1,800 research outputs found

    Combined Learned and Classical Methods for Real-Time Visual Perception in Autonomous Driving

    Full text link
    Autonomy, robotics, and Artificial Intelligence (AI) are among the main defining themes of next-generation societies. Of the most important applications of said technologies is driving automation which spans from different Advanced Driver Assistance Systems (ADAS) to full self-driving vehicles. Driving automation is promising to reduce accidents, increase safety, and increase access to mobility for more people such as the elderly and the handicapped. However, one of the main challenges facing autonomous vehicles is robust perception which can enable safe interaction and decision making. With so many sensors to perceive the environment, each with its own capabilities and limitations, vision is by far one of the main sensing modalities. Cameras are cheap and can provide rich information of the observed scene. Therefore, this dissertation develops a set of visual perception algorithms with a focus on autonomous driving as the target application area. This dissertation starts by addressing the problem of real-time motion estimation of an agent using only the visual input from a camera attached to it, a problem known as visual odometry. The visual odometry algorithm can achieve low drift rates over long-traveled distances. This is made possible through the innovative local mapping approach used. This visual odometry algorithm was then combined with my multi-object detection and tracking system. The tracking system operates in a tracking-by-detection paradigm where an object detector based on convolution neural networks (CNNs) is used. Therefore, the combined system can detect and track other traffic participants both in image domain and in 3D world frame while simultaneously estimating vehicle motion. This is a necessary requirement for obstacle avoidance and safe navigation. Finally, the operational range of traditional monocular cameras was expanded with the capability to infer depth and thus replace stereo and RGB-D cameras. This is accomplished through a single-stream convolution neural network which can output both depth prediction and semantic segmentation. Semantic segmentation is the process of classifying each pixel in an image and is an important step toward scene understanding. Literature survey, algorithms descriptions, and comprehensive evaluations on real-world datasets are presented.Ph.D.College of Engineering & Computer ScienceUniversity of Michiganhttps://deepblue.lib.umich.edu/bitstream/2027.42/153989/1/Mohamed Aladem Final Dissertation.pdfDescription of Mohamed Aladem Final Dissertation.pdf : Dissertatio

    Autonomous navigation for guide following in crowded indoor environments

    No full text
    The requirements for assisted living are rapidly changing as the number of elderly patients over the age of 60 continues to increase. This rise places a high level of stress on nurse practitioners who must care for more patients than they are capable. As this trend is expected to continue, new technology will be required to help care for patients. Mobile robots present an opportunity to help alleviate the stress on nurse practitioners by monitoring and performing remedial tasks for elderly patients. In order to produce mobile robots with the ability to perform these tasks, however, many challenges must be overcome. The hospital environment requires a high level of safety to prevent patient injury. Any facility that uses mobile robots, therefore, must be able to ensure that no harm will come to patients whilst in a care environment. This requires the robot to build a high level of understanding about the environment and the people with close proximity to the robot. Hitherto, most mobile robots have used vision-based sensors or 2D laser range finders. 3D time-of-flight sensors have recently been introduced and provide dense 3D point clouds of the environment at real-time frame rates. This provides mobile robots with previously unavailable dense information in real-time. I investigate the use of time-of-flight cameras for mobile robot navigation in crowded environments in this thesis. A unified framework to allow the robot to follow a guide through an indoor environment safely and efficiently is presented. Each component of the framework is analyzed in detail, with real-world scenarios illustrating its practical use. Time-of-flight cameras are relatively new sensors and, therefore, have inherent problems that must be overcome to receive consistent and accurate data. I propose a novel and practical probabilistic framework to overcome many of the inherent problems in this thesis. The framework fuses multiple depth maps with color information forming a reliable and consistent view of the world. In order for the robot to interact with the environment, contextual information is required. To this end, I propose a region-growing segmentation algorithm to group points based on surface characteristics, surface normal and surface curvature. The segmentation process creates a distinct set of surfaces, however, only a limited amount of contextual information is available to allow for interaction. Therefore, a novel classifier is proposed using spherical harmonics to differentiate people from all other objects. The added ability to identify people allows the robot to find potential candidates to follow. However, for safe navigation, the robot must continuously track all visible objects to obtain positional and velocity information. A multi-object tracking system is investigated to track visible objects reliably using multiple cues, shape and color. The tracking system allows the robot to react to the dynamic nature of people by building an estimate of the motion flow. This flow provides the robot with the necessary information to determine where and at what speeds it is safe to drive. In addition, a novel search strategy is proposed to allow the robot to recover a guide who has left the field-of-view. To achieve this, a search map is constructed with areas of the environment ranked according to how likely they are to reveal the guide’s true location. Then, the robot can approach the most likely search area to recover the guide. Finally, all components presented are joined to follow a guide through an indoor environment. The results achieved demonstrate the efficacy of the proposed components

    Vision based Systems for Localization in Service Robots

    Get PDF

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Exploring Motion Signatures for Vision-Based Tracking, Recognition and Navigation

    Get PDF
    As cameras become more and more popular in intelligent systems, algorithms and systems for understanding video data become more and more important. There is a broad range of applications, including object detection, tracking, scene understanding, and robot navigation. Besides the stationary information, video data contains rich motion information of the environment. Biological visual systems, like human and animal eyes, are very sensitive to the motion information. This inspires active research on vision-based motion analysis in recent years. The main focus of motion analysis has been on low level motion representations of pixels and image regions. However, the motion signatures can benefit a broader range of applications if further in-depth analysis techniques are developed. In this dissertation, we mainly discuss how to exploit motion signatures to solve problems in two applications: object recognition and robot navigation. First, we use bird species recognition as the application to explore motion signatures for object recognition. We begin with study of the periodic wingbeat motion of flying birds. To analyze the wing motion of a flying bird, we establish kinematics models for bird wings, and obtain wingbeat periodicity in image frames after the perspective projection. Time series of salient extremities on bird images are extracted, and the wingbeat frequency is acquired for species classification. Physical experiments show that the frequency based recognition method is robust to segmentation errors and measurement lost up to 30%. In addition to the wing motion, the body motion of the bird is also analyzed to extract the flying velocity in 3D space. An interacting multi-model approach is then designed to capture the combined object motion patterns and different environment conditions. The proposed systems and algorithms are tested in physical experiments, and the results show a false positive rate of around 20% with a low false negative rate close to zero. Second, we explore motion signatures for vision-based vehicle navigation. We discover that motion vectors (MVs) encoded in Moving Picture Experts Group (MPEG) videos provide rich information of the motion in the environment, which can be used to reconstruct the vehicle ego-motion and the structure of the scene. However, MVs suffer from high noise level. To handle the challenge, an error propagation model for MVs is first proposed. Several steps, including MV merging, plane-at-infinity elimination, and planar region extraction, are designed to further reduce noises. The extracted planes are used as landmarks in an extended Kalman filter (EKF) for simultaneous localization and mapping. Results show that the algorithm performs localization and plane mapping with a relative trajectory error below 5:1%. Exploiting the fact that MVs encodes both environment information and moving obstacles, we further propose to track moving objects at the same time of localization and mapping. This enables the two critical navigation functionalities, localization and obstacle avoidance, to be performed in a single framework. MVs are labeled as stationary or moving according to their consistency to geometric constraints. Therefore, the extracted planes are separated into moving objects and the stationary scene. Multiple EKFs are used to track the static scene and the moving objects simultaneously. In physical experiments, we show a detection rate of moving objects at 96:6% and a mean absolute localization error below 3:5 meters
    • …
    corecore