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Abstract

Positron Emission Tomography (PET) allows imaging of functional processes in vivo

by measuring the distribution of an administered radiotracer. Whilst one of its main

uses is directed towards lung cancer, there is an increased interest in diffuse lung dis-

eases, for which the incidences rise every year, mainly due to environmental reasons

and population ageing. However, PET acquisitions in the lung are particularly chal-

lenging due to several effects, including the inevitable cardiac and respiratory motion

and the loss of spatial resolution due to low density, causing increased positron range.

This thesis will focus on Idiopathic Pulmonary Fibrosis (IPF), a disease whose

aetiology is poorly understood while patient survival is limited to a few years only.

Contrary to lung tumours, this diffuse lung disease modifies the lung architecture

more globally. The changes result in small structures with varying densities. Previ-

ous work has developed data analysis techniques addressing some of the challenges

of imaging patients with IPF. However, robust reconstruction techniques are still

necessary to obtain quantitative measures for such data, where it should be bene-

ficial to exploit recent advances in PET scanner hardware such as Time of Flight

(TOF) and respiratory motion monitoring.

Firstly, positron range in the lung will be discussed, evaluating its effect in

density-varying media, such as fibrotic lung. Secondly, the general effect of using

incorrect attenuation data in lung PET reconstructions will be assessed. The study

will compare TOF and non-TOF reconstructions and quantify the local and global

artefacts created by data inconsistencies and respiratory motion. Then, motion

compensation will be addressed by proposing a method which takes into account the

changes of density and activity in the lungs during the respiration, via the estimation

of the volume changes using the deformation fields. The method is evaluated on late

time frame PET acquisitions using 18F-FDG where the radiotracer distribution has
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stabilised. It is then used as the basis for a method for motion compensation of

the early time frames (starting with the administration of the radiotracer), leading

to a technique that could be used for motion compensation of kinetic measures.

Preliminary results are provided for kinetic parameters extracted from short dynamic

data using 18F-FDG.



Impact Statement

One of the main advantages of PET imaging is usually seen as the possibility of

obtaining “fully quantitative” activity images, as opposed to so-called anatomical

images. Such quantitative measures have great potential for disease staging, and

monitoring disease progression and treatment effectiveness. The pursuit of this

paradigm has been accelerated in recent years, by the means of new scanner specifi-

cations (for example, better detector designs especially in terms of time resolution or

longer axial field of view), new reconstruction algorithms (mainly penalised recon-

struction) and methods to correct for respiratory motion. However, these methods

have mainly been proposed for oncological studies.

This thesis concentrates on imaging diffuse lung diseases, where PET imaging

is still challenging for research and clinical studies. This work investigates the im-

pact on quantification of the radiotracer distribution due to several effects including

positron range and motion, and proposes novel methods for respiratory motion cor-

rection. Particular emphasis is given to the non-uniform radiotracer and density

distribution and their changes in the lung. This work will allow a better design of

future research studies and ultimately could lead to increased accuracy and precision

in PET imaging of the lung and therefore patient benefit.

The results on positron range raise awareness of the caveats of using radiotracers

labelled with certain (high–energy) positron emitters, where a large bias in the

apparent radioactivity in the fibrotic lung could be observed (up to 61.6% if we

assume that the true radioactivity distribution is uniform between low–density and

high–density lungs). The proposed Monte Carlo method provides a methodology to

establish if observed PET image values reflect underlying radiotracer concentrations

or are due to local changes in density. This could be used when deciding on the

radioisotope used for labelling a new radiotracer.
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The two novel methods to improve existing respiratory motion correction in

PET imaging proposed in this thesis could lay the foundation of further research or

commercial software. A first method extends joint reconstruction of PET emission

images and motion estimation to dynamic PET reconstructions, via summation

of dynamic data. This will increase the feasibility of deriving radiotracer kinetic

measures, an area with resurgence in interest, in the lung. Indeed, additionally to

recovering respiratory motion adequately, the residuals from standard compartment

model fit in the lung are reduced by more than 18% on average. This could allow

estimation of additional clinically relevant parameters from the PET data. The sec-

ond proposed method incorporates the previously discussed changes in lung density

and radiotracer concentration due to respiration into the correction method. As

these changes can be up to 30%, this method has the potential to have large impact

by increasing the reliability of the PET-derived measures. In future, the benefits of

combining the two methods will be necessary.

While the proposed methods for respiratory motion correction have been de-

signed and evaluated for PET, they are directly extendable to other imaging modal-

ities including SPECT, CT and certain MRI sequences.
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Chapter 1

Introduction

The lung can undergo multiple types of diseases. The most common pulmonary

disease is lung cancer, one of the main causes of death in the world and the main

cause of cancer mortality worldwide (Postmus et al. 2017).

Although, not as common as lung cancer, two other main types of diseases can

affect the lung: chronic obstructive pulmonary disease (COPD) and interstitial lung

disease (ILD), as described in Chen et al. 2017.

COPD is a major health issue, with a rising incidence, resulting for instance

from smoke or air pollution. It is characterised by airflow limitation, usually pro-

gressive, and inflammatory response (Martinez et al. 2011). It leads to lung injury,

which involves a structure remodelling.

ILD, or diffuse parenchymal lung disease (DPLD), is a disease group affecting

the tissue and space around the lung alveoli (“interstitium”). idiopathic pulmonary

fibrosis (IPF) is the most common pathology among ILDs, characterised by pro-

gressive scarring in the lung, leading to an irreversible loss of breathing capacity

(Spagnolo et al. 2015). IPF had a prevalence of 20.2/100, 000 and 13.2/100, 000 for

men and women respectively as of 1998 in the USA (Coultas et al. 1994), and the

mean age at diagnosis was around 66 years old. The mortality is high, the mean

survival is approximately 3 years after first diagnosis (Meltzer and Noble 2008).

According to a study published in 2011 (Navaratnam et al. 2011), the incidence of

IPF is rising every year in the UK, and was estimated in 2008 at 7.44/100, 000, with

more than 5000 new cases diagnosed every year.

The first signs of IPF are breathlessness during physical exercise and a chronic

dry cough. At a microscopic level, the disease is characterised mainly by scarring
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within the air sacs of the lungs, which leads to localised lung structure remodelling,

including a larger fraction of collagen. The pathology is usually restricted to spe-

cific areas of the lung, most commonly at the base, and results in regions with an

increased rigidity and density and some large air pockets. Due to the increasing

loss of elasticity of the lungs, the patient loses the ability to breathe, and eventually

succumbs to respiratory failure.

The mechanism and origins of IPF are yet to be understood, although some

studies suggested that it could be a result of an abnormal healing response, following

a lung injury (Spagnolo et al. 2015). Several therapies have been tested on IPF

patients (pirfenidone, nintedanib) and have shown promising results with a reduced

progression and functional decline (Raghu et al. 2015; Spagnolo et al. 2015).

As stated in the guidelines of diagnosis of IPF (Raghu et al. 2011), when any

other type of ILD is excluded, IPF can be diagnosed using spirometry, bronchoalve-

olar lavage, a chest x-ray scan or high resolution computerised tomography (high

resolution CT or HRCT), and then confirmed by a surgical biopsy. HRCT is nowa-

days the preferred method for IPF diagnosis, as its sensitivity exceeds 90%. The

main patterns of IPF on HRCT are reticular opacities, such as honeycombing or

ground-glass opacities.

However, a single HRCT image can be used to detect anatomical changes only,

and not the physiological changes, that are therefore likely to be useful on longer

time scale.

An alternative to CT scans could lie in the use of positron emission tomography

(PET). PET is a medical imaging technique providing “functional” information, i.e.

it enables the imaging of metabolic processes in a tissue or organ. It measures the

spatial distribution of a positron-emitting radiotracer administrated to a patient,

either via injection in the blood or via inhalation. Using a PET acquisition could

provide “early information” on the disease, in order to have a better understanding

of its aetiology (Chen et al. 2017). Whereas PET imaging is essential for tumour

staging and follow-up, particularly via measurement of 18F-FDG uptake (Nakamura

et al. 2015), it is rarely used for diffuse lung diseases.

Originally, PET scanners were stand-alone but dual-modality scanner systems

(combining PET and CT or PET and Magnetic Resonance Imaging (MRI)) are
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now predominant. This report will focus on PET and PET/CT scanners. Despite

the increasing influence and use of PET/MRI scanners, the technique is still to be

improved in the case of lung imaging and will not be discussed in this work.

Although PET/CT imaging is widely used, especially in oncology, where stag-

ing and localisation of the tumours are essential, issues related to quantification of

lung PET images still need to be addressed, especially in the context of pathologies

such as IPF, which affect the lung architecture more globally than lung tumours.

For example, the image resolution becomes spatially-variant, especially for radio-

tracers labelled with high-energy radionuclides. Current techniques to compensate

for respiratory motion might also be inadequate and need to be assessed carefully.

The aim of this thesis is therefore to address issues related to lung PET/CT imaging

and improving the robustness of quantitative measures for IPF patient data.

The physics and detection techniques in PET will be discussed in Chapter 2.

An introduction to optimisation and compartmental modelling will be provided, as

well as a brief overview of the reconstruction principles in PET and some of the

challenges of PET imaging in the lung and more specifically of imaging IPF. They

will be mainly addressed in the following chapters.

Firstly, positron range, which contributes to resolution degradation, will be

addressed in Chapter 3. The effect is linked to the inherent resolution of PET

imaging and is worsened in the lung, because of its low density.

Secondly, in Chapter 4, an introduction to respiratory motion in medical imag-

ing will be provided, discussing the volume changes and fluid exchanges occurring

within the lungs during respiration. The mass-preserving model for respiratory mo-

tion used in the rest of the thesis will be described and used within a preliminary

image registration, to show its validity in PET/CT imaging. The effect of respira-

tory motion on static and dynamic PET images will also be demonstrated on patient

data.

Then, in Chapter 5, the use of inconsistent data in the reconstruction (due solely

to errors in the attenuation map) will be discussed. The quantification errors will be

shown to demonstrate the importance of an accurate knowledge of the attenuation

map in PET reconstruction, especially in lung imaging, where the attenuation in

the lung can vary between two extreme respiratory states.
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Finally, Chapter 6 will give an overview of existing motion-compensating meth-

ods for lung PET imaging, priot to introducing new methods. On one hand, a

preliminary method aimed at tackling motion for dynamic PET acquisitions will be

described and assessed on patient data. On the other hand, following the results of

Chapters 4 and 5 and their implications for motion correction techniques in PET/CT

imaging, the mass-preserving model will be incorporated within a scheme of PET

joint reconstruction and motion estimation. The latter method will be validated

using simulations and used for static PET acquisitions.

PET/CT data from an IPF cohort will be used throughout this work, and most

particularly for the motion compensation work of Chapter 6. The nine patients of

the cohort are part of a study to assess the role of coagulation in IPF, the patients

undergoing a first PET/CT acquisition before starting an anticoagulation treatment

(dabigatran, a direct thrombin inhibitor), and a second PET/CT acquisition takes

place at the end of it, about one month later (clinical trial ID: NCT02885961). Ad-

ditionally to these “treatment patients”, two “control patients” were also acquired.

The study will be referred as the “Coagulation Study” in the following work and

the details of the acquisitions will be given in Section 6.4.1. Only data involving no

anticoagulation treatment will be used in this thesis, i.e., the data corresponding

to the control patients and the pre-treatment scans of the treatment patients.



Chapter 2

Positron Emission Tomography in the

Lung

2.1 Introduction

This chapter introduces the main principles of PET/CT imaging, from data acquisi-

tion and physical principles to the reconstruction of PET images and their analysis.

An emphasis is given to the clinical analysis of IPF PET images, which suffers from

various limitations, and therefore requires careful investigation and reconstruction

techniques to obtain robust quantitative measures.

2.2 Positron Emission Tomography

2.2.1 Generalities

2.2.1.1 History of PET

PET is a nuclear medicine technique that uses positron annihilation to image bio-

logical metabolism. PET enables “functional” imaging, as opposed to “anatomical”

imaging.

The development of PET is based on the discovery of the positron and ra-

dioactivity, as well as the invention of the cyclotron between the late 1920s and the

late 1940s. Between the 1950s and the 1970s, the ideas and preliminary designs of

PET scanners were conceived. Since the 1970s, PET is increasingly used in clinical

institutions and their design and performance have improved. PET is mainly ded-

icated for oncology (≈ 95% of PET clinical use), but is also used in neurology and

cardiology studies (see Rich 1997).
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2.2.1.2 Typical PET Examination

The first step in a PET exam consists of the injection (or inhalation) of a radiotracer.

A radiotracer is the combination of a biologically active molecule, targeting a specific

biological metabolism, and a radionuclide, which allows imaging of the process.

The most common radiotracer is 18F-fluoro-2-deoxy-D-glucose, usually abbrevi-

ated as 18F-FDG or simply FDG. The active molecule is a glucose analogue in which

the hydroxyl group on the 2-carbon of a glucose molecule is replaced by a fluoride

atom. FDG provides an indicator of glucose uptake. It is mainly used for oncology,

as tumours generally show larger FDG uptake than surrounding healthy tissue. 18F

is the radionuclide, whose half-life is 109.77 min (Delbeke et al. 2006). This enables

the production of FDG in an off-site facility, making it widely available.

Other radionuclides and biological ligands can be used for PET tracers (see

Section 2.5.1.1 and Chapter 3 for more examples).

In current clinical practice, PET is almost always combined with computerised

tomography (CT) (see Section 2.2.3). A PET/CT scanner is composed of two sep-

arate systems, that are placed next to one another (see Figure 2.1).

The field of view (FOV) of a scanner is defined by the area in which the activity

can be measured by the detectors. Current typical clinical scanners have an axial

FOV between 15 cm and 25 cm (Pan et al. 2019), although “whole-body” scanners

are under study to improve sensitivity (Cherry et al. 2018). The transaxial FOV is

usually between 50 cm and 70 cm.

2.2.2 Physical Principles of PET

2.2.2.1 Radioactive Decay and Annihilation

β+-radioactivity :

The radionuclide, incorporated in the tracer used in a PET exam, is a positron-

emitting radioisotope (β+-decay), i.e., it is lacking a neutron. The nucleus is there-

fore not stable and its lifetime is described with a decreasing exponential law:

N(t) = N(0) exp (−λDt)

where the decay constant λD = log 2
t1/2

, N(t) is the number of radioactive nuclei at

a time t in a sample, t1/2 is the radionuclide half-life and log(·) will represent the
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Figure 2.1: Schematic of a PET/CT scanner

natural logarithm in this thesis.

During the β+-decay, a proton of the nucleus A
ZY is converted into a neutron,

which releases a positron e+ and an electron neutrino νe. As a result, a “daughter”

nucleus AZ−1X is created, accompanied with an energy release E∗ (see Equation (2.1)).

A
ZY → A

Z−1X + e+ + νe + E∗ (2.1)

The energy spectrum of the emitted positrons depends on the radionuclide (see

Equation (3.2) in Chapter 3).

Annihilation and Positron Range :

Once the positron is emitted within the tissue, its kinetic energy decreases through

sequential collisions with bound electrons of the medium, until the final collision dur-

ing which the “annihilation” interaction occurs. This results usually in the creation

of 2 γ photons of 511 keV that travel almost back-to-back (Evans 1955).
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e− + e+ → 2γ (2.2)

A PET scan will therefore image the annihilation locations instead of the positron

emission locations.

The distance between the positron emission location and the annihilation loca-

tion is known as “positron range” and will be discussed further in Chapter 3.

2.2.2.2 Photon Interactions in Matter

Compton Scattering :

Compton scattering, also known as incoherent scattering, is the predominant inter-

action at 511 keV in tissue.

The incoming γ-ray photon is deflected through an angle θ with respect to its origi-

nal direction, when its path gets close to an electron at rest. A part of its energy is

transferred to the electron, known as a “Compton electron” or “recoil electron”.

The energy E′ of the scattered photon can be expressed in terms of the energy of

the original photon E and the scatter angle θ: E′ = E
1+α(1−cos θ) , where α = E

m0c2

and m0c
2 is the electron rest energy.

The probability of Compton scattering is proportional to electron density and de-

creases as the photon energy increases.

Rayleigh Scattering :

Rayleigh scattering, also known as “coherent scattering”, occurs mainly for low-

energy photons or high atomic number Z. Unlike Compton scattering, it happens

without loss of energy (“elastic scattering”). However, the probability of Rayleigh

scatter is negligible at 511 keV and is usually neglected in PET.

Photoelectric Absorption :

A photon interacts with an atom in which the photon completely vanishes, and it

creates an energetic photoelectron. It is the predominant form of interaction at low

photon energy and high atomic number Z. It is one of main processes at the base of

detectors in PET, in the scintillation crystals (see Section 2.2.2.3).

Pair Production :

For high-energy photons, the inverse process to annihilation can occur, i.e., γ →

e+ + e−. However, as the γ photon needs to have an energy of at least 1.022 MeV
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(conservation of energy), this process cannot happen for photons created in an an-

nihilation event.

2.2.2.3 Detection Principles

Coincidences in PET :

PET is based on the detection of “coincidences”, which are pairs of photons from

the same annihilation event, whose energies fall into the scanner energy window

(typically between 425 keV and 650 keV, like for the GE Discovery PET/CT 690

(Bettinardi et al. 2011)) and the difference of their arrival times at the detectors

is in the coincidence window (≈ 5 ns). Because of the different types of photon

interactions in the body (Section 2.2.2.2), four types of coincidences are defined in

PET:

– true coincidences, or “trues”, correspond to a photon pair both emitted in the

same annihilation event and whose directions were not modified during their

travel to the detectors.

– scattered coincidences, or “scatters”, is when at least one of the detected

photons is a scattered photon.

– random coincidences, or “randoms”, correspond to two photons which were

emitted in two distinct annihilation events.

– multiple coincidences, or “multiples”, when more than three photons are de-

tected within the same coincidence window, making it impossible to distinguish

annihilation photons from the same event.

The “prompts” are defined as the recorded in-time coincidences in a PET scan.

In this case, the total number of prompts P is equal to:

P = T + S +R

where T , S and R are the number of trues, scatters and randoms, respectively. An

illustration of the four types of coincidences can be found in Figure 2.2. These

types of coincidences need to be accounted for when PET images are reconstructed.

The standard method to estimate the amount of scatter events in the prompts is

discussed in Section 2.2.5.
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(a) Trues (b) Scatters

(c) Randoms (d) Multiples
Annihilation
Detected LORs
Photon trajectories

Figure 2.2: Different types of coincidences in PET: (a) Trues, (b) Scatters, (c) Randoms
and (c) Multiples.

Photo-detection :

The annihilation photon detector in PET is composed of a scintillation crystal and

a signal detector, usually known as the photo-detector; the high-energy photons

first lose energy and become light (scintillations). The light pulse produced by the

scintillation crystal is then converted to an electrical signal by the photo-detector.

For PET imaging, desirable characteristics for the scintillation crystals are the

following:

• a high atomic number Z, as photoelectric absorption is favoured, to achieve

good sensitivity and a high stopping power, defined as the inverse of the mean

distance travelled by the photons before depositing energy, to overcome the

limited size of the crystals.

• a high light output (fraction of incident γ photons converted into scintillation



2.2. Positron Emission Tomography 43

photons), leading to a good energy resolution (the fraction of scintillation

photons is proportional to the energy brought by the annihilation photon),

crucial to discriminate the true events from the scattered events (2.2.2.3).

• a low light decay constant, to allow detecting higher photon rates and a precise

measurement of time arrival of the photons.

In the first PET scanners, the crystals were made of NaI, but they were replaced

by BGO and nowadays mostly LSO/LYSO crystals, as they have a better overall

efficiency, time resolution and are not hygroscopic (see Melcher 2000).

The main types of photo-detectors used for PET scanners are:

• Photo-multiplier tubes (PMTs). They consist of a photocathode and of a

series of dynodes in an evacuated glass enclosure. Even though they have a

high amplification of the signal, the conversion of incoming light photons into

electrons (≈ 25%, “quantum efficiency”) and its bulky shape are drawbacks

for PET detectors (Roncoli and Cherry 2011).

• Avalanche photo-diodes (APDs), silicon device based on a modified p-n junc-

tion structure, providing a better quantum efficiency (up to 80%). They how-

ever require careful maintaining of operating conditions, including a cooling

system, and the signal amplification and the timing resolution is poorer than

for PMTs. (Shah et al. 2002)

• Silicon photo-multipliers (SiPMs), or solid-state photo-multipliers (SSPMs),

combine the advantages of both PMTs and APDs, with high signal amplifica-

tion, quantum efficiency and time resolution. They are the new standard for

photo-detectors (Roncoli and Cherry 2011).

Time-of-Flight :

As stated above, PET is based on the detection of two photons in a coincidence

timing window. Additionally, the time information can predict the position of the

annihilation event from the arrival times of the photons at the detectors. Even

though this concept, called time of flight (TOF), was proposed in the very beginning

of PET development (1960s), it was only first clinically available in the 1980s (Surti

2015).
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Figure 2.3: Principle of Time-of-Flight

If two annihilation photons created at t0 are detected by two separate detectors

adjoined by a line at time t1 and time t2, the distance between the line midpoint and

the annihilation location is equal to |d1−d2|2 where |d1−d2| = c · |t2− t1| (Figure 2.3).

There is however an uncertainty on the location of the event, which can be

characterised by a time resolution ∆t. This is usually modelled with a normal

distribution along the line of response (LOR) where the full-width at half maximum

(FWHM) of the function is equal to c∆t
2 .

The TOF capability of a scanner requires an accurate evaluation of the arrival

time of the photons at each detector (Spanoudaki and Levin 2010). Some types of

scintillation crystals cannot provide the minimal time resolution required for TOF,

therefore it is only used in clinical practice for LSO/LYSO detector scanners at the

moment (Moses and Derenzo 1999). Better photomultipliers can improve the time

resolution of the scanners, as it is the case for new PET scanners, using SiPMs

instead of PMTs. The manufacturers are currently pushing towards higher time

resolution, in order to improve the signal-to-noise ratio (SNR) of the PET images

(Lecoq 2017; Cates and Levin 2018). Recent Siemens PET/CT Vision has a reported

time resolution FWHM of approximately 210 ps/3.15 cm (Van Sluis et al. 2019),

whereas GE PET/CT Discovery MI has a lower resolution of FWHM 382 ps/5.73 cm

(Pan et al. 2019). The TOF-ready scanner in this project is the GE PET/CT

Discovery 710 (Bettinardi et al. 2011), for which the time resolution FWHM is only

of 550 ps/8.25 cm.

Data Output :

The data output of a PET acquisition is a file storing the collection of all prompts

(see Section 2.2.2.3). An annihilation event is primarily characterised by the detector

pair where the photons arrived. For each of them, we define a LOR, connecting the

centres of the two detectors. The time information, when it can be measured, is
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stored in a number of “TOF bins”, the TOF bin index being an additional coordinate

to an event in TOF PET. The “TOF bin size” is equal to the coincidence window

divided by the number of TOF bins. The output can be stored as:

• a “listmode” file. The file encompasses the main information about the de-

tected events, such as the arrival time, the detector and annihilation event

coordinates or the detected energy.

• a “sinogram”. The events are histogrammed during the acquisition process.

Although less flexible than the listmode files, sinograms are still largely used

in routine image reconstructions and for data display.

In order to obtain a 3-dimensional (3D) representation of the radiotracer con-

centration in the body, the PET data needs to be reconstructed. The resulting

images often show the concentration in kBq.mL−1 but the values are often nor-

malised to represent the activity within the body, such as standardised uptake value

(SUV) dividing the activity values by a factor related to the patient morphology

and by the injected activity.

We can distinguish two main types of PET acquisitions:

• Static PET: these are the most common acquisitions, the (short) acquisition

takes place when the radiotracer is considered “stable” in the body during

the duration of the acquisition, therefore the patient needs to wait a certain

duration between the time the tracer was given to him and the acquisition

time. This waiting time before the acquisition depends on the radiotracer

metabolism. In clinical practice, it is approximated to 60 min for 18F-FDG

and only a few minutes for 15O-CO.

• Dynamic PET: the acquisition starts just before the radiotracer is given to

the patient. Measures on radiotracer kinetics can be obtained from such ac-

quisitions (Lammertsma 2017a), for example from compartmental modelling.

This will be introduced in Section 2.3.4.

2.2.2.4 Factors influencing PET Resolution

The resolution of PET is limited by several factors. The three main factors (Moses

2011) are the following:
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• Limitations linked to the detectors such as inter-crystal scatter and crystal

finite dimension (Rahmin et al. 2013).

• Positron Range; as discussed in 2.2.2.1, PET detects the annihilation events

instead of the positron emission events (Levin and Hoffman 1999). This will

be discussed in more details in Chapter 3.

• Non-collinearity of annihilation photons; the centre of gravity of the positron

and atomic electron system (“positronium”) is not always at rest at their an-

nihilation. Therefore the annihilation photons are not always emitted back-to-

back (i.e., exactly 180 ◦ apart), due to conservation of energy and momentum.

In the case of a PET scan with a 18F-labelled radiotracer (e.g., FDG), there

is a collinearity error of approximately 0.54 ◦ (Shibuya 2007).

2.2.3 CT Physical Principles

CT, or more appropriately “X-ray” CT, measures the attenuation of X-rays by

tissues from different angles.

During the CT acquisition, an X-ray generator rotates around the patient, usu-

ally along a helical trajectory. It emits X-rays in a given direction, using a photo-

guide. A part of the X-ray beam is attenuated within the body, mainly because of

photoelectric effect. The remaining X-rays are collected by photodetectors on the

other side of the patient.

The energy spectrum of a X-ray source is polychromatic (mixture of several

wavelengths) and depends on the scanner settings, mainly its peak kilovoltage (kVp)

and the electric current applied (in mA). The energy spectrum of CT acquisitions

(for a PET/CT scanner) is typically comprised in a range from 40 keV to 140 keV

(Alvarez and Macovski 1976), for which Compton scattering and photoelectric ab-

sorption are considered as the main physical interactions in soft tissue and bones.

For PET/CT scanners, the CT acquisition used for attenuation correction (see

next Section 2.2.4) normally takes place before the PET acquisition. For a standard

helical CT acquisition, the scan is very fast (of the order ≈ 2−3 s for a thoracic cover-

age,Goerres et al. 2003). The resulting CT image is usually expressed in Hounsfield
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units (HUs), defined, at a location x as:

HU(x) = 1000×
(
µ(x)− µwater

µwater − µair

)

where µ(x), µwater and µair are the linear attenuation coefficients of the tissue at the

location x, the water and the air, respectively.

2.2.4 Attenuation in PET and PET/CT

2.2.4.1 Physical Properties

Attenuation is defined as the loss of (true) coincidences as a result of the photon

interactions occurring within the body of the patient, as described in Section 2.2.2.2.

In CT imaging, the attenuation of a photon ray of energy E along the line

between the X-ray generator and a detector follows the Beer-Lambert’s law:

I(x,E) = I0 exp

(
−
∫ x

l=0
µ(l, E) dl

)
, (2.3)

where µ(l, E) is the linear attenuation coefficient for a photon of energy E in the

tissue located at a distance l from the X-ray generator, I0 is the photon ray intensity

at distance 0 and I(x,E) is the photon ray intensity at distance x along the line,

for a monochromatic X-ray source. Considering the polychromatic nature of the

X-ray source used in CT acquisition, the resulting photon ray intensity at distance

x becomes:

I(x) =

∫ Emax

0
I0(E) exp

(
−
∫ x

l=0
µ(l, E) dl

)
dE , (2.4)

where Emax is the maximal energy of the X-ray source and I0(E) is the photon ray

intensity for a given energy E at distance 0 (i.e., as emitted from the source). As

the energy spectral distribution of the X-ray source I0 : 0 → Emax is unknown,

the integral in (2.4) cannot be calculated directly. However, according to the mean

value theorem, we can prove that there exists an energy Eeff such that it is possible

to rewrite (2.4) as (2.3). Although this energy depends on the photon paths, in

practice CT reconstruction uses an “effective” linear attenuation coefficient µeff(l)

(Baur et al. 2019), which can cause beam hardening artefacts in CT images.

Whereas photon attenuation is the foundation of X-ray imaging, it represents

an issue in PET. The fraction of photons attenuated in a tissue is proportional to
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the tissue density. For large patients in PET, the fraction can be up to 95% (Mettler

and Guiberteau 2012), or more for obese patients, and needs to be accounted for.

As for CT, attenuation in PET can also be described using the Beer-Lambert’s

Law (Equation (2.3) for E = 511 keV):

I(x,E = 511 keV) = I0 exp

(
−
∫
µ(l, E = 511 keV) dl

)
, (2.5)

where µ(l, E = 511 keV) is the linear attenuation coefficient at the distance l, for

photons of energy 511 keV.

In order to achieve good quantification of the physiological processes in PET,

the attenuation needs to be estimated and taken into account. In this thesis, we

will refer to attenuation map or µ map as an image representation of the linear

attenuation coefficients µ, which are used to reconstruct PET images corrected for

attenuation.

2.2.4.2 Attenuation Estimation using Transmission Scans

In the case of a stand-alone PET scanner, attenuation is estimated using a “trans-

mission” scan, acquired prior to the injection or inhalation of the main radiotracer

(Bailey 2004). It usually consists of a radioactive positron-emitting rod source (usu-

ally a 68Ge / 68Ga source) rotating around the patient.

A blank exam, i.e., without the patient, is also acquired routinely to correct

for detection efficiencies in the transmission scan. The quotient sinogram of the two

gives the attenuation correction factors. This method, since the arrival of PET/CT

scanners, is not used routinely anymore, as it requires an additional external source

and lengthy scan, which is subject to intrastudy motion.

2.2.4.3 Attenuation Estimation using a CT Acquisition

When a CT attenuation image is available, it can be used to derive the PET atten-

uation image. However, the two images are not directly comparable: PET uses mo-

noenergetic 511 keV annihilation photons while CT uses polychromatic low-energy

photons (energy spectrum from 40 keV to 140 keV). The relative importance of

photon interactions in matter (see Section 2.2.2.2) is therefore different.

However, rescaling the CT image, often via a bilinear or trilinear conversion, to

assess the attenuation coefficient factors in PET (see Part 2.3.2), has proved to be
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an efficient method. Using a CT-based attenuation image has the advantage of not

needing extra scans and being quasi-instantaneous, reducing the motion uncertainty

and providing more comfort for the patient and a higher patient throughput (cf P.E.

Kinahan et al. 1998; Alessio et al. 2004).

The use of CT-based attenuation maps in PET relies on an accurate alignment

between the PET and CT images, which is normally the case in integrated PET/CT

systems. However, in presence of motion during the acquisition (mostly for cardiac

and lung imaging) or when the attenuation of a material is wrongly estimated (e.g.,

because of metallic implants or contrast medium), some artefacts can appear on

the emission images (streaking artefact, blurring of lung lesions or heart, breathing

artefact, etc.) and are difficult to eliminate (Sureshbabu et al. 2005).

2.2.5 Estimation of Scatters in Detected Prompts

Scatter events (Section 2.2.2.3) represent a large part of the detected prompts and

depend on the attenuation of the medium— approximately equal to 36% according

to Spinks et al. 1992. Therefore, to achieve good quantification, scatter sinograms

are commonly estimated either to pre-correct the prompts (usually for analytical

reconstructions, see Section 2.3.2.2) or to incorporate within the system model (see

Equation (2.19) of next Section 2.3.2.4).

Currently, the most common method is an iterative estimation of the scatter

component, by using single scatter simulation followed tail fitting. The single scatter

simulations (SSS) (Watson et al. 1996; Ollinger 1996) are based on calculating the

probability of scattering to the PET detectors, by integrating the Klein-Nishina

equation (Evans 1955). These simulations assess the single scatter only sinogram

(i.e., for a detected pair of photons, one photon was not scattered along its path and

the other photon was scattered only once). Multiple and out of the FOV scatters

are added to the previously estimated sinogram by scaling it up, via tail fitting

(Thielemans et al. 2007). This method was extended to TOF data (Watson 2007).

2.3 Data Processing

This section will give a brief overview of the main techniques and algorithms used to

process PET/CT data. This includes an introduction to general optimisation and

its use in three domains:
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• PET activity image reconstruction: the main reconstruction algorithms nowa-

days rely on optimising a given cost function to obtain the most likely activity

image. This will be developed in Section 2.3.2.

• Medical image registration: it is often necessary to register/realign images,

for example for patient follow-up or more generally to compensate for motion

within image reconstruction. An introduction will be given in Section 2.3.3

and some results presented in Chapter 4.

• Compartmental modelling : it is possible to extract kinetic parameters from

dynamic PET acquisitions. Some details are provided in Section 2.3.4 and in

Appendix A.

2.3.1 Parameter Estimation through Optimisation in Medical

Imaging

As introduced in Section 2.2.2.3, the output of a PET acquisition is not directly

representative of the radiotracer distribution, the data needs to be “reconstructed”.

2.3.1.1 Introduction to Optimisation

An optimisation problem (Nocedal and S. Wright 2006) finds the optimal solution

for a specific problem given a vector x ∈ A. It relies usually on the minimisation

of an objective function (or cost function) Ψ : A → R for a vector x ∈ A i.e., in

finding:

x̄ ∈ arg min
x∈A

Ψ(x) . (2.6)

The optimisation domain A can be Rn (where n is the number of variables) or can

incorporate equality or inequality constraints. Note that it is sometimes easier to

pose a problem as a maximisation, hence the equivalent formulation:

x̄ ∈ arg max
x∈A
−Ψ(x) . (2.7)

Optimisation is used in several fields of medical imaging, among which image denois-

ing, image segmentation, image registration, image reconstruction or compartmental

modelling. The objective function is often written as:

Ψ(x) = Similarity(x) + βRoughness(x) , (2.8)
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where Similarity indicates the goodness of model fit and βRoughness is the “reg-

ularisation” term, usually relying on prior knowledge on the image distribution

(Roughness is the penalising function and β is its penalty weight). Similarity mea-

sures and regularisation penalties for image reconstruction and image registration

will be discussed in Section 2.3.2 and 2.3.3.

2.3.1.2 Optimisation Methods

Iterative Optimisation :

An iterative optimisation scheme is usually as follows, starting from an iterate xk:

1. Convergence test : If the previous iterate (or initial iterate when k = 1) satisfies

the convergence criteria, the optimisation stops.

2. Computation of a search direction pk.

3. Computation of the step length αk > 0 (depending on optimisation method):

usually using a line search

4. Update following Equation (2.9), increment k and return to step 1.

xk+1 = xk + ∆xk, where ∆xk = αkpk . (2.9)

Other update rules (e.g., multiplicative) are sometimes used, but can often be rewrit-

ten as in Equation (2.9).

In gradient-based optimisation, the search direction corresponds to the gradient

of the objective function. This section will focus on this type of methods.

When a direction pk is chosen, a line search strategy is usually applied to find the

step length αk. In a steepest gradient descent, it is set as: αk ∈ arg minα>0 Ψ(xk +

αpk). Instead of finding the exact minimiser, in practice many line search algorithms

find a close estimate of the optimal step size.

Newton method :

If we consider the second-order Taylor’s expansion of a function f with values in R:

f(x) ≈ f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x− x0)2 (2.10)
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and rewrite the equation for a vector xk + ∆xk, using the gradient vector ∇f(xk)

and the Hessian matrix ∇2f(xk), we obtain:

f(xk + ∆xk) ≈ f(xk) +∇f(xk)
ᵀ∆xk +

1

2
∆xk

ᵀ∇2f(xk)∆xk (2.11)

where [ · ]ᵀ denotes the transpose of a matrix.

When differentiating Equation (2.11) and setting the derivative ∂
∂∆xk

f(xk +

∆xk) to 0 (signifying that f has a local extremum in xk + ∆xk), we obtain the

following equation:

∇2f(xk)∆xk = −∇f(xk) (2.12)

Provided the Hessian ∇2f(xk) is positive definite, we can rewrite Equation (2.12)

to obtain the “Newton step”:

∆xk = −∇f(xk) ·
(
∇2f(xk)

)−1
(2.13)

where
(
∇2f(xk)

)−1
is the inverse of the Hessian. One disadvantage of using such

step is the computation time of the Hessian matrix (n(n + 1)/2 unique elements

where n is the number of variables), its storage and the inversion of it, therefore

quasi-Newton methods are often used to reduce the complexity of the optimisation.

Instead of computing (and inverting) Hessian matrices, the latter methods use either

approximate Hessian matrices or even approximate inverse Hessian matrices, using

the values of the cost function and gradients from previous iterations. Quasi-Newton

methods can also be used when the Hessian is not positive definite, as the constructed

inverse Hessian matrix will be constructed as positive definite (Nocedal and S.J.

Wright 1999).

Broyden-Fletcher-Goldfarb-Shanno (BFGS) :

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a widely-used quasi-

Newton method (Dennis, Jr. et al. 1977; Nocedal and S.J. Wright 1999). The

approximation Vk+1 at an iteration of the inverse of the Hessian matrix ∇2f(xk+1),

from the previous iterate Vk:

Vk+1 =

[
In −

∆xkyk
ᵀ

∆xk
ᵀyk

]
Vk

[
In −

yk∆xk
ᵀ

ykᵀ∆xk

]
+

∆xk∆xk
ᵀ

∆xk
ᵀyk

(2.14)
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where yk = ∇f(xk + ∆xk)−∆f(xk)

Variations of BFGS, including Limited-memory BFGS (L-BFGS) (Matthies and

Strang 1979; Nocedal and S. Wright 2006) and L-BFGS-B (Nocedal 1980), with

additional boundary constraints, are commonly used to speed up the optimisation:

instead of storing the entire approximate to the inverse of the Hessian matrix, only

a portion of it is stored.

2.3.1.3 Discretisation

The activity and attenuation distributions are usually discretised in medical imaging.

A given distribution f can be discretised as a 3D image f = [fi] such that, at a

location (x, y, z) ∈ R3:

f(x, y, z) =

nv∑
j=1

fjbj(x, y, z) (2.15)

where nv is the number of elements of the image volume and fj is the contribution

for each basis function.

Several types of basis functions exist in literature, among which two will be

used throughout this work:

• Rectangular voxels/cuboid representation, for standard image reconstruction

(see Section 2.3.2). In this case, ∀j ∈ J1, nvK, the contributions fj are the voxel

values and bj is a rectangular function.

• Cubic B-splines (they will be used to parameterise deformation fields, see

Chapters 4 and 6). B-splines are commonly used as they are C∞ functions

with explicit and simple derivatives (piecewise polynomials).

2.3.2 Image Reconstruction in PET

An overview of the main algorithms used in PET reconstruction will be given in this

part.

2.3.2.1 Motivation

The data acquired on a PET scanner can be sinograms (or projection data) or

listmode (see 2.2.2.3). The reconstructed images are composed of volume elements,

or “voxels” (see discretisation in previous Section 2.3.1.3).

Two main types of reconstruction algorithms exist in PET: analytical and iter-

ative reconstruction algorithms.
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Figure 2.4: Line-of-response 2D parameterisation in PET

2.3.2.2 Analytical Reconstruction

Each LOR of the PET scanner (see Section 2.2.2.3) can be parameterised with

spatial coordinates (see in 2D in Figure 2.4).

The X-ray transform of a 2D distribution λ, also known as Radon transform,

can be written as:

Rλ(s, θ) =

∫ ∞
−∞

λ(s cos θ − ξ sin θ, s sin θ + ξ cos θ) dξ (2.16)

In the case of TOF data (2.2.2.3), the annihilation along the LOR defined

by (s, θ) is approximately located at a TOF time τ , the uncertainty being defined

by a temporal blurring kernel h(τ) (usually defined as Gaussian). The previous

Equation (2.16) is modified and the line integral is replaced by a convolution along

the LOR:

RTOFλ(s, θ, τ) =

∫ ∞
−∞

λ(s cos θ − ξ sin θ, s sin θ + ξ cos θ)h(τ − ξ) dξ . (2.17)

The parameterisation using X-ray transforms can be extended in 3D to LORs

in oblique planes (Defrise et al. 1989).
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The most common analytical reconstruction method is the filtered back-

projection (FBP) reconstruction and relies on X-ray transforms and the associated

“Central Slice theorem”, relating the Fourier transform of a projection to the Fourier

transform of the image. A ramp filter is first applied to the sinogram (which is usu-

ally pre-corrected for attenuation, scatter and randoms). The filtered sinogram is

then backprojected to construct the PET image. The reconstruction is fast, and

used to be the gold standard of PET reconstruction. However it has important lim-

itations as it does not account for the stochastic variability in photon detection or

degrading factors such as detector size or positron range (see Section 2.2.2.4). The

use of FBP reconstruction has decreased over the years (P.E. Kinahan et al. 2004;

Tong et al. 2010).

2.3.2.3 Statistic Model for PET Detection

The Poisson distribution is used to describe the probability of events occurring

within a period of time at a certain rate, all events occurring independently. For

PET acquisitions, the positron emission and the photon detection (within the photo-

detectors) are usually described as Poisson statistics. For each detector pair of a

PET scanner, the number of coincidence events detected is a Poisson variable.

The likelihood L(g |λ) describes the probability of a set of events g to occur for

an emission distribution λ. For a Poisson distribution, it is given by:

L(g |λ) =

nd∏
i=1

ḡi
gi · exp(−ḡi)

gi!
, (2.18)

where nd is the number of detection bins, gi is the number of events detected by a

detection bin i, ḡi is the expected number of events detected by the detection bin i,

depending on the emission distribution λ (see following Equation (2.19)). In PET,

a detection bin corresponds either to the set of events for a detector pair (in the

non-TOF case) or to the set of events for a detector pair and a TOF bin (in the

TOF case).

2.3.2.4 Iterative Emission Image Reconstruction

An iterative emission image reconstruction algorithm is a specific type of optimi-

sation problem (Section 2.3.1), where an emission image is updated to fit a given

cost function. Unlike the analytical reconstructions, these iterative methods can
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take into consideration the statistical noise and the physical effects of the imaging

system, which improves the reconstruction performance.

For a known emission distribution λ, when the system response M and the

expected values of randoms r̄ and scatters s̄ are given, we can calculate the expected

value for the projection data:

ḡ = Mλ+ r̄ + s̄ , (2.19)

where for a detection bin i

Miλ =

∫
Ω
λ(r)mi(r) dr ,

Ω ⊂ R3 is a compact set for the field of view of the scanner and mi : R3 → R+ is

the system response function corresponding to the detection bin i.

When the distribution is discretised as λ = [λj ]j∈J1,nvK (as introduced in Sec-

tion 2.3.1.3), the previous equation 2.19 becomes for a projection data of a detection

bin i:

ḡi =

nv∑
j=1

Mijλj + r̄i + s̄i , (2.20)

where Mij is the element (i, j) of the system matrix M and ḡi (respectively r̄i, s̄i)

is the i-th element of ḡ (respectively r̄, s̄), i.e., its value for the detection bin i.

Mij is the probability that a pair of unscattered photons created in a voxel j

is detected by the detector bin i, and incorporates the attenuation and all detection

uncertainties. M can be factorised as: (Qi et al. 1998; Leahy and Qi 2000a)

M = Msensitivity ·Mblurring ·Mattenuation ·Mgeometry ·Mpositron range , (2.21)

where Msensitivity and Mblurring are matrices to account for detector effects,

Mattenuation is composed of the attenuation correction factors, as discussed in

Part 2.2.4, Mgeometry incorporates a geometrical mapping between the source and

the data (the element (i, j) of Mgeometry would correspond to the probability that

a photon pair created in a voxel j is detected by the detector pair corresponding

to the bin i in the absence of any attenuation or any blurring effects unrelated to

detection) and Mpositron range is a blurring matrix, accounting for positron range.
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The operation of forward-projection of a 3D emission image relies in applying

(2.19) to an emission λ image. Backprojection is the adjoint operator of forward-

projection.

The likelihood (Equation (2.18)) is used in iterative reconstruction algorithms

to define the optimisation cost function (Section 2.3.1). The most common scheme

in PET is the “Maximum Likelihood estimation”, in which L(g |λ) is maximised to

obtain an estimate of λ, fitting the projection data.

As an alternative to maximising directly the likelihood L, the log-likelihood L

is generally used, as it is easier to take the derivative of a sum instead of a product

and then maximise (log is a strictly increasing function on R+∗):

L(g |λ) =

nd∑
i=1

gi log ḡi − ḡi . (2.22)

Maximum-likelihood estimation in PET is most commonly of the form: λ̂ML =

arg max
λ≥0

L(g |λ), imposing a non-negativity constraint on λ, considering that ra-

dioactivity concentration cannot be negative.

The emission image estimate λ̂ML is often updated using an “Expectation Max-

imisation” (EM) algorithm. Instead of maximising directly L(g |λ), the expected

value E
[
L(g |λ) | g, λ̂

]
is maximised, where λ̂ is an estimate of λ. At an iteration

k, the algorithm combines an Expectation (E) step, which computes ḡ (k) from the

previous estimate λ̂ (k−1), and a Maximisation (M) step, which provides a new esti-

mate λ̂ (k) via maximisation of the expected value of the log-likelihood L(g | λ̂ (k−1))

(Dempster et al. 1977; Shepp and Vardi 1982; Lange and Carson 1984). Because of

the non-negativity constraint on λ, in the absence of any a priori estimation, λ̂ (0)

is generally initialised as a matrix of 1s. These iterative algorithms are known as

MLEM. For a Poisson log-likelihood, the standard MLEM algorithm can be simpli-

fied as:

λ̂
(k+1)
j =

λ̂
(k)
j∑nd

i=1Mij

nd∑
i=1

Mij
gi

ḡ
(k)
i

=
λ̂

(k)
j∑nd

i=1Mij

nd∑
i=1

Mij
gi∑N

l=1Milλ̂
(k)
l + ri + si

(2.23)

This is a special case of gradient-based optimisation (Section 2.3.1), where the cost
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function to maximise is L(g |λ). The update rule is here multiplicative, as we can

write λ (k+1) = λ (k)∆
(
λ (k)

)
, where ∆

(
λ (k)

)
= 1∑nd

i=1Mij

∑nd
i=1Mij

gi

ḡ
(k)
i

.

Note that for projection data with TOF bins, a detection bin is often noted as

gi,t where i now corresponds to the detector pair and t the TOF bin, and in the

previous Equation (2.23), the sum over i ∈ J1, ndK is replaced by a double sum over

{i, t} ∈ J1, DK× J1, T K, where D is the number of detector pairs (i.e., LORs) and T

is the number of TOF bins, and in this case gi =
∑T

t=1 gi,t.

In the case of realistic data, the MLEM methods yield noisy reconstructed

images and converge slowly. In PET, the iteration is usually terminated early to

have a good trade-off between acceptable noise level and quantitative values (see

Chapter 5). A smoothing filter is also usually applied to the reconstructed images.

(Llacer 1993; Johnson 1994)

To overcome the problem of slow convergence, the use of “ordered subsets”

within the reconstruction was introduced in 1994 (Hudson and Larkin 1994) and

clinically validated in 1997 (Hutton, Hudson, and Beekman 1997). In this type of

algorithms, the projection data is “binned” into different ordered subsets (which

are commonly chosen to be disjoint) and the MLEM algorithm is applied for each

of these subsets in a specific order. In practice, subsets are taken in terms of sets

of LORs/detector pairs, however other schemes exist. Provided there are not too

many subsets, this strategy speeds up the reconstructions, without impacting much

on the quantification or detectability (Morey and Kadrmas 2013). It is now used

as a clinical routine. This type of iterative reconstruction is referred as ordered

subsets expectation maximisation (OSEM) and accelerate the process by about B

times compared with MLEM (B is the number of subsets). If more than 2 subsets

are used in OSEM, the reconstruction will however not converge to a single solution

but to a limit cycle (Mettivier et al. 2011).

Some reconstruction algorithms allow negative values in the reconstructed im-

ages, such as Erlandsson et al. 2001; Bousse, Courdurier, et al. 2020. Although the

radioactivity distribution cannot be negative physically, allowing the algorithm to

locally reconstruct negative values can improve the problems linked with biases in

low-activity regions, especially in the presence of a “hot” surrounding area.

In order to control the noise level within the PET reconstructions, in lieu of
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early stopping and/or filtering the reconstructed images, the log-likelihood can be

penalised with a prior (Fessler and Hero 1995; De Pierro 1995; Fessler 1994). Instead

of maximising the log-likelihood L(g |λ), the penalised-likelihood (PL) algorithms

will maximise Φ(λ):

Φ(λ) = L(g |λ)− βR(λ)

where L(g |λ) was defined in Equation (2.22) and R(λ) is the regularisation penalty

(or prior), with a penalty weight β.

The regularisation penalty can be written as:

R(λ) =

nv∑
j=1

∑
k∈Nj

wjkV (λj , λk) , (2.24)

where nv is the number of image voxels, wjk are weights related on the distance

between the two voxels j and k, Nj is the neighbourhood of a voxel j and V is the

penalty function. R(λ) is usually chosen to penalise absolute differences between

pixels in a neighbourhood. Three penalties will be of interest here:

- the quadratic penalty (Mumcuoğlu et al. 1996):

R(λ) =

nv∑
j=1

∑
k∈Nj

wjk (λj − λk)2 . (2.25)

- Relative difference (RD) penalty (Nuyts et al. 2002):

R(λ) =

nv∑
j=1

∑
k∈Nj

wjk
(λj − λk)2

(λj + λk) + γ|λj − λk|
. (2.26)

- smoothed total variation penalty (Rudin et al. 1992): (differentiable total

variation) For α a smoothing parameter, we have:

R(λ) =

nv∑
j=1

√
||∇λj ||22 + α2, α > 0 , (2.27)

where || · ||2 is the L2-norm and ∇λj the gradient of λ at a voxel j. ∇λj is

usually approximated with finite differences between λj and voxels in Nj . We

will use forward differences in this work (cf. Section 4.5.2).
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Modified versions of MLEM and OSEM can be implemented using those priors.

In this work, two versions will be used:

• “De Pierro modified MLEM/OSEM” (De Pierro 1995), which utilises surro-

gates within the image reconstruction. It requires concave priors, for which

a “surrogate” can be found. This (separable) surrogate function is indeed

simpler to optimise but will mathematically lead to the same optimum in the

optimisation. This will be referred as “modified OSEM” hereafter.

• Block sequential regularized expectation maximization (BSREM) (De Pierro

et al. 2001; Ahn et al. 2003), which only needs the gradient of the penalty

function, therefore is more generally applicable than the previous modified

OSEM.

2.3.2.5 Implementation of Reconstruction Algorithms

Several software packages allow to reconstruct projection or listmode data, either

via analytical or iterative reconstruction algorithms. In the case of iterative re-

construction, the scanner type must be known, and the user needs to provide the

reconstruction parameters (reconstruction scheme, number of iterations, subsets,

sub-iterations, optional filters, etc.).

In the following work, two software packages will be used to reconstruct the

data: on one hand the open-source STIR and on the other hand a MATLAB imple-

mentation relying on proprietary GE projectors (Appendix B).

2.3.3 Image Registration

Image registration is a processing technique which aims to spatially align a set of

images to a single referential. It is usually based on optimisation (Section 2.3.1),

and considers two images: one of the two images is deformed in order to increase

correspondences with the second “target” image. The images can be from the same

modality (for example CT-CT or PET-PET) or from different modalities (for ex-

ample PET-CT).

The deformation can be rigid (e.g., rotation and translation) or non-rigid (in-

cluding compression, dilation, etc.). Several similarity functions are commonly used

in medical imaging, to register the images either based on voxel similarity measures

(assuming there is a relation between the two image intensities) or on geometrical
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features (e.g., from the extraction of points/surfaces). In this work, all deformation

fields are parameterised using cubic B-splines (see Section 4.5.1).

For a voxel-similarity measure, we can write the objective function Ψ as a

function of f1, f2, ϕ, where f1 is the “target” image, f2 is the “moving” image and

ϕ is the deformation transforming f2 to f1. Two objective functions for image

registration will be of interest here:

• Sum of Squared Differences (SSD) (Hill et al. 2001):

Ψ(f1, f2, ϕ) =
1

N

∑
rn∈Ωϕ

(f1(rn)− f2(ϕ(rn)))2 .

where rn is a voxel of f1 and N is the number of elements in the voxel overlap

domain Ωϕ between the (discretised) target image and the (discretised) moving

image transformed by ϕ. When the two images are from the same modality and

only differs by Gaussian noise (i.e., ∀r ∈ Ωϕ, f2(ϕ(r)) = f1(r)+η, where η is a

random variable with a Gaussian distribution), SSD-based registration provide

robust results. However, when global or local intensity changes between the

two images can be observed, it might not provide good deformation fields (Hill

et al. 2001). This cost function will be used for the in-house registration of

monomodality images of Chapter 4.

• Normalised Cross Correlation (NCC):

Ψ(f1, f2, ϕ) =

∑
rn∈Ωϕ

(f1(rn)− f̄1)(f2(ϕ(rn))− f̄2)√∑
rn∈Ωϕ

(f1(rn)− f̄1)2
∑
rn∈Ωϕ

(f2(ϕ(rn))− f̄2)2
,

where f̄1 (respectively f̄2) is the mean value of image f1 (respectively f2◦ϕ) in

Ωϕ. A modified version of this cost function – local normalised cross correla-

tion (LNCC) (Cachier et al. 2003) – is used for lung image registration within

NiftyReg (Modat et al. 2010) for lung registration of clinical data correspond-

ing to the Coagulation Study (Section 6.4.1). It differs from the standard NCC

measure by the use of a moving window function (usually Gaussian) within

the cost function, thereby computing local measures.

Both cost functions will be discussed in more details in Section 4.6.3 of Chapter 4.
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In contrast to PET image reconstruction, the stochastic nature of the data used

to generate the images is often not taken into account in the cost functions used for

image registration. This will be further discussed in Chapter 4.

Other types of cost function include histogram-based registration (via joint

histograms of image intensities, usually for multi-modality registration) or feature-

based (Hill et al. 2001; Oliveira et al. 2014). They will not be discussed in this

thesis.

2.3.4 Compartmental Modelling

Although static scans are the standard clinical procedure in PET, the measures

obtained from the reconstructed images cannot give any information on the radio-

tracer uptake rate and even standardised measures, such as the most commonly

used measure SUV which takes into account the patient weight and the injected ac-

tivity, are prone to large uncertainties (Fletcher and P.E. Kinahan 2010). Another

technique in PET, which we refer as a “dynamic” acquisition, acquires short time

frames to characterise the change of radiotracer concentration over time in a tissue

(Lammertsma 2017b). From these data, it is possible to achieve better quantitative

measures using a “kinetic analysis” approach (Castell and Cook 2008).

A compartment model is based on the decomposition of a physiological system

into a number of “compartments”, each of them representing a simplified component

of the radiotracer transport and binding process.

The change of tracer concentration in one of the compartments is related to the

concentrations in all other compartments, i.e., ∀i ∈ J0, nK, where n+1 is the number

of compartments, there is a linear function Φi such as:

dCi(t)

dt
= Φi(C0(t), C1(t), ..., Cn(t))

By convention, when there is a blood input to the model, the first compartment

(0) is the plasma (or blood) compartment, and C0(t) is its concentration of tracer

at a time t. It is usually referred as the input function (IF), and C0(t) will be noted

IF(t) in the following.

A representation of a compartmental model comprising a sequence of compart-

ments is given in Figure 2.5. The rate constants K1, k2, . . . , kn represent unidirec-
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Figure 2.5: Representation of a sequential compartmental model

tional transport of the tracer from one compartment to another (where K1 is the

rate from the plasma or blood compartment to the first tissue compartment). It is

to note that, although not as common, other configurations exist.

If we use Laplace transforms to solve the system, for a plasma IF, we obtain

a general solution CROI(t), the concentration of a ROI at a time t, such as: (Gunn

et al. 2001; Gunn et al. 2002)

CROI(t) = VB · IF(t) + (1− VB)
n∑
i=1

φie
−θit ⊗ IF(t) (2.28)

where:



n is the number of compartments.

φi is the weighting factor for a compartment i.

θi is the clearance parameter for a compartment i.

IF(t) is the input function at a time t.

⊗ is the convolution operator.

The clearance parameters {θi}i∈J1,nK can be expressed in terms of the rate constants

{ki}i∈J1,nK.

Fitting dynamic PET values to a given compartment model corresponds usually

in finding a set of kinetic parameters such that the optimisation minimises

∑
t∈Ψ

(CROI(t)− [ROI]t)
2
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where Ψ corresponds to the set of frame mid-times of the dynamic PET acquisition

and [ROI]t is the average activity concentration in the ROI at time t. Details on

kinetic parameters for some compartment models are provided in Appendix A.

2.4 Challenges of PET in the Lungs

Comparatively to other regions in the body, imaging the lung in PET suffers more

largely from uncertainties and artefacts. Some aspects will be introduced here and

discussed in following chapters.

2.4.1 Patient Motion

Three main types of motion can affect a PET acquisition: respiratory, cardiac and

involuntary (bulk) motion. A lung acquisition is highly affected by patient motion, as

all three types occur during the acquisition time. Cardiac motion (due to heartbeats)

is expected not to impact much PET images for pulmonary investigations, when not

in close proximity to the mediastinum, therefore it will not be investigated here.

The issue of respiratory motion will be addressed in details in Chapters 4 and 6.

2.4.2 Complex Composition of the Lung

Whereas tissue accounts for about 95% of the brain with most of the remaining 5%

being blood, the lung has a more diverse composition, which needs to be taken into

account especially in the case of pulmonary diseases inducing composition changes.

As previously described in a review co-led by UCL (Chen et al. 2017), the lung is

composed of air, blood and “tissue” (defined as anything in the lung except air and

blood). Any potential increased build-up of collagen will be included in the “tissue”

component in this work.

2.4.2.1 Disease-dependent and Locally-variant Composition

The review in Chen et al. 2017 gives a diverse composition of the lung in the presence

of different pulmonary pathologies:

The results in Figure 2.6 are shown for the whole lung. However, it does not

represent the local changes in the fibrotic area of the lung of an IPF patient, espe-

cially since the fibrotic areas take up only a fraction of the lung volume, the local

changes are expected to be much higher there. In previous work (Holman 2017),

two regions (either normal-appearing or fibrotic) were defined, using a thresholding

mask determined on CT and subsequent manual editing. The fractions of air, blood
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Figure 2.6: Fractions of air, blood and tissue in the whole lung for healthy, COPD,
ILD/IPF and Acute Respiratory Distress Syndrome (ARDS) on average during
respiration, compared to the brain (Chen et al. 2017).

Table 2.1: Fractions of air, blood and tissue in the different regions of the IPF lung (Hol-
man 2017)

Fraction (%) Air Blood Tissue

Normal-appearing 70 15 15
Fibrotic 40 16 44

and tissue proved quite different (see a summary of the results in Table 2.1), result-

ing from the major structural change in the fibrotic region of the IPF lungs and the

increased build-up of collagen.

2.4.2.2 Varying Composition and Positron Range

The varying composition in the lung affects positron range, as introduced in Sec-

tion 2.2.2.1.

The lower the density, the longer the positron range, and because air has a very

low density compared to the other components of the lung, its fraction has a direct

effect on the positron range. This issue will be assessed in details in Chapter 3.

2.4.2.3 Tissue Fraction Effect in the Lung

As discussed previously, the lung is in fact composed of multiple components, the

main one being air. The composition is changing on a microscopic level, so the

images in PET show an average activity in a voxel of all the lung components.

We can decompose the radiotracer concentration in a lung voxel CLung as:

CLung = VA · CA + VB · CB + VT · CT (2.29)
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where VA is the fractional air volume, CA the concentration of radiotracer in the air

in the lung, VB the fractional blood volume, CB the concentration of radiotracer in

the blood, VT the fractional tissue volume and CT the concentration of radiotracer

in the tissue.

Considering CA = 0 (no activity in the air component) and VA + VB + VT = 1,

one can simplify the previous Equation (2.29) with:

CLung = VB · CB + (1− VA − VB) · CT (2.30)

If the activity of the lung tissue needs to be estimated, it is necessary to deter-

mine the fractional volumes VA and VB, as well as CB.

If one wants to dissociate the fraction of air in a voxel, i.e., compute VA, it is

possible to derive its value directly from the CT image (Lambrou et al. 2011b):

HULung = VA ·HUA + VLung\Air ·HULung\Air (2.31)

where HULung is the measured lung density in Hounsfield units, VLung\Air and

HULung\Air are respectively the fractional volume and the density in Hounsfield

units of everything in the lung except the air.

As VA+VLung\Air = 1 and HUA = −1000, under the assumption that the density

of everything in the lung except air is close to the one of the thoracic muscle in IPF,

i.e., HULung\Air ≈ 45 (Yilmaz et al. 2011), the previous equation can be rearranged

as:

VA ≈
HULung + 1000

1045
(2.32)

2.5 Current Imaging Techniques of IPF

2.5.1 High Resolution CT

High-resolution CT (HRCT) is considered to be the reference standard for ILD

patients. The structures in the lung parenchyma, supported by some histology,

provides information on the pathology and its origin. Figure 2.7 shows an axial

view of an HRCT acquisition for an IPF patient of the Coagulation Study cohort

(Section 6.4.1).
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(a) Axial view (b) Sagittal view
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Figure 2.7: (a) Axial and (b) sagittal views of an HRCT acquisition for an IPF patient of
the Coagulation Study cohort (Section 6.4.1), showing honeycombing at the
base of the lungs and near the heart.

The pathological areas are usually situated at the base of the lungs (Spagnolo

et al. 2015), as can be visualised in Figure 2.7.

2.5.1.1 PET Radiotracers under Consideration for IPF

• 18F-FDG: As introduced in Section 2.2.1.2, FDG images glucose consumption

within the body. In addition to tumours, FDG can be used to image inflam-

mation, as activated neutrophils have a higher glucose metabolism (Jones et

al. 1998; Jones et al. 2002). Studies on IPF patients have shown an increased

concentration in regions where fibrosis was observed on the CT image (Groves

et al. 2009; Inoue et al. 2009; Win et al. 2012a).

• 18F-Fluoromisonidazole, or “FMISO”: The radiotracer was used to image

the distribution of hypoxia in tumours (Bruehlmeier et al. 2004), due to its

lipophilic nature, it diffuses through the cell membranes in a high-oxygen en-

vironment, but gets trapped within the cell when the fraction of oxygen is not

sufficient (Thorwarth et al. 2005). In the case of tumours, hypoxia (i.e., lack

of oxygen) is a factor of poor survival for the patients. In IPF lungs, there is

an overexpression of a hypoxia-inducible factor-1 (HIF-1α), activated in pres-

ence of hypoxia. HIF-1α has been shown to accelerate wound healing, and its

mechanism could be essential to understand IPF pathogenesis, and could be

used in the treatment of IPF (Ruthenborg et al. 2014; Tzouvelekis et al. 2014).

• 18F-Fluciclatide: This tracer targets angiogenesis (i.e., the formation of new
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blood vessels), and has shown promising results in oncology (Sharma et al.

2015), as angiogenesis is essential for tumour growth. It is also present in

other pathologies, including wound repair. The tracer targets integrins, which

participate in the adhesion of the new tumour vasculature to the extracellular

matrix (see Gaertner et al. 2012).

• 18F-Proline: Its active molecule, proline, is an amino acid found in collagen,

which is the main constituent of the extracellular matrix in IPF. Even though

it showed promising results in rabbits, a study with IPF human patients did

not show any changes between fibrotic and non-fibrotic areas of the lungs

(Wallace et al. 2002; Lavalaye et al. 2009).

• 68Ga-PSMA: The tracer targets tumour neovasculature, mainly for prostate

cancer (see Chang et al. 1999; Wang et al. 2015). Accidental findings on

patients demonstrating both IPF and lung cancer have shown an increased

uptake in the fibrotic areas, as for FDG, and this tracer might be investigated

within the institute for IPF.

2.5.2 Static FDG PET Results

Groves et al. 2009 showed increased FDG uptake in fibrotic regions versus normal-

appearing regions for ILD patients (including IPF cases). They concluded that

there was a increased glucose metabolism in both ground-glass and honeycombing

(as visualised in the HRCT). The pulmonary FDG uptakes were correlated with

global health score and other physiological measurements.

The increase in FDG uptake was also visually confirmed for the patients from

the Coagulation Study (Section 6.4.1), as can be seen in Figure 2.8.

However, Lambrou et al. 2011b and Holman et al. 2015 demonstrated that

the previous results should be interpreted with caution, as the lung has a very

diverse composition, which varies throughout fibrotic and normal-appearing regions

(discussed in Section 2.4.2.1). This leads to varying tissue fraction effect, which

could potentially change the interpretation of measures taken from a PET study.

Figure 2.9 shows the differences in perceived SUVs when no correction is applied

compared to SUVs with air only or air and blood fraction correction.
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Figure 2.8: Apparent FDG uptake increase in fibrotic lung compared to normal-appearing
lung in an axial view of (a) CT image versus (b) PET image, for one patient
of the Coagulation Study cohort (Section 6.4.1).
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Figure 2.9: Axial views of the reconstructed PET image (a) with no correction, (b) with
air fraction correction and (c) with air and blood fraction correction (only
computed in the lung), for one patient of the Coagulation Study cohort (Sec-
tion 6.4.1).

2.5.3 Dynamic PET Studies

For IPF patients, studies have shown that using FDG kinetic analysis can help to

understand the mechanism of lung injury (Schroeder et al. 2008; Schroeder et al.

2011; Dittrich et al. 2012). Kinetic parameters of interest include the influx rate

constant Ki or the delivery rate of the tracer from the plasma or blood to the first

compartment K1 (related to perfusion).

Using kinetic analysis can also provide information on the fractional blood vol-

ume, in order to correct an important component of the Tissue Fraction Effect (see

Section 2.4.2.3). Holman 2017 determined that it was necessary to incorporate a

voxel-wise time delay dt for IPF, as the travel arrival in normal-appearing or fibrotic

lungs can be very different. In the initial stage of this PhD, a validation study was

performed on porcine data to derive the blood volume fractions in the lung using

a reversible 1-tissue compartment model (against a gold standard technique). The

results are presented in Appendix A.
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2.5.4 Combining Static and Dynamic PET Results

Recalling Formula (2.30), when VA, VB and CB are known, it is possible to determine

CT, the concentration in radioactivity in the lung tissue (defined as everything but

air and blood).

CT =
CLung − VB · CB

1− VA − VB
, (2.33)

where CLung is the radioactivity in the static PET image, VB is determined from

compartmental modelling applied to the dynamic images, VA from a given CT image

corresponding to the static referential and CB is the blood concentration (which can

be approximated by using a time activity curve (TAC) in a blood vessel, e.g., the

descending aorta).

In order to apply Formula (2.33), it is required to either maintain the patient

on the scanner bed for the entire study (from the injection to the end of the dynamic

acquisition) or to register the dynamic images to the static images.

IPF patients corresponding to the Coagulation Study (Section 6.4.1) and other

IPF studies within our institute were allowed to get off the bed between the dynamic

and static acquisitions, in order to stretch and relax, to prevent discomfort of severely

ill patients. The CT images (acquired before the dynamic and static acquisitions) are

therefore aligned using image registration (Section 2.3.3) to align the PET results.

2.5.5 Current Caveats and Limitations in the Analyses

The precise origin of the increased or decreased uptake in the fibrotic lung compared

to normal-appearing lung is yet to be fully understood. A possible source of mis-

quantification could arise from high positron range in the lung. This will be studied

in Chapter 3.

Additionally, the pathological regions of the IPF lungs being predominantly

situated in basal lungs, i.e., near the diaphragm where large respiratory motion

is appreciated, IPF quantification measures (arising from both static and dynamic

studies) are highly affected by motion. Although some techniques can help to di-

minish the impact of motion on the measures (to minimise the impact of data mis-

alignment between PET and the attenuation map, see Chapter 4), currently (to the

author’s knowledge) no motion-compensating technique has been applied in PET

studies of IPF. This further complicates the realignment of dynamic and static re-
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sults, discussed in Section 2.5.4, especially when two separate days of acquisitions

(or more) are used to follow the progression of a disease.

A previously developed strategy for IPF in terms of motion compensation used

in our clinical settings is only linked to reducing the artefacts linked to misalignment

between the attenuation map and PET data (AC mismatch will be discussed in

Chapter 5). An averaging attenuation map is computed from as many attenuation

maps as possible to reduce quantitative errors. More details are given in following

Section 4.3.1. Such a method however does not address two critical points:

• The displacement of tissues and organs, especially near the diaphragm, result-

ing in blurring/mis-localisation.

• The difficulty of realigning two different PET acquisitions.

Using such averaged CT image also cannot solve the issue raised in Section 2.5.4 re-

lated to aligning results from dynamic and static acquisitions. A more robust method

to correct for motion is necessary in the Coagulation Study (more information in

Section 6.4.1), where “post-treatment” measures are compared to “pre-treatment”

measures. Doing such analysis involves several image registrations, which ultimately

propagate errors.

Respiratory motion in PET imaging will be discussed and addressed in Chap-

ters 4 and 6 of this thesis, where motion-compensating methods for image registra-

tion and reconstruction will be proposed.



Chapter 3

Evaluation of Positron Range in the

Diseased and Normal Lungs

3.1 Introduction

PET images are meant to be a representation of the tissue radioactivity concentra-

tion. However as discussed in Part 2.2.2.1, the measured PET data do not actually

correspond to the locations of the positron emission (hence, the actual radioactiv-

ity location), but to the locations of the annihilation events (Lehnert et al. 2011;

Derenzo 1979). PET images are indeed formed using the detection of annihilation

γ photons. A few methods exist to compensate for positron range, some will be

introduced in Section 3.2.2.

In many tissues and with the most common radionuclides, the positron range

effect is relatively small compared to other sources of image degradation (Moses

2011). However, for low-density regions, such as the lung, it has a larger effect and

could potentially be important for some tracers. The study of positron range in

this work is motivated by the premise of clinical studies using novel radiotracers,

for which the effect of positron range is mostly unknown. For example, a seemingly

significant specific uptake in the fibrotic lung of IPF patients was observed clinically

on 68Ga-PSMA images. The specificity of this uptake needs to be determined in

order to discard false positives. As discussed in Section 2.4.2.1, the architecture of

an IPF lung is very diverse. This introduces spatially-varying Tissue Fraction Effect

(Section 2.4.2.3), which might indicate a higher percentage of lung parenchyma

rather than a specific uptake in the fibrotic parenchyma. These differences will need

to be investigated. Such a varying lung composition should also lead to spatially-
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varying positron range effect on the images. Although some studies of positron range

in heterogeneous media exist (B. Bai et al. 2003; Szirmay-Kalos et al. 2012; Rahmim

et al. 2008; Cal-González et al. 2015), they are usually limited to simple boundaries.

Contrary to Section 2.4.2.3, in this chapter we will refer to lung “tissue” as

being everything in the lung except the air, similarly as in Lambrou et al. (Lambrou

et al. 2011a), i.e., we will neglect the blood component (the blood mass density

should be close to the one of the lung parenchyma).

Several radionuclides will be studied here: 18F, 68Ga, 82Rb, 15O, 89Zr, 64Cu

and 124I. Besides 18F, 68Ga is increasingly used to label biological ligands such as

DOTATATE which targets somatostatin receptors. Another example is prostate-

specific membrane antigen (68Ga-PSMA) which targets tumour neovasculature and

has shown promising results, mainly for prostate cancer but also more recently in

the lung (Chang et al. 1999; Wang et al. 2015). 68Ga has the disadvantage of

having a larger positron range than 18F. 82Rb or 15O are less commonly used in

PET lung imaging, however these can be used to evaluate perfusion, for example of

lung tumours. Other radionuclides of recent interest in PET are 89Zr, 64Cu and 124I

which, because of their relatively long half-life, are potentially useful for imaging

lung cancers using radiolabelled monoclonal antibodies, for which the circulation

half-life is generally on the order of days (Reichert and Valge-Archer 2007).

This chapter is organised as follows. We briefly discuss the effect of positron

range in uniform media, then describe the Monte Carlo methodology of this chapter

in detail. Last, we present results of the effect of positron range in the lungs, in the

presence of small high-density structures within the healthy lung, such as tumour,

localised fibrosis or blood vessels.

This chapter is largely based on Emond et al. 2019.

3.2 Theory and Methodology

3.2.1 Radionuclide-Dependent and Spatially-Variant Properties

The probability of annihilation increases as the kinetic energy of the positron de-

creases due to collisions with electrons. The positron range depends therefore on the

initial kinetic energy of the positron at emission and the density and composition

of the media crossed by the positron before it annihilates. Its effect on the overall

resolution is usually small for 18F, the clinically most commonly used radionuclide.
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However, the resolution degradation linked to positron range is greater for radionu-

clides emitting higher energy positrons and in tissues of low density, such as the

lung. Estimated values will be given for some common radionuclides in Table 3.2.

Whereas the density of healthy lungs is relatively uniform (aside from airways

and blood vessels), some pulmonary diseases can affect local structure and density,

for example in the case of lung cancer or interstitial lung diseases such as IPF. In

these cases, the effect of positron range is spatially variant and image quantification

can be impacted. In order to establish whether a local apparent increase in radioac-

tivity corresponds to a specific tracer uptake, the effect must be studied carefully.

In this chapter, we will focus on two pathologies that can modify the lung

architecture: lung cancer and IPF. Usually, lung tumours have a density close to

that of soft tissue (≈ 1 g · cm−3, Xu et al. 2008), whereas the rest of the lung has

a far lower density (≈ 0.26 g · cm−3). This means that there is usually an abrupt

change of density at the interface of the tumour with the rest of the lung. In the case

of IPF, the fibrotic regions of the lungs have an increased density compared to the

healthy parts of the lungs. Localised high-density structures, such as honeycombing,

increase in extent as disease progresses (Spagnolo et al. 2015).

3.2.2 Compensating Methods for Positron Range

If we consider a positron-emitting point source, the probability of annihilation can

be expressed as a 3D distribution. The image corresponding to the annihilation

events (“annihilation image”) can be viewed as the convolution by a blurring kernel

of the image corresponding to the positron emission events (“emission image”).

In absence of any magnetic field, in isotropic media, the positron range distri-

bution is isotropic. For this reason, a 1D blurring kernel q linked to positron range

was introduced in Derenzo 1979 to describe the 3D annihilation density p at a point

r over a volume V, assuming we have an emission density λ:.

p(r) =

∫∫∫
V
q(‖r′‖)λ(‖r − r′‖) dr′ (3.1)

where ‖ · ‖ is the Euclidean norm in R3. More generally, in uniform media, previous

work on estimating positron range involved computation of 1D or 2D annihilation

range distributions from the actual distribution (Blanco 2006; Levin and Hoffman
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Figure 3.1: Illustration of positron range effect for a radioactive 82Rb emission source
placed in close proximity (6 mm) to an abrupt density change, showing the
number of emission and annihilation events - emission either in the tumour
(top) or in the (healthy) lung (bottom). The annihilation images (image size
of 72 × 72 × 72 mm3 with voxel of size: 3 × 3 × 3 mm3) were scaled to 1%
of the total number of emitted positrons (≈ 918, 000 for both simulations).

1999; Derenzo 1979; Cal-González et al. 2010; L. Jødal et al. 2012; Cal-González

et al. 2013). Although using one of the previous methods is satisfactory in a rela-

tively uniform medium, it may be inaccurate in highly heterogeneous media or near a

boundary between two regions with very different densities. In fact, a noticeable dif-

ference compared to a homogeneous medium is that the centre of gravity for activity

is not located at the emission source point, i.e. a shift occurs. We illustrate this here

with a boundary between a high-density medium and a low-density medium (tumour

and healthy lung), obtained from a GATE (Jan et al. 2004) Monte Carlo simulation

(see later in this chapter for more details), in Figure 3.1. In non-homogeneous tis-

sue, the positron range can be modelled using spatially-variant anisotropic kernels.

A good model should take into account the difference of densities in a neighbour-

hood. Several strategies already exist (B. Bai et al. 2003; Szirmay-Kalos et al.

2012; Alessio and MacDonald 2008; Cal-González et al. 2015), but have not been

validated in humans and may not be applicable to heterogeneous lungs or for all

radionuclides. Furthermore it might be impractical in clinical settings due to rather

lengthy processing.

Another possibility for non-homogeneous media is to use Monte Carlo simula-

tions (Lehnert et al. 2011) to obtain the positron range distribution via simulations
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of all possible physical interactions given a radioactivity distribution. The latter are

also computationally expensive and unsuitable for routine use, but represent a gold

standard to assess the effect of positron range on PET images.

(3.2)

3.2.3 Monte Carlo Simulation Settings

In this work, we used GATE (version 8.2), Monte Carlo simulation software dedi-

cated to medical imaging (Jan et al. 2004), to simulate the effect of positron range in

the lung. GATE is based on the GEANT4 toolkit (version 10.5.1), which simulates

the particle behaviour through physical matter (Agostinelli et al. 2003); the GATE

physics list “empenelope” accounts for most of the physical interactions involved in

PET imaging to obtain an accurate model of the path an emitted positron takes

before annihilating with an electron, including multiple scattering, ionisation, anni-

hilation or production of bremsstrahlung. The energy distribution function, for a

single β+ transition, can be approximated as (Levin and Hoffman 1999):

N(E) dE = pF (Z − 1, E)

(
1 +

E

0.511

)
(Emax − E)2 dE (3.3)

where:

- Z is the atomic number of the mother nucleus, prior beta decay.

- E is the kinetic energy of the positron in MeV.

- Emax is the maximum kinetic energy for the radionuclide, in MeV.

- p =

√(
1 + E

0.511

)2 − 1 is the momentum of the positron.

- F (Z,E) = 2πη
1−e−2πη is the Fermi function, where:

• η = −Zα
p × (1 + E

0.511), for positron decay.

• α ≈ 1/137 the fine-structure constant, used in fundamental physics.

Mathematica (Wolfram Research 2017) was used to obtain histograms corre-

sponding to the energy distribution of the studied radionuclides, using the values of

Z and Emax in Table 3.1. Whereas the decay schemes of 18F, 15O, 68Ga, 89Zr, 64Cu
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Table 3.1: Maximum kinetic energy and atomic number of the studied PET radionuclides
(Bé et al. 2016; Brookhaven National Laboratory 2019)

Radionuclide Emax Z
18F 0.635 9
64Cu 0.653 29
89Zr 0.902 40
15O 1.723 8
68Ga 1.899 31
124I (1) 1.535 53
124I (2) 2.138 53
82Rb (1) 2.605 37
82Rb (2) 3.381 37

are simple (only one β+ transition), 82Rb and 124I have several β+ transitions. For

both radionuclides, the previous formula 3.3 was applied to the two transitions with

the highest probabilities to create a total energy distribution as a weighted sum of

the separate energy spectra. The resulting energy spectra are shown in Figure 3.2.

The histogrammed spectra were incorporated in GATE as user-defined spectra.

Probability
82Rb

89Zr

64Cu

124I

Energy (MeV)

18F

15O

68Ga

Figure 3.2: Positron emission energy spectra for the different radioisotopes of this study

Simple point source simulations in water were performed to assess the validity

of the settings by calculating the mean and maximal positron ranges (Rmean and

Rmax respectively) from the GATE output, see Table 3.2. The values were in good

agreement with Lehnert et al. 2011 for both 18F and 15O, as well as with other more

sophisticated positron range models, although slightly lower.

In addition to the definition of radioactive sources, “materials” need to be de-

fined in GATE to create the simulation phantom. These are defined by the physical

elements comprising them, their fractions, as well as their corresponding mass den-

sity. The default GATE material database comprises only one “Lung” material,
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Table 3.2: Positron ranges estimated and in literature, in water for the studied radionu-
clides.

Estimated Literature

Radionuclide Rmean (mm) Rmax (mm) Rmean (mm) Rmax (mm)
18F 0.44 2.31 0.48a,0.57b,0.6c 2.27a,1.85b,2.6c

64Cu 0.51 2.54 0.56d 2.9d

89Zr 0.87 3.76 1.27d 4.2d

15O 2.00 8.01 2.21a,2.34b,2.5c 7.96a,7.70b,9.1c

68Ga 2.39 9.57 2.69b,2.9c 8.86b,10.3c

124I 2.70 10.57 3.4d 11.7d

82Rb 5.03 16.80 5.33b,5.9c 17.6b,18.6c

a: Lehnert et al. 2011, b: Cal-González et al. 2010,

c: L. Jødal et al. 2012, d: Jødal et al. 2014

which corresponds to the average composition and density of ’normal’ lung. A ma-

terial corresponding to a malignant lung tumour was added to the database with

an average CT value of 11 (≈ 1.028 g · cm−3, Xu et al. 2008) (see C.1). In the case

of the fibrotic lung, as its composition is spatially variant depending on the degree

of fibrosis, the material database was modified to incorporate a range of fibrotic

lung materials, that correspond to lung tissues between −800 HU (≈ 0.26 g · cm−3,

healthy lung) to −200 HU (≈ 0.615 g · cm−3, severely fibrotic lung), with a step of

50 HU (≈ 0.3 g · cm−3). This was achieved by creating first a “lung tissue” GATE

material (corresponding to “everything but the blood and air in the lung”), from

the lung fractions for the normal-appearing lung given in Chen et al. 2017—also in

Table 2.1—and the “Blood”, “Lung” and “Air” materials pre-defined in the GATE

database. Intermediary fibrotic lung materials are then defined by interpolating

the lung fraction values between the normal-appearing and the fibrotic lungs. The

details of the fibrotic lung materials are given in C.2.

3.2.4 Additional Factors Affecting Resolution in PET

Aside from positron range, PET resolution also depends on other factors such as

detection uncertainties, acolinearity or the reconstruction method (Moses 2011, as

introduced in Section 2.2.2.4). The typical spatial resolution for a clinical scanner,

characterised for a very small object source in air comparable to a point source

(negligible positron range effect), is approximately 5 mm (Bettinardi et al. 2011;

Jakoby et al. 2011; Kolthammer et al. 2015). In addition, postfiltering is generally

used in PET reconstruction. In clinical practice, a Gaussian postfilter of FWHM
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≈ 6 mm is typically applied, resulting in a global spatial blurring that we can model

via a normal distribution of FWHM equal to
√

52 + 62 ≈ 8 mm. In the following

simulations, the raw results will be either filtered via a Gaussian filter of FWHM

5 mm or 8 mm to be able to study the effect of positron range on quantification of

reconstructed images in more realistic conditions.

3.2.5 Simulation Processing

From the output from a GATE Monte Carlo simulation, the locations of all positron

emission events and the locations of all annihilation events were recorded.

The emission events corresponding to annihilations occurring outside of the

phantom were discarded. In our simulations, the “emission image” E and “annihi-

lation image” A are computed. These two images were either used directly or post-

filtered in order to mimic measures on PET reconstructed images (see Section 3.2.4),

using two different Gaussian filter FWHM: 5 mm (unfiltered reconstructed images)

and 8 mm (filtered reconstructed images). From these images, the “apparent recov-

ery ratio” α of a volume-of-interest (VOI) can be computed, measuring the increase

or decrease in activity within the volume due solely to positron range and postfil-

tering (if any). In a VOI V, we denote:

αV,i =
AV,i
EV,i

(3.4)

where AV,i (respectively EV,i) is the mean number of events in the annihilation image

(respectively the emission image) within V, after postfiltering with a Gaussian of

FWHM imm. In addition to the apparent recovery ratio, the “apparent contrast”

CV1/V2,i, defined as the ratio of AV1,i and AV2,i is calculated to compare the uptake

of a VOI V1 to that of a VOI V2, after a postfilter of FWHM imm was applied on

the images.

The same definitions are extended to ensembles of VOIs {Vk}k∈N and {Wk}k∈N,

where αV,i = αVk,i and CV/W,i =
∑

k αVk,i

/∑
k αWk,i, in which · represents the

“mean” operator.

When comparing the effect of positron range between two complementary media

(i.e. there are only two types of material in the simulation and all events are emitted

and annihilated in either of those), we also compute the fraction SR1/R2
of the
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number of emission events emitted from one medium R2 but annihilated in the other

medium R1 over the number of emission events emitted from R1 but annihilated

in R2. This measure will be described as the “spillover” ratio of R1 in R2. If the

ratio is > 1 (resp. < 1), this means that the apparent uptake of the entire R1 is

overestimated (resp. underestimated) because of positron range effects.

3.3 Simulations

Two pulmonary pathologies were considered in this work, for which two different

radioactivity distributions were simulated. The different phantoms and scenarios

are presented in this section.

3.3.1 Simulations of a Spherical Lung Tumour of Variable Radius

Spherical tumours (d = 1.028 g · cm−3) with three different diameters (10 mm, 20 mm

and 30 mm) were simulated in the normal lung (d = 0.26 g · cm−3). The VOIs corre-

sponding to the tumours are denoted as T10, T20 and replacedT30T3 (corresponding

to diameters of 10 mm, 20 mm and 30 mm, respectively). The images of annihilation

and emission were computed using voxels of dimension 1 × 1 × 1 mm3.

3.3.2 Simulations of a Fibrotic Lung

A diagnostic CT image volume from an IPF patient (see Section 6.4.1) was used

to perform a realistic simulation of a fibrotic lung. The latter was obtained from a

GE Discovery 690, multislice helical CT acquisition at breathhold covering 27.5 cm

with a 1.25 mm slice thickness and a pitch of 0.516, with 120 kVp, 149 mA and

0.6 s revolution time. The image was segmented into several fibrotic lung ma-

terials, according to their Hounsfield values (Section 3.2.3). The outside of the

lung was considered as liquid water for the simulation (GATE default database:

d = 1 g · cm−3). For computational reasons, the original CT image was cropped to

a volume of 100 × 100 × 100 mm3 for the simulation. In order to avoid issues with

border effects, the emission and annihilation events occurring near the edges of the

input CT image were not considered and the measurements were made within a vol-

ume of 60 × 60 × 60 mm3. A slice through the CT image is presented in Figure 3.3.

The images of annihilation and emission were computed using voxels of di-

mension 0.5 × 0.5 × 0.5 mm3 and were analysed using two VOI sizes - small
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Figure 3.3: Coronal view of the density image used in the simulation showing the simula-
tion volume (all image) and measurement volume (within the box).

(3 × 3 × 3 mm3) and medium-sized (9 × 9 × 9 mm3) – at 20 locations – determined

on the density map:

* 10 predominantly normal lung

– small VOIs “N1”: mean density ± standard deviation = 0.263 ±

0.016 g · cm−3

– medium-sized VOIs “N2”: mean density ± standard deviation = 0.274±

0.045 g · cm−3

* 10 predominantly fibrotic lung

– small VOIs “F1”: mean density ± standard deviation = 0.574 ±

0.171 g · cm−3

– medium-sized VOIs “F2”: mean density ± standard deviation = 0.431±

0.224 g · cm−3

3.3.3 Radioactivity Distributions

For each simulation presented above, two radioactivity distributions were assessed:

- Scenario 1 : the radioactivity concentration is uniform throughout the whole

lung.

- Scenario 2 : the radioactivity concentration is uniform in the “tissue” (as de-

fined here as everything in the lung except for the air) and that there is no

radioactivity in the air. The resulting radioactivity concentration in each voxel
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Table 3.3: Lung Tumour - Scenario 1 - Apparent recovery computed from the emission
and annihilation images for the studied radionuclides in the tumour (diameters:
10 mm, 20 mm and 30 mm). αTk, i is the apparent recovery for a tumour of
diameter kmm, after a postfilter of FWHM imm.

Radionuclide αT10, 0 αT10, 5 αT10, 8 αT20, 0 αT20, 5 αT20, 8 αT30, 0 αT30, 5 αT30, 8
18F 1.116 1.029 1.011 1.060 1.018 1.010 1.040 1.013 1.007
64Cu 1.146 1.041 1.017 1.073 1.024 1.014 1.049 1.017 1.010
89Zr 1.292 1.097 1.042 1.147 1.059 1.036 1.098 1.041 1.027
15O 1.766 1.348 1.179 1.403 1.224 1.157 1.269 1.156 1.115
68Ga 1.918 1.434 1.229 1.490 1.284 1.203 1.329 1.199 1.149
124I 2.072 1.525 1.284 1.497 1.290 1.209 1.379 1.237 1.182
82Rb 2.705 1.915 1.513 2.038 1.717 1.550 1.718 1.520 1.421

is therefore obtained by multiplying with 1 − Va, where Va is the air fraction

in the lung medium (given in C.2).

The minimal numbers of emission/annihilation events retained are the following:

(1) Lung Tumours: ≈ 2 · 108 for Scenario 1 and ≈ 5 · 107 for Scenario 2, (2) Fibrotic

Lung: ≈ 8 · 107 for Scenario 1 and ≈ 3 · 107 for Scenario 2. In both scenarios,

the neighbouring soft tissue does not have any radioactivity. For conciseness, only

images corresponding to the simulations of 18F, 68Ga and 82Rb will be shown. Note

that 89Zr and 64Cu have similar energy spectra to 18F and 15O and 124I to 68Ga 3.2,

therefore similar positron ranges.

In the case of the lung tumour simulations, in order to study the effect of the

“background” level (i.e., the relative amount of activity in the healthy lung respec-

tively to the tumour), intermediary apparent recovery values were found from the

results of Scenario 1, by rescaling the annihilation and emission images correspond-

ing to emission events occurring in the healthy tissue.

3.4 Results

3.4.1 Simulation of Spherical Lung Tumours

3.4.1.1 Scenario 1

The apparent recovery α measured from the different tumours T10, T20 and T30 for

scenario 1 can be found in Table 3.3, including measures made before and after

postfiltering.

Before any postfiltering, a halo can be seen on the outside edge of the tumour,

see images corresponding to T20 in Figure 3.4. After postfiltering, the halo either
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Figure 3.4: Lung Tumour (20 mm) - Scenario 1 - (a) (resp. (e), (i)) emission events, (b)
(resp. (f), (j)) annihilation events, (c) (resp. (g), (k)) 5 mm postfiltered an-
nihilation events and (d) (resp. (h), (l)) 8 mm postfiltered annihilation events
computed for 18F (top row) (resp. 68Ga (middle row), 82Rb (bottom row)).
All images are scaled using the same colourbar (maximal value of the unfiltered
82Rb annihilation image).

almost disappears (18F, 89Zr and 64Cu) or is blurred out to appear as an increased

uptake in the tumour compared to the healthy lung background (82Rb, 124I, 68Ga

and 15O). The effect is amplified for 82Rb where the tumour resembles a hot spot

on the image.

The spillover ratios for the tumours T10, T20 and T30 in the background N are

given in Table 3.4, where N represents the outside of the tumour, comprising normal

lung.

All measures show that the shift of radioactivity from the outside of the tu-
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Table 3.4: Lung Tumours - Scenario 1 - Spillover ratios corresponding to the tumour, com-
puted from the emission and annihilation images for the studied radionuclides in
the tumour (diameters: 10 mm, 20 mm and 30 mm). Tk represents the tumour
of diameter kmm.

Radionuclide ST10/N ST20/N ST30/N
18F 1.987 1.680 1.840
64Cu 2.111 1.801 1.941
89Zr 2.498 2.239 2.351
15O 3.102 2.977 3.046
68Ga 3.198 3.087 3.161
124I 3.344 3.116 3.247
82Rb 3.482 3.442 3.494

Table 3.5: Lung Tumours - Scenario 2 - Apparent recovery computed from the emission
and annihilation images for the studied radionuclides in the tumour (diameters:
10 mm, 20 mm and 30 mm). αTk, i is the apparent recovery for a tumour of
diameter kmm, after a postfilter of FWHM imm.

Radionuclide αT10, 0 αT10, 5 αT10, 8 αT20, 0 αT20, 5 αT20, 8 αT30, 0 αT30, 5 αT30, 8
18F 1.002 0.998 0.997 1.001 1.000 0.999 1.001 1.000 1.000
64Cu 1.002 0.999 0.998 1.001 1.000 0.999 1.001 1.000 1.000
89Zr 1.006 0.999 0.996 1.003 1.000 0.999 1.001 1.000 1.000
15O 1.004 0.997 0.990 1.005 1.003 1.001 1.003 1.002 1.001
68Ga 1.011 1.003 0.993 1.004 1.002 1.000 1.003 1.002 1.001
124I 1.017 1.009 0.999 1.006 1.004 1.002 1.004 1.003 1.002
82Rb 1.013 1.006 0.995 1.006 1.005 1.010 1.004 1.004 1.003

mours, that is low-density lung, to the tumour is greater than the opposite, i.e. the

shift from the tumour to the normal lung.

3.4.1.2 Scenario 2

The recovery ratios were all close to 1 (with and without postfiltering), see in Ta-

ble 3.5. The images for T20 are shown in Figure 3.5.

Visually the images for 18F, 68Ga and 82Rb are almost identical. However,

the measured values show that the effect observed in Scenario 2 is dominated by

the “spill-out”, i.e. there are more positrons emitted from the tumours that are

annihilated in the normal lung than the opposite. This can be verified by computing,

on the unfiltered images, the spillover ratios of the tumours. The results are given

in Table 3.6 for all radionuclides (where N represents the outside of the tumour,

comprising normal lung). The spillover ratios are indeed all inferior to 1.
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Figure 3.5: Lung Tumour (20 mm) - Scenario 2 - (a) (resp. (e), (i)) emission events, (b)
(resp. (f), (j)) annihilation events, (c) (resp. (g), (k)) 5 mm postfiltered an-
nihilation events and (d) (resp. (h), (l)) 8 mm postfiltered annihilation events
computed for 18F (top row) (resp. 68Ga (middle row), 82Rb (bottom row)).
All images are scaled using the same colourbar (maximal value of the unfiltered
82Rb annihilation image).

Table 3.6: Lung Tumours - Scenario 2 - Spillover ratios corresponding to the tumour, com-
puted from the emission and annihilation images for the studied radionuclides in
the tumour (diameters: 10 mm, 20 mm and 30 mm). Tk represents the tumour
of diameter kmm.

Radionuclide ST10/N ST20/N ST30/N
18F 0.523 0.441 0.480
64Cu 0.556 0.469 0.504
89Zr 0.660 0.588 0.612
15O 0.800 0.775 0.793
68Ga 0.843 0.805 0.821
124I 0.865 0.827 0.844
82Rb 0.904 0.897 0.911
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Figure 3.6: Plots showing the apparent recovery values (a.) αT10, 8 (tumour of diameter
10 mm) and (b.) αT20, 8 (tumour of diameter 20 mm), for different background
levels (8-mm Gaussian postfiltering). The vertical dotted line indicates the
threshold value for which the apparent recovery values are ≈ 1 for all radionu-
clides.

3.4.1.3 Intermediary Scenarios

The change of balance between spill-in and spill-out can be observed in Figure 3.6 (for

18F, 68Ga and 82Rb and tumours of 10 mm and 20 mm). The plots show the apparent

recovery values for different levels of activity in the healthy lung (“background”)

after a 8-mm postfilering. For this type of small tumours, it appears that the

apparent recovery are ≈ 1 when λT /dT ≈ λN /dN (where λT (resp. λN ) is the

activity concentration in the tumour (resp. the healthy lung) and dT (resp. dN ) is

the mass density of the tumour (resp. the healthy lung)), i.e., which is equivalent to

Scenario 2. Below that threshold (indicated by the vertical dotted line in Figure 3.6)

the change in spill-in/spill-out fractions leads to a negative bias in the apparent

recovery of the tumour. This is also the case for other radionuclides and tumour of

30 mm.

3.4.2 Simulation of a Fibrotic Lung

3.4.2.1 Scenario 1

The emission images and the unfiltered and filtered annihilation images for the seven

studied radionuclides can be found in Figure 3.7, with the corresponding measures

of apparent recovery and apparent contrast for different postfiltering in Tables 3.7

and 3.8.

This case is similar to Scenario 1 of the tumour simulations: when the ra-



3.4. Results 87

Emission Annihilation

5-mm
Postfiltered

Annihilation

8-mm
Postfiltered

Annihilation

1
8
F

(a) (b) (c) (d)

6
8
G

a

(e) (f) (g) (h)

8
2
R

b

(i) (j) (k) (l)

0 100

%

Figure 3.7: Fibrotic Lung - Scenario 1 - (a) (resp. (e), (i)) emission events, (b) (resp.
(f), (j)) annihilation events, (c) (resp. (g), (k)) 5 mm postfiltered annihilation
events and (d) (resp. (h), (l)) 8 mm postfiltered annihilation events computed
for 18F (top row) (resp. 68Ga (middle row), 82Rb (bottom row)). All im-
ages are scaled using the same colourbar (110% of the maximal value of the
unfiltered 82Rb annihilation image).
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Table 3.7: Fibrotic Lung - Scenario 1 - Mean apparent recovery values computed from the
original emission and annihilation images for all studied radionuclides. αV, i is
the apparent recovery for a VOI V (description in 3.3.2), after a postfilter of
FWHM imm.

Measure 18F 64Cu 89Zr 15O 68Ga 124I 82Rb

αN1,0 0.987 0.970 0.976 0.924 0.918 0.896 0.820
αN2,0 0.997 0.995 0.987 0.953 0.942 0.927 0.850
αF1,0 1.073 1.089 1.196 1.513 1.515 1.557 1.619
αF2,0 1.016 1.022 1.049 1.168 1.166 1.182 1.172

αN1,5 0.995 0.992 0.984 0.948 0.937 0.921 0.848
αN2,5 0.997 0.995 0.989 0.959 0.948 0.933 0.858
αF1,5 1.026 1.035 1.075 1.195 1.224 1.247 1.248
αF2,5 1.010 1.014 1.031 1.094 1.109 1.119 1.097

αN1,8 0.997 0.996 0.990 0.961 0.951 0.937 0.863
αN2,8 0.998 0.997 0.992 0.965 0.956 0.942 0.868
αF1,8 1.010 1.014 1.087 1.116 1.101 1.111 1.087
αF2,8 1.006 1.008 1.051 1.051 1.059 1.063 1.028

Table 3.8: Fibrotic Lung - Scenario 1 - Mean apparent contrasts computed from the origi-
nal emission and annihilation images for all studied radionuclides. C·, i is the ap-
parent contrast between VOIs (description in 3.3.2), after a postfilter of FWHM
imm.

Measure 18F 64Cu 89Zr 15O 68Ga 124I 82Rb

CF1/N1,0 1.073 1.103 1.195 1.511 1.581 1.645 1.862

CF2/N2,0 1.015 1.021 1.051 1.167 1.199 1.231 1.322

CF1/N1,5 1.028 1.039 1.082 1.232 1.272 1.312 1.419

CF2/N2,5 1.011 1.016 1.036 1.119 1.143 1.169 1.239

CF1/N1,8 1.011 1.016 1.083 1.116 1.139 1.163 1.230

CF2/N2,8 1.006 1.009 1.047 1.076 1.093 1.111 1.163

dioactivity is evenly distributed among the different lung types, the fibrotic parts of

the lung (corresponding to the regions with higher density) appear to have higher

radioactivity concentration than the normal lung.

3.4.2.2 Scenario 2

The emission images and the unfiltered and filtered annihilation images for the seven

studied radionuclides can be found in Figure 3.8, with the corresponding measures of

apparent recovery values for different amounts of postfiltering in Table 3.9. Similarly

as Scenario 2 for the tumours, especially 82Rb, the apparent recovery ratio values do

not demonstrate a positive quantitative bias in the high-density medium (here the

fibrosis) due to positron range, but a negative bias; this suggests that more positrons

emitted from the fibrotic lung are annihilated in the normal lung than the opposite.
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Figure 3.8: Fibrotic Lung - Scenario 2 - (a) (resp. (e), (i)) emission events, (b) (resp.
(f), (j)) annihilation events, (c) (resp. (g), (k)) 5 mm postfiltered annihilation
events and (d) (resp. (h), (l)) 8 mm postfiltered annihilation events computed
for 18F (top row) (resp. 68Ga (middle row), 82Rb (bottom row)). All images
are scaled using the same colourbar (maximal value of the unfiltered 82Rb
annihilation image).
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Table 3.9: Fibrotic Lung - Scenario 2 - Mean apparent recovery values computed from the
original emission and annihilation images for all studied radionuclides. αV, i is
the apparent recovery for a VOI V (description in 3.3.2), after a postfilter of
FWHM imm.

Measure 18F 64Cu 89Zr 15O 68Ga 124I 82Rb

αN1,0 1.003 1.001 1.006 1.014 1.002 1.009 0.975
αN2,0 1.000 1.000 1.001 1.005 1.002 1.000 0.966
αF1,0 1.011 1.004 1.009 1.006 1.000 0.993 0.956
αF2,0 1.001 0.999 0.999 0.995 0.991 0.987 0.939

αN1,5 1.001 1.001 1.002 1.007 1.002 1.001 0.968
αN2,5 1.000 1.000 1.001 1.003 1.001 0.999 0.964
αF1,5 1.001 1.000 0.999 0.995 0.989 0.984 0.938
αF2,5 1.000 0.999 0.999 0.995 0.991 0.986 0.936

αN1,8 1.000 1.000 1.001 1.003 1.000 0.999 0.963
αN2,8 1.000 1.000 1.001 1.001 1.000 0.998 0.959
αF1,8 1.000 0.999 0.999 0.993 0.988 0.982 0.932
αF2,8 1.000 1.000 0.999 0.994 0.990 0.984 0.932

3.5 Discussion and Conclusion

In this chapter, we have simulated in the lung two different scenarios. In the first

scenario, the entire lung (comprising of healthy lung, lung tumour or fibrotic lung)

was considered to have the same radioactivity concentration. In the second scenario,

the air in the lung was assumed to contain no radioactivity, meaning the radioactivity

was evenly distributed over the “tissue” in the lung (defined as “everything but the

air” here). The latter scenario corresponds to the situation where the normal lung

tissue has the same radiotracer uptake as the tumour or fibrotic tissue.

The results of the simulations show that, although positron range is usually

perceived as a blurring effect, in heterogeneous media it should rather be considered

as a more complex change in the apparent radioactivity distribution, as high-density

structures are more likely to “capture” some of the activity from the neighbouring

lower density structures, than the opposite.

In the case of a high-density tumour located within a healthy lung, a part of

the activity of the surrounding low-density area will be transferred to the tumour

(“spill-in”), as well as some activity from the tumour to the healthy lung (“spill-

out”). In the first scenario (even distribution), the tumour will appear hotter on

the PET images, as the spill-out is largely dominated by the spill-in. However, in

the second scenario (air containing no radioactivity), the spill-out now balances the
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spill-in, which leads to apparent recovery values ≈ 1. When varying the level of

activity in the surrounding healthy lung (see Figure 3.6), the changes of spill-in and

spill-out fractions lead to either positive or negative biases in the apparent recovery

values. The radioactivity distribution of Scenario 2 acts as a “threshold”: when the

radioactivity of the healthy lung is lower than the one of Scenario 2, the recovery

values will be negatively impacted, if higher, positively impacted. When there is

no activity in the healthy lung, the observations are consistent with Kemerink et

al. 2011, where a similar experiment was performed using syringes of various sizes

containing activity in water (water density ≈ lung tumour density). They were

placed in cellular polyethylene foam (density 0.164 g · cm−3) to mimic a healthy

lung. As no background activity was used (therefore observing only spill-out from

the syringe), only spill-out was observed, which led to a negative bias in the tumour

recovery values.

The spill-in effect of the positron range is mostly noticeable at the edges of the

tumour, with the “penetration depth” depending on the radionuclide and expected

to be related to the “mean positron range in water”, with Rmean ≈ 5 mm for 82Rb,

i.e. half the radius). That implies that the spill-in effects need to be considered for

structures of about twice the mean positron range – the magnitude depending on

the radioactive concentration in the background. In this study, lung tumours were

modelled with a uniform density and a spherical shape. The composition of a lung

tumour is usually more diverse (e.g., with necrotic regions, see Travis et al. 2015)

and could lead to more complex positron range effects.

The results from the simulation of a fibrotic lung show the same trend as for

the tumour. In the first scenario (uniform distribution), a large bias in the apparent

radioactivity of the fibrotic lung is observed (up to ≈ +61.9% for unfiltered 82Rb

images), with a highly heterogeneous distribution overall. In the second scenario

(air containing no activity), the apparent recovery ratio is slightly less than 1 for

high-energy radionuclides, meaning that the spill-out is now dominant (minimum

found of 0.939 in a VOI of dimension 9 × 9 × 9 mm3 for 82Rb).

The observations shown here have implications for other situations. For exam-

ple, the shift in measured radionuclide concentration to the higher density medium

could be observed in the case of a metal implant or prosthetic in close proximity
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to a low-density medium. Such effect could be expected for cardiac imaging near

the lung, however the effect of cardiac motion might prevail. Also, Chronic Ob-

structive Pulmonary Disease, one of the main causes of global mortality (Martinez

et al. 2011) is mainly characterised by emphysema and air trapping, which leads to

a locally lower density of the lung, meaning that positron range effects may be more

prominent for this pathology. More generally the spill-in dominance is most relevant

for cold-spot imaging, such as the detection of myocardial defects in PET (Rahmim

et al. 2008). However for most purposes, PET tracers are more likely to have higher

uptake in high-density regions (as expected for 18F-FDG in IPF, Win et al. 2012b).

The second scenario is therefore more realistic and the increase of apparent recov-

ery in the high-density regions due to spill-in from the background healthy regions

should be limited in the case where spill-out dominates, e.g., in tumour imaging.

Our aim in this study was to better understand the possible effects that may be

introduced in lung studies due to positron range, with particular emphasis on the

quantitative bias that may be introduced. Our simulations therefore were conducted

without noise so that the source of bias could be easily visualised. In practice, when

noise is present, the underlying distribution of annihilation locations may not be

visually observed, however, bias in quantitative measurements would remain. We

therefore consider that the noise-free illustrative examples are useful. The effect of

positron range will also be more visible for pre-clinical systems, because of better

spatial resolution (Yang et al. 2016). Note that positron ranges were found to be

lower than ranges estimated with alternative models (Cal-González et al. 2010; L.

Jødal et al. 2012; Jødal et al. 2014), suggesting that the positron range effect might

be underestimated in this work. Nonetheless, the results of the simulations presented

in this chapter (without postfiltering) may provide an indication of the magnitude

of this effect, although additional simulations with appropriate object size as well

as phantom acquisitions would be necessary to assess this in detail.

This work was aimed at providing some insights on the effect of positron range

in heterogeneous media. Anisotropic kernels (B. Bai et al. 2003; Alessio and Mac-

Donald 2008; Rahmim et al. 2008; Szirmay-Kalos et al. 2012; Cal-González et al.

2015) or Monte Carlo simulations (Lehnert et al. 2011) could be used for positron

range compensation within iterative reconstruction: the effects and bias observed
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here could potentially be reduced by incorporating one of these strategies, however

the high computational cost might be a limiting factor in clinical settings (espe-

cially for the fibrotic lung where no clear uniform region can be used for correction).

In the absence of an accurate positron range compensation method, when measur-

ing the radioactivity concentration of a tumour or localised high-density regions in

the lung, the reported radioactivity concentration values should be evaluated with

caution when using of a tracer labelled with a radionuclide that emits high-energy

positrons.

In this chapter, an overview of positron range, its effect on reconstructed PET

images and some correction techniques was given. Monte Carlo simulations were

run to evaluate the effect of positron range in the normal lung, fibrotic lung and in

presence of a lung tumour.

Positron range is often assimilated to a spill-out “blurring”. We have demon-

strated that the effect is however more complex, especially for IPF patients. Its

effect leads indeed to a quantitative bias in the annihilation images (in addition to

the apparent blurring), resulting from the probability of positron annihilation being

higher in high-density regions. If we consider that low-density and high-density re-

gions have a similar radioactivity concentration, an important bias could be observed

for imaging radionuclides emitting high-energy positrons such as 68Ga, 124I or 82Rb.

However, for low-energy positrons, such as 18F, or when the high-density medium

has a higher radioactivity than low-density medium, e.g., due to a different fraction

of air, the spill-out becomes more predominant and other types of image degradation

(e.g., due to data acquisition and reconstruction inaccuracies) are expected to have

a larger impact on the quantification. Other radionuclides could have been studied,

such as 11C or 13N. The former can also be used to radiolabel carbon monoxide to

image blood (see Appendix A). The latter can be used to label ammonia, usually for

myocardial imaging (Driessen et al. 2017), instead of using 82Rb imaging, although

perfusion studies in the lung might be useful with 13N-ammonia. It would however

be preferable to use 18F-based radiotracers (Werner et al. 2019). In what follows,

we will therefore neglect all effect resulting from positron range as only 18F-FDG

data will be studied. For these data, we will consider motion occurring in the chest

area to be of greater impact for the PET quantification. This will be assessed in the
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following Chapter 4.



Chapter 4

Respiratory motion for pulmonary

PET/CT: effects and compensation

strategies

4.1 Introduction

Respiratory motion is an important cause of quantification errors and artefacts in

lung imaging. The main components of the motion are:

– Tissue Displacement, due to the lungs being compressed or dilated during

respiration.

– Density Changes, created by the compression and expansion of the lung

during respiration. PET activity concentration changes are correlated with

density changes.

An overview of the physical principles involved in the respiratory motion is

given in Section 4.2, including the two components of respiratory motion. Following

that, existing techniques to correct for respiratory motion—including compensation

of displacement and/or density changes—will be introduced in Section 4.3.

The density occurring during the respiration will be approximated to (local)

volume changes between respiratory states in this thesis. They can be estimated from

the deformation fields obtained in motion estimation by computing the Jacobian

determinant of the transformation. This will be introduced in Section 4.4, where

different mathematical assumptions for motion estimation will be also discussed.

The activity concentration ratios between respiratory gates will be assumed to be
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the same as the density ratios.

Afterwards, in Section 4.6, a preliminary evaluation of respiratory motion on

static and dynamic PET will be performed, to show the artefacts caused by respi-

ratory motion in both cases.

Finally, a simple mass-preserving registration will be introduced in this chapter.

The mathematical formulation of mass preservation will be incorporated in a stan-

dard cost function: sum of squared differences (SSD) (introduced in Section 2.3.2.4).

When the images to register only differ with Gaussian noise, sum of squared dif-

ferences (SSD) provides optimal results. This cost function is however not robust

when differences in image intensities are observed between the target and the source

images, such as for multi-modality registration or when a region has a different

uptake/intensity (Hill et al. 2001). In CT registration, this can be the case when

registering images with different settings (mA, kVp) or when one of the images

is a contrast CT. This is also the case of respiratory-gated chest PET/CT images,

where the image intensities depend on the respiratory state. A mass-preserving SSD

image registration could potentially overcome the issue and is investigated in this

chapter for PET and µ images. The registration technique presented is aimed at lay-

ing the foundations for a joint image reconstruction and motion estimation (JRM)

implementation (discussed in following section 4.3.6), using a motion-dependent log-

likelihood including density and activity concentration changes. The results of the

mass-preserving registration will determine the feasibility of such technique, includ-

ing discussing adequate regularisation for the optimisation.

4.2 Respiratory Motion and the Lung

4.2.1 Tissue Displacement

During respiration, oxygenated air is taken out of the ambient environment into

the alveoli, which ensures the gas exchange, essential for survival. Physically, this

is performed by the mechanical movement of the lungs. During inhalation, the

contraction of the diaphragm (the main muscle of respiration) is what contributes

mostly to the breathing mechanics, combined with the enlargement of the rib cage,

caused by the anterior-posterior motion of the intercostal muscles. This leads to an

increase of the volume within the thorax cavity and pushes the organs situated in

the abdomen downwards. As the tissue in the lungs is elastic, it expands to fill the
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cavity. As the intra-thoracic pressure decreases, the air flows in the lungs, via the

respiratory airways. Exhalation is the inverse process, where the diaphragm relaxes

and the rib cage returns to its rest state. The diaphragm moves about 15-20 mm

during the respiration (Schwarz and Leach 2000).

At full-expiration, the lung volume is at its lowest and at full-inspiration its

highest. For an average healthy adult in a supine position at rest, the tidal volume

(mean displaced volume during the respiratory cycle) is approximately of 0.46 L out

of a total lung capacity of 4.9 L (Moreno and Lyons 1961).

4.2.2 Density Changes

Due to the compression and dilation of the lungs during the respiration, as described

in 4.2.1, the lung tissue displacement is accompanied by density changes.

In a good first approximation, we consider a mass conservation in the lung

during the respiratory cycle, neglecting fluid and gas exchanges occurring within

the respiratory cycle (Cuplov et al. 2018), i.e., we have mins = mexp. In this

case: dinsVins ≈ dexpVexp and dins/dexp ≈ Vexp/Vins, where mins (respectively mexp)

is the lung average mass, dins (respectively dexp) is the average lung density and

Vins (respectively Vexp) is the lung volume, at full-inspiration (respectively at full-

expiration).

However, the motion is position-dependent, and this results in variable den-

sity changes over the lungs (Simon 2000; Verschakelen et al. 1993); the change of

density may be higher in regions where most of the mechanical stress is applied,

and particularly near the diaphragm, i.e., at the base of the lungs. It has been

suggested (Jahani et al. 2014) that the local density changes are correlated with the

local volume changes, which can be estimated if the spatial transformation is known

by the computation of the Jacobian determinant of the deformation field (Cuplov

et al. 2018). There is some evidence that second-order effects actually occur in the

lungs, such as fluid movement in and out of the lungs (blood, lymph), which may

contribute to a change of total lung tissue mass of up to 10% over the respiratory

cycle (Guerrero et al. 2006; El-Chemaly et al. 2008). Although this mass change

has an effect on both density and PET value, it will be neglected here as it would

need further work to specifically image the lymphatic and blood components in the

lung during respiration,e.g., using CO imaging for blood imaging (Appendix A),
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Figure 4.1: RPM respiratory signal of one of the PET acquisitions of the Coagulation
Study (Section 6.4.1). The five different colours correspond to distinct respi-
ratory gates, using displacement gating.

which could contribute to assessing with higher precision the total mass change from

PET imaging. The mass-preserving model presented in this thesis is therefore not

exact for PET/CT lung imaging, however it should provide a better representation

compared to the standard model.

4.2.3 4D Data Binning for Respiratory Motion

Listmode PET and 4D-CT data (capturing the entire breathing cycle) can be

binned into several respiratory motion “gates” (corresponding to different respi-

ratory states), using a surrogate respiratory signal. The latter can be derived from

a measure (e.g., the elevation of the chest captured by a infrared camera, pressure

belts, see Nehmeh and Erdi 2008) or directly from the PET acquisition, referred as

“data-driven” signals, using methods such as principal component analysis (PCA)

(Thielemans et al. 2011; Bertolli et al. 2017), centre of mass (CoM) (Bundschuh

et al. 2007) or the spectral analysis method (SAM) (Schleyer et al. 2009).

For PET acquisitions, 5 gates are often used, one for full-inspiration, one for full-

expiration and the others for intermediate states. An illustration using displacement

gating can be found in Figure 4.1, for respiratory gating of a PET examination of

the Coagulation Study (see Section 6.4.1). When no gating is used to bin the data,

we usually refer to these images or acquisitions as “ungated” data.

Similarly, CINE-CT acquisitions (also called 4D-CT acquisitions) can be used to
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capture the entire respiratory cycle (Pan et al. 2004). The entire lung is acquired us-

ing step-and-shoot short CT acquisitions, each consisting in a rotating X-ray source

around a stationary bed. The total acquisition duration is typically longer than the

average respiratory cycle. The 4-dimensional (4D)-CT data is reconstructed into

several images and sorted into respiratory bins.

As presented in Yamamoto et al. 2008, CINE-CT images usually present arte-

facts. Additionally, the binning between the CT respiratory gates and PET respi-

ratory gates is most of the time inconsistent, meaning that PET and CT gates do

not match perfectly.

In the following of this thesis, we will refer to lung PET acquisitions without

any data binning using motion gating as “ungated” acquisitions.

4.2.4 Artefacts linked to Motion

Lung static PET acquisitions typically take about 2 or 3 min and contain information

from multiple respiratory cycles, during which the size of the lungs is variable.

Therefore when no motion compensation is used, the reconstructed images do not

represent only one respiratory state. In a non-attenuation corrected reconstructed

PET image, a blurring (gradient of estimated activity) can be observed, especially

at the base of the lung near the diaphragm, see Section 4.2.1: this is expected as the

image represents an average over time of the PET data. When using an attenuation

image corresponding to a single respiratory state in the AC reconstruction of an

ungated PET acquisition, the inconsistency will cause quantification errors in the

image. The most conspicuous artefact is often referred as “banana artefact” (W.

Bai and Brady 2004). An example will be provided in the following Section 4.6.1

for a static FDG acquisition.

Tissue displacement caused by the respiration is the main cause of visual arte-

facts for PET lung imaging and has been documented extensively in the literature

(Beyer et al. 2003; Sureshbabu et al. 2005), mainly regarding the wrong cold areas

which can appear near the diaphragm or for tumour delineation (see below). It is

usually referred to “respiratory motion”, although this is somewhat misleading as

changes in density affect at a similar level the quantification in PET reconstructed

images of the lung (Holman et al. 2016; Cuplov et al. 2018).

Respiratory motion can induce a diagnostic misinterpretation (e.g., when a
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lung tumour is identified as being located within the liver), as described in Erdi

et al. 2004. The size of the lung tumours is also overestimated and their activity

underestimated, which can be a problem in cancer staging and follow-up. In the

case of lung diseases such as IPF, the effect of respiratory motion is more complex

and will be discussed below.

Aside from potential errors in localisation and overall blurring due to displace-

ment, respiratory motion brings another problems for quantification: AC mismatch,

created by the use of an incorrect attenuation map in the reconstruction. Some

simple techniques can be utilised to diminish the extent of AC mismatches (e.g.,

via an averaged CT image for the attenuation map or having the patients perform

shallow or free-breathing, Nyflot et al. 2015a).

Other more complex techniques are susceptible to compensate for displacement

blurring and reduce AC mismatches. They will be discussed in more detail in Sec-

tion 4.3.

4.3 Existing Reconstruction Strategies

All strategies presented in this section require a surrogate respiratory signal (see Sec-

tion 4.2.3). A review of the main strategies for motion-compensated reconstruction

algorithms in PET/CT can be found in Pépin et al. 2014. The following subsections

will focus on the main approaches, relevant in lung imaging.

4.3.1 Reconstructions with an Averaged CT Image

gAs the PET acquisition represents an average over time of the activity distribution

and the CT acquisition is quasi-instantaneous, hence representing all the respiratory

states in PET versus only one in CT, the idea of the “averaged CT volume” is to

obtain a CT volume which corresponds to the entire PET acquisition, without any

motion correction.

Several research groups have used a modified CT, created from averaging CT

images corresponding to different respiratory states, in order to improve the quan-

tification of ungated PET reconstruction (Pan et al. 2005; Nehmeh and Erdi 2008).

The best technique would be to use an average of gated CT volumes, which are CT

images corresponding to different respiratory gates from the surrogate respiratory

signal.
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At the Institute of Nuclear Medicine, University College London Hospital (Lon-

don, UK), current IPF studies comprise two or three PET/CT acquisitions (“study

sections”), starting at different time points after the tracer injection. Using a cine-

CT for each of these sections is not possible due to patient dose limits, although in

some studies one cine-CT is available. Therefore, the current image reconstruction

process involves the computation of an averaged CT image for each section (Holman

et al. 2018). The CT images, usually including CT images from a cine-CT if present,

are registered to a reference CT of each of the study sections. “Combined CT” im-

ages are created from averaging the registered images and are used for attenuation

correction for each section. However, the implementation was unsatisfactory, as the

registration involved aligning the lungs, therefore not representing a true average.

During this work, this registration process was refined for clinical data, in order to

distinguish body movement from respiratory movement. This is not discussed in

this thesis. The benefit of using an averaged CT image in the emission image recon-

struction is the reduction of the attenuation mismatch (see results in Section 4.6.1

and Chapter 5), as the averaging attempts to correct for the errors linked to density

changes in the lungs during respiration. However, the averaging process can only

work well if a sufficient number of CTs is present, which is often not the case. In

addition, clearly, the reconstructed PET image is still affected by the blurring due

to the displacement.

4.3.2 Gated Reconstructions

A second type of reconstruction involves the use of a single“gated” sinogram, cre-

ated from the original listmode data using the surrogate respiratory signal. The

part of the listmode data corresponding to a single gate is binned into a sinogram.

Ideally, the gate coincides with the attenuation image. In practice, usually data

corresponding to end-expiration are used (Liu et al. 2010; Grootjans et al. 2014),

although a breath-hold CT can also be used (Nehmeh et al. 2007).

The major drawback of this method is that a large fraction of the acquired

counts is discarded. The reconstruction is very noisy as a result, unless the acquisi-

tion time is extended (Nehmeh and Erdi 2008), which is not ideal for patient comfort

and throughput. Furthermore, respiratory-gated reconstructions cannot be used for

dynamic PET studies, as the early dynamic frames are usually very short (gates
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might be missing) and might not contain information on radiotracer concentration

(before injection).

4.3.3 Registered and Summed Reconstructions

Another strategy, in order to use all the counts from the PET acquisition, is to use

gated reconstructions (Section 4.3.2) for all the respiratory phases and to move all

reconstructed images to the same reference by using image registration (Klein et al.

1996; P. Kinahan et al. 2006).

All respiratory gates are reconstructed separately from one another, using either

the corresponding CT image for the respiratory gate, if a cine-CT acquisition is

available, or using a single CT image (this will lead to attenuation artefacts, which

are discussed in detail in Chapter 5). As a result, deformation fields obtained from

gated PET reconstructed with the corresponding gated µ maps are usually more

robust (W. Bai and Brady 2009), at the expense of higher dose delivered to the

patient.

4.3.4 Motion-Compensated Image Reconstruction

When the respiratory motion can be estimated, for example from gated CT

images, magnetic resonance (MR) images or gated reconstructed emission im-

ages (without attenuation correction), the deformation model can be incor-

porated within the emission image reconstruction to obtain a motion-free

reconstructed image (Qiao et al. 2006; Li et al. 2006; Manjeshwar et al.

2006,Gillman et al. 2017; Rakvongthai et al. 2017). Motion-compensated image

reconstruction (MCIR) has the benefit, over the previously discussed gated recon-

struction (Section 4.3.2), that it uses all of the data in the PET acquisition. This

leads to less noisy images. Additionally, MCIR can be used for both static and

dynamic PET acquisitions.

The Equation (2.19) introduced in Section 2.3.2.4 becomes, for a time bin t of

the respiratory cycle:

ḡ(t) = MWt→0λ(0) + r̄(t) + s̄(t)

where Wt→0 is a (discrete) warping operator defined from the bin t to the reference

time bin 0 and λ(0) is the reconstructed activity image at the reference time bin 0.



4.3. Existing Reconstruction Strategies 103

r̄(t) and s̄(t) are the random and scatter sinograms at bin t. In practice the scatter

sinograms s̄(t) use either a rescaled version of the scatter sinogram estimated from

the entire acquisition with a given attenuation map or are re-estimated from the

gated projection data and the deformed attenuation maps. These two possibilities

will be discussed in Sections 6.2.1 and 6.4.3.2.

Examples of warping operators will be introduced in Section 4.4.1.

4.3.5 Maximum Likelihood for Attenuation and Activity

The reconstruction algorithms of type maximum likelihood reconstruction of activity

and attenuation (MLAA) are a combination of two reconstructions: emission image

reconstruction from known attenuation (e.g., OSEM) as described in Section 2.3.2,

and attenuation image reconstruction, which estimates the attenuation image from

the measured data and a known emission image. The latter uses maximum likeli-

hood preconditioned gradient ascent for transmission reconstruction (MLTR) (Van

Slambrouck et al. 2014).

It was proposed first in Nuyts et al. 1999 in the non-TOF case, however the

solution is non-unique and can lead to “cross-talk artefacts”: the reconstructed

attenuation images can mimic structures or be quantitatively affected by errors

in emission values and vice versa. The method was then extended to TOF data

(Salomon et al. 2011; Rezaei et al. 2012a); the non-uniqueness of the solution in the

case is reduced to a constant attenuation sinogram offset (Defrise et al. 2012).

Although MLAA is rarely used when a CT-based µ map is available, it is now

commonly used in research to reconstruct data from PET scanners combined with

a MR imaging gantry (instead of a CT gantry). As standard techniques used to

derive MR-based µ maps are usually not fully accurate (Lillington et al. 2019),

TOF-MLAA represents a potential solution to obtain quantitative PET images,

provided it is possible to derive the previously discussed constant offset (Mehranian

et al. 2017; Heußer et al. 2017; Rezaei et al. 2019).

The advantage of using MLAA is that it is possible to re-estimate the attenu-

ation image while reconstructing the emission data. Similarly as using an averaged

CT technique (Section 4.3.1), MLAA allows one to reduce effects of using an in-

correct attenuation map within the PET reconstruction. The method is still under

evaluation for clinical data, with some difficulties associated to scatter estimation
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and sensitivity to errors in the TOF kernels (Rezaei et al. 2017); recently, in Rezaei

et al. 2019, MLAA has shown better results when scatter is re-estimated within the

reconstruction.

MLAA has also not been properly evaluated on respiratory-gated data yet,

which will lead to noisier reconstructions. A recent study (Hwang et al. 2019a) has

used MLAA on gated PET data. The noisy attenuation maps are then enhanced

using a convolutional neural network, to obtain deformation fields. The estimated

motion and the enhanced attenuation maps are then used in MCIR.

4.3.6 Joint Image Reconstruction Motion Estimation

Rather than using the reconstruction technique in Section 4.3.3, the motion can be

estimated directly from the acquired PET data. Joint image reconstruction and

motion estimation (JRM) (Jacobson and Fessler 2003; Rezaei et al. 2012b; Bousse

et al. 2016a) is a reconstruction strategy which uses gated PET data and a single

CT image µ to estimate an emission image λ (accumulating all of the PET data)

and warping operators W` defined at each gate. The input single CT image does

not need to correspond to one of the PET gates; the computed λ corresponds then

to the same state as the CT. The estimated warping operators W` can warp both

λ and µ to the emission and attenuation images corresponding to each gate of the

PET data.

JRM has only been recently developed. It has been shown to recover the

lung outline appropriately, especially if TOF information is available (Bousse et

al. 2016b). However, it is still unclear whether the internal lung tissue displacement

is properly estimated. The method implemented by Bousse et al. 2016a will be the

base of the methods developed in this work and described in detail in Section 6.2.

4.4 Mass Preservation in Motion Estimation

As discussed in Section 4.2.2, in the case of compressible organs, density and con-

centration changes can be approximated via the local volume changes. The use

of the Jacobian determinant within mass-preserving optimisation will be formally

introduced in this section.



4.4. Mass Preservation in Motion Estimation 105

4.4.1 Mathematical Formulation of Volume Changes and Mass

Preservation

From physiological considerations, we can intuitively consider there is a relation

between how a volume moves, its volume changes and its density changes (in absence

of any exchanges which would modify the mass).

In Chapters 4 and 6, we denote:

• the (continuous) tracer concentration distribution λ ∈ C0(R3,R+).

• the (continuous) density distribution µ ∈ C0(R3,R+).

To describe the deformation between one motion state to another motion state,

we define the standard warping operator Wϕ : C0(R3,R+)→ C0(R3,R+) associated

with a diffeomorphism 1 ϕ : R3 → R3 such that:

Wϕ : f 7→ f ◦ ϕ where f = λ or f = µ . (4.1)

When applying the warping operator to h, the distribution is transformed without

accounting for any volume changes, which translate into either changes of density

(therefore attenuation coefficients) when f = µ or changes of activity when f = λ.

The previous warping operator can therefore be modified to account for

the volume/mass changes. We define a mass-preserving warping operator W̃ϕ :

C0(R3,R+)→ C0(R3,R+) such that:

W̃ϕ : h 7→ |det(Jϕ) | · h ◦ ϕ . (4.2)

where det(Jϕ(r)) is the determinant of Jϕ(r) the Jacobian matrix, which contains

the partial derivatives of ϕ at a point r ∈ R3.

The definition of the latter operator is motivated by the consideration of local

mass preservation: if we consider a diffeomorphic deformation ϕ which transforms

a non-negative continuous distribution f1 into f2 (i.e., f2 = f1 ◦ ϕ), the integrals of

f1 and f2 over R3 are given by:

∫
R3

f1(r) dr =

∫
R3

| det(Jϕ(r)) | f2(r) dr

1A transformation function is diffeomorphic if it is invertible and if the function and its inverse
are both differentiable.
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where det(Jϕ(r)) consequently reflects the volume changes.

4.4.2 Mass-Preserving Motion Estimation in PET/CT

4.4.2.1 Motivation

While it might not be necessary to use mass preservation to obtain accurate de-

formation fields for histogram-based registration or registration that accounts for

changes in intensity (such as cross correlation or mutual information, Hill et al.

2001; Cao et al. 2012), we do not want to use such cost functions in this thesis.

The aim of this preliminary is to use a mass-preserving model directly within the

Poisson log-likelihood in PET reconstruction, for which it is impossible to use such

techniques.

4.4.2.2 Previous Work

Incorporating the Jacobian determinant into the cost function of an optimisation

problem (as introduced in Section 2.3.1) has already been done in the past (Rein-

hardt et al. 2008; Yin et al. 2009; Thielemans et al. 2009; Gigengack et al. 2012;

Gorbunova et al. 2012), but the results were not satisfying for PET image registra-

tion.

Mass-preserving registration is indeed non-trivial and therefore regularisation

and similarity measures need to be optimised especially in the presence of noisy

data.

In Thielemans et al. 2009, a mass-preserving registration was tested on noise-

less and noisy simulated PET images. The author highlighted the importance of

choosing a robust regularisation, otherwise the noise difference between two images

can be partly compensated by changes in the Jacobian determinant. The optimisa-

tion however did not include the analytical derivatives of the Jacobian and Jacobian

determinants. This assumes that the change in Jacobian stays small at every opti-

misation update.

The registration methods in Reinhardt et al. 2008 and Gigengack et al. 2012

are very similar and both include a mass-preserving SSD cost function and the same

regularisation, however the former is aimed at CT registration and the latter at

PET registration of cardiac images. The hyperelastic regularisation used consisted

of 3 terms, which might be complicated to tune for joint image reconstruction and

motion estimation (JRM), where more parameters are necessary. Here a more simple
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regularisation is desired.

In Yin et al. 2009, a mass-preserving CT image registration via SSD minimi-

sation is performed, using a multi-level optimisation and an L-BFGS-B line search

(cf Section 2.3.1). Apart from the multi-level registration and the difference in cost

function, the motion estimation scheme is similar to the implementation of JRM

on which the methods presented in Chapter 6 will be based. However, there is no

mention of regularisation in the paper, which is crucial to be able to translate the

method to PET data.

Here, we aim to find a simple regularisation penalty that could be sufficient at

PET resolution, in view of using it in PET reconstruction with a log-likelihood cost

function. This will be the subject of Chapter 6.

4.4.2.3 Image Registration

In the standard and mass-preserving image registrations, the optimisation problem

consists in finding a deformation ϕ̂ such that the similarities between two images

f and g are increased, e.g., via minimisation of a cost function C. Examples for C

were given in the introductory image registration Section 2.3.3. For a given warping

operator Ẇϕ associated with a deformation ϕ, we have:

ϕ̂ ∈ arg min
ϕ

{
C(Ẇϕf, g) + βR(ϕ)

}
, (4.3)

where R is the regularisation penalty and β its associated weight to ensure the

estimation of a realistic deformation field. Choices of the penalty R will be discussed

in Section 4.5.2.

4.5 Warping Operators in the Optimisation Cost Func-

tions

When estimating deformation fields between two or more different motion states

(images or projection data), it is usually necessary to express the partial derivatives

of the motion-dependent cost function for the optimisation (see Section 2.3.1 for

gradient-based search). This involves the mathematical formulation of the defor-

mation fields (depending on the parameterisation chosen, 4.5.1) and the choice of a

discretisation scheme (4.5.3).
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4.5.1 Parameterisation of the Deformation

In this work, the deformation ϕ is parameterised by the B-spline coefficients α ={
αX = (αXn )ncn=1,α

Y = (αYn )ncn=1,α
Z = (αZn )ncn=1

}
on a subgrid of the original image

grid comprising nc control points:

ϕ(r) = r +


∑nc

n=1 α
X
n B

(
r−rn
D

)
∑nc

n=1 α
Y
n B
(
r−rn
D

)
∑nc

n=1 α
Z
nB
(
r−rn
D

)
 (4.4)

where D is the distance between the control points, rn is the n-th control point and

B(r) = b(x)b(y)b(z) where r = (x, y, z) are the coordinates of a point in the image

grid (nv voxels) and b is the cubic B-spline function, given for a value v ∈ R as:

b(v) =


1
6(4− 6v2 + 3 |v|3), if 0 ≤ |v| < 1

1
6(2− |v|)3, if 1 ≤ |v| < 2

0, if 2 ≤ |v|

(4.5)

Cubic B-spline parameterisation is regularly employed for deformations, because

of the differentiability and relative ease of use (efficient computation because of the

limited support and only a few parameters are used to parameterise), while managing

to obtain accurate estimates (Bardinet et al. 1996; Rueckert et al. 1999; Mattes et al.

2003; Jacobson and Fessler 2003).

In the following, the warping operators, as well as the Jacobian determinant, will

be indexed with the corresponding B-spline coefficients instead of the deformation

field, i.e. Wα ,Wϕ, W̃α , W̃ϕ and detJ α , detJ ϕ.

4.5.2 Regularisation on Jacobian Determinant Images

Two penalties will be evaluated in this chapter: quadratic penalty (QP) and

smoothed total variation (STV) penalty (as introduced in Section 2.3.2.4). For

motion estimation, they will be applied on the Jacobian determinant image (instead

of the activity image), to ensure that the problem noticed by Thielemans et al. 2009

is avoided.

Mathematically, the quadratic penalty (QP) on the Jacobian determinant image
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RQP can be expressed as:

RQP : α 7→ −1

2

nv∑
j=1

∑
k∈Nj

ωj,k

(
|detJ α|j − |detJ α|k

)2
,

where ωj,k is the inverse distance between the centre of a voxel j and the centre of

a voxel k and Nj is the neighbourhood of voxel j.

The smoothed total variation (STV) penalty RSTV is formulated as:

RSTV : α 7→
nv∑
j=1

√
||∇ |detJ α|j ||22 + ζ2, ζ > 0

where ∇ |detJ α|j is the (image) gradient of the absolute value of the Jacobian

determinant at a voxel j (the gradient approximation uses forward differences in

Nj on |detJ α| the discretised Jacobian determinant image – see following 4.5.3 for

details on discretisation) and ζ is used as a smoothing factor, enabling differentiation

when the gradient is 0.

For both penalties, the neighbourhood size was set to 3 × 3 × 3. The values at

the image borders were handled by adding padding to the image, using the nearest

voxel values.

Furthermore, to be able to compare the two penalties with equivalent weighting,

we consider the following function g (where ζ 6= 0):

g : x 7→
√
x2 + ζ2 = |ζ| ·

√(
x

ζ

)2

+ 1 (4.6)

The first-order Taylor expansion of g in 0 gives:

g(x) = |ζ|+ |ζ|x2 + o(x) (4.7)

We can therefore derive the weights for the STV prior from the quadratic prior

weights, as βSTV = βQP|ζ|, where ζ was chosen as 0.3 in order to preserve larger

changes of Jacobian determinant while smoothing smaller ones.

In image registration, preservation of topology is desired, which means that the

connected structures remain connected after warping and that the neighbourhood

relationship remains the same, e.g., ensuring a one-to-one mapping of structures. It
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is the case when the Jacobian determinant detJ α is strictly positive everywhere

in R3 (Musse et al. 2001; Ashburner et al. 1999). In initial experiments, we have

found that the above penalties were not sufficient to ensure that the deformation

is diffeomorphic. Therefore, we need to introduce an additional penalty encourag-

ing smooth deformation fields: a standard quadratic regularisation Rdef is applied

directly on the B-spline coefficients:

Rdef : α 7→ −1

2

nc∑
n=1

∑
m∈Ñn

ω̃n,m
∑

C∈{X,Y,Z}

(
αCn − αCm

)2
, (4.8)

where ω̃n,m is the inverse distance between the control points n and m, Ñn is the

neighbourhood of a control point n. The size of the neighbourhoods Ñn was set to

3 × 3 × 3. The values at the image borders were handled by adding padding to the

image, using the nearest values.

We write the total regularisation on the deformation as:

R(α) = R∗(α) + ξ · nv

nc
Rdef(α) (4.9)

where R∗ corresponds to either Rquad or RSTV. ξ is a small scalar > 0. In this

chapter, ξ was chosen as 0.005 when R∗ = Rquad or 0.005 · ζ when R∗ = RSTV

(where ζ is the smoothing scalar in the STV prior). In the rest of the thesis, we will

refer to QP and STV on the Jacobian determinant image for the above combinations

(i.e., with the added quadratic regularisation on the B-spline coefficients).

4.5.3 Discretisation Scheme

The discretisation is performed after warping of the continuous distributions λ and µ,

similarly to the scheme proposed in Jacobson and Fessler 2003. It can be summarised

as follows, for a given continuous distribution f :

1. Image Interpolation: We assume a distribution f can be decomposed using

basis functions (see Section 2.3.1.3), which are centred on a voxel grid G =

{ri, i ∈ J1, nvK}:

f(r) =

nv∑
i=1

fiw(r − ri)

where fi denotes the scalar coefficients at a voxel i ∈ J1, nvK for an inter-

polation function w : (x, y, z) → e(x)e(y)e(z), where e is a 1D interpolator
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(positive, definite and continuously differentiable). e is typically chosen as a

1D linear interpolation function, however here a B-spline interpolation will be

used within the optimisation, using recursive filtering algorithms introduced

in Unser et al. 1993.

2. Warping: Use a warping operator Ẇα to obtain the warped image (in contin-

uous space):

Ẇαf(r) =

nv∑
i=1

fiẆαw(r)

3. Discretisation: Finally, resample the warped image to obtain the image at

voxel values:

∀j ∈ J1, nvK,
[
Ẇαh

]
j

= Ẇαf(rj)

The discretised images corresponding to a distribution f (e.g., f or µ) will be denoted

f and the discretised warped images associated with a warping operator Ẇα (e.g.,

Wα or W̃α) denoted Ẇαf . Additionally, |detJ α| will be discretised to |detJ α|.

4.5.4 Jacobian Matrix and Jacobian Determinant for a B-Spline

Deformation

The element (k, l) of the matrix Jα(r) is given by:

[Jα(r)]k,l = δkl +

nc∑
n=1

αCkn
D

∂B
∂xl

(
r − rn
D

)
(4.10)

where δkl is the Kronecker delta for k, l and ∂B
∂xl

is the partial derivative of B with

respect to xl, where Ck is equal to X, Y , Z for k = 1, k = 2, k = 3, respectively,

and xl is x, y or z for l = 1, l = 2, l = 3 respectively.

The determinant of the Jacobian matrix corresponding to the transformation

at a point r can be computed as the determinant of the 3 × 3 matrix.

4.5.5 Analytical Derivatives of the Jacobian Determinant

Optimising a cost function in which the Jacobian determinant appears (i.e., in mass-

preserving optimisation) requires the knowledge of its derivatives in terms of the

deformation parameters, i.e., here the B-spline coefficients α. The partial derivative

of detJ α(r) with respect to a given B-spline coefficient αCkn can be obtained via
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Jacobi’s formula:

∂ detJ α(r)

∂αCkn
(α) = tr

(
adj (Jα (r))

) ∂Jα(r)

∂αCkn
(α) ,

where tr(·) denotes the trace 2 of a matrix, adj(.) is its adjugate 3 and the partial

derivative of detJ ϕ(r) with respect to αCkn is equal to:

∂Jα(r)

∂αCkn
(α) =

1

D

3∑
l=1

∂B
∂xl

(
r − rn
D

)
(4.11)

where Ck is equal to X, Y , Z for k = 1, k = 2, k = 3, respectively, and xl is x, y or

z for l = 1, l = 2, l = 3 respectively.

By composition, the partial derivative of | detJ α(r)| with respect to αCkn is

therefore:

∂ |detJ α(r)|
∂αCkn

(α) = sgn(detJ α(r)) tr
(
adj (Jα (r))

) ∂Jα(r)

∂αCkn
(α) ,

where sgn(·) is the sign function. The non-differentiability of | · | function in 0 is

handled by adding a small number to the Jacobian determinant. The analytical

derivatives of | det(Jϕ) | were validated against finite differences in terms of absolute

percentage error between the gradient and the finite differences, normalised with

respect to the maximum absolute value of the gradient, for random B-spline coef-

ficients and ε = 0.00001 used in finite differences. The mean and maximum errors

were found to be less than 3 · 10−11 and 4 · 10−10 respectively.

4.6 Evaluation on Patient Data

4.6.1 Motion during Static Acquisitions

In this part, data corresponding to a static acquisition were reconstructed with three

different µ maps, to evaluate the impact of the attenuation map on quantification.

Both non-TOF and TOF reconstructions were performed to demonstrate the depen-

dency of the errors on the reconstruction algorithm.

A 76-year-old male patient from the Coagulation Study (see Section 6.4.1) un-

2The trace tr(·) of a matrix is equal to the sum of its diagonal elements.
3The adjugate adj(·) of a matrix is equal to the transpose of its cofactor matrix. For a 3 × 3

matrix, its elements are easy to compute, as ±Dij , where Dij are 2 × 2 matrix determinants.
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Figure 4.2: CT images used to create the attenuation maps used in this study: (a) end-
expiration CT for µexp, (b) deep-inspiration CT for µinsp and (c) average CT
for µave. The spherical ROIs used in the analysis are overlayed in blue and red
for the liver and the lung, respectively. The data correspond to one patient
from the Coagulation Study (Section 6.4.1).

derwent a static FDG acquisition (injected activity: 170.8 MBq), on a GE Discovery

690.

Two different CT acquisitions were available: one at end-expiration (CTAC ac-

quisition, multislice helical acquisition at shallow breathing, slice thickness: 3.75 mm,

pitch: 1.375, voltage: 120 kVp, current: 40 mA, revolution time: 0.8 s) and one at

end-inspiration (HRCT, multislice helical acquisition at breathhold, slice thickness:

1.25 mm, pitch: 0.516, voltage: 120 kVp, current: 149 mA, revolution time: 0.6 s).

A third averaged CT image was formed by averaging the end-expiration CTAC and

the (filtered) HRCT images (method presented in Section 4.3.1).

The (ungated) PET data were reconstructed using the 3 following attenuation

maps:

• µexp, from the end-expiration CTAC image.

• µinsp, from the end-inspiration HRCT image.

• µave, from the averaged CT image.

The estimated scatter term also depended on the attenuation map used (Sec-

tion 2.2.5).

For the quantitative analysis, two spherical regions of interest (ROIs) were

drawn on the CT input images (volume 4189 mm3): the first one is located in the

lung at both end-expiration and end-inspiration and the second is in the liver at

end-expiration but in the lung at end-inspiration. Coronal views of the CT images,

overlayed with the ROIs, are given in Figure 4.2.

In addition, the listmode data was amplitude-gated into 4 respiratory bins (no

cardiac gating) based on the respiratory trace from a Varian RPM system. The end-
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Figure 4.3: Non-TOF reconstructed images corresponding to the entire ungated acquisi-
tion, using (a) µexp, (b) µinsp and (c) µave as attenuation maps. The reference
non-TOF end-expiration reconstruction is displayed in (d).

ROI µexp µinsp µave Reference

Lung 981 (+2.7%) 744 (−22.1%) 863 (−9.6%) 955
Liver 4645 (+3.6%) 518 (−88.5%) 1951 (−56.5%) 4485

Table 4.1: Measured radioactivity (in Bq/mL) and relative errors in the the two ROIs, for
non-TOF reconstructions.

expiration gated PET data were reconstructed using µexp and will be considered as

the reference for quantification (Liu et al. 2010). The alignment between the end-

expiration PET data and end-expiration CTAC image was visually assessed using

non-AC TOF gated images.

All data in this chapter were reconstructed using GE proprietary software in

MATLAB (Matlab 2016b), with OSEM using 8 subsets with 200 iterations for non-

TOF data and 100 iterations for TOF data.

4.6.1.1 Non-TOF Quantitative Results

Coronal views of the non-TOF recontructed images are shown in Figure 4.3. The

AC artefacts are conspicuous when both end-inspiration and averaged attenuation

maps are used. The reconstructed image with the end-expiration µ map is similar

to the reference gated reconstruction.

The visual assessments are also confirmed from measured tracer concentration

and relative errors in the ROIs are in Table 4.1. The results in non-TOF reconstruc-

tions show that—when no motion correction is applied—the quantification is very

dependent on the attenuation map.

4.6.1.2 TOF Quantitative Results

Coronal views of the TOF reconstructed images are shown in Figure 4.4. Visually,

the images are similar to the non-TOF images of Figure 4.3, although activity values

appear slightly different where the diaphragm displaces.

The measured uptakes and relative errors in the ROIs are in Table 4.2. The
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Figure 4.4: TOF reconstructed images corresponding to the entire ungated acquisition,
using (a) µexp, (b) µinsp and (c) µave as attenuation maps. The reference
TOF end-expiration reconstruction is displayed in (d).

ROI µexp µinsp µave Reference

Lung 925 (+1.5%) 800 (−12.2%) 863 (−5.3%) 911
Liver 3860 (−5.9%) 1145 (−72.1%) 2149 (−47.6%) 4101

Table 4.2: Measured radioactivity (in Bq/mL) and relative errors in the the two ROIs, for
TOF reconstructions.

differences between reconstructions in the ROIs are lower than for non-TOF recon-

structions.

4.6.2 Motion during Dynamic Acquisition

Short non-AC images (duration: 1 s) were reconstructed at the start of a dynamic

acquisition (for one patient of the Coagulation Study cohort), to demonstrate the

motion during the early part of a dynamic acquisition.

Images corresponding to 6 consecutive frames at the start of the acquisition are

shown in Figure 4.5; in addition to the changes due to kinetics within the thorax –

we can observe the tracer coming from the veins, passing through the lungs to the

aorta – motion is visible, especially near the diaphragm, as outlined using dotted

lines.

This observation implies that changes in radioactivity concentration due to

motion and due to kinetics cannot be dissociated in highly mobile regions such as

the base of the lungs, where the fibrotic regions are usually located in IPF.

4.6.3 Image Registration

The possibility of obtaining accurate Jacobian determinant maps is studied here.

Registration was performed on gated µ maps and PET images using the two simi-

larity measures introduced in Section 2.3.3:

• SSD, using an in-house implementation in MATLAB. Both mass-preserving

and non-mass-preserving versions were tested. The optimisation uses an L-
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Frame 23Frame 22 Frame 24

Frame 25 Frame 26 Frame 27

Figure 4.5: Coronal and sagittal views of 6 early consecutive 1 s long frames of a dynamic
PET acquisition, reconstructed without attenuation correction. The displace-
ment of the diaphragm is characterised using dotted lines to show its extent
between end-expiration (red) and end-inspiration (yellow).

BFGS-B line search (Section 2.3.1). This will be also used in JRM presented

in Chapter 6.

• LNCC, using NiftyReg (Modat et al. 2010). The Jacobian determinant is not

included in the NiftyReg similarity measure. However, the LNCC cost function

should not be too sensitive to variations of image intensity.

Both registrations here use B-spline parameterised deformations. The same distance

between control points (3 voxels along each direction) was used in both types of reg-

istration however the grids do not coincide because of differences in implementation.

The NiftyReg registration is included here as it is a well-validated package to

make sure the SSD registration gives realistic results. Note however that NiftyReg

could not be used in Chapter 6, because no registration on projection data is imple-

mented.

4.6.3.1 Patient Data

FDG-PET listmode and cine-CT data (Cuplov et al. 2018) were acquired on a

GE Discovery STE 134 min after injection, with monitoring using the Varian RPM

system (Nehmeh and pthers 2002). Both PET and cine-CT data were gated into 5

bins based on the RPM displacement (see Section 4.2.3). These data will be referred
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Figure 4.6: Input images: a) end-expiration µ-map, b) end-inspiration µ-map, c) end-
expiration BSREM PET, d) end-inspiration BSREM PET, e) end-expiration
OSEM PET, f) end-inspiration OSEM PET.

as the “gated entire PET acquisitions”. The PET data were reconstructed with two

different reconstruction algorithms:

• 60 iterations of OSEM (7 subsets) + 6-mm FWHM 2-dimensional (2D) Gaus-

sian postfilter + 1-4-1 weighted z-axis postfilter.

• BSREM (Ahn et al. 2003), using the relative difference (RD) penalty (intro-

duced in Section 2.3.2.4) to regularise the images. Details on the implementa-

tion of BSREM (max iteration number, step size, etc.) are given in Section B.3

(Appendix B).

Both reconstructions included scatter and randoms modelling. The gated atten-

uation maps matched the PET gates according to the RPM trace. The input µ,

OSEM PET images and BSREM PET images used as input images are displayed in

Figure 4.6.

Unlike standard methods developed for mass-preserving CT image registration

(Reinhardt et al. 2008; Yin et al. 2009), the gated CT images were here first con-

verted to µ maps, in units mm−1 ·∆−1
Z , where ∆Z is the voxel Z-dimension—the µ

maps are therefore in volume units, implying that there is no need to multiply the Ja-

cobian determinant by a slope as in Yin et al. 2009. The images were also resampled

to PET resolution: Jacobian determinant images from PET and CT registrations

will be readily comparable.

Additionally, in order to verify the stability of the registration, the PET data

were divided into 4 parts (random gating), each part also gated into 5 respiratory

bins, according to the RPM signal. These data will be referred as “gated partial
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PET acquisitions”. Because of the limited number of counts, only BSREM was used

to reconstruct the latter partial gated data, with a higher RD penalty weight.

For all types of registration in this chapter, the end-expiration images were

registered to the end-inspiration images, to avoid problems with structures mov-

ing in the FOV. We denote λBSREM
insp and λOSEM

insp the end-inspiration activity image

for BSREM and OSEM reconstructions, respectively. Similarly at end-expiration

the activity images are denoted λBSREM
exp and λOSEM

exp . The two µ maps used in

the registration are denoted µinsp and µexp for end-inspiration and end-expiration,

respectively.

Three penalty weights (for both priors) were tested, normalised across PET

and µ registrations. They were expressed as a % of the cost function at iteration

0 (i.e., initial value) divided by the number of image voxels): weak regularisation

(1%), medium regularisation (10%) and strong regularisation (100%).

4.6.3.2 Evaluation Methods

Gated Entire PET Acquisitions :

The registrations of the images corresponding to gated entire acquisitions were as-

sessed by computing the normalised root mean squared deviation (NRMSD) between

the warped end-expiration images and the end-inspiration images. Normalisations

use the mean image value M = 1
N

∑
i [finsp]i in the lung at end-inspiration, where

f designates either the µ maps, the OSEM activity images or the BSREM activity

images. The measure can be expressed as:

NRMSD (f) =
1

M

√√√√∑i∈Ωϕ

([
Ẇϕfexp

]
i
− [finsp]i

)2

N

where N is the number of elements in the voxel overlap domain Ωϕ between the

(discretised) target image and the (discretised) moving image transformed by a

deformation ϕ.

Gated Partial PET Acquisitions :

The registrations of gated partial PET data were evaluated by plotting the variances

in the Jacobian determinant images against the squared biases in the activity images.

The variances in the activity image cannot be used as introducing the Jacobian

determinant in the registration will tend to overfit the image noise, and therefore



4.6. Evaluation on Patient Data 119

to lower variances (as discussed in Thielemans et al. 2009). Here λinsp and λexp

denote the BSREM images λBSREM
insp and λBSREM

exp . The Jacobian image variances

Var is given as

Var =
1

K − 1

1

N

∑
j∈Ωϕ

K∑
κ=1

([
|detJ ϕ|[κ]

]
j
−mj

)2

,

where K = 16 is the number of realisations and |detJ ϕ|[κ] corresponds to the

Jacobian determinant image from the κ-th realisation and

mj =
1

K

K∑
κ=1

[
|detJ ϕ|[κ]

]
j
.

The (image) activity squared bias Bias2 is defined as

Bias2 =
1

K

1

N

∑
j∈Ωϕ

(
K∑
κ=1

[
Ẇϕλ

[κ]
exp

]
j
− [λinsp]j

)2

,

where Ẇϕλ
[κ]
exp corresponds to the end-expiration image λ

[κ]
exp warped using the warp-

ing obtained from the κ-th registration and λ
[κ]
insp is the input end-inspiration image

from the κ-th realisation.

4.6.3.3 In-house SSD

For a given warping operator Ẇ, we want to solve Equation 4.3, where R is one of

the penalties introduced in Section 4.5.2 and C is the SSD cost function.

Including mass preservation :

The Figures 4.7 and 4.8 show the Jacobian determinant maps obtained from the

mass-preserving registration, using as input images either the µ maps, the PET

BRSEM images or the PET OSEM images, with the STV and quadratic priors, re-

spectively. The corresponding NRMSD values for the different types of registration

are given in Table 4.3.

We now verify whether the incorporation of the Jacobian determinant in the

similarity measure can compensate the density changes during respiration in the

µ map. To do so, for each mass-preserving µ registration, the relative difference

images (µexp ◦ ϕ − µinsp)/µinsp and (|detJ ϕ |µexp ◦ ϕ − µinsp)/µinsp are shown in

Figure 4.9.
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Figure 4.7: Jacobian maps obtained with STV regularisation, for µ images: a) weak, b)
average, c) strong; for BSREM PET images: d) weak, e) average, f) strong; for
OSEM PET images: g) weak, h) average and i) strong. The PET regularisation
uses the activity images from the gated entire PET acquisitions.

1.3

0.7

1

μ maps BSREM images OSEM images

1.3

0.7

1

1.3

0.7

1

R
egularisation strength

a)

b)

c)

d)

e)

f)

g)

h)

i)

Figure 4.8: Jacobian maps obtained with quadratic regularisation, for µ images: a) weak,
b) average, c) strong; for BSREM PET images: d) weak, e) average, f) strong;
for OSEM PET images: g) weak, h) average and i) strong. The PET regular-
isation uses the activity images from the gated entire PET acquisitions.

Table 4.3: NRMSD between the end-inspiration images and the warped images (including
the multiplication by detJ ϕ) for weak, average and strong regularisations.

STV Weak Average Strong

BSREM PET 20.66% 26.42% 31.96%

OSEM PET 65.36% 72.45% 76.64%

µ 3.66% 6.19% 13.29%

Quadratic Weak Average Strong

BSREM PET 20.74% 26.46% 32.01%

OSEM PET 65.42% 72.48% 76.64%

µ 3.60% 6.26% 13.47%
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Figure 4.9: Relative difference images between µexp ◦ ϕ and µinsp (left) and between
|detJ ϕ | · µexp ◦ ϕ and µinsp (right), for (a), (b) weak regularisation, (c),
(d) average regularisation and (e), (f) strong regularisation using the STV
penalty.
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Figure 4.10: Jacobian maps obtained with STV regularisation, for µ images: a) weak, b)
average, c) strong; for BSREM PET images: d) weak, e) average. The PET
regularisation uses the activity images from the gated entire PET acquisi-
tions.

Without mass preservation :

As expected, in the absence of any way to compensate for local image intensity

changes, the standard SSD registration performs worse than its mass-preserving

counterpart. Whereas the µ map registration manages to realign coarsely the lung

images, the PET registration provides poor results, hindered by both high level of

image noise and global intensity changes. The Jacobian determinant images for the

µ and BSREM images are displayed in Figure 4.10.

4.6.3.4 Validation of Regularisation

The plots of the variance in the Jacobian maps against the bias in the activity images

confirmed better results in the BSREM PET image registrations. As expected,
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Figure 4.11: Relative difference images between µexp ◦ ϕ and µinsp (left) and between
|detJ ϕ | · µexp ◦ ϕ and µinsp (right), for (a), (b) weak regularisation, (c),
(d) average regularisation and (e), (f) strong regularisation using the STV
penalty.
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Figure 4.12: Tradeoff between variance in the Jacobian determinant images and the
(squared) bias in the activity images (in Bq2/mL2), in (a) the entire image
and in (b) the lung only, for the BSREM sampled PET data.

using a stronger regularisation diminishes the variances but increases the biases (see

Figure 4.12 for BSREM). STV prior showed smaller variances in the entire image,

although the variances in the lung were similar for both priors. The biases for the

quadratic prior were slightly lower.

4.6.3.5 Comparison with NiftyReg LNCC

Similarly as in Cuplov et al. 2018, a 2-step registration scheme was used in the

NiftyReg optimisation, in the following order:

1. Affine registration (using NiftyReg’s reg aladin executable, Modat et al. 2014),

using block-matching normalised cross correlation (NCC) (i.e., NCC calculated

between “blocks”, which are parts of the source and target images). This allows

a global realignment of two images.
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Figure 4.13: Jacobian maps obtained from NiftyReg LNCC registration, from µ maps (a)
and b)), BSREM PET images (c) and d)) and OSEM PET images (e) and
f)). Jacobian maps in a), c) and e) were obtained using a standard deviation
of 5 voxels and in b), d) and f) a standard deviation of 10 voxels for the
LNCC Gaussian window.

2. Non-rigid registration (using NiftyReg’s reg f3d executable, Modat et al. 2010).

The similarity measure was chosen to be local normalised cross correlation

(LNCC) (Cachier et al. 2003) using a Gaussian window to compute the local

statistics. Two standard deviations σG were tested here: 5 voxels and 10 voxels

along each axis. A larger standard deviation implies a more global registration,

which could help for noisy images but the registration might be more sensitive

to localised changes in intensity.

No lung mask was used in the non-rigid registration in order to compare with the

previous registration technique using SSD. The regularisation penalties (and corre-

sponding weights) were chosen as the default options given by NiftyReg, i.e., the

bending energy penalty (sum of squared second derivatives of the transformation)

and a linear elastic penalty (both penalties favour smooth warping).

We compare the results from the in-house mass-preserving SSD registration

with the results from the open-source registration package NiftyReg.

The Jacobian determinant maps, corresponding to the different registrations

on µ maps and PET images, are shown in Figure 4.13. The Jacobian maps depend

only slightly on the choice of LNCC Gaussian windows. The Jacobian maps from

the µ map registration are visually similar to the Jacobians map obtained with the

in-house mass-preserving SSD registration. However, in the default settings, the

NiftyReg LNCC registration seems more sensitive to the noise in the reconstructed

PET images.
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4.7 Discussion and Conclusion

In this chapter, we have evaluated the effect of motion and more particularly res-

piratory motion for PET/CT imaging, and introduced basic PET reconstruction

methods to compensate for motion. In PET reconstruction, large motion artefacts

can be observed for thorax acquisitions, due to both displacement of the radioactiv-

ity and changes of density and activity, due to compression and dilation of the lungs.

These affect chest PET images visually and quantitatively, for both static and dy-

namic acquisitions. Lung image registration is also affected by density and activity

concentration changes. In order to obtain good results, the optimisation needs to

cope with those changes by either allowing local changes in the cost function (e.g.,

using LNCC as used in this chapter with NiftyReg) or modify the registration to

incorporate a mass-preserving model (as performed here with our in-house SSD),

which was the strategy adopted here.

In this chapter, we have concentrated on the effect and feasibility of including

the Jacobian determinant in the cost function, prior to introducing it within the PET

system model. To do so, a regularisation on the Jacobian determinant images and

on the B-spline parameters was used. The image registration results could possibly

have been better using a stationary velocity field (Christensen et al. 1996), which

should lead to smoother deformation fields, especially for the OSEM PET images

presented in Figure 4.13. However, we wanted to compare with the same type of

deformation parameterisation as what was already implemented, therefore velocity

fields were not investigated in this part.

At CT resolution, sliding motion (e.g., interlobar or intercostal) can lead to lo-

calised registration issues. Regularisation can be modified in order to accommodate

better discontinuities due to sliding motion (Pace et al. 2011), however localised is-

sues will still be present. Some authors have suggested to estimate different motion

fields in different regions, for example using an automated lung mask for motion es-

timation (Vandemeulebroucke et al. 2012). Sliding motion was neglected here, but

could be added to PET motion estimation in future work.

In Section 4.6.1, we have observed artefacts due to lung motion with the current

scanner, with and without TOF. However, the errors near the diaphragm seemed

to diminish in TOF reconstructions, therefore the question arises as to whether
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artefacts can be resolved in the future, thanks to TOF scanners, with improved time

resolutions. In recent years, TOF reconstructions have indeed gained popularity,

thanks to better performance, especially in terms of image SNR (Conti 2011). The

reconstructed images are also assumed to be more reliable in presence of model

inconsistencies, such as errors in the attenuation map (Ahn et al. 2003). This was

indeed the case in regions where the attenuation map was known accurately, in

Section 4.6.1. Lung motion creates AC errors for non-gated PET reconstructions or

gated reconstructions where the CT acquisition does not correspond perfectly to the

PET gate. The effect of utilising TOF reconstruction versus non-TOF reconstruction

in presence of attenuation errors will be discussed in the following chapter 5.



Chapter 5

Evaluation of the Effect of Attenuation

Mismatches in TOF

5.1 Introduction

Reconstructing PET images from inconsistent data is common, particularly in lung

imaging. The causes can be multiple: mis-estimation of the background sinogram,

mis-alignment of the PET acquisition with the attenuation map, use of a wrong data

model (e.g., due to changes in distribution), etc. Depending on the optimisation used

to create the images, the effect on quantification will be different.

TOF PET reconstructions incorporate time information from a coincidence pair

to estimate more accurately the localisation of the originating annihilation event (see

Section 2.2.2.3). The optimisation problem becomes better determined, with more

equations to solve, which usually leads to an overall better image quality and better

quantification (Conti 2011). Current clinical TOF PET scanners have resolution

between 210 ps (Van Sluis et al. 2019; Pan et al. 2019) and ≈ 550 ps (Bettinardi

et al. 2011; Rausch et al. 2015), but sub-100 ps time resolutions are expected in

the future (Lecoq 2017; Cates and Levin 2018). If 10 ps or higher time resolution

can be achieved, this would allow for “reconstruction-less” PET images, as the

detected events could be placed directly in the images, although effects such as

photon attenuation and scatter will still have to be taken into account.

In this chapter, we will focus only on “attenuation mismatches”, which are de-

fined as the use of a wrong attenuation map to calculate the attenuation coefficients,

use in the image reconstruction of PET data.

The use of “mismatched” attenuation maps in the PET reconstruction can
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induce large quantification errors in the reconstructed images, as discussed theoreti-

cally in Thielemans et al. 2008, B. Bai et al. 2003 and Ahn et al. 2014 and clinically

in Geramifar et al. 2013 and Nyflot et al. 2015b.

Apart from potential artefacts in the CT images acquired for attenuation

(Sureshbabu et al. 2005), a common cause of such attenuation mismatch is mo-

tion in PET/CT imaging, as introduced in the previous Chapter 4. Indeed, when

a single CT image is used to to calculate attenuation coefficients, unless the PET

and the CT are perfectly aligned, there is an inherent mismatch because of respira-

tory motion. To deal with motion and reduce attenuation mismatches, it is usually

common to bin the data into respiratory states, as described in Section 4.2.3. Some

techniques to reduce mismatches will be discussed in Section 4.3. However, unless

a continuous perfect motion model for event-by-event PET reconstruction is used

(via listmode), intra-gate motion is unavoidable.

In non-TOF reconstruction (i.e., when the time information is not used), when

far away from the edges, for an “emission object” that is large enough (for example,

in the chest), the effect is mostly local and depends on the size of the perturbation

area, as well as the amount of activity in the surrounding areas. This was used to

derive approximations to quantify the error in the reconstructed PET image in the

area where the mismatch occurs (Thielemans et al. 2008). In Ahn et al. 2014, the

effect of mismatched attenuation maps in TOF reconstruction was also considered

as local, which allowed the authors to obtain an approximation of the quantification

errors. Under that assumption, if the object size is considered negligible compared

to the time resolution, an estimation close to the one found in Thielemans et al.

2008 can be found, now depending on the time resolution instead of the size of

the emission object. In both cases, only the local effect of a perturbation in the

attenuation map on the emission image was considered in the analysis.

This chapter will focus on showing the non-local effect of attenuation mis-

matches for high time resolutions. It will first demonstrate first mathematically

the non-local effect and its quantification error for perfect time resolution. Then,

simulations and the reconstruction of patient data will demonstrate the quantifica-

tion error, for different time resolutions.
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5.2 Theory

5.2.1 PET Imaging System

As introduced in Section 2.3.2.4, the PET measured data take the form of a random

vector g ∈ Nnb , where [g]i is the number of counts at bin i ∈ J1, nbK and nb is the

number of detection bins. The imaging system is usually modelled as

p = Mλ+ n (5.1)

where p = E[g], λ ∈ Rnv
+ is the unknown emission image,M ∈ Rnb×nb is the imaging

system matrix, n is the background term (comprising randoms and scatter), and nv

is the number of voxels.

In the case of TOF PET systems, events are binned according to the difference of

photon arrival time in addition to the detector pair. The time information is known

with a temporal uncertainty, which defines the time resolution ∆T of the scanner.

The number of detection bins nb depends on the PET system, i.e., nb = nd for

non-TOF PET and nb = ndnt for TOF PET, nd and nt denoting the number

of detection bins for non-TOF reconstruction and the number of temporal bins,

respectively.

Each entry [M ]i,j = Mi,j represents the probability that a pair of unscattered

photons emitted in a voxel j is detected by the detector pair i, and incorporates the

attenuation. In principle, detector blurring should be modelled after attenuation;

however, for simplicity, we will consider the factorisation of M as Leahy and Qi

2000b

M = a(µ)H , (5.2)

where a(µ) is a nb × nb diagonal matrix containing the attenuation factors corre-

sponding to µ and H is a system matrix that incorporates a geometrical mapping

between the source and the data—each entry [H]i,j = Hi,j represents the probabil-

ity that an emission from voxel j is detected by the detection bin i in the absence

of attenuation.

The background term n includes scatter, which in practice can be estimated

from the attenuation map (Watson et al. 1996; Ollinger 1996). In the remainder of



5.2. Theory 129

this section, we will assume that n = 0, so that (5.1) becomes

p = a(µ)Hλ . (5.3)

This can be achieved, for example, by subtracting n from p and zeroing the negative

values.

5.2.2 Spatial Extent of Activity Errors due to Local Attenuation

Mismatch

We assume the true activity and attenuation images are respectively λ? ∈ Rnv
+ and

µ? ∈ Rnv
+ . Furthermore, we assume that H is full rank with nb ≥ nv such that

the mapping H : x 7→ Hx is injective. The transmission system matrix—used

to generate the attenuation coefficients—is the discretised line integral operator

R ∈ Rnd×nv .

The attenuation coefficient diagonal matrix a(µ) is of size ndnt×ndnt (in non-

TOF PET, nt = 1) and for each bin detector pair d ∈ J1, ndK and time bin t ∈ J1, ntK,

the diagonal element at the detection bin i = (d− 1)× nt + t is

[a(µ)]i,i = exp(−[Rµ]d) ,

that is to say, in TOF PET, the attenuation coefficients are independent of the time

bin.

Let p? be an idealised noiseless measurement of the true activity λ? with at-

tenuation µ? ∈ Rnv , i.e.,

p? = a(µ?)Hλ? . (5.4)

In absence of noise, the PET image reconstruction problem becomes

find λ such that p? = a(µ?)Hλ (5.5)

and has a unique solution λ = λ?.

Now assume that the attenuation map µ̃ used for reconstruction is a perturbed

version of µ?, i.e., µ̃ = µ? +η where η is a small perturbation supported on a small
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region far from the edges. The reconstruction problem (5.5) is equivalent to solving

a(µ̃)Hλ = a(µ?)Hλ?

⇔ Hλ = a(−η)Hλ?

Non-TOF PET : Along the lines of Thielemans et al. 2008 and Ahn et al. 2014,

using a Taylor expansion around Rµ?, the problem is approximated in non-TOF

PET to:

H(λ− λ?) ≈ diag[Rη]Hλ? (5.6)

where diag[·] is the operator that generates a diagonal matrix from a vector.

By introducing some further approximations, Thielemans et al. 2008 derived a

formula applicable to non-TOF PET:

R(λ− λ?) ≈ ρRη (5.7)

where ρ is the mean projected activity along the LORs intersecting the support of η.

Approximation (5.7) shows that when µ and µ? differ from a local perturbation η,

then, by injectivity of R, the solution to the approximated reconstruction problem

is λ̂ = λ? + ρη, which suggests that the error in the reconstructed activity remains

localised on the mismatch.

TOF PET : Equation (5.6) can be extended to TOF PET, i.e., for all line of response

i intersecting the support of η and for all time bin t,

[H(λ− λ?)]i ≈ [Rη]d[Hλ
?]i . (5.8)

Approximation (5.8) implies that for all lines of response i intersecting the mismatch

area, the error between the reconstructed activity λ̂ and λ? propagates to each time

bin t by a factor proportional to [Rη]d, which means the error can no longer be

considered local.

The previous equation (5.8) implies that in most cases the system to solve is

made of inconsistent equations. For this reason, the solution depends on the cost

function used for solving such reconstruction problem.
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5.2.3 Maximum-Likelihood Expectation Maximisation

In this section we deepen the analysis from Section 5.2.2 by investigating the effect

of the attenuation mismatch from the perspective of MLEM reconstruction. We will

consider the highly idealised case of perfect spatial resolution here.

We denote for (i, j) ∈ J1, nbK× J1, nvK (here i is a TOF bin and nb = ndnt):

• λ̂ =
[
λ̂j

]
the activity image reconstructed with the true attenuation map µ?,

i.e., using M? =
[
M?
i,j

]
= a(µ?)H.

• λ̃ =
[
λ̃j

]
the activity image reconstructed with a wrong attenuation map µ̃,

where M̃ =
[
M̃i,j

]
= a(µ̃)H.

We also define the sets

Sj = { i ∈ J1, nbK |Hi,j 6= 0 } .

In a hypothetical case of an activity image reconstructed with perfect time

resolution as well as perfect spatial resolution, the Sj are disjoint, so that

∀i ∈ J1, nbK, ∃!j ∈ J1, nvK, i ∈ Sj . (5.9)

Given a system matrixM , which can either beM? or M̃ , and the measurement

data p = {pi}i∈J1,nbK, the MLEM algorithm (k + 1)-th iteration at a voxel j is

λ
(k+1)
j =

λ
(k)
j

Mj

nb∑
i=1

Mi,j
pi∑nv

l=1Mi,lλ
(k)
l

(5.10)

where Mj =
∑nb

i=1Mi,j and λ
(k)
j is the value of the activity image at a voxel j and

iteration k (Dempster et al. 1977; Shepp and Vardi 1982; Lange and Carson 1984).

In TOF PET, assuming the temporal resolution is perfect, condition (5.9) holds

and therefore
∑nv

l=1Mi,lλ
(k)
l = Mi,jλ

(k)
j . Equation (5.10) simplifies to

λ
(k+1)
j =

λ
(k)
j

Mj

∑
i∈Sj

Mi,j
pi

Mi,jλ
(k)
j

=

∑
i∈Sj pi∑

i∈Sj Mi,j
(5.11)

and convergence is achieved after one iteration. Substituting M with M? and M̃
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successively in (5.11) leads to

λ̃j

λ̂j
=

∑
i∈Sj M

?
i,j∑

i∈Sj M̃i,j

(5.12)

The quantification of the non-local effect due to a local error in the attenuation map,

from Equation (5.8) can therefore be quantified easily for MLEM/OSEM in the case

of perfect time resolution by the relative error

λ̃j − λ̂j
λ̂j

=

∑
i∈Sj M

?
i,j∑

i∈Sj M̃i,j

− 1 (5.13)

It is worth noticing that for small attenuation mismatches and using the same first-

order Taylor expansion around µ?, (5.13) resembles an image space version of (5.8).

5.3 Experiments and Results

In this section we will study the quantification errors in TOF reconstruction due to

attenuation mismatches for MLEM/OSEM.

5.3.1 Summary of Simulated and Patient Data

We use four different datasets, either simulated for or acquired on a GE Discovery

690 PET/CT scanner (Bettinardi et al. 2011). The PET reconstructions use two

different attenuation maps: the true attenuation map µ? and a wrong attenuation

map µ̃.

5.3.1.1 Simulations

The simulated datasets are the following (similar to that of Holman et al. 2016):

Simulation 1 : A 28.8-cm diameter uniform cylinder (linear attenuation:

0.916 cm−1) is placed at the centre of the FOV. The wrong attenuation map µ̃

is known accurately in the reconstruction except for one small cylinder (diameter

= 6 mm) at the centre of the FOV, where the attenuation is overestimated by

15%. This simulation is aimed at studying the impact of a very small attenuation

mismatch on the reconstructed activity image. The phantom volumes are shown in

Figure 5.1.

Simulation 2 : An XCAT PET/CT simulation of an FDG oncological pulmonary

acquisition at end-inspiration (tumour of 1 cm3 situated in the lower right lung).
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(a) True λ? (b) True µ? (c) Incorrect µ̃
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Figure 5.1: Simulation 1 – Axial and coronal views of the input images used: (a) true
activity, (b) true attenuation and (c) incorrect attenuation.

Two incorrect input µ̃ maps are assessed:

• Lung density changes only : The incorrect µ̃ map (denoted µ̃1) is aligned with

the structures in the PET data, however the density in the lung is not known

accurately (overestimation of 15%). Note that the lung tumour density does

not change, as the structure is considered rigid. Such simulation is relevant in

MCIR or gated reconstruction, when a static µ map is warped to another res-

piratory gate (for which intra-motion is negligible), but the changes in density

are not considered.

• Lung density changes + misalignment : The incorrect µ̃ map (denoted µ̃2) cor-

responds to the end-expiration state, therefore both structure alignment and

lung density are wrong. The input simulation images are given in Figure 5.2.

Data Generation : The simulations were performed using STIR with TOF

(Efthimiou et al. 2018) in the following order:

1. Forward projection of the true activity image λ? to obtain the non-attenuated

projection data.

2. Calculation of the attenuation coefficient sinogram a(µ?) from the true atten-

uation map µ? and multiplication by the projection data.

3. Reconstruction of the attenuated projection data using either the true atten-

uation map µ? or the incorrect attenuation map µ̃.

To assess the effect of varying time resolution in the TOF reconstruction, the overall

scanner geometry of the GE PET/CT Discovery 690 was used, but some changes

were done to the TOF characteristics:
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(a) True λ? (b) True µ?
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Figure 5.2: Simulation 2 – Axial and coronal views of the input images used: (a) true
activity λ?, (b) true attenuation µ?, (c) incorrect attenuation µ̃1, (d) absolute
difference between µ? and µ̃1 (e) incorrect attenuation µ̃2 and (f) absolute
difference between µ? and µ̃2.

• The maximal number of TOF bins extended to 175 (of width equal 28 ps)

instead of the original 55 bins (of width ≈ 89 ps).

• The time resolution was modified to test a range of time resolutions, from 70 ps

to 550 ps.

Image Reconstruction : For the simulations, the projection data were recon-

structed using STIR with MLEM, using a sufficient number of iterations so that the

mean difference between the last two iterations was less than 0.1% overall, when the

correct attenuation map was used in the reconstruction. The numbers of iterations

for the TOF reconstructions, depending therefore on the time resolution, are given

in Table 5.1. 1600 iterations were used in non-TOF reconstructions. For compu-

tational reasons, TOF “mashing” was used in this work: adjacent TOF bins are

summed together to create a new TOF sinogram with larger TOF bins. Only small

loss was reported for quantification (Efthimiou et al. 2018).
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TOF FWHM 70 100 150 200 250 300 350 400 450 500 550

MLEM iteration # 80 160 160 240 240 240 240 240 240 240 240

Table 5.1: Time resolution FWHM simulated and the corresponding number of MLEM
iterations used.

End-Expiration CT End-Inspiration CT

−1,350

150

HU

(a) (b) (c) (d)

Figure 5.3: Patient Data – (a) Coronal and (b) sagittal view of the end-expiration CT
image and (c) coronal and (d) sagittal view of the end-inspiration CT image,
used to derive the attenuation maps in this study.

5.3.1.2 Patient Data

The same patient from the Coagulation Study (Section 6.4.1) as in Section 4.6.1

was selected for this study. Two different CT acquisitions were available: one at

end-expiration CTAC acquisition and one end-inspiration HRCT. The listmode data

was also amplitude-gated into 4 respiratory bins, using the respiratory trace from a

Varian RPM system.

The end-expiration gated PET data were reconstructed using two µ maps µ?

and µ̃, computed from the end-expiration and the end-inspiration CT images, re-

spectively. The patient data were reconstructed using GE proprietary software in

MATLAB (Matlab 2016b), with OSEM using 8 subsets with 200 iterations for non-

TOF data and 100 iterations for TOF data.

5.3.1.3 Measures

At a given time resolution, we denote λ̃ and λ̂ the reconstructed images at the

final reconstruction iteration, using the true attenuation map µ? and the incorrect

attenuation map µ̃, respectively.

In the following, we will use the relative errors in absolute value defined in a

ROI R as

|RE|R =

∣∣∣∣mean
R

(λ̃)−mean
R

(λ̂)

∣∣∣∣
mean
R

(λ̂)

where mean
R

(·) designates the mean value in R.
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Figure 5.4: Simulation 1 – Relative errors versus time resolution at the centre of the cylin-
der (left) and for three off-centre ROIs (right), from the reconstructions and
from Equation (5.13). We used two subplots due to scale differences.

We also define the relative difference image RDλ (in absolute values) such that

[RDλ]j∈J1,nvK =

∣∣∣λ̃j − λ̂j∣∣∣
λ̂j

5.3.2 Results

5.3.2.1 Simulation 1

We consider five ROIs. The first one is placed at the centre of the FOV, therefore

at the centre of the perturbation area. The four other ROIs are off-centre (distance

between the centre of the FOV and the ROIs: 12.8 mm, 21.3 mm, 29.8 mm and

55.4 mm respectively).

We computed the relative error within the perturbation area and in four off-

centre ROIs. The plots showing the relative errors with respect to the time resolution

are shown in Figure 5.4, where the relative error at perfect time resolution was

predicted by Equation (5.13).

The first subplot is consistent with previous results on TOF, where improve

time resolution decreases locally errors in the activity images. The second subplot

confirms that the errors propagate globally in the image, in agreement with Equa-

tion (5.8).
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Figure 5.5: Simulation 2 (Lung density changes only) – Relative errors versus time res-
olution in different ROIs: left lung, right lung, lung tumour and descending
aorta.

5.3.3 Simulation 2: Lung XCAT Simulation

5.3.3.1 Lung density changes only:

In Figure 5.5, the relative errors are plotted in different ROIs (left and right lungs,

descending aorta and lung tumour), relatively to time resolution. Similarly as for

Simulation 1, the relative errors within the lungs (where the attenuation mismatch

is located) decrease with improved time resolution. However, the errors increase

in the lung tumour and the descending aorta. The same behaviour was observed

for the right and left ventricles, as well as ascending aorta (results not shown). The

results show the propagation of the errors outside of the lungs (where the attenuation

mismatches lie), in neighbouring regions, as predicted by Formula (5.13).

5.3.3.2 Lung density changes + misalignment:

In Figure 5.7, the relative difference images in absolute values are shown.

Additionally, the relative errors RER were quantified in different ROIs R: as-

cending aorta (AA), descending aorta (DA), left ventricle (LV), right ventricle (RV)

and liver. The relative differences |RD| between λ̂ and λ̃ are given in Table 5.2.
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(a) Perfect ∆T (b) 70 ps (c) 200 ps

(d) 550 ps (e) non-TOF
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Figure 5.6: Simulation 2 (Lung density changes only) – Relative errors in absolute values,
in coronal view (a) expected at perfect time resolution and for four reconstruc-
tions with different TOF resolution: (b) 70 ps, (c) 200 ps, (d) 550 ps and (e)
non-TOF.

(a) Perfect ∆T (b) 70 ps (c) 200 ps

(d) 550 ps (e) non-TOF
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Figure 5.7: Simulation 2 (Lung density changes + misalignment) – Relative errors in ab-
solute values, in coronal view (a) expected at perfect time resolution and for
four reconstructions with different TOF resolution: (b) 70 ps, (c) 200 ps, (d)
550 ps and (e) non-TOF.

ROI AA DA LV RV

Perfect TOF 12.8% 3.3% 22.9% 25.5%
70 ps 12% 1.0% 23.0% 26.6%
200 ps 8.8% 1.7% 20.9% 27.9%
550 ps 6.5% 4.5% 14.2% 21.8%

non-TOF 8.3% 5.4% 13.3% 16.6%

Table 5.2: Simulation 2 (Lung density changes + misalignment) – Relative errors |RE|R
for different time resolutions and for non-TOF in different ROIs R: ascending
aorta (AA), descending aorta (DA), left ventricle (LV), right ventricle (RV) and
liver.
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Figure 5.8: Patient Data – Relative errors for TOF reconstruction (550 ps) in (a) coronal
and (b) sagittal views and for non-TOF reconstruction in (c) coronal and (d)
sagittal views.

ROI AA U-DA L-DA LV RV Liver

TOF 5.1% 2.1% 14.0% 8.2% 5.7% 8.6%
non-TOF 2.7% 0.5% 13.5% 2.8% 3.6% 5.1%

Table 5.3: Patient data – Relative errors |RE|R in TOF and non-TOF in different ROIs
R: ascending aorta (AA), upper descending aorta (U-DA), upper descending
aorta (L-DA), left ventricle (LV), right ventricle (RV) and liver.

5.3.4 Patient Data

The two input CT images and the relative errors images are shown in Figures 5.3

and 5.8, respectively.

Additionally, ROIs were drawn on the end-expiration CT for measurements,

using ITK-SNAP (Yushkevich et al. 2006): Ascending Aorta (AA, 1.76 cm3), De-

scending Aorta (DA, 1.76 cm3), Left Ventricle (LV, 1.76 cm3) and Right Ventricle

(RV, 1.54 cm3).

The relative differences |RE|R in different ROI R between λ̂ and λ̃ are shown

in Table 5.3.

5.4 Discussion and Conclusion

The time information in PET has helped to achieve better image quality and quan-

tification. However, accurate attenuation information is still essential in the recon-

struction, as the results from this chapter demonstrates.

Indeed, the effect of using an incorrect attenuation map in the reconstruction on

the reconstructed activity image cannot be considered local in TOF reconstructions.

The relative errors depend on the optimisation chosen to reconstruct the data and

can be quantified for perfect time resolution for algorithms such as MLEM. For

high resolutions such as 100 ps or below, the latter should be close to the projected

relative errors at perfect time resolution. For intermediate time resolutions however,
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obtaining an approximation to link inconsistencies in the attenuation map and errors

in the reconstructed activity image for a given reconstruction algorithm would be

a hard task in general cases when no symmetry arguments can be used, as the

formulation will depend highly on the object/body geometry, as well as the time

resolution.

Three simulations were used to show the errors for different time resolutions

(using MLEM). The first simulation corresponds to a simple cylinder, with an error

in the attenuation map in the middle of the FOV. For improved time resolutions,

the error became local and at 70 ps was very close to the formula corresponding to

perfect time resolution. Two XCAT lung simulations were also used. The first simu-

lation had no misaligned structures in the attenuation map, however the attenuation

values were wrong in the lung. This is relevant for MCIR which does not consider

changes in density or activity, see in the next Chapter 6. At higher time resolution,

errors were found greater outside of the lungs, for example in the Ascending Aorta

or in the heart. The second XCAT simulation is an example of gated PET recon-

struction which uses a misaligned attenuation map (i.e., encompassing also changes

in density). This extreme case showed the large effect on the quantification. Finally

end-expiration patient data were reconstructed using two different µ maps: one close

to the PET gate and the second one corresponding to end-inhalation. Both TOF

(FWHM: 550 ps) and non-TOF were employed. The results were similar to those

observed with the second XCAT simulation. While differences in the lung reduced

with increased TOF timing resolution, they increased in most neighbouring ROIs,

such as the ascending aorta (from 2.7% to 5.1%) or the left ventricles (from 2.8% to

8.2%), similarly to the 12.8 mm off-centre ROI of the cylindrical simulation.

In addition to problems with quantification in static PET images, the results in

this chapter show that using an incorrect attenuation map could have implications

in kinetic modelling, especially in the lung. Indeed, nowadays blood samplings are

avoided to obtain the input functions used in compartmental modelling (Section A.1

in Appendix A), therefore it is common to draw ROIs in blood vessels such as the

aorta to obtain image-derived input functions (IDIFs). However, as those regions

are often neighbouring the lungs, at high time resolution the quantification might

be less accurate. In Kotasidis et al. 2016, attenuation mismatches were discussed
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for kinetic modelling in TOF reconstructions: biases were reduced at high time

resolution, but could not be completely resolved; this is consistent with our results.

Additionally to quantification problems, the convergence of the MLEM was also

slowed down in presence of attenuation mismatches. This could be a problem when

trying to standardise reconstruction parameters.

A possibility to correct the attenuation map is by using an algorithm such as

MLAA. This will be further discussed in Section 4.3.5 of the following chapter. When

TOF information is available, it is possible to determine, from the prompts and an

initial guess of the attenuation map, the corrected attenuation sinogram up to a

constant sinogram (Defrise et al. 2012). It becomes therefore possible to compute

precisely the entire attenuation sinogram when at least a part of it is known precisely

(e.g., when a region of the µ map is known). From this work, one might theorise

that this is closely related to the non-local effect of using an incorrect attenuation

on the activity image in TOF reconstruction. The cross-talk identified in non-TOF

therefore disappears when the error provoked by using a wrong attenuation map in

the reconstruction tends to be non-local, therefore MLAA becomes globally more

sensitive to any changes.

The work in this chapter only focused on attenuation mismatches. Data in-

consistencies due to incorrect background term within the reconstruction (i.e., bad

estimations of randoms and scatters) could also be studied. A recent publication

demonstrated that an accurate estimation of the scatter sinogram was important in

TOF-MLAA to obtain quantitative measures (Rezaei et al. 2019).

The following Chapter 6 is dedicated to reconstruction algorithms that encom-

pass motion compensation, with an overview of the main existing algorithms, ac-

counting for tissue displacement and/or density changes, followed by a presentation

of a method to compensate for the two components of the motion.



Chapter 6

Tackling Respiratory Motion in the

Lung

6.1 Introduction

Chapters 4 and 5 demonstrated the issues linked to motion in the lung, for both

static and dynamic acquisitions, and discussed some methods to compensate for

motion in PET reconstruction. They also showed the impact on PET quantifica-

tion of data inconsistencies between the attenuation map and the acquired PET

data in standard PET reconstruction, such as MLEM. This also demonstrates the

importance of a robust motion compensation in lung PET imaging, where both tis-

sue displacement and density changes would be accounted for. The problem linked

to respiratory motion is even greater in IPF imaging as the pathological fibrosis is

usually located at the base of the lungs, where the motion is predominant. Mass

preservation assumes that changes in density and activity concentration observed in

lung PET/CT imaging can be quantified using a measure obtained from the defor-

mations between respiratory gates, as introduced in the previous chapter 4. This

will be developed for joint image reconstruction and motion estimation (JRM) in

this chapter.

In this chapter, two motion-compensating methods will be presented for dy-

namic PET MCIR and mass-preserving (static PET) MCIR, with a view to correct

PET images corresponding to IPF patients. They will be tested on simulated data

and on parts of the acquisition data corresponding to the Coagulation Study (only

results for pre-treatment data or control patients from the Coagulation Study will

be demonstrated here). Cardiac contraction motion will not be taken into account
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in the motion compensation.

6.2 Joint Motion Reconstruction

6.2.1 Motion-Dependent Log-Likelihood

In Chapter 2, any type of motion or change in distributions was neglected in the

log-likelihood L of Equation (2.22). However, as PET acquisitions are longer than

the cardiac and respiratory cycles, the log-likelihood corresponding to abdominal

PET acquisitions needs to include a dependence on motion state.

In practice, the acquired PET data g = {gi}i∈J1,nbK can be binned into several

“gates” (where ng is the number of gates), for which intra-gate motion can be

considered negligible in comparison to the PET resolution. The Equation 2.22 can

be modified to include the motion states/gates ` ∈ J1, ngK. Indeed if we denote g`

the corresponding “gated” acquired data, we have:

∀` ∈ J1, ngK, g` ∼ Poisson(ḡ(λ`, µ`)) , (6.1)

where ḡ(λ`, µ`) is the expected number of counts at the gate `, which depends on

the activity distribution λ` and the attenuation distribution µ`, corresponding to

the activity and attenuation distributions at the gate `, respectively. To follow the

notations in Bousse et al. 2016a, for a given detection bin i and a gate `, the expected

number of counts is given by:

ḡi(λ`, µ`) = τ` ai(µ`)Hiλ` + si,` , (6.2)

where τ` corresponds to the duration of the binned gate ` and si,` is the background

term for the `-th gate at the detection bin i (i.e., comprising both scatters and

randoms). The corresponding log-likelihood L is such that:

L(λ, µ) =

ng∑
`=1

nb∑
i=1

gi,` log ḡi(λ`, µ`)− ḡi(λ`, µ`) . (6.3)

In absence of gross motion during the PET acquisition, a motion state could

be defined from distinct cardiac and respiratory states. However, in this thesis,

cardiac contraction motion will be ignored. ng will therefore represent the num-
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ber of respiratory bins, which are obtained from a respiratory surrogate signal (see

Section 4.3).

In Bousse et al. 2016a, the background sinogram s corresponding to the entire

PET acquisition (comprising both randoms and scatters) was first estimated from

the input attenuation map, without any deformation. From this estimation, ∀`,

the background sinograms s` were computed as K` s, where K` = D`
τ`∑
l τl

for each

gate (τ` is the gate duration and D` is a factor related to decay factors). This was

motivated by Burgos et al. 2016, where small differences in the estimated scatter

sinogram resulted in small differences in the reconstructed images. Additionally,

the tails from K` s were visually assessed against the tails of the gated projection

data before using the rescaled background in Bousse et al. 2016a. However, recent

work demonstrated the importance of re-estimating the background sinogram for

accurate quantification in joint reconstruction (Brusaferri et al. 2019; Rezaei et al.

2019). Therefore the estimation of gated background term will be compared to the

previous strategy (see Section 6.4.3.2).

6.2.2 Standard JRM

Bousse et al. proposed a JRM scheme where the emission image λ and a set of diffeo-

morphisms ϕ`, as in previous Chapter 4, are estimated from the binned projection

data (g`)
ng

`=1 and a single attenuation image µ.

The emission and attenuation images can be defined at each gate ` ∈ J1, ngK

as λ` = Wϕ`λ and µ` = Wϕ`µ, where Wϕ` is the (discretised) standard warping

operator defined in the previous chapter 4. A B-spline parameterisation is used for

the motion fields (Bousse et al. 2016a), as described in Section 4.5.1. The B-spline

coefficients at gate ` are denoted α` =
(
αX` ,α

Y
` ,α

Z
`

)
and the collection of B-spline

coefficients for all ng gates is denoted θ = (α`)
ng

`=1.

Using the warping operator, the discretised log-likelihood for multiple gates

(Equation 6.3) can be rewritten as:

L(λ,θ,µ) =

ng∑
`=1

nb∑
i=1

gi,` log ḡi(λ,α`,µ)− ḡi(λ,α`,µ) , (6.4)

where ḡi(λ,α`,µ) = τ` a(Wϕ`µ) [HWϕ`λ]i+si,` (whereH is the discretised system

matrix, excluding the attenuation corrector factors, similarly as in Section 5.2.1 of
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Chapter 4) and ai(Wϕ`µ) is the attenuation factor corresponding to the warped

attenuation map Wϕ`µ.

In order to control noise, regularisation has to be added for both the motion

estimation and the image reconstruction, resulting in a penalised log-likelihood:

Φ(λ,θ,µ) , L(λ,θ,µ) + βU(λ) + γV (θ) , (6.5)

where β and γ are the penalty weights associated to the penalty terms U(λ) and

V (θ), respectively. Bousse et al. used quadratic regularisation for U on the activity

image (as in Equation (2.25)) and for V on θ (more details in Section 6.2.3.2).

Regularisation will be further discussed in Section 6.2.3.1. Thus, the discussed JRM

is trying to solve the following optimisation problem:

arg max
λ,θ

Φ(λ,θ,µ) . (6.6)

In other words, the optimisation consists in maximising the Poisson log-likelihood

with respect to λ and θ = (ϕ`)
ng

`=1.

In Jacobson et al. a motion-dependent log-likelihood (Equation (6.5)) is max-

imised for both the activity image and the motion parameters, alternatively, but

neglects any changes in attenuation in the system matrix. The optimisation does

not maximise the log-likelihood directly, but via optimisation transfer. This involves

finding surrogates for Φ(λ,θ,µ) such that maximising the surrogates also maximises

the log-likelihood.

The method in Rezaei et al. (Rezaei et al. 2016) also maximises a motion-

dependent log-likelihood for the activity λ and a set of deformation parameters

(using a different motion parameterisation), but differs mainly in the motion up-

date, which is based on maximum likelihood preconditioned gradient ascent for

transmission reconstruction (MLTR) (also used in maximum likelihood reconstruc-

tion of activity and attenuation (MLAA), see Section 4.3.5). MLTR approximates

the log-likelihood using separable quadratic surrogate functions (using second-order

Taylor’s expansion of the likelihood). This does not necessarily guarantee the like-

lihood monotonicity.

As for the strategy of Bousse et al. , the optimisation maximises directly
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Φ(λ,θ,µ). The gradients with respect to the deformation parameters were an-

alytically obtained and incorporated within a gradient-based optimisation, using

L-BFGS-B (Section 2.3.1). The image reconstruction uses an MCIR version OSEM,

based on the algorithm in De Pierro 1995. More details on the implementation are

provided in the following section 6.2.3.4.

In all of these algorithms, the input single CT image does not need to correspond

to one of the gates of the respiratory signal and the reconstructed λ corresponds

then to the same respiratory state.

6.2.3 Mass-Preserving JRM

As discussed in Chapter 4, respiration causes changes in displacement as well as

in density and radiotracer concentration. However, in the formulation from Bousse

et al. 2016a, the latter two effects are ignored. In this section, we introduce a mass-

preserving version of JRM, where the Jacobian determinant of the transformation

is incorporated within the system model and the regularisation. To the best of the

author’s knowledge, it has never been done before in a joint reconstruction scheme.

At each gate `, the activity and attenuation images are now obtained with

warping operators that take the Jacobian determinant into account, i.e., as λ` =

W̃ϕ`λ and µ` = W̃ϕ`µ (see Equation 4.2). As in Chapter 4, the warping operators

and the Jacobian determinants will be indexed with their B-spline coefficients, i.e.,

∀` ∈ J1, ngK,Wα` ,Wϕ` , W̃α` , W̃ϕ` and |detJ α` | , |detJ ϕ` |.

The gradient of the cost function for the image registration step in Bousse et al.

2016a is modified in a similar way as in Yin et al. 2009, including the analytical

derivatives of |detJ α` | with respect to the B-spline coefficients α`, as detailed in

Section 4.5.5. In particular, the Jacobian matrix J(Wα`f) (where the discretised

image f is either λ or µ) with respect to α` is replaced by:

J(W̃α`f) = diag{|detJ α` |}J(Wα`f) + diag{Wα`f}J(|detJ α` |) (6.7)

where diag{x} is the diagonal matrix generated from a vector x and J(|detJ α` |)

is the Jacobian matrix of |detJ α` | with respect to α`. More details are provided

in Appendix A of Bousse et al. 2016a.
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6.2.3.1 Image and Motion Estimation Regularisation

In Bousse et al. 2016a, quadratic priors were used to regularise both the image

reconstruction and the motion estimation. In this work, other penalties will be

investigated, including edge-preserving penalties.

6.2.3.2 Emission Image Regularisation

Regularisation of image reconstruction is discussed in Section 2.3.2.4. In this chap-

ter, we used two common choices for U(λ) of Equation (6.5):

• A quadratic regularisation on the emission image λ, denoted UQP(λ). This was

previously used in the original publication (Bousse et al. 2016a), and defined

in Equation (2.25).

• An edge-preserving regularisation, here the relative difference penalty URD(λ),

see Equation (2.26).

6.2.3.3 Deformation Regularisation

In this work, we have only considered regularisation for each gate separately. In

that case, V (θ) from Equation (6.5) can be expressed as a sum of penalties over all

the gates ` ∈ J1, ngK:

V (θ) =

ng∑
`=1

R(α`) (6.8)

where R is a penalty on the coefficients α`.

The original regularisation in Bousse et al. 2016a uses the penalty Rdef on the

B-spline parameters of Equation (4.8), defined in Section 4.5.2 (no combination with

RQP or RSTV on |detJ α` |). We denote Vdef(θ) =
∑ng

`=1Rdef(α`).

Additionally, the same regularisation for the motion estimation as in Chapter 4

was utilised here, except that the parameter ξ was chosen as 0.001 when R∗ = RQP

or 0.001ζ when R∗ = RSTV (where ζ is the smoothing scalar in the STV prior). We

will denote VQP and VSTV the regularisation using the QP and the STV penalty on

the Jacobian image, respectively.

6.2.3.4 Summary of JRM Implementation

General Outline :

Standard and mass-preserving JRM, described above, alternate between:
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- Motion Update: maximising the log-likelihood, with a given activity image,

with respect to the B-spline coefficients θ to estimate the deformations be-

tween the reference respiratory state (corresponding to the CT image used to

compute the input attenuation map) and the PET respiratory gates (binned

using a respiratory surrogate signal). The optimisation is performed for each

respiratory gate separately.

- Image Update: given the deformation fields estimated during the previous step,

MCIR is used to obtain λ, either with a modified version of OSEM or BSREM,

implemented in MATLAB using GE projectors and the same subset ordering

as the GE MATLAB reconstruction package (more details in Appendix B.3).

Contrary to Bousse et al. 2016a, in this work, the image is always reinitialised

to 1nv before each reconstruction.

The algorithm is initialised from a gated regularised image reconstruction at end-

expiration (according to the respiratory trace). The first motion estimation is chosen

to have more iterations than following ones (here twice as many). A concise peudo-

code is given in Algorithm 1. A more detailed pseudo-code for standard JRM is

given in Bousse et al. 2016a and Bousse et al. 2016b.

Algorithm 1
Joint Reconstruction of Motion and Activity

Input: µ, gated projection data g
θ(0) ← 0
λ(0) ← Gated image reconstruction from (g1,µ, β)
for r = 1, ...,numJRMIter do
θ(r) ← Motion estimation from (g, µ,θ(r−1),λ(r−1), γ)
OPTIONAL: scatter re-estimation
λ(r) ← MCIR from (g, µ,θ(r), β)

end for
Output: estimated PET image λ̂, B-spline coefficients θ̂

The parameters in Table 6.1 need to be specified for the reconstruction. In this

thesis, JRM will be applied only to TOF data, for which convergence has been shown

to be accelerated in standard JRM compared to non-TOF (Bousse et al. 2016b).

Motion Update :

The penalised log-likelihood Φ(λ,θ,µ) is maximised with respect to θ in the motion

update. Let θ(k) be a current estimate of θ at iteration k. θ(k+1) is obtained by
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Parameter Description

numJRMIter
number of alternations between motion estimation and
image update

numMotionEstimation
maximal number of L-BFGS-B updates for each (gated)
motion estimation

numSubs number of subsets used in image reconstruction

numOSEMIter

number of image reconstruction iterations, when the
modified OSEM from De Pierro 1995 is used for the
reconstruction. When BSREM is used instead, the image
update when the stopping criteria are met (either based on
the number of iterations or median difference between two
updates, as described in Appendix B).

β penalty weight for the image reconstruction

γ penalty weight for the motion estimation

Table 6.1: Main parameters needed for JRM.

performing an (approximate) maximisation along a search direction t(k):

α(k+1) = θ(k) + δ(k)t(k) (6.9)

where δ(k) = arg max
δ≥0

Φ(λ,θ(k) + δt(k),µ) and t(k) is computed with a limited-

memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm (Nocedal

1980). The step length has to satisfy the Wolfe conditions (More et al. 1994),

i.e., guarantying sufficient increase of (6.5). A Fortran implementation (Zhu et al.

1994) was used to compute t and δ? at each motion estimation iteration.

To simplify the notation, dependencies on λ and µ will be omitted in this part.

The expected number of counts at a given gate ` ḡ`(λ,α`,µ) will be written as

ḡ`(α`). The likelihood L(λ,θ,µ) will be denoted L(θ) and J(·) will represent the

Jacobian matrix in α`.

Using the chain rule, the gradient of the log-likelihood in α` is:

∇α`L(θ) = J(ḡ`(α`))
>∇`(ḡ`(α`)) (6.10)

where ∇`(ḡ`(α`)) = g`/ḡ`(α`)− 1Rnc .

The latter is modified with the incorporation of the mass-preserving warping
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operator W̃ instead of the regular warping operator W used in Bousse et al. 2016a:

J(ḡ`(α`)) = −τ` diag{Ha(W̃α`µ)W̃α`λ}GJ(W̃α`µ)

+τ`Ha(W̃α`µ)J(W̃α`λ)
(6.11)

where G ∈ Rnb,nv represents the line integral matrix where an element (i, j) is the

length of intersection of the line connecting the two detectors corresponding to the

bin i with voxel j, Ha(W̃α`µ) is the attenuation-corrected system matrix using

W̃α`µ as attenuation map (as in Bousse et al. 2016a) and ∀f = µ or λ, J(W̃α`f)

is the Jacobian matrix associated to W̃α`f with respect to α`, already expressed

in Equation (6.7).

The gradient ∇Φ, corresponding to the regularised motion estimation step, is

equal to ∇L + ∇V , where ∇L is the concatenation of all subgradients ∇α`L and

∇V is the gradient of V .

Regularised Image Reconstruction :

The image update maximises the motion-dependent penalised log-likelihood (Equa-

tion 6.5), using either:

• The modified Ordered-Subsets Expectation Maximisation scheme from De

Pierro 1995, that will be referred as “Mod-OSEM”, with a quadratic penalty

on the emission image. The update needs therefore as parameters: the num-

ber of Mod-OSEM and motion-compensated Mod-OSEM (“MC-Mod-OSEM”)

iterations numOSEMIter, the number of subsets numSubs and the penalty

weighting factor β.

• Block sequential regularized expectation maximization (BSREM) (Ahn et al.

2003). The standard BSREM reconstruction was also modified to incorporate

the motion-compensated BSREM (“MC-BSREM”). More details on the im-

plementation are given in Appendix B.3. The parameters of the update are

the number of subsets numSubs and the penalty weighting factor β.

JRM Regularisation Summary :

We will consider the following 3 JRM regularisation configurations:

• Reference regularisation: UQP(λ) + Vdef(θ).



6.2. Joint Motion Reconstruction 151

• Smoothing regularisation: UQP(λ) + VQP(θ).

• Edge-preserving regularisation: URD(λ) + VSTV(θ).

For all penalties U and V , the neighbourhood sizes were set to 3 × 3 × 3 (either

in the image grid for U or in the grid of control points for V ). A padding using

nearest values was used for values at the edges of the images.

6.2.4 Method Extensions

In this part, extensions to standard and mass-preserving JRM will be discussed and

assessed on patient data. Firstly, a method directly derived from standard JRM from

Bousse et al. 2016a will be introduced for dynamic PET data. Then, the handling

of multiple bed positions will be discussed for standard and mass-preserving JRM.

6.2.4.1 Dynamic Acquisitions

Background :

It is challenging to adapt correction methods dedicated for static PET imaging to

dynamic PET imaging. For example, if one wants to assess the motion from non-AC

images, one could:

1. Reconstruct each separate dynamic frame at each respiratory gate. Afterwards

standard registration methods could be applied and a mean deformation field

at each gate could be found from all registrations. However such a method

would have the deficiency of using limited number of counts (especially just

after injection of the tracer).

2. Reconstruct a larger number of dynamic frames together to avoid the problem

of low counts and possible missing gates. Another major drawback is that

the contrast between respiratory gated images might be quite different and

registering such images would require careful attention to the cost function

used in the registration, in addition to the general problems linked to non-AC

image registration.

More accurate methods could take into account the noise model of the PET

data, e.g., by estimating the deformations between respiratory gates which would

maximise the log-likelihood at each dynamic frame. Static JRM (from Section 6.2)
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could be used at each frame separately, however as the early frames are very short,

noise is likely to be an issue. This would also be computationally expensive.

More generally, a good motion-compensating method for dynamic PET should

remain relatively simple.

Extensive work has been done for head motion, which is applicable to dynamic

data. Because it is considered rigid, it is possible to use motion tracking (e.g., RPM)

or estimating motion from non-AC images. This is most particularly available for

PET/MR scanners, where multiple MR sequences can be acquired during the PET

acquisition (Gillman et al. 2017).

However, in the lung, correction for respiratory motion in dynamic PET acqui-

sitions is more challenging and few correction techniques exist.

Yu et al. 2016 adapted a method presented for static data in Liu et al. 2011;

Chan et al. 2013 to dynamic data. This work corrects single organ or tumour motion,

assumed to be rigid, by correlating the displacement of its centroid to the respira-

tory surrogate signal. This is justified by the observation of a linear correlation

between the surrogate respiratory signal and the displacement along the superior-

inferior, anterior-posterior and left-right axes. The centroids are determined using

a semi-automatic segmentation on gated AC PET images. Contrary to standard

MCIR, introduced in Section 4.3.4, the motion model deforms the system matrix

instead of the emission and/or attenuation images. Because of rapid changes within

the radiotracer distribution, the beginning of the dynamic acquisition is skipped to

construct the correlation (first three minutes). Although providing good results for

tumour and kidney studies, as the motion is assumed rigid, the method cannot be

translated to diffuse lung diseases such as IPF. Chan et al. 2018 extended the work

in Yu et al. 2016 to respiratory motion correction, by allowing non-rigid (B-spline

parameterised) motion in the method.

Proposed Method :

Similarly to Yu et al. 2016 and Chan et al. 2018, we assume that the data can be

gated according to a surrogate signal, where the deformation between the gates does

not depend on time. We can then first estimate the motion and subsequently tracer

kinetics.

The listmode data from the entire dynamic acquisition is binned into
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respiratory-gated dynamic PET sinograms g = {gm` }(`,m)∈J1,ngK×J1,nfK (where ng

denotes the number of gates and nf the number of time frames) gm` , each following

a Poisson distribution:

∀(`,m) ∈ J1, ngK× J1, nfK, gm` ∼ Poisson(ḡm` (λm, ϕ`,µ)) ,

where ḡm` is the expected number of counts at gate ` and frame m, whose value at

detection bin i ∈ J1, nbK is:

[ ḡm` (λm, ϕ`,µ) ]i = τ`,m ai(Wϕ`µ)HiWϕ`λ
m + si,`,m ,

which depends on the activity image λm at a time frame m, the attenuation image

µ and ϕ` a deformation field corresponding to the gate `. Wϕ` is the (standard)

warping operator defined by the deformation ϕ`, τ`,m is the gate/frame duration,

ai(Wϕ`µ) is the attenuation term along the line of response corresponding to the

bin i and Hi is the detection bin system response and si,`,m is the background term.

Note that in this model λm and µ are affected by the same motion and that the

warping operator is not mass-preserving (the mass-preserving model for patient data

is only used in the present work in Section 6.4.3). If we assume that the changes

in radioactivity distribution between all gates are negligible within each time frame,

then the optimisation problem from Equation (6.6) can be extended to:

({
λ̂1, . . . , λ̂m

}
, ϕ̂
)
∈ arg max

{λ1,...,λm},ϕ

∑
m

Φm(λm,ϕ,µ) . (6.12)

Solving Problem (6.12) is however computationally expensive. We therefore

propose a more tractable method: the gated data are summed over the frame index

m, forming g` =
∑nf

m=mini
gm` . We denote ϕ = {ϕ`}`∈J1,ngK. The method uses the

implementation of JRM in Bousse et al. 2016a as for a static acquisition, resulting

in the following optimisation problem:

(λ̂, ϕ̂) ∈ arg max
λ,ϕ

Φ(λ,ϕ,µ) , (6.13)

where Φ(λ,ϕ,µ) is the (penalised) log-likelihood, using a B-spline parameterisation

of the deformation fields. Here λ̂ is an time-averaged motion-compensated image,
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Figure 6.1: Overview of the method

which will not be used in the next step as at this stage we are only interested in the

estimated motion ϕ̂.

The final step is using standard MCIR (MC-Mod-OSEM, Section 6.2.3.4) at

each dynamic frame from the previously estimated deformation fields.

A summary of the proposed method is shown in Figure 6.1.

In Yu et al. 2016 and Chan et al. 2018, the motion estimation was based on

pre-reconstructed images, which are affected by misalignment between PET gates

and µ map(s) (even in the ideal case of CINE-CT data). The novelty of our method

relies in optimising jointly the activity image and the deformation—which should

contribute to fewer errors linked to the use of a wrong attenuation map in the

reconstruction.

The main caveat about optimising the time-averaged λ̂ image is when discrepan-

cies exist in the radioactivity between respiratory gates: in this case Equations (6.12)

and (6.13) are not strictly valid anymore. In practice, in the region of the heart or

major blood vessels (e.g., aorta), rapid concentration changes are observed just after

injection, therefore the assumption that the radioactivity distribution is the same

for all gates at a given dynamic frame does not hold in the early part of a dynamic

lung PET acquisition. It is only (approximately) true for either short time frames

(compared to the kinetics) or when the radioactivity concentration is almost sta-

ble, otherwise this could induce some motion mis-estimation, as JRM could try to

compensate for the discrepancies by warping.

To investigate this, in the following, the proposed method will be assessed both

when using the entire acquisition and when using the later part of the acquisition

only (skipping 1 min of the dynamic acquisition for the motion estimation).
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6.2.4.2 Multi-Bed Position Handling for Static Acquisitions

For most scanners still used in clinical settings, with relatively short axial FOV

(≈ 15 cm, e.g., 15.7 cm for GE PET/CT Discovery 710, Bettinardi et al. 2011), static

PET/CT lung acquisitions often consist of two bed positions (i.e., two consecutive

acquisitions with an overlap), to be able to capture the entire lung. Indeed, the mean

vertical height of the diaphragm (defined as the mean distance from the base of the

vertebra T1 to the diaphragm) is approximately of 23 cm at maximum expansion

(Bellemare et al. 2001). Recent scanners with longer axial FOV should alleviate the

need of using two bed positions for thorax acquisitions. For example, the recent

Siemens Biograph Vision PET/CT has an axial FOV of 25.6 cm (Van Sluis et al.

2019) while for the GE Discovery MI with 5 rings it is 25 cm. However, such data

were not available for the current study.

JRM can be used separately for each bed position. This is however an issue

for joint reconstruction if the attenuation map is of the same dimension as the PET

image during the optimisation. For example, if the CTAC acquisition corresponds

to an end-expiration state, the JRM optimisation will:

• for the bed position corresponding to the apex of the lungs, push some of the

attenuation map outside of the axial FOV for the other respiratory gates. This

should not be an issue if the control grid is large enough.

• for the bed position corresponding to the lower part of the lungs, try to warp

voxels from outside the FOV into the FOV. However, a single bed position

implementation of JRM does not have access to the corresponding µ values.

This could be an important issue, where the optimisation might fail at the

edges of the axial FOV.

Several possibilities can be investigated to handle multi-bed positions:

- Ideal solution: optimisation of all bed positions in the same motion estimation.

The joint reconstruction would therefore lead to the reconstruction of an image

and the estimation of the deformation for the entire axial field of view (for all

bed positions).

This however requires careful modifications to take into account the differ-

ences in sensitivity and decay factors in the overlap between bed positions.
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In addition, for a 2-bed position acquisition, the optimisation problem would

require approximately twice as much memory, which might not be viable on

the UCL systems (≈ 64 Gb would be required for patient data in the current

implementation).

- Intermediate solution: use an attenuation map which has larger dimensions

than the activity image, so the issues of warping nonexistent attenuation val-

ues almost disappear if we assume there is not much motion outside of the

entire axial FOV corresponding to the two bed positions. This solution was

not adopted as it would require substantial modifications to the current im-

plementation.

- Acceptable solution: The presented joint reconstruction can be used separately

at each bed position. With the estimated deformations, an average displace-

ment field can then be created corresponding to the entire axial field of view

of the two bed positions (accounting for differences in sensitivity and decay

within overlaps of the two bed positions). Then, a pseudo 4D-CT is cre-

ated from the two sets of displacement fields (which are averaged within the

overlap). If we denote DC
1 and DC

2 the displacement matrices along C-axis

(where C ∈ {X,Y, Z}) corresponding only to voxels in the overlap between

the two bed positions, the averaged displacement matrix in the overlap can be

expressed as:

D̄C =
w1D

C
1 + w2D

C
2

w1 + w2
,

where w1 and w2 are weighting factors accounting for acquisition durations,

decay factors and slice sensitivies. Finally, standard MCIRs from known de-

formation are used for the two bed positions, using the 4D µ maps instead of

warping a single µ map. There might still be an issue within the overlap (if the

motion estimation failed for one of the bed positions) and should be assessed

carefully.

The latter solution was the one used in this thesis. Warped µ maps and Jacobian

determinant images from the two bed positions will be consolidated.



6.3. Static PET JRM: XCAT Lung Simulations 157

0 5,000

Bq·mL−1

0 0.12

cm−1

Figure 6.2: Modified XCAT images used for the simulation: emission images (left) and
attenuation images (right) from end-inspiration (top) to end-expiration (right)

6.3 Static PET JRM: XCAT Lung Simulations

6.3.1 Data Generation

Five sets of lung XCAT images were generated, corresponding to five different res-

piratory gates (ng = 5). The corresponding activity and attenuation images are de-

noted {λ`}`∈J1,ngK and {µ`}`∈J1,ngK, respectively (where ` = 1 is the end-inspiration

and ` = 5 is the end-expiration), mimicking displacement gating. The values in the

activity images correspond to an FDG acquisition 60-min post-injection.

Additionally, to simulate density changes in lungs obeying mass preservation,

the emission and density values were changed uniformly in the lung, depending on

the total volume change compared to the mid-expiration state (gate 3). The changes

in density and activity concentration were as follows: gate 1: −11%, gate 2: −6.9%,

gate 3: 0%, gate 4: +8.2%, gate 5: +11.5%. The resulting images are shown in

Figure 6.2.

Once the activity and activity images created, the gated projection data were

obtained via forward projection of the activity images and separate attenuation

correction factors were computed for each gate. Scatters and randoms were added

with a level similar to a usual lung acquisition (about 60% of the total number

of detected counts). In absence of realistic single scatter simulation (SSS) from
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the XCAT µ maps, the true gated background sinograms were considered uniform

and the same for all gates. Poisson noise was added to the projection data in

the results presented (number of prompts ≈ 3 · 107), to simulate the acquisitions

from the Coagulation Study cohort (injected activity 177 MBq, weight 75 kg, total

acquisition duration 250 s). A GE Discovery 710 scanner geometry was used to

simulate single bed position data (using GE proprietary projectors callable in a

MATLAB package). The background term does not depend on the respiratory gate

in the simulation, unlike for patient data, therefore it is accurately known within

the entire joint reconstruction.

In the following XCAT simulations, numMotionEstimation (Table 6.1) was set

to 30 at the first JRM iteration, and then set to 15. For the image reconstruction,

8 subsets were used. All data were reconstructed with GE proprietary projectors in

MATLAB.

6.3.2 Regularisation Selection

In this part, the input attenuation image corresponds to the end-expiration state µ5,

to avoid warping voxels from outside of the FOV. This also corresponds to the best

case scenario where the gated reconstruction used to initialise the activity image at

the start of JRM is already aligned with the µ map. A total of 3 numJRMIter (Ta-

ble 6.1) were used. All regularisation configurations summarised in Section 6.2.3.4

were tested in this part (i.e., “reference”, “smoothing” and “edge-preserving” regu-

larisation). For the standard and smoothing regularisation, i.e., when Mod-OSEM

or MC-Mod-OSEM image reconstructions were used, 6 iterations were chosen. The

penalty weights corresponding to the image reconstruction (either QP or RD) are

considered fixed in these simulations and were tuned visually to achieve a satisfactory

overall image quality.

6.3.2.1 Noise Realisations

The two JRM models are tested with the regularising penalties described in Sec-

tion 6.2.3.1. For each penalty configuration, 5 weights for V (θ) are tested on 30

different noise realisations. For all reconstructions, the background sinograms—

considered uniform—are known accurately during the entire reconstruction.

The minimal and maximal weights of the motion estimation step for each con-

figuration were determined approximately using preliminary tuning, to correspond



6.3. Static PET JRM: XCAT Lung Simulations 159

to weak regularisation and strong regularisation, respectively.

6.3.2.2 Methodology

The image variance and squared bias in all attenuation images and only in the lung

were studied to select the best regularisation configuration for each model and to

compare the two models. Because of the differences in the image reconstruction

algorithm used, no measure was computed on the activity images. The attenuation

image squared bias, using gate-dependent ROIs Vg, is given as:

Bias2 =
1

ng

1

K

ng∑
g=1

1

|Vg|
∑
j∈Vg

(
K∑
κ=1

[
µ[κ]
g

]
j
− [µg]j

)2

, (6.14)

and the attenuation image variance as:

Var =
1

ng

1

K − 1

ng∑
g=1

1

|Vg|
∑
j∈Vg

K∑
κ=1

([
µ[κ]
g

]
j
−mj(µg)

)2

, (6.15)

where |Vg| is the number of voxels in Vg (here ∀g Vg is either the entire image or the

gate-dependent XCAT lung mask) and

mj(µg) =
1

K

K∑
κ=1

[
µ[κ]
g

]
j

and K = 30, µ
[κ]
g is the estimated µ at a respiratory gate g and at the κ-th noise

realisation.

These measures of variances and squared biases were used to assess the best

regularisation configuration (using a scatter plot), for each model. The regularisation

is then adapted to patient data.

Due to difference in resolution effects between the simulations and the patient

data (e.g., very sharp edges in the simulated µ map whereas the µ maps for patient

data are preliminary smoothed), we have seen that values of the regularisation pa-

rameters are not directly comparable. For this reason, the regularisation weights

were not tuned.

In addition to the bias-variance study, the different JRM variants will be as-

sessed from reconstructions using intermediate weights of each regularisation config-

uration (corresponding to only one of the 30 noise realisations, randomly selected).
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Figure 6.3: Tradeoff between variance and the (squared) bias in the µ images, in (a) the
entire image and in (b) the lung only, for standard JRM and different regular-
isation configurations (legend labels: (1) reference, (2) smoothing, (3) edge-
preserving, as summarised in 6.2.3.4.
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Figure 6.4: Coronal views of (d) the true activity image λ? and the motion-compensated
images using either (a) the reference regularisation λref , (b) the smoothing
regularisation λsm or (c) the edge-preserving regularisation λpr, as summarised
in 6.2.3.4).

The reconstructed activity images λ and the warped attenuation images Wϕ`µ will

be compared to true activity and attenuation images. The estimated Jacobian de-

terminant images will also be validated against simulated density and activity dis-

tribution changes.

6.3.2.3 Results

Standard JRM :

The results of the tradeoff study (i.e., comparing variances and squared biases in

the µ images) are presented as scatter plots in Figure 6.3. Overall, the different

regularisation schemes achieve similar results for both image variances and biases,

even though the edge-preserving results show a slight improvement.

Figure 6.4 shows the reconstructed activity images compared to the true activity

image (using intermediate penalty weights for the motion estimation). Differences

between the reconstructed images and the true image—outside of noise—are not

conspicuous: despite the model inconsistencies (by construction of the simulated
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Figure 6.5: Coronal views of the difference images between the true attenuation map and
the warped end-expiration attenuation map, for all respiratory gates, using
standard JRM deformation fields obtained with the regularisation configu-
rations introduced in 6.2.3.4: reference (left), smoothing (centre) and edge-
preserving (right) regularisation.

data), standard JRM seems to have succeeded in reconstructing an accurate motion-

compensated image. This is confirmed from the mean relative errors in the true lung

mask (reference: true activity image): −3.5% for the reference regularisation, −2.9%

for the smoothing regularisation and −0.4% for the edge-preserving regularisation.

Now, if we visually compare the warped µ-maps for all the respiratory gates

against the true µ-maps (Figure 6.5) and the Jacobian determinant images against

the true density and radioactivity concentration changes (Figure 6.6, it becomes

evident that, although the final activity image seems adequate for these XCAT

simulated data, JRM did not manage to find deformation fields resulting in Jacobian

determinant images which are close to the changes, especially near the base of the

lungs, e.g., in the liver.

Mass-Preserving JRM :

The scatter plots showing the image variances versus the squared biases in the

warped µ maps are shown in Figure 6.7. Overall and in the lung, the edge-preserving

regularisation achieves lower biases than both smoothing and reference regularisation
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Figure 6.6: Coronal views of the Jacobian determinant images, at each respiratory gate,
computed from the deformation fields estimated using standard JRM and ei-
ther the reference (1st column), the smoothing (2nd column) or the edge-
preserving (3rd column) regularisation, compared to the ground-truth (4th
column).
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Figure 6.7: Tradeoff between variance and the (squared) bias in the µ images, in (a) the
entire image and in (b) the lung only, for mass-preserving JRM and different
regularisation configurations (legend labels: (1) reference, (2) smoothing, (3)
edge-preserving, as summarised in 6.2.3.4).

configurations. The variances are however quite similar to the reference regularisa-

tion.

The reconstructed activity images in Figure 6.8 are very similar to those in

Figure 6.4, i.e., for these simulated data, we do not see clear benefits of using the

mass-preserving model in JRM. The mean relative errors in the lung mask are close

to the ones of the standard JRM: −2.8% for the reference regularisation, −2.8%

for the smoothing regularisation and +0.4% for the edge-preserving regularisation.
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Figure 6.8: Coronal views of (d) the true activity image λ? and the motion-compensated
images using either (a) the reference regularisation λref , (b) the smoothing
regularisation λsm or (c) the edge-preserving regularisation λpr, as summarised
in 6.2.3.4.
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Figure 6.9: Coronal views of the difference images between the true attenuation map and
the warped end-expiration attenuation map, for all respiratory gates, using
mass-preserving JRM deformation fields obtained with the regularisation con-
figurations introduced in 6.2.3.4: reference (left), smoothing (centre) and edge-
preserving (right) regularisation.

However, when comparing the deformation fields via the differences between the

warped and the true µ maps (Figure 6.9), we can observe that mass-preserving

JRM decreases errors in the µ maps. This can also be seen in Figure 6.10, where

the Jacobian determinant maps are visually closer to true changes (as constructed

in the simulation), even though they do not match completely.

Standard JRM vs Mass-Preserving JRM :

The results for the two different JRM models (using edge-preserving regularisation)

were compared.
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Figure 6.10: Coronal views of the Jacobian determinant images, at each respiratory gate,
computed from the deformation fields estimated using mass-preserving JRM
and either the reference (1st column), the smoothing (2nd column) or the
edge-preserving (3rd column) regularisation, compared to the ground-truth
(4th column).
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Figure 6.11: Tradeoff between variance and the (squared) bias in the µ images, in (a) the
entire image and in (b) the lung only, between the two JRM models, using
an edge-preserving JRM regularisation.

As can be observed in Figure 6.11, in the lung, the bias at matched variance

is considerably lower for mass-preserving JRM, whereas this is not the case in the

entire image.

6.3.3 Influence of Initialisation

In this part, the same XCAT phantom was used for five different input µ maps,

corresponding to the five µ maps from the XCAT simulation. The same noise seed

and reconstruction parameters were utilised for these different initial µ maps, with
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10 main JRM iterations (numJRMIter).

In all simulations, the initial gated reconstruction (see Algorithm 1) is performed

using the end-expiration data, as it will also be the case for the patient data. This

means that—apart from the case where the input µ map is the end-expiration map—

the initial λ image presents motion artefacts.

We show the impact of the initial µ map by plotting the mean value in the

lung of the Jacobian determinant image over the 10 iterations, at all gates. We

note that for the same respiratory gate, the mean values—depending on the input

µ map—should not converge to the same value, since the Jacobian determinant is a

measure of relative change with respect to the initial µ map. The plots are displayed

in Figure 6.12. Plots show that the convergence rate highly depends on the input µ

map.

The mean value of the Jacobian determinant in the lung for the gate corre-

sponding to the input µ map is particularly of interest: the value should indeed

converge to ≈ 1 in all cases. In the Figure 6.12f, we can observe that the “worse”

the initial gated reconstruction used in JRM is (i.e., the more misaligned with the

end-expiration gate the µ map is), the slower the convergence. The reasoning behind

this is that when the mass-preserving model is used, in the motion estimation step,

the Jacobian determinant can compensate not only for motion but also for the error

in the activity image (which is warped). This is particularly visible when iterating

only once mass-preserving JRM, where the estimated Jacobian determinant images

reflect largely the errors in the preliminary gated reconstruction (results not shown

here).

From this simulation study, we can conclude that mass-preserving JRM would

highly benefit from a better initialisation of the deformation fields or/and of the

initial activity image.

6.3.4 Influence of Errors in Background Term

Finally, the effect of errors in the background term and most particularly in the

estimate of the scatter sinogram is studied here.

In this part, the input attenuation map corresponds to the end-expiration state,

as in Section 6.3.2 to avoid problems due to initialisation.

The simulated errors in the background sinograms are the following:
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Figure 6.12: Mean Jacobian determinant value in the lung calculated at different respi-
ratory gate (a-e: gate 1 to 5 and f: same gate as input µ map) over the
iterations, depending on the initial µ map: µ1 to µ5 (indices: 1 corresponds
to end-expiration, 5 to end-inspiration and 2, 3 and 4 are intermediary gates).
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Simulation 1st simulation 2nd simulation reference simulation

Entire image 8.755× 10−10 8.741× 10−10 8.736× 10−10

Lung only 1.084× 10−9 1.063× 10−9 1.092× 10−9

Table 6.2: Mean squared errors in the entire image and in the lung only, for the different
simulations.

• 1st simulation – small errors: −3%, −2%, 0%, +2%, +3%, respectively for

gates from end-expiration to end-inspiration.

• 2nd simulation – large errors: −10%, −5%, 0%, +5%, +10%, respectively for

gates from end-expiration to end-inspiration.

The results of these two simulations are compared with a simulation from Sec-

tion 6.3.2, using the same reconstruction parameters (“reference simulation”).

Firstly, the impact of (uniform) errors in the background sinograms is evaluated

using the mean squared error (MSE) in the reconstructed activity image (reference:

the true activity images). The MSE in the entire image and in the lung only are

given in Table 6.2.

Visually the reconstructed activity images are almost identical (outside of dif-

ferences in noise), which confirms the very close numbers found in the table.

Furthermore, the warping was assessed from the estimated Jacobian determi-

nant images. The images were highly similar (not shown here), which is in agreement

with the previous validation.

The results in the section seem to indicate that mass-preserving JRM is not

sensitive to uniform errors in the background sinograms. This will be further tested

with patient data for non-uniform background errors in Section 6.4.3.2.

6.4 Patient Data

6.4.1 Available Data: Coagulation Study Cohort

A total of 11 IPF patients were part of the entire cohort, among whom 2 were control

patients where the acquisition protocol slightly modified (see below). We will refer

as “treatment patients” patients who underwent the anticoagulation treatment and

“control patients” who did not. For each patient, two days of acquisition (we will

refer to each as “substudy”) were performed:

1. Pre-Treatment: In the case of the treatment patients, the anticoagulation
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treatment starts the day after the Pre-Treatment substudy.

2. Post-Treatment: The substudy takes place approximately 3 to 4 weeks after

the Pre-Treatment substudy.

Each substudy comprises two PET scans (both with listmode acquisition enabled),

acquired in the following order:

1. Dynamic Acquisition: The FDG radiotracer is given to the patient just

after the start of the acquisition. The acquisition protocol was different for

the 9 treatment patients and the 2 control patients:

• Treatment patients: a preliminary CTAC acquisition was undergone be-

fore a 14 min dynamic acquisition (12x5 s,12x10 s,6x20 s,5x60 s,2x120 s).

• Control patients: a CINE-CT acquisition was performed before a 25 min

dynamic acquisition (12x5 s,12x10 s,6x20 s,5x60 s,4x120 s,1x300 s,1x240 s).

The 37 first frames coincide with the dynamic frames of the treatment

patients.

2. Static Acquisition: A CTAC acquisition precedes a 2-bed position lung

acquisition (2 min per bed position). The static PET data were acquired ap-

proximately 60 min after the radiotracer injection.

Only data from patients whose respiration was monitored with a Varian RPM system

was used in the following analysis. All patients were instructed to breathe shallowly

during the CTAC and CINE-CT acquisitions.

CTAC and CINE-CT protocols:

• The CTAC image (used for JRM) was reconstructed by the scanner software

from a multislice helical acquisition (slice thickness: 3.75 mm, pitch: 1.375,

voltage: 120 kVp, current: 40 mA, revolution time: 0.8 s).

• The CINE-CT data were acquired using a step-and-shoot (4 bed positions)

technique to cover the lung PET bed position (slice thickness: 5 mm, voltage:

120 kVp, current: 10 mA, revolution time: 0.5 s). The cine duration was set to

one respiratory period of the patient + an additional 1 s.
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Figure 6.13: Counts per second during the first two minutes of a dynamic acquisition for
the two studied patients, (a) Patient 1 and (b) Patient 2.

As part of the Coagulation Study, 11 dynamic acquisitions and 3 static acqui-

sitions were used in this thesis. The patient data in this chapter were reconstructed

using GE proprietary projectors in MATLAB.

6.4.2 Dynamic PET Reconstruction

The main reconstruction parameters (Table 6.1) were the following: numJRMIter =

6, numSubs = 8, numOSEMIter = 6, numMotionEstimation = 20 at the first JRM

iteration, then numMotionEstimation = 10. The penalty weights were approxi-

mately tuned in order to obtain adequate images and registration visually.

6.4.2.1 Skipping Duration for Motion Estimation

Two patient acquisitions were selected and processed using the algorithm presented

in Section 6.2.4.1 using either the entire acquisition or skipping the initial part of

the acquisition for the motion estimation.

In the second case, the skipped duration was estimated from plotting the num-

ber of counts per second in the listmode data for all patients of the Coagulation

Study cohort. The plots for the two studied patients here are shown in Figure 6.13.

For all patients, the count rate varies very quickly at the start of the acquisition but

stabilises after approximately 30 to 40 s (although a small bump in the curves can

usually be identified, corresponding to the first re-circulation of the radiotracer).

The skipped duration was therefore chosen as 1 min, corresponding to the first

12 dynamic frames of the acquisition, as a tradeoff between removing rapid changes

in radiotracer distribution and keeping as many counts as possible.
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Figure 6.14: 1st Patient: Jacobian determinants for all respiratory gates determined from
the entire acquisition (left column) or from a part of the acquisition (middle
column), compared to the warped µ-map at each gate (left column). The blue
and red lines in the warped µ-map images are visual landmarks for motion
assessment.

First patient :

Coronal views of the Jacobian determinant images corresponding to the first patient

are shown in Figure 6.14. Both methods have similar results, although we can

observe that the values of the Jacobian determinant in the ascending aorta are

closer to 1 (as expected), especially for gate 1, when the first minute is skipped.

Second patient :

For the second patient larger discrepancies were observed in some regions, such as

the aorta – see Figure 6.15. A skipped duration of 1 minute might not be enough

for this patient, as we can still distinguish the aorta in the Jacobian determinant

images.

Summary of Results :

From the results presented for the two patients, we can conclude that it is neces-

sary to skip the early part of the dynamic acquisition in order to obtain realistic
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Figure 6.15: 2nd Patient: Jacobian determinants for all respiratory gates determined from
the entire acquisition (left column) or from a part of the acquisition (middle
column), compared to the warped µ-map at each gate (left column). The blue
and red lines in the warped µ-map images are visual landmarks for motion
assessment.

deformation fields. This is similar to Yu et al. 2016; Chan et al. 2018, where they

skipped three minutes of the acquisition. Here we have shown that it is necessary to

skip at least one minute for a standard dynamic FDG acquisition to obtain accurate

motion fields.

Although it is usually necessary to discard the early part of the dynamic ac-

quisition to estimate the motion, we can still apply the motion fields to the frames

which were initially excluded, as we assume the relation between the motion and

the surrogate respiratory signal stays consistent over the entire dynamic acquisition.

Rapid distribution changes between time frames are not a problem anymore for the

second stage using MCIR, since the frames are reconstructed separately.

6.4.2.2 Validation using Residuals of Compartmental Modelling

The 1-tissue compartment model described in Appendix A to obtain blood volume

fractions is used to estimate kinetic parameters from the obtained dynamic MCIR
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a)

b) d)

c) e)

Figure 6.16: a) CT image; residuals of the kinetic model fits from: b) standard OSEM, c)
MCIR OSEM; VB images: c) standard OSEM and d) MCIR OSEM, within
the dilated lung mask. The yellow arrows show increased residuals near the
diaphragm and the blue arrows show lung structures.

reconstructions. The fit was performed on the images corresponding to the first

14 min of the acquisition, i.e., using all images for the treatment patients or the

first 37 images for the control patients (see Section 6.4.1). The “residuals” of the

model fitting in the lung are used to demonstrate the goodness of fit. In continuous

settings, the residual at a voxel i would be given as:

Resi =

∫ t1

t0

(Ci(t)− CCM(t,Ψi))
2 dt (6.16)

where t0 and t1 represent the acquisition start and end times, respectively, Ψi is

the set of estimated kinetic parameters from the compartment model fit at a voxel

i, Ci(t) and CCM(t,Ψi) the measured and estimated concentration at time t given

Ψi, respectively. Since the voxel concentrations Ci are discrete data, the previous

Formula (6.16) becomes in discrete settings:

Resi =

τnf∑
τ=τ1

(
Ciτ − CCM(τ,Ψi)

)2
(6.17)

where τ represents a time frame (τ1 is the first frame, τnf
is the last frame), Ciτ

and CCM(τ,Ψi) are approximates of Ci and CCM(·,Ψi), respectively, over the time

interval defined by τ .

Figure 6.16 shows the residual and the blood volume images, obtained from a

reversible 1-tissue compartment model with either the MCIR OSEM images or the

ungated OSEM images. We observed that the mean residual in the lung was reduced

by 18.7% after motion compensation on average for all acquisitions.
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Figure 6.17: Comparison of warped JRM images and non-AC gated reconstructions, along
a superior-inferior profile: at end-expiration: a) warped JRM, b) non-AC, c)
profiles, and at end-inspiration: d) warped JRM, e) non-AC, f) profiles. The
black arrows show the matched diaphragm locations for the two gates.

The blood volume images also show an improvement for the MCIR images,

where some structures are better delineated (such as blood vessels).

6.4.2.3 Visual Validation against non-AC PET Images

To assess the accuracy of the motion estimation from JRM, non-AC OSEM recon-

structions (6 iterations, 8 subsets) were performed on the respiratory gated data

{g`} (entire dynamic acquisition). The position of the diaphragm is then compared

to its position as given by JRM, warping the JRM-reconstructed average image to

end-expiration and end-inspiration. The visual assessment for one of the patients is

given in Figure 6.17.

6.4.2.4 Visual Validation against CINE-CT Data

A third method was used to validate the method: by comparing to gated CINE-

CT data. As stated in Section 4.2.3, image artefacts are common for reconstructed

gated CT from CINE-CT acquisitions, and it is unlikely that PET and CT gates

match completely, for instance due to motion between the CT and PET acquisitions.

Nevertheless, this comparison can give an idea on how much the lungs dilate extend

during respiration and is often used to assess motion-compensating methods.

For 4 dynamic PET acquisitions (corresponding to the 2 control patients) of

the Coagulation Study cohort, a CINE-CT acquisition was performed before the

radiotracer injection, in place of the standard CTAC acquisition.

Case 1 – Good Alignment between CINE-CT and PET Acquisition :

The warped µ maps correspond closely to the µ maps created from the CINE-CT

acquisition as well as the non-AC images, see Figure 6.18. We can however notice

that the densities at end-inspiration are higher than they should be in the JRM
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Figure 6.18: End-Expiration: a) µ map from CINE-CT, b) non-AC, c) warped µ map;
End-Inspiration: d) µ map from CINE-CT, e) non-AC, f) warped µ map.

a) c)

b) d)

Figure 6.19: Visual artefacts identified on early (a) and b)) and late (c) and d)) frames of
the PET reconstructed images, in axial and coronals views.

warped µ maps. Indeed, the warping did not include the Jacobian determinant of

the deformation fields in this section.

Case 2 – Gross Patient Motion :

One of the patients moved between the CINE-CT and the PET acquisitions (shift of

approximately 1 cm along the right-left direction), producing conspicuous artefacts

on the reconstructed images (ribs/around the heart), which are clearly visible from

the early frames. The re-positioning of the patient was confirmed by the physician

in charge of the acquisition. Figure 6.19 shows an early dynamic frame overlayed

on the CT image (used to derive the attenuation map) and a late dynamic frame,

in both coronal and axial views. The early frame corresponds to ≈ 20 to 25 s after

tracer injection and the late frame to 510 to 570 s after injection.

The presented method mostly realigned the µ map to the PET gates (as com-

pared to the non-AC reconstructions), as shown in Figure 6.20.

6.4.3 Static PET Reconstruction

We determined in Section 6.3 the best type of regularisation for the mass-preserving

JRM (i.e., edge-preserving regularisation). The penalty weights were tuned for pa-
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Figure 6.20: End-Expiration: a) µ map from CINE-CT, b) non-AC, c) warped µ map;
End-Inspiration: d) µ map from CINE-CT, e) non-AC, f) warped µ map.

tient data to obtain Jacobian determinant images visually similar to those of simu-

lated data in Section 6.3. From the validation study, a similar regularisation weight-

ing was used for the standard JRM implementation (i.e., quadratic regularisation

on both the activity image and the deformation parameters).

Three patient datasets from the Coagulation Study cohort were reconstructed

using:

1. Standard JRM (as described in Bousse et al. i.e., using the reference regulari-

sation).

2. Mass-preserving JRM, using edge-preserving regularisation, with average scat-

ter sinogram computed from input attenuation map.

3. Mass-preserving JRM, using edge-preserving regularisation, with re-estimation

of the scatter sinograms at each respiratory gate.

Although results from Section 6.3.3 indicate that a greater number of iterations for

numJRMIter should be needed for the mass-preserving JRM, due to computational

limitations only 4 iterations were used here to obtain preliminary results.

The results were only visually assessed using reconstructed images gated non-

AC reconstructions (OSEM 8 subsets, 6 iterations, 6-mm FWHM 2D Gaussian post-

filter + 1-4-1 weighted z-axis postfilter).

They were not compared against gated AC images, as problems with the MAT-

LAB reconstruction toolbox were found, making the reconstructed images not fully

quantitative (differences between the images reconstructed with the scanner and

those reconstructed with the toolbox). It will be discussed in more detail in the

discussion of this chapter.
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Figure 6.21: (a) Coronal and (b) axial views of a MC-BSREM reconstructed activity image
depicting visual artefacts at the edges of the FOV. The red arrow indicate
the axial slices where the artefact can be seen.

6.4.3.1 Problems linked to MC-BSREM

Block sequential regularized expectation maximization (BSREM) is a penalised

reconstruction using a gradient-based step (see Section 2.3.1.2). Unlike Newton

or quasi-Newton methods, the step size is heuristically fixed for the entire image

to ensure a fast overall convergence while avoiding as much as possible artefacts

due to large step sizes. For motion-compensated BSREM (MC-BSREM, Para-

graph 6.2.3.4), the step size was adapted to also include the number of respiratory

gates (cf. Appendix B.3.2).

However, although BSREM and MC-BSREM did not show any visible problem

on simulated data, “grid” artefacts were present on the reconstructed patient data,

as can be visualised in Figure 6.21.

This issue might be linked to differences in detection sensitivity (which is lower

at the edges of the axial FOV). For this reason, motion estimation using mass-

preserving JRM in this part was impacted. Section 6.4.3.1

6.4.3.2 Gate-Dependent Background Sinograms and Impact for JRM

The scatter sinograms corresponding to end-expiration and end-inspiration gates,

computed using the deformation fields estimated after all JRM iterations are com-

pared to the “rescaled” scatter sinogram, which approximates the scatter sinogram

from ungated data and a given µ map (as described in Section 6.2.1).

The mean relative differences between the estimated gate-dependent and aver-

aged scatter sinograms are given in Table 6.3.

Similarly to the results presented for simulated data in Section 6.3.4, the changes

in the scatter sinograms (and therefore background sinograms) did not have a large

impact on the reconstructed activity image and the estimation of the deformation
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Figure 6.22: Normalised scatter profiles corresponding to one of the patient datasets for
rescaled scatter, end-expiration scatter and end-inspiration scatter, at three
different TOF bins (−3,0,+3, for TOF bins sorted from −5 to +5, cf. Ap-
pendix B), averaging over all views. The normalisation accounted for the
gate durations.

gate 1 – BP 0 gate 1 – BP 1 gate 5 – BP 0 gate 5 – BP 1

Patient 1 −1.33% −1.48% −1.09% −1.24%
Patient 2 −3.27% −3.66% −2.37% −3.92%
Patient 3 −2.65% −1.96% −1.48% −3.15%

Table 6.3: Mean relative differences between the estimated scatted sinograms at end-
inspiration and end-expiration and the rescaled scatter sinogram, using a gate-
specific rescaling factor. In the table, gate 1 indicates end-expiration, gate 5
end-inspiration. BP 0 corresponds to the lower-thorax bed position and BP 1
the upper-thorax bed position.

fields. An example is provided in Figure 6.23 for an upper-chest acquisition, showing

relative differences mostly under 5%.

λ1 λ2 λ2 − λ1
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Figure 6.23: Coronal views of the activity images λ1 and λ2 reconstructed with mass-
preserving JRM, either (a) with re-estimation of gate-dependent scatter sino-
grams or (b) using rescaled scatter sinograms, respectively, and of (c) the
difference image λ2 − λ1.
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Figure 6.24: Coronal views of the consolidated non-AC image (1st column), warped µ
map using deformation fields from standard JRM (2nd column), Jacobian
determinant image from standard JRM (3rd column), either at end-expiration
(1st row) or end-inspiration (2nd row). Visual assessment is helped using a
horizontal purple line. Units for the µ maps and the non-AC images are not
provided as only visual assessment is needed here.

6.4.3.3 Motion Estimation and Jacobian Determinant

We assess the estimation of motion by comparing the warped µ maps against the

non-AC images and by visually analysing the Jacobian determinant images, both

at end-expiration and end-inspiration. All figures in this section show images for

one of the patients, which were “consolidated” (i.e., averaged from separate results

corresponding to the two bed positions). Figure 6.24 shows the results for standard

JRM and Figure 6.25) are the results of mass-preserving JRM (with re-estimation

of the scatter sinogram at each gate).

Both JRM methods manage to obtain realistic deformation fields (diaphragm

at end-expiration is higher than at end-inspiration) and the motion from JRM seems

to follow closely the motion observed in the non-AC images. Visually the warped

µ maps appear similar, but differences in the Jacobian determinant images are con-

spicuous. The Jacobian determinant images obtained from mass-preserving JRM

have unexpected low values in the heart and in the liver for all respiratory gates.

Mass-preserving JRM seems therefore to be more impacted by the problems in the

reconstruction toolbox than standard JRM. For ungated PET data, the MATLAB

toolbox values in the liver were found consistently lower than the values recon-

structed by the scanner software; mass-preserving JRM seems to try and compen-

sate for those problems by tuning the Jacobian determinant values. Results on other

patient datasets (not shown here) show similar results.
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Figure 6.25: Coronal views of the consolidated non-AC image (1st column), warped µ map
using deformation fields from mass-preserving JRM (2nd column), Jacobian
determinant image from mass-preserving JRM (3rd column), either at end-
expiration (1st row) or end-inspiration (2nd row). Visual assessment is helped
using a horizontal purple line. Units for the µ maps and the non-AC images
are not provided as only visual assessment is needed here.

6.5 Conclusion and Discussion

In this chapter, methods based on the implementation of JRM from Bousse et al.

2016a were presented and assessed.

Firstly, a mass-preserving version of JRM was introduced and mathematically

formulated. This model was based on the assumptions that respiratory motion af-

fects both displacement of the tissue and changes in density and activity concentra-

tion, mostly in the lungs. The same approximation for the changes as in Chapter 4

was utilised: the volume changes estimated from the Jacobian determinant of the

deformation.

In this mass-preserving reconstruction algorithm, regularisation is of great im-

portance to be able to obtain both realistic deformation fields and realistic Jacobian

determinant images. The incorporation of the Jacobian determinant in the cost func-

tion otherwise allows JRM to overfit the PET data noise. Similarly as in Chapter 4,

the quadratic regularisation on the deformation parameters is replaced by regulari-

sation applied on the Jacobian determinant images. Following the results from the

registration on patient data in Section 4.6.3.1, standard and mass-preserving versions

of JRM were assessed with different types of regularisation in Section 6.3.2 using

lung XCAT simulated data. Density and activity concentration changes were added

to the XCAT original images, by multiplying by the volume gain or loss between a

given respiratory gate and the mid-expiration gate.
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Mass-preserving JRM has shown promising results for the simulation data, es-

pecially in the lung where, at comparable variance, biases on warped µ maps were

reduced and the estimated maps of density changes (i.e., the Jacobian determinant

images) more representative of the simulated density changes. The reconstructed

activity images from both standard and mass-preserving JRM methods were how-

ever almost identical (for a given regularisation configuration). This means that

despite less accurate motion estimation, standard JRM can reconstruct a motion-

compensated activity representation similar to mass-preserving JRM. The impact of

incorrect initialisation in mass-preserving JRM was also evaluated with such simu-

lations. The study showed that the optimisation will converge slowly when a µ-map

far from the end-expiration is used as input, as it creates quantitative artefacts in

the initial gated activity image. In the motion estimation of mass-preserving JRM,

the incorporation of the Jacobian determinant in the model adds a degree of freedom

such that the errors can be compensated not only by realigning the data, but also

by modifying the image intensity. Mass-preserving JRM is still expected to converge

towards an adequate solution but initial iterations are more impacted by a wrong

initialisation as for standard JRM: this is particularly observable after one or two

iterations of mass-preserving JRM, where the Jacobian determinant images reflect

both motion and AC mismatches. As for uniform errors in the background/scatter

sinograms, they were found to have little impact on the motion estimation and the

final reconstructed image in simulations.

In Section 6.2.4.1, the implementation of JRM for static PET data of Bousse

et al. was first extended to dynamic PET data. The modified method consists

in accumulating the gated projection data corresponding to the different dynamic

frames, in order to estimate the motion during the entire dynamic acquisition.

The standard JRM is then applied to these projection data. While the activity

image—representing the average concentration during the covered dynamic period—

is discarded, the deformation fields obtained are used separately to reconstruct all

dynamic frames. This strategy is similar to the one applied in another motion-

compensating technique (Yu et al. 2016; Chan et al. 2018). We have also skipped

the start of the acquisition, where the radioactivity distribution is rapidly changing,

for the motion estimation: keeping the fast kinetics in the projection data led to
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local problems in the deformation fields. The rate of the initial changes depends

on the injection rate of the radiotracer and blood flow. The duration of the part

to skip can be approximately determined by checking when the count rate starts

to slowly decrease in the listmode data during the entire acquisition. The method

was evaluated on 11 FDG dynamic acquisitions in Section 6.4.2, using three dif-

ferent techniques: (i) comparison of the warped images with non-AC gated images

for general alignment of the lungs, (ii) comparison of the warped µ maps with 4D

CT images created from a CINE-CT acquisition (when available) and (iii) using the

residuals of compartmental modelling applied in the lung. The estimated motion

was visually very consistent with the observed motion from the non-AC and 4D

CT images. This was confirmed with the results from compartmental modelling,

where the mean residual in the lung was reduced by 18.7% on average. The skipped

duration was estimated to 60 s in our dataset. It might however not be sufficient

for other datasets, for example if the radiotracer is administered more slowly or for

different types of radiotracer, with slower kinetics. A possibility would be to apply

the method to different parts of the acquisition, to verify the stability of the results.

The mass-preserving model has not been tested on dynamic JRM, because of

the kinetics involved during the dynamic frames. However, as we concluded that

it was required to remove the very early part of the dynamic acquisition to obtain

realistic deformation fields even without introducing the Jacobian, mass preservation

might be applicable. This would however need more validation. More generally, the

outcome of using mass preservation in the reconstruction of the PET images is

uncertain in the dynamic case. Indeed, mass preservation does not apply for fluids,

including blood, as they are considered (almost) incompressible. Not accounting for

density and activity concentration changes in the reconstruction however affect the

compartmental modelling fit, inducing biases in measurement of kinetic parameters,

as suggested in other work on brain (Mérida et al. 2017; Cabello et al. 2019). This

will need to be investigated in future work, for example reconstructing the (dynamic)

control patient data (from the Coagulation Study cohort) with different initial µ

maps (using gated CINE-CT data).

JRM was then extended to 2-bed lung position acquisitions. Lung PET scans

often need to be acquired in two steps, in order to cover the entire lungs, referred
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as bed positions (i.e., step-and-shoot acquisitions with an axial translation of the

bed). In this case, the current joint reconstruction optimises the two acquisitions

separately. As discussed in Section 6.2.4.2, a better optimisation should however

try and estimate the deformation fields and the activity image corresponding to the

entire scanning axial length. Three patient datasets (static 2-bed position listmode

data), acquired approximately one hour post-injection, were reconstructed with, on

the one hand, the standard JRM approach and, on the other hand, mass-preserving

JRM (either with rescaled average background sinograms or with gated background

sinograms, recomputed from estimated deformation fields). Re-estimating the scat-

ter backgrounds at each respiratory gate had negligible impact on the estimated

motion and image. The motion was assessed only visually against non-AC images,

as bugs in the patient data reconstruction software, impacting image quantification,

were found. A static acquisition from the Coagulation Study cohort was indeed

reconstructed with the current version of the GE reconstruction MATLAB pack-

age using the same TOF OSEM reconstruction parameters as the ones which were

used to reconstruct the data with the scanner reconstruction software. The mean

relative errors in spherical ROIs (radius: 3 mm, volume: 14124.5 mm3) drawn using

ITK-SNAP (Yushkevich et al. 2006) in the right lung, the liver and cardiac region

(using the image reconstructed with the scanner software as reference) were com-

puted as +3.5%, −4.5% and −6.7%, respectively. In addition, a large cubic ROI

(300 × 240 × 180 mm3) was drawn covering most of the patient thorax to investi-

gate the overall impact of the bug on quantification, the mean relative error was of

−2.2%. These measures show that the errors caused by the bugs in the software are

not global but location-dependent. As the overall error in the thorax is relatively

small, the most-likely source is the implementation of the scatter estimation. Using

multiple patient data, the non-TOF scatter sinograms were compared by collaps-

ing all TOF bins from the TOF scatter sinograms together to create a non-TOF

sinogram; the scatter sinogram differences were negligible (less than 0.01%), which

imply that the bug lies either only in the TOF scatter estimation or in both TOF

and non-TOF scatter estimations).

In spite of those problems, all JRM methods managed to recover the general

outline of respiratory motion, where non-AC images were in good agreement with
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warped µ maps, e.g., near the diaphragm. The Jacobian determinant images com-

puted from the deformation fields corresponding to mass-preserving JRM however

contained unexpected values, especially in the cardiac and hepatic areas, most likely

linked to the quantification problems arising from the bugs in the toolbox used.

When fixed, the motion correction methods could be assessed by comparing the

quantification of gated images (selecting the PET respiratory gate which is visually

the closest to the input CT gate). Other techniques could also be used to validate

the output of the joint reconstruction, such as using gated MLAA reconstructions,

using denoising from a convolutional neural network (Hwang et al. 2019a; Hwang et

al. 2019b (this has not been properly validated yet) or from CINE-CT acquisitions.

Although image artefacts are often present in gated CT images and the respiratory

gates between CT and PET might not coincide (Section 4.2.3, Yamamoto et al.

2008), the latter could provide information on the amount of density changes ex-

pected between respiratory gates, such as between end-inhalation and end-expiration

gates.

In this work, standard emission reconstruction algorithms were used to com-

pute the activity images, i.e., OSEM and BSREM. Both algorithms showed however

relatively slow convergence. A more efficient algorithm, such as the fast quasi-

Newton algorithm using L-BFGS-B with preconditioning presented in Tsai et al.

2018b, could have been used to accelerate convergence. BSREM also demonstrated

problems when large step sizes were used, especially at the edges of the axial FOV.

Additionally, the number of iterations for the different steps (image reconstruction,

motion estimation and number of alternations) were not tuned, which could also be

beneficial (Tsai et al. 2018a).

In addition, the current implementation of both standard and mass-preserving

JRM in MATLAB is not optimal and reconstructions run over multiple days on CPU.

On the UCL cluster, a typical motion estimation update for one gate lasts between

7, 000 s to 16, 000 s and a MCIR update using BSREM up to 40, 000 s (leading to each

JRM main update to run for approximately one day). These high figures could be

reduced with more optimal code and the use of GPU-based computation—the pro-

prietary GE software used in this thesis however does not have this functionality, use

single-threaded projectors and cannot be modified. Note that the additional compu-
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tation time due to the addition of the Jacobian determinant in the mass-preserving

JRM was negligible compared to the computation time related to back-projecting

and forward-projecting (including the calculation of warped images). Rewriting the

reconstruction algorithm in a more optimised fashion will be subject of future work.

Finally, the mass-preserving reconstruction method presented in this chapter

could also be extended to PET/MR imaging, provided that the input JRM µ map

is a good representation of the attenuation distribution at a given respiratory state.

Since standard methods used in PET/MR imaging to derive µ maps are often prone

to errors (Lillington et al. 2019), more sophisticated methods would therefore be

required—potential candidates are MLAA or deep learning based µ maps. Standard

JRM methods have been used for these data (e.g., Bousse et al. 2017 uses the same

implementation as in Bousse et al. 2016a, on which our mass-preserving method is

based) and showed that it was also possible to estimate respiratory motion, despite

inaccuracies in the MR-based input µ map. The results from this chapter are in

good agreement with this assessment, since both standard and mass-preserving JRM

methods managed to realign the lungs, although there were issues in the estimated

scatter sinograms and consequently also in the model.



Chapter 7

General Conclusions and Future Work

7.1 Main Conclusions

Idiopathic pulmonary fibrosis (IPF) is a progressive pathology affecting the lungs,

with an increased rigidity of the tissue in the pathological/fibrotic regions due to the

build up of scarring and local remodelling. The breathing of the patient is worsened.

As its aetiology is unknown, great effort is being made to get an understanding of

its progression. PET imaging could be a way to provide physiological information

for IPF. Imaging the lung is however challenging, as the quantitative image quality

suffers from several uncertainties and artefacts. The thorax and abdominal regions

are indeed highly affected by motion, such as the motion caused by respiration.

Furthermore, IPF brings global changes in the lung architecture, especially at the

base of the lungs, which become more rigid and dense; this implies that the resolution

is spatially variant.

In Chapter 3, positron range was investigated in density-varying media, such

as in the fibrotic lung. Indeed, in absence of a dedicated correction method, the

reconstructed PET images do not represent directly the radioactivity distribution

(where the positrons are emitted by the radiotracer), but the distribution of annihi-

lation events per second. Because of the overall lower density of the lung compared

to other organs, positron range is generally larger in the lung and represents a major

difficulty for tracers labelled with high-energy radionuclides, such as 82Rb or 68Ga.

Its effect on the reconstructed PET images is often neglected, as positron range is

typically in the range of a few millimeters or less in common regions of the body,

and is rarely compensated for. Monte Carlo simulations were used in this thesis

to characterise the effect. The results showed that for 18F-FDG PET acquisitions
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in the fibrotic lung, the impact should be minimal on the quantification, especially

if we assume that the low-density regions have lower uptake than high-density re-

gions, due to differences in air fraction (Holman et al. 2015). For a future lung study

involving a tracer labelled with a higher energy radionuclide (such as 68Ga-PSMA

or 82Rb), caution should be taken when analysing measures from the images, if no

correction method is used.

In Chapter 4 another main challenge of PET lung imaging was introduced:

respiratory motion. In healthy patients, the most mobile part of the lung is located

near the diaphragm, which moves approximately 1.5 – 2 cm. When no correction

technique is used, static and dynamic lung PET acquisitions are therefore affected

by this motion, which compromises both image visual quality and quantitative mea-

sures, especially at the base of the lungs. A basic approach is to not use the values

of regions that are too close to the diaphragm. However, as the base of the lungs

usually coincides with the pathological regions of an IPF lung, it might then be

impossible to predict the disease evolution or treatment response for some patients

in early stage of IPF. Aside from the displacement of tissues, the density and the

radiotracer concentration in the lung are also modified by respiration, mainly by

the dilation or expansion of the lungs. Respiratory motion has been discussed in

many studies and different strategies can be used to compensating for it. Nonethe-

less, the density changes occurring during the respiration are rarely accounted for,

as motion compensation is generally used in PET reconstruction for tumour detec-

tion and cancer staging, where the effects of lung compression and extension are

likely to be negligible. However, they cannot be neglected in lung diseases such as

IPF. More generally, the impact of respiratory motion on image reconstruction was

demonstrated in this chapter, using patient data, for both static and dynamic PET

reconstructions. A way to estimate the changes linked to compression and exten-

sion of the lung is by using the Jacobian determinant of deformation fields, which

represents a measure of (local) volume change. When the Jacobian determinant is

included within the optimisation cost function, the estimated deformation fields can

be more accurate. In this chapter, a simple mass-preserving mage registration tech-

nique based on a sum of squared differences (SSD) cost was tested on reconstructed

PET images and on µ maps. Regularisation is needed to avoid overfitting of noise by
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the Jacobian determinant: this was accomplished by smoothing both the Jacobian

image and the deformation fields. Accounting for density or activity concentration

changes showed great improvement in the registered images, compared to standard

SSD registration. The results on µ maps were found visually comparable to those

from a standard registration. This preliminary study demonstrated the feasibility

of using a mass-preserving model to estimate motion, which laid the foundations for

the mass-preserving motion correction technique of Chapter 6.

More generally, model inconsistencies in the reconstruction were discussed in

Chapter 5. We focused on inconsistencies due to attenuation mismatches only (i.e.,

the attenuation map used in the reconstruction is incorrect) in TOF PET reconstruc-

tions. Such mismatches can lead to quantitative errors in the PET reconstructed

images, in both TOF and non-TOF reconstructions. Previous literature predicted

that the use of more accurate time information for TOF leads to improved image

SNR and reduced errors in quantification where the mismatch is (Conti 2011) – we

have however found that when using a standard maximum-likelihood reconstruc-

tion, such as MLEM, the errors do not disappear but are only moved to the rest

of the image. The results showed on the one hand the benefits of TOF reconstruc-

tion over non-TOF reconstruction in the region of a density attenuation mismatch,

i.e., when the density is wrongly estimated in a region of the attenuation map. On

the other hand, in neighbouring regions, the quantification errors are worsened in

the TOF case. These findings are relevant in lung PET/CT imaging, where the

attenuation map is usually known precisely in the aorta (where little motion is ex-

pected at shallow breathing), but not necessarily in the lung (especially when no

mass-preserving motion-compensating strategy is adopted). For example, in com-

partmental modelling, where blood and/or plasma radiotracer concentration are

needed in the fit, the aorta is often used as the location to draw a region of interest

(ROI) and thereby obtain an image-derived input function. TOF PET reconstruc-

tions were expected to improve such compartmental model fits by reducing errors in

the lung; the results presented in sections 5.3.3 and 5.3.4 however demonstrate in-

creased errors in the aorta or ventricles, even when a standard (non-mass-preserving)

motion-compensating method is used to align the attenuation map with the respi-

ratory gate (as the lung density depends on the breathing state). Generally, we
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have shown that even at high TOF time resolution, using an accurate attenuation

map within the PET reconstruction is essential to obtain robust quantitative mea-

sures. When the attenuation map is not known precisely enough (as is usually

the case for lung imaging), the attenuation images would need to be systemati-

cally re-estimated, for example via maximum likelihood reconstruction of activity

and attenuation (MLAA) or by incorporating density and activity concentration

changes (for example using the Jacobian determinant presented in Chapter 4) in the

motion-compensating reconstruction.

Finally, in Chapter 6, two methods for accurate respiratory motion correction

were presented. Both aim to estimate the motion between respiratory gates and

reconstruct an activity image corresponding to a single µ map (computed from a

CT acquisition). They are built upon an existing motion-compensating technique

published in Bousse et al. 2016a.

The first method is dedicated to dynamic PET acquisitions. The latter—

commonly used in the brain—estimate kinetic measures from the variation of the

tracer radiodistribution over time, such as the fractional blood volume (i.e., the frac-

tion of blood per voxel, cf. Appendix A) or other quantitative parameters related

to the underlying biological processes. In the lung, the extraction of such measures

is likely to be useful for increasing the understanding of the disease processes, such

as IPF, even though ultimately static PET would be more desirable for clinical ap-

plication. The use of dynamic PET data in the lung is however more challenging

than in the head because of respiratory and cardiac motion. When 4D anatomical

images (such as CT or MR images) are available, it may be possible to use MCIR

to obtain “motion-less” PET images. However, either this involves high dose to the

patient (when using CINE-CT or similar techniques) or low contrast (when using

standard MR sequences) and these are rarely used. The presented method creates

PET images which are aligned with the input µ map (here derived from a standard

low-dose CTAC acquisition). It is a direct extension of Bousse et al. 2016a; the

difference lies in the use of the sum of gated projection data from dynamic time

frames instead of static PET gated projection data. While the reconstructed activ-

ity image—representing an average motion-compensated activity—can be discarded,

the estimated deformations between the respiratory gates are used afterwards for
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frame-wise MCIR, i.e., reconstructing all dynamic time frame separately.

The second method is aimed at compensating for motion in static PET acqui-

sitions. The standard model in Bousse et al. 2016a is modified to take into account

the density and activity concentration changes occurring during the respiration.

The method uses the mass-preserving model introduced in the Chapter 4 within a

motion-dependent log-likelihood. A validation study was carried out on simulated

data first (using XCAT lung images, in which the density and activity were changed

uniformly within the lung), which compared different types of regularisation for

mass-preserving motion estimation via log-likelihood maximisation. The stability

of the optimisation was also studied by carrying out two simple simulations: one

accounting for uniform errors in the background sinograms and one testing different

input attenuation maps. Whereas errors in background sinograms were found to

have little impact for mass-preserving JRM, a wrong initialisation of the activity

image (and therefore using a µ-map far from end-expiration) demonstrated that the

convergence of JRM is slowed down. This can indeed be explained by the fact that

the mass-preserving model can partly compensate for attenuation corrected (AC)

errors in the preliminary activity image by adjusting the activity voxel values di-

rectly in the Jacobian determinant. For this reason, it would be recommended to

initialise the deformation fields or/and the first activity image from another tech-

nique. Afterwards, standard and mass-preserving JRM were used on static patient

data (using the extension for 2-bed position data presented in Section 6.2.4.2). The

mass-preserving JRM results showed that such a model can globally align structures,

but the current implementation and formulation lead to issues in the Jacobian de-

terminant and near the edges of the axial FOV. While we know that the artefacts

near the edges are caused by the choice of block sequential regularized expectation

maximization (BSREM) to reconstruct the data, the origin of the unexpected val-

ues in the Jacobian determinant images is unknown. They could be due to a wrong

initialisation of the activity image (i.e., when the CTAC used to derive the µ map is

not at end-expiration), which would agree with previous observations on simulated

data. Another possibility is that the current mass-preserving model allows too much

freedom to maximise the penalised log-likelihood in the motion estimation step and

that spatial constraints should be added, to encourage expansion and contraction
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mainly in the lungs. Re-estimating the scatter sinograms at each respiratory gate

did not improve on the results.

7.2 Summary of Contributions

The following points summarise the challenges addressed and highlight the novel

contributions presented in this thesis:

• Positron range was studied in the fibrotic lung and lung tumour using Monte

Carlo simulations. It was shown that the effect leads to an increased fraction

of positron annihilations versus emissions in denser tissues. The demonstrated

effect was found to be of low importance for quantification using 18F-labelled

radiotracers, such as 18F-FDG which is used for the patient data of this thesis.

It is however non-negligible for other radionuclides, such as 68Ga or 82Rb.

• A new regularisation scheme, designed to estimate deformation fields between

respiratory states, was introduced to specifically tackle the problem that mass-

preserving motion estimation is more sensitive to noise.

• The effects of using an incorrect µ map in PET reconstruction were studied in

both non-TOF and TOF reconstructions at increasing TOF resolution, show-

ing the local and global quantification errors produced by the perturbation in

the attenuation. A theoretical prediction was derived for the case of very high

TOF resolution.

• A practically feasible method for respiratory motion correction in dynamic

PET acquisitions was presented, building on previous work for static PET

data. Preliminary evaluation showed the potential for more accurate maps of

kinetic parameters.

• A method previously developed to estimate jointly activity and motion was

modified to incorporate the mass-preserving model. The preliminary results on

simulated data show that the method should provide robust results, however

could be still improved, e.g., by using spatial constraints to encourage dilation

and contraction mostly in the lungs.

Even though this work is focused on IPF, most of the methods presented here

would also be relevant for the study of others diseases, such as chronic obstructive
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pulmonary disease (COPD); the disease also involves a structural change of the lung

parenchyma, including localised density changes compared to healthy lung. How-

ever, the pathological tissues are not located in the same region as in IPF, therefore

proposed techniques, such as motion correction or image registration, should give

different results.

7.3 Future Work

Many parts of the work presented in this thesis could be extended or assessed in a

more detailed manner.

Firstly, the study on positron range in Chapter 3 showed the possible problems

of using high-energy radionuclides to label radiotracers for PET lung analysis, in

the context of studying a spatially-varying pathology such as IPF. An existing com-

pensation method (B. Bai et al. 2003; Alessio and MacDonald 2008; Szirmay-Kalos

et al. 2012; Rahmim et al. 2008; Lehnert et al. 2011; Cal-González et al. 2015) could

potentially be applied in the context of IPF to reduce the bias demonstrated in

Chapter 3. However, apart from when using kernels obtained directly from Monte

Carlo simulations (Lehnert et al. 2011), which is computationally expensive, these

techniques might not be able to handle positron range effect on the PET images with

sufficient precision for IPF or other diffuse lung diseases. Deep learning also could

potentially provide a solution for positron range correction, by learning blurring

kernels from Monte Carlo point source simulations.

In Chapters 4 and 6, the motion was parameterised using cubic B-splines. Al-

though it is a common choice of parametrisation, B-spline motion fields can lead

to issues in registration, such as the deformation being locally non-invertible (i.e.,

the Jacobian determinant can be < 0 in some regions), with possible folding (Chun

et al. 2009). Regularising the Jacobian determinant image in order to keep the

values above 0 is an option to avoid such non-local invertibility, however was not

sufficient (waves in the warped images were observed for patient data, when JRM

was used with such regularisation). An additional regularisation on the B-spline

coefficients had to be added to the regularisation on the Jacobian determinant im-

ages to obtain satisfactory deformation fields. A more complex and computationally

expensive transformation model, such as a fluid material model (Christensen et al.

1996), could be used to ensure one-to-one mapping and smooth deformation fields;



7.3. Future Work 192

it would not allow sliding motion, which might be a problem e.g., near the edges of

the lungs, however the impact should be minimal at PET resolution.

In Chapter 5, model inconsistencies were studied in the context of TOF PET

reconstruction, with a particular focus on errors due attenuation corrected (AC)

mismatches (i.e. incorrect µ map used in the reconstruction). Since recent work

has demonstrated the importance of re-estimating the scatter sinogram in MLAA

(Rezaei et al. 2019), the same study as for the AC mismatch could be carried out

for errors in the background term in TOF reconstruction. In Chapter 6, these

errors were assessed for mass-preserving JRM, where small scale fluctuations due to

respiration in the background sinograms (expected to be < 5%) had little impact

on the estimation of motion and on reconstructed images.

Our evaluation shows that the deformation estimated by the mass-preserving

JRM should be more reliable and realistic in comparison with the standard JRM,

although this needs further validation. Indeed, such a mass-preserving model is

not completely correct as it relies on tissues being fully compressible. However,

blood is considered as mostly incompressible and accounts for at least 8% in the

lung (Table 2.6). Furthermore, the proportion of fluid exchanges might vary among

respiratory states and, more generally, the radiotracer kinetics are not accounted for.

If the method is validated, it could be used to obtain an additional biomarker of IPF,

using the Jacobian determinant to estimate the local compressibility of lung tissue,

as the pathological regions of the lungs are denser and less compressible. Although

this biomarker can already be computed, usually from CT data (Han et al. 2017;

Guo et al. 2017), but at the cost of high radiation exposure to the patient. PET/CT

might provide this information during free breathing, in addition to other measures

derived from the PET data. However the mass-preserving joint reconstruction would

require more validation and fine tuning of regularisation and optimisation scheme.

The evaluation for the mass-preserving JRM for static JRM was preliminary

and needs to be extended for patient data acquisitions. This would however require

quantitative reconstructions for the available patient data—it could be achieved by

either fixing the bug related to scatter correction in the reconstruction software used

in this thesis or obtaining a more recent version compatible with our scanner, the GE

Discovery 710. Another possibility would be the use of other patient datasets from
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a different scanner. In this context, the results from the mass-preserving method

could be further validated—potential methods could use:

• Gated MLAA-based µ maps: if the remaining non-uniqueness in the µ maps

estimated by MLAA can be fixed (Defrise et al. 2012; Rezaei et al. 2019), it

should be possible to compare directly the gated MLAA-based µ maps and

the JRM warped µ maps, for example within large ROIs in the lungs at each

respiratory gate.

• Gated static reconstruction using a single gate µ map: after selecting the

PET respiratory gate which is the closest to the respiratory state of the input

µ map, the JRM recontructed activity image could be validated against the

corresponding gated reconstructed image.

• 4D µ maps from a CINE-CT acquisition: provided the CT respiratory gates

follow closely the PET respiratory gates, the warped µ maps should be directly

comparable to the 4D CT-based µ maps. A similar visual assessment of the

estimated motion as in 6.4.2.4 could be used, although the values in the warped

µ maps could also be validated against the values in the 4D CT-based µ maps

thanks to the mass-preserving model.

• Several JRM results using different µ maps (for example from CTAC and

HRCT acquisitions) as inputs for JRM: assuming the use of identical respira-

tory gating of the PET data, the estimated gated µ and activity images from

JRM should not depend on the input µ map.

• Several JRM results using different respiratory gates of the PET data: the

final reconstructed image should not depend on the gating. When only part

of the PET data is used with mass-preserving JRM (for example only data

close to end-expiration or end-inspiration), the reconstructed activity image

should be comparable to the image which would be reconstructed from the

entire PET acquisition, when it might not be the case for standard JRM.

Generally, the methods presented for JRM in static and dynamic acquisitions—

in Chapter 6—suffered from large computational times and rather slow convergence.

Apart from optimising the implementation, modifications to the algorithm could
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have been made. The activity image reconstruction could be modified to use a

fast quasi-Newton algorithm via L-BFGS-B and preconditioning (Tsai et al. 2018b).

Another way to achieve faster convergence would be to initialise coarsely the de-

formation fields from another method; JRM would therefore tune the deformation

instead of estimating it ex nihilo. Using such an approach, we could hope to realign

the data with a couple iterations and avoid problems due to bad initialisation, as

presented in Section 6.3.3. This will be investigated in future work, via for example

regularised mass-preserving registration (within the activity hull) of the input atten-

uation sinogram to gated MLAA-derived attenuation sinograms (where, according

to Defrise et al. 2012, the latter are estimated up to a constant sinogram). Using

such a method instead of a simpler method (such as non-AC image registration and

selection of the closest PET gate to the input µ map) would eliminate the need of

having an attenuation map aligned or almost aligned with one of the respiratory

gates (in the same way as what JRM does). Very preliminary results on patient

data showed that this could indeed lead to good initialisation for JRM and will be

further evaluated.

The method described for dynamic PET acquisitions assumes that the relation

between the motion and the respiratory signal stays consistent throughout the entire

dynamic acquisition. Such acquisitions are however usually lengthy (sometimes up to

an hour); patient breathing patterns might change during this period. Furthermore,

it should be noted that the method relied on displacement gating from an RPM

respiratory trace, using a reflective marker block placed on the chest/abdomen of

the patient. In the event that the block is not placed in a steady way, it could

change position on the patient, which could result in counts from data from different

respiratory states being binned in the same gate. The longer the acquisition, the

more likely the variation in block position. This means that robustness of respiratory

gating for long dynamic acquisitions and more generally the joint reconstruction

would need to be asserted. It would be possible to use the presented method on

two separate parts of the dynamic data and verify that the deformation fields are

consistent. Additionally, in the method for dynamic data presented in this thesis,

the regularisation configuration was kept the same as in the original paper from

Bousse et al. 2016a, i.e., it uses a quadratic penalty on the deformation parameters
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and on the image values. A more adequate regularisation could have been used so

that a rapid change of radioactivity is not compensated and mis-identified as motion

during the optimisation. A possibility would be to use the Jacobian determinant,

hypothesising that the Jacobian determinant values cannot be too far from 1, e.g.,

by penalising log(detJ ϕ) (for a deformation ϕ), similar to what can be done in

the NiftyReg software (Modat et al. 2010) or the work in Rühaak et al. 2013. This

however requires careful assessment of the penalty weights.

The joint reconstruction method for dynamic data here could easily be modified

for “direct” parametric reconstruction (Meikle et al. 1998; Kamasak et al. 2003). We

could, for example, have developed a method similar to Jiao et al. 2017; the method

is also derived from the same implementation of JRM chosen here and aimed at

correcting for (rigid) head motion. The cost function of the joint reconstruction

is however optimised with respect to kinetic parameters, by the means of basis

functions to express the activity distribution as a function of the kinetic parameters.

Respiratory motion can however not be considered rigid and more motion gates

would need to be considered, which would make such method likely computationally

very expensive. Nonetheless, using the present method, a direct reconstruction could

be performed after the deformation fields were preliminary determined.

Another possibility to improve the deformation fields obtained within JRM from

the methods of Chapter 6 would be to incorporate some “temporal consistencies”

between the respiratory gates, e.g., from temporal regularisation or constraints (Wu

et al. 2013) or by incorporating a realistic motion model (McClelland et al. 2017).

Such changes would however increase the computational time and should be assessed

carefully.

It should be noted that all respiratory signals used in the joint reconstruction

methods in Chapter 6 were derived from an external monitoring device. In order to

make JRM methods more widely used, another possibility would be to use directly

the PET listmode data to derive a surrogate for respiration. Common techniques in

static PET acquisition are PCA (Thielemans et al. 2011; Bertolli et al. 2017), CoM

(Bundschuh et al. 2007) or SAM (Schleyer et al. 2009). Such methods to derive

data-driven signals could potentially be extended to dynamic PET acquisitions,

with careful handling of the preliminary part with rapid kinetics (especially in the
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blood vessels), as in Schleyer et al. 2014.

Finally, a study more in depth of the impact of motion and AC mismatches could

have been carried out for dynamic data reconstruction. The motion-compensating

method for dynamic acquisitions presented in 6 could have been used for a more re-

liable validation of compartmental modelling in the lung as a “test-retest” strategy.

The dynamic acquisitions corresponding to the two control patients of the Coagula-

tion Study (Section 6.4.1) were indeed reconstructed using this strategy and kinetic

modelling was fitted on the images (indirect reconstruction). As the kinetic maps

are automatically aligned with the input attenuation map, it is possible to align the

images using a standard CT registration. However, even when realigned, the results

are dependent on the initial attenuation map used in the reconstruction (respiratory

state and general posture), especially since the mass-preserving warping operator

was not used in this method.

More generally, the question of whether we should use a mass-preserving model

in PET is linked to the measures that we wish to report in clinical or research studies:

should they represent values at end-inspiration, end-expiration, full-inspiration, an

average for free breathing? Values vary during respiration (Holman et al. 2016),

sometimes up to 20%. This impact both stability and repeatability of measures.

Mass-preserving JRM, via warping including such respiratory changes, might have

the premise to answer this open question, e.g., by reporting accurately all measures

at end-expiration.
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Appendix A

Estimating Blood Volume from

Dynamic Studies

This appendix provides additional details on compartmental modelling, which was

introduced in Section 2.3.4. Compartmental modelling is then used for a validation

study on porcine data.

A.1 Time Activity Curves and Input Function

TACs are used to obtain a compartmental model fit. They represent the radiotracer

concentration in a ROI at a specific interval of the acquisition and are obtained

from consecutive measures on the dynamic PET reconstructed images. We can

distinguish between two types of TACs for lung kinetic analysis:

- blood TAC, a curve describing the radiotracer concentration in blood,

- lung TAC, a curve representing the change of concentration for a single voxel

of the image or for a small ROI.

The input function (IF) of the compartmental model can be obtained from

arterial or venous sampling, or more recently from image-derived methods or from

population-based IFs (Gunn et al. 2001). Arterial sampling is considered as the gold

standard for brain imaging to obtain an accurate estimation of the input function,

but it is very invasive, so an increasing number of methods incorporate an IDIF

nowadays. A drawback of IDIFs is that the blood TAC, used to fit the IDIF, is for

the whole blood and not for the plasma, which can reduce the quantitative accuracy.

To be able to capture the initial arrival of the bolus, the early frames of the dynamic
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Figure A.1: Segmentation of the Ascending Aorta (AA) for a pig (see Section A.3.3).
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Figure A.2: AA blood TAC and its respective fit for one of the patients of the Coagulation
Study in the first 2 minutes of the acquisition (see Section 6.4.1).

acquisition must be short (≈ 5 s, Holman 2017). As the number of counts in the

short frames is very low, the reconstructed images are very noisy.

For any studies within the Institute of Nuclear Medicine of University College

Hospital (London, UK), as no arterial sampling is available, IDIFs will be used. The

measured blood TAC is fit to a model (see Feng et al. 1993):

IF(t) = (A1t−A2 −A3)eλ1(t−τ) +A2eλ2(t−τ) +A3eλ3(t−τ) , when t ≥ τ

= 0 , when t < τ
(A.1)

where λ1, λ2, λ3, A1, A2, A3 are fitting constants and τ is a time delay constant.

In this work, the ROIs used to determine the IDIFs are drawn, using the ITK-

SNAP software (Yushkevich et al. 2006), on the Ascending Aorta (AA), as some

studies have shown it to be the most accurate structure to draw blood regions (van

der Weerdt et al. 2001; de Geus-Oei et al. 2006; Holman 2017). An example for a

porcine AA is given in Figure A.1.

The Figure A.2 shows the TAC for a blood ROI situated in the AA, along with

its fit to the predefined model in Equation (A.1).
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Figure A.3: Representation of a 1-Tissue Compartmental Model

A.2 Reversible 1-Tissue Compartmental Model

The 1-tissue compartment model, also referred as 2-compartment model, is a simple

model composed only of the blood/plasma compartment and one tissue compart-

ment, it is represented in Figure A.3. In this work, it will be used to estimate the

fractional blood volume images.

The equation associated to the tissue compartment (compartment 1) is the

following:

dC1

dt
(t) = K1IF(t)− k2C1(t) (A.2)

where K1 is the rate constant for entry of tracer from the plasma to the tissue and

k2 is the rate constant for return of tracer from the tissue to the plasma.

The solution of Equation (A.2) is the following:

C1(t) = K1e−k2t ⊗ IF(t) (A.3)

The concentration of a lung ROI CROI at a time t is given by:

CROI(t) = VB IF(t) + (1− VB)K1e−k2t ⊗ IF(t) (A.4)

where VB represents the (fractional) blood volume.
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A.2.1 Irreversible 2-Tissue Compartmental Model

A representation of the model is given in Figure A.4. For an irreversible model,

k4 = 0.

Figure A.4: Representation of a 2-Tissue Compartmental Model

The equations linked to the irreversible 2-tissue model are the following:

dC1

dt
(t) = K1IF(t)− (k2 + k3)C1(t)

dC2

dt
(t) = k3C1(t)

(A.5)

The solutions of the previous system of equations (A.5) are:

C1(t) = K1e−(k2+k3) t ⊗ IF(t)

C2(t) =
K1k3

k2 + k3

(
1− e−(k2+k3) t

)
⊗ IF(t)

For a lung ROI TAC, we have CROI(t) = VB IF(t) + (1−VB)(C1(t) +C2(t)) i.e.:

CROI(t) = VB IF(t) + (1− VB)
[
K1e−(k2+k3) t +Ki

(
1− e−(k2+k3) t

)]
⊗ IF(t) (A.6)

where Ki = K1k3
k2+k3

represents the radiotracer influx rate from the blood/plasma

compartment to the trapped compartment (Gunn et al. 2001).

This model has been used to estimate KI for FDG in IPF patients, in the hope

it can provide some information on the tissue kinetics and be a biomarker (Holman

2017).
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A.3 Fractional Blood Volume Model

Estimating the fractional blood volume is essential in the lung to obtain the tracer

concentration for the lung tissue only (Section 2.4.2.3). Two methods to estimate

the blood fractions will be discussed in this part:

- The gold standard method, based on carbon monoxide imaging.

- An alternative method, based on compartmental modelling.

A.3.1 Gold Standard

To obtain fractional blood volume images, the gold standard is considered to be

using carbon monoxide (CO) as the active molecule, either labelled with 11C or 15O.

The method is very simple to use and, although tested first for the brain (Grubb Jr

et al. 1978; Martin et al. 1987), can be applied to other parts of the body, such as

the lungs (Rhodes and Hughes 1995).

It relies on the assumption that CO stays bound to haemoglobin during the

whole acquisition (after a brief initial period for equilibration). The CO concentra-

tion is then directly proportional to the amount of blood in a tissue. If we know

the fraction of haemoglobin in blood (“haematocrit”) in the small veins (within the

tissue) and in large veins (in regions which contain only blood, such as the aorta or

one of the ventricles), we can obtain a robust measure of the fractional blood volume

within the region.

At a time t, large enough so that CO is distributed homogeneously, the fractional

blood volume VB can be estimated as:

VB =
Cv(t)

IF(t) ·HCR
(A.7)

where Cv(t) is the CO concentration in the lung at a voxel at time t, and HRC is

the haematocrit ratio (estimated at ≈ 0.9 in the human lungs, Rhodes and Hughes

1995).

The major drawback of using CO imaging to assess fractional blood volume is

the necessity to have a cyclotron in close proximity to the PET scanner because

of the short half-life of the radionuclide. It remains unavailable for most imaging

facilities.



A.3. Fractional Blood Volume Model 207

A.3.2 Alternative Model

The idea of the alternative model is to acquire a dynamic PET acquisition and could

be used for most common tracers, e.g. FDG, to overcome the low availability of CO

imaging. The model corresponds to a 1-tissue reversible compartment model. It is

applied to the early part of the study. It requires to start the PET acquisition just

before injecting the tracer to the patient, to be able to capture the bolus.

The model of Section A.2 is then used to determined VB, taking into account

the variable time delay δt between the IF and a voxel (or small ROI) in the lung

(Holman et al. 2017):

Cv(t) = VB IF(t+ δt) + (1− VB)K1 e−k2t ⊗ IF(t+ δt) (A.8)

The voxel-wise δt is used to take the variability of the radiotracer arrival time

within the blood to the lungs into account (Holman 2017). This model will be

referred as the “alternative model” in the following Section A.3.3.

A.3.3 Validation

Data for six healthy pigs were acquired on a PET scanner for two separate studies:

first a 15O-CO acquisition and then a 18F-FDG dynamic acquisition. The 15O-CO

acquisition was preceded by a transmission scan, to estimate the attenuation map.

The study was with adequate break times in between all parts of the study so that

acquisitions are not affected by the previous ones. The pigs were sedated and ven-

tilated during the whole study to minimise all motion-related problems (Teramoto

et al. 2011).

The methods described in Sections A.3.1 and A.3.2 were used on the recon-

structed images (using the estimated haematocrit ratio 0.9 in the whole human

lungs, Rhodes and Hughes 1995). The results presented here (Emond et al. 2017)

are the fractional blood volume images using a blood TAC drawn on the Ascending

Aorta.

Axial views of the two types of blood volume images can be found in Figure A.5.

Because the reconstructed images were not motion corrected and there was a

long gap between the acquisitions (≈ 3 h), the images were compared on a regional

level, drawing six ellipsoidal ROIs (≈ 1.2 cm3) on different parts of the lungs: 2 in

the upper part of the right and left lungs, 2 in the dorsal base of the right and left
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Figure A.5: Fractional blood volume images computed from the gold standard using 15O-
CO images (left) and from the alternative method using early frames of a
18F-FDG dynamic acquisition (right)

Figure A.6: Scatter plot for the mean fractional blood volume values within the 6 ROIs

lungs and 2 in the ventral base of the right and left lungs.

Figure A.6 shows the scatter plot, along with its respective linear regression line,

for the mean fractional blood volume values within the six ellipsoids (lung ROIs).

The Pearson’s correlation coefficient between the 15O -CO and 18F-FDG VB

estimates was found to be ≈ 0.94. The linear regression (gradient and intercept ap-

proximately 1 and 0 respectively) and correlation coefficient results show the strong

relationship between the blood volume images computed from the 18F-FDG and
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15O-CO dynamic images.

N.B.: The validation study used PET data reconstructed with transmission

scans, therefore the attenuation map was equally affected by motion in the lungs

as FDG data, which is similar to current methods using averaged CT images to

compute the attenuation map (Section 4.3.1). As pointed out in Chapter 5, AC

mismatch could have a large impact on the quantification and therefore needs to

be assessed. More generally, pulmonary compartmental modelling require a careful

validation in human diseased lungs.



Appendix B

Software Development

This appendix briefly describes the main software development performed during

this PhD.

B.1 TOF implementation in STIR

STIR is an open source and freely distributed image reconstruction framework

(Thielemans 2012, http://stir.sourceforge.net). It is widely used by many

research groups around the world and provides analytical and iterative reconstruc-

tion algorithms, for both PET projection data and listmode, as well as dynamic and

motion compensating reconstructions or scatter estimation.

However, at the start of this PhD, TOF data was not supported in STIR. Its

support will be added in an imminent release of the software. Some details of the

implementation (Efthimiou et al. 2018) can be found below, in which I contributed

its projection data support as well as helping with the validation on GATE Monte

Carlo and data from the GE SIGNA PET/MR scanner (Palak et al. 2018; Wadhwa

et al. 2019).

Implementation of Time-of-Flight Projection Data

Introduction

Projection data in the current version of STIR only have 3 spatial dimensions. To

extend the projection data to TOF, a fourth dimension was added, which led to

some changes in several C++ classes of STIR:

- STIR scanners in Scanner can now hold three more parameters: the number

of TOF bins (max num of timing bins), the TOF width in ps (size timing bin)

and the timing resolution of the scanner in ps (timing resolution).

http://stir.sourceforge.net
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- a projection data object can have a fourth dimension (when the scanner is

compatible with TOF), so ProjData and ProjDataInfo were extended to

support it.

- in the calculation of the system matrix in ProjMatrixByBin.

- in the forward-projector ForwardProjectorByBin and back-projectors

BackProjectorByBin.

- several utilities were extended to support TOF (such as lm to projdata to

create projection data from a listmode file, poisson noise to add Poisson noise

to the data and stir math to perform basic operations on images and projection

data)

Note that the reconstruction algorithms were not modified, aside from inserting

extra loops over the TOF dimension.

Validations

To validate the changes within the software, we used both analytical simulations

(forward-projecting an image, including attenuation, using STIR) and Monte Carlo

simulations, using the GATE toolkit (Appendix C). We show results using the scan-

ner characteristics from the GE Discovery PET/CT 690 as an example but other

scanners have already been implemented. This scanner has a TOF resolution of

550 ps, 55 TOF bins of width 89 ps. TOF mashing was applied to reduce the num-

ber of TOF bins to 11 in some of the simulations.

Poisson noise was added in the analytical simulations, at a level comparable to

a real acquisition.

In order to validate the calculation of the TOF system matrix, subset sensitivity

images (backprojection of 1s) were calculated using on the one hand the non-TOF

backprojector and on the other hand several TOF backprojectors (varying timing

resolutions of 300, 400, 500 and 550 ps, with 11 TOF bins, i.e. TOF mashing factor

5). They were then compared and the results showed that the mean difference was

0.0012± 0.0007%, which is negligible. Also, as an additional check we summed the

forward projected data over the TOF dimension to form a non-TOF sinogram. The

difference between the newly created non-TOF sinogram and the original non-TOF

sinogram is also negligible (less than 0.001% for all timing resolutions used).
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To further validate the TOF projection matrix, GATE was used to simulate 12

point sources in different locations. The scanner TOF characteristics were modified

to simulate a close to perfect time resolution (time resolution: 75 ps, 275 TOF

bins of width 17.8 ps). We compared the centre of mass of maximum probability

backprojections of the ROOT data with the location of the point sources, as shown

for two of the point source simulations on the Figure B.1. In all cases, the centre of

mass was placed within the image resolution range of the original position.

Figure B.1: Centre of mass of maximum probability backprojections of the ROOT data
with the location of the point sources.

Forward projection to non-TOF and TOF sinograms (with 5 TOF bins) of an

emission image consisting of an oblique plane, located near the centre of the FOV

(L40xW15xH0.8 cm3), are shown in Figure B.2.

Additional validation on reconstructed images is reported in Efthimiou et al.

2018.

Figure B.2: TOF sinograms of an oblique plane.
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B.2 Utilities for Positron Range Estimation

The positron emission energy spectra for the different radionuclides presented in

Chapter 3 were obtained using Formula (3.3) using Mathematica (Wolfram Research

2017).

Software was written to process the Monte Carlo data (see appendix C). The

emission and annihilation images were obtained using Python 3.6. This includes:

(1) reading coordinates from ROOT/GATE, (2) for all emission events finding the

location of the positron annihilation events and (3) discarding emission events which

did not annihilate.

B.3 Joint Motion Reconstruction

B.3.1 GE Patient Data: GEPETToolbox

Improvement of the TOF code to match as closely as possible non-TOF reconstruc-

tion implementation, with more flexible function calls.

B.3.2 Joint Reconstruction Package: “pm jrm”

This internal MATLAB package was created by Alexandre Bousse for Joint Image

Reconstruction/Motion Estimation (Bousse et al. 2016a) with the aim to improve

the joint reconstruction by including density and activity changes within the motion

estimation and image reconstruction of the joint optimisation, see 6.

Change in system model :

The modifications to the system model described in sections 4.4 and 6.2.3 were added

to the implementation, including addition of C/mex files to compute the Jacobian

matrices and related analytical derivatives. The gradients were validated using finite

differences.

Quantification :

The pre-existing implementation of the joint reconstruction was not quantitative, as

many factors/corrections were not properly or at all taken into account. Therefore,

only studies on tumour delineations were shown in previous publications.

Main code changes: decay correction, normalisation, correct gate times (τi from

Bousse et al. 2016a instead of previously implemented gate fractions (gate time over

total time)) were added to the pre-existing implementation.

The changes were carefully validated using unit tests for both TOF and non-TOF
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reconstructions (using either the entire acquisition or a random sampling to test

the gate times), against the reconstructions from a GE proprietary reconstruction

package.

Reconstructions :

Additionally to the previously implemented De Pierro modified OSEM (De Pierro

1995), block sequential regularized expectation maximization (BSREM), described

in Ahn et al. 2003, was added to the package. The α parameter in the publication

was empirically set to 2. A few considerations were taken into account:

• In the absence of implementation of FBP, one OSEM iteration from pre-

corrected counts is used to obtain the image λini and to compute the number

“t” from Ahn et al. 2003 (used to threshold the negative values in the emis-

sion image after an iteration such that for an image value fj ≤ 0 → fj = t).

We use t = 0.001 maxλini. Additionally, we use an upper threshold set to

T = 2 maxλini.

• Step size at an iteration k: similarly as in Ahn et al. 2003, we chose the step

size as αk = 1
k
15

+1
for standard BSREM reconstruction. For MCIR BSREM

reconstructions, the step size was lowered to avoid issues near the edges of the

field of view: αk = 1
ng

1
k
15

+1
, where ng is the number of respiratory gates.

• Stopping criteria: the reconstruction stops either (i) when reaching a max-

imum number of iterations equal to 300/numSubs (TOF reconstruction) or

1000/numSubs (non-TOF reconstruction), where numSubs is the number of

subsets, or (ii) when the median difference between two updates is lower than

0.1%.

Regularisation :

In addition to the existing quadratic prior, the two additional priors described in

Section 2.3.2.4 were also included in the implementation. All changes were validated

using finite differences.

Scripts for GE Discovery 710 Data :

In the package, scripts were created to automatise entire joint reconstructions used

in this PhD. The main steps are the following:

1. Creation of calibration and background files.
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2. Gating from RPM/PCA and unlisting of the data.

3. Joint reconstruction (TOF or non-TOF).

4. Non-AC and AC reconstruction.

5. Final OSEM reconstructions and writing to DICOM images.

B.4 Compartmental Modelling: “inm-DynamicLung”

This internal MATLAB package (initiated by Holman 2017) was completely refac-

tored (removal of hard-coded scripts to create “generic” flexible functions, which

can be adapted to different studies) and several functionalities were added:

+ Two compartment models: reversible 2-tissue compartment models for FDG

and water imaging (perfusion studies).

+ Computation of blood volume maps from CO maps.

+ Tools to modify/create DICOM images, so that they can be read on GE Ad-

vanced Workstations.

The previous compartment model fitting being unstable, the general fit scheme was

modified:

- The time delay is preliminary fitted to the early part of the scan only (≈ 120 s).

- The previously existing optimisation scheme, using the average radioactivity

per 2D slice to initialise the fit parameters for that specific slice, was replaced.

To favour continuity between the voxel fits, a preliminary fit is performed for

each voxel. A moving mean filter (of size 3×3×3) is applied on the parameter

maps, to initialise the parameters of the final compartment model fit.

- From the preliminary fit, the supposed blood regions are excluded from the

main fit (when the computed blood fractions were computed as more than

0.75).

- Central differences are used in place of forward differences to compute gra-

dient estimates in the fmincon optimisation (for non-linear optimisation as

Equations (A.4) and (A.6)).
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A more complex optimisation scheme could be used, ideally using 3D fits with spatial

regularisation for continuous maps, however this was out of scope for this PhD.



Appendix C

GATE Settings and Database

GATE is an open-source software package, developed by the OpenGATE collabora-

tion (http://www.opengatecollaboration.org), dedicated to realistic simulations

in medical imaging and radiotherapy, and is often used in PET simulations (Jan et

al. 2004).

A “material” in GATE is meant to describe all the types of tissues in a body,

such as the lung, the blood, the liver, etc. Each material is represented by its

name, its mass density in g.cm−3 and the atoms comprising it, as well as their

fraction. GATE is released with a default material database, however this needed to

be modified to include new materials for our simulations in Chapter 3, to represent

different densities in the lung. They are defined below.

C.1 Lung Tumour Material in GATE

LungTumour : d=1.028 g/cm3 ; n=8

+e l : name=Hydrogen ; f =0.106

+e l : name=Carbon ; f =0.284

+e l : name=Nitrogen ; f =0.026

+e l : name=Oxygen ; f =0.578

+e l : name=Phosphor ; f =0.001

+e l : name=Su l fu r ; f =0.002

+e l : name=Chlor ine ; f =0.002

+e l : name=Potassium ; f =0.001

C.2 Fibrotic Lung Materials in GATE

LungTissue : d=0.89 g/cm3 ; n=9

+e l : name=Hydrogen ; f =0.106

http://www.opengatecollaboration.org
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+e l : name=Carbon ; f =0.096

+e l : name=Nitrogen ; f =0.019

+e l : name=Oxygen ; f =0.765

+e l : name=Sodium ; f =0.003

+e l : name=Phosphor ; f =0.003

+e l : name=Su l fu r ; f =0.004

+e l : name=Chlor ine ; f =0.003

+e l : name=Potassium ; f =0.001

Lung−800: d=0.26 g/cm3 ; n=3

+mat : name=Air ; f =0.74

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.1

Lung−750: d=0.289 g/cm3 ; n=3

+mat : name=Air ; f =0.7067

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.1333

Lung−700: d=0.319 g/cm3 ; n=3

+mat : name=Air ; f =0.6734

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.1666

Lung−650: d=0.348 g/cm3 ; n=3

+mat : name=Air ; f =0.6401

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.1999

Lung−600: d=0.378 g/cm3 ; n=3

+mat : name=Air ; f =0.6068

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.2332

Lung−550: d=0.408 g/cm3 ; n=3

+mat : name=Air ; f =0.5735

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.2665

Lung−500: d=0.437 g/cm3 ; n=3

+mat : name=Air ; f =0.5402

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.2998

Lung−450: d=0.467 g/cm3 ; n=3

+mat : name=Air ; f =0.5069

+mat : name=Blood ; f =0.16
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+mat : name=LungTissue ; f =0.3331

Lung−400: d=0.496 g/cm3 ; n=3

+mat : name=Air ; f =0.4736

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.3664

Lung−350: d=0.526 g/cm3 ; n=3

+mat : name=Air ; f =0.4403

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.3997

Lung−300: d=0.555 g/cm3 ; n=3

+mat : name=Air ; f =0.407

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.433

Lung−250: d=0.585 g/cm3 ; n=3

+mat : name=Air ; f =0.3737

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.4663

Lung−200: d=0.615 g/cm3 ; n=3

+mat : name=Air ; f =0.34

+mat : name=Blood ; f =0.16

+mat : name=LungTissue ; f =0.5
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