138 research outputs found

    (k,q)-Compressed Sensing for dMRI with Joint Spatial-Angular Sparsity Prior

    Full text link
    Advanced diffusion magnetic resonance imaging (dMRI) techniques, like diffusion spectrum imaging (DSI) and high angular resolution diffusion imaging (HARDI), remain underutilized compared to diffusion tensor imaging because the scan times needed to produce accurate estimations of fiber orientation are significantly longer. To accelerate DSI and HARDI, recent methods from compressed sensing (CS) exploit a sparse underlying representation of the data in the spatial and angular domains to undersample in the respective k- and q-spaces. State-of-the-art frameworks, however, impose sparsity in the spatial and angular domains separately and involve the sum of the corresponding sparse regularizers. In contrast, we propose a unified (k,q)-CS formulation which imposes sparsity jointly in the spatial-angular domain to further increase sparsity of dMRI signals and reduce the required subsampling rate. To efficiently solve this large-scale global reconstruction problem, we introduce a novel adaptation of the FISTA algorithm that exploits dictionary separability. We show on phantom and real HARDI data that our approach achieves significantly more accurate signal reconstructions than the state of the art while sampling only 2-4% of the (k,q)-space, allowing for the potential of new levels of dMRI acceleration.Comment: To be published in the 2017 Computational Diffusion MRI Workshop of MICCA

    Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors

    Full text link
    High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex fiber configurations, albeit at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on a kq-space under-sampling scheme to enable accelerated acquisitions. The inverse problem for reconstruction of the fiber orientation distribution (FOD) is regularized by a structured sparsity prior promoting simultaneously voxelwise sparsity and spatial smoothness of fiber orientation. Prior knowledge of the spatial distribution of white matter, gray matter and cerebrospinal fluid is also assumed. A minimization problem is formulated and solved via a forward-backward convex optimization algorithmic structure. Simulations and real data analysis suggest that accurate FOD mapping can be achieved from severe kq-space under-sampling regimes, potentially enabling high spatio-angular dMRI in the clinical setting.Comment: 10 pages, 5 figures, Supplementary Material

    Fast diffusion MRI based on sparse acquisition and reconstruction for long-term population imaging

    Get PDF
    Diffusion weighted magnetic resonance imaging (dMRI) is a unique MRI modality to probe the diffusive molecular transport in biological tissue. Due to its noninvasiveness and its ability to investigate the living human brain at submillimeter scale, dMRI is frequently performed in clinical and biomedical research to study the brain’s complex microstructural architecture. Over the last decades large prospective cohort studies have been set up with the aim to gain new insights into the development and progression of brain diseases across the life span and to discover biomarkers for disease prediction and potentially prevention. To allow for diverse brain imaging using different MRI modalities, stringent scan time limits are typically imposed in population imaging. Nevertheless, population studies aim to apply advanced and thereby time consuming dMRI protocols that deliver high quality data with great potential for future analysis. To allow for time-efficient but also versatile diffusion imaging, this thesis contributes to the investigation of accelerating diffusion spectrum imaging (DSI), an advanced dMRI technique that acquires imaging data with high intra-voxel resolution of tissue microstructure. Combining state-of-the-art parallel imaging and the theory of compressed sensing (CS) enables the acceleration of spatial encoding and diffusion encoding in dMRI. In this way, the otherwise long acquisition times in DSI can be reduced significantly. In this thesis, first, suitable q-space sampling strategies and basis functions are explored that fulfill the requirements of CS theory for accurate sparse DSI reconstruction. Novel 3D q-space sample distributions are investigated for CS-DSI. Moreover, conventional CS-DSI based on the discrete Fourier transform is compared for the first time to CS-DSI based on the continuous SHORE (simple harmonic oscillator based reconstruction and estimation) basis functions. Based on these findings, a CS-DSI protocol is proposed for application in a prospective cohort study, the Rhineland Study. A pilot study was designed and conducted to evaluate the CS-DSI protocol in comparison with state-of-the-art 3-shell dMRI and dedicated protocols for diffusion tensor imaging (DTI) and for the combined hindered and restricted model of diffusion (CHARMED). Population imaging requires processing techniques preferably with low computational cost to process and analyze the acquired big data within a reasonable time frame. Therefore, a pipeline for automated processing of CS-DSI acquisitions was implemented including both in-house developed and existing state-of-the-art processing tools. The last contribution of this thesis is a novel method for automatic detection and imputation of signal dropout due to fast bulk motion during the diffusion encoding in dMRI. Subject motion is a common source of artifacts, especially when conducting clinical or population studies with children, the elderly or patients. Related artifacts degrade image quality and adversely affect data analysis. It is, thus, highly desired to detect and then exclude or potentially impute defective measurements prior to dMRI analysis. Our proposed method applies dMRI signal modeling in the SHORE basis and determines outliers based on the weighted model residuals. Signal imputation reconstructs corrupted and therefore discarded measurements from the sparse set of inliers. This approach allows for fast and robust correction of imaging artifacts in dMRI which is essential to estimate accurate and precise model parameters that reflect the diffusive transport of water molecules and the underlying microstructural environment in brain tissue.Die diffusionsgewichtete Magnetresonanztomographie (dMRT) ist ein einzigartiges MRTBildgebungsverfahren, um die Diffusionsbewegung von Wassermolekülen in biologischem Gewebe zu messen. Aufgrund der Möglichkeit Schichtbilder nicht invasiv aufzunehmen und das lebende menschliche Gehirn im Submillimeter-Bereich zu untersuchen, ist die dMRT ein häufig verwendetes Bildgebungsverfahren in klinischen und biomedizinischen Studien zur Erforschung der komplexen mikrostrukturellen Architektur des Gehirns. In den letzten Jahrzehnten wurden große prospektive Kohortenstudien angelegt, um neue Einblicke in die Entwicklung und den Verlauf von Gehirnkrankheiten über die Lebenspanne zu erhalten und um Biomarker zur Krankheitserkennung und -vorbeugung zu bestimmen. Um durch die Verwendung unterschiedlicher MRT-Verfahren verschiedenartige Schichtbildaufnahmen des Gehirns zu ermöglich, müssen Scanzeiten typischerweise stark begrenzt werden. Dennoch streben Populationsstudien die Anwendung von fortschrittlichen und daher zeitintensiven dMRT-Protokollen an, um Bilddaten in hoher Qualität und mit großem Potential für zukünftige Analysen zu akquirieren. Um eine zeiteffizente und gleichzeitig vielseitige Diffusionsbildgebung zu ermöglichen, leistet diese Dissertation Beiträge zur Untersuchung von Beschleunigungsverfahren für die Bildgebung mittels diffusion spectrum imaging (DSI). DSI ist ein fortschrittliches dMRT-Verfahren, das Bilddaten mit hoher intra-voxel Auflösung der Gewebestruktur erhebt. Werden modernste Verfahren zur parallelen MRT-Bildgebung mit der compressed sensing (CS) Theorie kombiniert, ermöglicht dies eine Beschleunigung der räumliche Kodierung und der Diffusionskodierung in der dMRT. Dadurch können die ansonsten langen Aufnahmezeiten für DSI erheblich reduziert werden. In dieser Arbeit werden zuerst geeigenete Strategien zur Abtastung des q-space sowie Basisfunktionen untersucht, welche die Anforderungen der CS-Theorie für eine korrekte Signalrekonstruktion der dünnbesetzten DSI-Daten erfüllen. Neue 3D-Verteilungen von Messpunkten im q-space werden für die Verwendung in CS-DSI untersucht. Außerdem wird konventionell auf der diskreten Fourier-Transformation basierendes CS-DSI zum ersten Mal mit einem CS-DSI Verfahren verglichen, welches kontinuierliche SHORE (simple harmonic oscillator based reconstruction and estimation) Basisfunktionen verwendet. Aufbauend auf diesen Ergebnissen wird ein CS-DSI-Protokoll zur Anwendung in einer prospektiven Kohortenstudie, der Rheinland Studie, vorgestellt. Eine Pilotstudie wurde entworfen und durchgeführt, um das CS-DSI-Protokoll im Vergleich mit modernster 3-shell-dMRT und mit dedizierten Protokollen für diffusion tensor imaging (DTI) und für das combined hindered and restricted model of diffusion (CHARMED) zu evaluieren. Populationsbildgebung erfordert Prozessierungsverfahren mit möglichst geringem Rechenaufwand, um große akquirierte Datenmengen in einem angemessenen Zeitrahmen zu verarbeiten und zu analysieren. Dafür wurde eine Pipeline zur automatisierten Verarbeitung von CS-DSI-Daten implementiert, welche sowohl eigenentwickelte als auch bereits existierende moderene Verarbeitungsprogramme enthält. Der letzte Beitrag dieser Arbeit ist eine neue Methode zur automatischen Detektion und Imputation von Signalabfall, welcher durch schnelle Bewegungen während der Diffusionskodierung in der dMRT entsteht. Bewegungen der Probanden während der dMRT-Aufnahme sind eine häufige Ursache für Bildfehler, vor allem in klinischen oder Populationsstudien mit Kindern, alten Menschen oder Patienten. Diese Artefakte vermindern die Datenqualität und haben einen negativen Einfluss auf die Datenanalyse. Daher ist es das Ziel, fehlerhafte Messungen vor der dMRI-Analyse zu erkennen und dann auszuschließen oder wenn möglich zu ersetzen. Die vorgestellte Methode verwendet die SHORE-Basis zur dMRT-Signalmodellierung und bestimmt Ausreißer mit Hilfe von gewichteten Modellresidualen. Die Datenimputation rekonstruiert die unbrauchbaren und daher verworfenen Messungen mit Hilfe der verbleibenden, dünnbesetzten Menge an Messungen. Dieser Ansatz ermöglicht eine schnelle und robuste Korrektur von Bildartefakten in der dMRT, welche erforderlich ist, um korrekte und präzise Modellparameter zu schätzen, die die Diffusionsbewegung von Wassermolekülen und die zugrundeliegende Mikrostruktur des Gehirngewebes reflektieren

    Spherical deconvolution of multichannel diffusion MRI data with non-Gaussian noise models and spatial regularization

    Get PDF
    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to Rician and noncentral Chi noise distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in brain data

    Joint Spatial-Angular Sparse Coding, Compressed Sensing, and Dictionary Learning for Diffusion MRI

    Get PDF
    Neuroimaging provides a window into the inner workings of the human brain to diagnose and prevent neurological diseases and understand biological brain function, anatomy, and psychology. Diffusion Magnetic Resonance Imaging (dMRI) is an emerging medical imaging modality used to study the anatomical network of neurons in the brain, which form cohesive bundles, or fiber tracts, that connect various parts of the brain. Since about 73% of the brain is water, measuring the flow, or diffusion of water molecules in the presence of fiber bundles, allows researchers to estimate the orientation of fiber tracts and reconstruct the internal wiring of the brain, in vivo. Diffusion MRI signals can be modeled within two domains: the spatial domain consisting of voxels in a brain volume and the diffusion or angular domain, where fiber orientation is estimated in each voxel. Researchers aim to estimate the probability distribution of fiber orientation in every voxel of a brain volume in order to trace paths of fiber tracts from voxel to voxel over the entire brain. Therefore, the traditional framework for dMRI processing and analysis has been from a voxel-wise vantage point with added spatial regularization considered post-hoc. In contrast, we propose a new joint spatial-angular representation of dMRI data which pairs signals in each voxel with the global spatial environment, jointly. This has the ability to improve many aspects of dMRI processing and analysis and re-envision the core representation of dMRI data from a local perspective to a global one. In this thesis, we propose three main contributions which take advantage of such joint spatial-angular representations to improve major machine learning tasks applied to dMRI: sparse coding, compressed sensing, and dictionary learning. First, we will show that we can achieve sparser representations of dMRI by utilizing a global spatial-angular dictionary instead of a purely voxel-wise angular dictionary. As dMRI data is very large in size, we provide a number of novel extensions to popular spare coding algorithms that perform efficient optimization on a global-scale by exploiting the separability of our dictionaries over the spatial and angular domains. Next, compressed sensing is used to accelerate signal acquisition based on an underlying sparse representation of the data. We will show that our proposed representation has the potential to push the limits of the current state of scanner acceleration within a new compressed sensing model for dMRI. Finally, sparsity can be further increased by learning dictionaries directly from datasets of interest. Prior dictionary learning for dMRI learn angular dictionaries alone. Our third contribution is to learn spatial-angular dictionaries jointly from dMRI data directly to better represent the global structure. Traditionally, the problem of dictionary learning is non-convex with no guarantees of finding a globally optimal solution. We derive the first theoretical results of global optimality for this class of dictionary learning problems. We hope the core foundation of a joint spatial-angular representation will open a new perspective on dMRI with respect to many other processing tasks and analyses. In addition, our contributions are applicable to any general signal types that can benefit from separable dictionaries. We hope the contributions in this thesis may be adopted in the larger signal processing, computer vision, and machine learning communities. dMRI signals can be modeled within two domains: the spatial domain consisting of voxels in a brain volume and the diffusion or angular domain, where fiber orientation is estimated in each voxel. Computationally speaking, researchers aim to estimate the probability distribution of fiber orientation in every voxel of a brain volume in order to trace paths of fiber tracts from voxel to voxel over the entire brain. Therefore, the traditional framework for dMRI processing and analysis is from a voxel-wise, or angular, vantage point with post-hoc consideration of their local spatial neighborhoods. In contrast, we propose a new global spatial-angular representation of dMRI data which pairs signals in each voxel with the global spatial environment, jointly, to improve many aspects of dMRI processing and analysis, including the important need for accelerating the otherwise time-consuming acquisition of advanced dMRI protocols. In this thesis, we propose three main contributions which utilize our joint spatial-angular representation to improve major machine learning tasks applied to dMRI: sparse coding, compressed sensing, and dictionary learning. We will show that sparser codes are possible by utilizing a global dictionary instead of a voxel-wise angular dictionary. This allows for a reduction of the number of measurements needed to reconstruct a dMRI signal to increase acceleration using compressed sensing. Finally, instead of learning angular dictionaries alone, we learn spatial-angular dictionaries jointly from dMRI data directly to better represent the global structure. In addition, this problem is non-convex and so we derive the first theories to guarantee convergence to a global minimum. As dMRI data is very large in size, we provide a number of novel extensions to popular algorithms that perform efficient optimization on a global-scale by exploiting the separability of our global dictionaries over the spatial and angular domains. We hope the core foundation of a joint spatial-angular representation will open a new perspective on dMRI with respect to many other processing tasks and analyses. In addition, our contributions are applicable to any separable dictionary setting which we hope may be adopted in the larger image processing, computer vision, and machine learning communities

    Compressed Sensing Diffusion Spectrum Imaging for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging

    Get PDF
    Mapping non-invasively the complex microstructural architecture of the living human brain, diffusion magnetic resonance imaging (dMRI) is one of the core imaging modalities in current population studies. For the application in longitudinal population imaging, the dMRI protocol should deliver reliable data with maximum potential for future analysis. With the recent introduction of novel MRI hardware, advanced dMRI acquisition strategies can be applied within reasonable scan time. In this work we conducted a pilot study based on the requirements for high resolution dMRI in a long-term and high throughput population study. The key question was: can diffusion spectrum imaging accelerated by compressed sensing theory (CS-DSI) be used as an advanced imaging protocol for microstructure dMRI in a long-term population imaging study? As a minimum requirement we expected a high level of agreement of several diffusion metrics derived from both CS-DSI and a 3-shell high angular resolution diffusion imaging (HARDI) acquisition, an established imaging strategy used in other population studies. A wide spectrum of state-of-the-art diffusion processing and analysis techniques was applied to the pilot study data including quantitative diffusion and microstructural parameter mapping, fiber orientation estimation and white matter fiber tracking. When considering diffusion weighted images up to the same maximum diffusion weighting for both protocols, group analysis across 20 subjects indicates that CS-DSI performs comparable to 3-shell HARDI in the estimation of diffusion and microstructural parameters. Further, both protocols provide similar results in the estimation of fiber orientations and for local fiber tracking. CS-DSI provides high radial resolution while maintaining high angular resolution and it is well-suited for analysis strategies that require high b-value acquisitions, such as CHARMED modeling and biomarkers from the diffusion propagator

    Denoising and fast diffusion imaging with physically constrained sparse dictionary learning

    Get PDF
    International audienceDiffusion-weighted imaging (DWI) allows imaging the geometry of water diffusion in biological tissues. However, DW images are noisy at high b-values and acquisitions are slow when using a large number of measurements, such as in Diffusion Spectrum Imaging (DSI). This work aims to denoise DWI and reduce the number of required measurements, while maintaining data quality. To capture the structure of DWI data, we use sparse dictionary learning constrained by the physical properties of the signal: symmetry and positivity. The method learns a dictionary of diffusion profiles on all the DW images at the same time and then scales to full brain data. Its performance is investigated with simulations and two real DSI datasets. We obtain better signal estimates from noisy measurements than by applying mirror symmetry through the q-space origin, Gaussian denoising or state-of- the-art non-local means denoising. Using a high-resolution dictionary learnt on another subject, we show that we can reduce the number of images acquired while still generating high resolution DSI data. Using dictionary learning, one can denoise DW images effectively and perform faster acquisitions. Higher b-value acquisitions and DSI techniques are possible with approximately 40 measurements. This opens important perspectives for the connectomics community using DSI
    corecore