262 research outputs found

    Investigation of the Effects of Image Signal-to-Noise Ratio on TSPO PET Quantification of Neuroinflammation

    Get PDF
    Neuroinflammation may be imaged using positron emission tomography (PET) and the tracer [11C]-PK11195. Accurate and precise quantification of 18 kilodalton Translocator Protein (TSPO) binding parameters in the brain has proven difficult with this tracer, due to an unfavourable combination of low target concentration in tissue, low brain uptake of the tracer and relatively high non-specific binding, all of which leads to higher levels of relative image noise. To address these limitations, research into new radioligands for the TSPO, with higher brain uptake and lower non-specific binding relative to [11C]-PK11195, is being conducted world-wide. However, factors other than radioligand properties are known to influence signal-to-noise ratio in quantitative PET studies, including the scanner sensitivity, image reconstruction algorithms and data analysis methodology. The aim of this thesis was to investigate and validate computational tools for predicting image noise in dynamic TSPO PET studies, and to employ those tools to investigate the factors that affect image SNR and reliability of TSPO quantification in the human brain. The feasibility of performing multiple (n≥40) independent Monte Carlo simulations for each dynamic [11C]-PK11195 frame- with realistic modelling of the radioactivity source, attenuation and PET tomograph geometries- was investigated. A Beowulf-type high performance computer cluster, constructed from commodity components, was found to be well suited to this task. Timing tests on a single desktop computer system indicated that a computer cluster capable of simulating an hour-long dynamic [11C]-PK11195 PET scan, with 40 independent repeats, and with a total simulation time of less than 6 weeks, could be constructed for less than 10,000 Australian dollars. A computer cluster containing 44 computing cores was therefore assembled, and a peak simulation rate of 2.84x105 photon pairs per second was achieved using the GEANT4 Application for Tomographic Emission (GATE) Monte Carlo simulation software. A simulated PET tomograph was developed in GATE that closely modelled the performance characteristics of several real-world clinical PET systems in terms of spatial resolution, sensitivity, scatter fraction and counting rate performance. The simulated PET system was validated using adaptations of the National Electrical Manufacturers Association (NEMA) quality assurance procedures within GATE. Image noise in dynamic TSPO PET scans was estimated by performing n=40 independent Monte Carlo simulations of an hour-long [11C]-PK11195 scan, and of an hour- long dynamic scan for a hypothetical TSPO ligand with double the brain activity concentration of [11C]-PK11195. From these data an analytical noise model was developed that allowed image noise to be predicted for any combination of brain tissue activity concentration and scan duration. The noise model was validated for the purpose of determining the precision of kinetic parameter estimates for TSPO PET. An investigation was made into the effects of activity concentration in tissue, radionuclide half-life, injected dose and compartmental model complexity on the reproducibility of kinetic parameters. Injecting 555 MBq of carbon-11 labelled TSPO tracer produced similar binding parameter precision to 185 MBq of fluorine-18, and a moderate (20%) reduction in precision was observed for the reduced carbon-11 dose of 370 MBq. Results indicated that a factor of 2 increase in frame count level (relative to [11C]-PK11195, and due for example to higher ligand uptake, injected dose or absolute scanner sensitivity) is required to obtain reliable binding parameter estimates for small regions of interest when fitting a two-tissue compartment, four-parameter compartmental model. However, compartmental model complexity had a similarly large effect, with the reduction of model complexity from the two-tissue compartment, four-parameter to a one-tissue compartment, two-parameter model producing a 78% reduction in coefficient of variation of the binding parameter estimates at each tissue activity level and region size studied. In summary, this thesis describes the development and validation of Monte Carlo methods for estimating image noise in dynamic TSPO PET scans, and analytical methods for predicting relative image noise for a wide range of tissue activity concentration and acquisition durations. The findings of this research suggest that a broader consideration of the kinetic properties of novel TSPO radioligands, with a view to selection of ligands that are potentially amenable to analysis with a simple one-tissue compartment model, is at least as important as efforts directed towards reducing image noise, such as higher brain uptake, in the search for the next generation of TSPO PET tracers

    Generalized 3D and 4D motion compensated whole-body PET image reconstruction employing nested em deconvolution

    Get PDF
    Whole-body dynamic and parametric PET imaging has recently gained increased interest as a clinically feasible truly quantitative imaging solution for enhanced tumor detectability and treatment response monitoring in oncology. However, in comparison to static scans, dynamic PET acquisitions are longer, especially when extended to large axial field-of-view whole-body imaging, increasing the probability of voluntary (bulk) body motion. In this study we propose a generalized and novel motion-compensated PET image reconstruction (MCIR) framework to recover resolution from realistic motion-contaminated static (3D), dynamic (4D) and parametric PET images even without the need for gated acquisitions. The proposed algorithm has been designed for both single-bed and whole-body static and dynamic PET scans. It has been implemented in fully 3D space on STIR open-source platform by utilizing the concept of optimization transfer to efficiently compensate for motion at each tomographic expectation-maximization (EM) update through a nested Richardson-Lucy EM iterative deconvolution algorithm. The performance of the method, referred as nested RL-MCIR reconstruction, was evaluated on realistic 4D simulated anthropomorphic digital XCAT phantom data acquired with a clinically feasible whole-body dynamic PET protocol and contaminated with measured non-rigid motion from MRI scans of real human volunteers at multiple dynamic frames. Furthermore, in order to assess the impact of our method in whole-body PET parametric imaging, the reconstructed motion-corrected dynamic PET images were fitted with a multi-bed Patlak graphical analysis method to produce metabolic uptake rate (Ki parameter in Patlak model) images of highly quantitative value. Our quantitative Contrast-to-Noise (CNR) and noise vs. bias trade-off analysis results suggest considerable resolution enhancement in both dynamic and parametric motion-degraded whole-body PET images after applying nested RL-MCIR method, without amplification of noise

    Improving Quantification in Lung PET/CT for the Evaluation of Disease Progression and Treatment Effectiveness

    Get PDF
    Positron Emission Tomography (PET) allows imaging of functional processes in vivo by measuring the distribution of an administered radiotracer. Whilst one of its main uses is directed towards lung cancer, there is an increased interest in diffuse lung diseases, for which the incidences rise every year, mainly due to environmental reasons and population ageing. However, PET acquisitions in the lung are particularly challenging due to several effects, including the inevitable cardiac and respiratory motion and the loss of spatial resolution due to low density, causing increased positron range. This thesis will focus on Idiopathic Pulmonary Fibrosis (IPF), a disease whose aetiology is poorly understood while patient survival is limited to a few years only. Contrary to lung tumours, this diffuse lung disease modifies the lung architecture more globally. The changes result in small structures with varying densities. Previous work has developed data analysis techniques addressing some of the challenges of imaging patients with IPF. However, robust reconstruction techniques are still necessary to obtain quantitative measures for such data, where it should be beneficial to exploit recent advances in PET scanner hardware such as Time of Flight (TOF) and respiratory motion monitoring. Firstly, positron range in the lung will be discussed, evaluating its effect in density-varying media, such as fibrotic lung. Secondly, the general effect of using incorrect attenuation data in lung PET reconstructions will be assessed. The study will compare TOF and non-TOF reconstructions and quantify the local and global artefacts created by data inconsistencies and respiratory motion. Then, motion compensation will be addressed by proposing a method which takes into account the changes of density and activity in the lungs during the respiration, via the estimation of the volume changes using the deformation fields. The method is evaluated on late time frame PET acquisitions using ¹⁸F-FDG where the radiotracer distribution has stabilised. It is then used as the basis for a method for motion compensation of the early time frames (starting with the administration of the radiotracer), leading to a technique that could be used for motion compensation of kinetic measures. Preliminary results are provided for kinetic parameters extracted from short dynamic data using ¹⁸F-FDG

    Quantitative PET image reconstruction employing nested expectation-maximization deconvolution for motion compensation

    Get PDF
    Bulk body motion may randomly occur during PET acquisitions introducing blurring, attenuation-emission mismatches and, in dynamic PET, discontinuities in the measured time activity curves between consecutive frames. Meanwhile, dynamic PET scans are longer, thus increasing the probability of bulk motion. In this study, we propose a streamlined 3D PET motion-compensated image reconstruction (3D-MCIR) framework, capable of robustly deconvolving intra-frame motion from a static or dynamic 3D sinogram. The presented 3D-MCIR methods need not partition the data into multiple gates, such as 4D MCIR algorithms, or access list-mode (LM) data, such as LM MCIR methods, both associated with increased computation or memory resources. The proposed algorithms can support compensation for any periodic and non-periodic motion, such as cardio-respiratory or bulk motion, the latter including rolling, twisting or drifting. Inspired from the widely adopted point-spread function (PSF) deconvolution 3D PET reconstruction techniques, here we introduce an image-based 3D generalized motion deconvolution method within the standard 3D maximum-likelihood expectation-maximization (ML-EM) reconstruction framework. In particular, we initially integrate a motion blurring kernel, accounting for every tracked motion within a frame, as an additional MLEM modeling component in the image space (integrated 3D-MCIR). Subsequently, we replaced the integrated model component with a nested iterative Richardson-Lucy (RL) image-based deconvolution method to accelerate the MLEM algorithm convergence rate (RL-3D-MCIR). The final method was evaluated with realistic simulations of whole-body dynamic PET data employing the XCAT phantom and real human bulk motion profiles, the latter estimated from volunteer dynamic MRI scans. In addition, metabolic uptake rate Ki parametric images were generated with the standard Patlak method. Our results demonstrate significant improvement in contrast-to-noise ratio (CNR) and noise-bias performance in both dynamic and parametric images. The proposed nested RL-3D-MCIR method is implemented on the Software for Tomographic Image Reconstruction (STIR) open-source platform and is scheduled for public release

    Direct estimation of kinetic parametric images for dynamic PET.

    Get PDF
    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed

    Simulation of Clinical PET Studies for the Assessment of Quantification Methods

    Get PDF
    On this PhD thesis we developed a methodology for evaluating the robustness of SUV measurements based on MC simulations and the generation of novel databases of simulated studies based on digital anthropomorphic phantoms. This methodology has been applied to different problems related to quantification that were not previously addressed. Two methods for estimating the extravasated dose were proposed andvalidated in different scenarios using MC simulations. We studied the impact of noise and low counting in the accuracy and repeatability of three commonly used SUV metrics (SUVmax, SUVmean and SUV50). The same model was used to study the effect of physiological muscular uptake variations on the quantification of FDG-PET studies. Finally, our MC models were applied to simulate 18F-fluorocholine (FCH) studies. The aim was to study the effect of spill-in counts from neighbouring regions on the quantification of small regions close to high activity extended sources

    4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties

    Get PDF
    4D reconstruction of dynamic positron emission tomography (dPET) data can improve the signal-to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel time-activity-curves (TACs) during the reconstruction, though the optimal choice of function remains an open question. We propose a spline-residue model, which describes TACs as weighted sums of convolutions of the arterial input function with cubic B-spline basis functions. Convolution with the input function constrains the spline-residue model at early time-points, potentially enhancing noise suppression in early time-frames, while still allowing a wide range of TAC descriptions over the entire imaged time-course, thus limiting bias. 
 Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) maximum a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-splines, the spectral model and an irreversible two-tissue compartment ('2C3K') model. 4D reconstructions were carried out using a nested-MAP algorithm including spatial and temporal roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, generated for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-Fluromisonidazole scan of a non-small cell lung cancer patient. For every algorithm, parametric maps were calculated by fitting each voxel TAC within a sub-region of the reconstructed images with the 2C3K model. 
 Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction achieved >50% improvements for 5 of the 8 combinations of the 4 kinetics parameters for which parametric maps were created with the bias and noise measures used to analyse them, and produced better results for 5/8 combinations than any of the other reconstruction algorithms studied, while spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K model-based 4D reconstruction generated the most biased parametric maps. Inclusion of a temporal roughness penalty function improved the performance of 4D reconstruction based on the cubic B-spline, spectral and spline-residue models.&#13

    The influence of noise in dynamic PET direct reconstruction

    Get PDF
    In the present work a study is carried out in order to assess the efficiency of the direct reconstruction algorithms on noisy dynamic PET data. The study is performed via Monte Carlo simulations of a uniform cylindrical phantom whose emission values change in time according to a kinetic law. After generating the relevant projection data and properly adding the effects of different noise sources on them, the direct reconstruction and parametric estimation algorithm is applied. The resulting kinetic parameters and reconstructed images are then quantitatively evaluated with appropriate indexes. The simulation is repeated considering different sources of noise and different values of them. The results obtained allow us to affirm that the direct reconstruction algorithm tested maintains a good efficiency also in presence of noise
    corecore