
Path Finding Strategies in Stochastic Networks ∗

Mohammad H. Keyhani, Mathias Schnee, and Karsten Weihe
Technische Universität Darmstadt, Algorithmik†

December 10, 2014

Abstract

We introduce a novel generic algorithmic problem in directed acyclic graphs,
motivated by our train delay research. Roughly speaking, an arc is admissible or
not subject to the value of a random variable at its tail node. The core problem
is to precompute data such that a walk along admissible arcs will lead to one of
the target nodes with a high probability. In the motivating application scenario,
this means to meet an appointment with a high chance even if train connections
are broken due to train delays.

We present an efficient dynamic-programming algorithm for the generic case.
The algorithm allows us to maximize the probability of success or, alternatively,
optimize other criteria subject to a guaranteed probability of success.

Moreover, we customize this algorithm to the application scenario. For this
scenario, we present computational results based on real data from the national
German railway company. The results demonstrate that our approach is superior
to the natural approach, that is, to find a fast and convenient connection and to
identify alternative routes for all tight train changes where the probability that the
change breaks due to delays is not negligible.

1 Introduction

1.1 Generic problem

We consider a directed acyclic graph, where each node is associated with a discrete
random variable of arbitrary kind. The random variables are not independent, but
the marginal distribution of a node’s random variable is a function of the marginal
distributions of the random variables at the node’s immediate predecessors. Each arc is
admissible or inadmissible, depending on the value attained by its tail node’s random
variable. A path is admissible if all of its arcs are so; otherwise, it is inadmissible.

The underlying graph problem is the following: for a set of source nodes and a set
of target nodes, determine an admissible path from some source node to some target
node. Since the admissibility of an arc is a random variable, too, it is clearly impossible
to determine the set of all admissible paths in advance.

Instead, the focus of this paper is on efficient strategies for traversing the graph
from a source node towards the target nodes. A strategy may be viewed as a black box
that delivers a particular piece of information for a given node and a given value of the
node’s random variable: in the positive case, the strategy returns an outgoing arc that is
guaranteed to be admissible for this value of the random variable; in the negative case,
the strategy reports failure. Following the strategy means to walk through the graph
and always use the arc delivered by the strategy, until a target node is reached or the
walk gets stuck.

∗This work was supported by German Railways Deutsche Bahn AG (RIS).
†{keyhani,schnee,weihe}@cs.tu-darmstadt.de

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/76649446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An efficient strategy will certainly need a set-up, that is, a preprocessing phase, in
which the outgoing arcs are computed and stored. From a technical viewpoint, this
set-up is the core problem.

This generic problem has been motivated by a very specific application scenario,
which we address in this paper as well. However, it is evidently of much broader practical
value, because it may fit into routing and navigation scenarios of various types in public
and private transport and in logistics. Another potential application scenario is planning
and scheduling with alternative options at every milestone, where the next milestone is
to be chosen depending on the random variable project state.

Overview This paper is organized as follows. In the rest of Section 1, we write about
our contribution, and explain why related work is not transferable. In Section 2, we
define the input for the set-up and the data to be computed in the set-up process. The
set-up and the core algorithm are explained in Section 3. In Section 4, we customize
the generic approach to a real-world application from train travel optimization. Our
experiments and computational results on the basis of real-world data from Deutsche
Bahn, the national German railway company, are presented in Section 5. Finally in
Section 6, we conclude and present an outlook on our future work.

1.2 Our Contribution

Our contribution I: generic approach We introduce probability of success for each
node in the graph (see Section 3). By that we mean the probability to reach one of
the target nodes without getting stuck at any intermediate node – when following the
strategy. For each node, a strategy has a certain probability of success.

Based on that notion, we present an algorithm for set-up such that the resulting
strategy indeed maximizes the probabilities of success for all source nodes simultaneously.
Alternatively, our algorithm is also able to optimize other criteria subject to a guaranteed
probability of success. In each step of the walk, only a single look up is needed to identify
the next outgoing arc to take. The complexity of our set-up is approximately linear in
the number of arcs and nodes (more details can be found in Section 3.2). This output
immediately solves an important related problem: given a linear ordering on the source
nodes, which expresses a preference, it is then trivial to choose the most preferable source
node that guarantees success with 98% probability, say.

During the walk or even before commencing the walk, new information may come
in, which may result in changes of the marginal distributions. It will be obvious from
our presentation that a re-run of our proposed algorithm would still be the best one can
do. In particular, if there is still a way to reach the target node with 98% probability,
say, the procedure will find it.

Our contribution II: real-world application The motivating application scenario
is this: we have a time-expanded graph [10] representing a railway timetable. For each
departure and arrival event of each train, there is a node in the graph. The arcs model
traveling, waiting at stations, and changing trains. Each arrival and departure event
is supposed to take place at the time found in the timetable. However, trains are
probabilistically delayed, and the actual time may be later or even earlier (earlier only
for arrivals). Details can be found in Section 4.1.

Connections can break at stations with planned train changes due to delays: when
a traveler arrives too late at the station so that there is no sufficient time for a train
change, he/she misses the connecting train. Hence, the traveler needs a strategy to
decide, on the basis of the current local delay situation, whether he/she should stay in
the train or leave the train at the next station to catch another train, and which one
he/she should take. Probability of success comes into play when the traveler has to meet
a deadline at his/her destination station, for example, to get to a business meeting in
time or to catch a flight. Clearly, the traveler would like to commence the journey as

2

late as possible, provided the deadline is met with a 98% chance, say. So, the traveler’s
problem is to identify the latest departure whose probability of success is 98% or more.
As mentioned in Section 1.1, the latest – and therefore most preferable – departure time
is trivially identified once the probability of success is known for every departure node
at the departure station.

From a traveler’s point of view An information system based on our approach
may be designed to be easy to use for the traveler. Instead of a normal itinerary, the
traveler receives sort of an enriched itinerary, which includes instructions in case of
delays and train breaks. During the travel, the traveler can observe the current delay
time of the train in which he/she is currently sitting, and follow these instructions.
Fortunately, travelers are typically notified early enough by the staff (or look up internet
information) about breaks of train changes. In this case, a traveler can alternatively
use the instructions for that broken train change. Even better, our approach could be
integrated in an app that notifies the traveler about an upcoming change of the itinerary,
re-runs the algorithm, and delivers up-to-date instructions.

1.3 Related Work

Our approach is unique because of the following two characteristics: we guarantee a
probability of success to arrive before a deadline, and subject to this probability, we find
the latest possible departure time.

In order to achieve the above goal, we systematically incorporate changes to alter-
native routes, if necessary due to delays. Also in contrast to other works, we can handle
a large train network with a timetable resulting in a graph with millions of nodes and
arcs, very weak periodicity, and an astronomically large number of delay scenarios.

There are approaches focused on other problems like least expected travel time or
earliest expected arrival time [8, 15, 3]. Besides that, Hall assumes that there is no
dependency between the travel times on different arcs in the graph [8] which is not
realistic in a railway network where one train can delay another one. Analogously,
Dibbelt et al. use a simplified model with the assumption that all departures are on
time and all random arrival times are independent [3].

Approaches based on periodicity and designed for dense, high frequency networks
[8, 2] are not transformable to a railway network including (but not limited to) long-
distance trains. For instance, they assume that when a bus is missed, the next one will
depart after a certain waiting time.

Approaches for networks without a timetable (for example road networks) [4, 13, 16,
17, 14, 5, 15, 11, 12] are evidently not transferable to our problem: in contrast to a
railway network, they can use each arc at any time, and they do not deal with the issue
that arcs can get inadmissible. Moreover, the model presented by Pretolani, Nielsen,
and Andersen would require a hyperarc for each possible value for the random variable
of each node [15, 11, 12]. This tremendously blows up the graph size in a timetable
based network.

There are also approaches which provide robust paths, but can only handle a limited
number of delay scenarios [7, 6]. Such approaches and their solutions are typically too
conservative and too expensive, and the paths are significantly longer. Moreover, they
cannot guarantee an arrival before a deadline with a certain probability.

Reliability of train connections is an issue since connections can break because of
delays. We have already published a method to compute and rate the reliability of train
connections based on delay distributions for nodes [9]. There, we showed that such a
reliability rating is quite accurate by predicting the feasibility of train connections. Our
approach in this work is based on this reliability rating method (see Section 4).

3

2 Preliminaries

Input Consider a directed acyclic graph G = (V,A). Sets in(v) ⊂ A and out(v) ⊂ A
denote the sets of incoming and outgoing arcs of node v ∈ V . Set T denotes a finite or
infinite set. Random variable Xv denotes the discrete random variable with range T ,
for each node v ∈ V . There is a joint probability distribution with dimension |V | over
all random variables Xv with v ∈ V . The marginal distributions are denoted by φv(t),
for t ∈ T and v ∈ V . For t ∈ T , φv(t) denotes the probability that Xv attains value
t. Each marginal distribution φv is computed depending on the marginal distributions
of the immediate predecessors of v using a function fv: let (ui, v) ∈ in(v) denote the
incoming arcs of v for i = 1, . . . , n and n = |in(v)|; one has φv(t) = fv(φu1

, . . . , φun
, t)

for each t ∈ T .
Sets VS ⊂ V and VT ⊂ V denote two non-empty disjoint sets of source nodes and

target nodes. Each arc (v, w) is admissible or inadmissible depending on the value of
Xv. For every value of Xv it is known whether (v, w) is admissible or not.

Data to be computed in the set-up A strategy contains the following information
for each node v and each value t for Xv:

• a data field αv,t which contains

– either an associated outgoing arc (v, w) ∈ out(v) which is admissible when
Xv has the value t

– or ⊥ if the strategy has no arc selected for node v and value t;

• and a probability of success ρv,t.

3 Computing the Optimal Strategy

For an input as specified in Section 2, the set-up computes an optimal strategy by
calculating the probability of success ρv,t and, simultaneously, selecting the best arc
αv,t, at each node v ∈ V and for each t ∈ T (see Section 3.2). The strategy is set-up
backwards through the graph, beginning with the target nodes and ending at the source
nodes. More explanations about backward set-up can be found in Appendix A.

3.1 Propagating Probabilities via Dynamic Programming

Briefly, in order to compute the probability of success at each node in the graph, we
have to propagate the marginal distributions of the target nodes’ random variables,
backwards through the graph. More explanations can be found in Appendix B.

How to propagate probabilities In the following, we explain our dynamic pro-
gramming approach to propagate probabilities, backwards through the graph. For an
arbitrary node w ∈ V with predecessor v ∈ V , the propagation from w to v is performed
by this formula:

ψv,a(t) =
∑
b∈Tw

P (Xv = a
∣∣ Xw = b) · ψw,b(t) (1)

for each a, t ∈ T and Tw = {t ∈ T
∣∣ φw(t) > 0}. For each target node z ∈ VT , one has

ψz,a(t) = φz(t) for t = a; and ψz,a(t) = 0 for t 6= a. Here, ψv,a(t) denotes the probability
propagated from the target nodes’ random variables to node v. This is the probability
that (I) Xv attains the value a, (II) there is a path to some target node exclusively over
admissible arcs, (III) and the random variable of that target node attains value t. More
details about the formula can be found in Appendix C.

4

The conditional probability in Equation 1 is calculated as follows:

P (Xv = a
∣∣ Xw = b) = fw(φu1

, . . . , φav , . . . , φun
, b)/φw(b)

where u1, . . . , un ∈ V are other predecessors of w. For v, the probability φav is defined
as follows: φav(t) = φv(t) for t = a; and φav(t) = 0 for t 6= a. We need φav since we
want to determine how the probability φv(a) is spread over the values in Tw for Xw.
Therefore, function fw has to compute the probabilities depending on φav instead of φv.
The above equations require that fw computes its result depending on φav such that the
following condition is satisfied:

∑
b∈T fw(φu1

, . . . , φav , . . . , φun
, b) ≤ φav(a). If Xw does

not depend on Xv, the probability calculated by fw(t) has to be multiplied with φav(t),
for each t ∈ T . This is because we want to compute the common probability that Xv

attains value a and Xw attains value b. An example for a f -function can be found in
Appendix C.

Computing probability of success For node v and value a for Xv, the probability
of success is computed as follows: ρv,a =

∑
t∈T ψv,a(t). The probability of success for

node v, regardless of the value for Xv, equals
∑

a∈T ρv,a.

3.2 The Set-Up: Core Algorithm

This section explains the core algorithm of the set-up which processes nodes, and propa-
gates the probabilities over arcs, respectively. At the end of this procedure, the optimal
strategy is ready.

How to process nodes For each node v and each value t for Xv, the best arc has to
be selected and the probability of success has to be computed. At the beginning of the
set-up, αv,a is set to ⊥ and ρv,a is set to 0, for each v ∈ V and a ∈ T . To set-up the
strategy, all target nodes VT are inserted into the queue. While there are nodes in the
queue, the following iterations are performed:

1. Extract next node v from the queue. For each a ∈ T where φv(a) > 0 perform
steps 2-4.

2. Find all outgoing arcs of v which are admissible when Xv attains value a. If there
is no admissible arc, set αv,a :=⊥ and ρv,a := 0, break the iteration, and continue
with next value in T .

3. Propagate the probabilities ψ for each candidate: for each found arc (v, w) and for
each t ∈ T , calculate the probability ψw

v,a(t) assuming (v, w) is the arc selected for
v and value a. (Note: we index ψ with w since (v, w) is considered as a candidate
and is not selected for value a, definitively).

4. Compare the values ψw
v,a(t) of the candidates to each other, and select the best

arc (see below): let (v, z) define the best arc found; set ψv,a(t) := ψz
v,a(t), set

αv,a := (v, z), and set ρv,a :=
∑

t∈T ψv,a(t).

5. If v /∈ VS , insert all immediate predecessors of v into the queue.

Selecting the best arc Here, we are free to choose a comparison method which is
most qualified for our application. If the probability of success has to be maximized
and nothing else, the best arc is the arc which maximizes ρv,a. In case that some target
nodes are more interesting than others, or some values for the random variables of the
target nodes are more interesting, the propagated probabilities ψw

v,a(t) can be compared.
In our evaluation in Section 5, we optimize the departure time, the duration of train
connections, and the number of train changes subject to a guaranteed probability of
success. Note that for our comparisons we can perform arbitrary operations on the

5

propagated probabilities, and we are not limited to a comparison of expected arrival
times, for instance.

If no admissible arc can be found for αv,a, the walk through the graph would get
stuck at node v and at time a. Consequently, the probability of success at v decreases.
This is the reason why probability of success can be smaller than 1.

Complexity Our approach is linear in the number of arcs and nodes. In addition, for
each arc, there is the effort to propagate the probabilities to its tail node. Fortunately,
the support of the computed distributions is limited in practice. In our railway sce-
nario, we limit the support of the marginal distributions to 1000 entries, and we ignore
probabilities smaller than 10−5. Consequently, our approach still remains linear in the
number of arcs and nodes. It may be worth noting that a large number of irrelevant
nodes may be excluded from the search a priori. This modification reduces the practical
run time significantly.

4 Real-World Application: Railway Networks

4.1 Finding Reliable Train Connections

We consider queries with a source and a target station, a latest arrival time tq, and
a threshold pq for the probability of success. Using our approach, we compute for
travelers strategies which guarantee an arrival at the target station not later than tq and
with a probability of at least pq. Moreover, we find the latest possible departure time
where the required probability of success is still satisfied. For this, we customize our
generic approach to the railway application, and define the ingredients of the algorithm,
respectively.

We have a time-expanded [10] graph G = (V,E) representing the timetable. For each
departure and arrival event of each train, there is a node in the graph. There are train,
stay-in-train, and train-change edges. Each arrival and departure event is supposed to
take place at the time found in the timetable. However, the actual time may be later
– because of delays – or even earlier (earlier only for arrivals). In our model, for each
departure and arrival event, we have a delay distribution which has for each possible
point in time a probability that the train actually departs / arrives at this time. Train-
change edges – connecting an arrival node of a train to a departure node of another train
– can get inadmissible: this happens when the tail node of the edge is delayed so that
the required change time is not satisfied (we also consider waiting time policies).

Inspired by Berger et al. [1], we have developed a method to compute delay distribu-
tions for train connections and to rate the reliability of the connections [9]. By reliability
of a connection we mean the probability of arriving at the target without any broken
train changes. The formula introduced there are used in this work as f -functions when
propagating the probabilities.

4.2 Customizing Our Approach (Strategy) to Railway Networks

Our generic approach from Section 3 may be customized to the application described in
Section 4.1 as follows:

• Set VS contains all relevant (see below) departure nodes at the source station; set
VT contains all relevant arrival nodes at the target station;

• Set T contains all existing times in the timetable (one minute granularity); random
variable Xv models the actual time of event/node v; function φv is the delay
distribution of node v; and the definition of function fv depends on the type of
the node (see Appendix C). We refer to [9] for more details about the calculation
of the delay distributions.

6

• Train-change edges get inadmissible when the arrival node has a delay such that
the remaining time is not sufficient for a change into the departing train.

W.r.t. the query, each arrival node v ∈ V at the target station is relevant for which one
has: the pq-quantile of φv is in time interval [tq− δ, tq]. We introduce a left bound tq− δ
for the arrival time, since an arrival much earlier than tq is not desired by travelers.
In order to accelerate the strategy set-up, we only consider departure events within
a certain time interval. This time interval is sufficiently generous and is determined
depending on the arrival time interval and the expected connection length for the query.
For a further acceleration, as previously mentioned, we restrict the search area to all
existing paths from VS to VT . We determine these paths prior to the set-up.

For the described setting, we calculate the optimal strategy with the approach pre-
sented in Section 3. When comparing the outgoing arcs to select the best one, we
optimize travel duration and number of train changes, subject to the guaranteed prob-
ability of success, which is defined in the query by pq. The latest departure time is
identified by selecting the departure node at the source station with the latest departure
time and a probability of success not lower than pq.

5 Evaluation

5.1 Baseline: Extending a Connection by Alternatives

In order to evaluate our strategy approach presented in Sections 3 and 4.2, we developed
a baseline approach to find connections extended by alternatives. The algorithm to
construct such an extended connection is the following:

1. Search for an attractive connection from start to target, and determine its relia-
bility using our reliability rating method for single connections [9].

2. Detect the next train change in the connection with a reliability lower than 1.
Beginning at that stop, search for a new alternative connection to the target.
Then, recalculate the reliability of the train change and the whole connection
regarding the new alternative.

3. Repeat step 2 until the required threshold (pq) for the connection reliability is
obtained or there is no other alternative in the graph.

The connections and the alternatives are found using our Multi-Objective Traffic Infor-
mation System MOTIS [10]. Such an extended connection can be seen as a strategy,
and its probability of success equals the calculated reliability rating.

This approach models the behavior of the users of train information systems who try
to find highly reliable train connections. Thus far, this is even far better than anything
the user can do on his/her own.

5.2 Dataset and Test Queries

We evaluated our approach to compute strategies in the railway network presented in
Section 4. We compared solutions found using our strategy approach (as described in
Section 4.2) to solutions found by the extended connections approach (as described in
Section 5.1). Our computations were carried out on a desktop PC with Intel Xeon CPU
E3-1270v2 3.50GHz and 32 GB of RAM.

Using real timetable data from German Railways, we prepared a graph for a two-day
period1: 5-6 August 2014 with 2.2M event nodes.

We considered 5,200 different station pairs – extracted from real customer queries –
as source and target stations. For each station pair, we created queries with 9 different

1A two-day period is needed to cover long running trains and overnight connections.

7

no Strategy later
test set total # ExtConn earlier no diff later departure

all 43,890 9.95% 0.00% 70.37% 19.68% 45 min
no direct 34,762 12.17% 0.00% 65.64% 22.19% 47 min
conn. rel. < 90 15,013 18.38% 0.00% 51.42% 30.20% 49 min

Table 1: Computational study: comparison of Strategy vs. ExtConn. Column no
ExtConn shows the percentage of queries for which the ExtConn approach could not find
any solutions satisfying the deadline. The columns earlier, no diff, and later present the
percentage of the queries for which Strategy found a solution which had in comparison to
the ExtConn approach an earlier, nearly the same (delta < 5 min), or a later departure
time. For solutions of Strategy with a later departure time, the last column shows how
much later (in average) the departure time was in comparison to the solution of ExtConn.
The first two rows correspond to the evaluation of all queries in the test set. The next
two rows show the evaluation of all queries for which there were no direct connection
from source to target. The last two rows show the evaluation of all queries for which
the connection found by the standard search algorithm of MOTIS had a reliability lower
than 90%.

deadlines for the arrival time: tq ∈ { 13:00, 16:00, 18:00, 20:00, 22:00, 01:00, 06:00,
08:00, 10:00 }. The first five deadlines were on the first day and the last four deadlines
were on the second day of the two-days period. We set δ to 100 minutes and required
a probability of success pq of 98%. W.r.t. to this setting, we created a set of 46,800
queries in total.

5.3 Results

As described in Section 4.2, for each query we computed a strategy. Each source node
corresponds to the entering point in a connection from source to target with reasonable
alternatives and a certain probability of success. For this evaluation, we only considered
the connection beginning at the latest source node with a probability of success not
lower than 98%. We denote this approach by Strategy.

Moreover, for each query, we found a set of extended connections as described in
Section 5.1. We selected the extended connection with the latest departure time at the
source station and a probability of success of at least 98%. We denote this approach by
ExtConn.

For 4.98% of the queries, there did not exist any connection in the timetable for the
considered arrival time interval. For 1.13% of the rest of the queries, there did not exist
any solution to arrive before the deadline and satisfy the 98% threshold. Additionally,
we sorted out 0.18% of the remaining queries, since for them a comparison between
Strategy and ExtConn was not fair: ExtConn found solutions which were better than
the solutions of Strategy but could not be found by Strategy due to restrictions in
our implementation of the Strategy approach. In our implementation of the Strategy
approach, we forbid arrivals earlier than the queried arrival interval, as explained in
Section 4.2. Furthermore, we do not allow cycles through the source station. Last,
when comparing arcs pairwise, as described in Section 3.2, in the case that the difference
between the probabilities of success of the two compared arcs is less than 0.0001, the
arc with the smaller number of train changes dominates the another one. Compared
to ExtConn, this adjustment in our implementation results in finding a worse solution
for just 1 query in the evaluated query set, but helps to find more comfortable train
connections for many other queries. The mentioned three restrictions are not due to
the Strategy approch but to our implementation. Therefore, we did not consider them
in our evaluation. In Table 1, we compare Strategy with ExtConn by analyzing the
remaining 43,890 queries.

8

approach duration (avg) train changes (avg) run time (avg)

Conn 231 min 1.55 0.23 s
ExtConn 249 min 1.40 1.45 s
Strategy 246 min 1.46 20.73 s

Table 2: Travel duration, number of train changes, and run time in average.

Discussion For many queries, there is already a direct connection or a highly reli-
able connection, which can be found using the standard connection search algorithm of
MOTIS (a multi-criteria version of the Dijkstra’s algorithm without reliability optimiza-
tion). In many of these cases, the Strategy and the ExtConn approach can not obtain
better results. In order to demonstrate the effectiveness of the Strategy approach, we
separately evaluated queries for which there is no direct connection in the timetable
but a connection with at least one train change (rows 3 and 4 in Table 1) Moreover,
we analyzed queries where the connection found by the standard search algorithm of
MOTIS had a reliability lower than 90% (last two rows in Table 1).

In Table 1, the columns no ExtConn and Strategy later present the advantage of the
Strategy approach. Considering queries for which at least one train change is necessary,
ExtConn found for 12.17% of the queries no extended connection arriving before the
deadline with a probability of at least 98%. For 22.19% of the queries, Strategy was able
to find solutions that depart in average 47 minutes later than those found by ExtConn.
Considering queries for which MOTIS found a connection with a reliability lower than
90%, the Strategy approach obtains a better result for 48.58% of the queries.

The ExtConn approach is tied to the connections delivered by the train information
system. There is no guarantee that these connections have good or even any alternatives.
In contrast, the Strategy approach searches specifically for solutions which satisfy the
probability of success and maximize the departure time. Moreover, ExtConn searches
only for alternatives which begin at stops with train changes. On the contrary, at each
station and depending on the arrival time, Strategy can choose between the options “to
stay in the same train” and “to change into another train”. Nevertheless, as already
mentioned, ExtConn is even far better than anything the user can do on his/her own.

Table 2 gives the average run time per query, and the average travel duration and
the average number of train changes of the solutions found by Strategy, ExtConn, and
the standard search algorithm of MOTIS. In practice, a user needs many queries to find
a reliable connection with good alternatives using the ExtConn approach. In fact, this
is very time consuming, even if the run time of ExtConn seems to be better than the
run time of Strategy in our automatized experiments.

The values in Table 2 show that the Strategy approach has found reasonable solutions
with durations and number of train changes similar to the connections found by MOTIS.

6 Conclusion and Outlook

We introduced a novel generic algorithmic problem in directed acyclic graphs, motivated
by our train delay research. Moreover, we presented an algorithm to set-up strategies
that selects the best arc for each node and each value for its random variable and
computes the probability of success via dynamic-programming. To our knowledge, we
are the first to optimize criteria such as late departure time and travel duration subject
to a guaranteed probability of success in a stochastic network. We customized our
algorithm to the application scenario: finding reliable connections in a railway network.

In order to evaluate the quality of the strategies, we developed another approach
modeling user behavior as a baseline. We presented computational results based on real
data from the national German railway company. Our study showed that our approach
is able to find reasonable train connections satisfying the queried probability of success.

9

For up to 48.58% of the analyzed queries, we were able to find better results than the
baseline approach.

Outlook As mentioned in the introduction, the approach we presented is evidently
of much broader practical value, especially in the fields of transportation, logistics, and
scheduling. However, this is left to future research.

We have commenced investigating speed-up techniques like parallelization to improve
the run time of our approach.

In timetable information, we plan to support multi modal traffic including local
public transportation and individual traffic.

References

[1] Annabell Berger, Andreas Gebhardt, Matthias Müller-Hannemann, and Martin Os-
trowski. Stochastic delay prediction in large train networks. In ATMOS, pages
100–111, 2011.

[2] Kateřina Böhmová, Matúš Mihalák, Tobias Pröger, Rastislav Šrámek, and Peter
Widmayer. Robust routing in urban public transportation: How to find reliable
journeys based on past observations. In ATMOS, volume 33 of OASIcs, pages
27–41, 2013.

[3] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly
simple and fast transit routing. In 12th International SEA, pages 43–54, 2013.

[4] Y. Fan and Y. Nie. Optimal routing for maximizing the travel time reliability.
Networks and Spatial Economics, 6(3-4):333–344, sep 2006.

[5] Liping Fu and L. R. Rilett. Expected shortest paths in dynamic and stochastic
traffic networks. Transportation Research Part B: Methodological, 32(7):499–516,
1998.

[6] Marc Goerigk, Sacha Heße, Matthias Müller-Hannemann, Marie Schmidt, and
Anita Schöbel. Recoverable Robust Timetable Information. In ATMOS, volume 33
of OASIcs, pages 1–14, 2013.

[7] Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, and
Anita Schöbel. The price of robustness in timetable information. In ATMOS,
volume 20 of OASIcs, pages 76–87, 2011.

[8] Randolph W. Hall. The Fastest Path through a Network with Random Time-
Dependent Travel Times. Transportation Science, 20(3):182–188, August 1986.

[9] Mohammad H. Keyhani, Mathias Schnee, Karsten Weihe, and Hans-Peter Zorn.
Reliability and delay distributions of train connections. In ATMOS, volume 25 of
OASIcs, pages 35–46, 2012.

[10] Matthias Müller-Hannemann and Mathias Schnee. Finding all attractive train con-
nections by multi-criteria pareto search. In ATMOS, pages 246–263, 2004.

[11] L.R. Nielsen, D. Pretolani, and K.A. Andersen. k shortest paths in stochastic time-
dependent networks. Technical Report WP-L-2004-05, Department of Accounting,
Finance and Logistics, Aarhus School of Business, 2004.

[12] L.R. Nielsen, D. Pretolani, and K.A. Andersen. Bicriterion a priori route choice in
stochastic time-dependent networks. Technical Report WP-L-2006-10, Department
of Business Studies, Aarhus School of Business, 2006.

10

[13] Evdokia Nikolova, Matthew Brand, and David R. Karger. Optimal route planning
under uncertainty. In ICAPS, pages 131–141, 2006.

[14] Yiyong Pan, Lu Sun, and Minli Ge. Finding reliable shortest path in stochastic
time-dependent network. Procedia - Social and Behavioral Sciences, 96(0):451 –
460, 2013. (CICTP2013).

[15] Daniele Pretolani. A directed hypergraph model for random time dependent short-
est paths. European Journal of Operational Research, 123:2000, 1998.

[16] S. Samaranayake, S. Blandin, and A. Bayen. A tractable class of algorithms for
reliable routing in stochastic networks. Procedia - Social and Behavioral Sciences,
17(0):341 – 363, 2011. 19th ISTTT.

[17] Samitha Samaranayake, Sebastien Blandin, and Alexandre M. Bayen. Speedup
techniques for the stochastic on-time arrival problem. In ATMOS, volume 25 of
OASIcs, pages 83–96, 2012.

11

A Why Set-Up from Target Nodes to Source Nodes?

To decide which outgoing arc has to be selected, for each possible outgoing arc at a
node, we have to know which probability of success can be obtained when selecting the
arc. For each possible outgoing arc, we have to know which target nodes can be reached
when selecting the arc and which probabilities the values for the random variables of
theses nodes would have. Therefore, we have to know the strategy to walk from each
considered successor node to the target.

Thus, we set-up the strategy beginning with the target nodes backwards through the
graph, until the source nodes are reached. This can be done using a topological ordering
of the nodes in the graph. The probabilities of the random variables of the target
nodes are also propagated backwards through the graph by our dynamic-programming
approach. This propagation allows us to compute the probability of success and to select
the best outgoing arc, for each node and each value for its random variable.

B Why Propagate Probabilities?

In the following, we explain why a propagation is necessary in order to get the probability
of success. Consider a path over nodes u0, . . . , un ∈ V and arcs (ui, ui+1) ∈ A with i ∈
1 . . . n−1, where each of these arcs is selected by the strategy: one has αui,a = (ui, ui+1)
for at least one a ∈ T . To set-up the strategy, for each t1, t2 ∈ T , we need to compute
the following probability: the probability that Xu0 attains value t1, Xun attains value t2,
and all arcs (ui, ui+1) are admissible. This probability depends on the random variables
of nodes u0, . . . , un. Its computation requires a propagation of probabilities through the
selected arcs w.r.t. the mentioned dependencies.

Since we set-up the strategy from target to source, we also propagate the probabilities
backwards through the graph. After adding each new arc to the strategy during the
set-up phase, the backwards propagation via dynamic programming allows a reuse of
partial results from previous iterations of the set-up. So, at each step, the propagation is
performed only for the new arc. In contrast to the backwards propagation, after adding
each new arc to the strategy, a forwards propagation approach would require a complete
repropagation through all arcs which depend on the new arc and have previously been
selected by the set-up. This would entail a considerable effort, since at each iteration we
would redundantly recalculate distributions for a large number of nodes. So, we decided
to propagate the probabilities backwards.

In the above example, let un be a target node. For each t ∈ T , we propagate the prob-
abilities φun

(t) backwards through the path u0, . . . , un. These propagated probabilities
contribute to the probability of success ρu0,t1 at node u0.

C How to Propagate Probabilities (Details)

The propagated probability ψv,a(t) can also be defined by introducing a new random
variable:

• for a ∈ T and v ∈ V , we define random variable Zv,a. When the value of each
random variable is revealed, if Xv has attained value a, and there is a path from
v to some target node z ∈ VT exclusively over admissible arcs, Zv,a attains the
actual value of Xz;

• for v ∈ V and a, t ∈ T , function ψv,a(t) denotes the probability that Zv,a attains
value t. We denote ψv,a(t) as the propagated probability of node v for values a
and t.

12

Correctness The multiplication of the both introduced terms in Equation 1 is allowed,
because they are independent. The probability ψw,b(t) doesn’t depend on P (Xv = a

∣∣
Xw = b). The first term only propagates the probabilities from w to v. The division in
the first term makes it independent from the second term.

An example for function f In our paper [9], we introduced various formula f to
compute the delay distributions. Here, we show an example. Consider a train change
from train A to train B at station S. At station S, let w denote the departure node of
train B, u denote the arrival node of train B, and v denote the arrival node of train A.
The minimum standing time of train B at station S is denoted by ε, and the minimum
time required for a train change from A to B is denoted by η. The probability that train
B departs on time at time t, and a train change from A to B is possible is calculated as
follows:

fw(t) = P
(
Xw = t

)
= P

(
Xu ≤ t− ε

)
· P
(
Xv ≤ t− η

)
· PnoWaiting

The term PnoWaiting denotes the probability that train B does not have to wait longer
for any other train at station S. More details can be found in [9].

13

