > 0, consider the problem

T up,aP(U)(λ) min


 max
i∈{1,...,k}
ξ∈U

λifi(x, ξ) + max
ξ∈U

ρ

k∑

i=1

fi(x, ξ)




s.t. x ∈ X

Then it holds: If x0 solves T up,aP(U)(λ), then x0 is minmax robust efficient.

With the extension of the Tschebyscheff methods from Chapter 2.3 to the concept of
minmax robust efficiency, the methods presented in this thesis for calculating minmax
robust efficient solutions can be adapted to calculate lower set less ordered efficient
solutions and vice versa.

The differences and similarities between the solution techniques are investigated for
the concept of minmax robust efficiency in Chapter 2.1, and for the concept of lower set
less ordered efficiency in Chapter 2.3. While investigating the extension of the weighted
sum scalarization technique for calculating lower set less ordered efficient solutions in
Chapter 2.3, an open question of Chapter 2.1 has been answered, namely that this
technique is able to compute all minmax robust efficient solutions if the feasible set and
the objective vectors are convex. This result also holds for the concept of lower set less
ordered efficiency and again points out the close connection between Chapters 2.1 and
2.3.

In Chapters 2.1 and 2.2, the same special class of uncertain multi-objective optimiza-
tion problems is considered, namely the class of objective-wise uncertain optimization
problems. In these chapters, the considered concepts are studied both in the general
setting and in the setting of objective-wise uncertain optimization problems and con-
nections between the respective concepts are studied in Chapter 2.2. Furthermore, the
reduction of the uncertainty set to its vertices (as presented in Theorem 2.1.9) is also
possible for the concepts of lightly and highly robust efficiency as shown in Chapter 2.2.

Considering problems of objective-wise uncertainty raises the question whether the
results from Chapters 2.1 and 2.2 can be extended to the concepts studied in Chap-
ter 2.3. Investigating the concept of lower set less ordered efficiency, we can see that the
analogon to Theorem 2.1.7 also holds for the method presented in Ide and Köbis (2013),
Theorem 2.9 (the proof can be found in Addendum F).

Theorem 3.3 (Equivalence of P(U) and OWIP(U)). Given an owu problem P(U),
where min

ξ∈U
fi(x, ξ) exists for all x ∈ X and i ∈ {1, . . . , k}. We define the multi-objective

optimization problem OWIP(U) as
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OWIP(U) min




inf
ξ∈U

f1(x, ξ)

...
inf
ξ∈U

fk(x, ξ)




s.t. x ∈ X .
Then

x is lower set less ordered [strictly/·/weakly] efficient for P(U)

⇔
x is [strictly/·/weakly] efficient for OWIP(U).

Furthermore, the reduction of the uncertainty set (as presented in Theorems 2.1.9
and 2.2.4) is also possible for the concepts presented in Chapter 2.3 with similar as-
sumptions as in Theorem 2.1.9, as presented in the following theorem (for the proof see
Addendum F).

Theorem 3.4 (Reduction of the Uncertainty Set for [Lower/Alternative/·). Set Less
Ordered Efficiency] Given an uncertain multi-objective optimization problem P(U) of
objective-wise uncertainty, where U = {ξ1, . . . , ξm} and

f1(x, ξ), . . . , fk(x, ξ) : Rn × conv (U)→ R

are quasiconcave in ξ. Then

x is [lower/alternative/·] set less ordered [strictly/·/weakly] efficient for P(U)

⇔
x is [lower/alternative/·] set less ordered [strictly/·/weakly] efficient for P(conv (U)).

Remark 3.5. Note that these results directly extend to the concepts of set less ordered
and alternative set less ordered efficiency by assuming fi being quasiconvex and quasi-
concave in ξ due to Theorems 2.1.9 and 3.4 and Definition 2.3.6.

The same holds for the concept of certainly less set ordered efficiency since

CMax fU (x) = CMax fconv (U)(x) and CMin fU (x) = CMin fconv (U)(x)

due to the definition of conv and since P(U) is of objective-wise uncertainty.

As pointed out by Ehrgott et al. (2014), the setting of objective-wise uncertainty is
not uncommon in uncertain multi-objective optimization problems, therefore the close
consideration of this setting is an interesting field and an important aspect of this thesis.

The connection between uncertain multi-objective optimization as it is presented in
Chapter 2.1 and set-valued optimization has been used in two chapters of this thesis.
First, this connection has been used for developing new concepts of efficiency for un-
certain multi-objective optimization problems, as presented in Chapter 2.3. Using the
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Discussion of the Results Chapter 3

results from this chapter, various algorithms to solve a special class of set-valued opti-
mization problems were presented in Chapter 2.4. This points out the close connection
between Chapters 2.3 and 2.4. To our best knowledge, the connection between uncertain
multi-objective optimization and set-valued optimization has not been mentioned in the
literature before, thus this is an important contribution to this thesis’ scientific value.

Finally, Chapter 2.5 implemented one of the presented concepts, namely the concept
of minmax robust efficiency, into a real world setting and some first results on the
practical use of this concept have been computed. This is a very important aspect of
this work, since the practical use of a theoretical concept is often unpredictable. Even
though the results in this chapter have been achieved for a simplified version of the
real world application, they are motivating enough to apply the concept to the full
size problem as well in order to compute applicable minmax robust efficient solutions,
which is helpful especially with respect to the DFG research training group “Resource
Efficiency in Interorganizational Networks” where uncertain multi-objective optimization
problems are analyzed within the usage cascade of renewable resources. The background
of renewable resources of the application in Chapter 2.5 has been chosen from the context
of the research training group, in order to give an application of the concepts presented
in this thesis in the renewable resource sector.
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4 Conclusion and Aspects of Future Work

We summarize the common theme of the cumulative parts as follows. In Chapter 2.1, the
concept of minmax robust efficiency has been presented and investigated. In particular,
algorithms for computing solutions satisfying this concept were given, and properties for
the special setting of objective-wise uncertain optimization problems have been analyzed.
This has been extended in Chapter 2.2 to the concepts of lightly, flimsily, and highly
robust efficiency. Here, these three new concepts have been presented and compared to
the concept of minmax robust efficiency, both in the general case as well as for the case
of objective-wise uncertain optimization problems. In parallel, the connection between
the concept of minmax robust efficiency and set-valued optimization has been analyzed
in Chapter 2.3. This connection has then been used in order to define new concepts of
efficiency for uncertain multi-objective optimization problems. Furthermore, algorithms
have been presented for calculating solutions satisfying the various concepts, some of
them analogously to the solution techniques from Chapter 2.1. In Chapter 2.4, the results
from Chapter 2.3 have been extended to general spaces and the resulting algorithms were
used in order to compute solutions to set-valued optimization problems of a special class.
Finally, an application of the concept of minmax robust efficiency to a simplified real
world optimization problem has been presented in Chapter 2.5 and thus the theoretical
concepts have been connected with practical applications. In the discussion of the results
in Chapter 3, some open connections between the various chapters have been investigated
and algorithms for computing minmax robust efficient solutions have been presented.
Furthermore, the concepts presented in Chapter 2.3 have been investigated in the setting
of objective-wise uncertainty and analogous results as in Chapters 2.1 and 2.2 have been
obtained. With this, all the concepts from the thesis have been discussed both for the
general setting and for the setting of objective-wise uncertainty.

Some open questions remain.
First, other concepts of robustness for single objective optimization problems can

be extended to uncertain multi-objective optimization, e.g., the concept of recovery
robustness (compare different notions in the literature, e.g., Erera et al. (2009), Goerigk
and Schöbel (2011), Liebchen et al. (2009)). Here, different approaches can be suitable,
e.g., one approach would be to minimize the recovery cost of a solution to be an efficient
solution to the optimization problem, once the real scenario is known. Another possibility
would be to minimize the recovery cost of a solution to be the desired choice of a
decision maker (i.e., not only efficient, but also respecting the decision preferences of a
given decision maker). Other concepts of robustness could be extended as well, for an
overview of the recent single objective concepts, see Goerigk and Schöbel (2013).

Furthermore, other solution techniques for calculating solutions satisfying the vari-
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Chapter 4 Conclusion and Aspects of Future Work

ous concepts could be developed. In Chapters 2.1 and 2.3, several well-known solution
techniques from the literature have been extended to the uncertain multi-objective set-
ting. This could be possible for other solution techniques for calculating (deterministic)
efficient solutions as well.

Moreover, a thorough analysis of the presented solution techniques for the various
concepts is of interest. In particular, the structure of the solutions obtained by the
various methods as well as their computational time is an important aspect to study.
This can be done for randomly generated instances as well as for real world optimization
problems.

The simplified application presented in Chapter 2.5 motivates applying the concept of
minmax robust efficiency to the full size problem. Additionally, the other concepts pre-
sented in this thesis may be suitable for other real world applications as well. These ap-
plications might benefit from the new concepts of efficiency for uncertain multi-objective
optimization problems presented in this thesis. Especially applications in renewable re-
source cascades are of high interest. The presented concepts are suitable for applications
in this area, as shown in Chapter 2.5 and implementing these concepts in renewable re-
source cascades is an important task for the future. The DFG research training group
“Resource Efficiency in Interorganizational Networks” provides a very helpful framework
for this work.

We conclude this thesis in pointing out the hope that this thesis proves that applica-
tions of uncertain multi-objective optimization problems in fact exist in the real world as
well as the concepts presented here are worth considering when solving these problems.
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1Lancaster University, Department of Management Science, Bailrigg, Lancaster LA1
4YX, United Kingdom

2University of Göttingen, Institute for Numerical and Applied Mathematics
Lotzestr. 16-18, 37083 Göttingen, Germany

Abstract

In real-world applications of optimization, optimal solutions are often of limited value,
because disturbances of or changes to input data may diminish the quality of an optimal
solution or even render it infeasible. One way to deal with uncertain input data is robust
optimization, the aim of which is to find solutions which remain feasible and of good
quality for all possible scenarios, i.e., realizations of the uncertain data. For single ob-
jective optimization, several definitions of robustness have been thoroughly analysed and
robust optimization methods have been developed. In this paper, we extend the concept
of minmax robustness (Ben-Tal et al., 2009) to multi-objective optimization and call this
extension robust efficiency for uncertain multi-objective optimization problems. We use
ingredients from robust (single objective) and (deterministic) multi-objective optimization
to gain insight into the new area of robust multi-objective optimization. We analyse the
new concept and discuss how robust solutions of multi-objective optimization problems
may be computed. To this end, we use techniques from both robust (single objective) and
(deterministic) multi-objective optimization. The new concepts are illustrated with some
linear and quadratic programming instances.

Keywords: Multiple objective programming; Robustness and sensitivity analysis; Sce-
narios; Uncertainty modeling

1 Introduction

There is a still a gap between theory and practice in optimization, being evident in the
fact that optimization methods are still not used for many real-world problems for which
they could make an impact. Among others, there are two reasons why mathematical
optimization does often not lead to solutions that are applicable in practice: First, most
real-world problems are of multi-objective nature, and second, the input data is often
not known beforehand. Both aspects have been considered extensively in multi-objective
and in robust optimization. However, the combination of both aspects has not been well
researched so far.

As an example, consider the well known shortest-path problem: In this problem one often
has multiple objectives such as the length of the path and its costs (as studied for more
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than 30 years, e.g., Martins (1984)). Additionally, arc lengths might be uncertain (com-
pare, e.g., Aissi et al. (2009); Yu & Yang (1998)) due to unknown traffic conditions, and
costs might be unknown since they depend, e.g., on fuel prices. Shortest path problems
have many applications, for example, they can be used to compute passengers’ paths in
timetable information systems. Within this setting, multiple criteria refer to the length
of the journey, its price, or to the number of transfers, and have been algorithmically
treated in Disser et al. (2008); Müller-Hannemann & Schnee (2007). On the other hand,
timetable information has also been studied under uncertainties which are given by un-
known delays in public transportation (Goerigk et al., 2013a,b). However, an uncertain
and multi-objective formulation has not been presented so far. In this paper we propose
the concept of robust efficiency in order to handle uncertainties in general multi-objective
optimization problems.

For estimating the effects of uncertainties, it is necessary to evaluate how sensitive an
(optimal) solution is to disturbances of the input data. In the literature on single objective
optimization, this is often done as an a posteriori step called sensitivity analysis (for an
overview see Saltelli et al. (2000)). Sensitivity analysis provides ranges for input data
within which a solution remains feasible or optimal. It does not, however, provide a
course of action for changing a solution should the disturbance be outside these ranges. In
contrast, stochastic programming and robust optimization techniques take the uncertainty
into account during the optimization process in single objective optimization. While
stochastic programming (see Birge & Louveaux (2011) for an introduction) minimizes
the expected objective value of the solution based on a probability distribution of the
uncertain data, robust optimization hedges against the worst case. Hence it does not
require any probabilistic information. Whether robust or stochastic optimization is the
more appropriate way of dealing with uncertainty usually depends on the application.

Robust optimization is applied to problems where a solution is required which hedges
against all possible scenarios, i.e., realizations of the uncertain input data. For single
objective optimization problems, many different approaches to model robustness have
been suggested in the literature. Minmax robustness (also called strict robustness) has
been first mentioned in Soyster (1973) and has been extensively researched, see, e.g.,
Ben-Tal et al. (2009) for many results. It requires that a solution should be feasible no
matter what happens, i.e., for all possible scenarios, and aims at minimizing the objective
function in the worst case. A second prominent concept is to minimize the worst case
regret as suggested, e.g., in Kouvelis & Yu (1997). Since both of these concepts are rather
conservative, alternative concepts have recently been proposed in the literature. See the
overview in Goerigk & Schöbel (2013).

As pointed out before, many real world optimization problems require the minimization of
multiple conflicting objectives (Stewart et al., 2008)), e.g., the minimization of production
time versus the minimization of the cost of manufacturing equipment, or the maximization
of tumour control versus the minimization of normal tissue complication in radiotherapy
treatment design. Naturally, the issue of uncertain data affects these multi-objective
optimization problems in the same way that it affects single objective ones. Therefore,
being able to find robust efficient solutions would be very valuable in these applications.
While the need for dealing with uncertainty in multi-objective optimization has been
realized, hardly any of the classical robustness concepts have been extended and applied
to multi-objective optimization problems. Most of the research in this area m rather deals
with Branke’s concept of robustness for single objective optimization (Branke, 1998). He
proposes to replace the objective function f by its mean function f̄ which maps any point
x to the average function value in a pre-defined neighbourhood of x. A minimizer of f̄
is then more robust than a minimizer of f in the sense that the function values in its
neighbourhood do not change too much.

Minmax Robustness for Multi-Objective Optimization Problems

45



Based on Branke’s idea for single objective optimization problems, Deb & Gupta (2006)
introduce two concepts of robustness for multi-objective optimization problems. The first
one replaces all objective functions by their mean functions as Branke (1998) does for
single objective optimization problems. Efficient solutions to the resulting optimization
problem are called robust solutions of the original problem. Deb and Gupta’s second con-
cept minimizes the original objective functions but adds constraints to the problem that
restrict the variation between the original objective functions and their mean functions
to a predefined limit. The latter approach proves to be more pragmatic and enables the
user to control the desired level of robustness.

Barrico & Antunes (2006) extend Deb and Gupta’s first concept by introducing the degree
of robustness of a solution. This concept uses a predefined neighbourhood of a feasible
solution and measures how much this neighbourhood can be extended without contain-
ing solutions whose function values vary from the function value of the original solution
by a predefined ratio. Gunawan & Azarm (2005) measure robustness for multi-objective
optimization problems by a so called sensitivity region in the space of the uncertain pa-
rameters. This region defines the allowed variation of the uncertain parameters without
violation of predefined variation constraints of the objective functions. Since the sen-
sitivity region may be asymmetric, Gunawan & Azarm (2005) introduce a worst-case-
sensitivity region by fitting a ball of maximal radius around the undisturbed scenario into
this region. More detailed overviews of these robustness concepts for multi-objective op-
timization problems can be found in Steponavice & Miettinen (2012) and Witting (2012).

There are not many extensions of the classical concepts of robustness from single objective
to multi-objective optimization problems. While in single objective uncertain optimiza-
tion the concept of minmax robustness has been extensively studied, see, e.g., Ben-Tal
& Nemirovski (1998); El Ghaoui & Lebret (1997); Soyster (1973) for older contributions
and Ben-Tal et al. (2009) for a recent survey, no general extension to multi-objective
optimization exists. However, very recently, research interest on minmax robustness for
multi-objective optimization can be observed. In a first approach, Kuroiwa & Lee (2012)
extended the concept of minmax robustness to multi-objective optimization problems by
replacing the objective vector of the uncertain multi-objective optimization problem by
the vector consisting of the worst cases of the respective components. Other publications
consider similar concepts of robustness. Fliege & Werner (2013) apply the same concept
to portfolio selection problems, Yu & Liu (2013) apply it to an uncertain multi-objective
game theory problem, and Chen et al. (2012) discuss uncertain multi-objective optimiza-
tion problems with application in proton therapy for cancer treatment and use the same
concept for handling the uncertainties. However, this approach is a bit restrictive and
does not completely reflect the variety of multi-objective solutions as we will see later on
in this paper.

Doolittle et al. (2012) follow a similar approach as Kuroiwa & Lee (2012). The authors
reformulate the uncertain multi-objective optimization problem by replacing each of the
objective functions by a new variable and adding additional constraints to the problem
formulation (cf. the same approach for single-objective optimization problems in Ben-Tal
& Nemirovski (1998)). This approach results in the same concept as presented by Kuroiwa
& Lee (2012).

Another interpretation of minmax robustness for uncertain multi-objective optimization
problems has been introduced by Avigad & Branke (2008) who present an evolutionary
algorithm to find solutions to unconstrained uncertain multi-objective optimization prob-
lems. They interpret the worst case objective vectors for a given solution to an uncertain
multi-objective optimization problem as the set of efficient solutions to the problem of
maximizing the objective function at the considered solution over the uncertainty set.
The concepts we present in this paper follow a similar approach.
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In this paper we extend the concept of minmax robustness from single objective to multi-
objective optimization in a general way. First applications of our new approach have
been described in cutting stock optimization (Ide et al., 2013b) and in Kuhn et al. (2012)
where a special bi-objective shortest path problem is considered under uncertainty, and
applications in aircraft routing with uncertain weather conditions and transportation of
hazardous materials are mentioned.

After introducing the necessary preliminaries from multi-objective and robust optimiza-
tion we define a multi-objective uncertain optimization problem and its robust counterpart
in Section 3. In Section 4 we apply both techniques from robust (single objective) and
(deterministic) multi-objective optimization in order to find robust solutions of multi-
objective optimization problems. The special case of uncertain multi-objective optimiza-
tion problems in which the uncertain parameters in the different objective functions are
independent of each other is investigated in Section 5. First insights into the complexity
of the concepts of the paper are given in Section 6 using linear and quadratic optimization
instances. The paper ends with some conclusions and suggestions for further research in
Section 7.

2 Preliminaries

2.1 (Deterministic) multi-objective optimization

We recall some notation of multi-objective optimization used in this paper. Multi-
objective optimization deals with the problem of minimizing a function f : X → Rk
subject to some constraints defining the feasible set X . A multi-objective optimization
problem is given by

min f(x)
s.t. x ∈ X .

The goal to minimize a vector valued function and the absence of a total order on Rk make
it necessary to define the meaning of minimum with respect to weaker ordering relations.
In this paper we will use the the ordering relations 5, ≤, <, see Ehrgott (2005). Let
y1, y2 ∈ Rk. Then y1 5 y2 if y1 is smaller or equal to y2 in every component, y1 ≤ y2 if
y1 is smaller or equal to y2 in every component and smaller in at least one component,
and y1 < y2 if y1 is smaller than y2 in every component. Notice that this implies the
equivalence of the relations ≤ and < in R.

Throughout the paper we have to distinguish between these three relations in proofs and
theorems. Since most of the proofs and theorems are formulated analogously for each
relation, we shorten the text by using a [././.] notation. Furthermore, we define the cones
Rk=, Rk≥ and Rk> by

Rk[=/≥/>] :=
{
x ∈ Rk : x [= / ≥ / >] 0

}
.

Using the ordering relation ≤ the goal of a multi-objective optimization problem is to find
all feasible solutions x ∈ X which are efficient, that is, where there is no solution x ∈ X
such that f(x) ≤ f(x). Replacing ≤ by < or 5, x is called weakly efficient and strictly
efficient, respectively. Notice that

x is [strictly/·/weakly] efficient

⇔ f(x)− Rk[=/≥/>] does not contain any f(x) with x ∈ X . (1)

This relationship will help us to develop the concept of robust efficiency in Section 3. In
Section 4 we will review some techniques for computing efficient solutions.
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2.2 Uncertain optimization problems and minmax robustness

We also introduce some notation from robust optimization. Given a set of scenarios (also
called uncertainty set) U ⊆ Rm, an uncertain optimization problem P(U) is given as the
family (P(ξ), ξ ∈ U) of optimization problems

P(ξ) min f(x, ξ)
s.t. x ∈ X ,

where f : Rn × U → R is the objective function, X ⊆ Rn is the feasible set, and ξ ∈ U
indicates particular values for the parameters of the objective function. We call ξ a
scenario and P(ξ) an instance of P(U).

Since an uncertain optimization problem is defined as a family of optimization problems
with different objective functions defined by each scenario ξ ∈ U , we need to clarify how
to evaluate a feasible solution, i.e., which feasible solutions x ∈ X are considered robust
optimal solutions of the uncertain optimization problem. This depends on the definition of
robustness. As indicated in Section 1, many different concepts of robustness, interpreting
optimality for an uncertain optimization problem, can be found in the literature. In this
paper we concentrate on the concept of minmax robustness introduced by Soyster (1973),
and extensively studied by, e.g., Ben-Tal et al. (2009). This concept adopts a pessimistic
point of view by trying to hedge against the worst case, i.e., the goal is to minimize the
objective function for the worst case scenario over all feasible solutions. Having specified
this goal, we can now transform the uncertain optimization problem into its so called
robust counterpart which is a deterministic optimization problem. It can be written as

min sup
ξ∈U

f(x, ξ)

s.t. x ∈ X .
We call an optimal solution to this problem robust optimal.

We note that because the novelty considered in this paper concerns the multiple objectives,
we will only consider uncertain objectives and assume the feasible set to be deterministic.
We can do this without loss of generality for the problems considered in this paper because
as done in the concept of minmax robustness, we only call a solution robust, if it is feasible
for every scenario.

3 Robust counterparts of uncertain multi-objective op-
timization problems

The goal of this section is to extend the concept of minmax robustness introduced in
Section 2.2 to multi-objective optimization problems. Assume that we are given a multi-
objective optimization problem

min f(x)
s.t. x ∈ X

with an objective function f : Rn → Rk and a feasible set X ⊂ Rn. As in the single
objective case in Section 2.2, we assume that the objective function f may depend on
scenarios ξ which are unknown or uncertain. As in uncertain single objective optimization,
given an uncertainty set U ⊆ Rm, an uncertain multi-objective optimization problem P(U)
is given as the family (P(ξ), ξ ∈ U) of multi-objective optimization problems

P(ξ) min f(x, ξ)
s.t. x ∈ X ,
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with objective function f : Rn × U → Rk and feasible set X ⊆ Rn. Again we call ξ ∈ U
a scenario and P(ξ) an instance of P(U).

Obviously for |U| = 1, P(U) reduces to a (deterministic) multi-objective optimization
problem, whereas for k = 1, P(U) becomes an uncertain single objective optimization
problem. Throughout the paper we will use these two special cases to justify and compare
our concepts and results.

Given an uncertain multi-objective optimization problem P(U), the same question as in
single objective optimization arises, namely, how to evaluate feasible solutions x ∈ X .
In uncertain multi-objective optimization problems, we cannot evaluate solutions by just
taking the worst case over all scenarios because we obtain a vector of objective values for
each scenario. The set of objective values of x is

fU (x) := {f(x, ξ) : ξ ∈ U} ⊆ Rk.

With this notion we are able to extend the definition of efficiency as given in (1).

Recall that we call a solution x ∈ X [strictly/·/weakly] efficient for a deterministic multi-
objective optimization problem if there exists no other solution x ∈ X , x 6= x such that
f(x) ∈ f(x)− Rk

[=/≥/>]
. A straightforward extension of this concept is as follows.

We call a feasible solution x̄ ∈ X robust efficient, if the set fU (x̄)− Rk≥ does not contain
any other set fU (x) with x 6= x ∈ X . Thus, we consider all possible objective values of a
solution x under all the various scenarios, namely the set fU (x). If this set does lie to the
“upper right” of the set of all possible realizations fU (x) of another solution x (and hence
is worse), we call the according solution x robust efficient. Formally, we have Definition
3.1.

Definition 3.1 (Robust efficiency). Given an uncertain multi-objective optimization prob-
lem we call a feasible solution x ∈ X
• robust weakly efficient (from now on rwe), if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk>;

• robust efficient (from now on re), if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk≥;

• robust strictly efficient (from now on rse), if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk=.

In deterministic multi-objective optimization there is a relationship between weak effi-
ciency, efficiency and strict efficiency. This relationship also holds for robust efficiency.

Lemma 3.2. Let P(U) be an uncertain multi-objective optimization problem. Then we
have:

x is rse ⇒ x is re ⇒ x is rwe.

The robust counterpart of an uncertain multi-objective optimization problem is the prob-
lem of identifying all x ∈ X which are rwe, re, or rse. We denote this analogously to the
robust counterpart of a single objective optimization problem, namely as

min sup
ξ∈U

f(x, ξ)

s.t. x ∈ X ,
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where supξ∈U f(x, ξ) is defined as the set of [weakly/·/strictly] efficient solutions of the
multi-objective maximization problem

max f(x, ξ)
s.t. ξ ∈ U .

Thus Definition 3.1 can be seen as a connection between the interpretation of the supre-
mum of a set as a set itself, namely as the set of its non-dominated points with regard to
multi-objective maximization (as in Löhne (2011)), and a particular set ordering, namely
calling a set fU (x) dominating fU (x), if it is contained in fU (x)− Rk

[=/≥/>]
.

We illustrate Definition 3.1 with a small example.

Example 3.3.

f1

f2

fU (x3)

fU (x1)

fU (x2)

fU (x4)

fU (x5)

f1

f2

sup
ξ∈U

f(x3, ξ)

sup
ξ∈U

f(x1, ξ)

sup
ξ∈U

f(x2, ξ)

sup
ξ∈U

f(x4, ξ)

sup
ξ∈U

f(x5, ξ)

f1

f2

fU (x3)− Rk
=

fU (x1)− Rk
=

fU (x2)− Rk
=

fU (x4)− Rk
=

fU (x5)− Rk
=

Figure 1: Illustration of robust multi-objective optimization.

The left picture refers to some uncertain multi-objective optimization problem with fea-
sible set X = {x1, . . . , x5}, i.e. consisting of only five feasible solutions. The five sets
fU (x1), . . . , fU (x5) are depicted as polygons. The picture in the middle shows the sets
of their suprema. By adding −Rk= to each of these sets, in the right picture we can see

that none of fU (x1)−Rk=, fU (x2)−Rk=, fU (x3)−Rk= and fU (x5)−Rk= does contain any

other set fU (xi), thus x1, x2, x3 and x5 are all robust strictly efficient and hence robust
efficient. fU (x4)− Rk> on the other hand contains fU (x1), fU (x2) and fU (x3), thus x4 is
not robust weakly efficient, and hence also not robust efficient.

Before we analyse properties of our definition of robust efficiency we prove some inclusions
which are used throughout this paper.

Lemma 3.4. Given an uncertain multi-objective optimization problem P(U).

a) For all x′, x ∈ X

fU (x′) ⊆ fU (x)− Rk[=/≥/>] ⇔ fU (x′)− Rk= ⊆ fU (x)− Rk[=/≥/>].

b) For all x′, x ∈ X

fU (x′)− Rk= ⊆ fU (x)− Rk[=/≥/>]

⇔ ∀ ξ ∈ U ∃ η ∈ U : f(x′, ξ) [5 / ≤ / <] f(x, η).

c) For all x′, x ∈ X

fU (x′)− Rk= ⊆ fU (x)− Rk=
⇒ sup

ξ∈U
fi(x

′, ξ) 5 sup
η∈U

fi(x, η) ∀ i ∈ {1, . . . , k}.
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d) If max
ξ∈U

fi(x, ξ) exists for all x ∈ X , then for all x′, x ∈ X

fU (x′)− Rk= ⊆ fU (x)− Rk>
⇒ max

ξ∈U
fi(x

′, ξ) < max
η∈U

fi(x, η) ∀ i ∈ {1, . . . , k}.

These inclusions are needed in proofs throughout the paper. Lemma 3.4 a) and b) together
provide the insight, that a solution x is considered worse than another solution x′ if and
only if for every scenario ξ ∈ U there is a scenario η ∈ U in which x attains a worse
objective value than x′ in ξ. Lemma 3.4 c) and d) basically mean that the anti-ideal point
(i.e., the point composed of the respective suprema of the components over U) of fU (x′)
is considered better than the anti-ideal point of fU (x) if fU (x′) is considered better than
fU (x).

We now provide the technical proof of Lemma 3.4:

Proof of Lemma 3.4. a) “⇐” holds since fU (x′) ⊆ fU (x′)− Rk=.

“⇒” For every ξ ∈ U and µ ∈ Rk= we have to show f(x′, ξ)− µ ∈ fU (x)− Rk
[=/≥/>]

.

Since fU (x′) ⊆ fU (x)− Rk
[=/≥/>]

also f(x′, ξ) ∈ fU (x)− Rk
[=/≥/>]

. Together with

µ ∈ Rk=
f(x′, ξ)− µ ∈ fU (x)− Rk[=/≥/>].

b) “⇒” Assume the contrary. Then

∃ ξ ∈ U ∀ η ∈ U : f(x′, ξ) [ 65 / 6≤ / 6<] f(x, η)

⇒ ∃ ξ ∈ U ∀ η ∈ U : f(x′, ξ) 6∈ fU (x)− Rk[=/≥/>]

⇒ fU (x′)− Rk= 6⊆ fU (x)− Rk[=/≥/>].

“⇐” Assume the contrary. Then

∃ ξ ∈ U ∃ µ ∈ Rk= : f(x′, ξ)− µ 6∈ fU (x)− Rk[=/≥/>]

⇒ ∃ ξ ∈ U : f(x′, ξ) 6∈ fU (x)− Rk[=/≥/>]

⇒ ∃ ξ ∈ U ∀ η ∈ U : f(x′, ξ) [ 65 / 6≤ / 6<] f(x, η).

c) Assume the contrary. Then there exists an i ∈ {1, . . . , k} such that sup
ξ∈U

fi(x
′, ξ) >

sup
η∈U

fi(x, η). Thus, there actually exists a scenario ξ∗ ∈ U such that fi(x
′, ξ∗) >

sup
η∈U

fi(x, η). But this means

∀ η ∈ U : f(x′, ξ∗) 65 f(x, η),

which is a contradiction to b).

d) Assume the contrary. Then there exists an i ∈ {1, . . . , k} such that max
ξ∈U

fi(x
′, ξ) =

max
η∈U

fi(x, η). Moreover, since the inequality is strict, there actually exists a scenario

ξ∗ ∈ U such that fi(x
′, ξ∗) = max

η∈U
fi(x, η). But this means

∀ η ∈ U : f(x′, ξ∗) 6< f(x, η),

which is a contradiction to b).
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Next, we show that for |U| = 1 and k = 1, i.e. in the deterministic multi-objective case
and the uncertain single objective case, Definition 3.1 coincides with the definition of
efficiency and robust optimality, respectively.

Lemma 3.5. Given P(U) with |U| = 1. Then

• x ∈ X is re if and only if it is efficient,

• x ∈ X is rse if and only if it is strictly efficient,

• x ∈ X is rwe if and only if it is weakly efficient.

Proof. Let |U| = 1. Then

x is r[s/·/w]e

3.4.a⇔ @ x′ ∈ X \ {x} : fU (x′)− Rk= ⊆ fU (x)− Rk[=/≥/>]

⇔ @ x′ ∈ X \ {x} : f(x′)− Rk= ⊆ f(x)− Rk[=/≥/>]

3.4.a⇔ @ x′ ∈ X \ {x} : f(x′) ∈ f(x)− Rk[=/≥/>]

⇔ x is [strictly/·/weakly] efficient.

Lemma 3.6. Given P(U) with k = 1. Then

a) x ∈ X is re for P(U) if and only if it is rwe.

b) If x ∈ X is rwe for P(U), it is a robust optimal solution.

c) If x ∈ X is the unique robust optimal solution, it is rse for P(U).

d) If max
ξ∈U

f(x′, ξ) exists for all x′ ∈ X then x is re for P(U) if and only if it is a robust

optimal solution and rse for P(U) if and only if it is the unique robust optimal
solution.

Proof.

a) Holds since R≥ = R> by definition.

b)

x is rwe

3.4.a⇔ @ x′ ∈ X \ {x} : fU (x′)− R= ⊆ fU (x)− R>
k=1⇒ @ x′ ∈ X \ {x} : sup

ξ∈U
f(x′, ξ) < sup

ξ∈U
f(x, ξ)

⇔ x is a robust optimal solution.

c)

x is the unique robust optimal solution

⇔ @ x′ ∈ X \ {x} : sup
ξ∈U

f(x′, ξ) ≤ sup
ξ∈U

f(x, ξ)

3.4.c⇒ @ x′ ∈ X \ {x} : fU (x′)− R= ⊆ fU (x)− R=

⇔ x is rse.
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d) If max
ξ∈U

f(x′, ξ) exists for all x′ ∈ X , then

@ x′ ∈ X \ {x} : fU (x′)− R= ⊆ fU (x)− R=
k=1⇒ @ x′ ∈ X \ {x} : max

ξ∈U
f(x′, ξ) ≤ max

ξ∈U
f(x, ξ)

and

@ x′ ∈ X \ {x} : max
ξ∈U

f(x′, ξ) < max
ξ∈U

f(x, ξ)

3.4.d⇒ @ x′ ∈ X \ {x} : fU (x′)− R= ⊆ fU (x)− R>.

Lemmas 3.5 and 3.6 show that our concept of robust efficiency is sound, because in the
cases where the problem reduces to a deterministic multi-objective optimization problem
or to an uncertain single objective optimization problem, respectively, our new definitions
turn out to be the common definitions of efficiency and robust optimality.

4 Finding robust efficient solutions for uncertain multi-
objective optimization problems

Having introduced the definition of robust efficient solutions for uncertain multi-objective
optimization problems in Section 3, we now apply knowledge from deterministic multi-
objective optimization (see Section 2.1) and single objective robust optimization (see
Section 2.2) in order to find robust efficient solutions to an uncertain multi-objective opti-
mization problem P(U). Throughout this section we show that insights from deterministic
multi-objective optimization can be extended to robust multi-objective optimization.

4.1 Approach 1: Weighted sum scalarization

The most common approach to computing efficient solutions for a deterministic multi-
objective optimization problem is the weighted sum scalarization. The general idea is
to form a single objective optimization problem by multiplying each objective function
with a non-negative weight and summing up the weighted objectives. The weighted sum
problem WP(λ) for a given (deterministic) multi-objective optimization problem P and
a weight vector λ ∈ Rk≥ is

WP(λ) min
∑k
i=1 λifi(x).

s.t. x ∈ X
Optimal solutions of WP(λ) are efficient solutions of P depending on assumptions on λ
and uniqueness of the solution.

Theorem 4.1 (see Ehrgott (2005), Theorem 3.6). Given some multi-objective optimiza-
tion problem P, let WP(λ) be its weighted sum scalarization. If x ∈ X is a [·/·/unique]
minimizer of WP(λ) for some λ ∈ Rk[≥/>/≥], then x is [weakly/·/strictly] efficient for P.

We now generalize the weighted sum scalarization by reducing the robust counterpart of
an uncertain multi-objective optimization problem to a single objective uncertain opti-
mization problem in order to be able to compute robust efficient solutions by computing
robust optimal solutions of the uncertain single objective problem. To this end, we in-
troduce the robust version of the weighted sum scalarization problem of an uncertain
multi-objective optimization problem P(U) as
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WP(U)(λ) min sup
ξ∈U

∑k
i=1 λifi(x, ξ).

s.t. x ∈ X
We again investigate the special cases k = 1 and |U| = 1.

Remark 4.2. If k = 1, WP(U)(λ) is the robust counterpart of the single objective opti-
mization problem WP(λ). If |U| = 1, WP(U)(λ) is identical to WP(λ).

Motivated by the second part of Remark 4.2 we extend Theorem 4.1 to uncertain multi-
objective optimization problems and we do indeed find a similar result.

Theorem 4.3. Given an uncertain multi-objective optimization problem P(U), the fol-
lowing statements hold.

a) If x ∈ X is the unique optimal solution to WP(U)(λ) for some λ ∈ Rk≥, then x is rse
for P(U).

b) If x ∈ X is an optimal solution toWP(U)(λ) for some λ ∈ Rk> and max
ξ∈U

∑k
i=1 λifi(x, ξ)

exists for all x ∈ X , then x is re for P(U).

c) If x ∈ X is an optimal solution toWP(U)(λ) for some λ ∈ Rk≥ and max
ξ∈U

∑k
i=1 λifi(x, ξ)

exists for all x ∈ X , then x is rwe for P(U).

Proof. Assume x is not r[s/·/w]e for P(U). Then there exists an x′ ∈ X such that

fU (x′) ⊆ fU (x)− Rk[=/≥/>]

3.4.a&b⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x′, ξ) [5 / ≤ / <] f(x, η).

Now choose λ ∈ Rk[≥/>/≥] arbitrary but fixed.

⇒ ∀ ξ ∈ U ∃ η ∈ U :

k∑

i=1

λifi(x
′, ξ) [5 / < / <]

k∑

i=1

λifi(x, η)

⇔ ∀ ξ ∈ U :

k∑

i=1

λifi(x
′, ξ) [5 / < / <] sup

η′∈U

k∑

i=1

λifi(x, η
′)

⇔ sup
ξ′∈U

k∑

i=1

λifi(x
′, ξ′) [5 / < / <] sup

η′∈U

k∑

i=1

λifi(x, η
′).

The last equivalence holds because for b) and c) max
ξ′∈U

∑k
i=1 λifi(x

′, ξ′) exists. But this

means that x is not [the unique / an / an] optimal solution toWP(U)(λ) for λ ∈ Rk[≥/>/≥].

This leads to our first method for computing r[s/·/w]e solutions to the uncertain multi-
objective optimization problem P(U).

Method 1: Weighted sum scalarization for uncertain multi-objective optimization

Input: Uncertain multi-objective problem P(U), solution sets SOLrse = SOLre =
SOLrwe = ∅.

Step 1: Choose a set Λ ⊆ Rk≥.

Step 2: If Λ = ∅: STOP. Output: Set of rse solutions SOLrse, set of re solutions SOLre
and set of rwe solutions SOLrwe.
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Step 3: Choose λ ∈ Λ, set Λ := Λ \ {λ}.
Step 4: Find an optimal solution x to WP(U)(λ).

a) If x is the unique optimal solution to WP(U)(λ), then x is rse for P(U), thus
SOLrse = SOLrse ∪ {x}.

b) If max
ξ∈U

∑k
i=1 λifi(x, ξ) exists for all x ∈ X , then x is rwe for P(U), thus

SOLrwe = SOLrwe ∪ {x}.
• If furthermore λ > 0, then x is re for P(U), thus SOLre = SOLre ∪ {x}.

Step 5: Go to step 2.

Remark 4.4. Note that the set of robust efficient solutions found by Method 1 depends on
the choice of Λ in Step 1. For each of the λ ∈ Λ, we obtain a new single objective robust
optimization problem WP(U)(λ), and the complexity of solving WP(U)(λ) depends on the
structure of the underlying deterministic single objective objective optimization problem.
However, for the special case of an uncertain multi-objective linear programming problem
P(U), for each λ ∈ Λ, WP(U)(λ) turns out to be a linear single objective optimization
problem with 1 additional variable and |U| additional linear constraints.

We illustrate the weighted sum method with a brief example that continues Example 3.3.

Example 4.5.

f1

f2

fU (x3)− Rk
=

fU (x1)− Rk
=

fU (x2)− Rk
=

fU (x4)− Rk
=

fU (x5)− Rk
=

f1

f2

fU (x3)− Rk
=

fU (x1)− Rk
=

fU (x2)− Rk
=

fU (x4)− Rk
=

fU (x5)− Rk
=

Figure 2: Weighted sum scalarization for Example 3.3.

In both pictures we can see a weight vector for the two objective functions and we want to
minimize the supremum of the weighted sum over the sets fU (xi)− Rk=. In the left picture

we get x1 as the unique optimal solution, in the right picture we get x3 as the unique
optimal solution. Thus x1 and x3 are rse. Unfortunately the weighted sum scalarization
does not yield all rse solutions, e.g., in this example x2 is not an optimal solution for any
weight vector λ ≥ 0.

4.2 Approach 2: ε-constraint scalarization

Another scalarization method for computing efficient solutions for deterministic multi-
objective optimization problems is the ε-constraint scalarization. We summarize the most
important results for this method. Let P be a deterministic multi-objective optimization
problem. For i ∈ {1, . . . , k} and ε ∈ Rk, the corresponding ε-constraint optimization
problem is defined as

εCP(ε, i) min fi(x)
s.t. fj(x) 5 εj ∀ j 6= i

x ∈ X .
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Note that to define εCP(ε, i), the i-th component of ε is not needed. We do, however, need
ε ∈ Rk in some parts of the following theorems so that we simplify notation and assume
ε ∈ Rk. If we explicitly want to exclude the i-th component from a vector ε we denote
this as ε−i ∈ Rk−1.

Theorem 4.6 (see Ehrgott (2005), Propositions 4.3, 4.4, Theorem 4.5). Let P be a
deterministic multi-objective optimization problem with objective function f and feasible
set X .

a) If x ∈ X is an optimal solution to εCP(ε, i) for some ε ∈ Rk and i ∈ {1, . . . , k}, then
it is weakly efficient for P.

b) If x ∈ X is the unique optimal solution to εCP(ε, i) for ε ∈ Rk and some i ∈
{1, . . . , k}, then it is strictly efficient for P.

We now use the ε-constraint approach to reduce a multi-objective uncertain optimization
problem to a single objective uncertain optimization problem. To this end we define
the robust ε-constraint version εCP(U)(ε, i) of P(U), thus an ε-constraint problem for an
uncertain multi-objective optimization problem:

εCP(U)(ε, i) min sup
ξ∈U

fi(x, ξ)

s.t. fj(x, ξ) 5 εj ∀ j 6= i, ∀ ξ ∈ U
x ∈ X .

We now extend the results of Theorem 4.6 to uncertain multi-objective optimization
problems.

Theorem 4.7. Given an uncertain multi-objective optimization problem P(U), the fol-
lowing statements hold.

a) If x ∈ X is the unique optimal solution to εCP(U)(ε, i) for some ε ∈ Rk and some
i ∈ {1, . . . , k}, then x is rse for P(U).

b) If x ∈ X is an optimal solution to εCP(U)(ε, i) for some ε ∈ Rk and some i ∈
{1, . . . , k} and max

ξ∈U
fi(x, ξ) exists for all x ∈ X , then x is rwe for P(U).

Proof. a) Assume that x is not rse for P(U). Then there exists an x′ ∈ X such that

fU (x′) ⊆ fU (x)− Rk=
3.4.a&b⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x′, ξ) 5 f(x, η)

⇒ sup
ξ∈U

fi(x
′, ξ) 5 sup

η∈U
fi(x, η)

and ∀ ξ ∈ U ∃ η ∈ U : f−i(x
′, ξ) 5 f−i(x, η) 5 ε−i.

But then x′ is feasible for εCP(U)(ε, i) and has an equal or better objective value than
x. This is a contradiction to the assumption that x is the unique optimal solution
to εCP(U)(ε, i).

b) Assume that x is not rwe for P(U). Then there exists an x′ ∈ X such that

fU (x′) ⊆ fU (x)− Rk>
3.4.a&b⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x′, ξ) < f(x, η)

⇒ max
ξ∈U

fi(x
′, ξ) < max

η∈U
fi(x, η)

and ∀ ξ ∈ U ∃ η ∈ U : f−i(x
′, ξ) < f−i(x, η) 5 ε−i.
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But then x′ is feasible for εCP(U)(ε, i) and has a better objective value than x. This
is a contradiction to the assumption that x is an optimal solution to εCP(U)(ε, i).

Theorem 4.7 leads to our second method for computing r[s/w]e solutions to the uncertain
multi-objective optimization problem P(U).

Method 2: ε-constraint method for uncertain multi-objective optimization

Input: Uncertain multi-objective problem P(U), solution sets SOLrse = SOLrwe = ∅.
Step 1: Choose a set E ⊆ Rk.

Step 2: If E = ∅: STOP. Output: Set of rse solutions SOLrse and set of rwe solutions
SOLrwe.

Step 3: Choose ε ∈ E , set E := E \ {ε}.
Step 4: For every i ∈ {1, . . . , k}, find an optimal solution xi to εCP(U)(ε, i).

a) If xi is the unique optimal solution to εCP(U)(ε, i), then xi is rse for P(U), thus
SOLrse := SOLrse ∪ {xi}.

b) If max
ξ∈U

fi(x, ξ) exists for all x ∈ X , then xi is rwe for P(U), thus SOLrwe :=

SOLrwe ∪ {xi}.
Step 5: Go to Step 2.

Remark 4.8. Note that the set of robust efficient solutions found by Method 2 depends
on the choice of E in Step 1. For each of the ε ∈ E, we obtain k new uncertain single
objective optimization problems εCP(U)(ε, i) (i = 1, . . . , k). Clearly, the complexity of
solving these εCP(U)(ε, i) problems depends on the structure of the underlying deterministic
single objective optimization problem. However, considering once again the special case of
an uncertain multi-objective linear programming problem P(U), we can see that for each
ε ∈ E and for each i ∈ {1, . . . , k}, εCP(U)(ε, i) turns out to be a single objective linear
optimization problem with 1 additional variable and k · |U| additional linear constraints.

We again use Example 3.3 to illustrate the results of Theorem 4.7.

Example 4.9.

f1

f2

fU (x3)− Rk
=

fU (x1)− Rk
=

fU (x2)− Rk
=

fU (x4)− Rk
=

fU (x5)− Rk
=

f1

f2

fU (x3)− Rk
=

fU (x1)− Rk
=

fU (x2)− Rk
=

fU (x4)− Rk
=

fU (x5)− Rk
=

Figure 3: ε-constraint scalarization for Example 3.3.

In the left picture we see that x1 and x2 are robust efficient as optimal solutions to min-
imizing f2 subject to two different upper bounds on f1. The right picture shows that
x5 is robust efficient as optimal solution to minimizing f1 subject to an upper bound on
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f2. Unfortunately, and contrary to what we know from deterministic multi-objective op-
timization, the ε-constraint method does not find all rwe solutions. Here it is not possible
to identify x3 as robust efficient because x2 is better than x3 in the supremum of every
component and feasible for εCP(U)(ε, i) whenever x3 is feasible.

Methods 1 and 2 are adaptations of well known scalarization methods from multi-objective
optimization to uncertain multi-objective optimization problems. Therefore they require
the solution of a single objective uncertain problem for each setting of the parameters λ,
respectively ε and i. The next method in Section 4.3 on the other hand, is the adaptation
of a robust optimization technique to the uncertain multi-objective optimization problem
P(U) and results in the necessity to solve a deterministic multi-objective optimization
problem.

4.3 Approach 3: Objective-wise worst case

Instead of interpreting the supremum in the robust counterpart of our uncertain multi-
objective optimization problem P(U) as a multi-objective maximization problem, we can
also interpret it as a point rather than a set. Doing so we formulate a new problem, the
objective-wise worst case problem

OWCP(U) min fowcU (x)
s.t. x ∈ X ,

where

fowcU (x) :=




sup
ξ∈U

f1(x, ξ)

sup
ξ∈U

f2(x, ξ)

...
sup
ξ∈U

fk(x, ξ)



.

OWCP(U) is the (deterministic) multi-objective minimization of the objective-wise supre-
mum. This interpretation has been introduced as a first concept of robustness for multi-
objective optimization problems by Kuroiwa & Lee (2012). It has the obvious advantage
that computing fowcU (x) for given x is much easier than solving a multi-objective opti-
mization problem max{f(x, ξ) : ξ ∈ U} as before: It only involves solving k deterministic
single objective optimization problems. OWCP(U) then is a deterministic multi-objective
optimization problem and can be solved with any method of deterministic multi-objective
optimization. In other words, using the OWC-method implies that rather than consider-
ing set dominance as required in Definition 3.1, we can consider the standard dominance
of points (the objective wise worst case scenarios). This reduces the uncertain multi-
objective optimization problem to a deterministic one.

Remark 4.10.

a) For |U| = 1 OWCP(U) reduces to a classical deterministic multi-objective optimiza-
tion problem.

b) For k = 1 OWCP(U) reduces to the (single objective) robust counterpart of P(U).

We now analyse how optimal/robust solutions of OWCP(U) are related to robust efficient
solutions as defined in Section 3.

Theorem 4.11.

a) Let x ∈ X be a strictly efficient solution to OWCP(U). Then x is rse for P(U).

b) Let max
ξ∈U

fi(x, ξ) exist for all i ∈ {1, . . . , k} and all x ∈ X . Let x be a weakly efficient

solution to OWCP(U). Then x is rwe for P(U).
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Proof. a) Assume that x is not rse for P(U). Then there exists an x′ ∈ X such that

fU (x′) ⊆ fU (x)− Rk=
3.4.a&b⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x′, ξ) 5 f(x, η)

⇒ sup
ξ∈U

fi(x
′, ξ) 5 sup

η∈U
fi(x, η) ∀ i ∈ {1, . . . , k}.

But the latter means that fowcU (x) is equal to or dominated by fowcU (x′), thus x is
not strictly efficient for OWCP(U).

b) Assume that x is not rwe for P(U). Then there exists an x′ ∈ X such that

fU (x′) ⊆ fU (x)− Rk>
3.4.a&b⇒ ∀ ξ ∈ U ∃ η ∈ U : f(x′, ξ) 5 f(x, η).

Since max
ξ∈U

fi(x, ξ) exists for all i = 1, . . . , k and all x ∈ X , this implies

max
ξ∈U

fi(x
′, ξ) < max

η∈U
fi(x, η) ∀ i = 1, . . . , k.

But the latter means that fowcU (x) is strictly dominated by fowcU (x′), thus x is not
strictly efficient for OWCP(U).

Theorem 4.11 leads to our third method for computing r[w/s]e solutions to the uncertain
multi-objective optimization problem P(U).

Method 3: OWC-method for uncertain multi-objective optimization

Input: Uncertain multi-objective problem P(U), solution sets SOLrse = SOLrwe = ∅.
Step 1: Find a set SOLwe of weakly efficient solutions to OWCP(U).
Step 2: If SOLwe = ∅: STOP. Output: Set of rse solutions SOLrse and set of rwe

solutions SOLrwe.
Step 3: Choose x ∈ SOLwe, set SOLwe := SOLwe \ {x}.

a) If x is strictly efficient for OWCP(U), then x is rse for P(U), thus SOLrse :=
SOLrse ∪ {x}.

b) If max
ξ∈U

fi(x, ξ) exists for all i ∈ {1, . . . , k} and x ∈ X , then x is rwe for P(U),

thus SOLrwe := SOLrwe ∪ {x}.
Step 4: Go to Step 2.

Remark 4.12. We can not estimate the complexity of Method 3 in general since it is
highly dependent on the problem structure of P(U) and the algorithm for solving the deter-
ministic multi-objective optimization problem OWCP(U). E.g., if P(U) is a linear uncer-
tain multi-objective optimization problem, and the (deterministic) weighted sum method
is used for solving OWCP(U), for each weight λ ∈ Rk≥, we obtain a linear single objective
optimization problem with k additional variables and k · |U| additional constraints. If we
use the (deterministic) ε-constraint method for solving OWCP(U), for each ε ∈ Rk≥, we
obtain k linear single objective optimization problems, each with 1 additional variable and
k · |U| additional constraints.

Once again we use Example 3.3 to explain the objective-wise worst case problem.

Example 4.13.
The strictly efficient solutions of OWCP(U) are x1, x2 and x5, thus they are rse, too.
Note that these are exactly the same robust solutions we obtained using the ε-constraint
method in Section 4.2.
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f1

f2

fowc
U (x3)

fowc
U (x1)

fowc
U (x2)

fowc
U (x4)

fowc
U (x5)

Figure 4: Objective-wise worst cases for Example 3.3.

Interestingly, the approach of solving the uncertain multi-objective optimization problem
P(U) by applying the ε-constraint method to P(U) and then solving a single objective
minmax problem yields the same result as first forming the minmax version of P(U) and
then applying the ε-constraint method as Theorem 4.15 shows.

Lemma 4.14. Given an uncertain multi-objective optimization problem P(U). Then
εCP(U)(ε, i) is equivalent to εCOWCP(U)

(ε, i).

Proof. The result can easily be seen by simply writing down both problems. The ε-
constraint version of OWCP(U) is

min sup
ξ∈U

fi(x, ξ)

s.t. sup
ξ∈U

fj(x, ξ) ≤ εj ∀ j 6= i

x ∈ X
and the ε-constraint version of P(U) is

min sup
ξ∈U

fi(x, ξ)

s.t. fj(x, ξ) ≤ εj ∀ j 6= i, ∀ ξ ∈ U
x ∈ X .

Obviously these problems are equivalent.

Lemma 4.14 allows us to relate Methods 2 and 3 for computing r[s/w]e solutions.

Theorem 4.15. Every r[s/w]e solution x ∈ X to P(U) found by the ε-constraint method
(Method 2) can also be found by the OWC-method (Method 3). Furthermore, every r[s/w]e
solution x ∈ X to P(U) found by the OWC-method using the (deterministic) ε-constraint
method can also be found by Method 2.

Proof. Since we can find the r[s/w]e solution x with Method 2, there exist parameters
ε ∈ Rk and i ∈ {1, . . . , k} such that x is [the unique / an] optimal solution to εCP(U)(ε, i).
Now, by Theorem 4.14, εCP(U)(ε, i) is equivalent to the ε-constraint version of OWCP(U),
εCOWCP(U)

(ε, i). Therefore x is [the unique / an] optimal solution to εCOWCP(U)
(ε, i) and

thus a r[s/w]e solution found with Method 3 if we choose the ε-constraint method with
parameters ε and i for finding weakly efficient solutions to OWCP(U) in Step 1.
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With the same argumentation, we see that [the unique / an] optimal solution to εCOWCP(U)
(ε, i)

is also [the unique / an] optimal solution to εCP(U)(ε, i), proving the second part of the
Theorem.

That the reverse direction of the first part does not hold can be seen for example in the
deterministic case, where not all weakly efficient solutions can be found by the classical
ε-constraint method and thus by Method 2, since for |U| = 1 it reduces to the classical
version. Nonetheless, these solutions can be found by Method 3 as we did not specify
which algorithm it uses for finding weakly efficient solutions in Step 1.

Methods 1 and 2 are straightforward extensions of the well-known weighted sum scalar-
ization and ε-constraint method from deterministic multi-objective optimization. An im-
portant difference is that Methods 1, 2 and 3 are not always able to find all robust efficient
solutions to an uncertain multi-objective problem, while the ε-constraint method for de-
terministic multi-objective optimization is able to find all efficient solutions (compare
Ehrgott (2005)). In the following we show an example in which solutions exist which are
not found by any of the three methods.

Example 4.16. Consider the feasible set X := {x1, x2, x3, x4} and the uncertainty set
U := {ξ1, ξ2}. Let f : X × U 7→ R2 be given by the plot in Figure 5. Then we see that

f1

f2

0 1 2

0

1

2

f(x1, ξ1)

f(x1, ξ2)

f(x2, ·)

f(x3, ·)

f(x4, ·)

Figure 5: Plot of f for Example 4.16

all feasible solutions are robust [strictly/·/weakly] efficient. On the other hand, x1 is not
an optimal solution to WP(U)(λ) for any λ ∈ R2

[=/≥/>]
since either x3 or x4 are better.

Furthermore, x1 is not optimal for εCP(U)(ε, i) for any ε ∈ R2
= and i ∈ {1, 2} since here x2

is always feasible if x1 is feasible and has a better objective value. Also, x1 is not optimal
for OWCP(U) since fowcU (x1) is dominated by fowcU (x2). Therefore, none of the methods
1, 2, nor 3 finds x1 as a robust efficient solution, even though it is robust strictly efficient.

5 Objective-wise uncertainty

In this section we introduce a special class of uncertain multi-objective optimization prob-
lems, namely problems where the uncertainties of the objective functions are independent
of each other.

Definition 5.1 (Objective-wise uncertainty). We say a problem P(U) with U ⊂ Rm is
objective-wise uncertain (owu), if the uncertainties of the objective functions f1, . . . , fk
are independent of each other, namely if U = U1 × · · · × Uk with Ui ∈ Rmi such that
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∑k
i=1mi = m and

f(x, ξ) =




f1(x, ξ1)
f2(x, ξ2)

...
fk(x, ξk)


 ,

where ξi ∈ Ui.
This definition has been motivated by the notion of constraint-wise uncertainty as consid-
ered, e.g., in Ben-Tal et al. (2009) and is likely to appear in practical instances, e.g., if the
coefficients of the objective functions are noisy. We note that many studies on robustness
deal with interval-wise uncertainty which is also assumed to be independent and hence a
special case of our assumption. For the resulting class of problems we are able to obtain
further results for computing robust efficient solutions.

5.1 Completeness of the objective-wise worst case method

The first important insight is that the existence of a worst case for every objective function
fi, does in fact imply that a worst case scenario exists for the uncertain multi-objective
optimization problem P(U).

Lemma 5.2. If P(U) is owu and max
ξ∈U

fi(x, ξ) exists for all x ∈ X and i ∈ {1, . . . , k} then

ξmax(x) :=




argmax
ξ1∈U1

f1(x, ξ1)

argmax
ξ2∈U2

f2(x, ξ2)

...
argmax
ξk∈Uk

fk(x, ξk)



∈ U .

Proof. For all x ∈ X and i ∈ {1, . . . , k}

argmax
ξi∈Ui

fi(x, ξ
i) ∈ Ui

and therefore
ξmax(x) ∈ U1 × · · · × Uk = U .

We interpret this property of owu problems for Method 3.

Corollary 5.3. Given an owu problem P(U), where max
ξ∈U

fi(x, ξ) exists for all x ∈ X and

i ∈ {1, . . . , k},

fowcU (x) =




sup
ξ∈U

f1(x, ξ)

sup
ξ∈U

f2(x, ξ)

...
sup
ξ∈U

fk(x, ξ)




=




max
ξ∈U

f1(x, ξ)

max
ξ∈U

f2(x, ξ)

...
max
ξ∈U

fk(x, ξ)




= f(x, ξmax(x)).

The most important result of this section is that owu problems are in fact equivalent to
deterministic multi-objective optimization problems.
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Theorem 5.4. Given an owu problem P(U), where max
ξ∈U

fi(x, ξ) exists for all x ∈ X and

i ∈ {1, . . . , k}. Then
x is r[s/·/w]e for P(U)

⇔
x is [strictly/·/weakly] efficient for OWCP(U).

Proof. Since P(U) is owu and max
ξ∈U

fi(x, ξ) exists for all x ∈ X , due to Lemma 5.2

ξmax(x) ∈ U for all x ∈ X . Thus

fU (x)− Rk[=/≥/>] ⊇ f(x, ξmax(x))− Rk[=/≥/>]

for all x ∈ X . On the other hand obviously f(x, ξ′) 5 f(x, ξmax(x)) for all ξ′ ∈ U , thus

fU (x)− Rk[=/≥/>] ⊆ f(x, ξmax(x))− Rk[=/≥/>]

for all x ∈ X .

The last two inclusions together yield

fU (x)− Rk[=/≥/>] = f(x, ξmax(x))− Rk[=/≥/>] = fowcU (x)− Rk[=/≥/>]

for all x ∈ X due to Corollary 5.3. Therefore

x is r[s/·/w]e for P(U) ⇔ x is r[s/·/w]e for OWCP(U).

Since OWCP(U) is a deterministic multi-objective optimization problem,

x is r[s/·/w]e for OWCP(U) ⇔ x is [strictly/·/weakly] efficient for OWCP(U)

due to Lemma 3.5.

This result allows us to find all re solutions with Method 3 for owu problems. To see this,
we first recall another result from the (deterministic) ε-constraint method:

Theorem 5.5 (see Ehrgott (2005), Theorem 4.5). Let P be a deterministic multi-objective
optimization problem with objective function f and feasible set X . Then x ∈ X is efficient
for P if and only if there is an ε ∈ Rk such that x is an optimal solution to εCP(ε, i) for
all i ∈ {1, . . . , k}.
From Theorem 4.14 and Theorem 5.5 we now can directly deduce Corollary 5.6.

Corollary 5.6. Given an owu problem P(U), where max
ξ∈U

fi(x, ξ) exists for all x ∈ X and

all i ∈ {1, . . . , k}. Then x ∈ X is re for P(U) if and only if there is an ε ∈ Rk such that
x is an optimal solution to εCP(U)(ε, i) for all i.

Recall that Example 4.9 shows that the ε-constraint method for uncertain multi-objective
optimization problems need not find all re solutions. Nevertheless, Corollary 5.6 confirms
that the ε-constraint method finds all re solutions for owu problems, just as in determin-
istic multi-objective optimization.
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5.2 Reducing the uncertainty set

One goal in robust single objective optimization is to simplify the robust counterpart of
an optimization problem in order to compute robust solutions. A general property is
Theorem 5.7:

Theorem 5.7 (Ben-Tal & Nemirovski (1998)). Let P(conv (U)) be an uncertain (single
objective) optimization problem, where U = {ξ1, . . . , ξm} and

f(x, ξ) : Rn × conv (U)→ R

is quasiconvex in ξ. Then

x is robust optimal for P(U)

⇔
x is robust optimal for P(conv (U)).

In Section 4 we extended results from deterministic multi-objective optimization. We now
want to extend Theorem 5.7 from single objective robust optimization to robust multi-
objective optimization. Such an extension is only possible for owu problems, as we shall
see in Examples 5.10 – 5.13. Before we state a similar result to Theorem 5.7 we need a
lemma.

Lemma 5.8. P(U) is owu if and only if P(conv(U)) is owu.

Proof. “⇐” is trivial since U ⊂ conv (U).
“⇒” Let P(U) be owu. Then

conv (U) = conv (U1 × · · · × Uk) = conv (U1)× · · · × conv (Uk),

which holds since for two sets A, B,

conv (A×B) = conv (A)× conv (B).

Now we can extend Theorem 5.7.

Theorem 5.9. Given an owu problem P(conv (U)), where U = {ξ1, . . . , ξm} and

f1(x, ξ), . . . , fk(x, ξ) : Rn × conv (U)→ R

are quasiconvex in ξ. Then
x is r[s/·/w]e for P(U)

⇔
x is r[s/·/w]e for P(conv (U)).

Proof. We show that for x′, x ∈ X

fU (x′)− Rk= ⊆ fU (x)− Rk[=/≥/>]

⇔
fconv (U)(x

′)− Rk= ⊆ fconv (U)(x)− Rk[=/≥/>].
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“⇐”

fconv (U)(x
′)− Rk= ⊆ fconv (U)(x)− Rk[=/≥/>]

3.4.b⇒ ∀ ξ′ ∈ conv (U) ∃ ξ ∈ conv (U) s.t. f(x′, ξ′) [5 / ≤ / <] f(x, ξ)

⇒ ∀ ξ′ ∈ U ∃ ξ ∈ conv (U) s.t. f(x′, ξ′) [5 / ≤ / <] f(x, ξ)

⇒ ∀ ξ′ ∈ U ∃ λ1, · · · , λm ∈ R=,
m∑

i=1

λi = 1

s.t. f(x′, ξ′) [5 / ≤ / <] f

(
x,

m∑

i=1

λiξ
i

)
.

But

f

(
x,

m∑

i=1

λiξ
i

)
5



f1(x, ξ∗1)

...
fk(x, ξ∗k)




for some ξ∗ ∈ U since fi is quasiconvex in ξ for every i and P(U) is owu. But this means
that

∀ ξ′ ∈ U ∃ ξ∗ ∈ U s.t. f(x′, ξ′) [5 / ≤ / <] f(x, ξ∗),

thus
fU (x′)− Rk= ⊆ fU (x)− Rk[=/≥/>].

“⇒”

fU (x′)− Rk= ⊆ fU (x)− Rk[=/≥/>]

⇒ ∀ ξ ∈ U ∃ ξ ∈ U s.t. f(x′, ξ) [5 / ≤ / <] f(x, ξ).

But then for every
∑m
i=1 λiξ

i ∈ conv (U), since f is quasiconvex in ξ, it holds that

f

(
x′,

m∑

i=1

λiξ
i

)
5 f(x′, ξmax(x′)) [5 / ≤ / <] f(x, ξ∗),

for some ξ∗ ∈ U ⊆ conv (U) since P(U) is owu and thus ξmax(x′) ∈ U . This completes
the proof.

The assumptions of Theorem 5.9 cannot be weakened, as we show in the following four
examples. First, Examples 5.10 and 5.11 show a function which is quasiconvex in ξ but
where P(U) is not owu. We identify solutions which are rse for either P(U) or P(conv (U))
but not even rwe for the other.

Example 5.10. Let X = U = {0, 1} and f : X × conv (U)→ R2 given by

f(x, ξ) := (−0.8ξx+ 0.5x+ 0.5, 0.8ξx− 0.3x+ 0.5)T .

Then f is affine (thus quasiconvex) in ξ but P(U) is not owu. By plotting the function
we can see that x = 1 is rse for P(U) but not even rwe for P(conv (U)), since here it is
dominated by x = 0.

Example 5.11. Let X = U = {0, 1} and f : X × conv (U)→ R2 given by

f(x, ξ) := (1.8 + 0.2x− ξ, 0.8 + 0.2x+ ξ + x · (ξ10 − ξ))T

Then f is quasiconvex in ξ but P(U) is not owu. Again by plotting the function we can
see that x = 1 is rse for P(conv (U)) but not even rwe for P(U), since here it is dominated
by x = 0:
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f(1, 0)

f(1, 1)

f(0, ·)fU (1) − R2
=

fU (0) − R2
=
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1

f(1, 0)
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f(0, ·)fconv (U)(1) − R2
=

fconv (U)(0) − R2
=

Figure 6: f is affine in ξ, but P(U) is not owu. x = 1 is rse for P(U) but not rwe for
P(conv (U)).

On the other hand, Examples 5.12 and 5.13 illustrate uncertain multi-objective optimiza-
tion problems P(U) that are owu but where f is not quasiconvex. Again we find solutions
which are rse for either P(U) or P(conv (U)) but not even rwe for the other.

Example 5.12. Let X = {0, 1}, U = R× {−
√

2,
√

2} and f : X × conv (U)→ R2 given
by

f(x, ξ) :=

(
2 + x

2 + x− (−1)x · (2− ξ22)

)
.

Then P(U) is owu but f is not quasiconvex in ξ. By plotting the function, we can see that
x = 1 is rse for P(U) but not even rwe for P(conv (U)), since it is dominated by x = 0.

Example 5.13. This example is pretty much the same as Example 5.12, the difference is
one minus sign in f2. Because of this change, x = 1 is rse for P(conv (U)) but not even
rwe for P(U). Let X = {0, 1}, U = R× {−

√
2,
√

2} and f : X × conv (U)→ R2 given by

f(x, ξ) :=

(
2 + x

2 + x+ (−1)x · (2− ξ22)

)
.

Then P(U) is owu but f is not quasiconvex in ξ. Again, by plotting the function (which
we omit here), we can see that x = 1 is rse for P(conv (U)) but not even rwe for P(U),
since it is dominated by x = 0.

Together with Section 5.1 we can deduce that an owu problem P(conv (U)) is equivalent
to the deterministic problem OWCP(U) with a considerably smaller uncertainty set U .
This smaller uncertainty set also simplifies the calculation of a worst case, especially since
(due to Lemma 5.2) we can do this for each objective function at a time.

6 Illustrations of robust efficient solutions

So far we introduced the concept of robust efficiency and presented various methods to
compute robust efficient solutions. This raises many questions on the structure of the
set of robust efficient solutions, e.g., if it forms a set of robust nond-dominated points on
the boundary of the feasible set in objective space similar to the non-dominated set in
deterministic multi-objective optimization, and where in the feasible set robust efficient
solutions may be located.
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Figure 7: f is quasiconvex in ξ, but P(U) is not owu. x = 1 is rse for P(conv (U)) but
not rwe for P(U).
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Figure 8: P(U) is owu, but f is not quasiconvex in ξ. x = 1 is rse for P(U) but not rwe
for P(conv (U)).

Unfortunately, as demonstrated in the master thesis of Majewski (2013), it turns out
that even in the case of multi-objective linear programming, the structure of robust ef-
ficient solutions does not satisfy well-known properties of deterministic multi-objective
optimization.

• While in deterministic linear multi-objective optimization there always exists an
efficient solution at an extreme point of the feasible set (compare, e.g., Ehrgott
(2005)), this is not the case for robust efficient solutions in uncertain linear multi-
objective optimization, not even for owu functions.

• Even worse, there exist examples of uncertain bi-objective affine optimization prob-
lems on the box [0, 1]2 in which all robust efficient solutions lie in the interior of the
feasible set; a situation which cannot occur in deterministic affine multi-objective
programming (compare, e.g., Ehrgott (2005)).

Hence, general conclusions are difficult to be drawn and a general intuition of a robust
efficient solution may be hard to obtain. However, we can illustrate the solutions found
by the different methods for particular instances.
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Figure 9: Robust efficient solutions computed with the ε-constraint method. Stepsize on
the left is 1.0, in the middle 0.5, and on the right 0.1.

Figure 9 shows the feasible set of an optimization problem with four linear objective func-
tions, feasible set [−1, 0]2, and six scenarios for the uncertain parameters. The solutions
found by the ε-constraint method (Method 2) are indicated for different step sizes of the
chosen ε (but with values of ε taken from the same set).

Figure 10: Various sets of robust efficient solutions. The optimization problem on the
left is linear, on the right convex quadratic. Black solutions are obtained with Method
1, gray solutions with Method 2.

Figure 10 shows two other feasible sets of uncertain multi-objective optimization prob-
lems. The solutions obtained with the weighted sum scalarization method (Method 1) are
indicated in black, the solutions of the ε-constraint method in gray. As one can see on
the left, the solutions obtained with Method 1 seem to lie on the boundary of the feasible
set, while Method 2 also finds solutions in the interior of the feasible set.

In conclusion, robust efficient solutions can lie basically anywhere in the feasible set (even
for uncertain multi-objective linear optimization problems) and none of our three methods
is clearly superior to the others. These results highlight again the complexity of uncertain
multi-objective optimization.

We finally present a bi-objective example in order to illustrate the advantages of using
robust efficient solutions over optimal solutions to the various scenarios.

Figure 11 illustrates a bi-objective convex quadratic optimization problem. We investi-
gate two types of solutions. First, we choose one nominal scenario (which might be the
undisturbed, or the most likely scenario) and compute the efficient solutions for this par-
ticular case. If the nominal scenario occurs this is the best we can do, and it is what is
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(a) Non-dominated set (black) and ob-
jective vectors of the robust efficient so-
lutions (grey) in the nominal scenario.

(b) Objective vectors of the nominal
(black) and the robust (grey) efficient so-
lutions in the respective worst cases.

(c) Objective vectors of the nominally ef-
ficient solutions under all scenarios.

(d) Objective vectors of the robust effi-
cient solutions under all scenarios.

Figure 11: Example of a bi-objective quadratic convex optimization problem and its
nominal and robust efficient solutions. Note that the scale of Figure 11a is different from
the scale of Figure 11b, 11c, and 11d.

often done in practice: Choose the most likely scenario and solve the optimization prob-
lem with this fixed scenario. We call this set of solutions the nominally efficient solutions
Nom. We then use the approach of our paper and compute robust efficient solutions Rob
to the uncertain bi-objective convex quadratic optimization problem assuming six other
scenarios. In Figure 11 the objective vectors of nominally efficient solutions Nom and
robust efficient solutions Rob are compared to each other as follows.

• Figure 11a shows the objective values of Nom (black) and of Rob (grey) in the
nominal scenario. It can be seen that under the nominal scenario, the nominally
efficient solutions are slightly better than the robust efficient solutions, in particular,
the objective vectors of robust efficient solutions under the nominal scenario are each
dominated by objective vectors of nominally efficient solutions under the nominal
scenario.

• The worst case objective values of Nom (black) and Rob (grey) are shown in Fig-
ure 11b. These have been computed as follows: Let x be a solution in Nom or
Rob. Then we computed fU (x)− Rk=. This is shown as the grey polygonal line in
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Figure 11b for a specific x ∈ Rob. The upper right vertices of the sets fU (x)− Rk=
belong to the worst case scenarios — these are depicted in the figure for all x ∈ Nom
and x ∈ Rob. We can see that using robust efficient solutions over nominally efficient
solutions provides very significant improvement of the worst cases in our example.

• Figures 11c and 11d show the objective values of Nom (black) and of Rob (grey)
under all seven scenarios, i.e., the set {fU (x) : x ∈ Nom} is shown in Figure 11c and
the set {fU (x) : x ∈ Rob} is shown in Figure 11d.

7 Conclusion

In this paper we have shown how minmax robustness can be extended to multi-objective
optimization problems. In particular, we provide definitions for a solution being robust for
a multi-objective optimization problem and denote this as robust efficiency. We analyse
the resulting concepts and sketch three methods for computing robust efficient solutions.
Furthermore, we present some illustrations of robust efficient solutions and provide an
example motivating the use of robust efficient solutions over nominally efficient ones.

Our work leaves many avenues for further research. First, a deeper analysis of the various
algorithms for finding robust efficient solutions is necessary. The different algorithms
provide valid tools for finding robust efficient solutions but none of our methods is able
to find all of the efficient solutions and there also exist robust efficient solutions which
are not found by any of the methods presented. A classification of the solutions found
by the various methods might be helpful and is under investigation for special cases, in
particular for uncertain linear programming with multiple objectives and for uncertain
multi-objective location problems.

Furthermore, we are interested in other concepts of minmax robustness for multi-objective
optimization problems. The concept we use depends crucially on how the worst case
over all scenarios is defined, which in the case of multi-objective optimization needs the
definition of a supremum of a set. In our definition of robust efficiency, we furthermore use
a certain kind of set ordering, namely a definition of dominance of sets. Replacing either
the definition of the worst case or the definition of the set dominance by other ones (e.g.,
using a different ordering of sets from set valued optimization) will yield new concepts of
robustness for multi-objective optimization problems, see Ide & Köbis (2013); Ide et al.
(2013a) for first steps in this direction.

Another consideration is to not only look at minmax robustness but also to extend more
recent robustness concepts such as light robustness, adjustable robustness, or recovery
robustness to multi-objective optimization. For light robustness, this has been done in
Ide & Schöbel (2013) and in Kuhn et al. (2012) for a special bi-objective case.

Finally, we work on applications in agriculture where uncertainty comes from the fact
that properties of the harvested goods heavily depend on the weather and are not known
before harvest. These properties are crucial for the quality of the resulting products and
thus uncertain multi-objective optimization is of high interest in this field of application.
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Robustness for uncertain multi-objective optimization

Jonas Ide Anita Schöbel

Abstract

In this paper we discuss various concepts of robustness for uncertain multi-
objective optimization problems. We introduce the concepts of flimsily and highly
robust efficiency, collect different versions of minmax robust efficiency and extend
the concept of light robustness from single-objective problems to the new concept of
lightly robust efficiency for the multi-objective case. We compare and analyze the
concepts and present results, in particular for the class of objective-wise uncertain
multi-objective optimization problems. We conclude the paper with an illustra-
tive example visualizing the various concepts and the respective ideas of robustness
behind them.

1 Introduction

There are (at least) two issues that restrict the applicability of optimization methods
in practice. First, in nearly all practical applications of mathematical optimization
problems, one has to deal with input data which is not known exactly. This may
be due to measurement errors, imprecise data, future developments, fluctuations, or
disturbances. Second, most real-world optimization problems do not have one clearly
specified objective function but depend on different goals due to many decision
makers, each of them having different optimization criteria. Both these issues have
been extensively researched in the literature: The fields of stochastic and robust
optimization deal with uncertain data while the different optimization criteria are
analyzed in the field of multi-objective decision making and optimization.

However, there is rarely work done combining these two aspects of real-world opti-
mization problems, although also most multi-objective optimization problems suffer
from uncertain data. A prominent example is portfolio optimization in which differ-
ent criteria have to be met while the development of the portfolio is uncertain. Also,
in applications of the extensively researched field of multi-objective shortest paths,
usually not all data are known: While the physical length of a path is deterministic
and hence known more or less exactly, the travel time is due to the demand and
often not known beforehand. Other applications can be found in the optimization of
public transport: When looking for a line concept, or a timetable, the usual criteria
are to minimize the costs and the travel time of the passengers. However, the num-
ber of passengers is not known before and has to be estimated, while the travel time
can only be computed for the case that everything runs smoothly and is uncertain
with respect to disruptions or disturbances.

The goal of our paper is to bridge the gap between theory and practice by providing
concepts for multi-objective robust optimization. We present some new concepts
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and compare them with recent concepts for robust minmax efficiency. The goal is
that one can choose from these concepts the one fitting to the respective robust
multi-objective application at hand.

In the following we give an overview about existing related work. The field of
multi-objective optimization is well studied, we refer to [EFG10] for an overview
about some recent developments in the area. Dealing with uncertainties, various
approaches to this topic have been presented throughout the literature such as
stochastic optimization or robust optimization. While stochastic optimization (for
an overview see [BL11]) assumes some kind of probabilistic information about the
behavior of the uncertainties, robust optimization does not assume any information
of this kind but only that the uncertain parameters stem from some uncertainty set
(we call the realizations of these uncertain parameters scenarios).
For single-objective optimization problems, many concepts of robustness, i.e., what
is seen as a desired solution to an uncertain optimization problem have been pro-
vided. One of the most known ones is the concept of minmax robustness, originally
introduced by Soyster [Soy73] and extensively studied by Ben-Tal and Nemirovski
[BTN98, BTN99, BTN00, BTGN09]. Here, a solution is called robust, if it is fea-
sible for the uncertain optimization problem in every scenario and if it minimizes
the objective function in the worst case of all scenarios (note that the worst-case
scenario is dependent on the chosen solution).
Another useful and well-studied concept of robustness is the concept of regret ro-
bustness (see, e.g., Kouvelis and Yu [KY97]) where the regret, i.e., the maximal
difference over all scenarios between the objective value of the solution and the op-
timal objective value for the respective scenario, is to be minimized. Since minmax
and regret robustness both require a robust solution to be feasible for every scenario
and are therefore over-conservative, various alternatives have been introduced.
The concept of light robustness, introduced by Fischetti and Monaci [FM09] and
generalized in [Sch13], is such an alternative for the case that minmax or regret
robustness are too restrictive. In this concept only such solutions are considered
which are good enough for the most likely (or ’normal’) scenario. Among these
solutions the most reliable one is chosen.
Another alternative is the concept of adjustable robustness (see [BTGGN03]) which
considers two types of variables: “Here-and-now”-variables, which have to be fixed at
the time a solution is calculated and “wait-and-see”-variables, which can be adjusted
later. A choice of the “here-and-now”-variables is feasible, if for every scenario there
exist “wait-and-see”-variables such that the combination of these variables is feasible
for the respective scenario. The objective is to minimize the worst case. Further
alternatives are different concepts of recovery robustness, see, e.g., Liebchen et. al
[LLMS09], Erera et. al [EMS09] and Goerigk and Schöbel [GS11]. A recent overview
on robustness concepts is given in [GS13].

These various concepts are of great value for different applications in single-objective
optimization. However, they cannot be extended directly to multi-objective opti-
mization problems, since for multi-objective functions the definition of a worst case is
not clear as there is no total order on Rk. Therefore, different concepts of robustness
are needed for the multi-objective case.
For uncertain multi-objective optimization problems, uncertainties in the problem
formulation have been approached from different directions. The first idea to deal
with these uncertainties was provided by Deb an Gupta [DG06]. The authors extend
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the idea of Branke [Bra98] to multi-objective optimization and replace the objective
functions by their respective means. An efficient solution to this problem is then
called robust. In a second approach, the authors add constraints to the problem
formulation such that a solution is feasible, if the difference between the respective
objective functions and their means does not exceed a pre-defined threshold. An
efficient solution to the resulting problem is then called robust.

As we can see, the approach provided by Deb and Gupta [DG06] and later on
extended by Gunawan and Azarm [GA05] and Barrico and Antunes [BA06], does
not follow the classical concepts of single-objective robust optimization. A first
approach to extending these concepts was provided by Kuroiwa and Lee [KL12].
Here, the authors replace the objective functions with their respective worst cases
over all scenarios. The robust version of the uncertain multi-objective problem then
considers this new objective function. If constraints have to be respected, a solution
is considered as feasible if it is feasible in every scenario. An efficient solution to the
robust version of the uncertain multi-objective optimization problem is then called
robust. This approach is closely connected to the concept of minmax robustness
for single-objective problems. Throughout this paper we will call it “point-based
minmax robust efficiency”.
The concept of set-based minmax robust efficiency, introduced by Ehrgott et. al
[EIS13], extends the concept of point-based minmax robust efficiency. Rather than
replacing the objective vector with another vector, here, for a given feasible solution
x, the worst case of the objective vector is interpreted as a set, namely the set of
efficient solutions to the multi-objective problem of maximizing f(x, ξ) over ξ ∈ U ,
where U is the uncertainty set. The authors show that this approach is a direct
extension of the concept of minmax robustness and a generalization of the concept
of point-based minmax robust efficiency.

In this paper we consider several new concepts of robustness for multi-objective
optimization. After fixing the notation in Section 2, we introduce the intuitive con-
cepts of flimsily and highly robust efficiency in Section 3. Furthermore, we collect
different versions of minmax robust efficiency and extend the concept of light ro-
bustness to the multi-objective setting. In Section 4.2 we consider a special class
of uncertain optimization problems, namely problems of objective-wise uncertainty.
We analyze properties of the various concepts of robustness when applying them to
this class. Finally, in Section 5, we illustrate the various concepts on a bi-objective
shortest path problem and discuss the properties of the various solutions. In Sec-
tion 6, we conclude the paper pointing out open questions and interesting areas of
future research.

2 Preliminaries

We first introduce some commonly used notation for multi-objective optimization.
We need an order relation on Rk:

Notation 2.1 ([Ehr05]). Let x, y ∈ Rk. Then we define

x � y :⇔ yi ∈ [xi,∞) and x 6= y

Furthermore, we denote the set
{
y ∈ Rk : y � 0

}
by Rk�.
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Multi-objective optimization deals with the problem of minimizing a vector-valued
objective function over some feasible set:

Definition 2.2. Given a feasible set X ⊆ Rn and an objective function f : X 7→ Rk,
a multi-objective optimization problem is given by

MP min f(x)
s.t. x ∈ X

Thus we want to minimize a vector which confronts us with the problem that there
is no total order on Rn.

Thus we search all feasible solutions x ∈ X which are efficient, that is, where we do
not find a solution x′ ∈ X such that x′ � x.

In order to define an uncertain multi-objective optimization problem, we assume
that uncertainties in the problem formulation are given as scenarios, i.e., as an
uncertainty set U ∈ Rm. We hence assume f : X × U 7→ Rk, i.e., the scenarios in U
influence the values of f . Furthermore, we assume that the feasible set X is not due
to uncertainties and remains unchanged in the different scenarios. If this is not the
case we simply replace X by the set of solutions feasible for every scenario as it is
also done in single-objective robust optimization. Now, an uncertain multi-objective
optimization problem

P(U) = (P(ξ), ξ ∈ U)

is defined as the family of parameterized problems

P(ξ) min f(x, ξ)
s.t. x ∈ X ,

where f : X × U 7→ Rk and X ⊆ Rn.
As in single-objective robust optimization, it is not clear what a “desired” solution to
such a family of problems is. In the following section, we introduce several concepts
of robustness transforming the uncertain multi-objective problem to a deterministic
problem, called its robust counterpart.

3 Robustness concepts for uncertain multi-objective
optimization

In this section we present five different robustness concepts for uncertain multi-
objective optimization problems. We start with the following two intuitive concepts.

3.1 Flimsily and highly robust efficiency

Since for any fixed ξ ∈ U we obtain a deterministic multi-objective problem P(ξ), a
first intuitive concept of robustness is to define a feasible solution as robust efficient
if it is efficient for at least one scenario.

Definition 3.1. Given an uncertain multi-objective optimization problem P(U), we
call a solution x ∈ X flimsily robust efficient for P(U), if it is efficient for P(ξ) for
at least one ξ ∈ U .
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From the definition of flimsily robust efficiency we come directly to the next concept
of highly robust efficiency, where we call a feasible solution robust efficient, if it is
efficient in every scenario.

Definition 3.2. Given an uncertain multi-objective optimization problem P(U), we
call a solution x ∈ X highly robust efficient for P(U), if it is efficient for P(ξ) for
all ξ ∈ U .

Let XE(ξ) be the set of efficient solutions to P(ξ), ξ ∈ U . Then

x is highly robust efficient for P(U)⇐⇒ x ∈
⋂

ξ∈U
XE(ξ)

and
x is flimsily robust efficient for P(U)⇐⇒ x ∈

⋃

ξ∈U
XE(ξ).

As a direct consequence we obtain:

Lemma 3.3. Let P(U) be an uncertain multi-objective problem and let x be highly
robust efficient for P(U). Then x is flimsily robust efficient for P(U).

The following example illustrates the two concepts.

Example 3.4. Given a set of feasible solutions X := {x1, x2, x3} and an uncer-
tainty set of scenarios U := {ξ1, ξ2}. We define the objective function f : X ×U 7→
R2 via the plot given in Figure 1.

f1

f2

0 1 2 3
0

1

2

3 f(x1, ξ1)

f(x2, ξ1)

f(x3, ξ1)

f(x1, ξ2)

f(x2, ξ2)

f(x3, ξ2)

Figure 1: Plot of function f in Example 3.4

As we can see, x2 is efficient in both scenarios, while x1 is dominated in scenario
ξ2 and x3 is dominated in both scenarios. This means that x2 is highly robust, x1
and x2 are flimsily robust and x3 is none of both.

We now analyze the two special cases, namely the deterministic case ( |U| = 1) and
the single-objective case (k = 1).
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Remark 3.5 (Special cases of highly robust efficiency.).

1. For |U| = 1, highly robust efficiency, flimsily robust efficiency and (determin-
istic) efficiency are all equivalent. The highly (flimsily) robust counterpart of
P(U) hence is just the given deterministic multi-objective problem itself.

2. In the case of only k = 1 objective function, a solution is highly robust efficient
if and only if it is optimal for every scenario ξ ∈ U .

The second statement of the remark shows that being highly robust efficient is a
very strict concept, and much more as is requested in single-objective optimization.
Even though in this case, highly robust efficiency would thus be the best kind of
solution one could obtain, for k > 1 this intuition is not so clear anymore as we will
see in Example 3.14 later on in this section.
Looking again at the case k = 1 we see that it is not very likely that highly robust
efficient solutions to P(U) exist. However, there is a class of problems where the
existence of such a solution is guaranteed, namely if one of the objectives does not
contain any uncertain parameters, and if the minimization of this objective has a
unique optimal solution.

Lemma 3.6. Let P(U) be an uncertain multi-objective problem. Let i ∈ {1, . . . , k}
be an objective which is not uncertain, i.e., for which fi(x, ξ) ≡ fi(x) for all ξ ∈ U
and x ∈ X . Furthermore, assume that min{fi(x) : x ∈ X} has a unique optimal
solution x∗. Then x∗ is highly robust efficient for P(U).

Proof. As fi(x
∗, ξ) = fi(x

∗) < fi(x) = fi(x, ξ) for all x ∈ X and all ξ ∈ U we have
that no y ∈ X dominates x∗ in any scenario ξ ∈ U . Hence, x∗ ∈ XE(ξ) for all ξ ∈ U
and consequently x∗ is highly robust efficient.

Note that the existence of an objective function which does not contain any uncer-
tainty is not unrealistic in practice. For example, if a traveler wants to minimize the
length (in kilometers) and the travel time of his trip, the length is exactly known
while the travel time may depend, e.g., on traffic and weather conditions. Similar
examples may be found if the cost objective is known but the income may depend on
the uncertain demand. A detailed analysis of this situation for bi-objective uncertain
problems and more applications can be found in [KRSS12].

Summarizing, flimsily and highly robust efficiency both are intuitive concepts. We
use them throughout the paper mainly for comparison: Given another robustness
concept A, we would like to know if every highly robust efficient solution is also
robust w.r.t A, and if being robust w.r.t A implies being a flimsily robust efficient
solution.

3.2 Point-based minmax robust efficiency

One of the first and most important concepts of robustness for uncertain single-
objective optimization is the concept of minmax robust optimality.

Definition 3.7 (Minmax robust optimality for single-objective problems). Given
an uncertain single-objective optimization problem P(U) (i.e., with k = 1 objective
functions), a solution x ∈ X is called a minmax robust optimal solution to P(U),
if it is an optimal solution to
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min sup
ξ∈U

f(x, ξ)

s.t. x ∈ X .
This means, the worst case of the objective function under all possible scenarios is
minimized over all feasible solutions.

For a vector-valued function f , the definition of the worst case is not as clear as
in single-objective optimization, thus an extension of minmax robustness to multi-
objective problems is not uniquely defined.
There are two extensions of this concept for single-objective robust optimization to
multi-objective robust optimization we are aware of. The first one, which we call
point-based minmax robust efficiency, is introduced by Kuroiwa and Lee [KL12],
the second one, which we call set-based minmax robust efficiency, by Ehrgott, et al.
[EIS13].

The concept of point-based minmax robust efficiency interprets the supremum for
every objective function separately, yielding a new objective function

fmaxU (x) :=




sup
ξ∈U

f1(x, ξ)

sup
ξ∈U

f2(x, ξ)

...
sup
ξ∈U

fk(x, ξ)




With this we can define the concept of point-based minmax robust efficiency.

Definition 3.8 (Kuroiwa and Lee [KL12]). A feasible solution x ∈ X is called
point-based minmax robust efficient, if it is efficient for

min fmaxU (x)
s.t. x ∈ X .

Note that this is a deterministic multi-objective optimization problem which can
be solved by the standard solution techniques for multi-objective problems. For
solution techniques to this particular problem structure we also refer to Kuroiwa
and Lee [KL12].

Continuing Example 3.4 we provide a first insight into the concept of point-based
robust efficiency:

Example 3.9. Given the same set of feasible solutions X := {x1, x2, x3} and an
uncertainty set of scenarios U := {ξ1, ξ2} as before. We continue Example 3.4 and
plot fmaxU in Figure 2.
fmaxU (x2) dominates fmaxU (x1) and fmaxU (x3), therefore x2 is point-based minmax
robust efficient while x3 and x1 are not.

3.3 Set-based minmax robust efficiency

Minmax robustness is also used as basis in the set-based concept of Ehrgott et.
al [EIS13]. The difference to point-based minmax robust efficiency lies in the in-
terpretation of the supremum in the problem formulation. While the concept of
point-based minmax robust efficiency interprets this supremum for every compo-
nent separately, the concept of set-based minmax robust efficiency interprets this
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Figure 2: Additional plot of fmaxU for Example 3.4

supremum as a multi-objective maximization problem itself. The minimization of
the supremum is then equivalent to the minimization of the worst-case set, which is
obtained as the Pareto-front of the inner maximization problem.

For these sets Ehrgott et. al [EIS13] give a definition of dominance, obtaining the
concept of set-based minmax robust efficiency.

Definition 3.10 (set-based minmax robust efficiency). Given an uncertain multi-
objective optimization problem P(U), we denote the set {f(x, ξ) : ξ ∈ U} by fU (x)
and call a feasible solution x ∈ X set-based minmax robust efficient, if there is no
x′ ∈ X \ {x} such that

fU (x′) ⊆ fU (x)− Rk�.

For an illustration of this concept we continue Example 3.9:

Example 3.11. Let X , U and f be given as in Example 3.4. In order to under-
stand the concept of set-based minmax robust efficiency, we depict the borders of the
respective sets fU (x1)−R2

� (dashed), fU (x2)−R2
� (dotted), and fU (x3)−R2

� (solid)
in Figure 3.
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Figure 3: fU (x1) − R2
� (dashed), fU (x2) − R2

� (dotted), and fU (x3) − R2
� (solid)

for Example 3.9
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As we can see, fU (x1) − R2
� does not contain fU (x2) nor fU (x3). Therefore, x1 is

set-based minmax robust efficient. fU (x2)−R2
� does not contain fU (x1) nor fU (x3)

and is also set-based minmax robust efficient. fU (x3) − R2
�, on the other hand,

contains fU (x2) and therefore is not set-based minmax robust efficient.

Remark 3.12. As mentioned by Ehrgott et al. [EIS13], any point-based minmax
robust efficient solution is also set-based minmax robust efficient. As we can see
from solution x1 in Example 3.11, the inverse conclusion does not hold.

For further insight into properties of this concept and techniques for calculating
set-based robust efficient solutions we refer to Ehrgott et. al [EIS13].

As explained in the beginning of this section, we now use the concepts of flimsily
and highly robust efficiency for comparison, i.e., we want to know if

1. flimsily robust efficiency is a necessary condition for minmax robust efficiency,
and if

2. highly robust efficiency is a sufficient condition for minmax robust efficiency.

Our first answer is no: The following example shows that a (either point-based or
set-based) minmax robust efficient solution does not necessarily have to be flimsily
robust efficient:

Example 3.13. [minmax robust efficiency does not imply flimsily robust efficiency]
We define U := {ξ1, ξ2} and X := {x1, x2, x3}. Furthermore, let f : X × U 7→ R2

be given via the plot in Figure 4 where we again indicate fmaxU and the borders of
fU (x1)− R2

� (solid), fU (x2)− R2
� (dotted), and fU (x3)− R2

� (dashed).
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Figure 4: Plot of f for Example 3.13

We see that every feasible solution is both point-based and set-based minmax robust
efficient, but x1 is not flimsily robust efficient.

The next example shows that in general also the second answer is no, i.e., not every
highly robust efficient solution is point-based or set-based minmax robust efficient:

Example 3.14. [highly robust efficiency does not imply minmax robust efficiency]
We define the sets U := {ξ1, ξ2, ξ3} and X := {x1, x2}. Let f : X ×U 7→ R2 be given
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via the plot in Figure 5 where we again indicate fmaxU and the borders of fU (x1)−R2
�

(solid) and fU (x2)− R2
� (dashed).

f1

f2

0 1 2 3 4 5 6
0

1

2

3

4

5

f(x1, ξ2)

f(x1, ξ1)

fmax
U (x1)

f(x2, ξ1)

f(x2, ξ2)

fmax
U (x2)

f(x1, ξ3)
f(x2, ξ3)

Figure 5: Plot of f for Example 3.14

x2 is efficient in all three scenarios, hence it is highly robust efficient. However, it is
neither point-based nor set-based minmax robust efficient since it is dominated by x1
in both cases. This example also shows that none of the (point-based or set-based)
minmax robust efficient solutions (even if such solutions exist) needs to be highly
robust efficient.

However, note that the answer to the second question is yes for the case k = 1, i.e.,
for single-objective optimization, as the next lemma shows.

Lemma 3.15. Let k = 1. If x is highly robust efficient for P(U), then x is a
minmax robust optimal solution to P(U).

Proof. Let x highly robust efficient for P(U). Then since k = 1,

∀ x′ ∈ X : ∀ ξ ∈ U : f(x, ξ) ≤ f(x′, ξ)

⇒ ∀ x′ ∈ X : ∀ ξ ∈ U : f(x, ξ) ≤ sup
ξ∈U

f(x′, ξ)

⇒ ∀ x′ ∈ X : sup
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x′, ξ)

⇒ sup
ξ∈U

f(x, ξ) ≤ min
x′∈X

sup
ξ∈U

f(x′, ξ)

⇔ x is a minmax robust optimal solution to P(U)

3.4 Lightly robust efficiency

The concept of light robustness for uncertain single-objective optimization problems
has been introduced by Fischetti and Monaci [FM09] and generalized by [Sch13]. For
the concept of light robustness a nominal scenario is needed. The nominal scenario
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is defined as a kind of reference scenario. This may be the most likely one, or the
most important one, or the undisturbed scenario. Even though the assumption of a
nominal scenario may sound contradictory to the idea that robust optimization does
not assume any kind of probability distribution of the uncertain parameters, this
setting is not unusual. As an example, consider weather conditions. Normally, the
weather is neither extremely cold nor extremely hot, but these settings can appear.
The nominal scenario here could be the average temperature of the year. Another
example is timetabling. In this case the nominal scenario is usually chosen as the
scenario in which everything runs smoothly and without any delays. Note that
modeling of the nominal scenario is part of modeling of the uncertainty set and can
be fixed to whatever seems an important or “normal” scenario.

As already said, a drawback of minmax robustness is its over-conservatism. Hedging
against all scenarios from the uncertainty set usually comes with a high price, namely
the quality in the nominal scenario often drastically decreases. For example, if one
wants to hedge against all delays in timetabling, one would need so much buffer that
the timetable becomes unattractive to the passengers. These high costs motivate
the definition of light robustness, in which a certain nominal quality of the solution
is required. This means, a solution is only considered as feasible if its quality is
good enough for the nominal scenario. Among all the solutions which satisfy this
quality the most reliable one is chosen. Light robustness is usually considered for
uncertain optimization problems with deterministic objective and uncertainty in
the constraints. Transferring the concept to our case in which we have an uncertain
objective and deterministic constraints, we obtain the following definition.

Definition 3.16 (Light robust optimality for single-objective optimization prob-
lems). Given an uncertain single-objective optimization problem P(U) (i.e. with
k = 1 objective function), and assume that x̂ is an optimal solution to the optimiza-

tion problem of the nominal scenario P (ξ̂). Then a solution x ∈ X is called a lightly
robust optimal solution to P(U) w.r.t. a given ε ≥ 0, if it is an optimal solution to

min sup
ξ∈U

f(x, ξ)

s.t. f(x, ξ̂) ≤ min
x̂∈X

f(x̂, ξ̂) + ε

x ∈ X ,

where ξ̂ ∈ U is the nominal scenario.

The concept of lightly robust efficiency has been generalized to bi-objective opti-
mization problems with one deterministic objective function in [KRSS12]. We now
extend this concept to general uncertain multi-objective optimization problems.

Given a nominal scenario ξ̂ ∈ U , let XE(ξ̂) be the set of efficient solutions to P(ξ̂).

For each efficient solution x̂ ∈ XE(ξ̂) to P(ξ̂) and some given 0 � ε ∈ Rk we define
the (uncertain) multi-objective optimization problem

LR(x̂, ε) min f(x, ξ)

s.t. fi(x, ξ̂) ≤ fi(x̂, ξ̂) + εi ∀i ∈ {1, . . . , k}
x ∈ X

Definition 3.17. Given an uncertain multi-objective optimization problem P(U)

with a nominal scenario ξ̂ ∈ U and some ε ∈ Rk�. Then a solution x ∈ X is called
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lightly robust efficient for P(U) w.r.t. ε, if it is set-based minmax robust efficient

for LR(x̂, ε) for some x̂ ∈ XE(ξ̂).

The intuition behind this concept is, analogously to the idea of light robustness for
uncertain single-objective problems, the following: Provided a nominal scenario, one
would want the objective value not to differ too much from the efficient set in this
particular scenario. Therefore an additional constraint is added to the problem and
then one would like to minimize the worst case as done before.
The following example explains the meaning of the concept of lightly robust effi-
ciency:

Example 3.18. Let U := {ξ1, ξ2, ξ3}, where ξ1 is the nominal scenario, and the
feasible set X := {x1, x2, x3, x4}. We define f : X × U 7→ R2 via the plot in
Figure 6.

f1

f2

0 1 2 3 4 5 6
0

1

2

3

4

f(x1, ξ1)

f(x1, ξ2)

f(x1, ξ3)

f(x2, ξ1)

f(x2, ξ2)

f(x2, ξ3)

f(x3, ξ1)

f(x3, ξ2)

f(x3, ξ3)

f(x4, ξ1)

f(x4, ξ2)

f(x4, ξ3)

Figure 6: Plot of f for Example 3.18

In the nominal scenario, ξ1, only x1 is efficient, therefore, for a given ε � 0, every
lightly robust efficient solution to P(U) w.r.t. ε is a set-based minmax robust efficient
solution to LR(x1, ε). We indicate the sets fU (x1)−R2

� (solid), fU (x2)−R2
� (dotted),

fU (x3)− R2
� (dashed), and fU (x4)− R2

� (dashdotted) in Figure 7.
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Figure 7: fU (x2) − R2
� (dotted), fU (x3) − R2

� (dashed), and fU (x4) − R2
� (dash-

dotted) for Example 3.18
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Now, for different choices of ε, we obtain different lightly robust efficient solutions:
For ε0 := (0, 0), the only feasible solution to LR(x1, ε

0) is x1 itself, therefore it is
the only lightly robust efficient solution to P(U) w.r.t. (0, 0).
Furthermore, for

ε1 := (fi(x2, ξ1)− fi(x1, ξ1))i={1,2} ,

x1, x2, and x4 are feasible solutions to LR(x1, ε
1), while x3 is not. fU (x1) − R2

�
(respectively fU (x2)−R2

�) does not contain fU (x2) nor fU (x4) (respectively neither
fU (x1) nor fU (x4)). Therefore, both x1 and x2 are lightly robust efficient to P(U)
w.r.t. ε1.
As we see, x3 is the only set-based minmax robust efficient solution. Therefore, as
soon as ε is chosen in a way, that f(x3, ξ1) � f(x1, ξ1) + ε, e.g.

ε2 := (fi(x3, ξ1)− fi(x1, ξ1))i={1,2} ,

i.e., as soon as x3 is feasible to LR(x1, ε), it is the only set-based minmax robust
efficient solution to LR(x1, ε) and therefore the only lightly robust efficient solution
to P(U) w.r.t. ε. Summarizing, x3 is the only lightly robust efficient solution to
P(U) w.r.t. ε for all ε � ε2.

Remark 3.19. Note that this definition of lightly robust efficiency is a straight-
forward extension of Definition 8 from [KRSS12] and therefore reduces to this defi-
nition for bi-objective problems with only one uncertain objective function. Further-
more, for k = 1, the efficient set XE(ξ̂) is equivalent to the set of optimal solutions

to P(ξ̂) and therefore the constraints

fi(x, ξ̂) ≤ fi(x̂, ξ̂) + εi ∀i ∈ {1, . . . , k}

are equivalent to the constraint

f(x, ξ̂) ≤ min
x̂∈X

f(x̂, ξ̂) + ε.

This means that the definition of lightly robust efficiency reduces to the definition of
light robustness for k = 1 and is therefore consistent with the literature.

4 Analysis and comparison of the concepts

In this section we summarize the different relations between the concepts presented
in Section 3. As seen before, most implications do not hold. Therefore, after sum-
marizing the results for the general setting, we have a look at a special class of
optimization problems, namely problems of objective-wise uncertainty. For this
class, several implications hold which do not hold in the general case. We also dis-
cuss if reductions approaches known from single-objective robust optimization can
be transferred to the multi-objective case.

4.1 The general case

In Section 3, some connections between the concepts in general have already been
pointed out. Namely, we have seen that a highly robust efficient solution does not
have to satisfy the concept of (set-based or point-based) minmax robust efficiency, as
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shown in Example 3.14. Furthermore, a (set-based or point-based) minmax robust
efficient solution does not have to be flimsily robust efficient, as shown in Example
3.13. The relation between point-based and set-based minmax robust efficiency is
summarized in Remark 3.12, namely a point-based minmax robust efficient solution
is always set-based minmax robust efficient, but not vice versa.
In the following we analyze the connections to lightly robust efficiency. First, the
next lemma shows that a set-based minmax robust efficient solution is always lightly
robust efficient to P(U) w.r.t. some ε � 0:

Lemma 4.1. Given a set-based minmax robust efficient solution x ∈ X to an un-
certain multi-objective optimization problem P(U). Then there exists an ε � 0, such
that x is a lightly robust efficient solution to P(U) w.r.t. ε.

Proof. First, we notice that a set-based minmax robust efficient solution x to P(U)
is lightly robust efficient to P(U) w.r.t. ε if and only if it is a feasible solution to

LR(x̂, ε) for some efficient solution x̂ ∈ XE(ξ̂) to the nominal problem P(ξ̂). This
holds since the feasible set of LR(x̂, ε) is a subset of X for all ε � 0 and therefore x is
set-based minmax robust efficient for LR(x̂, ε) since it is already set-based minmax
robust efficient for P(U).

Now, for any x̂ ∈ XE(ξ̂), x is a feasible solution to LR(x̂, ε∗) w.r.t ε for all

ε � ε∗ :=
(

max
{

0, fi(x, ξ̂)− fi(x̂, ξ̂)
})

i=1,...,k
.

Therefore x is lightly robust efficient to P(U) w.r.t. ε∗.

We have already seen in Example 3.18 that the inverse direction does not hold
in general. However, with some additional assumptions we can show the inverse
direction:

Lemma 4.2. Given an uncertain multi-objective optimization problem P(U) with

a nominal scenario ξ̂. A solution x ∈ X which is lightly robust efficient for P(U)
w.r.t. every ε � 0 is also set-based minmax robust efficient. Furthermore, it is an
efficient solution to P(ξ̂).

Proof. Let x be a lightly robust efficient for P(U) w.r.t. every ε � 0. For the first
part of the proof we have a look at the feasible sets of P(U) and LR(x̂, ε) for some

x̂ ∈ XE(ξ̂). The feasible set of P(U) is X , the feasible set of LR(x̂, ε) is

XLR(x̂, ε) := {x ∈ X : fi(x, ξ̂) ≤ fi(x̂, ξ̂) + εi}.

Obviously, XLR(x̂, ε) ⊆ X , therefore x is feasible for P(U). Suppose, that x is not
set-based minmax robust efficient for P(U). Then there exists a solution x′ ∈ X
such that fU (x′) ⊆ fU (x)− Rk�. With

ε′ :=
(

max
{

0, fi(x
′, ξ̂)− fi(x̂, ξ̂)

})
i=1,...,k

,

it holds that fi(x
′, ξ̂) ≤ fi(x̂, ξ̂)+ε′i and therefore x′ is feasible for LR(x̂, ε). But this

contradicts the assumption that x is set-based minmax robust efficient for LR(x̂, ε).
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For the second part of the proof note that there exists some x̂ ∈ XE(ξ̂) such that
x is a set-based minmax robust efficient solution to LR(x̂, 0). Therefore, x is in

particular feasible for LR(x̂, 0), thus also an efficient solution to P(ξ̂).

Remark 4.3. Note, that a set-based minmax robust efficient solution x ∈ X to
P(U) which is efficient for P(ξ̂) is also lightly robust efficient to P(U) w.r.t. every
ε � 0, since it is then feasible for LR(x, ε) for every ε � 0.

From Remark 4.3 we can deduce that a solution which is lightly robust efficient for
P(U) w.r.t. every ε � 0 does not necessarily have to be highly robust efficient:

Remark 4.4. We can see in Example 3.14 that a solution which is lightly robust
efficient for P(U) w.r.t. every ε � 0 does not have to be highly robust efficient
for P(U). Defining ξ1 to be the nominal scenario, we obtain x1 as a lightly robust
efficient solution to P(U) w.r.t. every ε � 0 due to Remark 4.3. On the other hand,
x1 is not highly robust efficient.
Furthermore, in Example 3.9 we see that a solution which is lightly robust efficient
for P(U) w.r.t. every ε � 0 does not have to be point-based minmax robust efficient
as well. Defining ξ1 to be the nominal scenario, we obtain x1 as a lightly robust
efficient solution to P(U) w.r.t. every ε � 0 due to Remark 4.3. On the other hand,
x1 is not point-based minmax robust efficient.

The last question remaining is if a highly robust efficient solution is always lightly
robust efficient for P(U) w.r.t. some ε � 0. The following example shows that this
is not the case:

Example 4.5. Let U := {ξ1, ξ2, ξ3} and X := {x1, x2}. Let f : X ×U 7→ R2 be given
by the graph in Figure 8 (we indicate the borders of fU (x1)−R2

� (solid), fU (x2)−R2
�

(dotted), and fU (x3)− R2
� (dashed)).
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Figure 8: Plot of f for Example 4.5

x1 and x2 are both efficient for the nominal scenario ξ1 (the objective vectors are
equal), while x3 is not. Furthermore, x2 is highly robust efficient since it is efficient
in every scenario. x1 is not highly robust efficient as it is dominated by x3 in
scenario ξ2. On the other hand, x1 is set-based minmax robust efficient and feasible
for LR(x1, ε) and LR(x2, ε) for every ε � 0. Since fU (x1) ⊆ fU (x2) − Rk�, x2 is
not set-based minmax robust efficient for LR(x1, ε) nor LR(x2, ε) for any ε � 0 and
therefore x2 is not lightly robust efficient for P(U) w.r.t. any ε � 0.
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We summarize the results from Section 3 and 4.1 in the Figure 9.

lightly r.e. w.r.t. every ε � 0

lightly r.e. w.r.t. some ε � 0
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Figure 9: Relationships between the various concepts of robust efficiency for the
general setting

As we can see in Figure 9, not many of the implications hold. In the next section
we have a close look at a special class of uncertain multi-objective optimization
problems. For this class more of these implications are valid.

4.2 The case of objective-wise uncertainty

In this section we have a close look at uncertain multi-objective optimization prob-
lems where the uncertainties in the different objective functions are independent
of each other, i.e., the change of an uncertain parameter influences at most one of
the objective functions. This case has also been investigated in [EIS13] where the
following definition has been introduced.

Definition 4.6 (Objective-wise uncertainty). We say, a problem P(U) with U ⊂ Rm
is of objective-wise uncertainty, if the uncertainties of the objective functions
f1, . . . , fk are independent of each other, namely if U = U1×· · ·×Uk, where Ui ⊆ Rmi

with
∑k
i=1mi = m such that




f1(x, ξ)
f2(x, ξ)

...
fk(x, ξ)


 =




f1(x, ξ1)
f2(x, ξ2)

...
fk(x, ξk)




where ξi ∈ Ui (we ignore dimensions on the right hand side in order to make the
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formulas more readable).

Objective-wise uncertainty might seem as a restrictive class of optimization prob-
lems, but in fact there are several classes which fit this setting. Trivially, all uncertain
single-objective optimization problems are of objective-wise uncertainty. Further-
more, if we assume f to be a linear function in x, i.e., a matrix where each coefficient
stems from an interval, the problem is of objective-wise uncertainty as well. This
extends the interval-based uncertainty, which is probably the most considered case
in uncertain single-objective optimization problems, see, e.g., [BS04, BTN00] for
theoretical contributions and many more papers using interval-based uncertainty to
model applications.
Ehrgott et al. [EIS13] show that in case P(U) is of objective-wise uncertainty,
the concepts of set-based and point-based minmax robust efficiency are equivalent
(compare [EIS13], Theorem 5.4). Therefore, in this section we only talk about
minmax robust efficient solutions and use this term for both point-based and set-
based minmax robust efficient solutions equivalently.
Moreover, in [EIS13], the authors show that under certain circumstances a single
worst-case scenario exists:

Lemma 4.7. [[EIS13], Lemma 5.2 and Corollary 5.3] Let P(U) an uncertain multi-
objective problem of objective-wise uncertainty, where max

ξ∈U
fi(x, ξ) exists for all x ∈

X and i ∈ {1, . . . , k}. Then for all x ∈ X

ξmax(x) :=




argmax
ξ1∈U1

f1(x, ξ1)

argmax
ξ2∈U2

f2(x, ξ2)

...
argmax
ξk∈Uk

fk(x, ξk)



∈ U .

Furthermore,

fmaxU (x) =




sup
ξ∈U

f1(x, ξ)

sup
ξ∈U

f2(x, ξ)

...
sup
ξ∈U

fk(x, ξ)




=




max
ξ∈U

f1(x, ξ)

max
ξ∈U

f2(x, ξ)

...
max
ξ∈U

fk(x, ξ)




= f(x, ξmax(x)).

We now use this property of objective-wise uncertainty to show that for objective-
wise uncertain multi-objective optimization problems there exists the following con-
nection between highly and minmax/lightly robust efficiency:

Theorem 4.8. Let P(U) be an uncertain multi-objective problem of objective-wise
uncertainty where max

ξ∈U
fi(x, ξ) exists for all x ∈ X and i ∈ {1, . . . , k}. Let x ∈ X

be highly robust efficient. Then x is also minmax robust efficient and lightly robust
efficient for P(U) w.r.t. every ε � 0.

Proof. First note that if x ∈ X is highly robust efficient, it is in particular efficient
for P(ξ̂). Therefore it is feasible for LR(x, ε) for every ε � 0. We now show that x
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is minmax robust efficient for P(U), then, due to Remark 4.3 it is also lightly robust
efficient for P(U) for all ε � 0.
Assume x is not minmax robust efficient for P(U). Then there exists x ∈ X such
that

fU (x) ⊆ fU (x)− Rk�

Since P(U) is of objective-wise uncertainty, fU (x) ⊆ f (x, ξmax(x)) − Rk� due to
Lemma 4.7. Therefore

fU (x) ⊆ f (x, ξmax(x))− Rk�
which implies

f (x, ξmax(x)) � f (x, ξmax(x))

in contradiction to the highly robust efficiency of x.

However, even for objective-wise uncertain multi-objective optimization problems it
does not hold that every minmax robust efficient solution is at least flimsily robust
efficient as the following example shows:

Example 4.9. Let X := {−1, 0, 1} and U := {0, 1}2. In order to see if the problem
is of objective-wise uncertainty we give the dependence on the uncertain parameters
as a closed-form objective function f : X × U 7→ R2, in our case

f(x, ξ) :=

(
2 + 2ξ1 +−2.5x+ 3.5xξ1 + 1.5x2 − 1.5x2ξ1

6− 3ξ2 + 0.5x− 1.5x2

)

Obviously f is of objective-wise uncertainty.

f1

f2

0 1 2 3 4 5 6
0

1

2

3

4

5

6
f(0, (0, 0)) f(0, (1, 0))

f(0, (0, 1)) f(0, (1, 1))

f(1, (0, 0)) f(1, (1, 0))

f(1, (0, 1)) f(1, (1, 1))

f(−1, (0, 0))f(−1, (1, 0))

f(−1, (0, 1))f(−1, (1, 1))

Figure 10: Plot of f for Example 4.9

Looking at Figure 10, we see that every solution x ∈ X is minmax robust efficient for
P(U), since ξmax(0) = (1, 0), ξmax(1) = (1, 0), and ξmax(−1) = (0, 0)). However,
x = 0 is not flimsily robust efficient as it is dominated in Scenarios (0, 0) and (0, 1)
by x = 1 and in Scenarios (1, 0) and (1, 1) by x = −1.
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Remark 4.10. Note that Example 4.9 also shows that a solution which is lightly
robust efficient to an objective-wise uncertain multi-objective optimization problem
P(U) for every ε � 0 (here x = 0 with nominal scenario ξ̂ = (0, 0)) does not have
to be highly robust efficient (since it is not even flimsily robust efficient.

Also, as in the general case, a lightly robust efficient solution is not necessarily
minmax robust efficient as the following example with objective-wise uncertainty
shows:

Example 4.11. Let X := {0, 1} and U := {0, 1}2. Let f : X × U 7→ R2 be given as
follows:

f(x, ξ) :=

(
1 + 2ξ1 + 3x− 4ξ1x
1 + 2ξ2 + 3x− 4ξ2x

)

Furthermore, let ξ̂ = (1, 1) be the nominal scenario. We plot f over X and indicate
the borders of fU (0)− R2

� (solid), and fU (1)− R2
� (dotted) in Figure 11.

f1

f2

0 1 2 3 4
0

1

2

3

4

f(0, (0, 0)) f(0, (1, 0))

f(0, (0, 1)) f(0, (1, 1))

f(1, (0, 0))f(1, (1, 0))

f(1, (0, 1))f(1, (1, 1))

Figure 11: Plot of f for Example 4.11

We see that for the nominal scenario ξ̂ = (1, 1) only x = 1 is an efficient solution.
Furthermore, for ε∗ = (0.5, 0.5) it is the only feasible solution to LR(1, ε∗), thus it
is lightly robust efficient for P(U) w.r.t. ε∗. On the other hand, f(0, ξmax(0)) �
f(1, ξmax(1)) since ξmax(0) = (1, 1) and ξmax(1) = (0, 0). Therefore, x1 is not
minmax robust efficient for P(U).

Summarizing the results from this section, we can adapt Figure 9 for the setting of
objective-wise uncertainty, see Figure 12.
As we see in Figure 12, a lot of implications hold for problems of objective-wise
uncertainty which do not hold in the general setting.

Besides these implications of the robustness concepts, problems of objective-wise
uncertainty also have some other interesting properties. In robust optimization it is
often helpful if one is able to reduce the size of U . For instance, Ben-Tal and Ne-
mirovski [BTN99] show that a solution to an uncertain single-objective optimization
problem P(U) with convex objective function for any fixed x ∈ X and discrete un-
certainty set U is minmax robust optimal if and only if it is a minmax robust optimal
solution to P(conv (U)). Schöbel [Sch13] shows that this property can be extended
to the concept of light robustness. Many more such results are known in single-
objective robust optimization, see [GS13] for an overview. The main advantage
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lightly r.e. w.r.t. every ε � 0

lightly r.e. w.r.t. some ε � 0

highly r.e.

s.-b. minmax r.e. p.-b. minmax r.e.

flimsily r.e.

by Def.

∗: ⇒: 4.2, ⇐: 4.3, if efficient for P(ξ̂)

 , 4.10 by transitivity

4.2

∗

4.8

4.8 4.8

3.3

4.1 , 4.11

[EIS13], Thm. 5.4

3.12

 , 4.9  , 4.9

Figure 12: Relationships between the various concepts of robust efficiency for
objective-wise uncertain multi-objective optimization problems

of these reduction results applies to polytopic uncertainty in which the uncertainty
set U is given as the convex hull of a finite set of points, i.e., U = {ξ1, . . . , ξm}.
In this case we obtain that P(conv (U)) is equivalent to P({ξ1, . . . , ξm}). The lat-
ter problem with the finite uncertainty set is often easier to solve. For example,
in single-objective robust optimization it can often be directly solved by explicitly
adding a set of constraints for every scenario ξi, i = 1, . . . ,m, or, as in our case of
multi-objective robust optimization, by inspecting each of the scenarios separately.
For uncertain multi-objective problems Ehrgott et al. [EIS13] are able to transfer
this property to problems of objective-wise uncertainty when considering the concept
of minmax robust efficiency:

Theorem 4.12. [[EIS13], Theorem 5.9] Given a discrete uncertainty set U =
{ξ1, . . . , ξm} and an uncertain multi-objective optimization problem P(conv (U)) of
objective-wise uncertainty where

f1(x, ξ), . . . , fk(x, ξ) : Rn × conv (U)→ R

are quasiconvex in ξ. Then

x is minmax robust efficient for P(U)

⇔
x is minmax robust efficient for P(conv (U))
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We now investigate if such a result also holds for the other robustness concepts
for problems of objective-wise uncertainty. Since in Theorem 4.12 there are no
assumptions on the feasible set X , it also holds, if the feasible set is defined as in the
lightly robust counterpart in LR(ε). Therefore, we can directly deduce the following
corollary:

Corollary 4.13. Given a discrete uncertainty set U = {ξ1, . . . , ξm} and an uncer-
tain multi-objective optimization problem P(conv (U)) of objective-wise uncertainty
where

f1(x, ξ), . . . , fk(x, ξ) : Rn × conv (U)→ R

are quasiconvex in ξ. Then

x is lightly robust efficient for P(U)

⇔
x is lightly robust efficient for P(conv (U))

We can also extend this property to the concept of highly robust efficiency:

Theorem 4.14. Let U = {ξ1, . . . , ξm} and P(conv (U)) a problem of objective-wise
uncertainty where

f1(x, ξ), . . . , fk(x, ξ) : Rn × conv (U)→ R

are affine in ξ. Then

x is highly robust efficient for P(U)

⇔
x is highly robust efficient for P(conv (U))

Proof. “⇐” is trivial and holds for every uncertain multi-objective optimization
problem since U ⊆ conv (U).
“⇒” Let x ∈ X be highly robust efficient for P(U), so for every ξi ∈ U there is no
x′ ∈ X such that

f(x′, ξi) � f(x, ξi)

Suppose x is not highly robust efficient for P(conv (U)), that is, there exists a

ξ̂ ∈ conv (U) (so ξ̂ =
∑m
i=1 λiξ

i for some ξi ∈ U , λi ∈ R+,
∑m
i=1 λi = 1) and a

x̂ ∈ X such that
f(x, ξ̂) � f(x̂, ξ̂).

Then for all i ∈ {1, . . . , k}
m∑

j=1

λjfi
(
x, ξj

)
= fi(x, ξ̂) ≥ fi(x̂, ξ̂) =

m∑

j=1

λjfi
(
x̂, ξj

)

Since λj ≥ 0 for all j, for every i ∈ {1, . . . , k} a ji ∈ {1, . . . ,m} exists such that

fi(x, ξ
ji) ≥ fi(x̂, ξji)
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This inequality is strict for at least one i. Define

ξ :=




ξj11
ξj22
...

ξjkk




Then ξ ∈ U since P(U) is of objective-wise uncertainty due to [EIS13], Lemma 5.8,
which states that P(U) is of objective-wise uncertainty if and only if P(conv (U)) is
of objective-wise uncertainty. On the other hand,

f(x, ξ) � f(x̂, ξ).

This contradicts the highly robust efficiency of x for P(U).

As we can see, compared to Theorem 4.12 for the case of minmax robust efficiency
we had to alter the assumptions slightly and required fi, i ∈ {1, . . . , k} to be affine
and not only quasiconvex. The following example shows that this assumption in
fact is necessary, i.e., unlike for minmax robust efficiency) quasiconvexity does not
suffice to guarantee the statement of Theorem 4.12 for the case of for highly robust
efficiency.

Example 4.15. Let U = {−
√

2,
√

2}2. Then

conv (U) = [−
√

2,
√

2]2.

Now let f : R+ × conv (U)→ R2 given by

f(x, ξ) =

(
(ξ21 − 1) · x
(ξ22 − 1) · x

)
.

Then the problem
P(ξ) min f(x, ξ)

s.t. x ∈ R+

is of objective-wise uncertainty and f is convex (thus quasiconvex) but not affine in
ξ. Furthermore,

f(x, ξ) =

(
x
x

)
∀ ξ ∈ U ,

thus x = 0 is highly robust efficient for P(U). But since ξ = (0, 0) ∈ conv (U) and

f(x, (0, 0)) =

(
−x
−x

)
,

x = 0 is not highly robust efficient for P(conv (U)) because it is dominated by every
other solution x ∈ R+.

We remark that the assumption of objective-wise uncertainty is crucial in all three
previous results, i.e., for minmax robust efficiency, for lightly robust efficiency, and
for highly robust efficiency. A counterexample for this, i.e., that the statement
of Theorem 4.12 does not hold if the assumption of objective-wise uncertainty is
removed, is provided in [EIS13]. This counterexample can also be used to show that
the same holds for Corollary 4.13. For the concept of highly robust efficiency we
finally provide the following counterexample:
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Example 4.16. Let U = {ξ1, ξ2} = {0, 2.5}, so conv (U) = [0, 2.5]. Now let

f : R+ × conv (U)→ R2

given by

f(x, ξ) =

(
(1− 2ξ) · x
(−2 + ξ) · x

)
.

Then f is affine in ξ but P(U) is not of objective-wise uncertainty. Further

f(x, ξ1) =

(
x
−2x

)
and f(x, ξ2) =

(
−4x
1
2x

)

so x = 0 is highly robust efficient for P(U). But since ξ̂ = 1 ∈ conv (U) and

f(x, 1) =

(
−x
−x

)
,

x = 0 is not highly robust efficient for P(conv (U)) because it is dominated by every
other solution x ∈ R+.

Remark 4.17. The analogon to Theorem 4.14 does not hold for the concept of
flimsily robust efficiency. Even though a flimsily robust efficient solution to P(U)
is trivially flimsily robust efficient for P(conv (U)) since U ⊆ conv (U), the other
direction does not hold. A shortest path counterexample of objective-wise uncertainty
with affine objective functions can be found in [KRSS12].

5 An illustration

In order to demonstrate the different concepts of robustness we present a short
example. Imagine being a salesman in the middle ages, trying to get from one city
to another safe and fast. You are given a map from which you derive the graph in
Figure 13.

e3

e2

e1

e5

e4

A B C

Figure 13: The considered network

The optimization problem you want to solve is the following: You want to get from
A to C and you consider two objective functions: One is travel time, the other one
the probability to be robbed on the road. Talking to the locals, you learn several
things about the roads and their safety:
Usually it takes 5 days to travel between A and B for all three possible routes. Since
the roads on e1 and e2 are very badly maintained, it easily takes 1 or 2 days longer
due to weather conditions as strong rain. Between B and C there exist a bridge on
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e4 and a ferry on e5. Usually the bridge on e4 is open, so the ferry on e5 does not
operate. However, if bad weather occurs on e4, the bridge is closed but then the
ferry on e5 is open to save the travelers some time. Unfortunately, nobody could
tell you what weather conditions to expect.
Regarding the safety of the road, you learn that there are two groups of bandits
living near the different roads. These groups of bandits spread over the various
roads and ambush travelers but do not follow a distinctive pattern. The locals tell
you that usually between A and B the bandits spread quite evenly over the different
roads to ambush travelers but there are times (which do not seem to be correlated
to the weather or if the ferry/bridge is operated) where they concentrate on e3 as
it is the most frequented one. Between B and C there are more bandits ambushing
travelers since there are fewer roads and therefore more travelers on those roads.
From the information you gather, you are able to derive three scenarios for the travel
time and two scenarios for the probability to be robbed on the different roads which
you summarize in Table 1.

Table 1: Travel time and expected loss of the different edges under the various
scenarios

travel time in days e1 e2 e3 e4 e5

Traffic Scenario 1 6 7 5 3 6
Traffic Scenario 2 7 6 5 6 3
Traffic Scenario 3 5 5 5 3 6

expected loss due to robbery in gold coins e1 e2 e3 e4 e5

Bandit Scenario 1 8 10 14 18 16
Bandit Scenario 2 10 12 11 16 14

Traffic Scenario 3 and Bandit Scenario 2 are most likely and hence the nominal
scenarios. Showing your estimations to the locals you find out that the reality
usually lies somewhere in between these scenarios. However, they agree that those
are the extreme and normal cases, therefore you assume the real uncertainty set to
be

conv (U) = conv ({Tr1, T r2, T r3} × {Bs1, Bs2}) ,
where Tr stands for Traffic Scenario, and Bs stands for Bandit Scenario. Since the
appearance of the bandits does not seem to be connected to the weather conditions
or if the bridge/ferry is operated, you assume objective-wise uncertainty. Therefore,
due to the results of Section 4.2, you only have to examine U instead of conv (U).
Investigating every possible path from A to C, you summarize the objective values
for the different extreme points of your uncertainty set in Table 2.
Considering these objective values, a first intuition in choosing a road between A
and B is to choose e3 if you care more about the travel time and to choose e1 if you
care more about safety. The choice of a road between B and C is easy as e5 is as
good as e4 in travel time and always better with respect to the safety. Therefore,
your intuition would be to take e1, e5 or e3, e5 but you would like to double-check
that intuition. Thus, you check the different paths for robustness.
First of all you look at flimsily robust efficiency. Comparing the different scenarios,
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Table 2: Objective vectors of the different solutions in the different scenarios

(
travel time

expected loss

)
Tr1, Bs1 Tr1, Bs2 Tr2, Bs1 Tr2, Bs2 Tr3, Bs1 Tr3, Bs2

e1, e4

(
9
26

) (
9
26

) (
13
26

) (
13
26

) (
8
26

) (
8
26

)

e1, e5

(
12
24

) (
12
24

) (
10
24

) (
10
24

) (
11
24

) (
11
24

)

e2, e4

(
10
28

) (
10
28

) (
12
28

) (
12
28

) (
8
28

) (
8
28

)

e2, e5

(
13
26

) (
13
26

) (
9
26

) (
9
26

) (
11
26

) (
11
26

)

e3, e4

(
8
32

) (
8
27

) (
11
32

) (
11
27

) (
8
32

) (
8
27

)

e3, e5

(
11
30

) (
11
25

) (
8
30

) (
8
25

) (
11
30

) (
11
25

)

you can see that nearly every solution is flimsily robust efficient, i.e., for every
solution there exists a scenario for which it would have been a good choice. The
only exception is e2, e4 which is dominated in all the other scenarios.
Only solution e1, e5 is efficient in every scenario and therefore highly robust efficient.
Since you consider a problem of objective-wise uncertainty, the set-based and point-
based minmax robust efficient solutions are identical. Comparing only the worst
cases of the given paths yields that the only minmax robust efficient solutions are
e1, e5 and e3, e5, i.e., the ones you have identified before as reasonable solutions (see
Table 3).

Table 3: Worst cases of the various paths

(
travel time

expected loss

)
e1, e4 e1, e5 e2, e4 e2, e5 e3, e4 e3, e5

worst case scenario

(
13
26

) (
12
24

) (
12
28

) (
13
26

) (
11
32

) (
11
30

)

In order to gain some insight into the various lightly robust efficient solution to
P(U), you plot the images of the different paths for the nominal scenario and for
their respective worst case in Figure 14.
From Figure 14 you deduce that in the nominal scenario ξ̂ :=(Traffic Scenario 3,
Bandit Scenario 2) there are two efficient solutions, namely x′ := e1, e4 (objective
vector (8, 26)) and x∗ := e1, e5 (objective vector (11, 24)). Therefore, both x′ and
x∗ are lightly robust efficient solutions to P(U) w.r.t. ε = 0. Increasing ε now yields
other lightly robust efficient solutions to P(U).
For example, you like solution x′ because of its low travel time, but are not satisfied
with its travel time of 13 in the worst case. Then you can look for a lightly robust
efficient solution with a decreased, but similar nominal quality hoping to gain some
additional robustness. For example, you may choose ε1 := (0, 1), meaning that you
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f1

f2

f((e1, e4), ξ̂)

f((e3, e4), ξ̂)

f((e2, e4), ξ̂)

f((e1, e5), ξ̂)

f((e2, e5), ξ̂), ξ̂)

f((e3, e5), ξ̂)

11

24

f1

f2

fmax
U (e1, e4) = fmax

U (e2, e5)
fmax
U (e1, e5)

fmax
U (e2, e4)

fmax
U (e3, e4)

fmax
U (e3, e5)

12

24

Figure 14: Objective values of the various paths for the nominal scenario ξ̂ =
(Tr3, Bs2) (left) and their respective worst cases (right)

are willing to pay a bit more to the bandits. You see that additionally to e1, e4 there
is now another feasible solution to LR(x′, ε1), namely e3, e4 which is minmax robust
efficient to LR(x′, ε1) and thus a lightly robust efficient solution to P(U) w.r.t. ε1.
This solution is a lot more robust with respect to the travel time than e1, e4 (worst
case for the travel time is 11 instead of 13), and still has nearly the same nominal
quality. Although its worst-case loss is higher than that of x′ (note that also x′ is a
lightly robust efficient solution to P(U) w.r.t. ε1), it provides a nice alternative to
e1, e4 if you value travel time better than road safety.
For different values of ε, you obtain different lightly robust efficient solutions to
P(U), which makes sense as the different ε reflect different strategies what one is
willing to loose from the nominal efficiency in order to gain robustness.
Due to the investigation of the various concepts, you decide to travel via e1, e5 since
this is the only solution satisfying all of the different concepts of robustness.

6 Conclusion

In this paper we presented five different concepts of robustness for uncertain multi-
objective optimization. In particular, we extended the concept of light robustness
for uncertain single-objective optimization to the concept of lightly robust efficiency
for uncertain multi-objective optimization problems. We pointed out the connec-
tion between these concepts. The class of objective-wise uncertain multi-objective
optimization problems was presented and properties of the various concepts of ro-
bustness for this special class of optimization problems were investigated. The paper
was concluded with a bi-objective shortest path problem illustrating the different
concepts and the connections between them.
Further research includes analysis and interpretation of new concepts based on set-
order relations, see [IKK+13] for some work into this direction as well as the de-
velopment of algorithmic approaches. Also, discussing suitable models in real-world
applications is of interest. Here, an application in the wood processing industry is
under research [ITWH13].
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Abstract

In this paper we present new concepts of e�ciency for uncertain multi-
objective optimization problems. We analyze the connection between the
concept of minmax robust e�ciency presented by Ehrgott et al. [13] and
the upper set less order relation �us introduced by Kuroiwa [30, 29]. From
this connection we derive new concepts of e�ciency for uncertain multi-
objective optimization problems by replacing the set ordering with other
set orderings. Those are namely the lower set less ordering (see Kuroiwa
[30, 29]), the set less ordering (see [40], [34], and [15]), the certainly less
ordering (see [15]), and the alternative set less ordering (see [25, 28]). We
analyze the resulting concepts of e�ciency and present numerical results
on the occurrence of the various concepts. We conclude the paper with a
short comparison between the concepts, and an outlook to further work.
Keywords: Robustness; Multi-Objective Optimization; Set-Valued Opti-

mization; Set Order Relations; Uncertainty; Scenarios

1 Introduction

Uncertainties occur in most optimization problems and a decision maker needs
to address this important subject in order to obtain solutions that remain fea-
sible and, in some sense, optimal for an uncertain problem. Reasons for uncer-
tainties in optimization problems include contaminated data due to computa-
tional or estimation errors and unforeseeable future events. Examples comprise
�nding an optimal train schedule, while late arrivals could be one aspect of un-
certainties in such a problem (see, e.g., [22, 20]). Another famous examples are
multi-objective shortest path problems (compare, e.g., [32, 23, 37]), which can
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be applied in timetable information systems (compare, e.g., [33, 11]), and have
also been studied under uncertainty (see, e.g., [22, 20]).

Two approaches of uncertain optimization problems are suggested in the
literature: In stochastic optimization, the uncertain parameter is assumed to
possess a probability distribution. The goal is to optimize the expected value
of some cost function while the solution remains feasible with a certain prob-
ability. For an introduction to stochastic optimization, we refer to Birge and
Louveaux [5]. Robust optimization, however, considers the case that no stochas-
tic information on the uncertain parameters is given. Various di�erent concepts
of what is considered to be a robust solution are presented in the literature,
compare e.g. [4, 2, 17, 19, 21, 20]. One of the �rst approaches is the concept of
minmax robustness, �rst presented by Soyster [35] and extensively studied by
Ben-Tal and Nemirovski [3, 2]. Here, the goal is to �nd solutions of an uncertain
optimization problem that are feasible in every possible future scenario. The
objective then is to optimize the worst-case scenario of the objective function.
This approach is rather set-based, since the uncertain parameters are assumed
to belong to an uncertainty set that is known prior to solving the optimization
problem. For an extensive collection of results, see Ben-Tal et al. [2].

The �rst concept of robustness for multi-objective optimization was derived
from an idea by Branke [6] and presented by Deb and Gupta [9]. Here, robust-
ness is understood as a kind of sensitivity against perturbations in the decision-
space. A solution is called robust if small perturbations in the decision-space
only yield small perturbations in the objective-space. More work on this line of
research has been done, compare [1, 24, 16].

Dellnitz and Witting [10], and Witting et al. [39] follow a di�erent approach.
In [10], the authors consider parametric multi-objective optimization problems
and combine numerical path-following methods with multi-objective optimiza-
tion techniques. They construct paths, dependent on the describing parameter,
in the set of substationary points and call a solution robust, if it minimizes the
path length with respect to a certain variation of the parameter. In [39], this
concept is investigated more closely for an extended variation of the describing
parameter. See, e.g., [38] for a more detailed investigation of these concepts.

The �rst scenario-based concept of robustness for multi-objective optimiza-
tion was presented by Kuroiwa and Lee [31], who follow the approach of mini-
mizing the vector of the respective worst cases of each objective function. Fur-
thermore, three applied articles using the same concept were published, Yu and
Liu [41] apply this concept in multi-objective game theory with uncertainties,
Chen et al. [7] use this concept to handle uncertainties in the problem formu-
lations of proton therapy, and Fliege and Werner [18] present an application in
portfolio selection.

Also Doolittle et al. [12] follow this approach in handling uncertainties in
multi-objective optimization problems as they reformulate the uncertain opti-
mization problem in a similar way as done by Ben-Tal and Nemirovski [3] for
single objective optimization problems.

Ehrgott et al. [13] recently generalized this concept. For this, the authors
implicitly use a set order relation to de�ne robust solutions of multi-objective
optimization problems. This approach is closely related to the �eld of set op-
timization, since the objective function that is to be minimized is set-valued.
Generally, there are two ways of de�ning optimal solutions to a set optimiza-
tion problem: One is a vector approach, where the goal is to obtain minimal
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elements of the union of all feasible image sets. Thus, such a concept can be
regarded as a standard vector optimization approach. It can be argued that
this concept is not su�cient to handle set optimization problems, as a minimal
point of the union of sets does generally not imply that the whole set associated
to that element is e�cient in some sense. The second approach yields sets of
solutions, which seems appropriate for the set optimization problem, since the
objective function is set valued itself. The above mentioned article [13] deals
with the second approach, i.e., each robust solution to the problem is a set.

In this paper, we concentrate on uncertain multi-objective problems, where
only the objective functions are contaminated with uncertain data, which is
given by an (arbitrary) uncertainty set U , containing all the possible realizations
(scenarios) of the uncertain input data. We show that we can use di�erent
de�nitions of set order relations to obtain new concepts for e�cient solutions
of these uncertain multi-objective optimization problems. We characterize each
new approach, compare them and provide theorems which are helpful to obtain
di�erent kinds of solutions. Furthermore, we discuss under which preferences
the decision maker would choose each of the new approaches.

This paper is organized as follows: After �xing the notation for the paper
and giving a small example for an uncertain multi-objective problem, in Sec-
tion 1.3, we recall the concept of robust e�ciency as it is introduced in [13]
and we state parallels to set order relations. From this connection, we derive in
Section 2 new concepts of e�ciency for uncertain multi-objective optimization
problems based on di�erent set order relations. Each subsection is concerned
with a new concept that is studied and interpreted in terms of a decision maker's
preferences. We summarize the relationships between the di�erent solution con-
cepts in Section 2.5, and present some numerical results on the distribution of
the various solution concepts for randomly generated uncertain multi-objective
optimization problems in Section 2.6. We conclude the paper with mentioning
open questions and an outlook to future research.

1.1 A sightseeing-example

In order to give some insight to the problem structure and the concepts of
e�ciency for uncertain multi-objective optimization problems we introduce later
on in the paper, in this section, we present a �rst example.

Example 1.1. Imagine the decision of choosing a sightseeing destination for
your last day of holiday. Two objective functions you might value the most
are considered: On the one hand, you want to maximize the entertainment
aspect of your destination and on the other hand, you want to minimize the
amount of tourist crowds visiting said sight. Since it is not entirely known
which weather conditions will occur, it is also not known how many tourists will
visit the speci�c sight as well as the entertainment may vary, since with di�erent
weather conditions, visiting a speci�c sight may be less pleasant.

You evaluated the di�erent sights and edited the data in the following way:
Four weather scenarios seem to be realistic for the next day, each of which
yielding a di�erent score on entertainment factor and tourist crowds for each
sight. The score is estimated in grades from 1 to 20, 1 being perfect and 20
being very bad. The results are shown in Table 1, Si, i = 1, . . . , 6, denote the
respective sightseeing destinations.
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Table 1: Grades of the sights in categories �entertainment factor� and �tourist
crowds�

(
entertainment factor

tourist crowds

)
S1 S2 S3 S4 S5 S6

Scenario 1

(
12
8

) (
15
13

) (
15
10

) (
13
6

) (
15
7

) (
14
9

)

Scenario 2

(
9
3

) (
15
13

) (
10
8

) (
6
5

) (
7
3

) (
8
4

)

Scenario 3

(
4
9

) (
15
13

) (
10
8

) (
4
7

) (
3
8

) (
5
10

)

Scenario 4

(
10
14

) (
15
13

) (
11
13

) (
6
10

) (
7
15

) (
8
12

)

You now have to choose a suitable sight for your last day of holidays due to
your preferences. Since the problem is multi-objective, you have to choose the
trade-o� you are willing to pay between the two objective functions. Further-
more, since the problem is also uncertain, you have to de�ne what would be a
suitable solution considering not just one but all four weather scenarios.

Throughout the paper we discuss this example and use it to present the dif-
ferent concepts. For this, we plot the objective values of the above table (see,
e.g., Figure 1).

1.2 Preliminaries

In this section, we recall some notations on multi-objective optimization. Given
a set of feasible solutions X ⊆ Rn, the multi-objective optimization problem for
an objective function f : X → Rk is given by

min
x∈X

f(x).

Due to the lack of a total order in Rk, we use the relations 5, ≤, < to compare
vectors, see, e.g., [14]. For y1, y2 ∈ Rk, we de�ne

y1 5 y2 :⇔ yi2 ∈ [yi1,∞) ∀i = 1, . . . , k,

y1 ≤ y2 :⇔ y1 5 y2 and y1 6= y2,

y1 < y2 :⇔ yi2 ∈ (yi1,∞) ∀i = 1, . . . , k,

Additionally, we de�ne the sets Rk=, R
k
≥, Rk> as follows:

Rk[=/≥/>] := {x ∈ Rk : x[= / ≥ / >]0}.

Now, the goal of solving a multi-objective minimization problem as the one
stated above is to �nd [strictly e�cient / e�cient / weakly e�cient] solutions,
i.e., solutions x ∈ X whose objective vector f(x) is not dominated by other
points f(x) for x ∈ X in the following sense:

x is [strictly e�cient / e�cient / weakly e�cient]

⇔ @ x ∈ X \ {x} : f(x) ∈ f(x)− Rk[=/≥/>].
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The idea behind �nding e�cient solutions is to single out solutions which are
obviously a bad choice. Every solution which is dominated obviously is such
a bad choice as there exists another solution which is better in at least one
objective, without losing anything in the other objectives.

Di�erent strategies for solving multi-objective optimization problems, such
as scalarization, are presented in the literature. For an overview, see [14].

Since we will compare sets in the next chapter, it is necessary to de�ne in
which case a set A ⊆ Rk dominates a set B ⊆ Rk. To this end, we recall known
set order relations and adapt them to our setting. In the literature, these set
order relations are introduced w.r.t. cones, but in order to introduce weaker
concepts, we consider them for sets. Note that in that case, the set relations
are no longer re�exive. For a �rst idea, we give the de�nition of the upper set
less order relation, introduced by Kuroiwa [30, 29]:

De�nition 1.2. A set A ⊆ Rk dominates a set B ⊆ Rk with respect to the
upper set less order relation (we denote that by A �us B) and with respect to
Rk

[=/≥/>]
if

A ⊆ B − Rk[=/≥/>] (⇔ ∀a ∈ A ∃b ∈ B : a [5 / ≤ / <] b) .

The interpretation of the upper set less order relation with respect to Rk is
that a set A dominates another set B, if for every point in A there is a point
in B which is worse in the sense of multi-objective minimization as described
above.

1.3 Minmax robust e�ciency and its relation to set order

relations

We recall the concept of robust e�ciency for uncertain multi-objective optimiza-
tion problems as introduced in [13]. To this end, we consider a multi-objective
optimization problem with an uncertain objective function. Let ξ be the uncer-
tain parameter describing the uncertain input data in the problem formulation.
We assume ξ to belong to a given uncertainty set U ⊆ Rm.

De�nition 1.3 (Uncertain optimization problem P(U)). An uncertain opti-
mization problem

P(U) := (P(ξ), ξ ∈ U)

is de�ned as the family of (deterministic) multi-objective optimization problems

min
x∈X

f(x, ξ) (P(ξ))

with f : Rn × U → Rk and the set of feasible points X ⊆ Rn.

Notation 1.4. Given an uncertainty set U ⊆ Rm and an objective function
f : X × U 7→ Rk, we denote the set

fU (x) := {f(x, ξ) : ξ ∈ U} ⊆ Rk,

as the set of all possible objective values for a point x ∈ X .
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As the concept of minmax robust e�ciency (compare [13]) is an extension of
the concept of minmax robust optimality (compare [35, 3, 2]), the goal is to �nd
solutions to P(U) that still yield good results even in the worst-case scenarios.
Hence, for the concept of minmax robust e�ciency, P(U) can be rewritten as
the following optimization problem:

min
x∈X

sup
ξ∈U

f(x, ξ) (P(U)usl)

As a multi-objective optimization problem, the inner maximization problem
yields as a solution a set. In [13], the authors now call a solution x ∈ X
robust e�cient, if its solution set Ξ(x) to the inner problem supξ∈U f(x, ξ) is
not dominated by a solution set Ξ(x) to the inner problem supξ∈U f(x, ξ) of
any other feasible solution x ∈ X \ {x}. The authors reformulate this relation
as follows, using not the solution sets Ξ themselves, but the set of all possible
objective values fU :

De�nition 1.5. Given an uncertain multi-objective optimization problem P(U),
a feasible solution x ∈ X is called

• robust strictly e�cient if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk=; (1)

• robust e�cient if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk≥; (2)

• robust weakly e�cient if there is no x ∈ X \ {x} such that

fU (x) ⊆ fU (x)− Rk>. (3)

Recalling De�nition 1.2 of the upper set less order relation we see that (1) -
(3) are equivalent to

fU (x) �us fU (x), w.r.t. Rk[=/≥/>].

Due to this relationship, we call solutions to an uncertain multi-objective opti-
mization problem which are robust (strictly/·/weakly) e�cient in the sense of
[13] upper set less ordered (strictly/·/weakly) e�cient throughout the rest of
the paper.

In order to be consistent in the formulation of the de�nitions in this paper,
we re-formulate De�nition 1.5 according to the upper set less order relation:

De�nition 1.6 (Upper set less ordered e�ciency). Given an uncertain multi-
objective optimization problem P(U), a feasible solution x ∈ X is called upper
set less ordered (strictly/·/weakly) e�cient, if there is no x ∈ X \ {x} such that
fU (x) �us fU (x) with respect to Rk

[=/≥/>]
, which is equivalent to

@ x ∈ X \ {x} : fU (x) ⊆ fU (x)− Rk[=/≥/>].
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For Example 1.1, this would mean that Sight No.1 is upper set less ordered
e�cient, since

@ i ∈ {2, . . . , 6} : fU (Si) ⊆ fU (S1)− Rk[=/≥/>].

At the same time, Sight No.6 is not upper set less ordered e�cient, since

fU (S4) ⊆ fU (S6)− Rk[=/≥/>],

as shown in Figure 1.

tourists

entertainment

1

1

1

1

2

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

Figure 1: Sight No.1 is upper set less ordered e�cient, Sight No.6
is not

Concluding this section, we cite a result from [13], which shows that for
the special case |U| = 1, the uncertain multi-objective problem reduced to a
deterministic multi-objective optimization problem, since U contains only one
element.

Lemma 1.7 ([13], Lemma 3.5). Given P(U) with |U| = 1. Then x ∈ X is upper
set less ordered (strictly/·/weakly) e�cient if and only if it is (strictly/·/weakly)
e�cient.

2 New De�nitions of E�ciency for Uncertain Multi-

Objective Optimization

As seen in Section 1.3, the concept of robust e�ciency in the sense of Ehrgott
et al. [13] is closely connected to the upper set less ordering introduced by
Kuroiwa [30, 29]. In the literature, a lot of di�erent set order relations exist
(e.g. see [15, 27, 29, 30, 34, 40]). Replacing the upper set less order relation with
one of these yields a di�erent concept of e�ciency for uncertain multi-objective
optimization problems. In this section, we introduce and discuss these di�erent
concepts.
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2.1 Lower Set Less Ordered E�ciency

The �rst concept we present is the concept of lower set less ordered e�ciency.
For this we need the lower set less order relation introduced by Kuroiwa [30, 29]:

De�nition 2.1 (Lower set less order relation). Let A,B ⊂ Rk be arbitrarily
chosen sets. Then, the lower set less order relation �ls with respect to Rk

[=/≥/>]

is de�ned by

A �ls B ⇐⇒ A+ Rk[=/≥/>] ⊇ B (⇐⇒ ∀b ∈ B ∃a ∈ A : a [5 / ≤ / <] b) .

By replacing the upper set less order relation in De�nition 1.6 with this
set order relation, we obtain the following concept of e�ciency for uncertain
multi-objective problems:

De�nition 2.2 (Lower set less ordered e�ciency). Given an uncertain multi-
objective optimization problem P(U), a solution x ∈ X to P(U) is called lower
set less ordered (strictly/·/weakly) e�cient, if there is no x ∈ X \ {x} such that
fU (x) �ls fU (x) with respect to Rk

[=/≥/>]
, which is equivalent to

@ x ∈ X \ {x} : fU (x) + Rk[=/≥/>] ⊇ fU (x).

In contrast to the concept of upper set less ordered e�ciency, the concept of
lower set less ordered e�ciency focuses on the lower bound of a set fU (x). This
means that the inner optimization problem of (P(U)usl) is a multi-objective
minimization problem instead of a multi-objective maximization problem. Con-
trary to the upper set less ordered approach, lower set less ordered e�ciency is
hence not a worst-case concept but a best-case concept, and thus is suitable for
a decision maker who is not considered to be risk averse but rather risk a�ne.

Applying this concept to Example 1.1, we can see in Figure 2 that Sight No.5
is lower set less ordered e�cient while Sight No.1 is not lower set less ordered
e�cient as it is dominated by Sight No.5 (although Sight No.1 is lower set less
ordered weakly e�cient).

In order to be consistent with the literature, the following lemma shows the
essential result that for deterministic multi-objective optimization the concept
of lower set less ordered e�ciency is equivalent to deterministic e�ciency.

Lemma 2.3. Given P(U) with |U| = 1. Then x ∈ X is lower set less ordered
(strictly/·/weakly) e�cient if and only if it is (strictly/·/weakly) e�cient.

Proof.

x is lower set less ordered (strictly/ · /weakly) e�cient

⇐⇒ @ x ∈ X \ {x} : fU (x) + Rk[=/≥/>] ⊇ fU (x)

|U|=1⇐⇒ @ x ∈ X \ {x} : f(x) + Rk[=/≥/>] 3 f(x)

⇐⇒ @ x ∈ X \ {x} : f(x) ∈ f(x)− Rk[=/≥/>]

⇐⇒ x is (strictly/ · /weakly) e�cient.

After checking for consistency, the next question is how to calculate lower
set less ordered e�cient solutions. For this goal we present various strategies.
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Figure 2: Sight No.1 is not lower set less ordered e�cient, but
Sight No.5 is.

2.1.1 Computing lower set less ordered e�cient solutions with weighted

sum scalarization

Weighted sum scalarization is one of the most common techniques to calcu-
late e�cient solutions to deterministic multi-objective problems (compare [14]).
Ehrgott et al. [13] extended this technique to uncertain multi-objective opti-
mization problems for calculating upper set less ordered e�cient solutions. We
now extend this technique as well in order to calculate lower set less robust
e�cient solutions.

Theorem 2.4. Given an uncertain multi-objective optimization problem P(U).
For every scalar λ∗ ∈ Rk[≥/>/≥] we de�ne the optimization problem

min
x∈X

inf
ξ∈U

k∑

i=1

λ∗i fi(x, ξ). (P(U)λ∗)

Then the following statements hold:

(a) If x0 is the unique optimal solution to (P(U)λ∗) for some λ∗ ∈ Rk≥, then
x0 is lower set less ordered strictly e�cient.

(b) If x0 is an optimal solution to (P(U)λ∗) and

min
ξ∈U

k∑

i=1

λ∗i fi(x, ξ)

exists for all x ∈ X for some λ∗ ∈ Rk[>/≥], then x
0 is lower set less ordered

(·/weakly) e�cient.

Proof. Assume x0 is not lower set less ordered (strictly/·/weakly) e�cient. Con-
sequently, there exists an x ∈ X \ {x0} s.t. fU (x) + Rk

[=/≥/>]
⊇ fU (x0). This is
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equivalent to

∀ξ ∈ U ∃η ∈ U : f(x, η) + Rk[=/≥/>] 3 f(x0, ξ)

⇐⇒ ∀ξ ∈ U ∃η ∈ U : f(x, η) ∈ f(x0, ξ)− Rk[=/≥/>] (4)

Now choose λ∗ ∈ Rk[≥/>/≥] arbitrary, but �xed. Hence, we obtain from (4)

∀ξ ∈ U ∃η ∈ U :

k∑

i=1

λ∗i fi(x, η) [≤ / < / <]

k∑

i=1

λ∗i fi(x
0, ξ)

=⇒
[

inf
η∈U

/min
η∈U

/min
η∈U

] k∑

i=1

λ∗i fi(x, η)

[≤ / < / <]

[
inf
ξ∈U

/min
ξ∈U

/min
ξ∈U

] k∑

i=1

λ∗i fi(x
0, ξ),

in contradiction to the assumption.

Given a set of scalarization vectors Λ, this theorem can be used to calculate
di�erent lower set less ordered e�cient solutions to an uncertain multi-objective
optimization problem P(U) by solving (P(U)λ∗) for every λ∗ ∈ Λ. One disad-
vantage of this method clearly seems to be the choice of the set Λ. An advantage
of this weighted sum scalarization is indicated in the following remark, which
states that, under a convexity assumption on f(x, ·) and with Λ = Rk≥, all
strictly lower set less ordered e�cient solutions are found by this method.

Remark 2.5. An important question is whether the inverse direction in Theo-
rem 2.4 holds true. This aspect is studied in [26, Lemma 2.1] for general spaces,
and we can apply this result to lower set less ordered strict e�ciency, yielding
the inverse direction in Theorem 2.4 (a) under the assumption that the objective
functions fi(x, ξ) are convex on the convex uncertainty set U . As we can see
in [26, Remark 2.1], this also holds for the concept of upper set less ordered
e�ciency.

2.1.2 Computing lower set less ordered e�cient solutions with max-

ordering scalarization

A second approach for calculating lower set less ordered e�cient solutions to
P(U) is the max-ordering scalarization:

Theorem 2.6. Given an uncertain multi-objective optimization problem P(U).
For every λ∗ ∈ Rk> we de�ne the optimization problem

min
x∈X

max
i=1,...,k

inf
ξ∈U

λ∗i fi(x, ξ). (P(U)
max
λ∗ )

Now the following statements hold:

(a) If x0 is the unique optimal solution to (P(U)
max
λ∗ ) for some λ∗ ∈ Rk>, then

x0 is lower set less ordered strictly e�cient.
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(b) If x0 is an optimal solution to (P(U)
max
λ∗ ) for some λ∗ ∈ Rk> and

min
ξ∈U

λ∗i fi(x, ξ)

exists for all x ∈ X , i = 1, . . . , k, then x0 is lower set less ordered weakly
e�cient.

Proof. Assume x0 is not lower set less ordered (strictly/weakly) e�cient. Then
there exists an x ∈ X \ {x0} s.t. fU (x) +Rk

[=/>]
⊇ fU (x0). This is equivalent to

∀ξ ∈ U ∃η ∈ U : f(x, η) + Rk[=/>] 3 f(x0, ξ)

⇐⇒ ∀ξ ∈ U ∃η ∈ U : f(x, η) ∈ f(x0, ξ)− Rk[=/>] (5)

Now choose λ∗ ∈ Rk> arbitrary, but �xed. Hence, we obtain from (5)

=⇒ ∀ξ ∈ U ∃η ∈ U : λ∗i fi(x, η) [≤ / <] λ∗i fi(x
0, ξ), i = 1, . . . , k,

=⇒
[

inf
η∈U

/min
η∈U

]
λ∗i fi(x, η) [≤ / <]

[
inf
ξ∈U

/min
ξ∈U

]
λ∗i fi(x

0, ξ), i = 1, . . . , k.

Since this holds for all i = 1, . . . , k, it is a contradiction to the assumption.

Again, given a set of scalarization vectors Λ, this theorem can be used to
calculate di�erent lower set less ordered e�cient solutions to an uncertain multi-
objective optimization problem P(U) by solving (P(U)

max
λ∗ ) for every λ∗ ∈ Λ.

It can be seen that the max-ordering scalarization approach above is in
fact a weighted Tschebysche� scalarization with the origin as reference point
(compare, e.g., [36]). One drawback of the Tschebysche� scalarization method
is the possibility of obtaining upper set less weakly e�cient solutions. In order
to avoid this, we will apply the augmented weighted Tschebysche� scalarization
(see, e.g., [36]) below.

Theorem 2.7. Given an uncertain vector-valued optimization problem P (U).
Assume that minξ∈U fi(x, ξ) exists for every x ∈ X , i = 1, . . . , k. For λ∗ ∈ Rk=
and ρ > 0, consider the problem

min
x∈X

(
max

i=1,...,k
min
ξ∈U

λ∗i fi(x, ξ) + min
ξ∈U

ρ
k∑

i=1

fi(x, ξ)

)
(P(U)maxλ∗,ρ)

Then it holds: If x0 solves (P(U)
max
λ∗,ρ), then x

0 is lower set less ordered e�cient.

Proof. Suppose that x0 is not minmax robust e�cient. Then there exists x ∈
X \ {x0} s.t. fU (x) + Rk≥ ⊇ fU (x0), i.e.,

∀ξ ∈ U ∃η ∈ U : f(x, η) ≤ f(x0, ξ).

This implies on the one hand

min
ξ∈U

fi(x, ξ) 5 min
ξ∈U

fi(x
0, ξ)

for all i ∈ {1, . . . , k}. On the other hand

∀ξ ∈ U ∃η ∈ U :

k∑

i=1

fi(x, η) <

k∑

i=1

fi(x
0, ξ).
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Since λ ∈ Rk= and ρ > 0,

max
i=1,...,k

min
ξ∈U

λifi(x, ξ) + min
ξ∈U

ρ

k∑

i=1

fi(x, ξ)

< max
i=1,...,k

min
ξ∈U

λifi(x
0, ξ) + min

ξ∈U
ρ

k∑

i=1

fi(x
0, ξ),

in contradiction to the optimality of x0 for (P(U)
max
λ∗,ρ).

Based on the preceding result, given a set Λ of scalarization vectors (λ∗, ρ) ∈
Rk=×R≥ meeting the assumptions in Theorem 2.7, one can derive algorithms for

obtaining lower set less ordered e�cient solutions by solving (P(U)
max
λ∗,ρ) for each

(λ∗, ρ). However, an appropriate choice of the set Λ is not clear and requires
deeper investigation.

2.1.3 Computing lower set less ordered e�cient solutions with ε-
constraint scalarization

In the following, we provide a solution procedure for obtaining lower set less
ordered e�cient solutions via ε-constraint scalarization. In [13], the authors
extend this technique from deterministic multi-objective optimization (compare,
e.g., [14]) in order to calculate upper set less ordered e�cient solutions. The
same can be done for lower set less ordered e�ciency, as shown in [28]. The next
theorem highlights the connections between solutions to (P(U)ε,i) and lower set
less ordered (strict, weak) e�ciency.

Theorem 2.8 ([28]). Consider an uncertain vector-valued optimization problem
P (U). For every i ∈ {1, . . . , k}, εj ∈ Rk, j ∈ {1, . . . , k} \ {i}, we de�ne

min inf
ξ∈U

fi(x, ξ) s.t. ∀ j 6= i : inf
ξ∈U

fj(x, ξ) ≤ εj , x ∈ X . (P(U)ε,i)

The following statements hold.

(a) If x0 is the unique optimal solution to (P(U)ε,i) for ε ∈ Rk and some

i ∈ {1, . . . , k}, then x0 is lower set less ordered strictly e�cient for P (U).

(b) If x0 ∈ X is an optimal solution to (P(U)ε,i) for ε ∈ Rk and minξ∈U fj(x, ξ)
exists for all x ∈ X and j = 1, . . . , k, then x0 is lower set less ordered
weakly e�cient for P (U).

Given a set E of vectors ε ∈ Rk=, we can use the above presented ε-constraint

scalarization method in order to calculate lower set less ordered e�cient solu-
tions by solving (P(U)ε,i) for each i ∈ {1, . . . , k} and each ε ∈ E . Of course,
one has to choose the set E appropriately. If the elements in E are chosen too
small, then the set of feasible solutions may be empty, but if the elements in
E are chosen too large, then the optimality of the functions representing the
constraints decreases.
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2.1.4 Computing Lower Set Less Ordered E�cient Solutions with

the Objective Wise In�mum

In [13], the authors present a deterministic multi-objective optimization problem
which is helpful for computing upper set less ordered e�cient solutions. In [28],
this approach is extended to calculate lower set less ordered e�cient solutions.
We recall this method in the following.

Theorem 2.9 ([28]). Given an uncertain vector-valued optimization problem
P(U). Consider the multi-objective problem

min
x∈X




infξ∈U f1(x, ξ)
. . .

infξ∈U fk(x, ξ)


 . (OWIP(U))

The following statements hold.

(a) If x0 is strictly e�cient for (OWIP(U)), then x0 is lower set less ordered
strictly e�cient.

(b) If x0 is weakly e�cient for (OWIP(U)) and minξ∈U fi(x′, ξ) exist for all
x′ ∈ X and i = 1, . . . , k, then x0 is lower set less ordered weakly e�cient.

Applying this theorem, we can use one of the several solution techniques from
(deterministic) multi-objective optimization to calculate lower set less ordered
solutions to an uncertain multi-objective optimization problem P(U) by solving
(OWIP(U)).

In [28], it is furthermore shown that, under certain assumptions on the un-
certainty set U , it is possible to obtain the inverse direction in Theorem 2.9.

2.2 Set Less Ordered E�ciency

It might be clear that upper set less ordering and lower set less ordering are
somehow opposites of each other. While the lower set less ordering only concen-
trates on the best cases, upper set less ordering concentrates on the worst cases.
This contrariness is now used to introduce another set ordering from which we
derive a new concept of e�ciency for uncertain multi-objective optimization
problems:

Young [40] and Nishnianidze [34] (cf. Eichfelder, Jahn [15]) independently
introduced the set less order relation �s, a combination of the upper and lower
set less order relation:

De�nition 2.10 (Set less order relation). Let A,B ⊆ Rk be arbitrarily chosen
sets. Then A is said to dominate B with respect to the set less ordering (we
denote this by A �s B) and with respect to Rk

[=/≥/>]
if

A �ls B and A �us B
⇐⇒ (∀ a ∈ A ∃ b ∈ B : a [5 / ≤ / <] b)

and (∀ b ∈ B ∃ a ∈ A : a [5 / ≤ / <] b) .

From this de�nition, we derive the following concept of e�ciency for uncer-
tain multi-objective problems:
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De�nition 2.11 (Set less ordered e�ciency). Given P(U) as an uncertain
multi-objective optimization problem. A solution x ∈ X is called set less ordered
(strictly/·/weakly) e�cient for P(U), if there is no x ∈ X \ {x} such that
fU (x) �s fU (x), which is equivalent to

@ x ∈ X \ {x} : fU (x) + Rk[=/≥/>] ⊇ fU (x) and fU (x) ⊆ fU (x)− Rk[=/≥/>].

Having a close look at the de�nition of lower/upper set less ordered e�ciency,
it is obvious that every solution which is lower/upper set less ordered e�cient
also is set less ordered e�cient. We formulate this as a lemma.

Lemma 2.12. If x0 is lower/upper set less ordered (strictly/·/weakly) e�cient,
then x0 is set less ordered (strictly/·/weakly) e�cient.

Proof. This follows directly from the de�nitions.

For the sightseeing-example, Lemma 2.12 shows that Sights No.1 and No.5
are both set less ordered e�cient, since Sight No.1 is upper set less ordered
e�cient and Sight No.5 is lower set less ordered e�cient.

The question remains if every set less ordered e�cient solution is either
lower or upper set less ordered e�cient. This is not the case as we can see in
our sightseeing-example by having a close look at Sight No.6 (see Figure 3).
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Figure 3: Sight No.6 is neither lower nor upper set less ordered
e�cient, but set less ordered e�cient.

Sight No.6 is not upper set less ordered e�cient, since its set of worst cases
is dominated by the set of worst cases of Sight No.4. It is neither lower set less
ordered e�cient, since its set of best cases is dominated by the set of best cases
of Sight No.5. On the other hand, Sight No.6 is in fact set less ordered e�cient,
since there exists no alternative dominating Sight No.6 in the best cases and
the worst cases.

There are two motivations of introducing this concept: First, consider a
situation where the decision maker is either not at hand or cannot immediately
decide whether to act risk averse or risk a�ne. Therefore, it might be helpful to

Concepts of Efficiency based on Set Order Relations

119



keep a variety of solutions to help the decision maker get a feeling for the problem
structure. The concept of set less ordered e�ciency yields both solutions which
are lower set less ordered e�cient, thus solutions which re�ect risk a�ne decision
strategies as well as upper set less ordered e�cient solutions, thus solutions
which re�ect risk averse strategies. Therefore, the concept of set less ordered
e�cient solutions can serve as a pre-selection when the strategy of the decision
maker is not known. However, as shown in Figure 3 and later on in the numerical
analysis in Section 2.6, there are a lot of solutions which are neither lower nor
upper set less ordered e�cient, but set less ordered e�cient. Therefore, one
has to be aware that obtaining this pre-selection of solutions comes with the
price of also obtaining solutions which might not ful�ll any of the two concepts.
Nonetheless, this pre-selection method might be a helpful tool if the strategy of
the decision maker is not known.

Besides this pre-selection method, the concept of set less ordered e�ciency
provides a tool against dominance in both the worst and best cases. Solutions
which are not dominated by a single other solution in both the worst and best
cases ful�ll the concept of set less ordered e�ciency. Therefore, additionally
to being a pre-selection method, the set less ordered e�ciency provides a kind
of extreme-case analysis. This might be applicable to optimization problems
where most of the scenarios are either very bad or very good, but the scenarios
in between do not seem as likely.

Again, we check the concept for consistency for the case P(U) is a determin-
istic multi-objective optimization problem:

Lemma 2.13. Given P(U) with |U| = 1. Then a solution x ∈ X is set less or-
dered (strictly/·/weakly) e�cient if and only if it is (strictly/·/weakly) e�cient.

Proof. This is analogous to the proof of Lemma 2.3.

If we want to compute set less ordered e�cient solutions, due to Lemma 2.12,
we could compute upper/lower set less ordered e�cient solutions and would ob-
tain set less ordered e�cient solutions. Nonetheless, we provide a third method
for computing set less ordered e�cient solutions which is able to �nd more set
less ordered e�cient solutions than just the union of lower and upper set less
ordered e�cient solutions, as we will see in Remark 2.15.

Theorem 2.14. Given an uncertain multi-objective optimization problem P(U).
For every λ∗ ∈ Rk[≥/>] we de�ne the following optimization problem:

min
x∈X

(
infξ∈U

∑k
i=1 λ

∗
i fi(x, ξ)

supξ∈U
∑k
i=1 λ

∗
i fi(x, ξ)

)
(P(U)

biobj
λ∗ )

Then the following statements hold:

• If x0 is strictly e�cient for (P(U)
biobj
λ∗ ) for some λ∗ ∈ Rk≥, then x0 is set

less ordered strictly e�cient.

• If x0 is weakly e�cient for (P(U)
biobj
λ∗ ) for some λ∗ ∈ Rk[>/≥] and

min
ξ∈U

k∑

i=1

λ∗i fi(x, ξ) and max
ξ∈U

k∑

i=1

λ∗i fi(x, ξ)

exist for all x ∈ X , then x0 is set less ordered (·/weakly) e�cient.
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Proof. Let x0 be (strictly/weakly/weakly) e�cient for (P(U)
biobj
λ∗ ) with some

some λ∗ ∈ Rk[≥/>/≥], i.e., there is no x ∈ X \ {x0} such that

inf
ξ∈U

k∑

i=1

λ∗i fi(x, ξ) [≤, <,<] inf
ξ∈U

k∑

i=1

λ∗i fi(x
0, ξ)

and sup
ξ∈U

k∑

i=1

λ∗i fi(x, ξ) [≤, <,<] sup
ξ∈U

k∑

i=1

λ∗i fi(x
0, ξ).

Now assume that x0 is not set less ordered (strictly/·/weakly) e�cient. Then
there exists an element x ∈ X \ {x0} such that

fU (x) + Rk[=/≥/>] ⊇ fU (x0) and fU (x) ⊆ fU (x0)− Rk[=/≥/>].

This is equivalent to

∃ x ∈ X \ {x0} : ∀ ξ1, ξ2 ∈ U ∃ η1, η2 ∈ U : f(x, η1) + Rk[=/≥/>] 3 f(x0, ξ1)

and f(x, ξ2) ∈ f(x0, η2)− Rk[=/≥/>]. (6)

Now choose λ∗ ∈ Rk[≥/>/≥] as in problem (P(U)
biobj
λ∗ ). We obtain from (6)

∃ x ∈ X \ {x0} : ∀ ξ1, ξ2 ∈ U ∃ η1, η2 ∈ U :

k∑

i=1

λ∗i fi(x, η1) [≤, <,<]

k∑

i=1

λ∗i fi(x
0, ξ1)

and

k∑

i=1

λ∗i fi(x, ξ2) [≤, <,<]

k∑

i=1

λ∗i fi(x
0, η2)

⇒
[

inf
ξ∈U

/min
ξ∈U

/min
ξ∈U

] k∑

i=1

λ∗i fi(x, ξ)

[≤, <,<]

[
inf
ξ∈U

/min
ξ∈U

/min
ξ∈U

] k∑

i=1

λ∗i fi(x
0, ξ)

and

[
sup
ξ∈U

/max
ξ∈U

/max
ξ∈U

]
k∑

i=1

λ∗i fi(x, ξ)

[≤, <,<]

[
sup
ξ∈U

/max
ξ∈U

/max
ξ∈U

]
k∑

i=1

λ∗i fi(x
0, ξ).

The last two strict inequalities hold because the minimum and maximum exist.
But this is a contradiction to the assumption.

Given a set of scalarization vectors Λ, the results of this theorem can be used
to calculate set less ordered e�cient solutions to an uncertain multi-objective
optimization problem P(U), by solving (P(U)

biobj
λ∗ ) for each λ∗ ∈ Λ. Again, [26,

Lemma 2.1] and the results presented in [26] are helpful to obtain the inverse
direction in the above theorem for set less ordered strictly e�ciency.
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Remark 2.15. Note that e�cient solutions to (P(U)
biobj
λ∗ ) can also be nei-

ther lower nor upper set less ordered e�cient: In Example 1.1 we can see that
Sight No.6 - which we recall to be set less ordered e�cient but neither lower nor
upper set less ordered e�cient - is in fact an e�cient solution to (P(U)

biobj
λ∗ )

for λ∗ = (0.1, 0.9) as can be seen in Figure 4:
For

inf
ξ∈U

(0.1 · tourists(x) + 0.9 · entertainment(x)) ,

the �rst objective function of (P(U)
biobj
λ∗ ), only Sights No.1 and No.5 are better

than No.6. Since for

sup
ξ∈U

(0.1 · tourists(x) + 0.9 · entertainment(x)) ,

the second objective function of (P(U)
biobj
λ∗ ), Sights No.1 and No.5 are worse

than Sight No.6, Sight No.6 is a strictly e�cient solutions to (P(U)
biobj
λ∗ ).
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Figure 4: infξ∈U and supξ∈U for
(0.1 · tourists(No.6) + 0.9 · entertainment(No.6)).

2.3 Alternative Set Less Ordered E�ciency

The opposite to combining the upper and lower set less order relation into the
set less order relation would be the following relation which is introduced in [25]
as the alternative set less order relation:

De�nition 2.16 (Alternative set less order relation). Let A,B ⊂ Rk be arbi-
trarily chosen sets. Then A is said to dominate B with respect to the alternative
set less ordering (we denote this by A �as B and with respect to Rk

[=/≥/>]
, if

A �ls B or A �us B
⇐⇒ (∀ a ∈ A ∃ b ∈ B : a [5 / ≤ / <] b)

or (∀ b ∈ B ∃ a ∈ A : a [5 / ≤ / <] b) .

With this set relation we are able to de�ne another concept of e�ciency for
uncertain multi-objective optimization problems:
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De�nition 2.17 (Alternative set less ordered e�ciency). Given an uncertain
multi-objective optimization problem P(U). A solution x ∈ X of P(U) is called
alternative set less ordered (strictly/·/weakly) e�cient, if there is no x ∈ X \{x}
such that fU (x) �as fU (x) with respect to Rk

[=/≥/>]
, which is equivalent to

@ x ∈ X \ {x} : fU (x) + Rk[=/≥/>] ⊇ fU (x) or fU (x) ⊆ fU (x0)− Rk[=/≥/>].

Obviously, the concept of alternative set less ordered e�ciency is extremely
restrictive. It re�ects the strategy of a decision maker who wants to �nd solu-
tions which are non-dominated both in the worst and best cases. Therefore, the
alternative set less ordered e�cient solutions re�ect both risk averse and risk
a�ne strategies and appear to be good choices for everybody.

Remark 2.18. Due to the restrictiveness of the concept of alternative set less
ordered e�ciency, it is easy to construct arti�cial examples, where no such
solutions exist. However, the numerical results in Section 2.6 hypothesize that
in general the existence of this kind of solutions is not unrealistic to assume,
since a signi�cant percentage of the total number of solutions ful�ll this concept.

Having a close look at the de�nition of alternative set less ordered e�ciency,
one can see that a solution is alternative set less ordered e�cient if and only
if it is both lower and upper set less ordered e�cient. The following theorem
formulates this observation technically.

Lemma 2.19 ([28]). Given an uncertain multi-objective optimization problem
P(U). A solution x0 ∈ X is alternative set less ordered (strictly/·/weakly) e�-
cient if and only if it is both lower and upper set less ordered (strictly /·/weakly)
e�cient.

Proof. This follows directly from the de�nitions.

Applying this concept to the sightseeing-example, one can see that Sight No.4
is alternative set less ordered e�cient as it is both upper and lower set less
ordered e�cient as we saw in Figures 1 and 2.

Again, we check the concept for consistency in the case that P(U) is a
deterministic multi-objective optimization problem:

Lemma 2.20. Given an uncertain multi-objective problem P(U) with |U| = 1.
Then x is alternative set less ordered (strictly/·/weakly) e�cient if and only if
x is (strictly/·/weakly) e�cient.

Proof. This follows directly from Lemmata 1.7, 2.3, and 2.19.

2.4 Certainly Less Ordered E�ciency

The concepts of (lower/upper/alternative/·) set less ordered e�ciency all are
useful for �nding solutions which are of good quality with respect to best or worst
cases. However, sometimes it might be useful to just sort out those solutions
which are evidently of poor quality without considering a certain concept of
e�ciency for uncertain multi-objective problems. The question is, if there is a
possibility to sort out those solutions which are obviously of a bad quality for all
possible interpretations of e�ciency for uncertain multi-objective optimization
problems. To show that this is in fact the case, we �rst recall the certainly less
order relation, see Chiriaev, Walster [8], Eichfelder, Jahn [15] and Jahn, Ha [27].
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De�nition 2.21 (Certainly less order relation). Let A,B ⊂ Rk be arbitrarily
chosen sets. We say that A dominates B with respect to the certainly less order
relation (we denote this by A �c B) with respect to Rk

[=/≥/>]
, if

∀ a ∈ A ∀ b ∈ B : a [5 / ≤ / <] b.

Considering uncertain multi-objective optimization problems, we can also
write this set relation in a di�erent way:

Lemma 2.22. Given an uncertain multi-objective optimization problem P(U).
For all x ∈ X we de�ne

CMax fU (x) := (sup
ξ∈U

f1(x, ξ), . . . , sup
ξ∈U

fk(x, ξ))T ,

CMin fU (x) := ( inf
ξ∈U

f1(x, ξ), . . . , inf
ξ∈U

fk(x, ξ))T .

Then for all x, x ∈ X :

fU (x) �c fU (x) with respect to Rk= ⇐⇒ CMax fU (x) ∈ CMin fU (x)− Rk=.

Proof.

fU (x) �c fU (x) with respect to Rk=
⇐⇒ ∀ ξ ∈ U ∀ η ∈ U : f(x, ξ) 5 f(x, η)

⇐⇒ sup
ξ∈U

fi(x, ξ) 5 inf
η∈U

fi(x, η), i = 1, . . . , k

⇐⇒ CMax fU (x) ∈ CMin fU (x)− Rk=

Remark 2.23. Note that the analogous of Lemma 2.22 for Rk[≥/>] only holds
for the direction ⇐. The other direction does not hold in general, which can
be seen by considering the following example: Let k = 1 and fU (x) := [1, 2) ⊂
R, fU (x) := [2, 3] ⊂ R. Then fU (x) �c fU (x) with respect to R[≥/>]. But,
CMax fU (x) = 2 = CMin fU (x), therefore CMax fU (x) 6∈ CMin fU (x)− R[≥/>].

Due to Remark 2.23, we de�ne certainly less ordered e�cient solutions in
the following way:

De�nition 2.24. Given an uncertain multi-objective optimization problem P(U).
A solution x0 to P(U) is called certainly less ordered (strictly/·/weakly) e�-
cient, if there is no x ∈ X \ {x0} such that

CMax fU (x) ∈ CMin fU (x0)− Rk[=/≥/>].

Remark 2.25. Note that for a solution x ∈ X which is not certainly less
ordered (strictly/·/weakly) e�cient, there exists a solution x ∈ X \ {x} such
that fU (x) �c fU (x) with respect to Rk

[=/≥/>]
due to Lemma 2.22.

The concept of certainly less ordered e�ciency obviously is quite a weak
concept. It is not very restrictive and by obtaining solutions which are certainly
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less ordered e�cient, one does not gain much information about the quality or
structure of the obtained solutions.

Nonetheless, the concept of certainly less ordered e�ciency is a helpful con-
cept as it �lters out solutions which are obviously bad choices. Solutions which
do not ful�ll this concept in particular are dominated in every scenario by the
same other solution. Thus, even though this concept might not yield only in-
teresting solutions, and especially some solutions which are dominated in every
scenario by a single other solution may ful�ll this concept as well, it is helpful
to exclude the obvious bad choices before concentrating on choosing between
the more interesting solutions.

In the sightseeing-example, we can see that Sight No.2 is such a solution one
would want to exclude beforehand, because obviously, Sight No.6 dominates it
in every scenario as we can see in Figure 5.

tourists

entertainment

1

1

1

1

2

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

Figure 5: Sight No.2 is not certainly less ordered e�cient.

As before, we check if the concept of certainly less ordered e�ciency is con-
sistent in the case P(U) is a deterministic multi-objective optimization problem:

Theorem 2.26. Given an uncertain multi-objective problem P(U) where |U| =
1. Then a solution x0 ∈ X is certainly less ordered (strictly/·/weakly) e�cient
if and only if it is (strictly/·/weakly) e�cient.

Proof. This is quite obvious as for |U| = 1, CMax fU (x) = CMin fU (x) = f(x)
for all x ∈ X .

Computing certainly less ordered e�cient solutions might seem quite compli-
cated at �rst as in the de�nition one is comparing the component-wise minimum
of the one solution with the component-wise maximum of another solution. For-
tunately, there is an easier way to compute these solutions:

Theorem 2.27. Given an uncertain optimization problem P(U). We recall the
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multi-objective optimization problem (OWIP(U)):

min
x∈X




infξ∈U f1(x, ξ)
...

infξ∈U fk(x, ξ)




If x0 is a (strictly/·/weakly) e�cient solution to (OWIP(U)), then x0 is certainly
less ordered (strictly/·/weakly) e�cient for P(U).

Proof. Assume that x0 is not certainly less ordered (strictly/·/weakly) e�cient.
Then there is an x ∈ X \ {x0} s.t.




supξ∈U f1(x, ξ)
...

supξ∈U fk(x, ξ)


 ∈




infξ∈U f1(x0, ξ)
...

infξ∈U fk(x0, ξ)


− Rk[=/≥/>].

Obviously, it holds that

inf
ξ∈U

fi(x, ξ) 5 sup
ξ∈U

fi(x, ξ)

for all i ∈ {1, . . . , k}. Consequently, we acquire the contradiction



infξ∈U f1(x, ξ)
...

infξ∈U fk(x, ξ)


 [5 / ≤ / <]




infξ∈U f1(x0, ξ)
...

infξ∈U fk(x0, ξ)


 .

We can use the results of this theorem to calculate certainly less ordered
e�cient solutions to an uncertain multi-objective optimization problem P(U)
by solving (OWIP(U)) with one of the several solution techniques from (deter-
ministic) multi-objective optimization (see, e.g., [14]).

Remark 2.28. Note that this method is closely connected to the objective-wise
in�mum-method from Section 2.1.4. In particular, every strictly e�cient solu-
tion to (OWIP(U)) is a lower set less ordered e�cient solution, see Theorem 2.9
(a). However, Theorem 2.27 provides the theoretical background for �nding cer-
tainly less ordered (·/weakly) e�cient solutions without additional assumptions
as in Theorem 2.9 (b). Nonetheless, if those assumptions are met, also the
method derived from Theorem 2.27 will yield not only certainly less but lower
set less ordered e�cient solutions.

2.5 Relationships between the concepts

In Sections 2.1 - 2.3 the connection between (upper/lower/alternative/·) set less
ordered e�ciency has already been made quite clear.

The only gap left is the connection to certainly less ordered e�ciency. As we
already observed that this concept is very weak, it is natural that it is included
in every other de�nition as the following theorem shows:
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Lemma 2.29. Given an uncertain multi-objective problem P(U). If x0 ∈
X is set less ordered (strictly/·/weakly) e�cient, it is certainly less ordered
(strictly/·/weakly) e�cient.

Proof. This can be seen directly from Lemma 2.22 together with [27, Proposi-
tion 3.10], where it is shown that for arbitrary sets A and B

A �c B =⇒ A �s B.

We visually summarize the relationships between the concepts, as presented
in Lemma 2.12, 2.19, and 2.29, in Figure 6.

alternative set less o.e.

lower set less o.e. upper set less o.e.

set less o.e.

certainly less o.e.

Lem. 2.19 Lem. 2.19

Lem. 2.12 Lem. 2.12

Lem. 2.29

Figure 6: Relationship between the concepts, o.e. stands for ordered
e�ciency

Remark 2.30. Summarizing the di�erent interpretations of the concept, one
can say that, while the certainly less order relation serves mainly for ruling out
the obviously bad solutions, the lower set less order relation re�ects a decision
maker's strategy contrary to the strategy of a decision maker following the con-
cept of upper set less ordered e�ciency. The set less order relation may serve as
a pre-selection of solutions without being certain of the decision maker's strat-
egy, and the alternative set less order relation induces solutions which are of
a high interest since they ful�ll the concepts of both lower and upper set less
ordered e�ciency.

2.6 Numerical Investigation of the Concepts

After presenting the various concepts and investigating connections between
them, in this section, we follow the question whether solutions of the di�erent
concepts are likely to occur in optimization problems or not. Even though
this question obviously is di�cult to answer in general, the numerical results
presented in this section give a �rst insight into this topic.

For the numerical results, we randomly generated 1000 instances of an un-
certain multi-objective optimization problem in the following way: For each of
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the solutions, each of the objectives, and each of the scenarios, we randomly
chose an objective value in the interval [0, 10]. For each instance, we then in-
vestigated how many solutions ful�ll the various concepts. In Tables 2, 3, and
4, the average amount of solutions ful�lling the di�erent concepts in percent
is given (we abbreviate the names of the concepts with their respective initials
and indicate the union of lower and upper set less ordered e�cient solutions by
(l/u).s.l.o.e.).

Table 2: #Objectives = 5, #Scenarios = 5

# Solutions a.s.l.o.e. l.s.l.o.e. u.s.l.o.e. (l/u).s.l.o.e. s.l.o.e. c.l.o.e.

100 70.72% 78.03% 88.55% 95.86% 99.27% 100%
500 39.13% 46.73% 76.14% 83.74% 97.28% 100%
1000 25.37% 31.49% 69.42% 75.54% 95.64% 100%

As we can see in Table 2, for an increasing number of solutions, the amount
of solutions ful�lling the stricter concepts such as alternative set less ordered
e�ciency, drastically decreases. This can be explained easily, since with an
increasing number of solutions, more solutions can be dominated and new �good�
solutions are not as likely.

Table 3: #Solutions = 500, #Scenarios = 5

# Objectives a.s.l.o.e. l.s.l.o.e. u.s.l.o.e. (l/u).s.l.o.e. s.l.o.e. c.l.o.e.

3 0.09% 0.25% 15.76% 15.93% 40.29% 99.98%
5 39.13% 46.73% 76.14% 83.74% 97.28% 100%
10 99.90% 99.94% 99.96% 100% 100% 100%

In Table 3, we can see that an increasing number of objectives dramatically
increases the amount of solutions ful�lling the stricter concepts. This can be
explained easily as well, since the number of solutions does not change. Due to
the growing number of dimensions, it becomes less likely that a solution dom-
inates another one and therefore the number of solutions not being dominated
increases.

Table 4: #Solutions = 500, #Objectives = 5

# Scenarios a.s.l.o.e. l.s.l.o.e. u.s.l.o.e. (l/u).s.l.o.e. s.l.o.e. c.l.o.e.

3 22.98% 30.56% 54.64% 62.22% 84.37% 99.94%
5 39.13% 46.73% 76.14% 83.74% 97.28% 100%
10 61.40% 65.59% 92.48% 96.68% 99.82% 100%

Table 4 shows that with an increasing number of scenarios also the number
of solutions ful�lling the stricter concepts does increase, even though not as
dramatically as for an increasing number of objectives.

An important observation throughout the results is that there are signi�cant
gaps between the various concepts in every setting. This makes clear that
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solutions of stricter concepts are in fact harder to obtain than other solutions.
However, the results also show that obtaining solutions of each concept is not
unrealistic, in particular for the concept of alternative set less ordered e�ciency.
Note, furthermore, that the gap between the union of lower and upper set
less ordered e�cient solutions and set less ordered e�cient solutions is quite
signi�cant.

3 Conclusion

In this paper, we used set order relations in order to de�ne new concepts of ef-
�ciency for uncertain multi-objective optimization problems. In particular, we
introduced the concepts of (lower/alternative/·) set less ordered e�ciency and
certainly less ordered e�ciency. We analyzed these concepts, discussed implica-
tions and connections between them and presented scalarization techniques for
computing the according solutions.

From here, further research may be done in many di�erent directions. More
set order relations than those we used in this paper can be found in the literature,
for instance the minmax set order relation �m, the minmax certainly less order
relation �mc (see, e.g., [27]) or the possibly less order relation �p introduced in
[8]. We only discussed a few number of set order relations as an introduction
to the topic and to keep the paper short, but other set order relations (more
are presented, e.g., in [27, 8, 15]) may yield interesting concepts of e�ciency for
uncertain multi-objective optimization problems.

Also, the connection between robustness and set-valued optimization pre-
sented in this paper is interesting from the set-valued point of view. The re-
lationship between our approaches and set-valued optimization is further ex-
tended in [25]. Here, the scalarization techniques used in this paper and the
literature for calculating robust e�cient solutions to uncertain multi-objective
optimization problems are studied. These techniques can be helpful for solving
set-valued optimization problems where the presented set order relations are
used (see [25]).

Finally, a generalization of the presented methods to general spaces and
cones, as often used in set-valued optimization, is interesting and might yield
interesting interpretations of set-valued optimization problems.
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Abstract

In this paper, we discuss the connection between concepts of robustness for

multi-objective optimization problems and set order relations. We extend some of

the existing concepts to general spaces and cones using set relations. Furthermore,

we derive new concepts of robustness for multi-objective optimization problems. We

point out that robust multi-objective optimization can be interpreted as an

application of set-valued optimization. Furthermore, we develop new algorithms for

solving uncertain multi-objective optimization problems. These algorithms can be

used in order to solve a special class of set-valued optimization problems.

Keywords: robust optimization; multi-objective optimization; scalarization;

vectorization; set-valued optimization

1 Introduction

Dealing with uncertainty in multi-objective optimization problems is very important in

many applications. On the one hand, most real world optimization problems are contam-

inated with uncertain data, especially traffic optimization problems, scheduling problems,

portfolio optimization, network flow and network design problems. On the other hand,

many real world optimization problems require the minimization of multiple conflicting

objectives (see []), e.g. the maximization of the expected return versus the minimization

of risk in portfolio optimization, the minimization of production time versus the mini-

mization of the cost of manufacturing equipment, or the maximization of tumor control

versus the minimization of normal tissue complication in radiotherapy treatment design.

For an optimization problem contaminated with uncertain data it is typical that at the

time it is solved these data are not completely known. It is very important to estimate the

effects of this uncertainty and so it is necessary to evaluate how sensitive an optimal solu-

tion is to perturbations of the input data. One way to deal with this question is sensitivity

analysis (for an overview see []). Sensitivity analysis is an a posteriori approach and pro-

vides ranges for input data within which a solution remains feasible or optimal. It does

not, however, provide a course of action for changing a solution should the perturbation

be outside this range. In contrast, stochastic programming (see e.g. Birge and Louveaux

[] for an introduction) and robust optimization (see e.g. [, ] for an overview) take the

uncertainty into account during the optimization process.While stochastic programming

©2014 Ide et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Addendum D

134



Ide et al. Fixed Point Theory and Applications 2014, 2014:83 Page 2 of 20

http://www.fixedpointtheoryandapplications.com/content/2014/1/83

assumes some knowledge about the probability distribution of the uncertain data and the

objective usually is to find a solution that is feasible with a certain probability and that op-

timizes the expected value of some objective function, robust optimization hedges against

the worst case. Hence robust optimization does not require any probabilistic information.

Depending on the concrete application one can decide whether robust or stochastic opti-

mization is the more appropriate way of dealing with uncertainty.

Robust optimization is usually applied to problems where a solution is required which

hedges against all possible scenarios. For example, the emergency department with land-

ing place for rescue helicopters in a ski resort should be chosen in such a way that the flight

time to all ski slopes in the resort that are to be protected is minimized in the worst case,

even though flight times are uncertain due to unknown weather conditions. Similarly, if

an aircraft schedule of an airline is to be determined, one would want to be able to provide

service to asmany passengers as possible in a cost-effectivemanner, even though the exact

number of passengers is not known at the time the schedule is fixed.

Generally, in the concept of robustness it is not assumed that all data are known, but

one allows different scenarios for the input parameters and looks for a solution that works

well in every uncertain scenario.

Unfortunately, at the time the uncertain optimization problem has to be solved, it is not

known which scenario is going to be realized. Therefore, a definition of a ‘good’ (or robust

against the perturbations in the uncertain parameter) solution is necessary.

Robust optimization is a growing field of research, we refer to Ben-Tal, El Ghaoui, Ne-

mirovski [], Kouvelis and Yu [] for an overview of results and applications for the most

prominent concepts. Several other concepts of robustness were introducedmore recently,

e.g. the concept of light robustness by Fischetti andMonaci [] or the concept of recovery-

robustness in Liebchen et al. [], for a unified approach, see []. A scenario-based approach

is suggested in Goerigk and Schöbel []. In all these approaches, the uncertain optimiza-

tion problem is replaced by a deterministic version, called the robust counterpart of the

uncertain problem.

One of the most common approaches is the concept of minmax robustness, introduced

by Soyster [] and studied e.g. by Ben-Tal and Nemirovski []. Here, a solution is said to

be robust, if it minimizes the worst case of the objective function over all scenarios. We

do not go into detail here as for this paper we mostly consider concepts of robustness for

multi-objective optimization problems.

Now, if we consider the objective function in the problem definition to be not a single-

objective, but a multi-objective function, the concepts of robustness do not apply natu-

rally anymore. The problem obviously is that there is no total order on Rk and the ro-

bustness concepts for uncertain single-objective optimization problems rely on the total

order of R. Therefore, new definitions of what is seen as a robust solution to an uncertain

multi-objective optimization problem are necessary.

The first approach to handle uncertainty for multi-objective optimization problems was

presented by Deb and Gupta [] who extended the concept Branke [] introduced for

single-objective functions.Here each objective function is replaced by theirmean function

and an efficient solution of the resulting multi-objective optimization problem is called a

robust solution. The authors also presented a second definition where the uncertainty is

modeled into the constraintswhich restrict the variation of the original objective functions

to their means. Barrico and Antunes [] extended the concept of Deb and Gupta and
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introduced the degree of robustness as a measure how much a predefined neighborhood

of the considered solution can be extended without containing solutions whose function

values are too bad. An overview of the existing concepts of robustness for multi-objective

optimization problems can be found in [] and [].

A first approach to extending the concept ofminmax robustness tomulti-objective opti-

mization was presented by Kuroiwa and Lee []. Here, the worst case in each component

is calculated separately, and an efficient solution to the problem of minimizing the vec-

tor of worst cases is then called a robust solution to the original problem. This definition

has been extended by Ehrgott, et al. [], where the authors replace the objective function

by a set-valued objective function. Furthermore, the authors present solution algorithms

for calculatingminmax-robust efficient solutions, one of which is closely connected to the

concept of robustness presented by Kuroiwa and Lee []. Furthermore, in [] the authors

present solution concepts for obtaining robust points of uncertain multi-objective opti-

mization problems and study optimality conditions for the special case of convex objective

functions in [].

Set-valued optimization deals on the other handwith the problem ofminimizing a func-

tion where the image of a point is in fact a set. Minimizing a set is not totally intuitive since

on a power set there is no total order as well as on Rk . Therefore, a definition of what can

be seen as an optimal solution to minimizing a set-valued objective function is neces-

sary. In order to compare sets, several preorders have been introduced (see e.g. [–]).

With these preorders it is then possible to formulate set-valued optimization problems

related to robustness for multi-objective optimization problems, especially, we show that

the concept of minmax-robust efficiency (see []) is closely connected to a certain set

order relation, introduced by Kuroiwa [, ], namely the upper-type set relation. We

derive our results in general spaces using arguments from nonlinear and convex analysis

(see Takahashi [, ]), for methods from numerical analysis in general spaces, see e.g.

Aoyama, Kohsaka, Takahashi [], Takahashi [].

Replacing the set order relation implicitly used in the definition of minmax-robust ef-

ficiency, Ide and Köbis [] presented various other concepts of robustness for multi-

objective optimization, derived by replacing the upper-type set relation with another set

ordering from the literature.

Now, this paper is structured as follows: After fixing the notation and recalling the def-

initions of set order relations in Section , in Section  we introduce several concepts of

robustness for multi-objective optimization problems based on set order relations. We

show some characterizations for robust solutions in the sense of set-valued optimization

that are important for deriving solution procedures using the ideas given in []. A lot of

the results presented in [] can be extended to our general setting. Using this informa-

tion, we extend the algorithms presented in [] to concepts for robustness and then we

use these algorithms in order to solve a certain class of set-valued optimization problems.

We conclude the paper with some final remarks and an outlook to future research.

2 Preliminaries

Throughout the paper, let Y be a linear topological space partially ordered by a proper

closed convex and pointed (i.e., C ∩ (–C) = {}) cone C. The ordering relation on Y is

described by y ≤C y if and only if y – y ∈ C for all y, y ∈ Y . The dual cone to C is

denoted by C∗ := {y∗ ∈ Y ∗ | ∀y ∈ C : y∗(y) ≥ } and the quasi-interior of C∗ is defined by
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C# := {y∗ ∈ C∗ | ∀y ∈ C \ {} : y∗(y) > }. Furthermore, let X be a linear space, F : X ⇒ Y

(with the ‘⇒’-notation we denote that F is a set-valued objective function whose function

values are sets in Y ), and X a subset of X. As usual, we denote the graph of the set-valued

map F by graphF := {(x, y) ∈ X ×Y | y ∈ F(x)}. Furthermore, we define F(X ) :=
⋃

x∈X F(x).

In set optimization, the following set relations play an important role; see Young [],

Nishnianidze [], Kuroiwa [, , ], Jahn and Ha [] and Eichfelder and Jahn [].

We will use these set relations to introduce several concepts of robustness.

Definition  (Set less order relation [, , ]) Let C ⊂ Y be a proper closed convex

and pointed cone. Furthermore, let A,B ⊂ Y be arbitrarily chosen sets. Then the set less

order relation is defined by

A	s
C B :⇐⇒ A⊆ B –C and A +C ⊇ B.

Remark  Of course, we have

A⊆ B –C ⇐⇒ ∀a ∈ A ∃b ∈ B : a≤C b

and

A +C ⊇ B⇐⇒ ∀b ∈ B ∃a ∈ A : a≤C b.

Definition  (Upper-type set relation [, ]) Let A,B ⊂ Y be arbitrarily chosen sets and

C ⊂ Y a proper closed convex and pointed cone. Then the u-type set relation	u
C is defined

by

A	u
C B :⇐⇒ A⊆ B –C ⇐⇒ ∀a ∈ A ∃b ∈ B : a≤C b.

Another important set order relation is the lower-type set relation:

Definition  (Lower-type set relation [, ]) Let A,B ⊂ Y be arbitrarily chosen sets and

C ⊂ Y a proper closed convex and pointed cone. Then the l-type set relation	l
C is defined

by

A	l
C B :⇐⇒ A +C ⊇ B ⇐⇒ ∀b ∈ B ∃a ∈ A : a ≤C b.

Remark  Note that the conditions

(i) A⊂ B – intC,

(ii) A +N ⊂ B –C for some neighborhood N of the zero vector Y in Y

are not equivalent when A is not compact. Clearly (ii) implies (i) if intC �= ∅. From a theo-

retical viewpoint, (ii) may, in some cases, be more appropriate for describing solutions.

Taking into account this property we suppose in Section  that the set-valued map fU in

the formulation of the concepts of robustness for multi-objective optimization problems

is compact-valued. This is important in the case where we are dealing with intC in the

definition of robustness.
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Remark  There is the following relationship between the l-type set relation 	l
C and the

u-type set relation 	u
–C :

A	l
C B :⇐⇒ A +C ⊇ B ⇐⇒ B ⊆ A – (–C) ⇐⇒: B	u

–C A.

To conclude the notation, we introduce a set-valued optimization problem: Consider

F : X ⇒ Y , and X a subset of X. Furthermore, let 	 be a preorder on the power set of Y

given by Definition , , , respectively. Then a set-valued optimization problem (SP –	)

is given by

(SP –	) 	-minimize F(x), subject to x ∈X ,

where minimal solutions of (SP –	) are defined in the following way:

Definition  (Minimal solutions of (SP – 	) w.r.t. the preorder 	) Given a set-valued

optimization problem (SP –	), an element x ∈X is called aminimal solution to (SP –	)

if

(

F(x)	 F(x) for some x ∈X
)

�⇒ F(x) 	 F(x).

Remark  If we use the set relation 	l
C introduced in Definition  in the formulation of

the solution concept, i.e., we study the set-valued optimization problem of (SP – 	l
C),

we observe that this solution concept is based on comparisons among sets of minimal

points of values of F . Furthermore, considering the u-type set relation 	u
C (Definition ),

i.e., considering the problem (SP –	u
C) we recognize that this solution concept is based

on comparisons among sets of maximal points of values of F . When x ∈ X is a minimal

solution of problem (SP –	l
C) there does not exist x ∈X such that F(x) is strictly smaller

than F(x) with respect to the set order 	l
C .

Furthermore, the following definition of a minimizer of a set-valued optimization prob-

lem is very often used in the theory of set optimization and given below. However, the

solution concept introduced in Definition  is more natural and useful as we can see in

Example .

In the next definition we use the set of minimal elements of a nonempty subset A of Y

with respect to C:

Min(A,C) :=
{

y ∈ A | A∩ (y –
(

C \ {}
)

= ∅
}

.

Definition  (Minimizer of a set-valued optimization problem) Let x ∈ X and (x, y) ∈

graphF . The pair (x, y) ∈ graphF is called a minimizer of F : X ⇒ Y over X with respect to

C if y ∈ Min(F(X ),C).

For our approach to robustness of uncertain multi-objective optimization problems,

minimal solutions in the sense of Definition  are useful and therefore, when consider-

ing robustness concepts, we will deal with this solution concept in the following.

In order to get an insight to the issue of set-valued optimization problems, we give two

examples (see Kuroiwa []) of set-valued optimization problems.
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Figure 1 Feasible solution sets of F1 , F2 , described in Examples 1 and 2.

Example  Consider the set-valued optimization problem

(SP –	l
C) 	l

C-minimize F(x), subject to x ∈X ,

with X =R, Y =R, C =R
+, X = [, ] and F :X ⇒ Y is given by

F(x) :=

{

[(, ), (, )] if x = ,

[( – x,x), (, )] if x ∈ (, ],

where [(a,b), (c,d)] is the line segment between (a,b) and (c,d). Only the element x =  is

a minimal solution of (SP –	l
C). However, all elements (x, y) ∈ graphF with x ∈ [, ], y =

( – x,x) for x ∈ (, ] and y = (, ) for x =  are minimizers of the set-valued optimization

problem in the sense of Definition . This example shows that the solution concept with

respect to the set relation 	l
C (see Definitions  and ) is more natural and useful than the

concept of minimizers introduced in Definition .

Example  In this example we are looking forminimal solutions of a set-valued optimiza-

tion problem with respect to the set relation 	u
C introduced in Definition .

(SP –	u
C) 	u

C-minimize F(x), subject to x ∈X ,

with X =R, Y =R, C =R
+, X = [, ] and F :X ⇒ Y is given by

F(x) :=

{

[[(, ), (, )]] if x = ,

[[(, ), (, )]] if x ∈ (, ],

where [[(a,b), (c,d)]] := {(y, y) | a ≤ y ≤ c,b ≤ y ≤ d}. Then the only minimal solution

of (SP –	u
C) in the sense of Definition  is x = .

A visualization of both above discussed examples is given in Figure .

In Section , we will apply the preorders introduced in Definitions , ,  in order to de-

fine several concepts of robustness for uncertain multi-objective optimization problems.

3 Concepts of robustness for multi-objective optimization problems based on

set relations and corresponding algorithms

Talking about an uncertain optimization problem, we consider the uncertain data to be

given as a parameter (also called scenario) ξ ∈ U whereU ⊆Rm is the so-calleduncertainty

set. For each realization of this parameter ξ ∈ U we obtain a single optimization problem
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(P(ξ ))
f (x, ξ )→ min

s.t. x ∈X ,

where f : X × U �→ Y is the objective function and X ⊆ X is the set of feasible solutions

(note that we assume the feasible set to be unchanged for every realization of the uncertain

parameter). We use the notation

fU (x) :=
{

f (x, ξ ) | ξ ∈ U
}

()

for the image of the uncertainty set U and x under f (note that fU (x) in general is a set and

not a singleton).

Taking into account the discussion in Remark  we assume that the set-valued map fU
is compact-valued.

Now, when searching for an optimal solution, one has to overcome the problem that we

do not know anything about the different scenarios, e.g., which one is most likely to occur,

any kind of probability distribution and so on. Therefore, an uncertain (multi-objective)

optimization problem is defined as the family of optimization problems

(P(U ))
(

P(ξ ), ξ ∈ U
)

.

Now it is not clear what solution to this problem (P(U )) would be seen as desirable.

Throughout the paper we discuss several concepts of robustness and derive new ap-

proaches to robustness for multi-objective optimization problems.

In this section we extend the robustness concepts presented in [] to general spaces

using the preorders introduced in Definitions , , . In particular, we are interested in

extending the theorems which provide the foundation for the algorithms for calculating

the respective robust solutions. We shortly repeat the various concepts which relate to

different set orderings, extend the theorems and then formulate the algorithms.With this,

we present some ideas for solving special set-valued optimization problems in our paper

(see Section ).

3.1 �
u

C
-Robustness

Weextend the definitions and results presented by Ehrgott et al. [] aboutminmax-robust

efficiency.

Here, a feasible solution x ∈X to (P(U )) is calledminmax-robust efficient if there is no

other feasible solution x ∈X \ {x}, such that

fU (x)⊆ fU (x) –Rk
≧

where Rk
≧ := {λ ∈Rk : λi ≥  ∀i = , . . . ,k}.

With the definitions of upper-type set relation, see Definition , and minmax-robust

efficiency inmind we can see the close connection betweenminmax-robust efficiency and

the upper-type set relation, since a solution x ∈X to (P(U )) is minmax-robust efficient if

there is no other feasible solution x ∈X \ {x}, such that

fU (x)	
u
C fU (x),

where Y =Rk and C =Rk
≧.
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Since all the concepts considered in this paper are closely related to a set order relation	,

in order to keep the names of the concepts readable we call the respective solution 	-

robust.

In the following definition we use a preorder 	u
Q like in Definition  with Q = C, Q =

C \ {} and Q = intC, respectively, instead of 	u
C :

A	u
Q B :⇐⇒ A⊆ B –Q,

where A,B ⊂ Y are arbitrarily chosen sets. If we are dealing with Q = intC we suppose

intC �= ∅.

Using this notation, the concept of minmax-robust efficiency can be redefined as a con-

cept of robustness in the sense of set optimization in the following way.

Definition Given an uncertainmulti-objective optimization problem (P(U )), a solution
x ∈ X is called 	u

Q-robust for (P(U )) with Q = C, Q = C \ {} and Q = intC, respectively,

if there is no solution x ∈X \ {x} such that

fU (x)	
u
Q fU

(

x
)

.

Note that the definition of	u
Q-robustness is valid for general spaces and general conesC,

while the definition of minmax-robust efficiency in [] is for Y =Rk and C =Rk
≧ only.

The motivation behind this concept is the following: When comparing sets with the

u-type set-relation, the upper bounds of these sets, i.e., the ‘worst cases’, are considered.

Minimizing these worst cases is closely connected to the concept of minmax-robust ef-

ficiency where one wants to minimize the objective function in the worst case. This risk

averse approach would reflect a decision-makers strategy to hedge against a worst case

and is rather pessimistic.

Remark  The first scenario-based concept to uncertain multi-objective optimization,

or minmax-robustness adapted to multi-objective optimization, has been introduced by

Kuroiwa and Lee [] and studied in []. In [, ] robust solutions ofmulti-objective op-

timization problems are introduced in the following way. The authors propose to consider

the robust counterpart to (P(U ))

Min
(

f URC(X ),Rk
≥

)

, ()

where the objective vector for x ∈X is given by

f URC(x) :=

⎛

⎜

⎝

maxξ∈U f(x, ξ)

· · ·

maxξk∈Uk
fk(x, ξk)

⎞

⎟

⎠
, ()

with functionals fi : Rn × Ui → R for i = , . . . ,k and the convex and compact uncertainty

sets U := (U, . . . ,Uk) (Ui ⊆Rm, i = , . . . ,k). In [], solutions to () are called robust.
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Note that in [] the authors pointed out that this concept differs from the concept of

minmax-robust efficiency.

With the definition of 	u
C-robustness, we can generalize algorithms for computing

minmax-robust efficient solutions which is an extension of the well-known weighted sum

scalarization technique for calculating efficient solutions of multi-objective optimization

problems (compare e.g. Ehrgott []).

The general idea is to form a scalar optimization problem by multiplying each objective

function with a positive weight and summing up the weighted objectives. The resulting

(single-objective) problem in a more general setting is

(P(U )y∗ ) min
x∈X

sup
ξ∈U

y∗ ◦ f (x, ξ ),

where f : X × U → Y and y∗ ∈ C∗ \ {}, i.e., y∗ : Y →R.
Now, solving this problem one can obtain 	u

C-robust solutions as shown in Theorem

. in []. Before extending this theorem, we need a lemma which will help during the

proofs.

Lemma  Consider the uncertain multi-objective optimization problem (P(U )). Then we

have for all x′,x ∈X and for Q = intC (Q = C \ {}, Q = C, respectively),

fU
(

x′
)

⊆ fU (x) –Q⇐⇒ ∀ξ ∈ U ∃η ∈ U : f
(

x′, ξ
)

∈ f (x,η) –Q. ()

Proof ‘�⇒’: Suppose the contrary. Then

∃ξ ∈ U ∀η ∈ U : f
(

x′, ξ
)

/∈ f (x,η) –Q �⇒ ∃ξ ∈ U : f
(

x′, ξ
)

/∈ fU (x) –Q

�⇒ fU
(

x′
)

� fU (x) –Q.

‘⇐�’: Suppose the contrary. Then

∃ξ ∈ U : f
(

x′, ξ
)

/∈ fU (x) –Q �⇒ ∃ξ ∈ U ∀η ∈ U : f
(

x′, ξ
)

/∈ f (x,η) –Q. �

With this, we can extend Theorem . from [] in the following way.

Theorem  Consider an uncertain multi-objective optimization problem (P(U )). The fol-
lowing statements hold:

(a) If x ∈X is a unique optimal solution of (P(U )y∗ ) for some y∗ ∈ C∗ \ {}, then x is a

	u
C-robust solution for (P(U )).

(b) If x ∈X is an optimal solution of (P(U )y∗ ) for some y∗ ∈ C# and maxξ∈U y∗ ◦ f (x, ξ )

exists for all x ∈X , then x is a 	u
C\{}-robust solution for (P(U )).

(c) If x ∈X is an optimal solution of (P(U )y∗ ) for some y∗ ∈ C∗ \ {} and

maxξ∈U y∗ ◦ f (x, ξ ) exists for all x ∈X , then x is a 	u
intC-robust solution for (P(U )).

Proof Suppose that x is not 	u
Q-robust for Q = C, Q = (C \ {}), Q = intC, respectively.

Then there exists an element x ∈X \ {x} such that

fU (x)⊆ fU
(

x
)

–Q, ()
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for Q = C (Q = (C \ {}), Q = intC, respectively).

This implies

∀ξ ∈ U ∃η ∈ U : f (x, ξ ) ∈ f
(

x,η
)

–Q,

taking into account Lemma .

Choose now y∗ ∈ C∗ \ {} for Q = C (y∗ ∈ C# for Q = C \ {}, y∗ ∈ C∗ \ {} for Q = intC,

respectively) arbitrary but fixed.

�⇒ ∀ξ ∈ U ∃η ∈ U : y∗ ◦ f (x, ξ )≤ (<, <, respectively) y∗ ◦ f
(

x,η
)

�⇒ ∀ξ ∈ U : y∗ ◦ f (x, ξ ) ≤ (<, <, respectively) sup
η′∈U

y∗ ◦ f
(

x,η′
)

�⇒ sup
ξ ′∈U

y∗ ◦ f
(

x, ξ ′
)

≤ (<, <, respectively) sup
η′∈U

y∗ ◦ f
(

x,η′
)

.

The last inequalities hold because for (b) and (c) maxξ ′∈U y∗ ◦ f (x, ξ ′) exists. But this

means that x is not the unique optimal (an optimal, an optimal, respectively) solution of

(P(U )y∗ ) for y∗ ∈ C∗ \ {} (y∗ ∈ C#, y∗ ∈ C∗ \ {}, respectively). �

Remark  In Theorem (b) we consider y∗ ∈ C#. Under our assumptions concerning

the cone C and if we assume additionally Y = Rq we have C# �= ∅ (compare [, The-

orem ..], [, Example ..]). Moreover, if Y is a Hausdorff locally convex space,

C ⊂ Y is a proper convex cone and C has a base Bwith  /∈ clB, then C# �= ∅ (compare [,

Theorem ..]).

With this theorem we can now formulate a first algorithm for finding 	u
Q-robust solu-

tions for Q = C, Q = C \ {}, Q = intC, respectively.

Algorithm  Deriving (	u
C ,	

u
C\{},	

u
intC)-robust solutions to (P(U )) based on

weighted sum scalarization:

Input: Uncertain multi-objective problem P(U ), solution sets OptC = OptC\{} = OptintC =

∅.

Step : Choose a set C ⊂ C∗ \ {}.

Step : If C = ∅: STOP. Output: Set of 	u
C-robust solutions OptC , set of 	u

C\{}-robust

solutions OptC\{}, set of 	
u
intC-robust solutions OptintC .

Step : Choose y∗ ∈ C. Set C := C \ {y∗}.

Step : Find an optimal solution x of (P(U )y∗ ).
(a) If x is a unique optimal solution of (P(U )y∗ ), then x is 	u

C-robust for

(P(U )), thus

OptC := OptC ∪
{

x
}

.

(b) If maxξ∈U y∗ ◦ f (x, ξ ) exists for all x ∈X and y∗ ∈ C#, then x is

	u
C\{}-robust for (P(U )), thus

OptC\{} := OptC\{} ∪
{

x
}

.
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(c) If maxξ∈U y∗ ◦ f (x, ξ ) exists for all x ∈ X , then x is 	u
intC-robust for (P(U )),

thus

OptintC := OptintC ∪
{

x
}

.

Step : Go to Step .

Remark  In Step  of Algorithm  the scalar optimization problem (P(U )y∗ ) is to be

solved such that the effectiveness of Algorithm  depends from the properties of the algo-

rithm for solving (P(U )y∗ ). An interesting question is how to choose the set C in Step  of

the algorithm. The decision maker could be involved to choose a finite set C in Step . If

this set C is finite the algorithm stops after finitely many steps.

Furthermore, we present an interactive algorithm for finding (	u
C ,	

u
C\{},	

u
intC)-robust

solutions to the uncertain multi-objective optimization problem (P(U )). This algorithm
uses the input of the decision maker who either accepts the calculated solution or not.

Algorithm  Deriving a single accepted (	u
C ,	

u
C\{},	

u
intC)-robust solution to (P(U ))

based on weighted sum scalarization:

Input: Uncertain vector-valued problem (P(U )).
Step : Choose a nonempty set C ⊂ C∗ \ {}.

Step : Choose ȳ∗ ∈ C.

Step : Find an optimal solution x of (P(U )ȳ∗ ).
(a) If x is a unique optimal solution of (P(U )ȳ∗ ), then x is 	u

C-robust for (P(U )).
(b) If maxξ∈U ȳ∗ ◦ f (x, ξ ) exists for all x ∈ S and ȳ∗ ∈ C#, then x is 	u

C\{}-robust

for (P(U )).
(c) If maxξ∈U ȳ∗ ◦ f (x, ξ ) exists for all x ∈ S, then x is 	u

intC-robust for (P(U )).
If x is accepted by the decision-maker, then Stop. Output: x. Otherwise, go to

Step .

Step : Put k = , t = . Choose ŷ∗ ∈ C, ŷ∗ �= ȳ∗. Go to Step .

Step : Choose tk+ with tk < tk+ ≤  and compute an optimal solution xk+ of

(P(U )ȳ∗+tk+(ŷ∗–ȳ∗)) min
x∈S

sup
ξ∈U

(

ȳ∗ + tk+
(

ŷ∗ – ȳ∗
))

◦ f (x, ξ )

and use xk as starting point. If an optimal solution of (P(U )ȳ∗+tk+(ŷ∗–ȳ∗)) cannot be
found for t > tk , then go to Step . Otherwise, go to Step .

Step : The point xk+ is to be evaluated by the decision-maker. If it is accepted by the

decision-maker, then Stop.Output: xk+. Otherwise, go to Step .

Step : If tk+ = , then go to Step . Otherwise, set k = k +  and go to Step .

Remark  In the interactive procedure in Algorithm we use a surrogate one-parametric

optimization problem. So a systematic generation of solutions is possible.

3.2 �
l

C
-Robustness

In this section we use the l-type set-relation	l
Q like in Definition  withQ = C,Q = C \{}

and Q = intC, respectively, instead of 	l
C :

A	l
Q B :⇐⇒ A +Q ⊇ B,
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Figure 2 x is �
l

C
-robust.

where A,B ⊂ Y are arbitrarily chosen sets. If we are dealing with Q = intC we suppose

intC �= ∅. Using this notation we derive the new concept of 	l
Q-robustness, defined anal-

ogously to 	u
Q-robustness (Definition ).

Definition  Given an uncertainmulti-objective optimization problem (P(U )), a solution
x ∈X is called 	l

Q-robust if there is no x ∈X \ {x} such that

fU (x)	
l
Q fU

(

x
)

.

The 	l
Q-robustness (with Q = C, Q = C \ {} and Q = intC, respectively) can be inter-

preted as an optimistic approach. The following example illustrates this concept for the

case Q = C.

Remark  In Figure , x is 	l
C-robust, while it is not 	u

C-robust.

The 	l
Q-robustness is an alternative tool for the decision maker for obtaining solutions

of another type to an uncertain multi-objective optimization problem. This rather opti-

mistic approach focuses on the lower bound of a set fU (x̄) for the comparison with an-

other set fU (x). In particular, in the case Q = C, a point x ∈ X is called a 	l
C-solution

if there is no other point x̄ ∈ X such that fU (x) is a subset of fU (x̄) + C. Contrary to the

	u
Q-robustness approach, the 	l

Q-robustness (with Q = C, Q = C \ {} and Q = intC, re-

spectively) is hence not a worst-case concept, thus the decision maker is not considered

to be risk averse but risk affine. This optimistic concept thus hedges against perturbations

in the best-case scenarios.

For calculating 	l
Q-robust solutions again the weighted sum scalarization is helpful, but

in order to later on compute 	l
Q-robust solutions to (P(U )), we define a new weighted

sum problem in a general setting:

Let y∗ ∈ C∗ \ {} (y∗ ∈ C#, respectively). Consider the weighted sum scalarization prob-

lem

(P(U )opty∗ ) min
x∈X

inf
ξ∈U

y∗ ◦ f (x, ξ ).

Theorem  Consider an uncertain multi-objective optimization problem (P(U )). The fol-
lowing statements hold.

(a) If x is a unique optimal solution of (P(U )opty∗ ) for some y∗ ∈ C∗ \ {}, then x is a

	l
C-robust solution for (P(U )).

(b) If x is an optimal solution of (P(U )opty∗ ) for some y∗ ∈ C# and minξ∈U y∗ ◦ f (x, ξ )

exists for all x ∈X , then x is a 	l
C\{}-robust solution for (P(U )).

Relationship between Robustness and Set Valued Optimization
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(c) If x is an optimal solution of (P(U )opty∗ ) for some y∗ ∈ C∗ \ {} and minξ∈U y∗ ◦ f (x, ξ )

exists for all x ∈X , then x is a 	l
intC-robust solution for (P(U )).

Proof Suppose x is not 	l
Q-robust for Q = C (Q = C \ {}, Q = intC, respectively). Con-

sequently, there exists an x̄ ∈X \ {x} such that fU (x̄) +Q ⊇ fU (x) for Q = C (Q = C \ {},

Q = intC, respectively). That is equivalent to

∀ξ ∈ U ∃η ∈ U : f (x̄,η) +Q ∋ f
(

x, ξ
)

⇐⇒ ∀ξ ∈ U ∃η ∈ U : f (x̄,η) ∈ f
(

x, ξ
)

–Q. ()

Now choose y∗ ∈ C∗ \ {} for Q = C (y∗ ∈ C# for Q = C \ {}, y∗ ∈ C∗ \ {} for Q = intC,

respectively) arbitrary, but fixed. Hence, we obtain from ()

�⇒ ∀ξ ∈ U ∃η ∈ U : y∗ ◦ f (x,η) ≤ (<, <, respectively) y∗ ◦ f
(

x, ξ
)

�⇒ ∀ξ ∈ U : inf
η∈U

y∗ ◦ f (x,η) ≤ (<, <, respectively) y∗ ◦ f
(

x, ξ
)

�⇒ inf
η∈U

y∗ ◦ f (x,η) ≤ (<, <, respectively) inf
ξ∈U

y∗ ◦ f
(

x, ξ
)

,

in contradiction to the assumptions. �

Based on these results, we are able to present the following algorithm that computes

(	l
C /	l

C\{} /	l
intC)-robust solutions to P(U ).

Algorithm  Deriving (	l
C / 	l

C\{} / 	l
intC)-robust solutions for (P(U )) based on

weighted sum scalarization:

Input & Step -: Analogous to Algorithm , only replacing (P(U )y∗ ) by (P(U )opty∗ ) and

replacing maxξ∈U y∗ ◦ f (x, ξ ) by minξ∈U y∗ ◦ f (x, ξ ).

The next algorithm computes (	l
C / 	l

C\{} / 	l
intC)-robust solutions via weighted sum

scalarization by altering the weights:

Algorithm  Calculating a single desired (	l
C /	l

C\{} /	l
intC)-robust solution for (P(U ))

based on weighted sum scalarization:

Input & Step -: Analogous to Algorithm , only replacing (P(U )ȳ∗ ) by (P(U )optȳ∗ ),

maxξ∈U y∗ ◦ f (x, ξ ) by minξ∈U y∗ ◦ f (x, ξ ) and (P(U )ȳ∗+tk+(ŷ∗–ȳ∗)) by

(P(U )opt
ȳ∗+tk+(ŷ

∗–ȳ∗)
).

3.3 �
s

C
-Robustness

Now, we use the set less order relation 	s
Q with Q = C, Q = C \ {} and Q = intC, respec-

tively (compare Definition ) for A,B ⊂ Y arbitrarily chosen sets:

A	s
Q B :⇐⇒ A⊆ B –Q and A +Q ⊇ B.

If we are dealing with Q = intC we suppose intC �= ∅. We can now introduce the concept

of 	s
Q-robustness (with Q = C, Q = C \ {} and Q = intC, respectively):
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Figure 3 x is �
s

C
-robust.

Definition  A solution x of (P(U )) is called (	s
C / 	s

C\{} / 	s
intC)-robust if there is no

x̄ ∈X \ {x} such that

fU (x̄)	
s
Q fU

(

x
)

for Q = C (Q = C \ {}, Q = intC, respectively).

Remark  Figure  shows an element x ∈ X that is 	s
C-robust, while it is not 	u

intC-

robust.

Remark  Note that a 	l
C-robust solution is as well 	s

C-robust by definition. The same

assertion holds for a 	u
C-robust solution.

The concept of 	s
C-robustness can be interpreted in the following way: In a situation

where it is not clear if one should follow a risk affine or risk averse strategy (e.g., the de-

cision maker is not at hand or wants to get a feeling for the variety of the solutions) this

concept might be helpful as it calculates solutions which reflect these different strategies.

Therefore, this concept can serve as a pre-selection before deciding a definite strategy.

Computing 	s
C-robust solutions is possible with the help of the following optimization

problem:

(P(U )biobjy∗ ) h(x) :=

(

infξ∈U y∗ ◦ f (x, ξ )

supξ∈U y∗ ◦ f (x, ξ )

)

→ v – min
x∈X

with y∗ ∈ C∗ \ {} (y∗ ∈ C#, respectively). For (P(U )biobjy∗ ), we use the solution concept of

weak Pareto efficiency: An element x ∈X is called weakly Pareto efficient for (P(U )biobjy∗ ),

if

h(X )∩
(

h
(

x
)

– intR
≧

)

= ∅.

Furthermore, a point x ∈X is called strictly Pareto efficient for (P(U )biobjy∗ ), if

h
(

X \
{

x
})

∩
(

h
(

x
)

–R
≧

)

= ∅.

We prove the following theorem.

Theorem  Consider an uncertain multi-objective optimization problem (P(U )). The fol-
lowing statements hold.

Relationship between Robustness and Set Valued Optimization
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(a) If x is strictly Pareto efficient for problem (P(U )biobjy∗ ) for some y∗ ∈ C∗ \ {}, then x

is 	s
C-robust.

(b) If x is weakly Pareto efficient for problem (P(U )biobjy∗ ) for some y∗ ∈ C∗ \ {} and

minξ∈U y∗ ◦ f (x, ξ ) and maxξ∈U y∗ ◦ f (x, ξ ) exist for all x ∈X and the chosen weight

y∗ ∈ C∗ \ {}, then x is 	s
intC-robust.

(c) If x is weakly Pareto efficient for problem (P(U )biobjy∗ ) for some y∗ ∈ C# and

minξ∈U y∗ ◦ f (x, ξ ) and maxξ∈U y∗ ◦ f (x, ξ ) exist for all x ∈X and the chosen weight

y∗ ∈ C#, then x is 	s
C\{}-robust.

Proof Let x be strictly Pareto efficient (weakly Pareto efficient, weakly Pareto efficient)

for problem (P(U )biobjy∗ ) with some y∗ ∈ C∗ \ {} (y∗ ∈ C∗ \ {}, y∗ ∈ C#, respectively), i.e.,

there is no x̄ ∈X \ {x} such that

inf
ξ∈U

y∗ ◦ f (x, ξ ) ≤ (<, <, respectively) inf
ξ∈U

y∗ ◦ f
(

x, ξ
)

and

sup
ξ∈U

y∗ ◦ f (x, ξ ) ≤ (<, <, respectively) sup
ξ∈U

y∗ ◦ f
(

x, ξ
)

.

Now suppose x is not (	s
C /	s

intC /	s
C\{})-robust. Then there exists an x̄ ∈X \ {x} such

that

fU (x̄) +Q⊇ fU
(

x
)

and fU (x̄) ⊆ fU
(

x
)

–Q

for Q = C (Q = intC, Q = C \ {}). That implies

∃x̄ ∈X \
{

x
}

: ∀ξ, ξ ∈ U ∃η,η ∈ U : f (x̄,η) +Q ∋ f
(

x, ξ
)

and

f (x̄, ξ) ∈ f
(

x,η
)

–Q ()

for Q = C (Q = intC, Q = C \ {}). Choose now y∗ ∈ C∗ \ {} (y∗ ∈ C∗ \ {}, y∗ ∈ C#) as in

problem (P(U )biobjy∗ ). We obtain from ()

∃x̄ ∈X \
{

x
}

: ∀ξ, ξ ∈ U ∃η,η ∈ U : y∗ ◦ f (x,η) ≤ (<, <, respectively) y∗ ◦ f
(

x, ξ
)

and y∗ ◦ f (x, ξ) ≤ (<, <, respectively) y∗ ◦ f
(

x,η
)

⇒ inf
ξ∈U

y∗ ◦ f (x, ξ ) ≤ (<, <, respectively) inf
ξ∈U

y∗ ◦ f
(

x, ξ
)

and sup
ξ∈U

y∗ ◦ f (x, ξ )≤ (<, <, respectively) sup
ξ∈U

y∗ ◦ f
(

x, ξ
)

.

The last two strict inequalities hold because the minimum and maximum exist. But this

is a contradiction to the assumption. �

Based on these observations, we can formulate the following algorithm for computing

	s
C-robust solutions to P(U ).

Algorithm Computing (	s
C /	s

C\{} /	s
intC)-robust solutions using a family of problems

(P(U )biobjy∗ ):

Input & Step -: Analogous to Algorithm .

Step : Find a set of weakly Pareto efficient solutions SOLwe(y
∗) of (P(U )biobjy∗ ).
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Step : If SOLwe(y
∗) = ∅, then go to Step .

Step : Choose x̄ ∈ SOLwe(y
∗). Set SOLwe(y

∗) := SOLwe(y
∗) \ {x̄}.

(a) If x is a strictly Pareto efficient solution of (P(U )biobjy∗ ), then x is 	s
C-robust for

(P(U )), thus

OptC := OptC ∪{x}.

(b) If x is weakly Pareto efficient for problem (P(U )biobjy∗ ) and y∗ ∈ C# and

minξ∈U y∗ ◦ f (x, ξ ) and maxξ∈U y∗ ◦ f (x, ξ ) exist for all x ∈X and the chosen weight

y∗ ∈ C#, then x is 	s
C\{}-robust for (P(U )), thus

OptC\{} := OptC\{} ∪{x}.

(c) If x is a weakly Pareto efficient solution of (P(U )biobjy∗ ) and maxξ∈U y∗ ◦ f (x, ξ ) and

minξ∈U y∗ ◦ f (x, ξ ) exist for all x ∈X , then x is 	s
intC-robust for (P(U )), thus

OptintC := OptintC ∪{x}.

Step : Go to Step .

In the following we present an algorithm that computes	s
C-robust solutions while vary-

ing the weights in the vector of objectives of problem (P(U )biobjy∗ ).

Algorithm  Computing (	s
C / 	s

C\{} / 	s
intC)-robust solutions using a family of prob-

lems (P(U )biobjy∗ ):

Input & Step - & Step -: Analogous to Algorithm , only replacing (P(U )ȳ∗ ) by

(P(U )biobjȳ∗ ) and (P(U )ȳ∗+tk+(ŷ∗–ȳ∗)) by (P(U )biobj
ȳ∗+tk+(ŷ

∗–ȳ∗)
).

Step : Analogous to Step  of Algorithm .

3.4 Alternative set less ordered robustness

Another way of combining the u- and l-type set-relations is the alternative set less order

relation:

Definition  (Alternative set less order relation (compare Ide and Köbis [])) Let C ⊂

Y be a proper closed convex and pointed cone. Furthermore, let A,B ⊂ Y be arbitrarily

chosen sets. Then the alternative set less order relation is defined by

A	a
C B :⇐⇒ A	u

C B or A	l
C B.

Based on this definition we can now define the concept of 	a
C-robustness for general

cones:

Definition  A solution x of (P(U )) is called (	a
C / 	a

C\{} / 	a
intC)-robust if there is no

x̄ ∈X \ {x} such that

fU (x̄)	
a
Q fU

(

x
)

for Q = C (Q = C \ {}, Q = intC, respectively).

Relationship between Robustness and Set Valued Optimization
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Figure 4 Both x and x are �
a

C
-robust.

The following example illustrates 	a
C-robust solutions.

Remark  In Figure , both x and x are 	a
C-robust.

The next lemma follows directly from the definitions.

Lemma  Note that a solution of (P(U )) is 	a
C-robust if and only if it is 	l

C-robust and

	u
C-robust.

As this lemma shows, the concept of 	a
C-robustness is rather restrictive as only solu-

tions which are 	u
C-robust and 	l

C-robust, thus reflect both a risk averse and a risk affine

strategy, are also 	a
C-robust. Therefore, this concept is fit for a decision maker who does

not want to make any mistake in terms of the best or worst cases. We can see easily that

such an approach would be very restrictive against the solutions and that only very few

solutions should fulfill these conditions.

Due to this Lemma , from Algorithms  and , we can deduce the following algorithm

for calculating 	a
C-robust solutions to (P(U )).

Algorithm  Deriving (	a
C /	a

C\{} /	a
intC)-robust solutions to (P(U )):

Input: Uncertain multi-objective problem (P(U )), solution sets OptaC = OptaC\{} =

OptaintC = ∅.

Step : Compute a set of (	l
C /	l

intC /	l
C\{})-robust solutions (OptlC ,OptlintC ,OptlC\{}) us-

ing Algorithm  or .

Step : Compute a set of (	u
C /	u

intC /	u
C\{})-robust solutions (OptuC ,OptuintC ,OptuC\{}) us-

ing Algorithm  or .

Output: Set of (	a
C /	a

intC /	a
C\{})-robust solutions

OptaC = OptuC ∩OptlC ,

OptaintC = OptuintC ∩OptlintC ,

OptaC\{} = OptuC\{} ∩OptlC\{} .

3.5 Further relationships between the concepts

From Remark  we can see that every 	u
C-robust solution and every 	l

C-robust solution

is also a 	s
C-robust solution. The inverse direction does not hold. The following example

in Figure  shows that a solution can be 	s
C-robust but neither 	u

C-robust nor 	l
C-robust.
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Figure 5 x is �
s

C
-robust, but neither �

u

C
-robust nor

�
l

C
-robust.

Figure 6 Scheme of solutions to an uncertain multi-objective optimization problem.

We summarize the relationship between the various robustness concepts in Figure .

4 Conclusions

In the following we will explain that our algorithms presented in Section  can be used for

solving special classes of set-valued optimization problems.

Having a close look at all the concepts of robustness from Section , we can see that in

fact all of these are set-valued optimization problems.

Consider a set-valued optimization problem of the form

(SP –	) 	-minimize F(x), subject to x ∈X ,

with some given preorder 	 and a set-valued objective map F : X ⇒ Y , we can see the

following.

If the preorder 	 is given by 	l
C , 	

u
C , or 	s

C with some proper closed convex pointed

cone C ⊂ Y and F(x) can be parametrized by parameters ξ ∈ U with some set U in the

way that

F(x) := fU (x) for all x ∈X ,

where fU (x) = {f (x, ξ ) | ξ ∈ U} and f : X × U �→ Y , then the set-valued optimization prob-

lem (SP –	) is equivalent to finding 	-robust solutions to the uncertain multi-objective

problem (P(U )) and can therefore be solved by using one of the respective algorithms

presented in Section .
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We revealed strong connections between set-valued optimization and uncertain multi-

objective optimization. Furthermore, we derived our results in amore general setting than

in [] and []. In particular, we provided solution algorithms for a certain class of set-

valued optimization problems. It seems possible to extend this class of problems to amore

general one, but this is futurework and of interest for the next steps in this area of research.

Moreover, this paper makes very clear that finding robust solutions to uncertain multi-

objective optimization problems can be interpreted as an application of set-valued opti-

mization. Thus, robust solutions to uncertain multi-objective optimization problems can

be obtained by using the solution techniques from set-valued optimization. Formulating

concrete algorithms of this kind is another topic for future research.
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Abstract

In the veneer cutting industry trunks are peeled into thin veneer strips which are cut
into fitting pieces, glued together, and pressed into bentwood pieces for seats, backrests,
etc. In this work, a model for optimizing the inherent cutting problem with respect to
resource efficiency is presented. Especially the heterogeneous quality of the wood renders
existing models for classic cutting stock problems useless and calls for a new modeling
approach. By means of the model presented in this paper, the problem is solved to
optimality for real-world instances in reasonable time and generates applicable solutions.

Furthermore, in order to deal with uncertainties in the wood quality, the approach
of robust optimization is applied to the problem. Robust optimization is an important
tool to deal with uncertainties in the formulation of mathematical optimization models.
Different concepts of robustness have been provided in the literature, one of which is the
concept of minmax robust efficiency for uncertain multi-objective optimization problems.
The concept of minmax robust efficiency is applied to a simplified version of the problem,
robust efficient solutions are calculated, and the paper concludes with the discussion of
the benefit of these solutions.
Keywords: multi-objective optimization; robustness; uncertainty; application; modeling;
cutting stock; heterogeneous material

1 Introduction

The problem considered in this work is a real-world application from the veneer cutting
industry, which we were introduced to by Fritz Becker KG, a manufacturer of shaped wood
components from northern Germany, who also provided us with real-world data. In the
application problem, trunks are peeled into thin veneer strips which are cut into fitting
pieces, glued together and pressed into bentwood pieces for seats, backrests, armrests,
chair legs, etc. The production process of these veneers is to be optimized with respect
to a minimal wood offcut.
Currently, the production process is planned manually. On the one hand, this enables the
planner to utilize his experience and certain rules of thumb, especially with respect to the
wood quality, which is an important aspect of the problem. On the other hand, with an
increasing number of orders the problem becomes hardly comprehensible and understand-
able, and consequently, optimization tools have the potential to increase the quality of
the production process significantly, especially with respect to long term planning periods.

∗Corresponding author; Email address: m.tiedemann@math.uni-goettingen.de
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We develop a model for the problem at hand that both computes an optimal solution in
reasonable time and incorporates all restrictions and features of the production process.
In the second part of this paper, we have a closer look at the inherent uncertainties of the
problem attributable to the quality of the wood which can only be estimated beforehand.
In general, dealing with uncertainties in optimization problems is an important issue as
disturbances or fluctuations in the problem formulation might significantly change the
value of a former optimal solution as well as it may even become infeasible. With respect
to the considered problem, the quality of the used wood is subject to fluctuations and it is
only possible to determine the quality during the production process itself, which makes
it necessary to take these uncertainties into account already during the planning of the
production process.
Different approaches to deal with uncertain input data are commonly known through-
out the literature, such as stochastic optimization (for an overview see e.g. (Birge and
Louveaux 2011)). While stochastic optimization assumes some kind of probability distri-
bution for the realizations of the uncertain parameters, the problem at hand calls for a
different approach, namely robust optimization. The aim of robust optimization is to find
solutions which remain feasible and of good quality in all scenarios. A scenario in this
context is a realization of the uncertain input data.
For single-objective optimization problems several definitions of robustness, i.e., when a
solution is seen as robust against uncertainties, have been analyzed thoroughly. One of
these concepts is the concept of minmax robustness, introduced by Soyster (1973) and
extensively researched by Ben-Tal and Nemirovski (1998, 1999) and Ben-Tal et al. (2009).
Here, a solution is called robust if it is feasible for every scenario and minimizes the
objective function in the worst case. Very close to this concept is the concept of regret
robustness, suggested, e.g., by Kouvelis and Yu (1997), where the worst case regret is to
be minimized and the solution has to be feasible in every scenario. Both of these concepts
are quite strict with respect to the requirement that a solution has to be feasible in every
scenario. To loosen this strict requirement, several other concepts have been proposed,
such as the concept of light robustness (see, e.g., (Fischetti and Monaci 2009, Schöbel
2012)) or the concept of recovery robustness (see, e.g., (Erera et al. 2009, Goerigk and
Schöbel 2011, Liebchen et al. 2009)).
Since the manufacturer’s goal is to hedge against the worst case, we will follow the concept
of minmax robustness throughout the paper.
In applications of mathematical optimization and especially in the application presented
in this paper, there is often more than just one objective to consider. Therefore, we
have to deal with uncertain multi-objective optimization for which several definitions of
robustness have been presented in the literature, see for instance (Branke 1998, Deb and
Gupta 2006).
Since we would like to hedge against a worst case, we follow the concept of minmax robust
efficiency for multi-objective optimization problems. This concept is an extension of the
concept of minmax robustness for single-objective optimization problems and has been
presented by Ehrgott et al. (2013). Since in multi-objective optimization the term worst
case is not that clear, as there is no total order on Rk, the authors replace the worst case
with a multi-objective maximization problem and define a dominance relation between
the resulting efficient sets, namely a set dominates another if it is completely contained
in the other set minus the positive orthant of Rk.
The rest of this paper is organized as follows. In Section 2, the problem is presented
explicitly and classified with respect to cutting stock problems. Then, in Section 3, the
real-world cutting problem is modeled as a deterministic single-objective optimization
problem and in Section 3.4, instances with practical relevance are tested and the results
are presented.
Then, we apply the concept of minmax robust efficiency to the cutting problem. After
clarifying the notation for uncertain multi-objective optimization and recalling the con-
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cept of minmax robust efficiency in Section 4.1, we simplify the application problem in
Section 4.2 in order to be able to apply the concept of minmax robust efficiency properly
in Section 4.3. Finally, we discuss the value of the minmax robust efficient solutions in
practice and conclude the paper with pointing out difficulties in the problem formulations
and an outlook to future research.

2 The Cutting Problem

In the following, the cutting problem is described in more detail. The manufacturer
receives N orders {1, . . . , N} from different customers. Each order i is characterized by
length li, width wi, thickness ti, and quality qi of the requested veneer pieces. Length,
width, and thickness are given in millimeters, the quality ranges from very bad (quality
10) to very good (quality 1). For the quality, certain wood characteristics such as wood
color, vain or knotholes are taken into account. Furthermore, each order is specified by
the number of required pieces ni and a deadline di. The main goal of the manufacturer is
to find cutting patterns for each day that fulfill all orders with deadline at this day and
minimize the wood offcut. Further objectives are described in Section 3.2.
Consequently, we are dealing with a multi-objective optimization problem. The manufac-
turer provided preferences for the different objectives, from which we were able to deduce
reasonable weights. Therefore, we applied the concept of weighted-sum scalarization and
obtained a single-objective optimization problem as described in Section 3. In contrast,
in Section 4.2 a multi-objective simplified version of the cutting problem is considered.
For a better understanding of the problem and the notion of a cutting pattern, the pro-
duction process is described in the following. As a first step, depending on the orders,
the trunks are cut to lengths and the bark is removed. Subsequently, the trunk is peeled
into a thin veneer strip which is then cut down to the required veneer pieces. For a visu-
alization of the process see Figure 1. In this phase, only vertical cuts, i.e., in the width
dimension, can be made. Consequently, the length of the pieces cannot be changed. If
necessary, the length is manually cut to size in an additional working step. In order to
plan the production process, it has to be decided which trunk lengths are used and how
the veneer strips are cut down to pieces, both in the width and the length dimension.
Each length corresponds to a cutting scheme and due to certain characteristics of the
production process, the number of different cutting schemes per day is limited to Cmax.
Furthermore, there is a limit of Pmax on the amount of wood that can be processed at
each day.
The difficulty of the problem is further increased by the following two aspects. First of
all, the quality of the wood is uncertain.
Wood of European beech (bot. Fagus sylvatica) (which is commonly used by the man-
ufacturer) has several wooden characteristics which have to be taken into account when
producing rotary cut veneer. These characteristics have an influence on optical and me-
chanical properties like color and e.g. bending strength. In our case, the most important
wooden characteristics are heartwood and knottiness, which will be shortly explained in
the following.
Red heartwood labels the appearance of red colored wood in the center of the beech trunk.
Unlike other species, like oak, where all trees have heartwood, not all beech trees have a
heartwood area. If they do, this area is colored red to reddish-brown. Another difference
to, e.g., oak wood, is that heartwood of beech wood does not have other mechanical
properties like strength. There have been some investigations (see, e.g., (Ràcz 1961)) but
it cannot be said much about the likelihood of the appearance of heartwood in beech. It
can be said though that heartwood appears more often with increasing age and diameter
at breast height (DBH) (see (Lohmann 2003)).
Knottiness describes the frequency of occurrence of knots in round wood and timber.

Addendum E

158



Figure 1: The trunk is peeled into a thin veneer strip and cut into veneer pieces.
c©Fritz Becker KG

Apart from the frequency, form and type of knots is important. A forest tree can be
divided into three parts: the lower part of the tree which is more or less free of external
branches (ground trunk), the middle part with thick dead branches and branch stubs and
the top end of the trunk with living branches.
For the production of veneer mostly the ground trunk is used. Even though it is free
of external branches, it contains inner knots. During the growing of the tree it builds
branches which are dying and falling of very early. Knotless wood is then growing over
these branch stubs, so that the ground trunk wood is more or less free of knots except for
the inner part of it. The number and size of these knots cannot be estimated that easy
before cutting the tree. Beech trees though have so called “Chinese beards”, oval marks
on the bark, which allow making rough estimations about inner knots (see (Lohmann
2003)).
Due to these problems in determining the quality of the wood, the distribution of the dif-
ferent qualities can only be estimated and is therefore an uncertain parameter in the prob-
lem formulation. Different approaches to deal with uncertainties are conceivable, such as
stochastic optimization (see for example (Birge and Louveaux 2011)), robust optimization
(see for example (Ben-Tal et al. 2009)) or online optimization (see for example (Borodin
and El-Yaniv 1998)). In Section 3, the optimization of the real-world cutting problem has
priority and consequently, a probability distribution of the wood quality provided by the
manufacturer based on historical values is used to model the uncertainties. In Section 4,
the concept of robust optimization is chosen to be applied to a simplified version of the
problem, due to the requirements of the manufacturer. Furthermore, orders can always
be satisfied with veneer pieces of a higher quality than requested. Obviously, satisfying
requests with higher qualities than requested is a loss in profit for the manufacturer and
is therefore to be minimized.
Secondly, the manufacturer has the possibility to manually cut down the veneer pieces to
the appropriate size. For example, there is an order for 100 pieces of length 800 mm and
width 350 mm and another order for 200 pieces with length 300 mm and width 390 mm.
The manufacturer could schedule to cut 200 pieces of length 800 mm and width 390 mm,
and cut down the width from 390 mm to 300 mm for the first order and the length from
800 mm to two pieces with length 300 mm for the second order. Of course, the manual
cutting incurs additional working time, therefore the number of manually cut pieces is
limited for each day.
In Table 1, three exemplary orders and an appropriate cutting pattern are given. Note
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order cutting pattern
order li wi ti qi ni li wi ti qi ni

1 400 390 1.5 2 50 800 390 1.5 1,2 25
2 400 470 1.5 4 200 800 470 1.5 3,4 100
3 800 490 1.1 5 200 800 490 1.1 5 200

800 450 1.1 > 5 400

Table 1: Orders and Cutting Pattern for Length 800 mm

that, due to the distribution of the wood quality in the trunk, certain amounts of each
quality have to be used. Therefore, there is an additional line in the cutting pattern,
covering all qualities worse than five. Furthermore, qualities one and two are used for
order one, as well as qualities three and four are used for order two. Finally, orders one
and two are cut with length 800 mm and then manually cut down to 400 mm. Therefore,
only half the number of pieces of orders one and two is needed.
This example is supposed to give a brief glimpse of the planning problem of the manufac-
turer. The real-world problem is comprised of several hundreds of available orders with
up to 50 different lengths and widths, 4 thicknesses and 10 qualities.

2.1 Classification of the Cutting Problem

The problem presented in this work is basically a cutting stock problem. The ordered
veneer pieces (the small items) are characterized by length and width, leading to a two-
dimensional problem. Furthermore, all small items have to be assigned to a selection
of large objects, i.e., the tree trunks of different lengths. The thickness of the veneer
strip is also a characteristic of the large objects. Finally, there are several different large
objects and many small items of many different figures. Therefore, according to Dyckhoff’s
typology for cutting and packing problems (Dyckhoff 1990), the problem is classified
as 2/V/D/M. But, in addition, we have to deal with heterogeneous large items, i.e., each
large item consists of different qualities. Furthermore, deadlines add a temporal dimension
to the problem and certain production restrictions such as a limited production for each
day increase the difficulty of the problem.
According to the classification of cutting and packing problems by Wäscher et al. (2007)
we are faced with a two-dimensional input minimization problem where all small items
(strongly heterogeneous) have to be accommodated by several large objects for which
one dimension is considered as a variable, resulting in an open dimension problem. Es-
sentially, it is a two-dimensional strip packing problem. Still, we have to deal with the
aforementioned additional aspects of the problem, making it significantly more difficult.
To the best of our knowledge, the cutting problem as described above is not discussed
in the literature. The basic cutting stock problem on a strip, which is the core of our
problem, is for example considered by Benati (1997), Zhiping et al. (1997).

3 Modeling the Deterministic Cutting Problem

Consider N orders {1, . . . , N} characterized by length li, width wi, thickness ti, quality qi,
the number of required pieces ni, and a deadline di. Now, the goal is to determine cutting
patterns for the next nd days, starting from day d′, minimizing the wood offcut. We
assume that all orders i are due at day d′ or later, i.e., di ≥ d′. Furthermore, the deadline
of all orders with deadline later than day d′+nd will be set to day d′+nd. The primary
goal is to satisfy all orders i with deadline di < d′ + nd before their deadline. All other
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orders with deadline di = d′+nd can be used to minimize the wood offcut and to increase
the workload of the production.
The sets of all lengths L, widths W, thicknesses T , qualities Q, and relevant days D are
given by

L =

N⋃

i=1

li, W =

N⋃

i=1

wi, T =

N⋃

i=1

ti, Q =

N⋃

i=1

qi, and D =

N⋃

i=1

di.

Furthermore, the last day, i.e., d′+nd, is not to be planned, so we define the set of working
days Dw as Dw = D \

{
d′ + nd

}
.

3.1 Variables and Constraints

First of all, binary variables

zl,w,t,q,d1,d2 ∈ {0, 1} for all l ∈ L, w ∈ W, t ∈ T , q ∈ Q, d1, d2 ∈ Dw, d2 ≥ d1,

representing the fulfillment of orders are introduced. If zl,w,t,q,d1,d2 equals one, order i with
li = l, wi = w, ti = t, qi = q, di = d1 is accomplished on day d2. For d2 = d1, the order
is fulfilled before or at the deadline, for d2 > d1, the order is fulfilled after the deadline.
We require each order to be fulfilled at most once, i.e., for all l ∈ L, w ∈ W, t ∈ T , q ∈ Q
and d1 ∈ Dw we have

∑

d2≥d1
zl,w,t,q,d1,d2 ≤ 1. (1)

If an order is not accomplished at all or after its deadline, corresponding penalty terms
are added to the objective function as described in Section 3.2. It is chosen to model
the fulfillment of orders as soft constraints in order to be able to optimize sets of orders
that are not all compliable within their deadlines simply due to the limited production
capacity.
Further, we introduce variables

xl,w,t,q,d ∈ N for all l ∈ L, w ∈ W, t ∈ T , q ∈ Q, d ∈ Dw,

representing the number of new veneer pieces with length l, width w, thickness t, and
quality q produced on day d without an additional manual cutting step.
For the modeling of the variables xl,w,t,q,d, the quality distribution of the wood is required.
Denote by pl,q,t the probability of quality q with respect to length l and thickness t. Note
that the distribution depends on the length and the thickness. The manufacturer provided
us with the necessary estimates for the distributions. Now, we introduce the variables

yl,t,d ∈ R for all l ∈ L, t ∈ T , d ∈ Dw,

representing the total width cut from length l with thickness t on day d and model the
new pieces xl,w,t,q,d by

∑

w∈W
w · xl,w,t,q,d ≤ yl,t,d · pl,q,t. (2)

The new pieces xl,w,t,q,d are either correctly sized and in the right quality or will manually
be cut down or used for an order with lower quality, respectively. In order to model this
situation, we introduce transformation variables

τ l
2,q2

l1,q1,w,t,d ∈ R for all l1, l2 ∈ L, q1, q2 ∈ Q, w ∈ W, t ∈ T , d ∈ Dw, l1 ≥ l2, q1 ≤ q2,
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for the number of pieces that are manually cut down from length l1 to length l2 with l2 ≤ l1
or used for a request of lower quality, i.e., q1 ≤ q2. The high number of transfer variables is
discussed in Section 3.3.1. On the first day d′, the newly cut pieces xl,w,t,q,d are distributed
among all possible transfer variables, i.e., for all l1 ∈ L, w ∈ W, t ∈ T and q1 ∈ Q, we
have

∑

l2∈L,q2∈Q
τ l

2,q2

l1,q1,w,t,d′ = xl1,w,t,q1,d′ . (3)

Imagine stacks for each configuration (length, width, thickness, quality) from which the
orders have to be satisfied. The stacks change over time, since new pieces are produced and
added to the corresponding stack and some pieces are manually cut down and therefore
change their stack (see also Figure 2). The transfer variables model this stack-transfer-
concept which is the basis for a compact model for our complex problem.

days configurations (l, w, t, q) new pieces

1

2

...

d′ + nd

xl,w,t,q,1

xl,w,t,q,2

...

xl,w,t,q,d′+nd

· · ·

· · ·

τ l,ql,q,w,t,1

τ l
3,q3

l1,q1,w,t,1
τ l

3,q3

l2,q2,w,t,1

Figure 2: Stack-Transfer-Concept

On the following days, the stack for a certain configuration (the left hand side of Con-
straints (4)) is composed of the stack for that configuration of the previous day and the
newly produced pieces for that configuration reduced by the satisfied orders (the right
hand side of Constraints (4)), i.e., for all l1 ∈ L, w ∈ W, t ∈ T and q1 ∈ Q, we have

∑

l2∈L,q2∈Q
τ l

2,q2

l1,q1,w,t,d =
∑

l2∈L,q2∈Q
τ l

1,q1

l2,q2,w,t,d−1 ·
⌊
l2

l1

⌋
−
∑

i∈I
ni · zl,w,s,q,di,d−1 + xl,w,t,q,d,

(4)

where

I = {i ∈ {1, . . . , N} | li = l, wi = w, ti = t, qi = q, di < d− 1} .

On the last production day, i.e., d′+nd−1, we have to make sure that all produced pieces
can be assigned to any of the regular orders or orders with deadlines set to d′ + nd:

∑

l2∈L,q2∈Q
τ l

1,q1

l2,q2,w,t,d′+nd−1 ·
⌊
l2

l1

⌋
−
∑

i∈I
ni · zl,w,s,q,di,d′+nd−1 ≤ ni + ol,w,t,q, (5)

where the variable ol,w,t,q ∈ R for all l ∈ L, w ∈ W, t ∈ T , q ∈ Q, represents the
overproduction of the configuration (l, w, t, q). This variable is needed for the penalization
of the overproduction in the objective function, see Section 3.2.
Finally, we make sure that all orders are fulfilled by means of the binary variables zl,w,t,q,d1,d2 .
The stack for a certain configuration on some day d2 has to be large enough in order to
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fulfill the order for that configuration, otherwise the variable zl,w,t,q,d1,d2 has to be set to
zero:

∑

l2∈L,q2∈Q
τ l

1,q1

l2,q2,w,t,d ·
⌊
l2

l1

⌋
≥
∑

i∈I
ni · zl,w,s,q,di,d. (6)

If zl,w,t,q,d1,d2 is set to zero, a penalty is included in the objective function, see Section 3.2.
Furthermore, certain restrictions with respect to the production capacity have to be con-
sidered. On each day, at most Pmax cubic meters may be processed and the manu-
facturer aims for a production at full capacity. Consequently, we introduce the vari-
able gd ∈ R for all d ∈ Dw for the gap between the actual production and the capacity
and have, for all d ∈ Dw,

gd +
∑

l∈L,t∈T
yl,t,d · l · t = Pmax. (7)

In order to ensure a minimal production Pmin at each day, we have, for all d ∈ Dw,

gd ≤ Pmax − Pmin. (8)

Additionally, on each day d ∈ Dw the number of used lengths, i.e., the number of cutting
patterns, is limited by Cmax. In order to model this situation, we introduce binary vari-
ables cl,d ∈ {0, 1} for all l ∈ L, d ∈ Dw, taking value one if length l is cut on day d, and
zero otherwise. For all l ∈ L, d ∈ Dw, we model cl,d by

∑

t∈T
yl,t,d ≤ cl,d ·M, (9)

where M is given by M = Pmax/
(
min
l∈L

l·min
t∈T

t

)
, i.e., the maximum width cut for length l, and

restrict the number of cutting patterns for each day d ∈ Dw by

∑

l∈L
cl,d ≤ Cmax. (10)

It remains to bound the number of manually cut down pieces by Tmax in order to comply
with the production capacity. We therefore define

L̃ :=
{(
l1 ∈ L, w ∈ W, t ∈ T , q1 ∈ Q, l2 ∈ L, q2 ∈ Q

)
| l1 6= l2

}
.

Then, for all d ∈ Dw, we require

∑

L̃

(
τ l

2,q2

l1,w,t,q1,d ·
⌈
l1

l2

⌉
− 1

)
≤ Tmax. (11)

By the constraints described in this section the main aspects of the cutting problem are
modeled. Note that the real-world problem is complicated by even more conditions, such
as the integration of a warehouse that allows to cut beyond the number of ordered pieces,
or the requirement of a minimum length in the first cutting phase, such that certain
orders have to be cut down manually. But these additional conditions would exceed
the limitations of this work. However, the computational results in Section 3.4 are with
respect to the full real-world problem.
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3.2 Objectives

The objective for the model is comprised of several aspects such as the minimization of
the wood offcut denoted by c1, delayed or unfulfilled orders denoted by c2, the use of
high quality pieces for lower quality orders denoted by c3, and the number of manually
cut down pieces denoted by c4. In the following, these four aspects are described in more
detail. First of all, the wood offcut is to be minimized. The total wood offcut c1 is given
by the total amount of processed wood minus the fulfilled orders given by

∑

l,t,d

yl,t,d · l · s−
∑

i∈{1,...,N}
s.t. di∈Dw


ni · l · w · t ·

∑

d2≥di
zl,w,t,q,di,d2


 ,

minus the veneer pieces that are cut at the last production day for orders with deadline d′+
nd given by

∑

l1,w,t,q1


∑

l2,q2

(
τ l

1,q1

l2,w,t,q2,d′+nd−1 ·
⌊
l2

l1

⌋)
−
∑

i∈I1
ni · zl1,w,t,q1,di,d′+nd−1


 · l · w · t,

where

I1 = {i ∈ {1, . . . , N} | li = l1, wi = w, ti = t,

qi = q1, di ≤ d′ + nd − 1},

plus the total overproduction given by
∑

l,w,t,q

ol,w,t,q · l · w · s.

Secondly, we want to minimize delayed or unfulfilled orders c2. A delayed order is penal-
ized proportional to the number of days the order is late, and if the order is not fulfilled
at all during the planned period, the penalty is nd + 1. Thus, c2 is given by

c2 =
∑

i∈{1,...,N}
s.t. di∈Dw



∑

d2>di

((
d2 − di

)
· zl,w,t,q,di,d2

)
+
(
nd + 1

)
·


1−

∑

d2∈Dw

s.t. d2≥di

zl,w,t,q,di,d2





 .

Thirdly, we want to minimize the use of high quality pieces for lower quality orders c3,
which is given by summing up the corresponding transfer variables,

c3 =
∑

l1,l2,q1,q2,w,t,d:
q1<q2 ∧ l1≥l2

τ l
2,q2

l1,q1,w,t,d · l2 ·
⌊
l1

l2

⌋
· w · s · p̂(q1, q2),

where p̂(q1, q2) is a fixed penalty for using wood of quality q1 for an order of quality q2.
Note that c3 is given in cubic meters in order to interrelate this part of the objective
function with part c1.
Finally, the number of manually cut down pieces is also given by summing up the corre-
sponding transfer variables,

c4 =
∑

l1,l2,q1,q2,d,w,t:
l1 6=l2

(
τ l

2,q2

l1,q1,w,t,d ·
(⌈

l1

l2

⌉
− 1

))
.
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The objective function is then given by

min

4∑

i=1

ωi · ci,

where the weighs ωi, i = 1, . . . , 4 are chosen with respect to the preferences of the man-
ufacturer. In interaction with Constraints (1)-(11), the mixed integer programming for-
mulation for the cutting problem described in this paper is given.

3.3 Computational Speedup

The model achieves to comprise all information of the real-world application with the aim
of finding an optimal solution, instead of an approximate or heuristic approach. On the
downside, this leads to a very large model with respect to the total number of variables
for instances of realistic size. Therefore, in this section two approaches to increasing the
computational speed are presented.

3.3.1 Transfer Variables.

The transfer variables as introduced in Section 3.1 are indexed over

L × L×Q×Q×W × T ×Dw

and, consequently, the high dimensionality of the transfer variables inflates the model
size and leads to high computation times. In the following, an approach to reducing the
dimensonality of the transfer variables is presented.
There are combinations of length, width, thickness, and quality that are not reasonable
for the application presented in this paper. This simple observation reduces the num-
ber of transfer variables dramatically. Actually, only the combinations of length, width,
thickness, and quality that appear in the original orders {1, . . . , N} are reasonable for
potential stacks.
Thus, if we only define transfer variables for the transformation from any combina-
tion of length, width, thickness and quality to actually available stacks, the number of
transfer variables is reduced. For instance, a generic instance provided by the manu-
facture involves 47 lengths, 37 widths, 4 thicknesses, and 9 qualities, initially leading
to 472 · 92 · 37 · 4 · 6 = 158 888 952 transfer variables for 6 days. By means of the def-
inition of transfer variables only for available stacks and the additional limitations of
downward compatibility of qualities and reasonable transformation of lengths, the num-
ber of transfer variables is decreased to 278 568, which corresponds to a reduction factor
of approximately 1 000. More precisely, we have

τ l
2,q2

l1,q1,w,t,d ∈ R for all l1 ∈ L, q1 ∈ Q, w ∈ W, t ∈ T , d ∈ Dw, l1 ≥ l2, q1 ≤ q2

and (l2, w, t, q2) ∈ S,

where S is the set of all stacks, i.e., the combinations of length, width, thickness, and
quality derived from the orders {1, . . . , N}.
Without this reduction the model was not solvable in reasonable time. In fact, the gen-
eration of the model itself overloaded the working memory due to the immense number
of variables. Consequently, for the presentation of results in Section 3.4, the reduction of
transfer variables presented in this section is taken into account.
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3.3.2 Preprocessing.

In order to further reduce the number of variables, we have a closer look at the lengths.
First of all, there is a minimal length that can be processed by the veneer peeling machine.
Therefore, all orders with lengths smaller than this minimal length have to be cut down
manually, and the variables y, x, and c are only defined for lengths greater or equal to
the minimal length.
The lengths for which the variables y, x, and c are defined can be decreased further by
applying a preprocessing step. In the following, an approximate model for the cutting
problem which can be solved in much shorter time is presented. This model comprises
the main requirements of the cutting problem, but is only an approximation to the exact
model. By solving this model, a set of reasonable lengths to be cut can be obtained
in short time which serves as an input for the exact model. The exact model is then
solved with the restricted set of lengths, leading on the one hand to a smaller model size
and therefore hopefully to a shorter computation time, on the other hand to a heuristic
solution which can be worse than the exact solution.
Consider variables x̃i,d,l ∈ R for all i ∈ {1, . . . , N}, d ∈ D, l ∈ L modeling the width in
meters cut from length l on day d for order i. In order to ensure the fulfillment of all
orders we then have, for all i ∈ {1, . . . , N},

∑

d∈D,l∈L

⌊
l

li

⌋
li · x̃i,d,l · ti = ni · li · wi · ti − w̃i,

where w̃i ∈ R gives the unfulfilled amount of wood in cubic meters for order i.
In order to ensure that the quality requirements for each order can be satisfied, we have,
for all d ∈ D, l ∈ L, t ∈ T , q1 ∈ Q,

∑

i∈I
x̃i,d,l ≤

∑

q2∈Q|q2≤q1
pl,q2,t · ỹd,l,t

where I = {i ∈ {1, . . . , N}|ti = t, qi >= q} and ỹd,l,t ∈ R models the total width cut
from length l and thickness t on day t.
Furthermore, we define the variables z̃d ∈ R for all d ∈ D by

∑

l∈L,t∈T
ỹd,l,t · l · t = z̃t,

modeling the total amount of cut wood in cubic meter on each day. The amount of cut
wood on day d that is actually used for the orders is given by ṽd ∈ R, i.e.,

∑

i∈{1,...,N},
l∈L

⌊
l

li

⌋
li · x̃i,d,l · ti = ṽd.

By means of the variables z̃, the maximal production for each day can be restricted, and,
with the help of additional binary variables for each length, also the number of cut lengths
for each day can be limited.
The objective is to minimize the wood offcut and the unfulfilled orders, which is given by

min ω1

∑

d∈D
ṽt − ω2

∑

d∈D
(z̃t − ṽt)− ω3

∑

i∈{1,...,N}
w̃i,

where the weights ω1, ω2, and ω3 are chosen with respect to the preferences of the man-
ufacturer.
For the instances provided by the manufacturer, the preprocessing model described above
is solved within a hundredth of the time needed for solving the exact model. When
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applying this preprocessing to the exact model, a computational speedup of 10% to 50%
is achieved. On the downside, in comparison to solving the exact model with all lengths,
the objective is decreased by 10% to 30%. Therefore, the preprocessing presented in this
section is not taken into account for the results given in Section 3.4. However, this model
is well-suited for obtaining approximate solutions in very short time.

3.4 Computational Results

The model for the cutting problem presented in Section 3 is implemented with FICO
Xpress Mosel Version 3.4.0 and solved with the FICO Express Optimizer Version 23.01.05.
The model is tested on real-world instances and all computations were performed on a
PC with an Intel Core i3-2350M 2.30GHz, 6.00 GB RAM. For example, a generic instance
consists of 466 orders leading to 47 lengths, 37 widths, 4 thicknesses, and 9 qualities. For
a single day, the model was solved to optimality in 146 seconds. Note that in the case
of a single day still all available orders are considered, but only for the first day cutting
patterns are generated. For two days, the model is solved to optimality in 314 seconds
and for three days in 635 seconds. In practice it is not reasonable to plan ahead more than
at most three days, due to eventually necessary adjustments caused by the uncertainty in
the wood quality. However, for 6 days the model is solved to optimality in 4881 seconds.
The optimization model fulfills all production requirements and is still able to puzzle
cutting patterns together that consider orders from the whole order set. This leads to an
improvement over the manual planning for which the set of considered orders is limited
to a certain extend. Due to a lack of data, a direct comparison of generated solutions to
the manual process is not possible. Still, the generated solutions feature approximately
10 % wood offcut, whereas, according to the manufacturer, the manual production process
exhibits about 20 % wood offcut.

4 Robust Cutting Patterns

As mentioned in Section 2, the difficulty in formulating the cutting problem in a determin-
istic way is that it is not known at the time of calculating the pattern, how the qualities are
distributed in the used wood. Therefore, it is not possible to know how bad a calculated
pattern becomes if the quality distribution of the wood differs from the expected quality
distribution. In order to handle these uncertainties we now apply the concept of robust
optimization to the cutting problem. Since, in fact, the problem is a multi-objective one,
which for computational purposes we modeled as a single-objective one, we will use multi-
objective robust optimization, namely the concept of minmax robust efficiency hedging
against the set of worst cases, introduced by Ehrgott et al. (2013). To this end, we first
introduce the general idea of an uncertain multi-objective optimization problem, then the
concept of minmax robust efficiency, and finally apply this concept to a simplified version
of the cutting problem.

4.1 Uncertain Multi-Objective Optimization

First of all, we need to define an uncertain multi-objective optimization problem. Here,
our assumption is that the uncertain data contaminating the problem structure is given
by an uncertainty set U ∈ Rm, thus a set of scenarios ξ ∈ U representing the various
possible realizations of the uncertain data. The definition of this uncertainty set U is a
crucial step in formulating the model as we will see in Section 4.2.
Now, for every possible realization of the uncertain parameters, we obtain a single (de-
terministic) multi-objective optimization problem P(ξ), ξ ∈ U , which we denote in the
following way:
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Notation 4.1. Given a set of feasible solutions X ∈ Rn, a vector-valued objective function
f : X × U 7→ Rk, an uncertainty set U , and a scenario ξ ∈ U , we denote the multi-
objective optimization problem of minimizing f(x, ξ) over X by

P(ξ) min f(x, ξ)

s.t. x ∈ X .

Note that, due to the lack of a total order on Rk, the minimization of a vector-valued
objective function is dependent on the definition of dominance. In this paper we stick
to the definition which goes back to Pareto (1909) and has been extensively studied
throughout the literature. For an overview see (Ehrgott 2005). Here a solution x ∈ X
is said to be efficient if there does not exist an x ∈ X such that f(x) is at least as good
as f(x) in every component and better in at least one component.
The solution to a multi-objective minimization problem is the so-called Pareto-Front, i.e.,
the set of all efficient solutions.
With Notation 4.1 we can now define an uncertain multi-objective optimization prob-
lem P(U):

Definition 4.2 (Uncertain multi-objective optimization problem). Given a set of feasible
solutions X ∈ Rn, a vector-valued objective function f : X × U 7→ Rk, and an uncertainty
set U , an uncertain multi-objective optimization problem P(U) is defined as the
family of multi-objective optimization problems (P(ξ), ξ ∈ U).

Since it is not clear, when to call a solution to the family P(U) of optimization problems
a “desired” solution, we need an interpretation of a “desired” solution. As mentioned
before, we follow the concept of minmax robust efficiency.
The concept of minmax robust efficiency we use throughout the paper is an extension of
the concept of minmax robustness, originally introduced by Soyster (1973) and extensively
studied by Ben-Tal et al. (2009). This concept was originally designed for single-objective
functions and follows the general idea that a solution is robust, if it is feasible in every
scenario and minimizes the worst case of the objective value under all scenarios. It has
later been extended to multi-objective optimization problems by Ehrgott et al. (2013).
Here, the following definition is presented:

Definition 4.3 (Minmax Robust Efficiency). Given an uncertain multi-objective opti-
mization problem P(U), for every x ∈ X we define fU (x) := {f(x, ξ) : ξ ∈ U}. A solution
x ∈ X is called minmax robust efficient if there is no x ∈ X such that

fU (x) ⊆ fU (x)− Rk≥.

Here Rk≥ is the (closed) positive orthant of Rk, without the 0.

The intuition behind this concept is the following: The worst case of a single-objective
optimization problem is in fact a maximization problem of its own (for a fixed feasible
solution over the uncertainty set). Therefore, for an uncertain multi-objective problem,
this “worst case” becomes a multi-objective maximization problem. This would yield a
set of efficient solutions for this maximization problem and now, minmax robust efficiency
calls a solution “robust” if its set of worst cases (i.e., the efficient solutions of the multi-
objective maximization problem over U) is not dominated by the set of worst cases of
another solution. This is formally described by Definition 4.3.
Several algorithms for calculating minmax robust efficient solutions have been provided
by Ehrgott et al. (2013). We will use some of them later on for obtaining the computational
results.
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4.2 Formulating a Multi-Objective Simplified Version of the Cut-
ting Problem

In order to obtain computational results in reasonable time, we first simplify the deter-
ministic formulation of the cutting problem. Furthermore, we design new (also simpler)
objective functions in order to obtain a multi-objective optimization problem. This is
motivated by the nature of the application problem, which is in fact a multi-objective
one. We did not use the multi-objective approach before, because the manufacturer had
specific ideas about the weighting of the different objective functions, but for research
purposes, a more general approach is of greater value.

4.2.1 Simplified Problem Description.

The simplified problem can be stated as follows:
Let orders 1, . . . , N be given, each defined by length li, quality qi and number of items ni.
For simplification of the program width and thickness of the items are considered stan-
dardized. For instance an order i could be 400 items of length 960 mm in quality 4 (the
qualities are given in classes from 1 to 10, 1 being the best quality). The veneer cutting
machine strips the wood directly from the tree trunk which has been sized beforehand to
a certain length.
Now, the output of the optimization program is a composition of orders into sched-
ules which the machine can use later on. A schedule is defined by a length l ∈ L :=
∪i∈{1,...,N}li, and a set of orders I with li ≤ l for all i ∈ I. The cutting machine then
will peel veneer strips from the tree trunks until the schedule is finished and every order
is satisfied. During the cutting process it can determine the quality of the veneer strip
and accordingly satisfy the different orders.
Thus, the machine “sees” the whole veneer strip, determines the quality distribution in
the veneer strip and partitions the strip into the different orders. Even though a (very
good) heuristic is used in practice for the last step, we assume the machine to solve this
partition problem optimally.
Briefly said, the process is the following: A schedule is prepared, the machine uncovers
the quality distribution of the veneer strip, chooses the length of the tree trunk and the
width of the veneer strip and partitions this strip into pieces which are automatically
assigned to the orders. All wood which is not used to satisfy an order will count as wood
offcut and will therefore contribute a penalty to the objective function. Furthermore, the
wood of high quality (i.e., qualities 1, 2, and 3) which is not used to satisfy a demand
of high quality will give a penalty on the second objective function as this wood is very
valuable and should not be “wasted”.

4.2.2 Simplified Deterministic Formulation.

The problem can be formulated in the following way:

Input: A set of orders I = {1, . . . , N}, every order i with length li, quality qi, and

number of items ni, L := ∪i∈I li, Q := ∪i∈Iqi, and a distribution p ∈ R10×|L|
≥0 of the

qualities in the veneer strip of length l (
∑10
q=1 pq,l = 1 for every l ∈ L).

Decision variables: x ∈ Z|I|×|L|, where xi,l indicates, how many pieces of order i are
satisfied by the schedule of length l.

c ∈ B|L|, where cl indicates, whether there is a schedule of length l or not.

Objective functions: In order to follow the formulation of the objective functions, note
that the length of the veneer strip the machine will later on produce in order to
satisfy the orders assigned to the current schedule can be modeled with an additional

Application of Robust Optimization in the Wood Cutting Industry

169



decision variable w ∈ R|L|, where wl indicates the width of the veneer strip cut in
schedule l (measured in standard units which is the width of one veneer). With the
additional constraints

∑

i∈I:qi≤q
xi,l ≤ wl ·

∑

q′∈Q:q′≤q
pq′,l for all q ∈ Q, l ∈ L,

wl would be modeled correctly. With this formulation it is clear that

wl = max
q∈Q

( ∑
i∈I:qi≤q xi,l∑
q′∈Q:q′≤q pq′,l

)
,

for all l ∈ L. In order to make it more clear that the uncertainty only lies in the
objective functions we use the latter equivalent formulation.

Minimize wood offcut:

f1(x, p) :=
∑

l∈L
l ·max

q∈Q

( ∑
i∈I:qi≤q xi,l∑
q′∈Q:q′≤q pq′,l

)
−
∑

i∈I
li · ni

The wood offcut of the program can be determined by the length of the veneer strip
the machine has to peel from the tree in order to get enough wood to satisfy the
orders assigned to the current schedule minus all produced veneers.

Minimize lost high quality wood:

f2(x, p) :=
∑

l∈L


l ·max

q∈Q

( ∑
i∈I:qi≤q xi,l∑
q′∈Q:q′≤q pq′,l

)
·
∑

q∈{1,2,3}
pq,l


−

∑

i∈I:qi≤3
li · ni

Qualities 1, 2, and 3 are of high value and should not be wasted or used to satisfy
orders of lower quality.

Now the composed objective function is

min

(
f1(x, p)
f2(x, p)

)
.

Note that here p is an input parameter and therefore constant.

Constraints: The following constraints have to be met:
∑

l∈L
xi,l = ni for all i ∈ I (12)

xi,l = 0 for all i ∈ I, l < li (13)
∑

l∈L
cl ≤ 2 (14)

∑

i∈I
xi,l ≤ cl ·

∑

i∈I
ni for all l ∈ L (15)

xi,l ∈ Z≥0 (16)

cl ∈ B (17)

Constraints (12) mean that all items are produced (where it is possible to cut a
veneer from a higher length down to a smaller length). Constraints (13) mean
that produced veneers can only be used on orders, where the length is at most the
one produced. Constraint (14) limits the number of total schedules. This number
is usually limited since changing the cutting length of the machine is very time
consuming. Constraints (15) - (17) define the decision space of the variables.
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4.3 Minmax Robust Efficiency Applied to the Optimiziation Model

Now, after formulating the simplified deterministic optimization problem we apply the
concept of minmax robust efficiency. Obviously, to do so, we first need to determine the
uncertain parameters in the formulation.

4.3.1 Uncertainties in Formulating the Problem.

The uncertainties in the problem formulation are due to fluctuations of the qualities of
the used wood. As the machine only uncovers the true quality of the veneer strip at the
moment of production, this quality distribution is unknown at the moment of creating
the schedules. We now consider the distribution of the qualities to be uncertain, i.e., we
work with an uncertainty set Up consisting of different scenarios of distribution. With this
uncertainty set we formulate the minmax robust version of the deterministic formulation
of the simplified problem given in Section 4.2.2.

4.3.2 Formulating the Robust Version of the Problem

Formulating the robust version of our problem from Section 4.2.2 now is fairly simple:

Input: Instead of a single distribution p the input is the whole uncertainty set Up. The
rest of the input remains unchanged.

Decision variables: remain unchanged.

Objective functions: We re-formulate the objective function as proposed by Ehrgott
et al. (2013) in the following way:

min max
p∈U

(
f1(x, p)
f2(x, p)

)

Constraints: All constraints remain unchanged since they are not affected by the un-
certain parameters.

Note that the solutions to this problem we want to obtain are the minmax robust efficient
solutions as presented in Section 4.1. To this end, in Section 4.3.4, we use the calculation
techniques proposed by Ehrgott et al. (2013).

4.3.3 Modeling the Uncertainty Set.

Modeling the uncertainty set is a crucial point in the formulation of the uncertain multi-
objective optimization problem. As the concept of minmax robust efficiency only considers
solutions which are feasible in every scenario, the different scenarios have a high impact
on the feasible set of the robust version and therefore on the minmax robust efficient
solutions. For instance, if one would assume that there is a scenario where a veneer strip
only consists of qualities worse than or equal to 3, there would not be any feasible solution
to the robust version at all if there is an order of quality 1 or 2.
But even though the set of feasible solutions to the robust version is not empty, with too
strict uncertainty sets the robust version can become arbitrarily bad. Thus, the modeling
of the uncertainty set has to be done carefully.
The uncertainty set we use was developed together with the practice partner that provided
the application problem using experience values of quality distributions. The description
of the uncertainty set itself would exceed the limitations of this paper, therefore, we give
a rough idea of how the quality distributions look like in Figure 3. Here, the quality
distribution for length 390 mm is given, meaning that e.g. in Scenario 1 20 % of the
veneer strip will be of quality 5.
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Figure 3: Quality distributions for length 390 mm

4.3.4 Computational Results.

Calculating minmax robust efficient solution is done using the weighted-sum scalarization
method presented by Ehrgott et al. (2013). Here, both objective functions are weighted
with a scalar λ ∈ R2

+ and added, and the worst-case of this sum is to be minimized:

min max
p∈U

(λ1 · f1(x, p) + λ2 · f2(x, p)) , (WS(λ))

such that x satisfies Constraints (12) - (17) from Section 4.2.2. This will yield minmax
robust efficient solutions as presented in Section 4.1. We compare the results in the
following way:
For different weights λ ∈ R2

+ we calculate a minmax robust efficient solution xrobλ obtained
by optimizing (WS(λ)). Furthermore, we calculate for every scenario p ∈ U an optimal
solution xpλ to the according deterministic multi-objective optimization problem via the
deterministic weighted-sum scalarization with weight λ via the optimization problem

min (λ1 · f1(x, p) + λ2 · f2(x, p)) , (WSp(λ))

Then, for each p ∈ U , we compare the two objective values

max
p′∈U

(
λ1 · f1(xrobλ , p′) + λ2 · f2(xrobλ , p′)

)
(18)

(independent of p) and

max
p′∈U

(λ1 · f1(xpλ, p
′) + λ2 · f2(xpλ, p

′)) . (19)

We chose this comparison strategy for reason: Usually, in application, some knowledge
about the past is available and, therefore, the scenario which seems most likely is used
as reference. Since we do not know which scenario is seen as most likely, we assume
all scenarios to be equally realistic. Therefore, we calculate the optimal solutions to the
different scenarios, since those are the solutions most likely to be used in application.
The used data sets were obtained from the full-size data described in Section 3.4 by ran-
domized selection leading to 59 (smaller) instances of order sets. Furthermore, 5 different
weights λ ∈ R2

+ were used for the weighted-sum scalarization. We then calculated the
average and the maximum gain of xrobλ against xpλ for all 59 instances. Since the minimal
gain is zero for most of the instances, it is omitted.
The computational results for the different weights λ are stated in Table 2. On average

Addendum E

172



λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 1.11 0.79 0.68 0.58 0.37
max gain 35.66 34.31 33.69 32.65 7.94

Table 2: Gain of xrobλ against xpλ in percentage

the gain of using minmax robust efficient solutions does not seem to matter very much,
i.e., the gain ranges from 0.37 % to 1.11 %. Still, the application is in a high price-range
and therefore saving a small percentage of the budget means quite a reasonable gain.
More interesting are the results on the maximal gain. Using a minmax robust efficient
solution over an optimal one leads in our example to a significant gain of up to 35 %.
Furthermore, one of the reasons for the quite low average values is that a lot of the optimal
solutions to the different scenarios are also minmax robust efficient solutions themselves.
If we neglect those instances for which this is the case and only have a look at the instances
for which not all solutions to the different scenarios are also minmax robust efficient, we
obtain different results, stated in Table 3.

λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 5.45 3.87 3.32 2.64 1.45

Table 3: Gain of xrobλ against xpλ for revised instances in percentage

One might argue that comparing objective (18) to (19) does not reflect a realistic gain,
since in practice the manufacturer does not optimize with respect to an arbitrary scenario,
but to a specific one. In our case, this is Scenario 1 from Figure 3, as this is the scenario
obtained from experience values as described in Section 3. Instead of comparing objective
(18) to (19) we can also compare objective (18) to

max
p′∈U

(λ1 · f1(xp1λ , p
′) + λ2 · f2(xp1λ , p

′)) , (20)

where p1 is Scenario 1 from Figure 3 and xp1λ is an optimal solution to WSp1(λ). We
obtain the following results for all instances:

λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 0.64 0.44 0.39 0.39 0.28
max gain 8.80 7.59 6.60 5.78 3.50

Table 4: Gain of xrobλ against xp1λ in percentage

As we can see, the benefit of a minmax robust efficient solution against an optimal one
is (even though lower than before) quite significant in the maximal case. Furthermore, if
we again neglect the instances where the optimal solution to WSp1(λ) is not a minmax
robust efficient solution itself, we obtain the following average values:
As before, the gain is quite significant as the problem resides in a very high price range.
These results strengthen the concept of minmax robust efficiency as they show that the
advantage of using minmax robust efficient solutions.
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λ

(
1

0.1

) (
1

0.5

) (
1
1

) (
0.5
1

) (
0.1
1

)

avg gain 4.72 3.22 2.87 2.59 1.36

Table 5: Gain of xrobλ against xp1λ for revised instances in percentage

5 Conclusion

In this paper we presented a real-world optimization problem, namely a cutting prob-
lem. We classified the problem, presented a detailed single-objective optimization model
and discussed the uncertainties in the problem formulation. We pointed out that these
uncertainties are a result of the varying wood quality, described the various factors influ-
encing this quality and presented a quality distribution obtained from the experience of
the manufacturer. We then presented a method of speeding up the computation via the
input of pre-computed data reducing the problem size significantly. We concluded the
deterministic section with computational results of the described problem.
Then we presented a simplified, yet multi-objective version of the optimization problem
and discussed the uncertainties in this formulation. In order to hedge against these un-
certainties, the concept of minmax robust efficiency was applied to this simplified version
and robust efficient solutions to this problem were computed. We discussed and analyzed
the results. The results motivated an application of this concept to the original, much
more complicated problem. The calculations will take more time, but the increase can be
quite significant, as shown in the analysis of the robust formulation.
Summing up, we thoroughly examined a complex real-world cutting problem which was
formerly only approached by heuristics and presented methods to solve this problem
by deterministic and (in a simplified version) robust optimization, generating applicable
solutions. Furthermore, the analysis substantiates the relatively novel concept of minmax
robust efficiency and motivates its application to more complex problems.

Acknowledgments

This research was funded by the DFG research training group 1703 Resource Efficiency in
Interorganizational Networks. Furthermore, we thank our practice partner, Fritz Becker
KG, for the interesting and fruitful collaboration.

References

Ben-Tal, A., L. El Ghaoui, A. Nemirovski. 2009. Robust Optimization. Princeton Univer-
sity Press, Princeton and Oxford.

Ben-Tal, A., A. Nemirovski. 1998. Robust convex optimization. Mathematics of Opera-
tions Research 23(4) 769–805.

Ben-Tal, A., A. Nemirovski. 1999. Robust solutions of uncertain linear programs. Oper-
ations Research Letters 25(1) 1–13.

Benati, S. 1997. An algorithm for a cutting stock problem on a strip. The Journal of the
Operational Research Society 48(3) 288–294.

Birge, J.R., F. Louveaux. 2011. Introduction to Stochastic Programming . Springer New
York.

Borodin, A., R. El-Yaniv. 1998. Online Computation and Competitive Analysis. Cam-
bridge University Press.

Addendum E

174



Branke, J. 1998. Creating robust solutions by means of evolutionary algorithms. Proceed-
ings of the 5th International Conference on Parallel Problem Solving from Nature
(PPSN). 119–128.

Deb, K., H. Gupta. 2006. Introducing robustness in multi-objective optimization. Evolu-
tionary Computation 14(4) 463–494.

Dyckhoff, H. 1990. A typology of cutting and packing problems. European Journal Of
Operational Research 44 145–159.

Ehrgott, M. 2005. Multicriteria Optimization. Springer, Berlin, Heidelberg.
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Pareto, V. 1909. Manuel d’économie politique (in French). F. Rouge, Lausanne.
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Schöbel, A. 2012. Light robustness and the trade-off between robustness and nominal
quality. Tech. rep., Preprint-Reihe, Institut für Numerische und Angewandte Math-
ematik, Georg-August Universität Göttingen. Submitted.

Soyster, A.L. 1973. Convex programming with set-inclusive constraints and applications
to inexact linear programming. Operations Research 21(5) 1154–1157.
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Addendum F

Proof of Theorem 3.1. Assume x0 is not minmax robust [strictly/weakly] efficient. Then
there exists an x ∈ X \ {x0} s.t. fU (x) ⊆ fU (x0)− Rk[=/>]. This is equivalent to

∀η ∈ U ∃ξ ∈ U : f(x, η) ∈ f(x0, ξ)− Rk[=/>]

Thus, for fixed λ ∈ Rk≥, we obtain

=⇒ ∀η ∈ U ∃ξ ∈ U : λifi(x, η) [5 / <] λifi(x
0, ξ), i = 1, . . . , k,

=⇒
[

sup
η∈U

/max
η∈U

]
λifi(x, η) [5 / <]

[
sup
ξ∈U

/max
ξ∈U

]
λifi(x

0, ξ), i = 1, . . . , k.

Since this holds for all i = 1, . . . , k, it is a contradiction to the assumption.
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Proofs

Proof of Theorem 3.2. Suppose that x0 is not minmax robust efficient. Then there exists
x ∈ X \ {x0} s.t. fU (x) ⊆ fU (x0)− Rk≥, i.e.,

∀η ∈ U ∃ξ ∈ U : f(x, η) ≤ f(x0, ξ).

This implies on the one hand

max
ξ∈U

fi(x, ξ) 5 max
ξ∈U

fi(x
0, ξ)

for all i ∈ {1, . . . , k}. On the other hand

∀η ∈ U ∃ξ ∈ U :

k∑

i=1

fi(x, η) <

k∑

i=1

fi(x
0, ξ).

Since λ ∈ Rk= and ρ > 0,

max
i∈{1,...,k}
ξ∈U

λifi(x, ξ) + max
ξ∈U

ρ

k∑

i=1

fi(x, ξ) < max
i∈{1,...,k}
ξ∈U

λifi(x
0, ξ) + max

ξ∈U
ρ

k∑

i=1

fi(x
0, ξ),

in contradiction to the optimality of x0 for T up,aP(U)(λ).

179



Addendum F

Proof of Theorem 3.3. Since P(U) is owu and min
ξ∈U

fi(x, ξ) exists for all x ∈ X ,

ξmin(x) :=




argmin
ξ1∈U1

f1(x, ξ
1)

...
argmin
ξk∈Uk

fk(x, ξ
k)


 ∈ U

for all x ∈ X , analogously to Ehrgott et al. (2014), Lemma 5.2. Thus,

fU (x) + Rk[=/≥/>] ⊆ f(x, ξmin(x)) + Rk[=/≥/>]

for all x ∈ X . On the other hand, f(x, ξmin(x)) 5 f(x, ξ′) for all ξ′ ∈ U by construction
of ξmin(x). Thus,

f(x, ξmin(x)) + Rk[=/≥/>] ⊇ fU (x) + Rk[=/≥/>]

for all x ∈ X .

The last two inclusions together yield

fU (x) + Rk[=/≥/>] = f(x, ξmin(x)) + Rk[=/≥/>]

for all x ∈ X . Therefore,

x is lower set less ordered [strictly/·/weakly] efficient for P(U)

⇔
x is lower set less ordered [strictly/·/weakly] efficient for OWIP(U).

Since OWCP(U) is a deterministic multi-objective optimization problem,

x is lower set less ordered [strictly/·/weakly] efficient for OWIP(U)

⇔
x is [strictly/·/weakly] efficient for OWIP(U)

due to Ide and Köbis (2013), Lemma 2.3.
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Proofs

Proof of Theorem 3.4. We show that for x′, x ∈ X

fU (x′) + Rk[=/≥/>] ⊇ fU (x)

⇔
fconv (U)(x

′) + Rk[=/≥/>] ⊇ fconv (U)(x).

“⇐”

fconv (U)(x
′) + Rk[=/≥/>] ⊇ fconv (U)(x)

⇒ ∀ ξ ∈ conv (U) ∃ ξ′ ∈ conv (U) s.t. f(x′, ξ′) [5 / ≤ / <] f(x, ξ)

⇒ ∀ ξ ∈ U ∃ ξ′ ∈ conv (U) s.t. f(x′, ξ′) [5 / ≤ / <] f(x, ξ)

⇒ ∀ ξ ∈ U ∃ λ1, · · · , λm ∈ R=,
m∑

i=1

λi = 1

s.t. f

(
x′,

m∑

i=1

λiξ
i

)
[5 / ≤ / <] f(x, ξ).

But 

f1(x

′, ξ∗1)
...

fk(x
′, ξ∗k)


 5 f

(
x′,

m∑

i=1

λiξ
i

)

for some ξ∗ ∈ U since fi is quasiconcave in ξ for every i and P(U) is of objective wise
uncertainty. But this means

∀ ξ ∈ U ∃ ξ∗ ∈ U s.t. f(x′, ξ∗) [5 / ≤ / <] f(x, ξ)

⇒ fU (x′) + Rk[=/≥/>] ⊇ fU (x).

“⇒”

fU (x′) + Rk[=/≥/>] ⊇ fU (x)

⇒ ∀ ξ ∈ U ∃ ξ′ ∈ U s.t. f(x′, ξ′) [5 / ≤ / <] f(x, ξ). (4.1)

Given ξ :=
m∑

i=1

λiξ
i ∈ conv (U), since f is quasiconcave in ξ and P(U) is of objective

wise uncertainty, there exists ξ
∗ ∈ U , such that

f(x, ξ
∗
) =



f1(x, ξ

∗
1)

...

fk(x, ξ
∗
k)


 5 f

(
x,

m∑

i=1

λiξ
i

)
= f(x, ξ).

Since ξ
∗ ∈ U and due to (4.1), there exists ξ′′ ∈ U ⊆ conv (U) such that

f
(
x′, ξ′′

)
[5 / ≤ / <] f(x, ξ

∗
) 5 f(x, ξ).
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Thus,

∀ ξ ∈ conv (U) ∃ ξ′′ ∈ conv (U) s.t. f(x′, ξ′′) [5 / ≤ / <] f(x, ξ)

⇒ fconv (U)(x
′) + Rk[=/≥/>] ⊇ fconv (U)(x).
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