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Abstract
Given an urban public transportation network and historic delay information, we consider the
problem of computing reliable journeys. We propose new algorithms based on our recently presen-
ted solution concept (Böhmová et al., ATMOS 2013), and perform an experimental evaluation
using real-world delay data from Zürich, Switzerland. We compare these methods to natural
approaches as well as to our recently proposed method which can also be used to measure typic-
ality of past observations. Moreover, we demonstrate how this measure relates to the predictive
quality of the individual methods. In particular, if the past observations are typical, then the
learning-based methods are able to produce solutions that perform well on typical days, even in
the presence of large delays.
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1 Introduction

Motivation. When using public transportation to travel from a stop s to a stop t, we may
want to arrive at t no later than at time tA. Determining the right moment to leave s is
nontrivial: We want to reach t at time tA at the latest, but we don’t want to leave s much
too early. In an ideal situation, every bus and every tram is on time, and it is sufficient to
compute a journey that is planned to leave s as late as possible but still reaches t at the
latest at tA. However, in reality, traffic can be congested and we should expect delays. Thus,
we are looking for a robust journey from s to t that arrives before time tA, but still leaves s
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Figure 1 Distribution of the error coefficients grouped by planned travel time (a), and the average,
minimum, maximum, 10th and 90th percentiles of the distribution of the error coefficients in each
time slot (b). Times were measured in minutes. For the sake of clarity, (a) does not show journeys
with an error coefficient greater than 8, because there are only few (< 0.1%). For the same reason
journeys with more than one hour planned travel time are not shown in the figures.

at a “reasonable” time. In real applications one may have additional preferences, such as low
travel costs, which we don’t consider for the sake of simplicity.

Firmani et al. [9] observed in an experimental study on the transportation network of
Rome that the timetable information and the real movement of the vehicles (based on GPS
data) are only mildly correlated. They conclude that an “important issue to investigate is
how to compute robust routes” that are “less vulnerable to unexpected events”. Our goal
is provide methods for finding such robust routes. Since we only have historic delay data
from the public transportation network of Zürich, as a preliminary step we investigated
whether our network exhibits a behaviour similar to the Rome network. To make our results
comparable to the results of Firmani et al., the methodology and notation of our preliminary
study are similar to the methodology and notation in their original article [9].

We selected 10,000 departure and target stops s, t uniformly at random, set the latest
allowed arrival time tA to 8:30, and computed the st-journeys j that are optimal according
to the planned timetable. For each journey j, we measured the planned travel times tp(j) as
well as the actual travel times ta(j) (on 23 May 2013), and computed the error coefficient
ta(j)/tp(j). Figure 1(a) shows the distribution of the error coefficients grouped by the
planned travel times tp(j). High error coefficients occur easily if the planned travel time is
small and the vehicle of the planned journey leaves s a bit too early so that one has to wait
for the next vehicle (which may, depending on the line, take up to half an hour in Zürich).

As in [9], we grouped the journeys into 3-minute time slots such that the k-th slot contains
all journeys j with tp(j) ∈ (3(k−1), 3k]. Figure 1(b) shows the average, minimum, maximum
as well as the 10th and the 90th percentile of the distribution of the error coefficients of the
journeys in each time slot. Since short journeys sometimes have high error coefficients, for
simplicity Figure 1(b) does not incorporate the first two slots. The average error coefficient
of the journeys in the remaining slots lies between 1.12 and 1.71 which means that in average
a journey may take up to 71% longer than planned. Also, observe that the 90th percentile of
the error coefficients of the journeys with 15 minutes travel time is roughly 2. Thus, 10%
of the 15-minute journeys take in reality at least twice as long as planned. In overall, we
observed that the behaviour in Zürich is comparable to the one in Rome.

One way out might be to integrate real-time information into the computation of routes.
However, we believe that this is not enough, especially if the journey is planned some time
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70 Robust Routing in Urban Public Transportation

in advance. For example, a trip to the airport is usually planned a few hours earlier, and
the right departure time needs to be computed before the start of the journey. Moreover
in reality it often happens that delays occur suddenly and cannot be foreseen in advance,
especially not at the time when the journey is planned. For example, consider an st-journey
that consists of two lines l1 and l2, and imagine that the transfer time between the lines is 2
minutes. Even if l1 leaves s on time, every upcoming delay of more than 1 minute (which
might always occur) leads to a late arrival at t.

Our Contribution. In [3], we introduced a novel approach for finding robust journeys that
uses recorded observations from the past as input—we look for journeys that performed well
in the given past observations. Since this approach requires journeys to be comparable in
different past days, classical solutions concepts, such as a path in the time-expanded or the
time-dependent graph, are not suitable.

In the present paper, we first shortly describe our solution concept and the above-
mentioned approach for finding robust routes. Since this approach was originally restricted
to learn from historic data of only two different days, we show how it can be generalized to
consider historic data from multiple days. We also describe how a stochastic method by Lim
et al. [13] for private transportation can be adapted to compute robust journeys in public
transportation. After that, we perform an extensive experimental study to evaluate these
methods and to investigate different aspects related to robust routing.

Related Work. Many approaches to find a fastest journey in a given public transportation
network were considered in the literature, see, e.g., a recent survey by Bast et al. [1]. One
approach to account for delays is using stochastic methods—the delays are typically modeled
as random variables on the edges of the network [4, 10, 15], or on each vehicle [6, 7]. For a
given fixed timetable, Disser et al. [8] extended Dijkstra’s algorithm for computing pareto-
optimal multi-criteria journeys. Müller-Hannemann and Schnee [14] used a dependency
graph to predict secondary delays caused by some current primary delays and gave a routing
strategy with respect to these delays. Bast et al. [2] studied the robustness of transfer patterns
in the presence of delays. They argue that even when delays occur, a reasonably good path
is still included in the pattern. Dibbelt et al. [7] modeled the delays using stochasticity
and computed a decision graph with all the possibly relevant nodes and vehicles instead of
a single path. Goerigk et al. [12] assumed that a set of delay scenarios is provided, and
showed how to compute a journey that arrives on time in every scenario (strict robustness)
or a journey with fewest number of unreliable transfers having an almost optimal travel
time (light robustness). Goerigk et al. [11] considered journeys, within the setting of delay
scenarios, that can be updated if delays occur (recoverable robustness).

2 Model

Network Design. Let S be a set of stops. A line is an ordered sequence 〈v1, . . . , vk〉 of
stops from S, where vi is visited directly before vi+1. We explicitly distinguish two lines
with the same stops but opposite directions. Given a departure stop s ∈ S and a target stop
t ∈ S, a sequence of lines 〈l1, . . . , lβ+1〉 with li 6= li+1 is called an st-route if there exist β + 2
stops v0 := s, v1, . . . , vβ , vβ+1 := t where both vi−1 and vi are stops on the line li, and the
line li visits vi−1 (not necessarily directly) before vi. We say that a transfer between the
lines li and li+1 occurs at vi. Notice that there might be more than one possible transfer
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between two lines. For s, t ∈ S and an integer β ∈ N0, let Rβst denote the set of all st-routes
with at most β transfers.

A journey consists of a departure time tD, a route 〈l1, . . . , lα+1〉 ∈ Rαst with α ≤ β, and a
sequence of transfer stops 〈v1, . . . , vα〉. Its intuitive interpretation is to leave the stop s at
time tD, take the first arriving (trip of) line l1, and for every i ∈ {1, . . . , α}, leave li at stop
vi and immediately take the next arriving trip of line li+1.

Trips and Timetables. While the only information associated with a line itself are its
consecutive stops, it usually is operated multiple times per day. Each of these concrete
realizations is called a trip. A timetable stores for every stop v ∈ S the arrival and departure
times of every trip over a day. We have
1. a planned timetable Tplan which we assume to be periodic, i.e., every line realized by

some trip τ will be realized by a later trip τ ′ again (not necessarily on the same day).
2. a set T of recorded timetables Ti that describe how various lines were operated during

a given time period (e.g., on a concrete day). These recorded timetables are concrete
executions of the planned timetable.

In the following, timetable refers both to the planned as well as to a recorded timetable. We
assume that timetables respect the FIFO property, i.e. two buses or trams of the same line
do not overtake each other.

Goal. Let s, t ∈ S be the departure and the target stop, and let tA be the latest allowed
arrival time. Our goal is to use the planned timetable and the recorded timetables in T to
compute a recommendation in form of one or more (robust) journeys from s to t that will
likely arrive on time (i.e., at time tA or earlier) on a day for which the concrete travel times
are not known yet.

We assume that users select one of the recommended journeys, and then travel according
to it. One may argue that this assumption is rather strict, because when delays come up,
users sometimes spontaneously decide to use a different journey instead. This, however, is a
different situation that we do not consider in this paper for two reasons. First, one needs to
know the network and the possible backup options well, which might not be the case when
one is travelling in a foreign city. Second, as mentioned earlier, delays may occur suddenly,
and it might be too late to choose a different journey. Consider, for example, the situation
when the alternative journeys don’t have any stop in common except for the departure and
the target stop. In such a case one has to fix the journey already in advance.

3 Robustness

Overview. In this section we present some approaches for computing robust journeys. For
this we assume that the departure stop s, the target stop t and the latest allowed arrival time
tA were specified by the user and that we already computed a reasonable upper bound β
on the maximum number of transfers. Hence, s, t, tA and β are fixed when the journey(s)
are computed. We note that, given a route r ∈ Rβst and a parameter γ ∈ N, we can use the
planned timetable Tplan to find a journey j along r that leaves s as late as possible, but
not later than time tA − γ. Thus, as soon as an algorithm identifies both a route r and a
parameter γ, it can also reconstruct the corresponding journey in the planned timetable.
These planned journeys will then be recommended to the user.
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72 Robust Routing in Urban Public Transportation

Figure 2 A timetable with five lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 (solid) and r2 = 〈4, 5〉
(dotted). The x-axis denotes the stops {s, v1, v2, v3, t}, the y-axis the time. If a trip leaves a stop
vd at time td and arrives at a stop va at time ta, it is indicated by a line segment from (vd, td) to
(va, ta). Aγ(T ) contains r1 three times and r2 once.

Transfer Buffers. An naïve strategy to increase the reliability of a journey is to enforce an
additional buffer time at each transfer or at the end of the trip. The Buffer-ξ approach uses
Tplan to compute a journey that is planned to leave s as late as possible, arrives at t not later
than at time tA, and that has an additional time of at least ξ at each transfer of the journey.
This especially implies that if a line li is planned to arrive at a transfer stop vi at time ti,
then the next line li+1 of the journey can only be taken at time ti + ξ or later. Buffer-0
corresponds to an optimal journey in the planned timetable, so we refer to it as Opt-TT.

A Similarity-Based Approach. In [3], we described how a general approach to robust
optimization designed by Buhmann et al. [5] can be used to compute robust journeys. We
briefly recall our ideas. Let T ∈ T be a timetable and γ ∈ N0. An approximation set Aγ(T )
contains all routes r ∈ Rβst for which T contains a journey along r that leaves s at time
tA − γ or later, and that arrives at t at time tA or earlier. We assume that Aγ(T ) is a
multiset: a route r is contained as often as it is realized by a journey starting at time tA − γ
or later, and arriving at time tA or earlier (see Figure 2 for an example). The parameter
γ can be interpreted as the maximal time that we depart before tA. In general we have
A0(T ) = ∅, and the size of Aγ(T ) grows with increasing γ. If we consider the approximation
sets Aγ(T1), . . . , Aγ(Tk) for the timetables T1, . . . , Tk ∈ T , every approximation set contains
only routes that are realized (by a journey) in the same time period [tA − γ, tA], and that
are therefore comparable among different approximation sets.

The approach in [3, 5] expects that exactly two timetables T1, T2 ∈ T are given. To
compute a robust route when only two timetables are available, we consider Aγ(T1)∩Aγ(T2):
the only chance to find a route that is likely to be good in the future is a route that performed
well in both recorded timetables. The parameter γ determines the size of the intersection:
if γ is too small, the intersection will be empty. If γ is too large, the intersection contains
many (and maybe all) st-routes, and not all of them will be a good choice. Assuming that
we knew the “optimal” parameter γOPT , we could pick a route from AγOP T

(T1)∩AγOP T
(T2).

Buhmann et al. [5] suggest to set γOPT to the value γ that maximizes

Sγ = |R
β
st||Aγ(T1) ∩Aγ(T2)|
|Aγ(T1)||Aγ(T2)| . (1)

The value SγOP T
measures how similar the timetables T1 and T2 are, so Buhmann et al. refer

to this ratio as the similarity of T1 and T2. They showed that it is always at least 1, and
the larger it gets, the more similar T1 and T2 are. Of course, if one is only interested in
computing γOPT (and not measuring the similarity itself), one can simply omit the term
|Rβst| in equation (1) as we did in our original work [5].
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After γOPT has been computed, there are two possible approaches to pick a route from
AγOP T

(T1)∩AγOP T
(T2). The Similarity-Rand approach selects a route r from the intersection

uniformly at random, while Similarity-MRR selects the most frequent route r from the
intersection. For both approaches we recommend to depart at least γOPT units of time in
advance. More details can be found in [3, 5].

Function-Based Approaches. Let Ti ∈ T be a recorded timetable, r = 〈l1, . . . , lα+1〉 ∈ Rαst
be a route, τ1, . . . , τk be the trips of line l1 in Ti and D(τj , s) be the departure time of the
trip τj at s. We define δri as

min
j∈[1,k]

{
tA −D(τj , s)

∣∣∣∣ τj can be extended to a journey along r that
arrives in Ti at stop t at time tA or earlier

}
, (2)

which intuitively can be interpreted as follows: to arrive on time using route r on the day
at which Ti is realized, one has to leave s at least δri units of time before the latest allowed
arrival time tA. For a given function f : (R+)|T | → R, we search for a route r ∈ Rαst that
minimizes f(δr1, . . . , δr|T |). In the following, we describe some possible choices for f , and we
abbreviate f(δr1, . . . , δr|T |) by f(r).

For a number p ∈ [1,∞], the Norm-p estimator has the objective function

fp‖·‖
(
r) =

∥∥∥(δr1, . . . , δr|T |)∥∥∥
p
. (3)

It is easy to see that f1
‖·‖ selects all routes which in average (w.r.t. the recorded timetables

in T ) depart as late as possible. Moreover, f∞‖·‖ selects all routes minimizing the maximum time
between the departure and the latest allowed arrival time tA. Such routes can alternatively
be seen as routes maximizing the earliest departure time necessary to arrive on time in all
timetables in T . Thus, the Norm-∞ estimator is related to the similarity-based approach
from the previous paragraph in the following way. Let γFI = min

{
γ > 0 |

⋂|T |
i=1Aγ(Ti) 6= ∅

}
be the smallest value for γ such that the intersection of all γ-approximation sets is non-empty.
One can observe that every route r contained in

⋂|T |
i=1AγF I

(Ti) minimizes f∞‖·‖ and vice versa.
We note that these methods relate to strict robustness [12], but are based on a different
solution concept, and learn from past observations given as daily recorded timetables (instead
of specifying a set of possible delays).

Now, let p ∈ [1,∞] be arbitrary and let rpj be a route minimizing fp‖·‖. To determine
how much in advance one has to depart when using rpj , we use our previous observations.
For p = 1, it is reasonable to set γpj = f1(rpj )/|T | since f1

‖·‖ corresponds to averaging the
departure times. For p =∞, it is reasonable to set γpj = f∞(rpj ). For every other p ∈ (1,∞),
we simply scale the time linearly with respect to p = 1 and p =∞. More concretely, we set

γpj = f∞(rpj )−
(
fp(rpj )− f∞(rpj )
f1(rpj )− f∞(rpj )

)
·
(
f∞(rpj )− f1(rpj )/|T |

)
. (4)

A different function-based estimator comes from the mean-risk model which was just
recently used for finding robust routes in private transportation [13]. Let c ∈ R+

0 be the
risk-aversion coefficient, where c = 0 corresponds to the situation where the risk is being
completely ignored. The objective function associated with the Mean-Risk-c estimator is

f cMR

(
r) = Mean

(
δr1, . . . , δ

r
|T |
)

+ c ·
√
Variance

(
δr1, . . . , δ

r
|T |
)
. (5)

For a route rj minimizing f cMR, we simply set γj = f cMR(rj) as the time one has to depart
in advance. Notice that Mean-Risk-0 is equivalent to Norm-1.
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74 Robust Routing in Urban Public Transportation

4 Experimental Results

Experimental Setup. For an experimental evaluation of the methods proposed in Section 3
we used the tram and bus network of the city of Zürich, Switzerland, which has 401 stops
and 292 lines. The recorded timetables T = {T1, . . . , T7} were realized on seven consecutive
Thursdays in the period from 4 April to 23 May 2013, ignoring 9 May (which was a public
holiday and therefore had different traffic and a different planned timetable).

We observed that in reality many of the 292 lines have the same ID (such as, e.g., tram 6,
bus 31, etc.). This is consequence of our modeling: not only do we distinguish lines travelling
in opposite directions, but there are also special lines coming from or going to the depot, lines
whose corresponding vehicle turns around in advance, and lines that do not visit certain stops
in the evening. Since these special lines operate only on a low frequency and mostly only
early in the morning or late in the evening, we ignored them and focused on the “standard”
realizations. Hence we effectively used only 118 of the 292 lines. Although the network is
rather small in comparison to the networks of other cities, it is well-suited for an experimental
study on robustness for two reasons. First, the network is dense enough to provide many
different routes between any two stops s and t. Second, our study in Section 1 showed that
the network is affected by a considerable amount of delays, especially during the rush hours.

For each of the following experiments, we generated 10,000 (30,000 for the experiments on
the number of transfers) departure/target pairs (s, t) ∈ S2 with s 6= t uniformly at random.
For each such pair (s, t), we computed the smallest β ∈ N0 such that Rβst 6= ∅ and used this
value for the maximum allowed number of transfers. We explicitly set β = 1 if there exists a
direct st-route with no transfers at all. In such a case, one might prefer to take an alternative
route with only one transfer, probably leading to a shorter travel time. After computing β
and Rβst, we performed the corresponding experiment. We set the target arrival time tA
to 18:00 except for the experiments that study how the behavior of the methods changes
during the day. Unless otherwise stated, the buffer methods used the planned timetable Tplan
as input, the similarity-based methods used T5 and T6 (recorded on 2 May and 16 May),
and the function-based methods used T1, . . . , T6 (recorded between 4 April and 16 May).
Timetable T7 (recorded on 23 May) was used to assess the quality of the proposed journeys.

In our experiments we observed that the performance of Similarity-Rand and Similarity-
MRR is nearly identical, so our figures show only the behavior of the latter variant, and for
simplicity we refer to both variants as Similarity. Also, Norm-2 performs similarly to Norm-Inf,
so our figures mostly omit Norm-2. Furthermore we observed that it rarely happened that a
journey proposed by Buffer-ξ, Similarity, Norm-Inf or Mean-Risk-1 arrived much too early or
much too late in the test instance. In all of these cases this was caused either because of a
highly non-typical situation in the input or the test instance (e.g., an accident), or because
a line was chosen that was not realized regularly (e.g., less than once per hour). Hence
we ignored all pairs (s, t) for which at least one of the methods above computed a journey
arriving more than one hour too early or too late.

Our algorithms were implemented in Java 7, and the experiments were performed on one
core of an Intel Core i5-3470 CPU clocked at 3.2 GHz with 4 GB of RAM running Debian
Linux 7.8. For enumerating all st-routes in Rβst, we used the algorithm proposed in [3] which
runs on average 35ms. After computing Rβst, the buffer strategies have an average running
time 1ms or less, the similarity-based methods 8ms, and the function-based approaches 24ms.
Notice that these running times are faster than the ones described in [3], because we used a
smaller network (without the agglomeration).
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Figure 3 Comparison of various methods: arrival rate vs. average departure time (a), and arrival
rate vs. standard deviation on the arrival time (b).

Table 1 Overview of how often the route suggestions of two methods differ.

Opt-TT Buffer-3 Buffer-6 Buffer-9 Buffer-12 Norm-1 Norm-Inf Similarity Mean-Risk-1

Opt-TT 30, 82% 24, 14% 25, 79% 29, 56% 27, 32% 40, 45% 40, 21% 32, 91%
Buffer-3 30, 82% 31, 60% 25, 97% 24, 89% 30, 31% 40, 05% 40, 72% 32, 54%
Buffer-6 24, 14% 31, 60% 28, 77% 25, 83% 30, 86% 41, 03% 42, 17% 34, 16%
Buffer-9 25, 79% 25, 97% 28, 77% 30, 37% 29, 99% 39, 59% 40, 68% 32, 03%
Buffer-12 29, 56% 24, 89% 25, 83% 30, 37% 31, 77% 40, 83% 42, 48% 33, 99%
Norm-1 27, 32% 30, 31% 30, 86% 29, 99% 31, 77% 27, 48% 31, 30% 14, 33%
Norm-Inf 40, 45% 40, 05% 41, 03% 39, 59% 40, 83% 27, 48% 32, 43% 19, 54%
Similarity 40, 21% 40, 72% 42, 17% 40, 68% 42, 48% 31, 30% 32, 43% 32, 50%
Mean-Risk-1 32, 91% 32, 54% 34, 16% 32, 03% 33, 99% 14, 33% 19, 54% 32, 50%

Arrival Rate, Departure Time and Standard Deviation on the Arrival Time. Intuitively,
an earlier departure time leads to a higher probability to arrive on time (i.e., a higher arrival
rate), and achieving a higher arrival rate in a network with delays entails a higher standard
deviation on the arrival time. Figure 3 compares the proposed methods with respect to these
aspects. It shows that, independently of the considered method, there is a clear trade-off
between the departure time and the arrival rate (a) as well as between the standard deviation
of the arrival time and the arrival rate (b).

Both parameter-based methods Buffer-ξ and Mean-Risk-c, form Pareto optimal fronts
in both (a) and (b). Clearly, Mean-Risk-c benefits from the additional information from
the input instances T1, . . . , T6 and it dominates Buffer-ξ in both (a) and (b). The Similarity
method needs no parameter adjustment, it is based only on two past timetables, and still
proposes solutions with a reasonable arrival rate that do not depart too early. Notice that
Norm-Inf (the generalization of Similarity) also benefits from the knowledge of the six past
timetables, and without parameter adjustment it produces a solution which gives a very
reasonable trade-off between departure time, arrival rate and the standard deviation on the
arrival time. Moreover, the solutions proposed by Norm-Inf performed rather well compared
to all the competitors (which do require parameter adjustment).

We also investigated whether the arrival rates of different methods differ due to different
departure times only, or whether the suggested route(s) also differ. In particular, for any two
methods M1 and M2, we studied how often the suggested route(s) of M1 and M2 differ. For
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Figure 4 Influence of low/high similarity on the arrival rate: comparing various methods (a).
Influence of the target arrival time on the similarity of the planned timetable and the test instance
T7, and on the average similarity between the planned timetable and each of the input instances
T1, . . . , T6 (b).

some exemplary methods, Table 1 shows that this happens in 14 to 42% of the cases. Notice
that in roughly one third of the cases, the routes proposed by Similarity differ from the ones
proposed by Norm-Inf (which can be seen as a generalization of Similarity). Also, there is a
notable difference between the route suggestions of the different Buffer methods. Thus, for
enforcing robustness there are better strategies than merely decreasing the departure time.

Influence of the Similarity between Input and Test Instances. We just saw that journeys
proposed by the similarity-based approaches performed rather poorly, with respect to both
arrival rate as well as standard deviation on the arrival time. However, we have to take
into account that these methods use only two recorded timetables as input: if both differ
substantially from the test instance, then in general there is very little one can do. The
generic approach by Buhmann et al. [5] works well if both the input and the test instances
are typical, i.e., if their mutual similarity is high. Thus we investigate the impact of high
and low mutual similarities on the quality of the predictions.

First we note that the similarity SγOP T
does not only depend on the two input instances

but also on the origin s and the destination t, and on the target arrival time tA. Thus, in the
following experiments, we do not always use the same timetables T5, T6 as input and T7 for
testing, but select for every (s, t) the timetables whose mutual similarities are as high or as
low as possible. Let Υ be the set of all triples of recorded timetables (Ti, Tj , Tk) ∈ T 3 where
i, j, k are mutually different. For a given pair (s, t) and two timetables Ti, Tj ∈ T , let Sstij be
the similarity of Ti and Tj with respect to s and t. We selected triples whose minimum (or
maximum, respectively) pairwise similarity is as high or as low as possible,

(Th1 , Th2 , Th3 ) = arg max
(Ti,Tj ,Tk)∈Υ

min
{
Sstij , S

st
ik, S

st
jk

}
(6)

(T l1, T l2, T l3) = arg min
(Ti,Tj ,Tk)∈Υ

max
{
Sstij , S

st
ik, S

st
jk

}
(7)

and used Th1 and Th2 as input and Th3 for testing, and for comparison, used T l1 and T l2 as
input and T l3 for testing. Even though Mean-Risk-c and Norm-p could handle more instances,
they were given just the two mentioned instances.
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Figure 5 Comparison of various methods: Arrival rate vs. target arrival time (a), and travel
time difference to the optimum travel time vs. target arrival time (b).

Figure 4(a) shows that all methods benefit when the similarity of the three instances is
high. The arrival rates of both Norm-p and especially Similarity increase significantly. We
observed that Similarity outperforms Norm-p when the similarity is low, which is reasonable:
for a low similarity, the routes in the first intersection of the approximation sets as well as
the route that maximizes the average departure time are too much influenced by the noise in
the input instances. However, Similarity can still let the approximation sets grow beyond
the first intersection so that more stable solutions are contained (which Norm-p cannot). On
the other hand, if the similarity is high, then there is so little noise in the data that Sγ is
maximized already at the first γ for which the intersection is non-empty, thus Similarity and
Norm-p are nearly identical.

Of course these results cannot directly be used for designing an algorithm, since the test
instance is unknown. Nevertheless we believe that the results are interesting because they
demonstrate the power of the similarity-based approach.

Influence of the Target Arrival Time. Figure 5 shows how the behavior of the methods, in
terms of the arrival rate (a) and travel time (b), changes over the day. In particular, we can
observe a clear influence of the morning and evening rush hours. Interestingly, the two rush
hours affect the arrival rates of different methods differently. Specifically, the timetable-based
method Buffer-ξ is greatly affected by both rush hours while the learning strategies are less
affected by the evening rush hour.

To understand this behavior, consider Figure 4(b). The red curve shows how the value of
the similarity of Tplan and the test instance T7 changes during the day. In particular, we see
a significant drop of the similarity during rush hours. Notably, the two dips corresponding
to morning and evening rush hour are of the same height. This suggests that on the
day corresponding to T7, during the morning rush hour, there was a similar amount of
irregularities with respect to Tplan, as during the evening one. The blue curve in Figure 4(b)
shows the changes during the day of the averaged value of similarity of Tplan and each of the
training instances T1 − T6. Also there the similarity drops during rush hours, but we clearly
see that the morning dip is significantly lower than the evening one. This suggests that in
the recorded timetables T1 − T6 used for learning, the amount of irregularities (with respect
to Tplan) was lower in the morning than in the evening. Thus, when comparing the two
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Figure 6 Necessary parameter to achieve a specified arrival rate in T7 depending on the target
arrival time.

curves, we see a significant gap between them during the morning rush hour, but a relative
match during the rest of the day. This suggests that the test instance T7 contained during
the day a similar amount of irregularities as it is expected on a typical day (represented by
T1 − T6), with the only exception of the morning rush hour, where it was less regular.

Let us now relate what we observed in Figures 4(b) and 5(a). Since Buffer-ξ is based solely
on Tplan, any irregularities with respect to Tplan occurring in T7 (captured by the red curve
in Figure 4(b)) affect its arrival rate. This explains why the arrival rate of Buffer-ξ drops
both in the morning and evening rush hour and exhibits two dips of nearly the same height.
On the other hand, the methods that use the information from the past observations (e.g.,
Mean-Risk-c) are trained to account for a certain amount of irregularities. Since the situation
in T7 in the evening is typical, the solutions proposed by these methods are prepared for it
and their arrival rate is almost not affected by the evening rush hour. In contrast, morning
rush hour causes their arrival rate to drop significantly and this maps to the discrepancy of
the red and blue curve in Figure 4(b).

In Figure 5(b) we observe that during peak hours, the travel time increases. Interestingly,
the required travel time does not depend on the method nor whether it is on time or not.
Thus, to achieve higher probability to arrive on time, one has to depart earlier (as seen in
Figure 3(a)), but does not need to increase the time spent traveling. We believe that this is
the case because the network of Zürich is quite dense, hence there exist different alternative
journeys with comparable travel times.

Choice of the Parameters for Buffer-ξ and Mean-Risk-c. Figure 6(a) displays the min-
imum value of the parameter ξ of Buffer-ξ that would be necessary to achieve arrival rates
of 80%, and 90% of the cases in T7, and how this value changes over the day. We see that,
affected by the daily rush hours, this parameter varies significantly, suggesting that the
Buffer-ξ strategy needs a non-trivial amount of parameter adjustment. We observe that the
dips corresponding to morning and evening rush hours are of the same height. Again, we
can directly relate this behavior with the similarity of Tplan and T7 (captured by the red
curve in Figure 4(b)).

Similarly, Figure 6(b) displays the value of the coefficient c of Mean-Risk-c that would
be necessary to achieve arrival rates of 78.5%, 90%, and 92.5% in T7, and its development
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Figure 7 Influence of the number of transfers on the arrival rate.

during the day. We observe that this value is greatly affected by the morning rush hour.
On the other hand, the dip corresponding to the evening rush hour is visible, but not
too significant. Again, we link this behavior of the value to the observed similarity of the
training/test instances with the planned timetable—the two curves captured by Figure 4(b).
Recall that in the morning rush hour there is a gap between the two curves in Figure 4(b)
indicating that the situation in T7 was not typical with respect to previous observations. As
we see in Figure 6(b), the value of the coefficient c has be quite large to compensate for the
unexpected irregularities. In contrast, in a situation that is typical (i.e., when the two curves
in 4(b) approximately match), the Mean-Risk-c method performs well and fine-tuning of the
parameters is not crucial. For instance, a coefficient c set to 1 leads to reasonably robust
solutions.

Influence of the Number of Transfers. Figure 7(a) shows that the arrival rate of Buffer-ξ
(for ξ = 6) is quite sensitive to the number of transfers. This suggests that the number of
transfers is another aspect (of possibly many aspects) which has to be taken into account
when searching for the best parameter for Buffer-ξ. In contrast, Figure 7(b) shows that the
influence of the number of transfers on the arrival rate of Mean-Risk-c (for c = 1) is almost
negligible. Thus, there is no need to fine-tune the coefficient c to compensate for this aspect.
We remark that we generally observed that the arrival rate of the methods based on the past
observations is not very sensitive to the number of transfers.

5 Conclusion

We observed a clear trade-off: to achieve a higher probability to arrive on time in a network
with delays, one has to depart earlier and expect higher standard deviation on the arrival
time. On the other hand, the average travel time itself does not change with robustness or
the choice of a routing method.

Methods based solely on the planned timetable, where the robustness is achieved by
adding buffer times, need a non-trivial parameter adjustment for which many aspects need
to be considered (time of the day, number of transfers, etc.). The methods that learn from
past benefit from the additional knowledge: If the test instance is typical with respect to the
past observations, these strategies perform well, Mean-Risk-c does not need much fine-tuning,
and Norm-Inf without parameter adjustment proposes a highly competitive solution with
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reasonable trade-offs. We have seen that Similarity gives a good measure of the amount of
irregularities in the network and can help to detect typical situations. Notably, it considers
complex solutions (journeys), and thus it has a potential to capture behavior that cannot
be observed only locally. We believe that this measure is worth further exploring, and by
considering various aspects (e.g., how different approaches would benefit if Similarity was
used to preselect typical instances for training) it can bring us even closer to the goal of
robust routing.

The existence of equally good alternative journeys is one of the reasons why we believe that
it was reasonable to choose the public transportation network of Zürich for our experiments,
although the network is rather small in comparison to the public transportation networks of
other cities. An interesting question is whether the algorithms are still sufficiently fast on
larger networks. We believe that due to our solution concept (i.e., sequences of lines), the
running time depends on the number of lines rather than the number of stops. In that respect,
the network of Zürich is not exorbitantly small: For example, the public transportation
network in Vienna has more than six times as many stops, but only less than two times as
many lines. Hence, if the number of feasible st-routes (with a bounded number of transfers)
is not too large, the algorithms should still work fast. Otherwise one could try to generate
meaningful alternative routes in advance. Investigating these aspects and also whether our
qualitative results hold for other cities are clearly interesting questions that we plan to
investigate further.

Acknowledgements. We wish to thank the Verkehrsbetriebe Zürich (VBZ) for providing
historic real-world delay data.
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