215 research outputs found

    An Agent-based Approach for Improving the Performance of Distributed Business Processes in Maritime Port Community

    Get PDF
    In the recent years, the concept of “port community” has been adopted by the maritime transport industry in order to achieve a higher degree of coordination and cooperation amongst organizations involved in the transfer of goods through the port area. The business processes of the port community supply chain form a complicated process which involves several process steps, multiple actors, and numerous information exchanges. One of the widely used applications of ICT in ports is the Port Community System (PCS) which is implemented in ports in order to reduce paperwork and to facilitate the information flow related to port operations and cargo clearance. However, existing PCSs are limited in functionalities that facilitate the management and coordination of material, financial, and information flows within the port community supply chain. This research programme addresses the use of agent technology to introduce business process management functionalities, which are vital for port communities, aiming to the enhancement of the performance of the port community supply chain. The investigation begins with an examination of the current state in view of the business perspective and the technical perspective. The business perspective focuses on understanding the nature of the port community, its main characteristics, and its problems. Accordingly, a number of requirements are identified as essential amendments to information systems in seaports. On the other hand, the technical perspective focuses on technologies that are convenient for solving problems in business process management within port communities. The research focuses on three technologies; the workflow technology, agent technology, and service orientation. An analysis of information systems across port communities enables an examination of the current PCSs with regard to their coordination and workflow management capabilities. The most important finding of this analysis is that the performance of the business processes, and in particular the performance of the port community supply chain, is not in the scope of the examined PCSs. Accordingly, the Agent-Based Middleware for Port Community Management (ABMPCM) is proposed as an approach for providing essential functionalities that would facilitate collaborative planning and business process management. As a core component of the ABMPCM, the Collaborative Planning Facility (CPF) is described in further details. A CPF prototype has been developed as an agent-based system for the domain of inland transport of containers to demonstrate its practical effectiveness. To evaluate the practical application of the CPF, a simulation environment is introduced in order to facilitate the evaluation process. The research started with the definition of a multi-agent simulation framework for port community supply chain. Then, a prototype has been implemented and employed for the evaluation of the CPF. The results of the simulation experiments demonstrate that our agent-based approach effectively enhances the performance of business process in the port community

    Gamification as a Service: Conceptualization of a Generic Enterprise Gamification Platform

    Get PDF
    Gamification is a novel method to improve engagement, motivation, or participation in non-game contexts using game mechanics. To a large extent, gamification is a psychological- and design-oriented discipline, i.e., a lot of effort has to be spent already in the design phase of a gamification project. Subsequently, the design is implemented in information systems such as portals or enterprise resource planning applications. These systems act as mediators to transport a gameful design to its users. However, the efforts for the subsequent development and integration process are often underestimated. In fact, most conceptual gamification designs are never implemented due to the high development costs that arise from building the gamification solution from scratch, imprecise design or technical requirements, and communication conflicts between different stakeholders in the project. This thesis addresses these problems by systematically defining the phases and stakeholders of the overall gamification process. Furthermore, the thesis rigorously defines the conceptual requirements of gamification based on a broad literature review. The identified conceptual requirements are mapped to a domain-specific language, called the Gamification Modeling Language. Moreover, this thesis analyzes 29 existing gamification solutions that aim to decrease the implementation efforts of gamification. However, using the different language elements, it is shown that none of the existing solutions suffices all requirements. Therefore, a generic and reusable platform as runtime environment for gamification is proposed which fulfills all presented functional and non-functional requirements. As another benefit, it is shown how the Gamification Modeling Language can be automatically compiled into code for the gamification runtime environment and, thus, further reduces development efforts. Based on the developed artifacts and five real gamified applications from industry, it is shown that the efforts for the implementation of the gamification can be significantly reduced from several months or weeks to a few days. Since the technology is designed as a reusable service, future projects benefit continuously with regards to time and efforts

    IoT data processing pipeline in FoF perspective

    Get PDF
    With the development in the contemporary industry, the concepts of ICT and IoT are gaining more importance, as they are the foundation for the systems of the future. Most of the current solutions converge into transforming the traditional industry in new smart interconnected factories, aware of its context, adaptable to different environments and capable of fully using its resources. However, the full potential for ICT manufacturing has not been achieved, since there is not a universal or standard architecture or model that can be applied to all the existing systems, to tackle the heterogeneity of the existing devices. In a common factory, exists a large amount of information that needs to be processed into the system in order to define event rules accordingly to the related contextual knowledge, to later execute the needed actions. However, this information is sometimes heterogeneous, meaning that it cannot be accessed or understood by the components of the system. This dissertation analyses the existing theories and models that may lead to seamless and homogeneous data exchange and contextual interpretation. A framework based on these theories is proposed in this dissertation, that aims to explore the situational context formalization in order to adequately provide appropriate actions

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    IVAN: Intelligent van for the distribution of pharmaceutical drugs

    Get PDF
    This paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution.This work has been funded by the Ministry of Science and Innovation of Spain under INNPACTO funding program (RailTrace project, IPT-370000-2010-036)

    Ubiquitous Computing

    Get PDF
    The aim of this book is to give a treatment of the actively developed domain of Ubiquitous computing. Originally proposed by Mark D. Weiser, the concept of Ubiquitous computing enables a real-time global sensing, context-aware informational retrieval, multi-modal interaction with the user and enhanced visualization capabilities. In effect, Ubiquitous computing environments give extremely new and futuristic abilities to look at and interact with our habitat at any time and from anywhere. In that domain, researchers are confronted with many foundational, technological and engineering issues which were not known before. Detailed cross-disciplinary coverage of these issues is really needed today for further progress and widening of application range. This book collects twelve original works of researchers from eleven countries, which are clustered into four sections: Foundations, Security and Privacy, Integration and Middleware, Practical Applications

    Metadata management services for spatial data infrastructure

    Get PDF
    Am Geographischen Institut der Humboldt UniversitĂ€t zu Berlin wird tĂ€glich mit rĂ€umlichen Daten gearbeitet. Die erfolgreiche Arbeit von Forschungsgruppen, LehrtĂ€tigen und Studenten basiert auf brauchbaren Datengrundlagen. Um diese FĂŒlle von Ressourcen ĂŒberschaubar zu organisieren wird seit einigen Jahren eine Geodateninfrastruktur unterhalten. Sie verfĂŒgt - neben anderen Anwendungen - ĂŒber ein Geoportal, das dem Benutzer erlaubt auf die Geodatenbanken des Instituts zuzugreifen. Die Geodateninfrastruktur erlaubt dem Benutzer Ressourcen institutsweit zu suchen, anzuzeigen und (wieder) zu benutzen. Durch dieses kooperative Netzwerk sollen Synergieeffekte erzielt werden da Beschaffungskosten fĂŒr Neudaten entfallen. ZusĂ€tzlich kann die Geodateninfrastruktur LehrtĂ€tigkeit unterstĂŒtzen und als praktisches Beispiel in den Lehrplan integriert werden. KernstĂŒck dieses virtuellen Netzwerks sind Metadaten. Sie ermöglichen die umfassende Beschreibung der Ressourcen des Instituts, sowie Suche und Identifikation von Ressourcen durch das Geoportal. Der Metadaten Katalog des Instituts dient der Organisation dieser Metadaten in standardisierter Form. Das Ziel der vorliegenden Arbeit ist es, ein neues Metadaten Management Systems fĂŒr die Geodateninfrastruktur des Geographischen Instituts zu implementieren. Der am Ende stehende funktionsfĂ€hige Prototyp soll vom Leitbild des „user-centric SDI“ Ansatzes geprĂ€gt sein. Dieses Konzept reprĂ€sentiert die nunmehr dritte Generation von Geodatenbanken und rĂŒckt den Benutzer in das Zentrum der Aufmerksamkeit - und dies von Beginn des Implementierungsprozesses an. Der gesamte Arbeitsfluss soll demzufolge stark vom Feedback der spĂ€teren Benutzer und deren Anforderungen geprĂ€gt sein. Mit „Joint Application Design“ und „Rapid Prototyping“ wurden Methoden gewĂ€hlt, die diese Art von Software Entwicklung unter aktivem Nutzerengagement unterstĂŒtzen. Als Folge nehmen Nutzerbefragungen, PrĂ€sentations- und Informationsveranstaltungen sowie Fragebogendesign und Auswertung in dieser Arbeit prominente Stellungen ein. Viele Weichen in der Softwareentwicklung wurden nach Auswertung von Nutzerbefragungen gestellt. Im Vorfeld wurde eine Unterteilung der Institutsmitglieder in „Experten“ und (potentielle zukĂŒnftige) „Nutzer“ getroffen. Wenige Experten wurden fĂŒr grundlegende Entscheidungen herangezogen; die Nutzergemeinschaft wurde zu Informationsveranstaltungen eingeladen und mittels Fragebogen zum Thema Interface Design und der optimalen Bedienbarkeit des Geoportals befragt. Diese Veranstaltungen sollten ĂŒber die Vorteile der Geodateninfrastruktur informieren, und durch aktive Beteiligung die Nutzergemeinschaft zu stĂ€rken und zu vergrĂ¶ĂŸern. Jede GDI basiert auf Kommunikations- und Kooperationsprozessen, weshalb diese AktivitĂ€ten Garanten fĂŒr eine langfristig erfolgreiche Initiative darstellen. Eine vorangegangene Software Evaluation ließ, unter BerĂŒcksichtigung der gesammelten Nutzeranforderungen, fĂŒr das Softwarepacket GeoNetwork open source entscheiden. Die Technische Entwicklung und die Gestaltung der Computer-Nutzer-Schnittstellen des GeoNetwork Prototypen wurden in sich wiederholenden Feedbackschleifen geplant. Abwechselnd soll die Generierung neuer Prototypen auf erneute PrĂ€sentationen inklusive Nutzerbefragungen folgen. Die Ergebnisse dieser Befragungen geben die Richtung fĂŒr weitere Arbeit am Prototyp vor. Als methodischer Rahmen diente der „Rapid Prototyping“ Ansatz. Diskussionen in der Runde der Experten sowie die stĂ€ndige Einbindung dieser in wichtige Entscheidungen rund um die GDI soll Teambildung fördern und die Mitglieder der Expertenrunde an das Projekt binden. Sie sind es, die spĂ€ter Verantwortlichkeiten fĂŒr Metadaten ĂŒbernehmen und delegieren können und damit einen wichtigen Beitrag zur Wartung und Instanthaltung der Infrastruktur leisten. Vorliegende Arbeit beschreibt Planung, Umsetzung und Ergebnis des Implementierungsprozesses dieses Prototyps unter Anwendung spezieller, auf Benutzer Partizipation und Feedback aufbauender Methoden. Es wird am Beispiel der speziellen Fallstudie diskutiert wie weit die gewĂ€hlten Methoden im Sinne des Konzept des „unser-centric SDI“ eingesetzt werden und wie diese Praxis nachhaltig die Benutzerzufriedenheit steigert und zum Erfolg einer GDI langfristig beitrĂ€gt. Die Arbeit schließt mit einem Ausblick in die nahe und ferne Zukunft der möglichen Weiterentwicklung der GDI des Geographischen Instituts.Working with spatial data is “daily bread” at the Department of Geography at Humboldt UniversitĂ€t zu Berlin. The success of research projects, staff members’ work and students’ university routines depends on high quality data and resources. A couple of years ago the department’s own Spatial Data Infrastructure was founded to organize and publish these resources and corresponding metadata. This virtual infrastructure offers a geoportal that allows the user to discover, visualize and (re-)use the department’s spatial and aspatial resources. Maintaining this cooperative network aims at synergy effects like reduction of costs for the acquirement of new resources. Moreover, SDI can be used to support teaching activities and serve as a practical example in the curriculum. Central for SDI are metadata; they represent a comprehensive structured description of the department’s resources and are a core piece of the geoportal’s functionalities to discover and identify data. The department’s Metadata Catalogue serves as a container for structured organization of metadata. This project goal is the implementation of a new metadata management system for the department’s Spatial Data Infrastructure. The resulting prototype should be developed following the user-centric SDI (third generation SDI) paradigm. This approach considers the (possible future) user community’s requirements and feedback as highly important and suggests an implementation process with continuous user participation. Both methods, “Joint Application Design” and “Rapid Prototyping”, rely on active user participation and were chosen and applied to support this concept. As a consequence, user assessments, information and dissemination activities and design and analysis of questionnaires occupied a prominent part of this study; the most important decisions during the implementation process were based on user feedback. In the forefront, users were distinguished between (possible future) “users” and “experts”. A small group of experts was asked to discuss and make fundamental decisions about the department’s SDI development, and the community of users was invited to informative events and to participate by filling out a questionnaire about the geoportal’s usability and interface design. These events were expected to raise user interest, foster a user community and user participation and to provide information about usage and benefits of the department’s SDI. SDI, as a communication and cooperation network, benefits from these activities in the long run. A preliminary software evaluation and the assessment of user requirements led to the decision that GeoNetwork open source was the most promising software to replace the department’s current metadata management system. Technical development and implementation of GeoNetwork prototype and its interfaces was accompanied by continuous feedback loops in accordance with the concept of “Rapid Prototyping”. The development of each new version of the prototype is followed by the presentation to users and collection of feedback. This feedback sets the agenda for further developments. Members of the expert group were constantly invited to participate in the SDI implementation process. Discussions regarding elemental SDI issues should foster team building and should bind experts to the project. They are the ones who are needed to take over custodianship for resources and metadata and to therefore play central roles in maintaining the department’s SDI. The thesis at hand describes the planning, design, realization and results of the implementation of a metadata management system prototype, by facilitating special, user participation methods. Using the example of this special case it discusses the combination of these methods with a user-centric SDI approach and implications in terms of user satisfaction and long-term SDI success. The final chapter offers a discussion about the implementation process and closes with an outlook on the possible short and long term development of the department of Geography’s SDI node
    • 

    corecore