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Highlights 

 A 3D motion-compensated  PET image reconstruction algorithm employing nested 
Richardson-Lucy deconvolution is proposed 

 Algorithm inspired from resolution modeling reconstruction techniques after replacing 
PSF kernel with an intra-frame motion blurring kernel 

 Clinical adoptable method for both static and dynamic PET sinogram frames without 
requiring gating or access to list-mode data  

 Applicable for any combination of rigid and non-rigid transformations including brain, 
cardio-respiratory and irregular bulk body motion 

 Recommended for simultaneous PET/MR or dynamic whole-body PET scan protocols  
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Abstract. Bulk body motion may randomly occur during PET acquisitions introducing blurring, attenuation-
emission mismatches and, in dynamic PET, discontinuities in the measured time activity curves between 
consecutive frames. Meanwhile, dynamic PET scans are longer, thus increasing the probability of bulk motion. In 
this study, we propose a streamlined 3D PET motion-compensated image reconstruction (3D-MCIR) framework, 
capable of robustly deconvolving intra-frame motion from a static or dynamic 3D sinogram. The presented 3D-
MCIR methods need not partition the data into multiple gates, such as 4D MCIR algorithms, or access list-mode 
(LM) data, such as LM MCIR methods, both associated with increased computation or memory resources. The 
proposed algorithms can support compensation for any periodic and non-periodic motion, such as cardio-respiratory 
or bulk motion, the latter including rolling, twisting or drifting. Inspired from the widely adopted point-spread 
function (PSF) deconvolution 3D PET reconstruction techniques, here we introduce an image-based 3D generalized 
motion deconvolution method within the standard 3D maximum-likelihood expectation-maximization (ML-EM) 
reconstruction framework. In particular, we initially integrate a motion blurring kernel, accounting for every tracked 
motion within a frame, as an additional MLEM modeling component in the image space (integrated 3D-MCIR). 
Subsequently, we replaced the integrated model component with a nested iterative Richardson-Lucy (RL) image-
based deconvolution method to accelerate the MLEM algorithm convergence rate (RL-3D-MCIR). The final method 
was evaluated with realistic simulations of whole-body dynamic PET data employing the XCAT phantom and real 
human bulk motion profiles, the latter estimated from volunteer dynamic MRI scans. In addition, metabolic uptake 
rate Ki parametric images were generated with the standard Patlak method. Our results demonstrate significant 
improvement in contrast-to-noise ratio (CNR) and noise-bias performance in both dynamic and parametric images. 
The proposed nested RL-3D-MCIR method is implemented on the Software for Tomographic Image Reconstruction 
(STIR) open-source platform and is scheduled for public release. 
 
Keywords: PET, reconstruction, motion compensation, deblurring, Richardson-Lucy deconvolution 
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Medicine at Mount Sinai., New York, NY, USA, 10029 

1 Introduction 

Quantification and image resolution in clinical Positron Emission Tomography (PET) can be 
significantly affected by various types of motion occurring during data acquisition [1]-[3]. 
Motion-induced degradation of PET image resolution and quantification can occur in the form of 
i) blurring at the interface between regions of different underlying activity distributions, ii) 
artifacts due to mismatched attenuation correction, and iii) apparent discontinuities in the 
measured time activity curves (TACs) at each voxel across dynamic PET frames [1]-[5]. Apart 
from the involuntary and nearly periodic respiratory and cardiac motion, random bulk body 
motion is also frequently observed in the clinical setting. The latter type of motion is less 
predictable and may include various randomly occurring non-rigid transformations such as 
rolling, twisting and drifting of different parts of the subjects’ body [6].  

A factor expected to increase the likelihood of random bulk motion during PET acquisition is 
the total scan time associated with certain types of PET study protocols. For instance, 
synchronized PET/MR imaging, that is currently garnering increased clinical interest, may often 
involve lengthy PET acquisitions, while long series of various MR sequences are performed [7]. 
In addition, the recently introduced dynamic whole-body (WB) PET protocols for enhanced 
quantification may include several WB PET passes, thus requiring lengthy acquisitions [8],[9].  

The majority of existing motion compensated (MC) 3D PET image reconstruction methods 
for non-brain data focus mainly on respiratory and cardiac motion and often neglect bulk motion. 
At the same time, most MC techniques rely on highly noisy gated static or dynamic PET data to 
“freeze” motion, assuming nearly-periodic cardio-respiratory motions. Thus, they often neglect 
the irregular and randomly occurring bulk body motion [10]-[20]. Gated MC methods, not 
accounting for intra-gate motion, would ideally require as many gates as the number of 



4 
 

individually tracked transformations within that frame, to eliminate intra-gate motion [17],[19]. 
As bulk motions are occurring randomly during a scan, such techniques may produce numerous 
gates of highly imbalanced statistical noise levels between them. Meanwhile, given the change of 
the activity distribution due to physiological or biochemical processes, motion gating in dynamic 
PET would have to be conducted for each of the dynamic frames independently. Consequently, 
an even larger number of gates may then be required. 

The most common PET MC class of algorithms involve i) independent 3D reconstruction of 
the gated raw PET data. The tracked motion is modeled in the form of 3D Cartesian motion 
vector fields (MVFs) that are often derived from the 3D image registration between either the 
reconstructed PET gates or co-registered anatomical gates, such as synchronized 4D CT or MR 
acquisitions. Subsequently, iii) the estimated MVFs are employed to transform/warp all gated 
PET images to a selected reference image. Finally, iv) the transformed PET images are averaged 
to obtain the motion-compensated PET image. This class of gate-based post-reconstruction MC 
techniques, also known as registration-transformation-averaging (RTA) method, can be readily 
applied to 4D PET datasets as a post-reconstruction analysis tool [10],[17].  

However, RTA methods accept images, rather than sinograms or LM data, as input data and, 
thus, need to model count distributions in the image space, where noise is highly correlated and 
complex, due to the reconstruction process. Consequently, noise properties are often 
approximated with RTA algorithms, often leading to bias in the final images. Moreover, RTA 
algorithms rely on independent reconstruction of each gate, thereby their input suffer from poor 
count statistics. As a result, high noise is propagated to the final MC PET images through RTA 
algorithms. In fact, for a given frame of PET data, noise propagation is expected to increase with 
larger number of gates for that frame. As RTA methods rely on motion “freezing” within each 
gate, a larger number of gates is expected when non-periodic or random motions occur within a 
PET frame, thereby amplifying noise propagation [17],[21]-[23]. Consequently RTA methods 
may not be a robust approach for compensation of non-periodic motions. 

Later, motion modeling was efficiently integrated within a multi-gated 4D maximum-
likelihood expectation-maximization (ML-EM) framework to enhance MC efficiency [11]. 
Unlike indirect RTA, another class of methods, also known as 4D motion compensated image 
reconstruction (4D-MCIR) algorithms, permit utilization of PET counts from all acquired gates 
to efficiently reconstruct the MC images directly from the gated PET raw data and thus 
substantially limit noise propagation in the MC image estimates, especially in very low count 
conditions. Furthermore, as the 4D-MCIR algorithms are applied directly on raw PET counts, the 
input data statistical noise now follows the well-characterized Poisson distribution, which can be 
accurately modeled, regardless of the gating scheme, thus reducing potential noise-induced 
resolution degradation effects in the MC image estimates [17],[22],[23].  

Nevertheless, sinogram-based 4D-MCIR methods need to appropriately weight each PET 
gate, such that the actual level of statistical noise in each gate is accurately reflected and 
accounted during reconstruction to ensure proper EM convergence. As discussed earlier also for 
RTA methods, an MC approach relying only on gating to compensate for non-periodic motion 
may often result in relatively large number of gates of highly imbalanced noise. Although in the 
case of 4D-MCIR methods this may not significantly affect noise propagation, a larger number 
of gates will increase the demands for processing and memory resources. In addition, accurate 
weighting may become challenging among highly imbalanced gates, thus increasing the 
likelihood of erroneous MC estimates [17],[23].  
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Alternatively, promising list-mode (LM) MCIR algorithms have been previously proposed, 
capable of directly applying motion compensation at the PET coincidence lines of response 
(LORs), i.e. at the root of the problem [24]-[27]. However, LM PET scans may not be supported 
by some PET systems and LM data may not be regularly archived in clinic for retrospective 
analysis. Moreover, LM-based methods are relatively more computationally demanding.  

In this study, we propose a new class of robust 3D maximum-likelihood expectation-
maximization (MLEM) algorithms capable of motion-compensated PET image reconstruction 
(3D-MCIR) via image-based deconvolution from any single 3D PET sinogram, either from a 
static or a dynamic PET acquisition. The presented 3D-MCIR algorithms not only alleviate the 
need to directly reconstruct from LM data but also that of motion gating, thereby improving 
computational efficiency and future clinical adoptability. Moreover, the absence of gating allows 
for robust compensation of non-periodic motions, such as irregular breathing patterns or random 
body bulk motions. This feature can be particularly important for long PET scan time sessions, 
where non-periodic motions are more probable due to subject discomfort, such as for some 
PET/MR and dynamic PET protocols. 

The intra-frame motion in 3D-MCIR algorithms can be modeled as an image convolution or 
blurring kernel, the latter built from all individual tracked motion transformations. Initially, this 
kernel operator is simply integrated as an additional image-based modeling component of the 3D 
MLEM reconstruction to form the integrated-3D-MCIR algorithm. Nevertheless, the integrated 
convolution is expected to decelerate the overall MLEM convergence rate, due to the added 
voxel correlations induced by convolution, thus requiring a larger number of iterations to attain 
sufficient contrast recovery, thereby increasing the computational cost [28]. Moreover, as larger 
number of iterations is known to be associated with higher noise levels, a slower convergence 
may result in more noisy estimates for a given contrast level, thus potentially reducing contrast-
to-noise-ratio (CNR) scores and lesion detectability in the final MC estimates.  

Therefore, we ultimately replaced the integrated model component above with an iterative 
Richardson-Lucy (RL) image-based deconvolution algorithm that was nested within each global 
MLEM iteration step. Thus, the nested RL-3D-MCIR approach allows for multiple fast image-
based RL motion deconvolution updates within a single slower tomographic image update 
thereby accelerating the global MLEM convergence rate. Moreover, the principle of optimization 
transfer was employed to ensure the accelerated RL-3D-MCIR algorithm still converges to the 
proper global ML solution for improved CNR performance and wider clinical adoptability [29]. 
Finally, the nested MLEM scheme permits the decoupling of the deconvolution from the 
tomographic number of iterations thus offering more parameters to optimize to potentially reduce 
the Gibbs or ring image artifacts often appearing in deconvolved images [28].   

The concept of nested ML-EM deconvolution is inspired by the recent clinical advent of 
advanced 3D PET reconstruction methods supporting point-spread function (PSF) resolution 
modeling in the form of an image-based nested PSF deconvolution process [30]. Here, we 
propose the replacement of the PSF resolution kernel with a generic motion convolution kernel, 
as an effective and practical solution to the motion compensation problem [31]. In fact, iterative 
RL motion deconvolution has been explored in the past, but only as a post-reconstruction 
deblurring technique [32]-[37]. The presented method is implemented and validated in fully 3D 
mode on the Software for Tomographic Image Reconstruction (STIR) open-source platform [38], 
an object-oriented C++ software library, where we plan to release it openly in future. 
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2 Theory 

2.1 Generalized Motion Model in Image Space 

Each non-rigid 3D motion transformation can be expressed in the form of a set of three 3D 
MVFs, each along one of the three Cartesian coordinate principal directions: x, y and z. 
Subsequently, a warping operator can transform an original PET emission or attenuation map, 
the latter derived from CT or MRI, according to the three provided MVFs. When motion 
tracking within a static or each dynamic frame is available and synchronized with a 4D 
acquisition of PET or anatomical data, then the 4D data can be gated according to the tracked 
motion information, such that the residual motion within each gate is eliminated. Subsequently, 
advanced non-rigid registration techniques can be employed to estimate a set of three MVFs for 
each gate, describing the motion transformation between the gate and a reference space [39]. 

The presented 3D MCIR PET reconstruction method is applied on ungated PET data, 
regardless if these PET data have been previously gated to estimate their motion contamination 
or the motion was tracked from synchronized 4D CT or MR data, the latter method often leading 
to a more robust motion estimation, if such anatomical data are available. Moreover, the 
proposed MCIR method can potentially model any type of generic motion combination (e.g. 
respiratory + cardiac + bulk + rigid) occurring within each ungated frame and is only being 
limited by the accuracy and precision of the motion estimates. In this study, we are focusing on 
the MC problem itself assuming that the 4D motion estimation is reasonably accurate. The 
employed forward motion model considers each motion-contaminated image as a time-weighted 
average of a set of motion-transformed/warped images:                   兼珍痛岫姉痛岻 噺 デ 潔鎚痛激珍轍蝦珍濡鎚 岫姉痛岻                                                     鎚樺史禰   (1) 

Notation: 
 激珍轍蝦珍濡鎚  is the forward motion warping/transform operator from voxel 倹待 of the original 

image space to voxel 倹鎚 of the motion-transformed image space for a particular 嫌 
transformation,  

 姉痛 岩 範捲珍轍痛飯珍轍退怠津乳  and 仕痛 岩 範兼珍痛飯珍退怠津乳  are the motion-corrected and motion-contaminated 

images of dynamic frame 建, respectively. Both images are comprised of 券珍 voxels in total. 
Note that the overall weighted averaging operation resulted in a new motion-blurred image 
space, denoted with voxel index 倹, for the 仕痛 images. The image vectors can represent 
either reconstructed PET or CT- or MRI-derived attenuation images. For notation simplicity 
we assume that all types of images are of the same dimensions in this study, 

 史痛 is the subset of motion transformations occurring during frame 建 and 
 潔鎚痛 is the respective time-weighting factor, defined as the time fraction relative to the 

duration of frame 建, for which the 嫌 樺 史痛 motion transformation holds [37]. 
The overall effect of the time-weighted averaging operation is the introduction of motion-

induced blurring in each of the original motion-free dynamic PET images, which is equivalent to 
the effect of convolving with an image-based kernel. Thus, the presented approach can be 
considered directly analogous to image-based PSF recovery reconstruction algorithms except 
that the PSF resolution response is now replaced with a motion blurring kernel. 
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2.2 Motion Deconvolution integrated within 3D ML-EM PET Image Reconstruction (integrated 
3D MCIR) 

We assume, throughout this study, a PET system with 券沈 detector pair bins in fully 3D 
acquisition mode and a reconstruction of 券痛 dynamic images of 券珍 voxels each. Initially, let us 
consider the conventional approach of completely integrating our generalized motion model to 
the PET ML-EM reconstruction framework, denoted here as integrated 3D-MCIR algorithm. 
After adding the image-based motion modeling term 兼珍痛岫姉痛岻 (Eq. 1) into the ML-EM image 
estimation algorithm, the EM forward projection process can be described as follows:  検沈痛岫姉痛岻 噺 デ 喧沈珍痛珍 兼珍痛岫姉痛岻 髪 堅沈痛                                                             (2) 

Notation: 

 桟 岩 範検沈痛飯沈┸痛退怠津日┸津禰  is the expected projection data acquired during frame t, 

 散 岩 岷姉痛峅痛退怠津禰  is the dynamic motion-compensated image vector to be estimated, 

 三 岩 岷堅沈痛峅沈┸痛退怠津日┸津禰  is the expected scattered and random data vector at each dynamic frame t and 

 皿痛 岩 範喧沈珍痛飯沈┸珍退怠津日┸津乳  is the system response matrix at frame 建, with each element 喧沈珍痛 denoting 

the probability of an annihilation event occurring in voxel 倹 and being detected in sinogram 
bin 件 during frame 建. 

Dynamic PET ML-EM reconstruction schemes aim at maximizing the Poisson log-likelihood 
of the measured dynamic projection measurements 桟 岩 岷検沈痛峅沈┸痛退怠津日┸津禰 , given the estimated dynamic 

image vector 散, with 姿痛 岩 岷検沈痛峅沈退怠津日  denoting the measured projection data for 建-th time frame: 詣岫桟】散岻 噺 デ デ 検沈痛    検沈痛岫姉痛岻 伐 検沈痛岫姉痛岻沈痛                                                    (3) 詣痛岫姿痛】姉痛岻 噺 デ 検沈痛    検沈痛岫姉痛岻 伐 検沈痛岫姉痛岻                                                     沈 (4) 

A term independent of 姉痛 is neglected from both equations above, as it does not participate in 
the optimization w.r.t. 姉痛. The ML solutions, for each frame 建, are defined as those that 
maximize the corresponding log-likelihood in Eq. 4, as denoted below: 姉赴痛 噺       姉禰詣痛岫姿痛】姉痛岻                                                                (5) 

In this study we are focusing on ML solutions to mainly demonstrate the concept of nested 
EM motion deconvolution for the standard ML-EM reconstruction framework. The ML-EM 
algorithm theoretically converges to a motion-compensated dynamic image estimate by 
maximizing the log-likelihood of the measured data given that estimate according to the 
following conventional EM update equation: 捲珍轍痛津袋怠 噺 掴乳轍禰韮デ 頂濡禰調乳濡蝦乳轍濡 岶層岼濡樺史禰 デ 椎日乳禰日 抜 デ 潔鎚痛激珍濡蝦珍轍鎚 犯デ 喧沈珍痛 槻日禰槻日禰盤姉禰韮匪沈 般鎚樺史禰                       (6) 

where 層 denotes a 3D uniform image matrix of ones. It is important to note that the variable 建 in 
Eq. 6 denotes the time of each dynamic frame and is constant within the equation, i.e. the above 
ML-EM algorithm is applied to a single dynamic frame 建 each time. Moreover the measured 検沈痛 
and expected 検沈痛 PET projection data of each frame 建 are not gated. Thus unlike the respective 
MLEM equation in 4D-MCIR algorithms which involve multiple PET data gates per dynamic 
frame [11], the proposed MCIR method in Eq. 6 employs only a single gate for each dynamic 
frame, containing all PET data of that frame, thereby considered a 3D reconstruction algorithm.  
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The integration of motion modeling together with the forward and backward tomographic 
projection operations effectively adds to the algorithm the extra task of solving for an image 
deconvolution problem simultaneously with the tomographic problem. As the spatial correlations 
among the reconstructed voxels are enhanced with the added motion convolution operation, the 
EM algorithm now requires more iteration steps to converge to an ML solution. As noise levels 
are increasing with iterations, a slow convergence rate will result in more noisy images for a 
given contrast, thus limiting the CNR performance. 

2.3 Nested Iterative Richardson-Lucy Motion Deconvolution within ML-EM PET Image 
Reconstruction (nested RL-3D-MCIR) 

In order to improve the convergence rate of the initial 3D-MCIR method presented above, we 
ultimately replaced the integrated motion modeling component with an iterative RL motion 
deconvolution EM algorithm, nested within each iteration step of the tomographic 3D-MLEM 
algorithm. In this nested 3D-MLEM approach, denoted here as the RL-3D-MCIR algorithm, we 
essentially decouple the fast image-based motion EM deconvolution from the much slower 
tomographic MLEM estimation to allow for multiple fast motion deconvolution updates for 
every single but slower tomographic image update. Moreover, we employ the optimization 
transfer principle to ensure every nested and global update will lead towards the proper global 
ML solution [29]. As the new scheme permits multiple faster updates for each slower one, 
acceleration is expected in the global convergence rate, thus improving computational and CNR 
performance, compared to the integrated-3D-MCIR method. 

In particular, the optimization transfer theory [29] is utilized to construct, at each global 
iteration step  券, a surrogate objective function for which the MLEM optimization is simplified, 
while ensuring convergence to the global ML solution of Eq. (5). The resulting surrogate 
objective functions express the log-likelihood of a motion-contaminated 建-th image frame 仕痛津, as 
estimated at global iteration step 券, given a deconvolved image estimate 姉痛 of the same frame. 芸痛┸津岫仕痛津】姉痛岻 噺 デ 盤デ 喧沈珍痛沈 匪兼珍痛津    兼珍痛岫姉痛岻 伐 兼珍痛岫姉痛岻                                  珍 (7) 

Thus, the maximization problem of the original global log-likelihood objective function 詣痛岫姿痛】姉痛岻 is now effectively transferred, at each global iteration step 券, into the maximization of 
a surrogate objective function 芸痛┸津岫仕痛津】姉痛岻: 姉痛津 噺       姉禰芸痛┸津岫仕痛津】姉痛岻                                                         (8) 

The objective functions 芸痛┸津 in Eq. (7) define the optimization problem for each frame 建 and 
global iteration step 券. The respective ML-EM solution 姉痛津 is expected to converge to a global 
ML-EM solution 姉赴痛, such that 詣痛岫姿嗣】姉赴痛岻 半 詣痛岫姿嗣】姉痛岻, i.e. the measured data log-likelihood is 
globally maximized. The concept of optimization transfer for the nested RL-3D-MCIR approach 
is also graphically illustrated in Fig. 1. The global MLEM convergence is guaranteed provided 
the surrogate objective functions 芸痛┸津岫仕痛津】姉痛岻 satisfy the constraints shown in Fig. 1 [29].  

The ML solutions for Eq. 5 and 8 are provided by the iterative nested ML-EM algorithm, as 
described with Eq. (9) and (10) below for our motion-compensated reconstruction problem. The 
proof for those solutions has been previously discussed in MLEM applications of the 
optimization transfer theory and in analogous work for nested PSF-3D-MLEM algorithms [29], 
[30]. At global iteration step  券, initially, an intermediate motion-contaminated image estimate 仕痛津 is derived, at each 建-th frame, using the measured projection data 検沈痛 as reference: 
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兼珍痛津 噺 陳乳禰盤姉禰韮貼迭匪デ 椎日乳禰日 デ 喧沈珍痛 槻日禰槻日禰盤姉禰韮貼迭匪沈                                                            (9) 

Subsequently, a nested Richardson-Lucy EM update equation is employed to iteratively 
deconvolve the motion contamination and estimate after 倦 噺 な┸┼ ┸ 券賃 nested EM sub-iterations, 
the next global motion-free image estimate 姉痛津, utilizing the intermediate motion-contaminated 
image 仕痛津 as a reference: 捲珍轍痛津┸賃袋怠 噺 掴乳轍禰韮┸入デ 頂濡禰調乳濡蝦乳轍濡 岶層岼濡樺史禰 デ 潔鎚痛激珍濡蝦珍轍鎚 崕 仕嗣仔仕嗣岾姉嗣仔┸暫峇崗鎚樺史禰  ┸   倦 噺 な┼券賃                        (10) 

After all 券賃 nested sub-iterations are completed, the derived 姉痛津┸津入袋怠 image update is 
considered the next global ML motion-corrected image update 姉痛津 that will be used as initializer 
for the subsequent global iteration step 券 髪 に. Thus, using a voxel-based equation notation, we 
have: 捲珍痛津┸怠 噺 捲珍痛津貸怠 , 捲珍痛津 噺 捲珍痛津┸津入袋怠. 

 
Fig. 1 Graphical illustration of the optimization transfer concept and the required constraints for the surrogate 
objective functions at two consecutive global ML-EM iteration steps. The maximization problem of the original 
objective function (red) is transferred to the maximization of the less complex image-based surrogate objective 
functions at n (blue) and n+1 (green) global iteration steps. The plots are not based on measured data and are only 
intended for graphical illustration of presented theoretical concepts. 
 

The iterative RL motion deconvolution algorithm was previously evaluated only as a post-
reconstruction indirect image deblurring process (indirect-RL) [32]-[37]. Similar to RTA 
methods, the indirect-RL methods are designed only for application on already reconstructed 
PET images. Thus, they can only approximate the highly correlated and complex noise 
properties of the reconstructed input image data. On the other hand, both the integrated- and RL-
3D-MCIR algorithms presented here deconvolve the modeled motion in the image space at every 
global ML-EM iteration cycle and pass the deconvolved estimates to the next cycle, until 
sufficient ML-EM convergence is attained. Although the deconvolution is conducted on the 
image space, the actual fully 3D ML-EM reconstruction is performed directly on the projection 
space, where the counts and their underlying noise follow the well-defined Poisson distribution. 
Thus, the proposed 3D-MCIR methods allow for more accurate modeling of the noise properties 
through the reconstruction process thus permitting significantly less noise-induced inaccuracies 
in the MC PET image estimates compared to indirect-RL schemes. This feature can be 
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particularly important at the high noise levels usually present in low-count or dynamic PET data, 
as is the case with WB dynamic acquisitions [8]. 

3 Methods 

3.1 Dynamic WB PET acquisition protocol 

Currently, the established surrogate of standardized uptake value (SUV) is primarily employed in 
clinical oncology to evaluate the in-vivo metabolic activity 3D spatial concentration of the 
administered radioactive tracer in normal and pathological tissues. However, the tracer activity 
concentration in the blood and its absorption from the living tissues changes dynamically with 
time, due to various physiological processes regulating its in-vivo biological uptake. As a result, 
SUV measurements are dependent on post-injection (p.i.) scan time window as well as the time 
course of the tracer concentration in blood plasma, the latter also known as input function.  

 
Fig. 2: Illustration of acquisition protocol for simulated single-bed (left) and clinical whole-body (right) dynamic 
PET imaging and the corresponding sPatlak Ki images. In both cases the image-derived input function from a heart 
left-ventricle region of interest is utilized for the production of the Ki parametric images. 

On the contrary, dynamic PET imaging, involving multiple sequential acquisition frames 
over time, enables tracking of the tracer activity distribution throughout the scan duration. Then, 
the acquired four-dimensional (4D) PET data can be analyzed utilizing graphical analysis or 
compartmental kinetic models, to estimate at the voxel level a range of physiological parameters 
of interest, such as the tracer uptake rate constant 計沈, which is primarily useful in oncology for 
the quantitative evaluation of tumor staging and therapy response. Nevertheless, dynamic PET 
acquisitions have, until recently, been confined to single bed axial field-of-views (FOVs) in an 
effort to attain sufficient count statistics via continuous temporal sampling of single bed 
positions, due to relatively low or moderate overall detection efficiencies of previous scanner 
generations. Consequently, dynamic PET scan protocols had not been able to support WB FOVs; 
the latter considered a crucial protocol feature for the thorough evaluation of disease spread 
across the body, such as potential tumor metastasis in oncology. 
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Recently, we proposed a clinically feasible 18F-FDG PET parametric imaging framework [8], 
capable of delivering highly quantitative WB parametric images by supporting i) multiple PET 
acquisition passes over multiple beds and ii) graphical analysis of the acquired 4D WB data 
using robust standard linear Patlak (sPatlak) [9] or non-linear generalized Patlak (gPatlak) 
methods [40]. Although the associated total scan duration of ~30-40min may be considered 
clinically feasible, such protocols are naturally expected to increase the likelihood of bulk motion 
during the acquisition [41]. Furthermore, we are currently evaluating a combined SUV/Patlak 
imaging framework based on the previous WB dynamic scan protocol [42]. In both versions, the 
acquisition time has to be distributed over multiple short dynamic frames of 30-45sec per bed 
and pass, thus amplifying the statistical noise levels in the measured data [8],[40]. However, in 
the newer protocol, the SUV image is synthesized for each bed position from multiple dynamic 
frames, thus increasing the likelihood of motion-degraded SUV resolution due to inter-frame 
misalignments [42]. Consequently, the quantitative accuracy (bias/resolution) and precision 
(noise) performance associated with both dynamic and parametric images may be degraded in 
clinical WB dynamic PET studies, due to bulk motion and high levels of statistical noise. 

3.2 Generation of Realistic Kinetic 4D Simulated Image Data 

The performance of the proposed nested RL-MCIR method is evaluated on realistic 4D synthetic 
emission and attenuation motion-degraded data, which are acquired according to our recently 
introduced clinical WB dynamic PET acquisition protocol [8]. A dynamic WB protocol was 
preferred over simple static imaging to allow for evaluation of method performance under more 
challenging conditions, than those often expected in clinic, in terms of noise levels, types of 
motion as well as sampling of the time activity curves (TACs). 

 
Fig. 3 (a) The standard fully compartmental 18F-FDG-PET tracer kinetic model. It consists of the 系牒岫建岻 input 
function compartment, as well as the tissue compartments for free-tracer 系怠岫建岻 and metabolized tracer 系態岫建岻 
concentration over post-injection time 建. (b) the k-parameter values table obtained from literature for tumor and 
normal regions and (c) the modeled TACs assigned to the respective tumor and normal XCAT phantom regions. 

 
The standard kinetic model for 18F-FDG tracer, i.e. a 2-compartment 4-kinetic parameter 

compartmental model (Fig. 3a), and the Feng input function model [43] were employed for the 
production of the simulated noise-free TACs for a range of normal tissues and tumors in the 
torso region (Fig. 3c). The employed kinetic parameter values in Fig. 3b, were acquired from 
literature review of clinical dynamic PET studies [44]-[48]. Subsequently, the noise-free TACs 
were assigned to the respective regions of the anthropomorphic digital XCAT human torso 
phantom [49], limited to a Biograph mCT cardiac bed axial FOV, to generate realistic motion-
free kinetic 4D XCAT phantom images. Finally, a single motion-free XCAT PET attenuation 
map was also created. 
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3.3 Application of Real Human MRI-derived Body Bulk Motion 

A series of real human body non-rigid and highly irregular motion transformations were applied 
to each dynamic cardiac PET image frame of the XCAT phantom. The initial motion-
transformed 3D XCAT images were provided from a recently published dataset, which was 
created and validated by Dr. Arda Könik from human volunteer MRI scans mimicking 
characteristic bulk motions [50]. The exercised natural 3D motion transformations were tracked 
with reflective markers, properly positioned on body surface, and 3D stereo optical imaging 
tracking techniques. Multiple combinations from a range of principal bulk transformations were 
applied in different combinations over the initial motion-free dynamic frames, resulting in a total 
of 30 different non-rigid transformations randomly distributed across the 6 cardiac frames. The 
following five types of body bulk motions were randomly combined: axial slide (rigid motion), 
lateral torso bend, shoulder twist, shoulder stretch and side roll [50].  

Initially, the five basic human motion transformations above were applied to XCAT to 
generate five motion-transformed editions for each dynamic frame. Then a hierarchical local 
affine registration method6 was utilized to estimate, for each of the five transformations of each 
frame, three MVFs, each corresponding to the x, y and z Cartesian directions, respectively. The 
resulting は 抜 の 抜 ぬ 噺 ひど MVFs were then averaged across frames to produce の 抜 ぬ 噺 なの 
averaged MVFs of higher precision for each of the basic five principal bulk motions. Later, the 
new 5 sets of MVFs were randomly combined, at each x, y and z direction, to create 25 new sets 
of MVFs, i.e. 券鎚 噺 ぬど MVF sets were created in the end. One characteristic set of MVFs is 
shown in Fig. 4. In this proof of principle study, we focused our evaluation on correction of bulk 
motions only and thus we chose not to introduce cardio-respiratory motion to each frame. 

 
Fig. 4 A characteristic example of three 3D MVFs in the orthogonal Cartesian directions x, y and z, respectively. 
The illustrated set corresponds to one of the 30 motion transformations applied to the simulated 4D data. Each 
transformation is a combination of the five basic transformations, as estimated from the initial XCAT dataset. The 
respective 3D MVFs utilized within the RL-MCIR method differed from those applied when synthesizing the 
motion-contaminated 4D simulated data: the former were estimated with image registration methods between the 
motion transformed images. The focus of this study is on motion compensation and not motion tracking. 
 

Subsequently, the 30 motion transformations were randomly grouped into 6 sets, as many as 
the dynamic frames, each denoted as  史痛┸ 建 噺 な┸┼ ┸は. Then, each set of transformation was 
sequentially applied, through the warping operation 激珍轍蝦珍濡鎚 ┸ 嫌 樺 史痛, to its corresponding motion-
free frame 姉痛 to produce 30 noise-free motion-transformed 3D PET emission images 纂鎚. In 
addition, the same set of transformations was also applied to the single XCAT attenuation image 侍待 to produce 30 motion-transformed PET attenuation images 侍鎚. 
3.3 Simulation of 4D Motion-contaminated Emission and Attenuation Projection PET Data 

Initially, each motion-transformed attenuation PET image 侍鎚 was forward projected and the 
respective attenuation factor sinograms were calculated as: 珊鎚 噺 結貸脱歎辰丹嘆誰棚岫侍濡岻, where “       ” 
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denotes the Biograph mCT (Siemens Healthcare) PET/CT scanner fully 3D analytic forward 
projection operation, as implemented in STIR according to the geometric properties and 
sensitivity performance of the system [50]. Subsequently, each motion-transformed PET 
emission image 纂鎚 was forward projected, followed by application of the respective attenuation 
factors 珊鎚 in the projection space to produce the corresponding motion-transformed attenuated 
noise-free emission projection data 蚕鎚 噺 珊鎚 萱        岫纂鎚岻 with “萱” denoting a Hadamard or 
component-wise matrix product operation. Then, each motion-contaminated sinogram 姿痛 噺デ 潔鎚痛蚕鎚鎚樺史禰  is calculated as the time-weighted average of the group of transformed sinograms 蚕鎚, 嫌 樺 史痛, corresponding to a certain frame. Scatter and random events were not added. 

A total of 20 realizations of quantitative levels of Poisson noise were added to each simulated 
dynamic sinogram 姿痛 according to the current mean of the simulated dynamic 18F-FDG 
radioactivity at each frame. The mean activity concentration was determined by the reported 
sensitivity performance of the Biograph mCT scanner [51], the 18F decay rate, the modeled tracer 
kinetics [44]-[48] and the duration 建鎚 of each frame [8]. Later, the noise-free and noisy dynamic 
projections, without and with 4D motion contamination, were reconstructed using the standard 
3D ML-EM algorithm in STIR [38]. The motion-contaminated dynamic projections were also 
reconstructed with our proposed nested RL-3D-MCIR algorithm, as implemented in fully 3D 
mode within STIR v3.0. The attenuation correction factors (ACFs) sinograms 珊拍痛 were derived 
by applying time-weighted averaging to the motion-transformed ACF sinograms 珊鎚, 嫌 樺 史痛, 
i.e. 珊拍痛 噺 デ 潔鎚痛珊鎚鎚樺史禰 . The latter type of averaging was preferred as we have previously 
concluded it minimizes the inevitable, in the absence of gated MCIR, motion-induced 
mismatches between emission and attenuation maps for each frame [37]. 

Finally, all reconstructed WB dynamic frames and the measured input function 決痛 噺 決岫酵痛岻 at 
mid-frame times 酵痛 were fitted with a validated multi-bed standard Patlak (sPatlak) graphical 
analysis method to estimate at each voxel the physiologic parameters of tracer uptake rate 計沈 and 
total blood volume distribution 撃 according to the equation: 捲珍痛 噺 計沈 完 決痛穴酵邸禰待 髪 撃決痛 [9]. Thus, 
in the end we obtained the image estimates of 計沈 and 撃 sPatlak parameters.  

3 Results 

The reconstructed images corresponding to the cardiac bed from the 6 dynamic WB PET 
frames and the respective 計沈 images are presented in Figs. 5 and 6, without and with noise, 
respectively. The impact of human body bulk motion on the image quality is evident in both 
noise-free and noisy motion-contaminated dynamic and 計沈 images, in the absence of motion 
compensation. Moreover, the visual inspection of the quality of the respective MC images 
produced with the nested RL-3D-MCIR method suggests a partial but significant recovery of the 
motion-degraded image resolution for both noise-free and noisy simulated dynamic and 
respective parametric image data. In particular, the improvement is more apparent for the 
parametric 計沈 sPatlak images. This observation could be attributed to the higher sensitivity to 
motion for parametric imaging, relative to conventional static or dynamic SUV PET, due to the 
introduction of motion-induced voxel TAC discontinuities between subsequent dynamic PET 
frames. Our results suggest a significant resolution degradation of the 計沈 images in this case, 
which in turn is considerably eliminated when all frames are corrected for motion prior to Patlak 
analysis. 

However, in the absence of noise (Fig. 5), distinct Gibbs artifacts can be also observed in 
both the dynamic and Ki images with the RL-3D-MCIR method. Such characteristic artifacts are 
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expected as a result of the correlation between the voxel estimates, due to the iterative image 
deconvolution process. Similar artifacts can be identified in the same regions for the noisy 
images too (Fig. 6). Furthermore, in the presence of noise (Fig. 6), relatively higher levels of 
spatial noise are visually observed for the motion-compensated images, especially in regions 
with low uptake such as the background tissues. The presence of elevated noise levels can be 
attributed to the noise propagation properties of ML-EM deconvolution algorithms with 
increasing iterations. However, the observed noise elevation does not affect considerably the 
visual detectability of the simulated lesions and the CNR scores were satisfactory. In fact, we 
believe the nested implementation has limited noise by accelerating the convergence rate. 

 

 
Fig. 5 (a) Noise-free reconstructed dynamic PET and (b) sPatlak 計沈 images, corresponding to the cardiac bed and to 
time frames of our validated clinical WB dynamic PET protocol. In all cases, motion-free, ground truth 4D data (1st 
column) are used as a reference to compare against motion contaminated data estimated without motion correction 
(2nd column) and with nested RL-3D-MCIR correction (3rd column). All PET images were reconstructed after 4×21 
ML-EM global iterations and 10 nested RL sub-iterations were employed for the RL-3D-MCIR method. 
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Fig. 6 Same type of reconstructed (a) dynamic PET and (b) sPatlak Ki images, as with with Fig. 5, after adding 
quantitative levels of Poisson noise on projection space, equivalent to 45sec dynamic PET frames and scaled to 
simulate the reported sensitivity performance of Siemens BiographTM mCT PET/CT scanner. 

 

 
Fig. 7 (Top-left) Contrast-to-Noise ratios (CNRs) for lung tumor and (bottom row) noise vs. bias trade-off 
performance from 20 noise realizations for lung and liver tumor regions of interest, as drawn on the reconstructed 
PET SUV images (dotted curves), corresponding to the 6th dynamic frame, and the respective sPatlak Ki images 
(continuous curves). The performance scores of the proposed nested RL-3D-MCIR method (red) are evaluated 
against the simulated motion-free ground truth images (blue) and the uncorrected for motion results (green). 

In addition, contrast-to-noise ratio (CNR) scores and noise vs. bias trade-off curves are 
evaluated in Fig. 7 for the last (6th) dynamic PET frame and the parametric 計沈 images. In 
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particular, 20 noise realizations were employed and the quantitative evaluations were performed 
every 21 ML-EM iteration steps on lung and liver regions of interest and their respective 
background. The application of the RL-3D-MCIR method, involving 10 nested RL sub-iterations 
per global tomographic iteration step, partially recovers, for both noise-free and noisy data, the 
ground truth resolution of the motion-free dynamic and parametric images, with relatively 
greater enhancements for the latter. In addition the recovery of the resolution or, equivalently, 
the reduction of bias, is attained without significant noise amplification and Gibbs artifacts, as 
demonstrated in Fig. 6 and the respective CNR analysis in two of the lesion regions in Fig. 7. 

4 Discussion 

The 4D-MCIR methods require the partitioning of the PET data in multiple gates such that 
the observed intra-gate motion is negligible. Although such an approach may be suitable for the 
compensation of periodic motions, which are the most frequent, e.g. the cardio-respiratory 
motion, there exists the probability for non-periodic motions as well, such as irregular breathing 
patterns, or random body bulk motions. In the latter cases, a highly noisy and imbalanced set of 
PET gates would have been required to eliminate intra-gate motion for the 4D-MCIR methods, 
thus resulting in low robustness and high memory demands. Moreover, although the LM-MCIR 
methods would have alleviated the previous problems, they require access to LM PET data, 
which may not be available: in current clinical practice LM data are not regularly produced or 
systematically archived for retrospective analysis. Furthermore, LM-MCIR algorithms, unless 
they are parallelized with special software and hardware, such as GPU programming, they are 
associated with a high computational cost, due to the need for event-by-event processing.  

Nevertheless, the integrated 3D-MCIR and RL-3D-MCIR algorithms presented here can 
deconvolve the tracked motion from a single sinogram PET frame, thereby alleviating the need 
for gating the measured PET data used in the reconstruction and for access to LM data. Their 
performance is thus expected to be least affected by the randomness and irregularity of motion, 
assuming the accuracy of the motion tracking is not affected either. As a result, the two proposed 
3D-MCIR methods may exhibit higher robustness relative to the 4D-MCIR methods, when non-
periodic motions are observed. Such types of motion are more probable during relatively long 
PET acquisitions, such as in the case of PET/MR or dynamic PET imaging. Furthermore, in the 
case of dynamic PET, 3D-MCIR may be preferred over 4D-MCIR methods for an additional 
reason: as the acquired PET data are already partitioned in short frames before motion 
correction, any gating scheme will result in very high noise levels. 

Naturally, the performance of all MCIR methods depends on the accuracy of the tracked 
motion information. Therefore, both the integrated 3D-MCIR and the nested RL-3D-MCIR 
methods are limited by the accuracy of the estimated motion, which, in turn, depends on the 
gating of the 4D data employed for the tracking of the motion. Nevertheless, motion tracking 
does not necessarily rely on PET data gates, where the count statistics and thus noise can be very 
high and non-uniformly distributed across some of the gates. Instead, high resolution CT or MR 
anatomical 4D data can be synchronized and registered to respective PET data and subsequently 
gated for motion estimation purposes. In fact, nowadays, with the advent of simultaneous 
PET/MR scanners, motion is efficiently estimated from high resolution gated 4D MR data before 
employed for the motion compensation of the PET data [19]. If any random bulk or irregular 
cardio-respiratory motions are tracked, we recommend RL-3D-MCIR, otherwise 4D-MCIR 
methods may also be applied. Nevertheless, if LM PET data are available and computational 
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resources are sufficient, then LM-MCIR could be a promising alternative approach, regardless of 
the type of motion tracked. 

Unlike the computationally demanding event-by-event motion correction of LM-MCIR 
methods and the large memory needed for multiple gates processing in 4D-MCIR methods, the 
presented RL-3D-MCIR algorithms save both in processor and memory resources by directly 
applying fast convolution operations in the image space and restricting tomographic 
reconstruction to a single 3D sinogram. Nevertheless, it should be acknowledged that LM-MCIR 
methods apply motion correction at the counts level, where motion degradation effects are 
actually occurring. Thus, LM-MCIR algorithms are generally expected to provide the least 
degree of approximations in the produced MC estimates. Besides, potential CPU or GPU 
parallelization of LM-MCIR routines across a subset of LM events may also considerably speed-
up their computation, thereby potentially enhancing their clinical adoptability in the future. 
However, sinogram-based reconstruction methods are so far considered more practical and have 
long been established in the clinical setting. 

On the other hand, a limitation of both 3D-MCIR presented methods over gated 4D-MCIR 
and LM-MCIR algorithms is the management of the attenuation-emission mismatches due to 
motion. The 3D MLEM scheme of 3D-MCIR algorithms requires a single attenuation correction 
(AC) sinogram for the reconstruction of the single motion-blurred PET frame. It is therefore 
inevitable that a certain degree of mismatch will exist between emission and attenuation. On the 
contrary, for the other two classes of methods, the attenuation is first registered to each gate or 
LOR, respectively. Nevertheless, we have previously conjectured that this mismatch effect is 
minimized on the final MC image, when choosing as the AC map the time-weighted average of 
all tracked motion transformations of the reference attenuation sinogram or image [37]. 

Despite the high noise levels and the irregularity of bulk motions, RL-3D-MCIR algorithm 
was able to sufficiently recover the major resolution components of all six PET dynamic frames 
without significant noise amplification. In addition, the Patlak analysis on the RL-3D-MCIR 
images resulted in significant resolution recovery for the respective 計沈 images. In fact, the impact 
of motion degradation was more evident in 計沈 images, mainly due to inter-frame misalignments, 
attributed to bulk motion, and the sparse temporal sampling of the WB dynamic protocol.  

Although the CNR and noise-bias trade-off performance was considerably improved with the 
RL-3D-MCIR method, relative to the case of no motion correction, the true contrast was not 
completely recovered. This observation can be attributed to the high noise levels of each 
dynamic PET frame and the partial volume effects in the evaluated lesion regions. Moreover, 
Gibbs artifacts have been also observed affecting the contrast in both noise-free and noisy 
images. However, the proper selection of an optimal number of nested RL iterations (10) 
significantly limited their effect in all cases. Nevertheless, we expect further improvements in 
attained resolution recovery for more common clinical conditions, such as for static or single-bed 
dynamic protocols, as noise levels are then significantly lower.  

5. Conclusions 

Inspired from analogous algorithms aiming at PSF resolution modeling within PET image 
reconstruction, we proposed a robust 3D MLEM PET image reconstruction framework capable 
of compensating for both periodic and non-periodic motion within a single 3D PET sinogram 
frame. The tracked intra-frame motion is utilized to construct an image-based motion blurring 
kernel that is later integrated within the 3D MLEM algorithm to effectively deconvolve the 
motion from the respective PET frame (integrated 3D-MCIR). Ultimately, to accelerate the 
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global convergence rate, the integrated motion model component is replaced with an iterative 
Richardson-Lucy EM motion deconvolution algorithm, nested within each global MLEM 
iteration step (RL-3D-MCIR).  

The qualitative and quantitative analysis of SUV and parametric PET images demonstrated 
significant recovery of the motion-degraded image contrast, without considerable noise 
amplification, for the proposed RL-3D-MCIR algorithm. The evaluation was performed on 
realistic PET data, as obtained from WB dynamic simulations with human motion profiles [8].  

Both 3D-MCIR methods are applicable to a) static and dynamic single 3D PET frames, and 
b) any traceable sequence of periodic or non-periodic motion. In addition, the accelerated RL-
3D-MCIR algorithm achieves i) superior CNR performance, for improved lesion detectability, 
and ii) better processing and memory resources utilization, for wide clinical adoptability. 
Therefore, in the presence of non-periodic motion, the RL-3D-MCIR method is recommended, 
over 4D or LM-based MCIR algorithms, for its robustness and computational efficiency. 
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