
TECHNISCHE UNIVERSITÄT DRESDEN
Faculty of Computer Science

Institute of Systems Architecture
Chair of Computer Networks

DISSERTATION

Title Gamification as a Service - Conceptualization of a Generic Enter-
prise Gamification Platform

Submitted by Philipp Herzig, M.Sc.

Born on February 23, 1987 in Zittau

in partial fulfillment of the requirements for the degree

DOKTOR-INGENIEUR
(Dr.-Ing.)

Primary reviewer Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill, Technische
Universität Dresden

Secondary reviewer Prof. Dr. rer. pol. habil. Rüdiger Zarnekow, Technische Universität
Berlin

Defended on July 2, 2014

Dresden, July 9, 2014

CONTENTS

Contents III

List of Figures IX

List of Tables XIII

List of Listings XV

List of Abbreviations XVII

Abstract XXI

Acknowledgement XXIII

1 Introduction 1

1.1 Motivation . 1
1.2 Research Objective and Research Questions 2
1.3 Research Design . 2
1.4 Thesis Structure . 2
1.5 Publications . 4

1.5.1 Conference and Journal Papers . 4
1.5.2 Patents . 5

2 Foundations 7

2.1 Gamification . 7
2.1.1 Definition . 7
2.1.2 Emergence and Progression Aspects of Games 10
2.1.3 Biology & Psychology of Games 10

2.2 Enterprise Architectures . 12
2.2.1 Overview . 12
2.2.2 Service Oriented Architecture . 13
2.2.3 Event Driven Architecture . 16

2.2.3.1 Definition, Characteristics, and Building Blocks 16
2.2.3.2 Complex Event and Stream Processing 17

2.2.4 Production Rules . 20

III

Contents

2.2.5 Contextual Event Processing . 22
2.2.6 Comparison of Approaches . 24

3 Gamification Process 27

3.1 General Process . 27
3.2 Gamification Process . 28
3.3 Contributions . 32

4 Conceptual Requirements 35

4.1 Approach . 35
4.2 General Gamification Requirements . 36

4.2.1 Game Interface Patterns . 36
4.2.1.1 Atomic Concepts . 37
4.2.1.2 Aggregated Concepts . 41

4.2.2 Gamification Rules . 44
4.2.2.1 Types of Rules . 44
4.2.2.2 Rule Conditions . 44
4.2.2.3 Rule Consequences (CR23) 45

4.3 Non-Functional Requirements . 45
4.4 Systematization . 47

5 GaML - Conceptual Gamification Modeling Language 49

5.1 Design Objectives . 49
5.2 Syntax and Meta-Model . 50

5.2.1 General Elements . 50
5.2.2 Condition Elements . 54

5.2.2.1 Entity-independent Conditions 56
5.2.2.2 Player-specific Conditions 58
5.2.2.3 Team-specific Condition 59

5.2.3 Consequence Elements . 59
5.3 Static Semantics . 60
5.4 Systematization . 63

6 Related Work 65

6.1 Languages . 65
6.1.1 Game Description Language . 65
6.1.2 Machinations . 67
6.1.3 Serious Game Structure and Logic Modeling Language 68
6.1.4 Others . 69
6.1.5 Systematization . 69

6.2 Gamification Solutions . 70
6.2.1 Achievement Systems . 71
6.2.2 Integrated Gamification Solutions 73
6.2.3 Generic Gamification Platforms . 76

6.2.3.1 Bunchball . 77
6.2.3.2 Badgeville . 80
6.2.3.3 IActionable . 80
6.2.3.4 Systematization . 81

6.2.4 Others . 81
6.2.5 Systematization . 81

IV

Contents

7 Gamification Runtime Environment Concept 83

7.1 General Scenario . 83
7.2 Solution Approaches . 84

7.2.1 Relational Databases . 84
7.2.2 Complex Event Processing . 85

7.3 Hybrid Approach . 85
7.3.1 General Case . 86
7.3.2 Synchronous Context-Update . 89
7.3.3 Asynchronous Context-Update . 90

7.4 Business Entity Provider . 91
7.4.1 Data Model . 92
7.4.2 Update and Query Interfaces . 94

7.5 Event Processing Agent . 95
7.5.1 Event Processing Procedure . 95
7.5.2 Standardized Events and Rules . 97

7.6 Compilation Procedure . 100
7.6.1 Compilation of Entities . 101
7.6.2 Compilation of Rules . 103

7.6.2.1 Rule Conditions - General Elements 103
7.6.2.2 Player Conditions . 108
7.6.2.3 Team Conditions . 112
7.6.2.4 Rule Consequences . 113

7.6.3 Compilation of Terminals . 114
7.6.4 Systematization . 115

8 Evaluation 117

8.1 Application Scenarios . 117
8.1.1 SAP TwoGo . 117
8.1.2 SAP Networking Lunch . 119
8.1.3 SAP Financial Fact Sheet . 120
8.1.4 Soccer Training Application . 121
8.1.5 CHIO Event Application . 122
8.1.6 Additional Applications . 123

8.2 Implementation . 123
8.2.1 Gamification Modeling Language 123

8.2.1.1 Parser . 123
8.2.1.2 Code Generation . 125

8.2.2 Gamification Runtime Environment 127
8.2.2.1 Component: Achievement Provider 127
8.2.2.2 Component: RuleEngine 129
8.2.2.3 Component: Gateway . 130
8.2.2.4 Component: AdminUI . 130
8.2.2.5 Component: Gamification Widgets 131
8.2.2.6 Synchronous Deployment Mode 134
8.2.2.7 Asynchronous Deployment Mode 135

8.3 Integration . 136
8.3.1 SAP TwoGo . 136
8.3.2 SAP Networking Lunch . 138

8.4 Performance Analysis . 142
8.4.1 Evaluation Setup . 143
8.4.2 Experimental Results . 145

V

Contents

8.4.3 Discussion . 150
8.4.4 Generic Performance Model . 150
8.4.5 Discussion of Generic Performance Model 156

8.5 Applicability . 157
8.5.1 Study Design . 157
8.5.2 Descriptive Statistics . 160
8.5.3 Interpretation and Discussion of Results 163

8.6 Validation of Benefits . 164
8.6.1 Motivational Impact . 164
8.6.2 Integration . 166
8.6.3 Conclusion . 169

8.7 Systematization . 170

9 Summary and Outlook 173

9.1 Summary . 173
9.2 Outlook . 177

9.2.1 Taxonomy Completeness . 177
9.2.2 Operational Semantics of GaML 177
9.2.3 Graphical Rule Editor . 178
9.2.4 Automatic Derivation of Business Entity Provider Semantics . . . 178
9.2.5 Improved Synchronization Strategies for Transactional Processing 179
9.2.6 Additional Engineering Aspects . 179

A GaML Elements 195

A.1 Terminals . 195
A.2 L1 Concepts . 199
A.3 Condition Elements . 207
A.4 Consequence Elements . 215

B Excerpt from API Specification 219

B.1 IAdminAPI . 219
B.2 IQueryAPI . 219
B.3 IUpdateAPI . 220
B.4 IAnalyticsAPI . 221
B.5 IUserConfig . 221
B.6 IRuleService . 221
B.7 IEventManager . 222

C GaML Study 223

C.1 Questionnaire . 223
C.1.1 Block 1 . 223
C.1.2 Block 2 . 224
C.1.3 Block 3 . 225
C.1.4 Block 4 . 227
C.1.5 Block 5 . 228
C.1.6 Block 6 . 230

C.2 System Usability Scale . 232
C.3 Correlation Matrix . 233

D Supplementary Pictures 235

D.1 Data Model . 235

VI

Contents

D.2 Graphical Artifacts of Gamification Platform 236
D.3 RETE Graph of Networking Lunch Rules 239

E Statistical Tests 241

E.1 (Multivariate) Analysis of Variance . 241
E.2 Wilcoxon-Mann-Whitney Test . 242
E.3 Jarque-Bera Test . 243
E.4 t-Test . 243

VII

LIST OF FIGURES

1.1 Overall structure of this thesis . 3

2.1 Classification of gamification . 8
2.2 An exemplary logical service-oriented architecture 14
2.3 Components of an event-driven architecture 17
2.4 Abstraction of events . 19
2.5 Exemplary temporal operators . 19
2.6 Example instance of a RETE graph . 21
2.7 Entity-based state management for complex event processing 23

3.1 Workflows in the Rational Unified Process 28
3.2 Adapted gamification development process 31

4.1 Constituting elements of mission graphs 38
4.2 Example instance of mission graph model 39

5.1 Definition of Space element . 52
5.2 Definition of Game Level element . 53
5.3 General condition syntax . 55
5.4 Boolean constraint and conditions syntax 57
5.5 Team condition syntax . 58
5.6 General consequence element . 59

6.1 Example for Machinations framework . 67
6.2 Complex graphical game model in Machinations framework 68
6.3 High-level architecture of an achievement system 71
6.4 High-level architecture of an integrated solution 73
6.5 Action definition example from the Gigya solution 74
6.6 High-level architecture of a generic gamification platform 76

7.1 General scenario for the technical introduction of gamification into enter-
prise information systems . 83

7.2 Stateful complex event processing based on business entities 86
7.3 Synchronous context update procedure 90
7.4 Asynchronous context update procedure 91
7.5 Player and avatar perspective of data model 93

IX

List of Figures

7.6 Enumerations used in the data model . 93
7.7 Procedure for processing received events within the EPA 96
7.8 Conceptual transformation of GaML into code for the gamification run-

time environment . 101
7.9 Summary of the conceptual translation procedure 115

8.1 Example screenshot from the SAP TwoGo gamification project 118
8.2 Example screenshots from the SAP Networking Lunch gamification project119
8.3 Example screenshots from the SAP Financial Fact Sheet gamification

project . 120
8.4 Example screenshot from the Soccer application with gamification 121
8.5 Example figures from the CHIO gamification project 122
8.6 Carpooling example in GaML editor . 124
8.7 OCL expressions applied in Ecore meta-model 125
8.8 Compile process of GaML into code for the gamification runtime envi-

ronment . 126
8.9 Example of code generation within GaML editor 126
8.10 Components of gamification runtime environment 127
8.11 Component diagram of AchievementProvider 128
8.12 Component diagram of RuleEngine . 129
8.13 Component diagram of Gateway . 130
8.14 Examples for the administration user interface 131
8.15 Example instance of notification widget 132
8.16 Example instance of mission widget . 132
8.17 Assemble of different gamification widgets 133
8.18 Integrated gamification widgets within mobile application 134
8.19 Component diagram of gamification platform in synchronous mode . . . 135
8.20 Component diagram of gamification platform in asynchronous mode . . . 136
8.21 Integration architecture for SAP TwoGo application 139
8.22 Integration architecture for SAP Networking Lunch application 142
8.23 Measurement points for synchronous model 144
8.24 Measurement points for asynchronous model 145
8.25 Experimental average response times . 146
8.26 Experimental maximum response times 147
8.27 Comparison of response time distributions between synchronous and

asynchronous case at 1024 experimental users 147
8.28 Evolution of response times for synchronous communication 148
8.29 Slow response times compared to a fixed 500ms threshold 149
8.30 Space-time trade-off of response-time versus inverse memory consump-

tion in the event processing agent . 149
8.31 Distribution of event interarrival times for 250 users and 0.5 events per

user-second . 152
8.32 Response time prediction for synchronous case 156
8.33 Response time prediction for asynchronous case 156
8.34 System usability scale item averages . 162
8.35 Variable means with standard error of ungamified (A) versus gamified (B)

SAP Financial Fact Sheet application . 165
8.36 Integration architecture for SAP Financial Fact Sheet application 168

A.1 Terminal rules . 195
A.2 Terminal rules 2 . 196

X

List of Figures

A.3 General numeric expressions . 197
A.4 Operand types . 198
A.5 Space syntax . 199
A.6 Game level syntax . 200
A.7 Event syntax . 201
A.8 Achievement syntax . 201
A.9 Point syntax . 202
A.10 Mission syntax . 203
A.11 Skill syntax . 204
A.12 Level syntax . 204
A.13 Good syntax . 205
A.14 Role syntax . 205
A.15 Leaderboard syntax . 206
A.16 General condition syntax . 207
A.17 Boolean constraints and conditions syntax for player 208
A.18 Player condition syntax . 208
A.19 Boolean constraints and conditions syntax for teams 209
A.20 Team condition syntax . 209
A.21 Event condition syntax . 210
A.22 Event condition right term syntax . 211
A.23 Condition references syntax . 211
A.24 Condition item references syntax . 212
A.25 Skill condition syntax . 212
A.26 Point condition syntax . 212
A.27 Random condition syntax . 212
A.28 Location condition syntax . 213
A.29 Leader condition syntax . 213
A.30 Role condition syntax . 213
A.31 Event condition syntax . 214
A.32 General consequence syntax . 215
A.33 Event consequence syntax . 216
A.34 Point consequence syntax . 216
A.35 Notification consequence syntax . 217
A.36 Narration consequence syntax . 217
A.37 General consequence syntax . 218

C.1 Correlation diagram for variables of GaML study 233

D.1 Class diagram for associations with image entity 235
D.2 Class diagram for event model . 236
D.3 Rule editor in the gamification platform prototype 236
D.4 Gamification analytics in the gamification platform prototype 237
D.5 Administration of user profile in the gamification platform prototype . . . 237
D.6 Additional widgets in the gamification platform prototype 238
D.7 Optimized RETE graph representation for the SAP Networking Lunch

application . 239

XI

LIST OF TABLES

2.1 Levels of game design elements . 9
2.2 Comparison of intrinsic factors leading to work and game engagement . . 11
2.3 General requirements for enterprise information systems 13
2.4 Characteristics of services . 15
2.5 Comparison of characteristics in service-oriented and event-driven archi-

tectures . 24

3.1 Sequence of tasks in the design and specification workflow 30

4.1 Visual game design elements . 40
4.2 Aggregated visual game design elements 43

5.1 Mapping of conceptual requirements and language specification 64

6.1 Comparison of existing game languages 70
6.2 Analysis of achievement systems . 72
6.3 Analysis of integrated gamification solutions 76
6.4 Analysis of generic gamification platforms 80
6.5 Comparison of system classes for gamification solutions 82

7.1 Examples for gamification-related state information managed by the busi-
ness entity provider . 87

7.2 Examples for gamification-related conditions managed by the event pro-
cessing agent . 87

7.3 Examples for gamification-related consequences triggered by the event
processing agent . 88

7.4 Mapping of rule types on architecture components 89
7.5 Reserved events in the gamification runtime environment and their pre-

defined semantics . 100

8.1 Quantities of rule types in the SAP Networking Lunch application 143
8.2 Summary of examined cost factors in the performance model 151
8.3 Service time polynomials for number of users cost factor in synchronous

mode . 153
8.4 Service time polynomials for number of users cost factor in asynchronous

mode . 154

XIII

List of Tables

8.5 Quantitative validation of cost model comparing measured and predicted
response times . 154

8.6 Validation of cost model comparing measured and predicted response
times for SAP Networking Lunch application 155

8.7 Distribution of variable GEND . 160
8.8 Descriptive statistics for variables . 160
8.9 Correlation matrix of exogenous variables 161
8.10 A/B Analysis of ungamified (A) versus gamified (B) application 165
8.11 Time exposure for complete gamification enablement 169

C.1 System usability scale questions . 232

XIV

LISTINGS

5.1 Constraint for uniqueness of IDs . 61
5.2 Constraints for point type semantics . 61
5.3 Constraint for point semantics . 61
5.4 Constraint and operations for acyclic missions 62
5.5 Constraint for type checks in numeric expressions 63

6.1 Excerpt of TicTacToe in game description language 66

7.1 Core rule for user-accepted missions (accept) 97
7.2 Core rule for user-accepted missions (decline) 97
7.3 Core rule for deleting point-in-time events 98
7.4 Core rule for deleting interval events . 98
7.5 Core rule for activating skills . 98
7.6 Core rule for new users or avatars . 99
7.7 Translation example for the point entity 102
7.8 Translation example for badge entity . 102
7.9 Translation example for badge entity including an optional when clause . 102
7.10 Rule assembled from Listing 7.9 . 103
7.11 Example translation of an outer player to avatar entity 103
7.12 Example translation of an outer team entity 103
7.13 Simple example for variable binding . 104
7.14 Complex example for variable binding . 104
7.15 Example translation of Boolean operators 105
7.16 Example translation of general reference conditions 105
7.17 Example translation of several mission conditions 106
7.18 Example translation of skill condition . 106
7.19 Example translation of point condition . 106
7.20 Example translation of luck condition . 107
7.21 Example translation for location condition 107
7.22 Example translation of leader condition 107
7.23 Example translation of role condition . 108
7.24 Example translation for player-team relationships 108
7.25 Translation of event type . 109
7.26 Translation of event joins and temporal operators 109

XV

Listings

7.27 Creation of an interval event using global expiration time 110
7.28 Example translation for event aggregation over time windows 111
7.29 Example source code for lastsFor operator 111
7.30 Example target code for lastsFor operator 111
7.31 Example translation of player or avatar belongingness 112
7.32 Example translation of event consequences 113
7.33 Example translations assignment consequences 114
7.34 Example translations of deletion consequences 114
7.35 Compilation of TIME terminal . 114
7.36 Translation of numeric expressions . 115

8.1 Mapping of JSON-RPC call to corresponding Java interface method . . . 128
8.2 Programmatic integration of notification widgets 132
8.3 Programmatic integration of mission widget 133
8.4 Initialization of mobile gamification widgets 133
8.5 Addition of gamification profile to host application 133
8.6 Addition of mission view to host application 134
8.7 GaML excerpt from the SAP TwoGo gamification concept 137
8.8 GaML excerpt from SAP Networking Lunch gamification concept 139
8.9 Example listing for simple GaML question 158
8.10 Example listing for complex GaML question 158
8.11 GaML excerpt from SAP Financial Fact Sheet application 166
8.12 Initialization example of mobile widgets 167
8.13 Initialization of mobile player profile widget 168
8.14 Initialization of mobile mission widget . 168
8.15 Example instrumentation for sending events from host application 168

C.1 GaML example code for question block 3.1 225
C.2 GaML example code for question block 3.2 225
C.3 GaML example code for question block 3.3 226
C.4 GaML example code for question block 3.4 226
C.5 GaML example code for question block 4 227
C.6 GaML example code for question block 5 228

XVI

LIST OF ABBREVIATIONS
AIC Akaike Information Criterion

API Application Programming Interface

AST Abstract Syntax Tree

AS Achievement System

BEP Business Entity Provider

BIC Bayesian Information Criterion

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

BPM Business Process Management

CBS Component-based Software

CEGE Core Elements of Gaming Experience

CEP Complex Event Processing

CGDL Card Game Description Language

CQL Continuous Query Language

CRM Customer Relationship Management

CV Cross-Validation

DRL Drools Rule Language

DSL Domain-specific language

EBNF Extended Backus-Naur-Form

ECA Event-Condition-Action

ED-SOA Event-driven SOA

XVII

Listings

EDA Event-driven Architecture

EJB Enterprise Java Beans

EPA Event Processing Agent

EPL Event Processing Language

EPL Event Processing Language

EPN Event Processing Network

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

ESP Event Stream Processing

FCC Fantasy-Challenge-Curiosity

GDL Game Description Language

GGP Generic Gamification Platform

GLiSMo Serious Game Structure and Logic Modeling Language

HTTP Hypertext Transfer Protocol

IGS Integrated Gamification Solution

IS Information System

IT Information Technology

JDBC Java Database Connectivity

JIT Just-in-time

JMS Java Messaging Service

JNDI Java Naming Directory Interface

JSON Javascript Object Notation

LHS Left-hand side

MDA Mechanic-Dynamic-Aesthetics

MMRE Mean Magnitude of Relative Error

MOM Message-oriented Middleware

MRE Magnitude of Relative Error

OASIS Advancing Open Standards for the Information Society

OCL Object Constraint Language

OLS Ordinary Least Squares

PIM Personal Information Manager

XVIII

Listings

PIM Platform Independent Model

PRED Percentage Relative Error Deviation

PSM Platform Specific Model

RHS Right-hand side

RPC Remote Procedure Call

RUP Rational Unified Process

SCM Supply Chain Management

SDK Software Development Kit

SGDL Strategy Game Description Language

SOAP Simple Object Access Protocol

SOA Service-oriented Architecture

SOP Same-Origin-Policy

SQL Structured Query Language

SSO Single Sign-On

SUS System Usability Scale

UI User Interface

UML Unified Modeling Language

VGDL Video Game Description Language

VM Virtual Machine

WAR Web Archive

WME Working Memory Element

XSRF Cross-Site-Request-Forgery

XSS Cross-Site-Scripting

XIX

ABSTRACT
Gamification is a novel method to improve engagement, motivation, or participation
in non-game contexts using game mechanics. To a large extent, gamification is a
psychological- and design-oriented discipline, i.e., a lot of effort has to be spent already
in the design phase of a gamification project. Subsequently, the design is implemented
in information systems such as portals or enterprise resource planning applications.
These systems act as mediators to transport a gameful design to its users.

However, the efforts for the subsequent development and integration process are
often underestimated. In fact, most conceptual gamification designs are never imple-
mented due to the high development costs that arise from building the gamification
solution from scratch, imprecise design or technical requirements, and communication
conflicts between different stakeholders in the project.

This thesis addresses these problems by systematically defining the phases and
stakeholders of the overall gamification process. Furthermore, the thesis rigorously
defines the conceptual requirements of gamification based on a broad literature re-
view. The identified conceptual requirements are mapped to a domain-specific lan-
guage, called the Gamification Modeling Language. Moreover, this thesis analyzes 29
existing gamification solutions that aim to decrease the implementation efforts of ga-
mification. However, using the different language elements, it is shown that none of
the existing solutions suffices all requirements.

Therefore, a generic and reusable platform as runtime environment for gamification
is proposed which fulfills all presented functional and non-functional requirements. As
another benefit, it is shown how the Gamification Modeling Language can be automat-
ically compiled into code for the gamification runtime environment and, thus, further
reduces development efforts.

Based on the developed artifacts and five real gamified applications from industry, it
is shown that the efforts for the implementation of the gamification can be significantly
reduced from several months or weeks to a few days. Since the technology is designed
as a reusable service, future projects benefit continuously with regards to time and
efforts.

XXI

ACKNOWLEDGEMENT
In the first place, I would like to thank my supervisors Professor Schill and Professor
Zarnekow for supporting this thesis and its innovative topic and I would like to appreci-
ate all of their extremely helpful input to get this work done in the desired quality and
on time.

Deep gratitude goes to my supervisors and colleagues Michael Ameling, Bernhard
Wolf, Christof Momm, Thomas Springer, and Ralf Ackermann. Thank you for all the
fruitful discussions, white board sessions, paper reviews as well as all the organiza-
tional support to make this happen. An additional thank you to Bernhard Wolf for the
complete review, correction, and improvement of this thesis document. This was an
tremendous effort and provided fantastic improvements.

Further gratitude to the gamification platform development fellows: Axel Schröder
(UI, still waiting for my Selenium tests), Kay Jugel (Backend), Martin Knechtel (Mo-
bile), and Benjamin Heilbrunn (Advocatus Diaboli) who all contributed to this project in
their spare time. Thank you, this was an awesome and highly intrinsically motivating
experience to work with you.

For the various application scenarios I would like to thank the following SAP col-
leagues and fellows: Peter Graf, David Sommer, Jens Lehman, Dirk Lehmann, Uwe
Steigmann, and Andreas Esch for supporting all phases of the SAP TwoGo Gamifica-
tion project from the idea to the productization. Robert Wetzold and Melissa Visintin for
providing a sophisticated gamification concept and designing beautiful badges for the
SAP Networking Lunch application. Jens Körner and Alexander Manger for helping with
the gamification of the SAP Financial Fact Sheet application. Finally, a big thank you to
the SAP Value Prototyping department, in particular, Rumiana Petrova, Nils Heeren,
Michael Dell, and Pascal Bräutigam for their endless efforts in positioning the gamifica-
tion platform within SAP and implementing many custom applications and prototypes
on top of it (e.g., CHIO Aachen, Soccer application).

Furthermore, I would like to thank my students Daniel Schlachter, Svenja Brunstein,
Alexander Manger, Aneeque Hassan, and Johannes Schad for their excellent contribu-
tions and investigations that go beyond the content of this thesis.

I would like to thank my parents Heike and Gunther Herzig for their endless faith
and patience. Finally, the biggest thank you goes to my girl Katjana Schneider who
tremendously supported me over the last years. No doubt, this thesis would not exist
without her endless patience as well as her remarkable hours of listening, discussing,
evaluating but most importantly motivating me to continue the journey.

XXIII

1 INTRODUCTION

1.1 MOTIVATION

Since early 2011, the interest of practitioners and researchers in gamification as a novel
method for improving user behavior over information systems grew almost exponen-
tially measured by the number of published papers and articles1. The majority of the
work is concerned with the design, behavioral, or psychological aspects of the domain,
i.e., researchers and practitioners investigate novel ideas, concepts, prototypes, mod-
els, or theories around human behavior and motivation. According to multiple studies,
gamification has a strong potential to shape user behavior and influence human psy-
chology positively (e.g., [91, 94, 95, 189]). Therefore, this thesis does not question if
and how gamification works, but assumes that the concept, if applied correctly, works.

Although the gamification of enterprise information systems is a promising approach
to support users’ motivation, enjoyment, and efficiency on the job, introducing gamifi-
cation into existing or new systems is an expensive task with regards to development
efforts. Simultaneously, the benefits for gamification are difficult to guarantee and to
measure which makes the entire project a risky undertaking. The risk for enterprise
systems is even higher due to their tight coupling with business processes, organiza-
tional structure, or the business model they support [118].

Nonetheless, there is little to no research investigating the specific technological
requirements, methods, and tools that are necessary for successfully implementing
gamification in information systems. In practice, most conceptual designs are never
or only partially implemented due to the high development costs (e.g., [154]). In order
to reduce initial development efforts as well as maintenance costs in the long run,
so-called gamification platforms emerged on the market providing some features of
gamification as a consumable service.

However, this thesis shows that existing approaches are not sufficient with regards
to the functional and non-functional requirements. In particular, the requirements, fea-
tures, methods, and architectural approaches of existing gamification solutions often
remain unclear or unstructured. Different solutions exist for various specific purposes.
This makes it arguably difficult for IT experts who are in charge of planning, executing,
and operating the gamification project to select the technology or approach that fits
best to the conceptual requirements from gamification designers.

1Based on Google Scholar’s annual publication counts.

1

1 Introduction

Therefore, this thesis rigorously investigates the technical requirements for gamifi-
cation and realizes them in a generic service platform that enables the introduction
of gamification in arbitrary information systems with high flexibility, integrability, and
reusability.

1.2 RESEARCH OBJECTIVE AND RESEARCH QUESTIONS

So far, there is only little research regarding the implementation of gamification in in-
formation systems. In particular, a generic gamification platform is missing which sup-
ports all requirements of the domain and allows to maintain the gamification design in
a flexible way.

Therefore, the overall research objective of this thesis is to investigate methods and
tools that systematically support the development and implementation process for ga-
mification and that reduce the associated efforts and costs.

More precisely, this thesis aims at answering the following research questions that
are derived out of the general research objective:

1. Which gamification concepts, structures, and relationships exist and have to be
provided by a generic gamification platform?

2. How can these concepts be represented in a formal way which is, nonetheless,
understandable for gamification and domain experts?

3. Which services, components, and structures are necessary to constitute a generic
platform for gamification which supports all identified concepts of research ques-
tions one and two?

4. How can the identified services and components be seamlessly integrated with
arbitrary enterprise information systems?

1.3 RESEARCH DESIGN

For this thesis, constructivism has been chosen as epistemological assumption, be-
cause the resulting artifact does not exist naturally in any known setting but has to be
constructed prior to evaluation. Hereby, the artifact in question is derived deductively
out of existing theories and prior work based on a coherent and logic argumentation.
Besides the derivation itself, the artifact is evaluated in controlled experiments with
regards to resource utilization. Moreover, the artifact is tested in five independent and
different real-world applications with regards to feasibility, completeness, applicability,
and universality.

1.4 THESIS STRUCTURE

This thesis is structured as presented in Figure 1.1. First, the foundations for gamifica-
tion and enterprise information systems are described in Chapter 2. To structure and
classify the research questions and associated contributions, the gamification process
is introduced in Chapter 3 as a modified software development process. Based on a
comprehensive literature review, Chapter 4 structures and describes the conceptual
requirements of gamification which are then formalized by the Gamification Modeling
Language (GaML), a novel domain-specific language, in Chapter 5.

2

1.4 Thesis Structure

Transformation
(Chapter 7)

Requirements

(Chapter 4)

Functional
(Chapter 4)

Non-Functional
(Chapter 4)

Evaluation

(Chapter 8)

Transformation
(Chapter 8)

Gamification

Modeling Language

(Chapter 5)

Gamification

Run-time
(Chapter 7)

Gamification

Run-time Model
(Chapter 7)

Gamification

Process

(Chapter 3)

Foundations

(Chapter 2)

Summary and

Outlook

(Chapter 9)

Related Work

(Chapter 6)

Figure 1.1: Overall structure of this thesis

3

1 Introduction

Based on the syntactic elements and features of the language, existing technologies
are classified and assessed in Chapter 6. This assessment demonstrates that none
of the existing technologies suffices all technical requirements determined by GaML.
Hence, a novel runtime environment capable of fulfilling the requirements is proposed
in Chapter 7. Furthermore, Chapter 7 demonstrates the automatic compilation of GaML
into the runtime environment’s model, i.e., describes how valid instances of GaML can
be automatically compiled into executable code for the runtime environment.

Finally, all proposed concepts and artifacts are evaluated with regards to feasibility,
applicability, and non-functional requirements using five gamified real-world applica-
tions or enterprise information systems (Chapter 8). Furthermore, one selected app-
lication is used to validate and demonstrate the benefits of the overall approach. The
thesis closes with a summary on the research contributions and an outlook to future
work.

1.5 PUBLICATIONS

This thesis consolidates a number of research results which have been published in
journals and national or international venues. Hence, the content of this thesis does
not develop novel results per se, but rather gives a comprehensive story using the
isolated artifacts and outlines further details of the published work. In particular this
concerns the following publications:

1.5.1 CONFERENCE AND JOURNAL PAPERS

• HERZIG, P.; STRAHRINGER, S. & AMELING, M. Gamification of ERP Systems - Ex-
ploring Gamification Effects on User Acceptance Constructs. In Multikonferenz
Wirtschaftsinformatik, GITO, 2012, pp. 793-804.

• HERZIG, P.; AMELING, M. & SCHILL, A. A Generic Platform for Enterprise Gamifi-
cation. In Joint Working IEEE/IFIP Conference on Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012, pp. 219-22.

• HERZIG, P. & AMELING, M. Motivationsschub: Geschäftsanwendungen durch Spiel-
elemente verbessern. In iX - Magazin für professionelle Informationstechnik,
2012(9), pp. 104-110.

• HERZIG, P. & SALMEN, A. Gamification in Kollaborationsnetzwerken: Chancen und
Risiken für die industrielle Produktion. In atp edition - Automatisierungstechnische
Praxis, 55(3), 2013, pp. 24-32.

• HERZIG, P.; WOLF, B.; BRUNSTEIN, S. & SCHILL, A. Efficient Persistency Manage-
ment in Complex Event Processing: A Hybrid Approach for Gamification Systems.
In MORGENSTERN, L.; STEFANEAS, P.; LVY, F.; WYNER, A. & PASCHKE, A. (Eds.), The-
ory, Practice, and Applications of Rules on the Web, Springer Berlin Heidelberg,
volume 8035 of Lecture Notes in Computer Science, pp. 129-143, 2013.

• HERZIG, P.; JUGEL, K.; MOMM, C.; AMELING, M. & SCHILL, A. GaML - A Modeling
Language For Gamification. In Proceedings of the 2013 IEEE/ACM 6th Interna-
tional Conference on Utility and Cloud Computing, IEEE, pp. 494-499, 2013.

• HERZIG, P.; AMELING, M.; WOLF, B. & SCHILL, A. Implementing Gamification: Re-
quirements and Gamification Platforms. In REINERS, T. & WOOD, L. (Eds.), Gami-
fication in Education and Business, Springer, 2014, to be published.

4

1.5 Publications

• HERZIG, P.; AMELING, M. & SCHILL, A.. Workplace Psychology and Gamification:
Theory and Application. In REINERS, T. & WOOD, L. (Eds.), Gamification in Educa-
tion and Business, Springer, 2014, to be published.

1.5.2 PATENTS

• HERZIG, P. & AMELING, M. Gamification for Enterprise Architectures. Patent
(United States), Application Number: 13/586,507.

• HERZIG, P. & AMELING, M. Synchronization for Context-Aware Complex Event Pro-
cessing. Patent (United States), Application Number: 13/649,916; to be pub-
lished.

5

2 FOUNDATIONS
In this chapter, relevant foundations and premises for the entire thesis are described.
First, definitions and theoretical aspects of gamification are introduced and discussed.
Second, technical topics, namely regarding service-oriented and event-driven architec-
tures, are presented.

2.1 GAMIFICATION

In the following section, the topic of gamification is introduced presenting definitions,
motivation, and psychological concepts.

2.1.1 DEFINITION

In the research literature two competing definitions exist for the term gamification.
[65, 66] define gamification as

Definition 1. “the use of game design elements in non-game contexts.”

Their work is rooted in prior established theories. For example, the definition is based
on Caillois [46, p. 27] who distinguishes between paidia and ludus as two kinds of differ-
ent activities. While paidia (playing) refers to free-form, expressive, and improvisational
behaviors, ludus (gaming) characterizes rule-based playing under determined goals in
accordance with Caillois’ definition of a game:

Definition 2. "[...] an activity that is voluntary and enjoyable, separate from the real
world, uncertain, unproductive in that the activity does not produce any goods of exter-
nal value, and governed by rules" [46, p. 4].

This distinction is consistent with classical game research where ludus is character-
ized through explicit rule systems and discrete goals and outcomes (e.g., [107, 171]).
Furthermore, McGonigal defines four basic traits that can be found in any game: clear
goals that give the player a sense of purpose, rules that define the limitations how
to achieve the goal, a feedback system giving the player the promise that the goal in
question is definitely reachable and, ultimately, a voluntary participation, i.e., the user
accepts the goals, rules, and feedback of the system voluntarily. Everything else, such
as interactivity, narrative context, graphics, or rewards are enhancements or reinforce-
ments of these defining features [136].

7

2 Foundations

Consequently, [136] has introduced the term gamefulness in contrast to playfulness
(e.g., [1]) for gamification. Past human-computer interaction research has mainly fo-
cused on the playfulness of software systems [65, 145]. However, research with re-
gards to gamefulness received less attention in the past, although the idea of game
element isolation and adoption is not completely new (e.g., [48, 49, 133]).

It is important to mention that the separation into paidia and ludus is a theoretical con-
sideration. In practice, however, games and gamified systems may also coincidence
with playful behaviors and attitudes (e.g., [22, 88]) and vice versa (e.g., [171]).

Besides this distinction, the definition implies that gamification is not about con-
structing games as a whole but merely applying certain parts (game design elements)
thereof which may support motivation and participation in non-game contexts. There-
fore, behind the definition a two-dimensional schema is assumed as presented in Fig-
ure 2.1.

Gamification
(Serious)
Games

Toys
Playful
Design

Whole Part

Gaming (Ludus)

Playing (Paidia)

Figure 2.1: Classification of gamification (based on [65])

Despite their rigorous definition, [65] do not report a complete list of game design
elements which are specific to gamification. Instead, the authors provide a general
taxonomy for structuring game design elements on various levels. In this taxonomy,
exemplary design elements, tools, and methods of games are distributed across five
abstraction levels including game interface design patterns, game design patterns and
mechanics, principles and heuristics, models, and methods of game design (Table 2.1).

This hierarchy defines very generic and abstract methods (e.g., playtesting or play-
centric design) on the highest level L5 and very concrete elements (e.g., graphical
game design elements) on the lowest level L1 where the lower ones are created using
the methods and tools of the higher levels.

A part of this hierarchy is consistent with classical game research. For example, [13]
considers a semiotic layer, i.e., “the part of the game that informs the player about
the game world and the game state through visual, auditory, textual, and sometimes
haptic feedback”. This refers to the L1 level of Table 2.1. Furthermore, [13] distinguishes
a mechanical layer which “is the engine that drives the game action, [...], and changes
the game state” and refers to L2 of the presented hierarchy.

Moreover, the game mechanics layer (L2) can be specified in more detail. According
to [132], game mechanics “refer to the gameplay which emerges from [game] rules”
and, therefore, may consist of one to many different rules. These rules may form a
rule set procedure that determines the overall algorithm of the game [103] or can be

8

2.1 Gamification

Level Description Examples

Game Interface
Design Patterns
(L1)

Common successful interaction
design components and design
solutions for a known problem in
a context, including prototypical
implementations

Badges, Leaderboards, Levels
(e.g., [60, 202])

Game design
patterns and
mechanics (L2)

Commonly reoccurring parts of
the design of a game that
concern gameplay

Time Constraints, Limited
Resources, Turns (e.g.,
[31, 68])

Game design
principles and
heuristics (L3)

Evaluate guidelines to approach a
design problem or analyze a
given design solution

Enduring play, clear goals,
variety of game styles (e.g.,
[173])

Game models
(L4)

Conceptual models of the
components of games or game
experience

Mechanic-Dynamic-
Aesthetics (MDA) [123],
Fantasy-Challenge-
Curiosity (FCC) [133], Game
design atoms [35], Core
Elements of Gaming
Experience (CEGE) [47]

Game design
methods (L5)

Game design-specific practices
and processes

Playtesting, Playcentric design,
Value conscious game design
(e.g., [83, 171])

Table 2.1: Levels of game design elements [65, p. 12]

considered as the “procedures of actions” [177], i.e., the procedures that are triggered
based on the users’ input to the game.

[98] criticize the definition of [65] since it implies that every system qualifies as gami-
fication as long as it features at least one game design element. Hence, they propose
to include the overall goal of gamification into the definition, i.e., the support of the
user’s overall value creation:

Definition 3. Gamification refers to a process of enhancing a service with affordances
for gameful experiences in order to support user’s overall value creation [98].

Additionally, [98] consider gamification as a continuous process of enhancing a ser-
vice or system with the respective game design elements.

In this thesis, both definitions are considered as valid. First, the isolation and appli-
cation of game design elements in non-gaming context is considered as gamification.
However, the current research literature does not provide a set or taxonomy of such
game design elements. In fact, neither have researchers agreed on a common tax-
onomy of game elements yet [31, 173] nor has a particular subset of elements been
translated into the domain of gamification in a central place. Thus, this thesis develops
and evaluates its own taxonomy in conjunction with the levels provided by Deterding
et al. In Chapter 4 the current gamification literature is surveyed, consolidated, and
structured accordingly.

Second, this thesis considers gamification as a continuous process of enhancing and
improving the companies’ business processes and information systems with regards

9

2 Foundations

to participation, motivation, and engagement. This process itself is elaborated in more
detail in Chapter 3. The consideration of this overall process is helpful to identify and
understand practical problems which are later on addressed by this thesis.

Moreover, the presented definitions are considering non-game contexts in general.
However, in this thesis the non-game context is narrowed down to enterprise or en-
terprise information systems such as supply chain management, customer relationship
management, portals, or enterprise resource planning which act as mediator to trans-
port a gameful design to its users in an inexpensive and scalable way. Hence, any other
kind of gamified system which is not realized as an executable computer program or
systems that are intended to apply gamification to other domains are excluded by this
assumption.

2.1.2 EMERGENCE AND PROGRESSION ASPECTS OF GAMES

Another important aspect of games is the consideration of emergence and progression
which have to be reflected for gamification as well.

On the one hand, emergence is defined as the combination of rules that may lead
to variation in games and is the primordial game structure according to [106]. In other
words, games need rules that lead to many different combinations and states as in
classical board or card games (e.g., chess). These potentially large numbers of com-
binations may then lead to the design and derivation of strategies. Consequently, the
replayability of emergent games is high. Furthermore, emergent games are character-
ized through an end state (e.g., a winning state), i.e., the game is finite.

On the other hand, progression is characterized through a set of rules that lead to
a comparably low number of states and which enforce the players to go through a
predefined sequence of actions along a predefined path. According to [106], game
mechanisms of progression have become popular with the rise of video games. For
example, typical progression game genres such as jump-and-run or role playing games
can be found almost in the form of video games only. Consequently, the replayability of
such games is low and an end state is not necessarily required. Additionally, extending
the game by new elements (e.g., missions, goals, or levels) is simpler compared to
emergent games [106].

In the context of this thesis it has to be noted that gamification is primarily concerned
with the design of progression games. It is argued that the non-game context in which
the game design elements are applied is already an emergent system (e.g., the work-
place), i.e., the gamification designer does not have to design primarily for emergence.
This does not mean that the gamification design cannot be designed for or lead to
emergent effects. However, it is not the primary design goal. Hence, it is notable that
especially game mechanics of progression can be found in the existing gamification
literature as presented in Chapter 4.

2.1.3 BIOLOGY & PSYCHOLOGY OF GAMES

Neuroscience researchers found that playing video games releases high amounts of
dopamine in the human brain [114]. Dopamine is associated with increased learning,
reinforcement of the current behavior, and attention. Furthermore, [26] found that dopa-
mine influences the incentive salience in general reward situations, i.e., the recipients
want the experience more often. However, there is no mediation with hedonic impact,
i.e., the recipients do not necessarily like the actual experience more.

Among others, dopamine is released in reward situations. Those rewards can be
either of extrinsic or intrinsic nature. The former is represented by, for example, money,

10

2.1 Gamification

status, goods, promotions, or punishment whereas the latter by, for instance, positive
emotions, individual strengths, or social connections. While extrinsic motivators lead
to hedonic behavior, intrinsic rewards lead to autotelic behavior under which all self-
motivating and self-rewarding activities are subsumed [61]. [136] argues that those
autotelic activities engage people completely and are the most “pleasurable, satisfying,
and meaningful emotional states that we can experience”.

In fact, video games and its designers rely heavily on intrinsically motivating factors
since extrinsic ones are virtually not available. For this experience, 58% of the American
population spent $14.8 billion on video games in 2013 only excluding classical games
[74]. From this percentage, more than five million people in the United States are
playing games for 40 hours per week [69]. [163] found that 46.6% of employees play
games during their working hours. As another example, gamers have collectively spent
5.93 million years of playing World of Warcraft [136].

Variable Type Antecedent of

Work Engage-

ment?

Antecedent of

Game Engage-

ment?

Hope Personal
resource

YES YES

Optimism Personal
resource

YES YES

Resilience Personal
resource

YES NO

Mastery Personal
resource

YES YES

Self-efficacy Personal
resource

YES YES

Autonomy/Control Job resource YES YES

Social Support Job resource YES YES

Feedback Job resource YES YES

Skill variety Job resource YES YES

Environmental
Climate

Job resource YES YES

Positive Emotions (e.g., enjoyment, awe,
prosocial emotions, curiosity, enthusiasm)

YES YES

Table 2.2: Comparison of intrinsic factors leading to work and game engagement
(based on [94])

The advantage of the provided intrinsically motivating factors is that they are, on the
one hand, inherently associated with the perceived experience and, on the other hand,
are created from oneself, i.e., they scale better compared to extrinsic rewards which
are limited with regards to frequency and size.

11

2 Foundations

In the field of psychology, researchers from the fields of positive psychology are
studying constructs that lead to happiness. The adoption of concepts from positive
psychology into the field of organizational psychology led, in addition, to the proposal
of happiness conceptualizations (e.g., engagement) in workplace environments.

Established theories and models are, for example, the self-determination theory
[169], the job demand-resource model [17, 18, 64], psychological capital [131], positive
organizational behavior [130], or flow [62, 96]. As an example, the job demand-resource
model describes intrinsic factors leading to engagement on the job. These factors are
divided into personal resources (e.g., hope, mastery, or self-efficacy) and job resources
(e.g., social support, skill variety, environmental climate).

Subsequent research compared such factors leading to engagement on the job with
factors leading to engagement in games [94]. It has been found that the majority of
factors are supported equally in both domains (Table 2.2).

This comparison supports the working hypothesis of gamification in the enterprise,
i.e., that it is possible to foster higher levels of engagement and motivation through the
isolation and application of game mechanics in this particular domain. Based on these
factors, various scientific studies demonstrated the quantitative or qualitative benefits
of gamification (e.g., [91, 94, 95, 189]).

This concludes the consideration of various aspects of gamification as a foundation
for this thesis. It has been shown how gamification differs from classical and video
games. Furthermore, models, theories, and hypotheses of gamification have been
outlined. As a general premise of this thesis, it has been defined that the gamification
of the workplace is considered herein. Chapter 3 introduces the corresponding process
and the key roles for introducing gamification in enterprise information systems. Based
on this process, this thesis specifically considers the technological aspects that are
necessary to investigate to introduce gamification in large-scale enterprise scenario.
Those foundations are presented in the following section.

2.2 ENTERPRISE ARCHITECTURES

In most cases, gamification is implemented as an additional aspect into a set of in-
formation systems of the enterprise, e.g., Enterprise Resource Planning (ERP), Sup-
ply Chain Management (SCM), Customer Relationship Management (CRM) and other
types of systems, which are pervasively used in the workplace today. Those systems
provide an adequate means to transport and mediate a holistic gameful experience to
its end users.

However, introducing gamification into existing or new systems is an expensive task
with regards to development efforts. Simultaneously, the benefits for gamification are
difficult to guarantee and to measure which makes the entire project a risky undertak-
ing. The risk for enterprise IS is even higher due to their tight coupling with business
processes, organizational structure, or the business model they support [118].

Therefore, this section examines general architecture paradigms and their inherent
characteristics and requirements which build the technical foundations for the rest of
this thesis.

2.2.1 OVERVIEW

The authors in [118] argue that enterprise software completely differs from other soft-
ware systems, such as system-software, desktop applications, or video games, be-
cause it is strongly connected with the internal organization of the enterprise as well

12

2.2 Enterprise Architectures

Requirement Description

Simplicity The enterprise architecture must be simple in order to allow
efficient communication between key personnel.

Flexibility and
Maintainability

Due to changes in, e.g., economies, laws, or reorganization,
the enterprise system must be highly flexible to be adopted
in new contexts or changeable to new requirements.

Reusability The architecture should provide basic building blocks that
can be reused in a variety of contexts.

Decoupling of
functionality and
technology

The architecture has to abstract from technologies and im-
plementation details in order to make the decisions in the
enterprise independent from it. This goal aims to easily inte-
grate innovative technologies by seamlessly migrating from
the old ones.

Table 2.3: General requirements for enterprise systems (based on [118])

as its business processes and model. Therefore, enterprise software has to deal with
specific requirements. The overall goal of enterprise architectures and software is to
provide the agility, flexibility, and efficiency that is necessary to fit the constant change
of an organization. In fact, in practical embodiments, the number of change requests
for a particular enterprise solution is negatively correlated to the agility of the entire sys-
tem over time [118]. Reasons are either of technical or, more importantly, organizational
nature. Based on their observations, the same authors provide general requirements
for such systems shown in Table 2.3.

In prior research two main design methodologies have emerged that try to ful-
fill these requirements on an abstract level: Service-oriented Architecture (SOA) and
Event-driven Architecture (EDA). In the subsequent text, both methods are described.
Moreover, related concepts which emerged out of these two principles, such as Busi-
ness Process Management (BPM) or Complex Event Processing (CEP) are presented
for the sake of completeness.

2.2.2 SERVICE ORIENTED ARCHITECTURE

Service-oriented Architecture (SOA) and its related design principles are one of the
most discussed topics in the context of enterprise software [124, 179]. However, there
is no commonly accepted definition of the term itself [24, 75, 108]. The Advancing
Open Standards for the Information Society (OASIS) group attempts to define stan-
dards in the context of SOA. Therein, SOA is defined as “a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different ownership
domains” [143].

In this context, the capabilities are provided via services which are defined as “a
mechanism to enable access to one or more capabilities, where the access is provided
using a prescribed interface and is exercised consistent with constraints and policies
as specified by the service description” [143].

Another definition is given by [149, 150] who define services as “autonomous, plat-
form-independent entities that can be described, published, discovered, and assem-

13

2 Foundations

Invoice
Service

Flight
Service

Customer
Service

Booking
Service

Other
Services

Booking &
Invoice Service

Other
Services

Website of
Airline

Booking
Process

Other
Processes

Other
Portals

Service
Layer

Interim
Layer

Process
Layer

Enterprise
Layer

Figure 2.2: An exemplary logical SOA (based on [118, p. 114])

bled and are technologically neutral, loosely-coupled and support location transparency
encapsulating business functionality”.

Although no common definition exists, different researchers share the same view
on service-orientation. This view includes, for example, autonomous and interoperable
services that offer reusable business functionality via standardized interfaces [124].
Moreover, these services should be loosely-coupled and provide the possibility to be
orchestrated within business processes [191]. Additionally, services may have different
levels of abstraction and appear on various layers within a holistic application. For
example, services may reflect entire processes, the presentation layer, business logic1,
or data management functionality.

Figure 2.2 presents an exemplary service-oriented architecture of an airline. First,
on the lowest layer basic services such as a flight, customer, or booking services exist
which are used to maintain and retrieve data of the underlying business entities.

Second, more complex services exist on an interim layer which hides the communi-
cation complexity that might be necessary between multiple basic services. Usually,
the services are façades, gateways, adapters, or functionality enhancing services [118,
pp. 108].

Third, services may be composed within business processes. In this case, the ser-
vices are executed in a particular order whereas the communication complexity be-
tween services, users, and the surrounding context is hidden by respective BPM tools.
In this example, the booking process is instantiated after a customer has selected a
flight from the basic flight service. Afterwards, the customer’s data might be retrieved
or created using the customer service. Subsequently, the booking itself is issued and
an invoice is sent upon completion of the process instance.

Fourth, the website of the airline is the central entry point for customers to use and
interact with the underlying enterprise services.

1Please note that the term logic in this thesis refers to a particular functionality, procedure, or algo-
rithm and does not refer to any kind of predicate logic (e.g., first-order, second-order, many-sorted, or
infinitary logic).

14

2.2 Enterprise Architectures

The intention of this approach is to increase modularity and reusability of components
which is a major software design goal in computer science. However, the granularity of
such services is usually higher than in traditional software components (e.g., libraries,
frameworks) since they may cover larger blocks of functionality on the one hand or
even rely on subsequent services on the other hand. It is also important to note that
the different services need not to belong to the same owner but can be provided by
different teams, departments, or other companies [104].

Ultimately, SOA accepts the wide heterogeneity of distributed systems and parts
thereof that can be usually found in Information Technology (IT) landscapes of com-
panies [104, pp. 14]. This heterogeneity arises from the variety of utilized platforms,
programming languages, or technologies. With the introduction of services and their
interface descriptions, service users can fully abstract from the underlying implemen-
tation details.

Based on this argumentation, Table 2.4 summarizes the most important traits of
services that can be found in the literature.

Principle Description

Standardized
Contract

Services within the same service inventory are in compliance
with the same contract design standards

Loose Coupling Service contracts impose low consumer coupling requirements
and are themselves decoupled from their surrounding environ-
ment

Abstraction Service contracts only contain essential information and informa-
tion about services is limited to what is published in service con-
tracts.

Reusability Service contain and express agnostic logic and can be positioned
as reusable enterprise resource.

Autonomy Services exercise a high level of control over their underlying run-
time execution environment.

Statelessness Services minimize resource consumption by deferring the man-
agement of state information when necessary.

Composability Services are effective composition participants, regardless of the
size and complexity of the composition.

Table 2.4: Characteristics of services (based on [76, p. 49])

In the airline example above, the need of service composability has been already vi-
sualized. In this sense, various services are wired together to achieve a more complex
goal. Therefore, closely related to SOA is BPM as the overarching discipline to man-
age the company’s business processes, for instance, travel reimbursements or sales
processes. Such business processes can be defined, for example, as a “collection of
activities performed by human users or software applications that together constitute
the different steps to be completed to achieve a particular business objective” [7].

BPM tools or engines allow to take a particular business process definition (e.g., via
Business Process Modeling Notation (BPMN) or Business Process Execution Language
(BPEL)) at design-time and create running instances of this processes by creating a

15

2 Foundations

formal model internally. Those formal models are, for example, based on Petri Nets or
Pi-Calculus [195]. The running process receives event from its users or the service it
invokes. Moreover, the BPM monitors the processes at runtime, handles exceptions,
or helps power users to administrate and maintain the running instances.

With regards to enterprise gamification, such business processes are intended to
be gamified in order to achieve the motivational improvements described in Section
2.1. In terms of SOA, the service infrastructure, therefore, has to be extended by
a gamification service which provides the desired characteristics. This thesis aims
at a technical gamification solution that can be provided in the sense of the service
notion described above. Thus, the considered preliminaries provide the foundations for
examining the non-functional requirements of the ideal gamification service in Section
4.3.

2.2.3 EVENT DRIVEN ARCHITECTURE

Event-driven Architecture (EDA) has emerged as a comparably new term for a specific
class of architectures and can be considered as complementary to SOA. As some
of its aspects are used within this thesis (e.g., Chapter 7), necessary foundations are
considered in the following.

2.2.3.1 DEFINITION, CHARACTERISTICS, AND BUILDING BLOCKS

Event-driven Architecture (EDA) is defined as “an architectural style in which some of
the components are event driven and communicate by means of events” [129, p. 16].
According to [126], an “event is an object that is a record of an activity in a system
defined through the following three aspects:

1. Form, data of the event represented by a tuple of arbitrary data objects

2. Significance, the event form should contain data that signifies the event.

3. Relativity , an activity is related to other activities by time, causality, and aggrega-
tion” [126, p. 88].

EDA is especially useful when one or more of the following requirements are neces-
sary: First, maintaining complex logic such as pattern matching, aggregation of homo-
geneous and heterogeneous events across applications, or correlation of current and
historical data. Second, processing of high volume data and events which arrive contin-
uously with a low sampling period. Third, computation of results should be available in
(soft) real-time. Fourth, scalability is required along increasing amounts of data or trans-
actions. Finally, agility is necessary to react quickly on changing business demands and
requirements [39, p. 39].

As the definition of EDA implies, components are event-driven by default, i.e., they
start processing upon reception of events and send the results of their calculation to
one or more subsequent receivers in the form of events. A puristic EDA distinguishes
the following types of components [39].

Event sources An event source is a special component which creates events from
relevant information. Those are packaged into messages and sent to a mediator com-
ponent. It is important to mention that the event source makes no assumption about
where the event is consumed or if it is consumed at all [39]. Hereby, all entities such

16

2.2 Enterprise Architectures

as entire applications, business processes, internal or external stakeholders of an en-
terprise might be considered as event sources or generators [124].

Event sinks Event sinks are arbitrary complex software components which are able
to receive events [129] and are invoked upon event arrival. By definition, sinks contain
the business logic to process the events.

Event mediators Mediator components are dispatching events from event sources
to all interested sinks. Here, not only one-to-one but one-to-many communication be-
tween event sources and sinks is possible. A mediator may also queue events over
a predefined time window when event sinks are overloaded or not present. Further-
more, components may interact in a publish-subscribe pattern, i.e., multiple sources
act as publishers and sinks act as subscribers of events. The subscription can be, for
example, based on channel, content, or topic. In practical embodiments, the term
Message-oriented Middleware (MOM) is used in literature to describe the technol-
ogy which realizes the mediator’s functional and inherent non-functional requirements
(e.g., [200]). Term ambiguity is introduced by further terms such as Enterprise Ser-
vice Bus (ESB) which offers concepts beyond message passing (e.g., [39, p. 163]).
Nonetheless, ESBs include the basic message mediation and passing functionalities
of MOMs as well. Figure 2.3 presents the above mentioned components and their
dependencies schematically.

Source M
ediator

Sink &
Source

Sink

M
ediator

Sink

Figure 2.3: Components of an EDA (based on [39, p. 52])

Event processors In addition to these three basic building blocks of EDAs, event pro-
cessors can be considered as a fourth component. The upper perspective presumes
that each event contains all relevant information for the components to proceed. Thus,
so far one event at a time has been considered only. However, [39] argue that inde-
pendent considerations of single events are not sufficient in most application domains.
Identifying dependencies, relationships, and correlations (all subsumed as patterns be-
low) between events brings up interesting information. Under this premise, different
methods such as reactive rule systems, CEP, or Event Stream Processing (ESP) aim
at providing fast detection for interesting patterns in continuous event streams or un-
structured event clouds. Hence, the following two subsections describe some funda-
mentals for these approaches.

2.2.3.2 COMPLEX EVENT AND STREAM PROCESSING

According to [126], “CEP enables to identify causal, temporal, and spatial relationships
between events. Those relationships specify patterns that are analyzed in real-time
using event-pattern matching”. CEP can be also considered as a process of event se-
lection, aggregation, hierarching, and abstracting of events to generate higher level

17

2 Foundations

events [152, p. 59]. [39] argue that “CEP is an integrated part and key element of any
technically sophisticated event-driven architecture”.

In reactive and event-driven systems such as CEP, the traditional data processing
as used in database technologies is inverted. In contrast to databases where tran-
sient queries are issued against persistent data, with CEP, persistent queries are is-
sued against steady, continuous, and dynamic data or event streams. This implies that
queries are of reactive nature. Thus, zero latency can be assumed between event ar-
rival and event processing which supports the basic requirement of real-time behavior
in event-driven systems.

CEP is an evolutionary approach since its development roots in prior work such as
production rule systems [176], active databases [153], and event/action/transition logic
systems [172]. In the last years, CEP has evolved as the overarching discipline sum-
marizing the aforementioned approaches and technologies [152, p. 58]. Sometimes
the term Event Processing Agent (EPA) is used instead of CEP which describes the en-
tire technology stack that is necessary to receive, process, and send events. Multiple
EPAs may form a network in order to distribute the execution (e.g., for scalability, fault
tolerance, complexity reduction, or maintainability) of events which is, consequently,
referred to as Event Processing Network (EPN). In this context, an EPN is inherently
distributed with strong cohesion and loose coupling of the single components, while a
monolithic EPA has weak cohesion and is strongly coupled with regards to functionality
[39, pp. 71-72].

Moreover, CEP has to be distinguished from ESP. ESP refers to technologies which
analyzes ordered and continuous data streams with regards to predefined event pat-
terns [39, 129]. In this context, ESP emphasizes the efficient extraction, aggregation,
and modification of events with regards to high throughput and low latency [198]. To
deal with high volume data, operators in stream processing systems act on finite sliding
windows to convert blocking operators such as sum, count, or max into non-blocking
ones [52] and to output results continuously, i.e., for each newly arrived event an out-
put event is generated. Furthermore, these operators primarily process events on their
payload and attributes, e.g., to average the temperature attribute of events received
from a machine.

On the other hand, CEP mainly focuses on complex event pattern detection in arbi-
trary event clouds [152, p. 59], i.e., there is not explicit notion of sliding windows [52].
Instead, the utilized operators, their associated semantics, and the events’ timestamps
determine how long events are of interest. This is referred to as context or consump-
tion mode [52, 53]. Additionally, events are typically correlated based on the tuple level
rather than the attribute level, i.e., based on their occurrence timestamps and pure ex-
istence, for example, using logical operators, temporal, or spatial operators as shown
below. Since there is no general definition how CEP and ESP formally differ from each
other, hereinafter, ESP methods and tools are considered broadly as a real subset of
CEP.

Figure 2.4 presents schematically how complex events are constructed from simpler
events in a CEP engine. First, so-called simple or atomic events arrive at the CEP
engine. Those events are characterized through instantaneous occurrence, i.e., the
event’s duration equals zero. On this layer, selection operators are used to filter events
based on their attributes.

Second, some events from the receiving layer might be aggregated into more com-
plex events or they are enriched with further data (e.g., the event gets a duration or

18

2.2 Enterprise Architectures

simple
events

middle
events

complex
events

event
sources

A
bs

tr
ac

tio
n

event
sinks

Figure 2.4: Abstraction of events (based on [39, p. 86])

the event gets additional attributes as payload)2. Again, events might be filtered based
on the resulting payload. Furthermore, temporal operators might be applied when the
events are equipped with a duration. Overall, there are 13 theoretical operators to
correlate events temporally as defined in [6]. Figure 2.5 shows the semantics of four
different operators, namely during (a), after (b), meets (c), or finishes (d) [10]. All dia-
grams comprise two events called A and B having a start timestamp (i.e., the event’s
occurrence) and an end timestamp (i.e., the event’s occurrence plus its duration). Fur-
thermore, the operator refers always to event A as the left operand and event B as the
right operand, e.g., event A happens during event B. Note that operators expressing
the logical negation are available as well. In this example, the semantically opposite
operators cover include, before, metBy , and finishedBy respectively.

A

B

t

A during B

A

B

t

A after B

A

B

t

A meets B

A

B

t

A finishes B

Figure 2.5: Exemplary Temporal Operators [6]

Third, the same selection, enrichment, aggregation process might be continued until
all events have been processed accordingly.

Languages for CEP foster a declarative writing of rules and are subsumed under
Event Processing Languages (EPLs). In most cases, well-established query languages
such as Structured Query Language (SQL) have been extended by language constructs
to support, e.g., sliding time windows, stream elements, or temporal operators [117, p.
13].

For example, there are SQL-based languages [3, 12, 117] as used in systems such
as Streambase [184] or Esper [77] as well as the Continuous Query Language (CQL)

2Since events are considered immutable, in fact, enriching refers to the enrichment of an event’s copy
herein.

19

2 Foundations

in general. Furthermore, rule-based EPLs exist such as Reaction RuleML [167], Tibco
[190], or the Drools Rule Language [8, 70]. Finally, there are agent-oriented EPLs, e.g.,
RulePoint [100] or EventZero [78], and scripting languages, e.g., Netcool Impact [99] or
Apama [159].

2.2.4 PRODUCTION RULES

Today’s event processing systems often combine event stream or complex event pro-
cessing systems with logical rules to enable further application classes [52]. Produc-
tion rules in the form of if-then rules are used in some practical implementations on
top of the event processing layer. Such rule systems have a longer history in so-called
expert systems or, more recently, business rule management systems (BRMS) (e.g.,
[166, 196]). The main idea of this approach is to externalize the business logic from
the rest of the application in order to increase the agility of the infrastructure to meet
fast changing business requirements. In accordance with [166], structuring the logic
of the enterprise in business rules helps to avoid ad-hoc rules which lead to confusion,
contradiction, operational inefficiency, miscommunication, rule inconsistency, and inac-
cessible rules. Moreover, business rules are entitled to speed up operational efficiency,
since logic can be adopted or changed faster.

Such logical rules or productions consists of one condition or Left-hand side (LHS)
which comprises arbitrary set of logical expressions or patterns and an action or Right-
hand side (RHS) which is executed when the condition becomes true. Furthermore,
there is a set of Working Memory Elements (WMEs) or facts residing in the main
memory and which comprise several attribute-value pairs. The rules are executed on
top of the current WMEs. To solve the matching problem between multiple rules on
the one hand and multiple facts on the other hand, an efficient algorithm, called RETE,
has been proposed [81].

In this algorithm, all rules and their patterns are decomposed and translated into
a directed graph representation as shown exemplarily in Figure 2.6. In the classical
approach, α, β, and terminal nodes are distinguished [81]. New or updated WMEs from
the fact base are propagated as tokens through this graph.

In the first step, tokens pass the root node. Second, α-nodes process patterns re-
lated to intra-element structures. For example, the graph splits up into multiple α-nodes
when multiple values are checked on the same attributes (in the example, the element’s
type). Different attribute checks are furthermore wired together sequentially. These α-
nodes are stateless as they only have to consider the currently received token and,
if the criterion matches, propagate the token to the next node. Consequently, these
nodes have exactly one input and output node and do not modify the processed token.

Third, β-nodes process inter-element patterns, e.g., join operations between differ-
ent tokens. Thus, these nodes have two, a left and right, input. Moreover, they are
equipped with a left and right internal token store. In the given example, selected to-
kens of type A are received on the left input and tokens of type B on the right input.
Within the node, these tokens are joined. For example, if a token of type A is received
on the left input, the token’s ID is matched against all tokens IDs from the right internal
memory where previously received tokens of type B have been stored. For all suc-
cessful equi-joins, new tokens are generated which are propagated to the subsequent
node, i.e., one input token may lead to many output tokens on a β node. Finally, the
received token is stored within the node’s left internal memory. As a consequence of
this process, β nodes are always stateful and their runtime complexity depends on the
size of the internal token stores and, hence, on the history of processed propagations.

20

2.2 Enterprise Architectures

Entry Points

Root Node

α Nodes

β Nodes

A.ID

==

B.ID?

Terminal Nodes

Rule1 Rule2

A.Type==A? B.Type==B?

A.Attribute1

>

30?

A.Attribute2

==

„ABC“?

Figure 2.6: Example instance of a RETE graph

Eventually, tokens pass the criteria of all nodes and reach a terminal node. Hereby,
each terminal node represents the corresponding business rule. If the token reaches
the terminal node, the production is added to the conflict set, a structure where all
rules which have been activated in the same evaluation cycle are collected and then
executed to a corresponding resolution strategy [21, 89].

As some rules may utilize the same patterns in their LHS, the graph creation algo-
rithm can detect this situation and reuse nodes across different rules, a technique called
node sharing and which speed-ups the pattern matching process further [67].

In general, RETE’s theoretical runtime complexity for one firing lies between logarith-
mic execution time, i.e., O(1 + log2P) in the best case and polynomial execution time
O(W2C−1 + P) in the worst case with W being the number of facts in the fact base, C
being the number of patterns, and P being the number of productions. The worst case
applies for the propagation time of one token under the assumption that no discrimina-
tion network exists (i.e., no α nodes) and that C equal inter-element patterns (e.g., join

21

2 Foundations

operations) have to be performed consecutively on β nodes whose internal memories
are all filled up with WC tokens [80, p. 98]. Hence, both, the best and worst, cases are
irrelevant for practical scenarios. Despite some investigation (e.g., [5, 67]), the average
case has not been sufficiently determined yet as it depends on the history and statis-
tical distribution of processed tokens and, therefore, the state of the nodes’ internal
memories at execution time. Nonetheless, researchers and practitioners agree that
the worst case is not only very unlikely but also irrelevant for practical considerations
as it is orders of magnitude larger than the average case [20].

Hence, rule engines with the RETE approach provide an adequate means for the
design of fast and reactive systems that allow for high degrees of flexibility and agility.
As already argued by [52], rule engines can be used in conjunction with CEP or ESP
systems. For example, the Drools technology combines all aforementioned approaches
in one single solution.

2.2.5 CONTEXTUAL EVENT PROCESSING

Although formulated as one of the fundamental requirements by [183], the process-
ing of stored and persistent data in conjunction with volatile event-driven systems has
received less attention in research [144]. In fact, traditional expert systems and rules
engines process facts from a volatile working memory. Event storages or sliding win-
dows in CEP or ESP systems are volatile as well, i.e., in a failure situation all data might
be lost. Furthermore, those systems are not able to take additional contextual knowl-
edge into account, e.g., from ontologies, databases, or other non-streaming data sys-
tems (e.g., [3, 12, 137, 182]). Hence, for some application classes, various researchers
raised the question if the existing systems are “[...] expressive enough to capture com-
plex (business) events in all their aspects. How likely is that critical decisions are taken
merely on event patterns such as: event a is followed by event b in last 10 seconds?”
[11, p. 123]. Therefore, additional and more persistent knowledge might be neces-
sary upon event arrival to answer more complex questions. Thus, both approaches
have been integrated by numerous authors and are commonly known under Stream
Reasoning [194] or Knowledge-based CEP [8, 10].

A generic solution has been proposed in [144]. The authors utilize a Business Entity
Provider (BEP) that defines business entities encapsulating complex state derivation
logic and data management functionality. To interact with this data, the BEP offers
query and update interfaces to an Event Processing Agent (EPA). After rules have been
activated by external event sources in the EPA, the rules’ consequences may issue
one or more updates to the entities managed by the BEP. Subsequently, the BEP
calculates a new entity state based on the update operation, e.g., sum the value from
the current operation with values from prior updates. Moreover, a state change in any
entity can be propagated back to the EPA continuously or on demand. In the former
case, the respective entity is continuously monitored for state changes and the change
is inserted into the event agent as additional event. In the latter case, the entity provider
is queried by the EPA once a new event arrives from the event sources. This behavior
is visualized in Figure 2.7.

This approach provides two main advantages compared to previous ones. First,
durable and persistent entity state can be managed across the application’s life-cycle.
This state can be used while processing events to answer more complex questions.
Second, the definition of complex state-calculation logic can be encapsulated in busi-
ness entities, i.e., they do not have to be defined as rules in the EPA anymore. This

22

2.2 Enterprise Architectures

B
u

si
n

es
s

E
n

ti
ty

 P
ro

vi
d

er

Event Sources

E
ve

n
t

P
ro

ce
ss

in
g

A
ge

n
t

EC A

ECA

EC A EC A EC A

ECA

Query
Interface

Update
Interface

State derivation logic
State management

Event Sinks

Figure 2.7: Entity-based state management for complex event processing (based on
[144, p. 156])

does not only reduce the complexity of the rule base in the EPA, but allows for the
distribution and definition of “standardized” logic independently of rules [144].

In this thesis, this approach is translated and extended to the domain of gamification
in Chapter 7. Furthermore, the authors of the approach did not provide quantitative
evidence that it works in practice and fulfills the general requirements of event-driven
applications. In fact, it is shown in Chapter 8 that this general scheme possesses major
drawbacks with regards to performance. Hence, further extensions and resulting trade-
offs have to be discussed.

Other related concepts in this domain comprise, for example, [185] which allows the
encapsulation of state in procedural definitions locally available to the stream operators
in an ESP system. Moreover, [116] proposed well-encapsulated state management. In
their approach, the state is maintained at the context in which it is processed. State
deltas are managed and distributed by a state transformer. However, both approaches
dictate a certain style of programming paradigm, i.e., procedural or functional program-
ming. [186] proposed semantic CEP for knowledge rich event processing, i.e., the
usage of ontologies together with rules in order to allow rules such as ”buy Stocks of
Companies, who have production facilities in Europe and produce products from Iron
and [...] and their price/volume increased stable in the past 5 minutes”. Their main
assumption is that the ontology does not fit into the working memory and that the
ontology is rarely updated by external authorities. Based on this assumption, they pro-
posed several strategies to query the ontology. However, besides a polling strategy,
other strategies are tailored to the specifics of semantic query languages. Due their
specific assumptions and target platforms, these approaches are of lesser interest in
this thesis.

This concludes the consideration of the foundations on event-driven systems. This
chapter closes with a systematic comparison of the architectural styles and their impli-
cations for the rest of this thesis.

23

2 Foundations

2.2.6 COMPARISON OF APPROACHES

More recently, all of the aforementioned concepts are not perceived as competitive
approaches but complementary ones [127, 128].

Both paradigms have in common that they are not architectures themselves, but
design paradigms leading to a concrete architecture. As such, both principles aim at
improving the general requirements for enterprise architectures as outlined in Section
2.2.1. However, they are achieve by different means and trade-offs. Hence, Table 2.5
compares both approaches regarding a selection of aspects.

Aspect SOA EDA

Focus of Design Interfaces of Services Events and Messages

Modularity Services & Clients Event Sources, Sinks &
Middleware

Distributability Technology-inherent Technology-inherent

Communication synchronous, Request/Reply asynchronous,
publish/subscribe, multiple
recipients

Area of
Transaction

Client and Services form one
logical unit of work

event source and sinks form
independent logic unit of works

Relationship
between
components

Client has to know address and
interface of service

Components do not know each
other. Event sources make no
assumption about sinks.

Dependencies Interface definition, version, and
SLAs

Event syntax

Coupling Loosely coupled Extreme loosely coupled

Table 2.5: Comparison of characteristics in service-oriented and event-driven architec-
tures (based on [39, p. 37])

In contrast to the service-oriented approach, an EDA fosters the asynchronous com-
munication between enterprise components rather than traditional synchronous re-
quest and response patterns. Hence, components are not explicitly called by an inter-
ested party but react on arbitrary events. Of course, asynchronous Remote Procedure
Call (RPC) communication between services is also possible but not an often deployed
feature [39].

Moreover, the loose coupling is increased within EDAs since interface descriptions
have not to be known in advance. In contrast to SOA, participants are completely
decoupled from each other which results in increased flexibility and agility of the entire
architecture (e.g., [41]).

On the other hand, EDAs suffer from the clear definition of how components, inter-
faces, or data contracts are structured. Hence, SOA principles may help in EDA con-
texts to successfully structure all system instances as services. Therefore, researchers
proposed to combine both approaches into so-called Event-driven SOA (ED-SOA) [32,
127, 128, 147, 180].

24

2.2 Enterprise Architectures

For the rest of this thesis, this perspective is shared, i.e., components are designed
in the sense of services with predefined and structured interfaces and data contracts.
Additionally, these components will communicate by the means of the events and the
introduced event-driven methods are used to detect patterns and achieve soft real-time
behavior across services, thus, enabling the overall service landscape to react at least
in soft real-time.

This comparison closes the considerations of foundations. In the following chapter,
the general gamification process is introduced by describing its constituting workflows
and roles involved into the associated tasks. Based on this process the contributions
of this thesis are defined in more detail.

25

3 GAMIFICATION PROCESS
In this chapter the general gamification process is introduced. The purpose of this pro-
cess is to visualize how gamification is introduced stepwise into arbitrary existing infor-
mation systems starting at the business modeling phase and ending at the monitoring
and improvement phases. Furthermore, the contributions of this thesis are positioned
in the context of the presented process.

3.1 GENERAL PROCESS

In this thesis, the introduction of gamification into Information Systems (ISs) is under-
stood as a modified software development process. Hence, the gamification process
is rooted in a well-known method, namely the Rational Unified Process (RUP) as pro-
posed by [119]. Due to its generic nature, the RUP has been translated into more
specific workflows. For example, Figure 3.1 shows a combined version of the plain
RUP with a Component-based Software (CBS)-approach as proposed by [54]. Within
the depicted process each box represents one workflow comprising multiple tasks and
roles. The thin arrows represent the flow of artifacts between workflows, i.e., artifacts
that result out of a workflow are input to one or more subsequent workflows. The gray
arrows, finally, indicate that there is a bilateral change of activity, e.g., between users
involved in the various tasks and workflows.

In this process, the following phases are considered. First, the business modeling
phase in which all participants of the development process should get a common un-
derstanding of the business processes that the information system should support.
Second, the requirements phase in which the general business requirements for the
solution are collected, refined, and evaluated. They constitute the formal set of require-
ments and restrictions for the design phase. Furthermore, the relevant target group
and the general vision and goals for the project are elicited. Third, the design phase in
which the software components are specified and the general architecture of the com-
ponents is created. Fourth, the provisioning phase in which reusable components are
identified and provisioned, i.e., these components might be purchased or licensed from
external parties or procured company-internally from other departments. Furthermore,
documentation and Application Programming Interfaces (APIs) are collated. Fifth, the
implementation phase in which existing components are assembled and missing com-
ponents are implemented as determined by the design artifacts produced in the design
phase. Sixth, the testing phase, where the whole system or parts thereof are tested

27

3 Gamification Process

Requirements

Specification Provisioning
Implemen-

tation

Test

Deployment

Business concept
models

Design

Technical Constraints

Component specs &
architectures

Use Case
Models

Components

Existing assets

Use Case Models

Applications

Tested
applications

Business
processes & requirements

Business

Modeling

Figure 3.1: Workflows in the Rational Unified Process [54, 119]

with regards to use cases, requirements, design specification and architecture. Finally,
the deployment phase takes places where the system is put into productive mode and
used by end users.

3.2 GAMIFICATION PROCESS

The general RUP can be adapted to the domain of gamification. Therefore, this section
explains the actions that take place in each workflow. Within these workflows different
roles have specific responsibilities. Therefore, the following roles are defined for this
thesis:

The end user is a role which is shared by a group of people who are experiencing
the gamification in the end. They participate in a set of identified business processes
and should engage with these processes better and more often after gamification has
been introduced. Depending on the context, the end users are either employees (in a
business-to-employee context) or customers (in a business-to-customer context) who
are participating in internal or external processes of the company respectively.

Gamification experts are persons with high expertise in designing compelling and
engaging game or gamification designs. Furthermore, those persons have very good
knowledge of psychological models and methods as well as general game design
methodologies and tools. Preferably, persons who own this role have already designed
a couple of successful gamification applications before.

28

3.2 Gamification Process

Domain experts are persons with profound knowledge of the target business pro-
cesses and their target end users. Domain experts should have high understanding
on the positive and negative aspects that end users are experiencing within the target
processes. Furthermore, the ideal person for this role is responsible for the processes
and, thus, interested in its improvement.

Business experts are persons who are responsible for the overall project and have
to manage the project’s budget, deadlines, and stakeholders. Overall, these persons
are responsible for the successful execution of the project and to achieve its initial
objectives.

IT experts preferably have high expertise in designing, provisioning, assembling, im-
plementing, and deploying large scale IT-systems in the company. These persons ex-
actly know the existing IT landscape of the company and are responsible for the seam-
less integration of new components and tools into the existing infrastructure. More-
over, these persons advise domain, business, and gamification experts on the decision
for the right software components and tools to successfully deploy the gamification
solution on top of the existing business processes.

Based on these roles, Figure 3.2 presents an adapted version of Figure 3.1, specific
to gamification projects. The individual phases are described in the following text.

BUSINESS MODELING

The business modeling workflow has the same task as in the RUP. The domain experts
explain the set of business processes which are intended to be gamified to all other
involved stakeholders except end users. The goal of this phase is that all participants
get a common understanding of the business processes including their merits and
drawbacks. Moreover, the general objectives of the project have to be identified. This
includes the type of end users who should be engaged (employees, customers, ex-
ternal stakeholders) and other important environmental variables. Finally, the project’s
vision and the goals are communicated to all project members.

REQUIREMENTS

In the requirements phase, the respective use cases are analyzed based on the pro-
ject’s goals. Based on the business modeling phase, the identified target group has
to be analyzed with regards to motivation, engagement, and participation within the
target processes. This analysis can be conducted qualitatively or quantitatively, for
example, using interviews or questionnaires. The analysis has to cover at least the
question, what the target user group motivates already or generally to participate in
the processes and what are reasons to not participate. As a result of this analysis a
list of pros and cons for the participation in the target business processes as well as
motivating factors should be compiled.

Besides the analysis of the current situation, business, domain, and gamification
experts should explicitly agree on the target situation and the metrics that measure the
project’s success, for example, what should the outcome of the gamification be (e.g.,
100% increased user retention).

Key personnel involved in this workflow includes at least: gamification experts, do-
main experts, business experts, and end users.

29

3 Gamification Process

Step Name Responsible Role

#1 Creation/Revision of gamification concept Gamification experts

#2 Presentation of gamification concept Gamification experts

#3 Proposal of modifications to design concept Domain experts or Business
representatives

#4 Prepare gamification concept for playtesting Gamification Experts, IT experts

#5 Playtesting the current concept with end
users

Gamification experts

Table 3.1: Sequence of tasks in the design and specification workflow

DESIGN

The design phase is primarily concerned with the specification of a meaningful game
or gamification design. From the design perspective, it is the most complicated one
since all stakeholders have to agree on a specific and precise design alternative in the
end. This phase, furthermore, is supposed to have multiple iterations as known from
classical game or application design (e.g., [171]).

In each iteration the gamification concept is refined and revised by the gamification
experts based on the outcome of previous iterations. In the first step, an initial ga-
mification draft is proposed based on the agreements and findings of the business
modeling and requirements phases.

Second, the proposed or revised concept is presented to the domain and business
experts using presentation slides or spreadsheets. Third, if these stakeholders propose
modifications to the concept, the gamification experts start over from the first step and
revise the gamification concept accordingly. If, however, these stakeholders approve
the concept, the design is ready for the fourth step which comprises the preparation
of playtesting sessions [171]. For this preparation the gamification experts may either
develop the gamification alone using a low-fidelity prototype or consult IT experts to
implement a proof-of-concept as software solution (high-fidelity) already.

Fifth, the prototype of the gamification is play-tested with the end user group which
shares its opinion to the design, identifies problems, and proposes improvements
based on the experience with the prototype. These suggestions and improvements
lead back to the first step and may result in a revised version of the gamification con-
cept.

This workflow can be continuously repeated until all stakeholders have agreed that
the gamification concept might be an appropriate solution to the problems identified
in the requirements workflow. Output of this workflow is the precise definition of the
intended gamification concept. The specification workflow is presented in Table 3.1.

PROVISIONING

The provisioning phase is adopted from [54]. In this step, the IT experts take the
gamification design and the requirement specification in order to analyze the market for
appropriate gamification solutions (Chapter 6). This decision is influenced by technical
constraints of the existing IT infrastructure, the gamification concept itself, and the
process models that emerged as deliverables out of the previous steps. Hence, IT

30

3.2 Gamification Process

Requirements

Specification Provisioning
Implemen-

tation

Test

Deployment

Engagement
Criteria

Design

Technical Constraints

Gamification Concept

Gamification
Solutions

Existing assets

Process Modells

Gamified
Applications

Tested
applications

Project goals &
Business requirements

Monitoring
End-user Data

Engagement
Criteria

Engagement
Delta

Process
Modells

Business

Modeling

Engagement Criteria

Figure 3.2: Adapted gamification development process

experts are responsible for the execution of this workflow. In some cases, they may
consult domain, gamification, or business experts to clarify the gamification concept or
to discuss additional technical constraints with regards to the gamification concept.

Output of this workflow is the provisioning of all systems that are necessary to in-
tegrate including their documentations, APIs, and tools. Nonetheless, the output of
this workflow might also be that no gamification solution can be reused and that a
custom implementation has to be provided. In this case, the output of this workflow
comprises further the right resources which allow for the successful implementation
of the gamification concept. This may include additional resources out- or inside the
company.

IMPLEMENTATION

After the provisioning phase, the IT experts are responsible to assemble, implement,
and integrate all components for the final gamified ISs. If the provisioning phase re-
sulted in the reuse of integrated, generic, or achievement solutions (see Chapter 6),
this phase concerns the integration of host applications executing the target business
process with the respective gamification solution. Furthermore, the gamification con-
cept has to be created and configured within the selected gamification solution.

If, however, the IT experts decided against the reuse of existing solutions, the IT de-
partment has to implement the gamification on its own without involvement of external
services. Therefore, implementation may take place within the existing applications or
as independent part providing appropriate APIs for integration. Furthermore, additional
services might be assembled and integrated such as identity, user management, or e-

31

3 Gamification Process

mail services. Additionally, custom user interfaces have to be implemented to present
the gamification to the end user in an easy to use way.

In this workflow the IT experts of the company are primarily involved. Outputs of this
workflow are the gamified applications in a first running prototype.

TEST

The testing phase joins all the artifacts from the prior workflows and tests require-
ments and assumptions against the running prototype. This includes technical tests for
functional correctness and non-functional quality attributes. Additionally, this workflow
includes domain, gamification, business experts, and end users to test whether the
application behaves as designed or not. Output of this workflow is the tested gamified
application.

DEPLOYMENT

If all tests have been passed successfully, the IT experts are responsible for the final
deployment in the IT landscapes and to open access to all end users. Furthermore,
invitations or change logs might be sent to all stakeholders informing them of the suc-
cessful deployment of the solution.

MONITORING

The RUP assumes an end-to-end process, i.e., the process stops after the deployment
phase. However, in the context of gamification additional steps are necessary after
deployment. This primarily concerns the monitoring of the gamification after deploy-
ment. The deployment phase continuously outputs operational user data signifying the
usage of the target process. This data is assembled and aggregated in the monitoring
phase in accordance with the engagement criteria and process models defined by the
requirements phase. Based on the comparison of these three aspects, additional mod-
ifications and suggestions for improvement might be derived. Those improvements are
communicated as delta to the design phase which starts the entire process again.

Figure 3.2 presents the adapted gamification development process.

3.3 CONTRIBUTIONS

Based on the adapted gamification development process, the contributions of this the-
sis are summarized.

First, a mechanism for the precise definition of gamification concepts in the design
phase is missing. Currently, gamification concepts are discussed in natural language
transported through natural text, spreadsheets, or presentations (e.g., [36, 189]) or on
a very formal mathematical level which is not understandable to domain or gamifica-
tion experts (e.g., [29]). Since gamification is an inter-disciplinary method, it is argued
that this makes the interchange and discussion of game mechanics between experts
of different domains complicated, especially in business environments. For example,
handing an informal concept over to an IT expert for the provisioning and implementa-
tion phases is an error-prone task since the concept may miss crucial information for
the formal realization. Furthermore, it hardly allows the exchange on game mechanics
on a rigorous, formal level between researchers, for example, in discussions, related
work, or meta-reviews. Therefore, a novel, domain-specific and declarative language is

32

3.3 Contributions

proposed in Chapter 5 which formalizes the conceptual requirements on the one hand
and addresses the design phase problem on the other hand.

Second, the implementation of the gamification concept within an IS is an expensive
task with regards to development efforts. At the same time, the benefits for gamifi-
cation are difficult to guarantee and to measure which makes the entire project a risky
undertaking. Gamification platforms emerged on the market to reduce this risk and ef-
fort (e.g., [16, 43]). However, existing systems for gamification have not been analyzed
with regards to functional and non-functional requirements for enterprise gamification.
This makes it difficult within the provisioning phase of each gamification project to se-
lect the appropriate gamification solution. Therefore, Chapter 6 analyzes and classifies
existing solutions with regards to requirements and present inherent trade-offs of the
existing solution classes.

Third, the analysis of related work (Chapter 6) yields that existing technologies focus
on very simple game mechanisms and are, therefore, not suitable for implementing
more sophisticated concepts as required by gamification in general. Due to these lim-
itations, platforms dictate the conception phase of the gamification concept to some
degree since they impose their particular language on the concept. This results in a
tight coupling of concept and requirements with the underlying technology which has
to be avoided in enterprise settings [118]. Hence, a runtime technology supporting all
required features is missing. Therefore, Chapter 7 of this thesis describes a novel run-
time environment concept which is capable of executing the conceptual requirements
based on the proposed formal gamification language.

This closes the consideration of the gamification process. In the next chapter, the
functional and non-functional requirements for gamification are analyzed as prerequi-
sites for the contributions described above.

33

4 CONCEPTUAL REQUIREMENTS
In this chapter, the conceptual requirements (CR) for gamification are analyzed. To
identify proper requirements, a qualitative literature review has been conducted. These
requirements are described informally in this chapter and are formalized in Chapter 5.

This chapter is structured as follows. First, the approach for the literature review is
described. Second, based on the literature all identified game design elements on L1
and L2 of Deterding’s structure are described. Third, the non-functional requirements
for supporting gamification technologies are discussed. The purpose of this analysis is
to build the foundations for related work discussion and to design the contributions of
this thesis later on.

4.1 APPROACH

The literature review was conducted in the second quarter of 2012. Scientific paper
databases were used to identify papers which contain the term gamification within
their title or text body. The analysis was conducted using the databases of ACM Dig-
ital Library, Springer, IEEE Xplore Digital Library, Google Scholar, ScienceDirect, and
EBSCOHost. This analysis yielded a total of potential 918 publications.

From these papers, only those were selected which went through a scientific peer-
review, have been edited and published by well-known authorities (i.e., self-published
work such as technical reports or student theses were discarded), and are available in
English language. Moreover, only those papers remained which incorporate a discus-
sion on at least one game design element transported to a non-gaming context in the
presented approach, i.e., papers which make only a reference to gamification (e.g., in
the outlook) were withdrawn. Finally, very short academic papers (e.g., position papers
with less than three pages) were also omitted. The selection process narrowed the
literature down to 37 relevant publications.

The remaining ones were sorted into four classes. First, papers that are aiming at a
definition of the term gamification based on prior work (e.g., [65, 66, 88, 90]).

Second, quantitative papers which observe the effects of gamification towards user
behavior or psychological outcomes (e.g., [29, 95, 178, 189]).

Third, papers which introduce gamification into non-gaming systems but without
studying the outcome with regards to any engagement criteria (e.g., [36, 87, 135])

Fourth, papers or books that consolidate the state-of-the-art, especially subsuming
and elaborating on the game mechanics that are relevant for gamification ([44, 44, 65,

35

4 Conceptual Requirements

90, 109, 136, 141, 162, 197, 202]). It is important to note that the union of the identified
books covered all the elements used in the papers of the second and third category. In
fact, most of the papers are merely using advancing points, badges, and leaderboards
as their defining mechanisms. The existing books, however, look at the topic more
broadly and identify mechanisms which have not been deployed in research studies at
this point in time. However, the books suffer from providing rigorous definitions for the
individual mechanisms, clear taxonomic classification, or providing term disambigua-
tion.

Therefore, the existing body of game research was used to define and disambiguate
the different terms used in literature (e.g., [30, 31, 68, 106, 107, 173, 201]).

Although the literature review was carefully examined, a vast amount of publications
appeared afterwards. Therefore, [91] published a more recent literature review at the
beginning of 2014. It is important to note that the analysis of their paper, however,
does not list any elements beyond the ones described herein. Hence, it is concluded
that the described functional requirements of this thesis are at least consistent with
the current consensus in research.

4.2 GENERAL GAMIFICATION REQUIREMENTS

As already argued, game and gamification researchers have not agreed on a common
taxonomy of game elements yet [31, 173]. Therefore, in this section a literature re-
view is presented that identifies common elements. To structure these elements, the
coarse-grained taxonomy of [65] as presented in Table 2.1 (p. 9) is used. In this tax-
onomy five levels for gamification design elements are introduced: Game interface
patterns (L1), Game Design Patterns (L2), Game Design Principles (L3), Game Models
(L4), and Game Design Methods (L5).

L1 comprises visual and tangible elements (e.g., points or notifications) which can
be directly and explicitly experienced by an end user [13]. The L2 level comprises the
game mechanics or rules of the game [68, 103, 177]. Those can be experienced directly,
however, in an implicit way only as their structure has to be derived by the user based
on the explicit L1 elements.

All other levels (L3-L5) comprise design methods to create compelling games or
gamification designs. Therefore, they are considered as less important herein since
they do not directly influence the creation of the intended generic gamification service.
The purpose of the analysis below is to derive common elements from literature and
to structure them on the L1 and L2 levels.

4.2.1 GAME INTERFACE PATTERNS

For the first level of Deterding’s taxonomy, the identified visual concepts of gamification
are described below and summarized in Table 4.1. For each element its name, possible
synonyms, subtypes of the element, and references to its occurrence in literature are
provided.

Furthermore, this level is divided into two sub-levels. First, so-called atomic con-
cepts are considered, i.e., concepts which exist for themselves and cannot be dis-
sected further into other atomic gamification concepts. Second, aggregated concepts
are analyzed, i.e., concepts which subsume at least two or more atomic gamification
concepts.

36

4.2 General Gamification Requirements

4.2.1.1 ATOMIC CONCEPTS

Points (CR1): According to [202], points are “required for all gamified systems”. As
such, they are operationalizing fundamental aspects of the game, for example, to ex-
press progress in various dimensions. Further subtypes of Points can be found such
as advancing, redeemable, reputation, karma, and skill points [202]. Advancing points
are considered as points that always increase, i.e., they cannot decrease at any point
in time. Redeemable points might be considered as a virtual currency which can be
traded for real or virtual goods. Karma points are points which are shared between
players only, i.e., they are a special form of redeemable points which are traded with-
out the involvement of goods. Skill points are a special type of redeemable points as
they can be used to improve virtual skills that players have. Reputation points differ
from all prior categories since they have a predefined range in which points can be
assigned, e.g., in the range between one and five points. Finally, this thesis defines
auxiliary points, i.e., specific metrics which are not explicitly presented to the users as
points but serve as basis for tracking arbitrary things internally such as level progress
or missions.

Achievements (CR2) While Points are an interval-scaled measure, Achievements are
their nominal (without order) or ordinal (with order) counterparts. According to [30],
achievements describe “goals whose fulfillment is stored outside the scope of indi-
vidual game sessions”. Achievements are feedback for special or rare situations. The
terms badges, trophies, medals can be treated as synonyms for achievements depend-
ing on the context or graphical representation [44, 90, 141, 202]. According to [90], an
achievement is at least signified through name, visual badge, and description of the
operational rules for getting the achievement. Subtypes for achievements are: visible
achievements, i.e., the condition is visible to the user, hidden achievements, i.e., the
condition for the achievement is not known to the users in advance, or riddle achieve-
ments, i.e., the achievement’s goal is only described in a fuzzy way.

Goods (CR3) Goods are objects that players can get for completing the various goals
within the game. Here, virtual items and real goods are distinguished. While virtual
items defined as “diegetic objects in game worlds that can be carried or interacted
with” [30] are only subject to the game, e.g., the item might be used to give others
or oneself some advantage in the gamification progress, real goods do not have any
impact in the virtual space but might be used in the real world. Goods might be given
to the user either directly as consequence of their actions or indirectly over redeemable
points.

Skills (CR4) According to [173], skills are an essential part of any game. Skills can be
distinguished into virtual and real skills where [173] primarily addresses real skills (e.g.,
social, physical, or mental skills) that are necessary to play the game in general. On the
other hand, virtual skills (abilities) are “actions through which characters or units can
affect game worlds” [31]. In this thesis, virtual skills are considered as instances from
real skills, i.e., the virtual skill in the gamification solution may reflect real skills of the
employees in the workplace. As stated by [202], these skills are usually correlated with
skill points expressing various levels of the skill in question.

Roles (CR5) Roles (or functional roles) are used where “responsibility for different
types of game actions can be divided between participants” or players [30]. Typically

37

4 Conceptual Requirements

a role determines a predefined set of skills. Furthermore, in some cases a role might
have a graphical representation, e.g., visualizing a specific character or class thereof.

Missions (CR6) Missions define what has to be achieved within the game which
“adds purpose, focus, and measurable outcome” [109]. Moreover, missions have to
be concrete, achievable, and rewarding [173, pp. 148-149].

According to [68], mission can be in three states: unavailable, available, and com-
pleted. A mission is considered to be available, if the player or team is allowed to
execute its conditions. Furthermore, a mission is considered to be completed when
all its conditions are fulfilled formally. Hence, single missions allow the definition of
arbitrary complex gamification rules, i.e., conditions and consequences as described
in Section 4.2.2. Besides mission completion, the individual conditions may lead to
subconsequences such as points or badges.

In addition, the rules of missions are conveyed through a graphical representation to
the user, so that users can interpret the underlying formal structure of the rule. This,
for example, comprises the mission’s name, description, or completion consequence.

Besides their individual manifestation, progression games comprise several missions
which are wired together in specific sequences or so-called mission graphs [68]. Ac-
cording to [68], topologies for levels and mission can be classified into three types:
linear and directed paths (acyclic directed graphs), networks (cyclic graphs), and open
worlds (undirected graphs) based on an analysis of, e.g., [2, 45, 168, 173].

Figure 4.1 presents the six building blocks for mission graphs.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.1: Constituting elements of mission graphs [68]

There are three types of nodes, namely normal (a), entry (b), and end (terminal)
missions (c). Furthermore, there are three types of edges, i.e., weak (d) and strong
(e) requirements and inhibition (f). A new progression is started on at least one entry
node, i.e., there is at least one mission available. Players can aim at fulfilling condi-
tions of available missions. Once these conditions are fulfilled, the mission’s state is
set to “completed”. Furthermore, a node is set to “available” when its preceding node
is in available state and the edge is a weak requirement or the preceding node is in
completed state and the edge is a strong requirement. Moreover, a node is set to “un-
available” when a preceding mission is in completed state and the edge is an inhibitor
[68].

If a mission has multiple predecessors, the following semantics are defined: If there
are strong prerequisites, then all of them have to be completed in order to set the
mission’ state to available; else if there are weak prerequisites, then at least one of
them has to be completed in order to set the mission’s state to available [68].

Figure 4.2 shows a valid instance of a mission graph with respect to the provided
model. This example covers a structure of 14 tasks with one entry and terminal state.

38

4.2 General Gamification Requirements

Five missions have been already completed as indicated by the checkmarks. The upper
subgraph is not accessible anymore due to the inhibition of the third task. The second
last task in the middle requires the strong prerequisite on the lower subgraph to be
completed.

ü ü ü ü

ü

Figure 4.2: Example instance of mission graph model (adopted from [68])

Although mission graphs are a powerful means to express dependencies between
missions, the proposal of [68] still has some inherent limitations. First, the semantics
of a join, i.e., multiple missions stream into one single node, are limited to logical
”and” for strong requirements and logical ”or” for weak requirements. Thus, arbitrary
and nested Boolean expressions are not possible. Second, the model proposes that a
mission is always dependent on the fulfillment of another mission or nothing (in case
of an entry node). However, additional preconditions (e.g., player state or randomness)
cannot be taken into account.

Therefore, preconditions are considered more broadly in this thesis, i.e., a mission’s
precondition should allow the reference of arbitrary contextual information. Finally, in
this thesis it is distinguished between rule-driven mission and user-accepted mission.
While the former refers to the automatic assignment of mission when they become
available, in the latter case, the player has to explicitly agree on taking the mission. If
the user does not agree, the mission’s state is set to “declined” or might be offered
again at a later point in time.

Feedback (CR7) According to [136], feedback “gives the player the promise that the
goal in question is definitely reachable” [136]. Furthermore, it helps to change behavior
by improving factors such as self-efficacy, hope, and resilience (e.g., [14, 131, 162]).
[109] further distinguishes informational and corrective feedback. First, informational
feedback considers any kind of positive feedback when the user does the right actions
under the given rules [109]. In the context of gamification, identified informational feed-
back mechanisms are: points, achievements, notifications, real goods, virtual goods,
narration, and missions. Second, corrective feedback is given, if the user does not do
the right actions [109]. Corrective feedback is, usually, given through notifications in-
cluding a hint for improvement. Additionally, also the loss of prior achievements might
be used as corrective feedback. In this case the user should derive the improvement
implicitly, i.e., there is no explicit message that guides users into the right direction.

Events (CR8) Events are external or internal actions in the game space. Specifically,
events can be distinguished into user actions, external, and internal events. While

39

4 Conceptual Requirements

user actions describe the set of activities the players can do in the solution (cf. [173]),
external events occur without the influence of users, e.g., from an external system or
the environment. According to [173], user actions can be further divided into operative
and resultant actions. While operative actions describe the actions enforced by the
rules of the gamification, resultant actions are of higher abstraction and emerge out of
the operative actions. Moreover, events may exist that signify some interim state of
the gamification, for example, to postpone a calculation to a later point in time. These
events are called internal events herein.

Game

Design

Element

Synonyms Subtypes References

CR1 Point Measure,
Metric,
Currency

Advancing, Redeemable, Karma,
Reputation, Skill

[44, 197,
202]; [91]1

CR2 Achieve-
ment

Badge,
Trophy,
Virtual
Good

Expected, Unexpected, Partially
(un-)expected

[44, 90,
141, 202];
[91]1

CR3 Goods Items, Stuff Virtual, Real [30, 44,
162, 202]

CR4 Skills Abilities Physical, Mental, Social [31, 162,
202]

CR5 Roles Functional
Roles,
Character
Roles

- [30, 162]

CR6 Mission Goal,
Challenge

Individual, Collective [109, 173,
201], [91]1

CR7 Feedback None Informational: Points, Notifications,
Achievements, Narrative Context;
Corrective: Notifications

[109, 136,
162]; [91]1

CR8 Event User
Actions

Operative, Resultant, External,
Internal

[173]

CR9 Narrative
Context

Storytelling - [109, 162];
[91]1

CR10 Notification Alert - [65, 109,
173]; [91]1

Table 4.1: Visual (basic) game design elements

1Refers to a more recent survey which was conducted in 2014 by [91], i.e., after the main parts of this
thesis were created. Their paper supports the surveyed concepts mentioned herein since multiple
international papers use the concept in the context of gamification.

40

4.2 General Gamification Requirements

Narrative Context (CR9): Besides the various feedback mechanisms being already
discussed above, gamification concepts may include a narrative context represented
on L1. While, for example, notifications merely describe what has happened, narration
might be used to tell what is going to happen in the future. As such narration can be
used for many purposes such as reinforcing curiosity, attention, and engagement [9],
giving hints [162], or to improve memory of the transported content [121]. Narrative
messages can be generated either explicitly in gamification rules or indirectly on the
assignment or completion of achievements, points, or missions.

Notifications (CR10): As already stated in the feedback paragraph, notifications as
direct and immediate feedback mechanism are important to any gamification design
[136]. Notifications can transport various content such as progress (e.g., upon the
achievement of elements described above), positive messages, or hints for improve-
ment to reinforce motivation [109]. Usually, notifications comprise a small text and icon
that visualize the type of feedback directly.

4.2.1.2 AGGREGATED CONCEPTS

Further visual elements belonging to L1 can be identified from the literature. These
elements are aggregations of the atomic elements according to some specific aggre-
gation function. For example, an avatar is the aggregation of specific amounts of, e.g.,
points, badges, roles, or skills for a particular player. A leaderboard is the aggregation
of avatars and their points etc. Some of these aggregations can be determined already
at design-time, i.e., when the gamification concept is specified, whereas other aggre-
gations are of abstract nature at design-time and emerge at the gamification’s runtime.
All identified aggregations are described in the following text and systematized in Table
4.2.

Space (CR11) The space of the game or gamification “defines the various places that
can exist in a game and how those are related to one another” [173, p. 130]. As such,
the space is the most general element and comprises all elements in L1 as well as L2.
Therefore, it is implicitly an element determined at design-time.

Game Levels (CR12) “A [game] level is a part of the game in which all player action
takes place until a certain goal has been reached or an end condition has been fulfilled”
[30]. Hereby, each game level represents a non-disjoint subset of the entire space
and may include all or some L1 and L2 elements, i.e., some elements might be valid
globally, while others are valid locally within the respective level. If defined, the game
level is also determined at design-time.

Context (CR13) According to [173], the space contains objects having attributes and
state. In this thesis, the state of the various objects is considered as contextual in-
formation of the object in question or other objects. Hereby, context comprises all
atomic elements as well as information on the player. For example, the player’s current
points, badges, levels, etc. are state information representing the context of the indi-
vidual player. Furthermore, the state information of another player might be of interest,
for example, in collaborative (e.g., trading, joint actions) or competitive scenarios (joint
actions). Furthermore, the game’s entire state might be of interest to the gamification
owner in order to observe the engagement of all players at the moment. Consequently,

41

4 Conceptual Requirements

the state as such is a runtime concept which cannot be explicitly modeled at design-
time. However, as shown later gamification rules query and update the context. Hence,
conditionals will refer to contextual information already at design-time.

Avatar Levels (CR14) The level (rank) of an avatar is determined through one or mul-
tiple point categories. With avatar levels the entire range of one point category is
divided into smaller buckets. Furthermore, each bucket is given a name which refers
to the level’s name. In some cases, the avatar level is also called level, player level
or character level (e.g., [30, 202]). Levels and ranks may directly influence trust and
reputation in that person [164] besides other metrics such as badges or points when
acquired under publicly known rules. Again, the specification of these levels is done at
design-time.

Avatars (CR15) An avatar is the virtual representation of any physical player in the
game [162] and fosters engagement and curiosity [125]. Therefore, the avatar assem-
bles all contextual information about the player. Furthermore, an avatar may have ex-
actly one role assigned or particular level based on the contextual information described
above. Moreover, there is an one-to-many relationship between players and avatars,
that is, one player may have multiple avatars at runtime.

Avatars can be also used as customization mechanisms [202], i.e., the player is al-
lowed to define an individual presence based on predefined or achievable virtual items.

Marketplace (CR16) A gamification design may comprise real or virtual currencies
and associated goods and, thus, may also enable marketplaces [162]. In this thesis,
currencies are considered as redeemable points as described above. Moreover, virtual
or real goods might be traded using marketplaces in the gamification concept. Hence,
the marketplace is an aggregation of goods, redeemable points, and players (avatars)
acting as traders. The marketplace itself is a runtime concept based on the specification
of the basic elements.

Leaderboard (CR17) A leaderboard is the aggregation of avatars’ or teams’ points
with respect to some specific point category in ascending or descending order. It is
used to compare players or teams against each other with regards to their points of
the same category [30, 202]. In this context, leaderboards enable the social interaction
of players in a competitive way [109]. While the content of the leaderboard is created
at runtime, the specification of the leaderboard (e.g., aggregation, time period, point
category) can be already defined at design-time.

Communication System (CR18) As another social interaction feature, communica-
tion systems can be adopted from games to gamification as a runtime concept (e.g.,
[162]). In this communication system, players or avatars can directly exchange mes-
sages and receive these messages as notifications from others. It can be used as
communication channel especially in collaborative and competitive scenarios. As this
concerns a runtime requirement, its realization is discussed in Chapter 8.

Team (CR19) Teams comprise a real subset of players under a specified team name
(e.g., [136, 162]). Teams are formed at runtime, i.e., they are not directly part of the
gamification concept. However, some goals might be accomplished by teams only and
the consequences for achieving the goal may affect all or some players of that team.

42

4.2 General Gamification Requirements

Other design alternatives include, for example, that goals are completed by an arbitrary
player but that the consequences for fulfilling the goal apply to all members of the
player’s team. This additional scoping aspect, therefore, has to be considered already
at design-time.

Game

Design

Element

Synonyms Aggregates Known at References

CR11 Space Gameplay - Design-
time

[173]

CR12 Level Game
Level,
Wave,
Checkpoint

- Design-
time

[109, 201]

CR13 Context Objects’
state

Points, Levels,
Achievements, Goods,
Skills

Runtime [173]

CR14 Avatar
Levels

Level,
Player
Level,
Character
Level, Rank

Points Design-
time

[44, 109,
202]; [91]1

CR15 Avatars Character Context, Roles,
Notifications, Avatar
Levels, Goals

Runtime [44, 109,
162, 202]

CR16 Market-
place

Virtual
Economy

Avatars, Virtual Goods,
Virtual Currencies

Runtime [162]

CR17 Leader-
board

Highscore,
Scoreboard

Points, Avatars Design- &
Runtime

[30, 44,
109, 202];
[91]1

CR18 Communi-
cation
System

None Notifications Runtime [162]

CR19 Team Coopera-
tion

Avatars Design- &
Runtime

[136, 162,
202]

Table 4.2: Aggregated visual game design elements

This list concludes the game design elements on L1 for this thesis. It is argued that
this list might not be complete. For example, [30] outlines many additional patterns
which can be assigned to L1. However, these patterns have been explicitly defined for
games and have not been transported to the domain of gamification yet. Hence, further
additions to the elements described above may emerge in future work. Therefore, the
provided list of elements cannot be complete and has to be extended and reworked
when new requirements become available.

43

4 Conceptual Requirements

4.2.2 GAMIFICATION RULES

Besides concepts on L1, concepts on L2 concern game design patterns determin-
ing how the gamification is “played”. According to [173]: “Rules are really the most
fundamental [game] mechanic. They define the space, the objects, the actions, the
consequences of actions, the constraints, and the goals”. While the concepts on L1 re-
fer to the existence of concepts on a meta-level or describe their visual appearance to
the users, rules determine the gamification logic and how instances of these concepts
evolve over time.

Therefore, the following text describes possible characteristics of rules in the gami-
fication domain. First, different types of rules are characterized whereas only foun-
dational and operational rules are selected as important for this thesis. Second, the
characteristics of these two rule types are explained in more detail.

4.2.2.1 TYPES OF RULES

In accordance with [171], rules limit player action, are explicit and unambiguous, are
shared by all players, and are fixed, binding, and repeatable. Rules can be distin-
guished into operational rules, foundational rules, behavioral rules, and instructional
rules [109, 171, 173]. Operational and foundational rules describe how the game has
to be played and under which constraints the goals are achieved. Operational rules
determine what the players have to do and what the outcomes of their behavior are.
Foundational rules represent the underlying formal structure of operational rules, i.e.,
they reflect the implementation of rules and, thus, inform operational rules directly (cf.
[173]). Behavioral rules are implicit rules, i.e., what is allowed or commonly accepted to
do in the game (e.g., rules which emerge out of the community). Instructional rules are
the rules why the game was created in the first place, i.e., these are rules that players
should remember as a “lesson-learned” even if the game is already over.

In this thesis, only foundational and operational rules are considered as they consti-
tute the formal rule set or are the rules which are presented to the player in descriptive
manner. In the following, the basic elements of foundational rules are described. In
general, foundational rules comprise at least one formal condition and consequence
which is applied once the condition is fulfilled. Furthermore, rules should allow arbitrar-
ily complex conditions and consequences.

4.2.2.2 RULE CONDITIONS

On the conditional side of rules, multiple elements from the L1 layer can be considered.
This includes user or external events (e.g., user u does action a or mission completed
during day or night), the current state or context of objects (e.g., user u has already
50 points or has skill s activated), information about avatars or their levels (e.g., user u
has the novice level), or the current state between players (e.g., only top three players
with regards to a particular point category). Second, besides the direct use of concepts
from L1, further elements can be identified as described below.

Constraints (CR20) Constraints place the limitations under which the goals of some
entity in question can be achieved (cf. [109, 173, 197]). The state of L1 concepts can
be combined in arbitrarily complex patterns using Boolean (CR20a), numeric (CR20b),
temporal (CR20c), or spatial (CR20d) constraints. Boolean constraints allow the recom-
bination of L1 elements using logical operators (e.g., user u has to do action a and b).

44

4.3 Non-Functional Requirements

Numeric expressions allow the filtering for specific elements (e.g., user u has to do a
sales order action a having a purchase amount greater than $30).

Temporal operators allow for the filtering of events with regards to their temporal
aspects. These temporal aspects can be evaluated over a set of heterogeneous events
(e.g., user u has to do action a five seconds before action b), over a particular time
window of homogeneous events (e.g., user u has to do action a five times in one
week), or at a specific point in time (e.g., user u has to do action a at 12am).

Finally, spatial operators allow the filtering of user actions with regards to the physical
space, i.e., the condition is only fulfilled if the action takes place at a predefined location
(e.g., user u has to do action a at pos = (latitude = 1.2, longitude = 1.3)).

Joint Actions (CR21) While constraints are subject to the actions and state of single
entities (e.g., player, team, or system), joint actions are a necessary part to identify
situations in which those entities did something together or against each other. In the
literature, this aspect is usually described either as collaboration or competition game
mechanisms (e.g., [109]). In this thesis the term Joint Actions is used as technical term
to describe any situations where active entities (player, team, system, or environment)
are doing something with or against each other in order to express game mechanics of
conflict or cooperation.

Randomness (CR22) Randomness (Chance) might be used to introduce uncertainty
and surprise to foster engagement [173]. Randomness can be based onto discrete or
continuous probabilities and expresses the chance under which other conditions of a
rule are fulfilled.

4.2.2.3 RULE CONSEQUENCES (CR23)

Finally, the consequences of rules are considered which are executed once arbitrary
conditions of a rule are fulfilled. In these consequences, instances of the atomic L1
elements are generated which contributes to the evolution of the overall game’s state
in general and the progress of entities therein in particular. For example, a rule’s con-
sequence may give points, badges, generate notifications or narrative messages, or
assign new missions to players or teams. Moreover, new events (internal or external)
might be generated which triggers subsequent processing of rules.

4.3 NON-FUNCTIONAL REQUIREMENTS

While the functional requirements of the latter section refer to conceptual requirements
which are generally independent of an underlying technology, the following require-
ments refer to some general characteristics and quality attributes that a supporting
runtime system or environment has to provide from a non-functional perspective. In
[57] a large list of such non-functional requirements for software systems is presented.
Furthermore, in Section 2.2 general requirements and guiding design principles for en-
terprise software are discussed. In the following text, these general requirements are
translated into specific quality attributes for gamification runtime systems. Here, only
those requirements are considered which can be derived from the gamification de-
velopment process (Chapter 3). Additional attributes which are not considered in the
following text, are subject to future work.

45

4 Conceptual Requirements

Performance:

The feedback of the gamification should be immediate in accordance to, e.g., [136, p.
21]. Real-time can be either classified as hard, firm, or soft real-time. Hard real-time
requires the processing time tp of an algorithm to be always smaller than the sampling
period T, i.e., the duration between two events

tp + to < T (4.1)

with to being the I/O overhead time [120]. In soft real-time, tp might be larger than T,
however, the information’s usefulness diminishes with tp − T.

This implies for a generic gamification runtime environment that the evaluation of
rules in conjunction with the object state has to be processed at least in perceived
(soft) real-time. The commonly accepted absolute threshold of 500ms for interactive
systems has to be ensured by a gamification runtime system [139].

Flexibility:

As defined by [118, p. 25], this requirement is generally necessary in enterprise settings
to allow for changes to the IS when the organization changes. This also has to apply
to gamification technologies since the gamification concept may change continuously.
Hence, the supporting runtime system has to be able to adopt new design demands
and business requirements after the deployment and during the monitoring phase.
For example, if the gamification expert decides to give users three points instead of
five points for a particular user action, this has to be changeable without rebuilding or
redeploying the IS.

Invasivity:

This attribute refers to the degree, how invasive the gamification solution has to be im-
plemented into the host application. Non-invasivity fosters a decoupling of functionality
from technology, i.e., the actual IS must be kept independent from short-term technol-
ogy innovations as defined by [76, 118]. This attribute mainly influences the decisions
of the provisioning phase.

Integrability:

Although invasivity is required to be minimized, it is argued that gamification is always
invasive to some degree (e.g., on the user interface side, to record or capture user
actions from the IS etc.), hence, zero invasivity cannot be assumed for practical and
non-trivial scenarios. Therefore, the remaining integration work of the gamification
aspect and the target IS should be supported by methods and tools to allow for fast
and flexible integration. Henceforth, integrability refers to the degree, how easy it is to
integrate the gamification solution into the IS within the implementation phase.

This requirement is, again, dictated by the need for decoupling of functionality and
technology as postulated by [76, 118].

Reusability:

This requirement refers to the degree, how reusable the considered gamification so-
lution is in terms of code that can be reused and, consequently, has not to be imple-
mented in the target information system or the host application. This quality attribute
might be for example measured in percentage of covered requirements or reused lines
of code.

46

4.4 Systematization

As such, it directly influences all phases of the gamification process starting from the
provisioning phase.

Manageability (Security):

Privacy is a key concern when it comes to gamification due to the high levels of trans-
parency it enforces [93]. For example, each user action in the system might be tracked
and, thus, can be potentially misused for various reasons. Although this might be of
interest to the top-management, in many countries the collection of such fine-grained
employee data is forbidden. For example, in German enterprises, work councils are
allowed to reject the introduction of systems that collect too much data of its employ-
ees. Thus, gamification platforms have to provide security mechanisms to anonymize
the user’s identity and past actions to some degree.

Therefore, the persisted gamification data must be manageable across the gamifica-
tion’s life-cycle. For example, data has to be aggregated or anonymized after a particular
time to ensure legal compliance in some countries or domains. Regarding the gamifi-
cation process this requirement primarily concerns the monitoring phase and refers to
the degree of how many options are available to manage the gamification data.

Analyzability:

Although this requirement seems to be functional by nature, in this thesis the non-
functional aspect is considered and, thus, refers to the degree of how much data is
accessible to provide the desired insights into user behavior (monitoring phase). As
shown later, this quality attribute strongly depends on the selected architecture type.

Furthermore, this requirement trade-offs with other non-functional requirements,
e.g., security or performance. For example, in the above paragraph it has been ar-
gued that data needs to be anonymized and aggregated. On the one hand, this limits
the possibilities for analyses and desired insight into the data on a very detailed level.
On the other hand, aggregated and managed data can be processed faster, hence,
influences runtime performance positively.

4.4 SYSTEMATIZATION

This concludes the consideration of functional and non-functional requirements in this
thesis. With regards to the former, a literature review has systematized and disam-
biguated typical mechanisms for gamification from prior research. Each concept has
been described briefly and informally with regards to goals and assumptions and has
been classified using Deterding’s layered taxonomy.

Furthermore, all concepts have been labeled with numbers which are used as refer-
ences in the remaining text, for instance, to formalize the concepts in Chapter 5 and to
compare them against related work in Chapter 6.

Finally, this chapter discussed a set of non-functional quality attributes and their trade-
offs for gamification technologies in the context of the overall gamification process.
These requirements constitute the foundations for Chapter 7 in which a novel runtime
environment for gamification is proposed.

In the next chapter, each functional concept is mapped onto a formal language con-
struct of the so-called Gamification Modeling Language.

47

5 GAML - CONCEPTUAL
GAMIFICATION MODELING
LANGUAGE

Based on the conceptual requirements of Chapter 4, in the next sections, a formal
language called the Gamification Modeling Language (GaML) is introduced. For each
identified requirement, the mapping into the formal language is presented.

5.1 DESIGN OBJECTIVES

From a conceptual point of view, general-purpose and domain-specific languages can
be distinguished. Furthermore, formal computer languages can be designed for differ-
ent kinds of quality attributes such as readability , writeability , reliability , expressiveness
and costs [55].

Hereinafter, GaML is considered as Domain-specific language (DSL) defined as: “a
computer programming language of limited expressiveness focused on a particular do-
main” [82]. In particular, this work aims at an external DSL, i.e., a language that is in-
dependent from the underlying technology [82]. As the name implies, such languages
are focused on a particular domain (e.g., gamification) and are less expressive than
general-purpose languages, i.e., they cannot be used to express arbitrary things but
concepts from the target domain only.

They are typical useful when improved development productivity, communication
with domain experts, a shift of the execution context, and the decoupling of the speci-
fication from the underlying computational model (e.g., imperative programming, rule-
based systems, or state machines) is necessary [82].

Based on these preliminaries, the design goals and assumptions for GaML are pre-
sented in the following:

Syntax (DO1): GaML formalizes1 the gamification concepts of Chapter 4. Based on
this formalism, a parser can decide, whether a GaML instance is well-formed
according to the language’s grammar or not.

1In the following, GaML qualifies as a formal language in accordance with [175]. Hence, formal semantics
are not considered herein.

49

5 GaML - Conceptual Gamification Modeling Language

Semantics (DO2): Besides syntax, static semantics2 further validate well-formed in-
stances of GaML with respect to the semantics defined in the conceptual re-
quirements.

Specificity: (DO3): GaML is designed to be a domain-specific and declarative lan-
guage, i.e., instances of the language describe what has to be accomplished
instead of how it is accomplished. This is consistent with the assumptions of
DSLs [82].

Readability (DO4): GaML should be at least readable and understandable for domain
experts with minor IT knowledge, e.g., consultants or gamification designers
which is consistent with [82].

Writeability (DO5): GaML should be writable for IT experts. According to [82], DSLs
might not be suitable to be autonomously written by domain experts. Therefore,
this design objective requires domain experts to accomplish at least simple mod-
ifications based on existing well-formed GaML instances.

Compileability (DO6): GaML should be automatically compilable into runtime envi-
ronments for gamification, i.e., GaML is processed through an indirection at run-
time and, thus, may increase development productivity in the implementation
phase3.

These defined design goals are also evaluated in a user study later on (Chapter 8).

5.2 SYNTAX AND META-MODEL

In this section, the grammar and meta-model of GaML is presented. Additionally, the
mapping of conceptual requirements to the formal grammar is shown.

5.2.1 GENERAL ELEMENTS

A context-free grammar is defined as quadruple G = (N, T, P, S) with N being the set of
non-terminals, T the set of terminals, P the set of productions with P = N×(N∪T)∗, and
S ∈ N being the start symbol. In the following, the respective elements of the gram-
mar are visualized using syntax railroads where non-terminals N are visualized with
rounded boxes and terminals T in rectangular boxes. Furthermore, standard terminals
for strings, Boolean types or IDs are defined as follows using regular expressions:

• ID: ’^’?(’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*;

• String: ’"’ (’\\’ (’b’|’t’|’n’|’"’|"’"|’\\’) | !(’\\’|’"’))*
’"’ | "’" (’\\’ (’b’|’t’|’n’|’"’|"’"|’\\’) | !(’\\’|"’"))* "’"

• INT: (’0’..’9’)+

• DOUBLE: (’0’..’9’)+’.’(’0’..’9’)+

2Hereinafter, static semantics refer to the semantic rules that can be checked at compile-time on the
parse tree in the course of semantic analysis [175]. Hence, the consideration of formal semantics is
not covered.

3Since existing solutions for gamification cannot fulfill all conceptual requirements, in Chapter 7 the
design and method of a novel runtime environment for gamification is described. To validate this
approach, the transformation from GaML into the proposed runtime environment is shown as well.

50

5.2 Syntax and Meta-Model

• BOOLEAN: ’true’ | ’false’

• DATE: ’"’ (’0’..’9’) (’0’..’9’) (’0’..’9’) (’0’..’9’) ’-’ (’0’|’1’)
(’0’..’9’) ’-’ (’0’..’3’) (’0’..’9’) (’T’ (’0’..’2’) (’0’..’9’)
’:’ (’0’..’5’)(’0’..’9’) (’:’(’0’..’5’) (’0’..’9’))?
(’.’(’0’..’9’)+)? (’Z’|((’+’|’-’)(’0’..’2’) (’0’..’9’)
’:’ (’0’..’5’) (’0’..’9’)?)))? ’"’

whereas standard semantics of the special symbols apply, i.e., ? determines an op-
tional element, ! a negation operator, + a one to many and * a zero to many relation-
ship of the structure surrounded by rounded brackets. In particular, the String definition
allows any character sequence within single or double quotes except typical control
characters, e.g., \n, \b, or \t for newline, backspace, or tabulator respectively.

In the following text, each conceptual requirement (CR#) is mapped to one or more
syntactical elements of GaML. Each syntax element is, again, assigned a number (E#)
which is used as reference to assess related work or to describe the code generation
into runtime concepts later.

Space (E1) GaML’s grammar begins at the start symbol S = Model which produces
the terminal concept followed by an ID. Within the concept, multiple gamification ele-
ments (Element) might be defined, whereas also the empty concept is allowed (Figure
5.1). Hereby, Element reflects all tangible concepts which have been identified on L1
as atomic elements in Chapter 4. Therefore, this element maps the conceptual require-
ment CR11.

Game Level (E2) A game level is an optional element to divide the entire space of
the gamification concept into smaller parts. Therefore, this construct contains the
same subelements as the global concept element by referencing the non-terminal Ele-
ment recursively in its body again (Figure 5.2). This construct maps requirement CR12.
Besides the division of the overall gamification concept into smaller parts, further at-
tributes might be declared. This includes at least the level’s name and completion
criterion, i.e., when the game level is finished (see Section 5.2.2), as mandatory at-
tributes. Optional parameters determine if all uncompleted missions of this game level
are set to “completed” when the game level’s completion criterion becomes true or
which subsequent level follows. It is important to note that in this thesis exactly one
game level follows upon completion of another level.

Event (E3) The declaration of events (CR8) within the gamification concept is intro-
duced by the event’s class (which produces either userevent, externalevent, or inter-
nalevent reflecting events’ subtypes), followed by the event’s ID and an optional event
body (Figure A.74). Within the event’s body the optional attributes inverseName and
data can be defined. First, the data attribute might be used to statically define proper-
ties describing the event further including their data types. These properties are stati-
cally typed since GaML is not supposed to be executed directly, but indirectly through
intermediate languages (see Chapter 7). Through this indirection, runtime type check-
ing is omitted by default. Second, the attribute inverseName declares the name of the
inverse event and requires exactly one reference to a data property to define which of
the properties joins the event with its inverse.

4All syntax railroads are documented comprehensively in Appendix A.

51

5 GaML - Conceptual Gamification Modeling Language

Model

concept
�� �ID {

����
� Element�

�
�

�

}
���

Element

GameLevel�
�Point

�Skill

�Mission

�Role

�Leaderboard

�Level

�Good

�Badge

�Event

�

Figure 5.1: Definition of Space element (L1)

Achievement (E4) In conjunction with [90], the definition of an achievement includes
at least a name, visual badge, and description of the goal for this achievement (CR2).
The formal definition of an achievement is, therefore, introduced by the terminal badge,
followed by the achievement’s ID (Figure A.8). Within curly brackets the concept is fur-
ther described by its display name, an optional description, and image. Furthermore,
the achievement is declared as visible or hidden, i.e., if the achievement’s goal is vis-
ible to the user at runtime or not. Finally, an optional condition, i.e., either none or
exactly one condition, for getting the achievement can be described formally (see Sec-
tion 5.2.2).

Point Category (E5) Likewise, the definition of a point category (CR1) is started with
the terminal point and the point’s ID (Figure A.9). Within the concept’s body, at least
the point’s display name has to be defined. Additionally, optional attributes comprise an
abbreviation and description of the point category in question. Furthermore, the type
of the point category can be specified (E5a; Figure A.9) and the point can be marked
as default, i.e., the point is used as the primary metric later. Finally, multiple rules with
different conditions and consequences (see Sections 5.2.2 and 5.2.3) can be specified
signifying the situations under which instances of this point category can be achieved.

52

5.2 Syntax and Meta-Model

GameLevel

gameLevel
�� �ID {

����
�

�name
�� �=

���STRING ,
���completed

�� �When �
�

��
� ,

���completeOpenMissions
�� �

�

�
�

��
� ,

���followUpGameLevel
�� �=

���ID

�

�
�

��
� ,

���description
�� �=

���STRING

�

�
� Element�

�
�

�

}
���

Figure 5.2: Definition of Game Level element (L2)

Mission (E6) Within the mission element, arbitrary formal conditions and conse-
quences (i.e., rules) can be defined which can be informally described using a display
name and description (Figure A.10). The syntax requires an author to define at least
one rule. Multiple rules can be connected through Boolean operators whereas those
refer to the overall Boolean state of the individual conditions. If no operator is given, im-
plicitly logical ”and” (higher precedence as logical ”or”) is assumed. Once the Boolean
statement is fulfilled, the mission is considered as completed.

In correspondence with Chapter 7, authors may define an optional available clause
in order to express the conditions when this mission becomes available to a player or
team (E6a). It is important to note that arbitrary conditions can be defined here (see
Section 5.2.2). If no availability condition is specified, the corresponding mission is
considered as a starting mission and is assigned to the user on his first interaction.

Upon assignment, the attribute initiatedBy (E6b) determines whether the mission
is assigned automatically (rule driven) or if the user has to explicitly agree to take the
offered mission (user driven). Since this is an optional attribute, by default an automatic
mission assignment is assumed. Finally, this concept comprises multiple rules, i.e.,
with arbitrary conditions and consequences for players or teams. Only if all rules are
fulfilled, the mission in question is considered as completed.

This element reflects the discussed requirements of CR6.

Skill (E7) Reflecting requirement CR4, Figure A.11 presents the formal definition of
the concept skill introduced by the same-named terminal followed by the skill’s ID,

53

5 GaML - Conceptual Gamification Modeling Language

display name, description, image, and the benefit of the skill in natural language. Fur-
thermore, the skill has to be linked to a specific point category expressing the various
levels for skills. Note that the validation whether the referenced point category is of
type SKILLPOINT is subject to the static semantics of the language as described in
Section 5.3.

Moreover, this element may define a particular availability period. This declares the
skill as an active one giving the promised benefit only for the specified time duration.
If no such duration time is specified, the skill is considered as passive, i.e., the benefit
of the skill applies every time.

Level (E8) Conceptual requirement CR14 is mapped through the level element which
contains the level’s name and the threshold with reference to a previously defined point
category (Figure A.12). Since levels can be defined for different types of point cate-
gories, there is no check with regards to the point type semantics on levels. Optionally,
levels may specify a reference to an image.

Good (E9) The definition for goods (CR3) is introduced by the keyword good followed
by its ID and at least the good’s name, description, and image. The good’s type, i.e., if
it is a virtual item or a real good might be optionally defined (E9a) whereas a real good
is assumed by default, if this attribute is not specified (Figure A.13). Furthermore, the
good might be associated with an internal price (i.e., referencing a point category with
type being redeemable) to generate a marketplace at runtime automatically.

Role (E10) Roles describe various different character roles for the gamification (CR5).
Each role has at least an ID, display name, image, and optionally a description (Figure
A.14). Moreover, roles may reference specific skills, i.e., these skills can be only earned
and used by users having this particular role. These skills are referenced through their
ID as defined by element E7.

Leaderboard (E11) Although the content of the various leaderboards is assembled at
runtime, the specification, i.e., aggregation function, can be already defined at design-
time in order to map CR17. As shown in Figure A.15, the leaderboard is identified
through an ID and further specified by name, associated point category, the aggregation
function, the order (ascending, descending), and the target entity (player, team) either
for the graphical leaderboard generation at runtime or the determination of leading
users within the various conditional blocks described above.

5.2.2 CONDITION ELEMENTS

Besides the specification of the L1 elements, conditions for achieving the various ele-
ments can be defined. For example, the constructs for badges (E4), points (E5), mis-
sions (E6), or skills (E7) explicitly allow the definition of single or multiple conditions
within their defining body. The general syntax for conditions is shown in Figure 5.3.

In general, each condition is introduced by the keyword when. Afterwards, the au-
thor has to decide if the condition applies to an individual (i.e., player) or a group of
individuals (i.e., team; CR19). Both entities can be assigned a variable (EntityVariable)
which is used for identification of an instance later on. Despite the case, inside the
subsequent block, optional validity start and end dates can be specified. Furthermore,
player- or team-specific conditions can be formulated within the non-terminals PlayerOr

54

5.2 Syntax and Meta-Model

When

when
�� � PlayerEntity {

����
�validFrom

�� �=
���DATE

�

�
�

��
�validTo

�� �=
���DATE

�

PlayerOr �
�

� }
���

�

�TeamEntity {
����

�validFrom
�� �=

���DATE

�

�
�

��
�validTo

�� �=
���DATE

�

TeamOr }
���

�

PlayerEntity

player
�� ��

�EntityVariable

�

TeamEntity

team
�� ��

�EntityVariable

�

EntityVariable

ID

Figure 5.3: General condition syntax

55

5 GaML - Conceptual Gamification Modeling Language

or TeamOr (Figure 5.3). It is notable that some conditional elements can be used in
both contexts, while others are specific to the selected entity. Hence, the next sub-
sections describe elements which are independent first. Subsequently, player- and
team-specific conditions are explained in more detail.

5.2.2.1 ENTITY-INDEPENDENT CONDITIONS

This subsection subsumes all conditions which are defined and available for both en-
tities, i.e., players and teams. Hence, an author may use all the constructs explained
below in both contexts.

Boolean Constraints (E12a): Both entities have in common that conditions can be
arbitrarily correlated by Boolean operators. Figure 5.4 presents an excerpt of the gram-
mar for Boolean operations within the player entity which implements requirement
CR20a.

The non-terminal PlayerOr produces arbitrary sequences of the non-terminal Player-
And followed optionally by terminal or. The same applies for the non-terminal Player-
And, except that it produces the non-terminal PlayerTopElem and terminal and etc.

Eventually, this chain results in the non-terminal PlayerCondition which references
general conditions subsumed under the non-terminal Condition. These conditions are
considered in the following text.

Furthermore, there are four player-specific conditions which are described in Subsec-
tion 5.2.2.2.

It is important to note that the grammar of Figure 5.4 applies to the team entity
as well (Figure A.19), except that it produces the non-terminal TeamCondition in the
end which defines one team-specific term as shown in Figure 5.5. This team-specific
feature is covered in Subsection 5.2.2.3.

General Conditions (E12b-E12e) In this paragraph all conditional elements are sub-
sumed that refer to the context of players and teams, thus, realizing requirement CR13.
This applies to the condition of tangible concepts such as badges (E12b), levels (E12c),
goods (E12d), and missions (E12e). Defining these conditions means that an entity
has to hold at least one instance of the concept in question, e.g., user u has to own
badge b1 or has mission m1 assigned currently. The syntax is given in Figures A.23 and
A.24. It is important to note that the language provides singular and plural terminals for
referencing either exactly one or multiple instances of the same concept respectively.
For example, a condition may refer to exactly one badge (e.g., has badge a) or multiple
ones (e.g., has badges {a,b}).

Skill Condition (E12f) Although the skill condition is very similar to the general refer-
ences and, therefore, is also a realization of CR13. However, this concept additionally
includes an optional skill level that has to hold in order to evaluate this condition to true,
i.e., the player or team has a particular skill at the given level (Figure A.25). Furthermore,
the condition may check if the skill is activated for the enclosing entity.

Point Condition (E12g) The point condition evaluates true if the entity in question
has the defined amount of points and, in turn, belongs to the realization of CR13. The
syntax allows to specify the point type and aggregation method compared to a numeric
expression (Figure A.26).

56

5.2 Syntax and Meta-Model

PlayerOr

PlayerAnd �
� or

�� �PlayerAnd�
�

�

�

PlayerAnd

PlayerTopElem �
� and

�� �PlayerTopElem�
�

�

�

PlayerTopElem

PlayerAtom�
� (

���PlayerOr)
����PlayerNegation

�

PlayerAtom

PlayerCondition

PlayerNegation

not
�� �PlayerTopElem

PlayerCondition

Condition�
�has

�� �RoleRefs

�did
�� �EventDef

�belongs
�� �to

�� �TeamEntity which
�� �{

���TeamOr }
����another

�� �player
�� �did

�� �EventDef

�

Figure 5.4: Boolean constraint and conditions syntax

Luck Condition (E12h) The luck condition evaluates true, when a (pseudo-)random
number is smaller than the given numeric expression (Figure A.27). Here, NUMEXPR ∈
[0, 1] has to hold for all specifications. This condition explicitly maps CR22.

Location Condition (E12i) The location condition is used to determine whether the
issuing entity is at the specified geo-location or not (Figure A.28) and, thus, implements
CR20d.

57

5 GaML - Conceptual Gamification Modeling Language

TeamCondition

Condition�
�has

�� �PlayerEntity who
�� �{

���PlayerOr }
���

�

Figure 5.5: Team condition syntax

Leader Condition (E12j) The leader condition determines the best n entities accord-
ing to the specified parameters, i.e., starting (from) and end (to) position whereas the
former is an optional attribute. If no starting value is given, this refers to the top player
or team within the condition. Furthermore, aggregation function and point category are
implicitly derived from the referenced leaderboard specification (Figure A.29).

5.2.2.2 PLAYER-SPECIFIC CONDITIONS

After describing conditions that apply to both, teams and players, the following text
describes player-specific conditions as presented in Figure 5.4.

Role Condition (E12k) In this thesis, only players or users may own a pre-defined
role. Therefore, this condition element as shown in Figure A.30 examines, if a player
has the required role assigned. Thus, this element implements conceptual requirement
CR5 and CR13.

Event Condition (E12l-E12p) As presented in Figure A.21, conditions referring to an
event are introduced by the terminal did followed by an optional variable declaration
and a reference to exactly one previously declared event type (Section 5.2.1).

Separated by commas, the event can be filtered based on constraints (E12m) on the
event’s predefined properties. This includes numeric constraints as well as string or
Boolean constraints, thus, reflecting CR20b.

Additionally, not only simple data types can be compared with each other but other
events might be referenced based on a reference operator (E12n). This can lead to arbi-
trary join conditions that are required to reflect collaborative and competitive scenarios
upon event processing (CR21). Furthermore, the event can be temporally (E12o→

CR20c) correlated with other events using 13 different temporal operators [6]. Besides
event correlation, these temporal operators might be also used to correlate the event
in question with a fixed timestamp in ISO format, i.e., if the event in question happens
before, after, or at a specific timestamp.

Further temporal aspects within the condition comprise continuous time windows
with numeric aggregations (e.g., count, sum, average), and a special lastsFor operator.
(E12p→CR20c). The latter might be used to express scenarios, where the event in
question has to reside at least for the given time in the system before the consequence
is issued. This is for example necessary to prevent cheating scenarios.

Finally, this concept refers not only to events of the same player but also events
from other players might be taken into account. For this purpose, there is the sentence
another player did <EventDef> available which might be used to express that an-
other player did some particular event. Hereby, the same syntax as described above is
used to filter and correlate events.

58

5.2 Syntax and Meta-Model

Team Belongingness (E12q) The last player-specific element is used to identify, if
a player belongs to a particular team which itself is in a particular state. Figure A.18
shows the corresponding syntax. Since the player can be in multiple teams, this state-
ment may evaluate true for all combinations of the player and his teams. In order to
filter the result set further, the which clause might be used to determine only the teams
that are in a particular state. In this case, all team-specific conditions produced by the
non-terminal TeamOr can be used again. Additionally, all teams that the player belongs
to can be bound to a variable. This can be used, for example, to give the entire team a
reward.

5.2.2.3 TEAM-SPECIFIC CONDITION

Player Belongingness (E12r) Besides general and player-specific conditions, there is
one condition specific to the entity as presented in Figure 5.5. This special statement
might be used to check, if any player of the team is in a particular state. As such, this
condition is the counterpart to the team belongingness condition (E12q) available within
the player conditions. Therefore, all players can be referenced who belong to that team.
The matching set of players can be further pruned by providing player conditions over
the non-terminal PlayerOr as presented in Figure 5.4.

5.2.3 CONSEQUENCE ELEMENTS

After some condition has been fulfilled, corresponding consequences are executed.
Those can be of the following types: internal events (E13a), points (E13b), notifications
(E13c), narrations (E13d), and so-called general consequences where badge (E13e),
good (E13f), mission (E13g), and skill (E13h) consequences are subsumed as shown in
Figure 5.6. All of these language elements can be mapped to CR23. In the following,
each element is presented in more detail.

Then

then
�� �{

���Consequence �
� ,

���Consequence�
�

�

�

}
���

Consequence

EventRefCons�
�GeneralRefCons

�PointRefCons

�Notification

�Narration

�

Figure 5.6: General consequence element

59

5 GaML - Conceptual Gamification Modeling Language

Internal Events (E13a): One possible consequence is the creation or deletion of an
internal event which might be necessary to execute subsequent rules. The syntax for
this element is given in Figure A.33. This element is introduced with either the terminal
create or delete followed by a reference to one of the previously defined events. It
is important to note, that this reference is valid on internal events only since the GaML
author should be able to model these events, i.e., they cannot be issued directly from
a user. Static semantics are used later on top of this meta-model to ensure integrity.

Arbitrary properties can be defined for this event whereas numeric expressions, ref-
erences to other events in the condition clause, or Boolean and string types might be
assigned.

Finally, there is an optional clause specifying that the event is given to a particular
entity. For this purpose, the variable bindings from the condition clause are utilized. If
no variable binding is specified then automatically the utmost entity of the condition is
used as presented in the section for translational semantics (Section 7.6.2.1).

Points (E13b): Points might be added to or removed from a specified entity which
fulfilled the corresponding condition. Furthermore, points might be also set to a specific
amount. The syntax for point consequences is shown in Figure A.34. Again referential
integrity is ensured using static semantics as shown later.

Notification (E13c): Explicit notifications might be assigned upon fulfilled conditions.
There is a short and a long form for this concept. The short form only requires a string
and, optionally, the receiver for the notification. Additionally, the long form requires
the specification of a title and, optionally, an image and notification type (corrective
or information). Also this language element addresses conceptual requirement CR7,
CR10, and partially CR18. The syntax is shown in Figure A.35.

Narration (E13d): Narrative messages are also possible consequences upon com-
pletion of conditions. The syntax for narration is presented in Figure A.36. The ele-
ment requires at least a name and text for the narrative message. Optional attributes
comprise links to audio, video, or image files which are presented or played back as
consequence of the condition.

Badges (E13e), Items (E13f), Missions (E13g), Skills (E13h): Mission, badge, item,
and skill consequences are treated equally as presented in Figure A.37 and are sub-
sumed under the non-terminal GeneralRefcons. Each element references one previ-
ously defined concept through its ID. This means that an instance of the referenced
concept is assigned to or removed from the respective entity.

5.3 STATIC SEMANTICS

Besides syntax, static semantics are defined for the language, which are validated on
the syntax tree of well-formed GaML instances. With static semantics several ad-
ditional aspects such as integrity, type safety or logical soundness can be validated.
Semantics are defined using logical expressions, e.g.,

∀a, b : Badge(a) ∧ Badge(b) ∧ a , b⇒ Name(a) , Name(b)

using the Object Constraint Language (OCL).
More precisely, static semantics are defined for the following aspects:

60

5.3 Static Semantics

• Uniqueness of element IDs and attributes (e.g., all points must have unique IDs).

• Referential integrity for explicit links between element definitions (e.g., the defi-
nition of the level elements refers to some particular point category).

• Minimum and maximum cardinalities of children elements or properties (e.g.,
each GaML instance must have at least one element defined).

• Cyclic dependencies in the specific mission graph (e.g., none of a mission’s chil-
dren should point back to the mission in question).

• Type checking in numeric expressions, especially when variables are present
(e.g., variables of type String must not be used in numeric expressions).

• Use of correct point types (e.g., only redeemable point metrics have to be used
as price definition within goods)

Listing 5.1 shows, for example, the OCL constraint for the uniqueness of all event
IDs. Note that the attribute name in the examples below denotes the terminals of the
grammar.

1 context Type
2 inv UniqueEventID:
3 Event.allInstances()->forAll(a, b| a <> b implies a.name <> b.name);

Listing 5.1: Constraint for uniqueness of IDs

Listing 5.2 presents example constraints to check for the correct point type usage.
For example, within the good element, the invariant checks whether the referenced
point is of type redeemable and raises an error, if it is not. As another example, the
integrity in a skill definition is checked, i.e., if the referenced point is of type skill.

1 context Good
2 inv isRedeemablePointType:
3 Point.allInstances()->exists(p|p=point and p.type.name=’REDEEMABLE’)
4

5 context Skill
6 inv isSkillPointType:
7 Point.allInstances()->exists(p|p=point and p.type.name=’SKILL’)

Listing 5.2: Constraints for point type semantics

Listing 5.3 shows an example for checking the point types with regards to point op-
erations semantically, e.g., that points can be only removed for point type redeemable.

1 context PointRefCons
2 inv RemoveImpliesRedeemable:
3 (self.action=’remove’ and self.point<>null) implies self.point.type.

name=’REDEEMABLE’;

Listing 5.3: Constraint for point semantics

Listing 5.4 shows the definition of custom OCL operations to checks if a mission
graph is free of cycles. For this purposes the operations traverseBoolExp and col-
lectMissions are used to traverse the mission graph along the available clauses (root-
.condition) and to recursively collect all parent missions of the current one. Based
on the resulting set, the invariant specified that the mission in question must not be
contained whereas this has to hold for all missions within the entire graph.

61

5 GaML - Conceptual Gamification Modeling Language

1 context Mission
2

3 inv AcyclicPrecondition:
4 Mission::requiredMissions(self)->excludes(self);
5

6 operation requiredMissions(root: Mission): Set {
7 body: if (root.condition <> null)
8 then
9 Mission::traverseBoolExp(root.condition.boolExp)

10 else
11 Set{}
12 endif;
13 }
14

15 operation traverseBoolExp(boolExp: Expression):Set {
16 body:
17 if (not boolExp.atom.oclIsUndefined())
18 then
19 Mission::collectMissions(boolExp.atom)
20 else
21 Set{boolExp.left, boolExp.right, boolExp._’not’}
22 ->asSet()
23 ->reject(bExp | bExp.oclIsUndefined())
24 ->collect(bExp | Mission::traverseBoolExp(bExp))
25 ->flatten()
26 ->asSet()
27 endif;
28 }
29

30 operation collectMissions(condition: Condition):Set {
31 body: if (condition.condition.oclIsTypeOf(Expression))
32 then
33 Mission::traverseBoolExp(condition.condition)
34 else
35 if (condition.condition.oclIsTypeOf(MissionItem))
36 then
37 let missionItem: MissionItem = condition.condition.

oclAsType(MissionItem)
38 in Set{ missionItem.mission }
39 ->union(Mission::traverseBoolExp(missionItem.mission.

condition.boolExp))
40 else
41 if (condition.condition.oclIsTypeOf(MissionRefs))
42 then
43 let missionRefs : MissionRefs =
44 condition.condition.oclAsType(MissionRefs)
45 in missionRefs.missions.mission
46 ->asSet()
47 ->union(missionRefs.missions.mission
48 ->collect(m | Mission::traverseBoolExp(m.

condition.boolExp))
49 ->flatten())
50 else
51 Set{}
52 endif
53 endif
54 endif;
55 }

Listing 5.4: Constraint and operations for acyclic missions

62

5.4 Systematization

Finally, type checks are performed on the properties of events, i.e., within a numeric
expression it is checked whether the referenced properties of events are declared as
numerical types as shown in Listing 5.5.

1 context NUMEXPR
2 inv NumeralOperands: if(self.op1.refOp->notEmpty())
3 then
4 let
5 dType : String = self.op1.refOp.var.dType.name
6 in
7 Set{’Number’, ’Decimal’}->includes(dType)
8 else
9 true

10 endif;

Listing 5.5: Constraint for type checks in numeric expressions

Some of these constraints may result either in errors (e.g., type checks) or warnings
(e.g., point types).

In this thesis, dynamic semantics are not defined since it is assumed that GaML
is not directly executable. However, in Chapter 7, GaML’s semantics are at least de-
scribed as translational semantics [112], i.e., GaML instances are translated into an
existing language with pre-defined computational model (e.g., Drools Rule Language).
The definition of operational, axiomatic, or denotational semantics are subject to future
work (Chapter 9).

5.4 SYSTEMATIZATION

In this chapter, GaML and its syntax and static semantics has been introduced. Table
5.1 gives an overview of all language elements and their relationship to at least one
of the conceptual requirement. It is important to note that not all conceptual require-
ments are mapped by the language as they have been identified as runtime concepts.
For instance, the marketplace concept has been omitted as it is assumed that all virtual
and real goods can be traded within the bounds of the monetary system. Therefore,
no additional information is required at design-time. Other concepts defined as runtime
concepts are necessary to be referenced implicitly, i.e., they are reflected within the
gamification’s logic only. For example, the concepts of avatars or teams are not ex-
pressed directly in GaML as they are considered primarily as runtime concepts. How-
ever, within GaML rules, authors may decide if particular conditions apply to players
or teams. These implicit mappings are given in rounded brackets of Table 5.1. The
underlying runtime environment has to support these concepts in addition to the ones
that can be already defined at design-time.

CR# Mapped by Comment

CR1 (Points) E5, E5a

CR2 (Achievements) E4

CR3 (Goods) E9, E9a

CR4 (Skills) E7

CR5 (Roles) E10

CR6 (Missions) E6, E6a, E6b

63

5 GaML - Conceptual Gamification Modeling Language

CR# Mapped by Comment

CR7 (Feedback) E13d, E13c

CR8 (Events) E3

CR9 (Narrative Context) (E13c) Runtime concept

CR10 (Notifications) E13c

CR11 (Space) E1

CR12 (Game Level) E2

CR13 (Context) (E12b), (E12c),
(E12d), (E12e),
(E12f), (E12g),
(E12j), (E12k),
(E12q), (E12r)

Runtime concept

CR14 (Avatar Levels) E8

CR15 (Avatar) (E12a) Runtime concept

CR16 (Marketplace) - Runtime concept

CR17 (Leaderboard) E11

CR18 (Communication System) (E13d), (E13c) Runtime concept

CR19 (Team) (E12q), (E12r) Runtime concept

CR20a (Boolean) E12a

CR20b (Event) E12l, E12m

CR20c (Temporal) E12o, E12p

CR20d (Location) E12i

CR21 (Joint Actions) E12n

CR22 (Randomness) E12h

CR23 (Consequences) E13a-E13h

Table 5.1: Mapping of conceptual requirements and language specification

In the following chapter, these specific language elements are used to assess exist-
ing runtime environments for gamification. Additionally, for each language element the
transformation into the generic runtime system developed in this thesis is shown as
well.

64

6 RELATED WORK
This chapter presents related work in the domain of gamification. More specifically,
for each contribution of this thesis a separate section outlines the state-of-the-art as
well as the addressed gaps. First, existing languages for games and gamification are
analyzed. Second, runtime environments for gamification are discussed with regards
to the requirements presented in Chapters 4 and 5.

6.1 LANGUAGES

The state-of-the-art in the field of gamification currently lacks a proper modeling lan-
guage for gamification concepts that supports domain, gamification, and IT experts in
the design phase of gamification concepts. Therefore, some researchers started using
standard mathematical descriptions to describe their gamification concept (e.g., [29])
in a formal way. However, a proper language is missing.

Nevertheless, there are other established game languages and modeling approaches.
These approaches are analyzed below and compared with GaML’s design goals (Sec-
tion 5.1). Based on this analysis, it is shown that none of the existing approaches fully
suffices all the requirements of gamification. Based on this observation it is concluded
that the proposed GaML not only serves the purpose of formalizing the identified ga-
mification concepts and game mechanics but might be used to fill theoretical gaps in
the state-of-the-art.

6.1.1 GAME DESCRIPTION LANGUAGE

The Game Description Language (GDL) is a formal language to describe emergent
games for general game playing. In this domain, autonomous agents (virtual players)
try to compete against each other without any information but the description of the
game given in GDL. The language comprises eight primitives to express the rules of
arbitrary emergent games such as chess or tic-tac-toe. In general, the keywords allow
to describe what a player (role(R)) and what the initial state of the game is (init(F)).
Additional elements describe which moves are allowed (legal(R,M)), which moves are
taken by the player (does(R,M)), and which state terminates the game (terminal). The
language can be extended to typical concepts of board and card games such as turns,
places, or tokens which can be used in the context of the keywords shown above. For
example, Listing 6.1 shows an excerpt of the game Tic-Tac-Toe written in GDL. This

65

6 Related Work

example comprises the definition of 9 initial fluents (e.g., the places where token might
be placed by players), legal moves (e.g., if player W is in control and cell(X,Y) is its initial
state, then W is allowed to mark the cell in question), update rules (e.g., the cell is
marked with x or o if the current player marks the corresponding cell, if, however, the
cell is already marked, it retains the mark), and terminals for winning states (e.g., when
a row, diagonal, or column is drawn by one of the players).

1 init(cell(1,1,b)).
2 init(cell(1,2,b)).
3 init(cell(1,3,b)).
4 init(cell(2,1,b)).
5 init(cell(2,2,b)).
6 init(cell(2,3,b)).
7 init(cell(3,1,b)).
8 init(cell(3,2,b)).
9 init(cell(3,3,b)).

10 init(control(white)).
11

12 legal(W,mark(X,Y)) :- true(cell(X,Y,b)) & true(control(W))
13 legal(white,noop) :- true(control(black))
14 legal(black,noop) :- true(control(white))
15

16 next(cell(M,N,x)) :- does(white,mark(M,N)) & true(cell(M,N,b))
17 next(cell(M,N,o)) :- does(black,mark(M,N)) & true(cell(M,N,b))
18 next(cell(M,N,W)) :- true(cell(M,N,W)) & distinct(W,b)
19 next(cell(M,N,b)) :- does(W,mark(J,K)) & true(cell(M,N,b)) & distinct(M,J)
20 next(cell(M,N,b)) :- does(W,mark(J,K)) & true(cell(M,N,b)) & distinct(N,K)
21 next(control(white)) :- true(control(black))
22 next(control(black)) :- true(control(white))
23

24 terminal :- line(W)
25 line(X) :- row(M,X)
26 line(X) :- column(M,X)
27 line(X) :- diagonal(X)
28 terminal :- ~open
29

30 open :- true(cell(M,N,b))

Listing 6.1: Excerpt of TicTacToe in game description language

Although very powerful and expressive, the goals of this language completely differ
from the assumptions of this thesis as stated in Chapters 4 and 5. For instance, GDL
assumes that players act on complete information excluding only the strategies of the
other players. This is consistent with the observation that GDL is a language to primarily
model emergent games. Within gamification, however, the rule set is exposed step-
by-step to the user, i.e., users act on incomplete information all the time.

Based on the example, it is argued that the syntax and semantics of the GDL are very
technical and based on predicate calculus making it arguably hard for non-technical
experts to read or write their own gamification concepts. Furthermore, expressing
progression games, which are of iterative nature, in GDL, which requires recursive
descriptions, results in a cumbersome translation activity that can be only achieved
by high-skilled personnel. However, this is not consistent with the assumption of this
thesis and contradicts design goals DO4 and DO5.

Furthermore, the GDL allows to define fluents and states freely, i.e., there is no
pre-defined meta-model for games or gamification concepts with well-defined and es-
tablished semantics available. However, it is argued that this is absolutely necessary
to allow efficient discussion or implementations. Hence, GaML is a proposal to pro-
vide such a semantic model which, in turn, validates the corresponding taxonomy for

66

6.1 Languages

the domain of gamification. This goal is not accomplished by the GDL and, therefore,
contradicts design goals DO1 and DO2.

Additionally, valid GDL instances or descriptions cannot be executed or translated
automatically into arbitrary runtime environments for gamification but are interpreted
by autonomous solvers. Hence, design goal DO6 is not fulfilled by the GDL given the
prior assumptions.

6.1.2 MACHINATIONS

In [68] a visual modeling framework called Machinations is proposed. This framework
allows game designers to model game mechanics or parts thereof in a visual man-
ner. For example, Figure 6.1 shows an exemplary positive feedback loop for the game
Monopoly . Based on such descriptions, simulations can be run to study emergence
effects, e.g., if feedback loops are correctly balanced. Therefore, the framework might
be used by game designers to study and validate their game mechanics on a theoretical
level even before its final implementation.

11

+1+1

Money

*
Income Property

Buy Property

Figure 6.1: Example for Machinations framework [68]

Although the framework is well-suited to study emergence effects of specific game
mechanics, it cannot be used to express entire gamification concepts directly.

First, important mechanics for the progression aspect of gamification are missing
(DO1 and DO2). In particular, the framework enables the modeling of missions includ-
ing abstract sub tasks and their interdependencies only. However, modeling the com-
plex rules that determine the tasks as well as the progression between these tasks
including user feedback is not possible. For example, it is not possible to model joint
actions of users or temporal constraints that are necessary to complete some specific
task. Additionally, it is not foreseen to explicitly model the flow of feedback to the user.

Second, due to its visual representation modeling all structures and functions of
a holistic concept is limited to some degree. A simple but already complex looking
example is given in Figure 6.2. Therefore, only parts of the entire game or gamification
concept can be modeled clearly and unambiguously at one point in time.

Based on Figure 6.2, it is further argued that design goals DO3 and DO4 are only
partially fulfilled, as the syntax and semantics of the graphical elements is not intuitively
clear to domain, gamification, or IT experts. Hence, prior trainings are necessary to let
others understand the impact of the solutions.

Third, the language can be used for simulation purposes only to study emergence
effect, i.e., the language cannot be directly compiled to an underlying technical frame-
work to put the modeled game mechanics into host environments such as games or
host applications for gamification (DO6).

67

6 Related Work

5511

55

>0>0

22

1/31/3

2D22D2

**

**

**

==0==0
==0==0

==0==050%50% 50%50%

D3/10D3/10 D3D3

11

3D2/33D2/3

+2+2

+1+1

food

refurbished

farms

*
consumption

You won! You won!

==0==0

+2+2
+2+2

>0>0

game over

game over

55

fields

5

5500

00

>20>20

Attack enemy!

D3D3

>0>0

55

*
monkeys steal food

55

+0.1+0.1

55

55

55

55

>0>0

*
Enemy

3D23D2

11 55

saw mill

wood

5

*
population

+0.1+0.1 *
population growth

attack evil monkeys!

>0>0 iron

5

destroyed bots destroyed bots

factories

+5+5+5+5

00

00

+5+5

+5+5

enemy attack bots

1

enemy defence bots

1
00

0/50/5

00

0/50/5

defence bots

1

D3/10D3/10

**

**

attack bots

1

*
p

queue
+1+1

+0.25+0.25

>20>20

+1+1

+0.5+0.5

2020

D3D3

evil monkeys

monkey graves

destroyed bot destroyed bots

100100

200200 200200

200200

100100

100100

100100

100100

100100

XP points

**

+0.2+0.2

0/50/5

00
+2+2

*building materials

10

*
enemy is attacking!

attack level

>0>0

* tax income

derelict houses

5

defence level

*
food source

*
p

queue

+2+2

>=100>=100 >=100>=100

00

credits

1000

D3/15D3/15

&
build factory

&
build saw mill

&

build farm

&

refurbish

&
build defence bots!

&
build attack bots!

&
claim tile

&
upgrade defense bots

&
upgrade attack bots

Figure 6.2: Complex graphical game model in Machinations framework [111]

Fourth, the proposed language contains control structures that force the designer to
care about modeling how the game mechanics are implemented (e.g., feedback loops
through repetition elements). Thus, it does not fully comply with design objective DO3,
although it is acknowledged that most modeling elements are of descriptive nature.

6.1.3 SERIOUS GAME STRUCTURE AND LOGIC MODELING LANGUAGE

[188] introduce the Serious Game Structure and Logic Modeling Language (GLiSMo)
as a DSL for serious games. The meta-model includes concepts such as objects, char-
acters, acts, or scenes. Furthermore, the language comprises actions, tasks, and as-
sessments to represent the game’s logic. There are different types of tasks, namely
multiple-choice and drag-and-drop where the former is used to challenge the user with
quizzes and the latter to combine graphical objects in predefined shapes. Assessments
are then used to measure the correctness of the user’s solution.

However, the concept has major drawbacks with regards to gamification. First, the
task types are fixed, i.e., there are only multiple-choice and drag-and-drop quizzes avail-
able. Hence, there is no possibility to freely design rules with conditions and conse-
quences.

Second, the language only comprises notifications, i.e., other types of feedback or
visual elements are not foreseen (Chapter 4). Therefore, it is argued that the language

68

6.1 Languages

does not support design goal DO1 adequately. Since, the authors do not report on
semantics, design goal DO2 is not fulfilled as well.

Third, concepts such as acts or scenes have not been identified as requirement for
gamification and are, thus, out of scope for the proposal of GaML. Moreover, the cur-
rently reported status of the language mixes implementation details (e.g., GUIManager
or AudioManager) with general concepts (e.g., Characters or Scenes). Therefore, it
remains unclear which concepts constitute the language. Finally, the language is of
descriptive character only, i.e., it is not translatable into execution environments auto-
matically (DO6).

6.1.4 OTHERS

Surveying the literature yields further formal languages. However, in contrast to the
ones described above, those languages are tailored to specific aspects of games rather
than gamification and cannot be reused for the purposes of this thesis. This includes
the Card Game Description Language (CGDL) [79] tailored to the simulation and deriva-
tion of novel card games, the Strategy Game Description Language (SGDL) [132] spe-
cific to the description of emergent strategy games, and the Video Game Description
Language (VGDL) [72] which might be used to describe and generate simple video
games. In the following, the CGDL is used as an example to show that there are no
overlaps with the design objectives of GaML. It is argued that this description also
applies to all other identified languages.

The approach by [79] presents the Card Game Description Language (CGDL), which
allows for the modeling of card games, i.e., specific emergent games, in a well-defined
language. Besides syntax, the authors describe axioms that have to hold for all in-
stances of the language.

In general, each instance following the meta-model as well as the axioms represents
a valid card game by definition. Within a randomized simulation, the authors show that
well-known games such as UNO or Poker converge against predefined quality criteria
such as number of turns or draws. Based on these findings the authors propose to
automatically derive novel card games by simulation only.

However, in general this language does not fit to premises of this thesis. First, the
language is limited to the description of card games only. Consequently, the language
requires the definition of at least one winning state. Furthermore, the meta-model
foresees concepts such as stages, turns, tokens, and places which are not relevant as
gamification concepts. Thus, the language contradicts with design goal DO1.

Second, the language’s semantics are not of general nature but tied to the semantics
of card games. For example, a player’s turn is over when he or she is done, next, or
out. Hence, design goal DO2 is not fulfilled.

Third, also the CGDL is based on predicate calculus and, thus, hardly understandable
or modifiable as postulated in this thesis (contradiction with design goals DO4 and
DO5).

Due to the described limitations, the language is consequently not translatable to
gamification environments (DO6).

6.1.5 SYSTEMATIZATION

The key features of the analyzed languages are presented in Table 6.1. In general, it
is notable that the majority of existing languages focus on emergent games (namely
GDL, CGDL, and Machinations) either to simulate emergent effects within games or to
play them autonomously. Only GLiSMo focuses on progression games, however, this

69

6 Related Work

Feature GDL [187] Machina-

tions

[68]

GLiSMo

[188]
CGDL [79] GaML

Level of
Formalism

Formal Formal Semi-formal Formal Formal

Type Emergence Emergence Progression Emergence Progression

Represen-
tation

Logic-based Visual Declarative Grammar-
based

Declarative

Executable YES YES NO YES YES

Domain Games Video Games Serious
Games

Card Games Gamification

Target
Authors

Theoretical
computer
scientists

Game
designers

Game
designers

Theoretical
computer
scientist

Gamification
designers

Example
application

Autonomous
play

Simulation of
emergence

Documenta-
tion of
serious
games

Generation
of novel card
games

Standardiza-
tion,
description,
and
execution of
gamification.

Table 6.1: Comparison of existing game languages

language is neither executable nor does the meta-model comply with the requirements
for gamification.

Furthermore, no analyzed language has included elements to model the visual as-
pects of games or gamification. This comprises, for example, the consideration of
visual elements (e.g., describing texts or images) and interaction patterns of game
mechanics (e.g., rule-driven, user-driven missions). Hence, this thesis not only formal-
izes the concepts of gamification in a rigorous manner but also presents a language
that describes the patterns of user interaction which is not provided by the existing
approaches.

6.2 GAMIFICATION SOLUTIONS

In conjunction with the gamification process and the design goals, valid instances of
GaML are intended to be automatically translated into code that can be executed by
gamification runtime environments (DO6). This section, therefore, analyzes existing
gamification runtime environments with regards to the requirements.

In this analysis, 29 gamification systems or runtimes are analyzed and compared
against the functional requirements of GaML (Section 5.2) and non-functional require-
ments as defined for enterprise information systems in general (Section 4.3). Based on
the non-functional attributes, existing systems can be classified into three main cate-
gories, namely Integrated Gamification Solutions, Achievement Systems, and Generic

70

6.2 Gamification Solutions

In
fo

rm
a

ti
o

n
 S

y
s

te
m

Gamification

Logic

Data

Core

Application
Frontend

A
c

h
ie

v
e

m
e

n
t

S
y

s
te

m

API

Data

Figure 6.3: High-level architecture of an achievement system

Gamification Platforms. For each of these classes, the following text describes its gen-
eral functionality, presents implications, and gives examples.

6.2.1 Achievement Systems

Achievement Systems (ASs) are defined as “secondary reward systems that have been
developed for digital games. They integrate functionality that adds sub-goals to the ac-
tual game experience” [141]. In conjunction with the definition of [106], these achieve-
ment systems usually add an additional progression dimension on top of the real game.
A first academic implementation of an achievement system was presented in [141].
However, the authors focus mainly on the evaluation of achievements rather than the
description of the framework. Therefore, [90] extended the concept by rigorously defin-
ing the aspects of achievements and conceptualizing a framework. However, a techni-
cal solution was not proposed.

Schematically, the AS is external to the actual system and exposes the domain en-
tities via standardized interfaces to the IS (Figure 6.3). Domain entities such as points
or badges are defined at design-time. At runtime, when the IS decides to update the
player’s state (e.g., by giving a reward), it requests the AS to store this data. Vice versa,
the IS may retrieve the player’s current state from the AS, e.g., to display the data in
the frontend of the application. Moreover, the achievement system may offer another
separate client that visualizes the player’s gamification data in profiles or leaderboards
for each game individually.

The major drawback of ASs is that rules are not supported and the gamification logic
has to reside within the IS. Consequently, a part of the gamification data, e.g., interim
gamification results, resides within the IS as well. This limits their flexibility with re-
gards to design changes as well as reusability in arbitrary contexts. Moreover, the IS
has to be modified intensively to integrate with the achievement system which con-
tradicts with the invasivity requirement. In all analyzed cases, integration has to be
done programmatically without additional support (medium integratability). Since only
parts of the gamification data are available to the AS, analyzability is only given to some
extent. None of the analyzed systems supports manageability of data.

From 29 evaluated systems, 11 were identified as ASs (Table 6.2). Implementations
of ASs for games are: XBOX LIVE, PLAYSTATION NETWORK, STEAM, IOS GAMECENTER,
and BEINTOO. Explicitly designed for gamification are the systems GAMINSIDE, BIG-
DOOR.COM, MPLIFYR, LEADERBOARDED, USERINFUSER, and OPENBADGES. As shown
in Table 6.2, none of the existing systems allow the definition of all concepts which
are necessary for gamification. Almost all systems, however, allow the definition of
achievements and points.

71

6 Related Work

E# / CR# X
B

O
X

LI
V

E
[1

99
]

P
S

N
E

T
W

O
R

K
[1

55
]

S
T

E
A

M
[1

81
]

IO
S

G
A

M
E

C
E

N
T

E
R

[1
01

]

G
A

M
IN

S
ID

E
[8

4]

B
E

IN
TO

O
[2

3]

M
P

L
IF

Y
R

[1
42

]

B
IG

D
O

O
R

.C
O

M
[2

8]

LE
A

D
E

R
B

O
A

R
D

E
D

[1
22

]

U
S

E
R

IN
F

U
S

E
R

[1
93

]

O
P

E
N

B
A

D
G

E
S

[1
46

]

TH
E

S
IS

E1 (Space) 3 3 3 3 3 3 3 3 3 3 3 3

E2 (Game Levels) - - - - - - - - - - - 3

E3 (Events) - - - - - - - - - - - 3

E4 (Achievements) 3 3 3 3 3 3 - 3 - 3 3 3

E5 (Points) (3) - - 3 3 (3) (3) 3 3 3 - 3

E5a (Point Types) - - - - - - - - - - - 3

E6 (Missions) 3 3 3 (3) (3) - - 3 - - - 3

E6a,E6b (Mission Preconditions,
Mission Types)

- - - - - - - - - - - 3

E7 (Skills) - - - - - - - - - - - 3

E8 (Levels) - - - - ◦ (3) (3) 3 - - - 3

E9 (Goods) - - - - 3 3 3 3 - - - 3

E9a (Good Types) - - - - 3 3 - - - - - 3

E10 (Roles) - - - - - - - - - - - 3

E11 (Leaderboards) 3 - - 3 ◦ 3 - 3 3 3 - 3

E12(a-r) (Conditions) - - - - - - - - - - - 3

E13(a-h) (Consequences) - - - - - - - - - - - 3

CR9 (Narrations) - - - - - - - - - - - 3

CR13 (Context) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) 3

CR15 (Avatars) 3 3 3 3 ◦ - - - - - - 3

CR16 (Marketplaces) 3 3 3 - ◦ 3 3 - - - - 3

CR18 (Com. System) 3 3 3 3 - - - - - - - -

CR19 (Teams) 3 3 3 - - - - - - - - 3

Table 6.2: Analysis of achievement systems1

In all other aspects, the supported features are strongly depending on the domain
where the system is typically applied (e.g., games, loyalty, and reputation manage-

1Legend: 3 Supported; (3) Supported, but not changeable; - Not supported; ◦ No information available

72

6.2 Gamification Solutions

ment). For example, systems that are specialized for loyalty programs typically feature
redeemable goods and some kind of virtual currency which is not the case for all other
ASs.

Furthermore, it is interesting to observe that the majority of the analyzed ASs (e.g.,
XBOX LIVE, BEINTOO, MPLIFYR, BIGDOOR.COM, or LEADERBOARDED) even come with
a predefined value system which cannot be customized, i.e., currencies or point cate-
gories are statically defined in order to establish an accountable virtual currency across
several games connected to the same AS. In contrast, USERINFUSER or BIGDOOR.COM

are highly customizable ASs. Some systems provide a limited number of gamification
concepts only, such as points and leaderboard (e.g., LEADERBOARDED) or badges (e.g.,
OPENBADGES).

6.2.2 Integrated Gamification Solutions

An Integrated Gamification Solution (IGS) has been developed directly for and within
the IS (Figure 6.4). Hence, the solution is tied to the application’s structure, interfaces,
and semantics. Therefore, implementation is very fast at early stages of development
since features required by the target application have to be implemented only.

In
fo

rm
a

ti
o

n
 S

y
s

te
m

Gamification

Logic

Data

Core

Application
Frontend

Figure 6.4: High-level architecture of an integrated solution

It is argued that the overall performance of this approach is high, since all calculations
can be directly processed within the system. Similarly, analyzability can be considered
as high, since all data is available for analysis within the host application. Due to the
tight integration, integratability is obsolete to be considered.

However, it is argued that this approach does hardly scale horizontally. For instance,
reusability is not given and, thus, the gamification solution has to be implemented
repeatedly for each system. In all surveyed cases, these systems are also domain-
specific, i.e., they ship with a set of parameterizable game design elements and rules
tied to a particular domain such as sales or sustainability. Therefore, their flexibility is
limited to a large extent. Due to the tight coupling of ISs and gamification, invasivity is
high. In addition, in no case manageability of gamification data was observed. Finally,
the approach results in data silos, i.e., users can hardly share their gamification data
across application boundaries without additional efforts since no generalization, stan-
dardization, or interoperability is considered. Table 6.3 lists current examples of IGSs
for various domains.

Overall, seven systems are classified as IGS, namely GIGYA, PLAYVOX, PRACTICALLY

GREEN, ZURMO, CELLCAST, RESULTS.COM, and PUNCHTAB. Due to their tight integra-

73

6 Related Work

tion with the host application, each system is also very specific with regards to the
game mechanics it features, i.e., the degree of customization is comparably low. For
example, PLAYVOX focuses on specific game mechanics for call centers, GIGYA on so-
cial communities, ZURMO on CRM applications, or CELLCAST on learning management
solutions.

In contrast to ASs, some of the IGSs allow the definition of very simple rules to
customize the gamification concept. For example, GIGYA’S system allows customiz-
ing a user action, specify a point consequence, and also some specific mechanics to
prevent exploitation (Figure 6.5). Furthermore, actions are conjunctively connected to
form a mission, i.e., the mission is done once all actions have been finished. How-
ever, these features only support a limited amount of the requirements as identified in
this thesis. For instance, it is not possible to filter user actions further based on arbi-
trary attributes, define relationships between user actions, define consequences upon
mission completion, or define arbitrary mission paths.

Figure 6.5: Action definition example from the Gigya solution [85]

Other approaches, e.g., ZURMO, PRACTICALLY GREEN, or PLAYVOX come with a pre-
defined gamification concept including predefined goals or point values for predefined
actions (e.g., [203]), i.e., these gamification concepts can hardly be customized to the
specific needs of the organization where it is deployed. However, contradicts with the
flexibility and reusability requirements of this thesis. Table 6.3 presents the features
of all analyzed IGSs with regards to the functional requirements.

It is shown in Table 6.3 that all analyzed systems support at least to some degree
the management of points, achievements, levels, and context in general. However,
all analyzed systems are domain specific and, thus, support only a minority of the re-
quired features as defined in Chapter 5. As another consequence, none of the existing
systems is able to introduce gamification in a highly customizable and reusable manner.

74

6.2 Gamification Solutions

E# / CR# G
IG

YA
[8

6]

P
L

A
Y

V
O

X
[1

56
]

P
R

A
C

T
IC

A
L

LY
G

R
E

E
N

[1
58

]

ZU
R

M
O

[2
03

]

C
E

L
L
C

A
S

T
[5

0,
51

]

R
E

S
U

LT
S
.C

O
M

[1
65

]

P
U

N
C

H
TA

B
[1

60
,1

61
]

TH
E

S
IS

E1 (Space) 3 3 3 3 3 3 3 3

E2 (Game Levels) - - - - - - - 3

E3 (Events) 3 - - - (3) - 3 3

E4 (Achievements) (3) (3) (3) (3) 3 3 - 3

E5 (Points) 3 (3) (3) 3 3 3 3 3

E5a (Point Types) - - - - - - - 3

E6 (Missions) (3) (3) (3) (3) (3) - (3) 3

E6a,E6b (Mission Preconditions,
Mission Types)

- - - - - - - 3

E7 (Skills) - - - - - - - 3

E8 (Levels) 3 (3) - - 3 - - 3

E9 (Goods) - - - - 3 - 3 3

E9a (Good Types) - - - - 3 - - 3

E10 (Roles) - - - - - - - 3

E11 (Leaderboards) 3 3 3 3 3 3 3 3

E12a (Boolean Conditions) (3) - - - - - (3) 3

E12b (Badge Conditions) (3) - - - - - - 3

E12c (Level Conditions) (3) - - - - - - 3

E12d-E12k (Item - Role Conditions) - - - - - - - 3

E12l (Event Conditions) 3 (3) (3) (3) (3) (3) (3) 3

E12m-E12r (Numeric Conditions) - - - - - - - 3

E13a (Events) - - - - - - - 3

E13b (Points) 3 - (3) (3) - - 3 3

E13c (Notifications) 3 (3) (3) (3) (3) - (3) 3

E13d-E13h (Narrations - Skills) - - - - - - - 3

CR9 (Narrations) - - - - - - - 3

CR13 (Context) (3) (3) (3) (3) (3) (3) (3) 3

75

6 Related Work

E# / CR# G
IG

YA
[8

6]

P
L

A
Y

V
O

X
[1

56
]

P
R

A
C

T
IC

A
L

LY
G

R
E

E
N

[1
58

]

ZU
R

M
O

[2
03

]

C
E

L
L
C

A
S

T
[5

0,
51

]

R
E

S
U

LT
S
.C

O
M

[1
65

]

P
U

N
C

H
TA

B
[1

60
,1

61
]

TH
E

S
IS

CR15 (Avatars) - - - - ◦ ◦ 3 3

CR16 (Marketplaces) - - - - ◦ 3 3 3

CR18 (Com. System) - - - - - - - -

CR19 (Teams) - - - - - - - 3

Table 6.3: Analysis of integrated gamification solutions

6.2.3 Generic Gamification Platforms

A Generic Gamification Platform (GGP) is completely decoupled from the IS, i.e., the
gamification’s state and logic are kept as a separated aspect (Figure 6.6). This allows
for an almost non-invasive introduction of gamification into the IS. In all cases, generic
platforms offer designers a large set of L1 entities. In GGPs, designers configure the
gamification in the platform, i.e., defining rules and metadata prior to runtime in a declar-
ative manner. In all analyzed cases, this process is supported by tools and provides a
high degree of flexibility along the gamification process.

During runtime, the platform collects arbitrary user actions from the application and
uses the rules to reason over the users’ events considering previous context data of
the users.

G
e

n
e

ri
c

 G
a

m
if

ic
a

ti
o

n

P
la

tf
o

rm

In
fo

rm
a

ti
o

n
 S

y
s

te
m Core

Application

Frontend

API

Data

Logic

Figure 6.6: High-level architecture of a generic gamification platform

From a non-functional perspective, the platform can be reused across multiple sys-
tems within the company or even across companies. This allows for the definition of
standardized interfaces and design artifacts and makes interoperability between infor-
mation systems easier. Moreover, integrability is highly supported through gamification
components and widgets offered by all analyzed GGP implementations.

76

6.2 Gamification Solutions

However, such a generic service approach is also the most challenging one from a
conceptual and technical perspective since many different design methodologies have
to be supported. Additionally, due to the complete separation of IS and gamification,
ensuring high performance is complicated. For example, user actions might be lost or
delayed while transmitted between IS and GP.

The analysis classified three systems into this category, namely BUNCHBALL, BADGE-
VILLE, and IACTIONABLE (Table 6.4). As all platforms are considered mature and support
different design methodologies, each platform is explained in detail below.

6.2.3.1 BUNCHBALL

Bunchball natively supports a variety of L1 game mechanics such as various point cat-
egories, badges, user actions, virtual items, real goods etc. However, roles, skills,
and narration are not supported. The overall gamification concept is structured by
so-called challenges (missions) that determine a linear progression path divided into
several game levels. Other mission structures are not supported.

Furthermore, each challenge comprises a set of conditions determining the comple-
tion status of the mission. Here, either all conditions in sequence or without sequence,
or any of the conditions have to hold in order to complete the mission. According to
[42], there are five types of conditions supported:

1. The event is of a specific type (e.g., the user has watched a video). This corre-
sponds to GaML element E12l.

2. The value of an event exceeds a particular threshold (e.g., the user has watched
a video for five minutes whereas the time amount is the value attribute of the
event). This partially realizes GaML element E12m, since no additional constraints
on further, possibly multiple event attributes can be defined.

3. The total value from events of the same type exceeds a particular threshold (e.g.,
the user has watched videos for five hours).

4. The number of events from the same type exceeds a particular threshold (e.g.,
the user has watched 5 videos).

5. The number of events from the same type exceeds a particular threshold within
a defined time period (e.g., the user has watched ten videos in three hours).
The latter three types realize partially GaML element E12p, since no additional
aggregations functions are available and only the sum function allows to specify
a sliding time window.

It is important to note, that BUNCHBALL’S event model only foresees one numeric
attribute per tuple. Hence, additional filters (E12m) or aggregations (E12p) are not con-
sidered. Furthermore, the event model does not allow for the detection of collaborative
or competitive scenarios through joins (E12n) or temporal operators (E12o). For exam-
ple, it is not possible to detect that the user has to watch five different videos (i.e.,
videos having different IDs) or more videos than one of his friends to get a particu-
lar reward. Furthermore, additional contextual (E12b-E12g), probability-based (E12h),
location-based (E12i) or leaderboard-based (E12j) conditions are not supported.

On the positive side, conditions can be arbitrarily correlated by Boolean operators,
thus, reflecting E12a. Furthermore, element E6a is partially supported since it is pos-
sible to define levels or exactly one other missions as preconditions for the current

77

6 Related Work

mission. The platform also supports the definition of teams at runtime. A team mis-
sion in this platform is completed, when any of the team’s players contributed to the
respective conditions. Upon completion, the rewards apply to the entire team. Hence,
player (E12r) and team belongingness (E12q) are partially supported as well.

Upon mission completion, the user may receive badges (E13e), points (E13b), noti-
fications (E13c), or virtual items (E9a). It is important to note that virtual items in the
BUNCHBALL platform are, however, defined differently as in this thesis. For example,
such items cannot be used as advantage in the player’s progression but can be col-
lected and exhibited in a virtual room or given away as a gift to others. Other kinds of
feedback are not supported.

Finally, the platform itself and its documentation are not publicly available. Hence,
it cannot be assessed with regards to technical concepts and its implications. The
analyzed gamification features of the BUNCHBALL platform are summarized in Table
6.4.

E# / CR# B
U

N
C

H
B

A
L

L
[4

2,
43

,1
48

]

B
A

D
G

E
V

IL
L

E
[1

6,
71

]

TH
E

S
IS

E1 (Space) 3 3 3

E2 (Game Levels) 3 - 3

E3 (Event) 3 3 3

E4 (Achievement) 3 3 3

E5 (Points) 3 3 3

E5a (Point Types) (3) - 3

E6 (Missions) 3 (3) 3

E6a (Mission Preconditions) (3) (3) 3

E6b (Mission Types) - - 3

E7 (Skills) - - 3

E8 (Avatar Levels) 3 - 3

E9 (Goods) - - 3

E9a (Good Type) 3 - 3

E10 (Roles) - - 3

E11 (Leaderboards) 3 3 3

E12 (Conditions)

E12a (Boolean Conditions) 3 - 3

78

6.2 Gamification Solutions

E# / CR# B
U

N
C

H
B

A
L

L
[4

2,
43

,1
48

]

B
A

D
G

E
V

IL
L

E
[1

6,
71

]

TH
E

S
IS

E12b (Badge Conditions) - 3 3

E12c (Level Conditions) 3 - 3

E12d (Item Conditions) - - 3

E12e (Mission Conditions) (3) (3) 3

E12f (Skill Conditions) - - 3

E12g (Point Conditions) - 3 3

E12h (Luck Conditions) - - 3

E12i (Location Conditions) - - 3

E12j (Leader Conditions) - - 3

E12k (Role Conditions) - - 3

E12l (Event Conditions) 3 3 3

E12m (Numeric Conditions) (3) - 3

E12n (Joins) - - 3

E12o (Temporal Conditions) - - 3

E12p (Time Windows) 3 - 3

E12q (Team Belong.) (3) - 3

E12r (Player Belong.) (3) - 3

E13 (Consequences)

E13a (Events) - - 3

E13b (Points) 3 3 3

E13c (Notifications) 3 3 3

E13d (Narrations) - - 3

E13e (Badges) 3 3 3

E13f (Items) 3 - 3

E13g (Missions) (3) (3) 3

E13h (Skills) - - 3

CR9 (Narratives) - - 3

79

6 Related Work

E# / CR# B
U

N
C

H
B

A
L

L
[4

2,
43

,1
48

]

B
A

D
G

E
V

IL
L

E
[1

6,
71

]

TH
E

S
IS

CR13 (Context) 3 3 3

CR15 (Avatars) 3 3 3

CR16 (Marketplaces) - - 3

CR18 (Com. System) 3 3 -

CR19 (Teams) - - 3

Table 6.4: Analysis of generic gamification platforms

6.2.3.2 BADGEVILLE

BADGEVILLE qualifies as another GGP as it complies with the non-functional premises.
However, the causality of used game mechanics in BADGEVILLE is slightly different to
BUNCHBALL. In fact, this platform supports merely a causality chain that comprises
three steps. In the first step, users may gain points for predetermined user actions. In
the second step, user may earn badges after reaching a particular amount of points. In
the third step, users may complete missions after collecting predefined badges. These
badges might be received in a particular order or without any order to fulfill the mission
in question [71]. Since the platform supports this method only, it is argued that only
very few game mechanics and gamification concepts might be implemented with this
platform.

In addition to plain user actions, BADGEVILLE allows to define thresholds how often
a user action or event can be issued in a given time period (e.g., one day) or a decay
between two user events in order to prevent cheating of the users. However, these
mechanics are only parameterizable and not customizable to detect arbitrary event-
based situations that may occur in real gamification scenarios. Hence, this platform
provides a subset of the BUNCHBALL solution analyzed above.

Similar to BUNCHBALL, the technical concept of the platform and its documentation
is not publicly available. Hence, this approach is not qualified to be assessed on a
technical conceptual level.

6.2.3.3 IACTIONABLE

IACTIONABLE can be considered as a GGP as well. However, while working on this
thesis the service was not maintained any further. Although a potential candidate for
analysis, this service is excluded from consideration.

80

6.2 Gamification Solutions

6.2.3.4 SYSTEMATIZATION

Based on the descriptions above, Table 6.4 compares the features of the two analyzed
platforms against the theoretical requirements. It is shown, that even the most mature
platform still possesses technical and conceptual limitations with regards to arbitrary
gamification concepts.

This is taken as motivation for the rest of this thesis to describe a novel runtime
environment for gamification which is capable of fulfilling the requirements on the one
hand and to validate this platform in the context of real-life scenarios on the other hand.

6.2.4 OTHERS

In this category, all other kinds of services for gamification are subsumed. For example,
GAMEBOXED and SNOWFLY offer gamble plugins for FACEBOOK or CRM respectively,
which can be used by companies for the inclusion on their social network page. When
users play these gambles they may earn tokens which can be redeemed for give-away
articles.

GAMIFY offers a central virtual world where companies may offer merchandising ac-
tivities (comparable to SECOND LIFE). However, in this case neither gamification con-
cepts nor rules can be defined by designers.

Additionally, some providers (e.g., PLAYGEN) offer the implementation of gamification
in custom development projects. In most cases, this comprises the implementation of
serious games for education or e-learning in certain business-related domains (e.g., se-
curity, health). However, these approaches neither try to reduce development or main-
tenance costs nor do they comply with the non-functional requirements. Nonetheless,
such implementations might benefit to a large extent from the solution approaches
described in the sections before.

6.2.5 SYSTEMATIZATION

Based on the individual characterization above, all functional and non-functional at-
tributes between the different approaches are aggregated in Table 6.5. With regards to
functional requirements this overview provides a general tendency only, since features
are implementation-specific as presented above.

According to Table 6.5, all solutions support at least partially the definition and man-
agement of entities, users, and its states. However, all analyzed solutions define their
own data model and interfaces on L1. Thus, it is argued that the proposal of GaML
provides a first step towards standardization of the identified gamification concepts.
As GaML allows to quantitatively assess existing gamification solutions with regards
to the requirements defined by the envisioned gamification concepts, it is argued that
IT experts benefit from GaML in the provisioning phase of each project as they can
objectively decide for the correct solution.

Only GGPs and some IGSs allow the management of gamification rules. However,
the powerfulness and expressiveness of rule reasoning is limited in current embodi-
ments as shown in the previous sections. Hence, the technical realization of arbitrary
and flexible gamification concept is limited to a large extent.

With regards to non-functional requirements, GGPs, moreover, provide the highest
degree of flexibility, non-invasivity, reusability, integratability, analyzability, and man-
ageability. On the other side, technical complexity and performance might be consid-
ered critical.

81

6 Related Work

Requirements AS IGS GGP Others

Number 11 7 4 7

Entity Support (3) (3) 3 (3)

Entity Management 3 3 3 3

User Management (3) 3 3 (3)

State Retrieval 3 3 3 (3)

Rule Management - (3) 3 -

Rule Reasoning - (3) (3) -

Analytics 3 3 3 -

Degree of Flexibility → ↓ ↑ ◦

Degree of Invasivity → ↑ ↓ ◦

Degree of Reusability → ↓ ↑ ◦

Degree of Integratability ↓ ◦ → ◦

Performance → ↑ ↓ ◦

Degree of Analyzability → ↑ ↑ ◦

Degree of Manageability → ↓ ↑ ◦

Degree of Complexity ↓ ↓ ↑ ◦

Table 6.5: Comparison of system classes for gamification solutions2

Contrarily, IGSs provide high performance and low complexity but can be considered
critical in all other non-functional dimensions.

A trade-off between these distinct approaches are ASs which offer a medium degree
of non-functional attributes. However, they do not provide the definition of gamification
rules at all. Therefore, they might be only applicable if most of the gamification logic
can be implemented in the information system.

Quality attributes of approaches from the other systems are not listed as they are
not directly comparable against the requirements.

2Legend: 3 supported; (3) partially supported; - not supported, ↑ high; → medium; ↓ low; ◦ not consid-
ered

82

7 GAMIFICATION RUNTIME
ENVIRONMENT CONCEPT

In this chapter, the thesis’ approach for a gamification runtime environment that com-
plies with the requirements introduced in Chapter 4 is presented. This chapter consists
of three main parts. First, the conceptual architecture is presented and trade-offs are
discussed. Second, the data model for the technical representation of the required
domain entities is shown. Third, based on the architecture and the data model, the
translation of GaML into executable code of the runtime environment is presented.

7.1 GENERAL SCENARIO

For this chapter, the architecture shown in Figure 7.1 is assumed as general scenario.
This scheme is based on the generic gamification platform assumption introduced in
Section 6.2.3.

The proposed gamification platform consists of two main parts. First, an Event Pro-
cessing Agent (EPA) that holds a set of gamification rules which reason over incoming
events to calculate subsequent states. Second, a so-called BEP that manages and
maintains the state of domain entities.

Enterprise

Systems

ERP

Portal

CRM

Employees IT,
Domain, or

Gamification experts

Gamification Platform

Business Entity Provider

Entities

Gamification

State

Event Processing Agent

Gamification

Logic

Figure 7.1: General scenario for the technical introduction of gamification into enterprise
information systems

83

7 Gamification Runtime Environment Concept

At design-time, designers or psychologists define the gamification logic in the EPA
using some declarative rule language. Domain entities such as badges, points, or lev-
els have to be defined using the BEP. Furthermore, the enterprise systems have to be
configured or instrumented to send events to the gamification runtime environment.
For example, the BPM engine which manages the enterprise’s services might be con-
figured to send all relevant events to the gamification runtime environment.

At runtime, users (e.g., employees) interact with the enterprise systems. Based on
these interactions, the enterprise systems send events to the EPA of the gamification
platform. The gamification rules deployed in the EPA calculate feedback such as point
or badge instances for the respective users and update the entities’ states using the
BEP. The enterprise systems may retrieve the users’ current state, e.g., current points
or leaderboards, from the BEP.

This general scheme is used as basis for the discussion below.

7.2 SOLUTION APPROACHES

Based on the foundations of Section 2.2, this section discusses the characteristics
of two dichotomous data management technologies as solution approaches, namely
relational databases and complex event processing, and reflects them in the context of
the stated requirements. In general, both approaches offer methods and tools to realize
the gamification system and, thus, are candidates for the final architecture. However,
it is also shown that none of the approaches on its own suffices all requirements as
favored.

7.2.1 RELATIONAL DATABASES

The first solution approach concerns traditional relational databases. Due to ACID
(atomicity, consistency, isolation, durability) properties these systems comply with per-
sistency and consistency requirements [25]. In general, databases allow for the def-
inition of transient queries on persistent data. This permits the definition of ad-hoc
queries and ex post analysis and, therefore, complies with the stated analyzability re-
quirements. Furthermore, well-established mechanisms and technologies for applica
tion-level entity management, e.g., object relational mapping, exist (manageability).

However, databases typically fall short when large amounts of continuous data such
as events have to be analyzed. Without index the correlation or joining of many events
becomes slow for larger data sets1. While the introduction of indexes as in-memory
structures may provide significant speed up2, the update of indexes can be costly and
inefficient on high event rates. In addition, events leading to an index update might
be never used again, i.e., upon arrival of an event, the index is updated at significant
cost but the event might be never looked-up again. Thus, the cost-benefit ratio of the
created indexes might be large.

Moreover, the efficient definition of indexes is not possible since the nature of events
(e.g., interarrival times, probabilities, or payload) cannot be assumed beforehand since
this strongly depends on the application, use cases, and user behavior. Thus, indexes
might be created reactively, for example, based on historical query statistics. Hence,
real-time analysis requirements are insufficiently supported.

1
O(Πp

i=0ri) or at least O(
∑p

i=0 ri ∗ log(ri)) for merge joins with ri being the number of pages for the ith
relation attribute [63].

2For instance, O(
∑p

i=0 ri) assuming at least one equijoin [63].

84

7.3 Hybrid Approach

Finally, different types of events may have different signatures. In databases, the
various event types need to be represented by using separate tables. Altering the
signature of events or introducing new event types requires the restructuring and mi-
gration of the database schema. Since this is a cumbersome and error-prone activity,
flexibility with regard to design changes is strongly limited.

7.2.2 COMPLEX EVENT PROCESSING

In contrast to databases, complex event processing technologies require the defini-
tion of persistent queries which are issued on transient and continuous event or data
streams, i.e., data tuples are volatile in-memory structures available for analysis for a
particular time period only. In production rule systems or Event-Condition-Action (ECA)
rule systems, fast pattern matching algorithms are available (e.g., RETE [81]). Further-
more, ESP systems introduce non-blocking aggregations through finite windows. Due
to their reactive nature, zero latency between the arrival of a tuple and processing can
be assumed, i.e., events are analyzed immediately rather than being stored first. Since
all aforementioned algorithms and the data reside in the main memory, the compu-
tation of results is very fast. Thus, these technologies are considered to realize and
support at least soft real-time requirements [15].

Furthermore, the definition of queries in the form of production or ECA rules allows
for a high degree of flexibility due to their dynamic structure, i.e., a static data or query
schema is not required. For example, in RETE-based systems the internal propaga-
tion graph representation (Section 2.2.4) can be modified on the fly, e.g., by adding or
removing additional nodes or reusing existing ones. In ESP systems, operators in a
query plan can be exchanged at runtime as well. If newly introduced operators with
empty window need tuples from other operators (e.g., from an exchanged operator),
efficient migration algorithms are available to transfer tuples between operators at run-
time avoiding downtime for migration (e.g., [198]).

However, in CEP technologies the data has to reside within the working memory.
Besides the fact that data in main memory is volatile, all modern CEP technologies
have to fulfill either implicit (e.g., using temporal constraints, finite windows) and ex-
plicit memory management (e.g., through declaration of event expiration durations), or
load shedding (e.g., [15]) on the unprocessed data to reduce memory footprint. For
most practical scenarios, this makes ex post analytics and ad-hoc queries impossible
and, therefore, contradicts with the stated analyzability and data manageability require-
ments (Section 4.3).

Finally, implementing entity management logic directly within rules bloats an applica-
tion’s rule memory and makes it difficult to read and maintain. This strongly suggests
for a decoupling and encapsulation of logic in entities [144].

7.3 HYBRID APPROACH

The last sections have shown that the characteristics of the considered approaches
do not comply fully with the non-functional requirements stated in Chapter 4. Conse-
quently, this section proposes a hybrid approach which aims at system that unifies the
advantages and compensates the disadvantages of the considered technologies. The
derived system is used as a general architecture pattern for the implementation of the
gamification runtime environment later.

85

7 Gamification Runtime Environment Concept

Event Processing Agent

(Gamification Logic)

Enterprise

Applications

Business Entity Provider

(Gamification Data)

Event Sources
Event Sources

Event Sources

Event Sources
Event Sources
Event Sinks

Database

QueryAPIUpdateAPI

Rule Engine

ECA or Production

Rules

1

2

3

4

5

6

Figure 7.2: Stateful complex event processing based on business entities (adopted
from [144])

7.3.1 GENERAL CASE

The general idea of a hybrid system is shown in Figure 7.2. This system comprises
several event sources, event sinks, one EPA, as well as one BEP.

The BEP is a container managing so-called business entities which can be considered
as typed data structures containing state and relationships to other entities. These
entities can be mapped and stored into relations of an arbitrary underlying relational
database. For example, the BEP manages user entities holding status information for
all users of the gamification system ({U1, ..., Uk}; Table 7.1).

On the one hand, the BEP offers an update interface that allows for updates to the
state of the domain entities. In general, the interface’s syntax and semantics depends
on the intended business functionality in order to reflect the functional requirements
of the solution. For instance, in the gamification domain the BEP may offer interfaces
to receive low-level updates for points or badges through the generic update interface.

On the other hand, a query interface might be utilized to retrieve the entities’ current
state (e.g., the user’s average points). Finally, the BEP may provide derived state in
transient data structures upon queries, e.g., an individual and temporary high score for
single users or several leaderboards across multiple users (Table 7.1).

Within the EPA, multiple gamification rules are deployed. In this thesis, rules and cor-
responding examples are based on production rules with integrated event processing
capabilities, i.e., each rule comprises a LHS and RHS representing a rule’s condition or
consequence respectively (Section 2.2.4).

Table 7.2 presents examples of typical LHSs of gamification rules in the hybrid ap-
proach. These examples include the presence of an event only a , Boolean b and
temporal c operators with events as operands, or event aggregation d .

Furthermore, the example comprises LHSs which require additional non-event data,
i.e., state data from the domain entities. This contextual data might be processed

86

7.3 Hybrid Approach

Example Formal Notation

User U1

Set of users {U1, ..., Uk}

Set of points for User Ui {pi1, ..., pin}

Set of badges for User Ui {bi1, ..., bim}

Sum of points for User Ui PUi =
∑n

j=0 pi j

Average of points for User Ui PUi = 1
n
∑n

j=0 pi j

Leaderboard between users (U1, ..., Uk)

Table 7.1: Examples for gamification-related state information managed by the business
entity provider

upon event arrival such as in ECA rules e (e.g., an event ei occurs in conjunction with
the user’s average points PUi being equal or greater than 20).

Ultimately, such contextual data might be processed without explicit event occur-
rence such as in production rules f (e.g., if a user Ui holds any of the badges bi1 or
bi2).

LHS Types Example

a Simple Event / Event Rule e1 → ...

b Boolean event correlation e1 ∧ e2 → ...

c Temporal event operators e1 during e2 → ...

d Event Aggregation 1
n
∑n

i=0 evalue
i > 20 ∧ e2 → ..., n = sizeo f (window)

e Event with Context e1 ∧ Pt,Ui ≥ 20→ ...

f Context only Ui ∧ (bi1 ∨ bi2)→ ...

Table 7.2: Examples for gamification-related conditions managed by the event process-
ing agent

Table 7.3 shows general examples for the RHS of rules. Here, either complex events
g , domain data h , or combinations thereof i might be generated.

In the first case g , these events may represent newly created or derived events.
As explained in Section 2.2.3.2, derived events may contain some of the data of its
activating events. For instance, a derived event might be an event that is enriched by a
temporal duration.

In the second case h , domain data can be considered as a special type of event
as they are assumed to be not required in any of the rule’s LHS directly but might be
processed implicitly after they have updated the state of the issuing entity.

This ends the discussion on the structural parts of this hybrid approach. In the follow-
ing text, the interaction procedure between these parts is elaborated in more detail.

87

7 Gamification Runtime Environment Concept

RHS Types Example

g Multiple Events ...→ e2, e3

h Multiple Data (e.g., Point or Badge) ...→ pi1, bi2

i Multiple Data and Events ...→ pi2, bi1, e2, e3

Table 7.3: Examples for gamification-related consequences triggered by the event pro-
cessing agent

The sequence of steps is highlighted in Figure 7.2. Initially, the EPA may receive
events from arbitrary sources in step 1 . Assuming that the BEP does not contain any
data at the beginning, only rules of types a to d can be activated. Activated rules
may cause the generation of new events g , domain data h , or combinations thereof
i in step 2 . While the creation of new (possibly complex) events can be processed
directly, domain data needs to be synchronized with the entities in the BEP. The rules’
RHS, therefore, may call the update interface of the BEP in step 3 . After updates have
been received, validated, and stored by the BEP in step 4 , data can be forwarded to
various event sinks deployed in the enterprise in step 5 , e.g., to notify the user on the
successful completion of a task. Some rules in the EPA, i.e., rules of type e and f may
need contextual state data from the BEP. Hence, the event processor may retrieve
and evaluate state by utilizing the BEP’s query interface in step 6 . This, in turn, may
lead to the activation of new rules which closes the processing cycle of rules. Finally,
all processed events with point-in-time semantics (Section 2.2.3.2) are retracted from
the EPA’s working memory.

By contract, all point-in time events are removed from the EPA after each evaluation
cycle for two reasons. First, in gamification scenarios most events have point-in-time
semantics, thus, their retraction reduces memory consumption in the long run. Sec-
ond, if such events are not automatically managed by the EPA, event management is
implicitly shifted to the responsibility of the rule author, i.e., the event management is
mixed with the business logic and, thus, not transparent to the rule author anymore.
This, however, possesses limitations with regards to rule design.

For example, consider at least two rules which are activated by the same event, i.e.,
both rules react on the same event in their LHS. If event management is not transpar-
ent, the rule author has to decide when the event is retracted from the internal working
memory. Retracting the event in one of the rule’s RHS, however, is not possible with-
out harming the business logic. If the event is retracted by the first rule’s RHS, the
activation of the second rule will be canceled and the corresponding RHS is never ex-
ecuted. This applies also for the opposite case. Hence, the rule author has to retract
the event manually after all rules are executed as expected. This introduces additional
overhead for writing and testing such memory management rules and is an error-prone
activity. Therefore, event management is done automatically based on the semantics
of events.

However, interval events are not automatically retracted after each evaluation cycle
as they imply a particular time period in which they are valid. Depending on the config-
uration such events are either managed by the rule author or automatically, by utilizing
a generic rule which retracts each interval event after its duration has expired.

88

7.3 Hybrid Approach

Component Types of Rules

BEP Table 7.1

EPA Table 7.2 a , b , c , d , and h ; Table 7.3 g

Query Interface Table 7.2 e and f

Update Interface Table 7.3 h and i

Table 7.4: Mapping of rule types on architecture components

Table 7.4 summarizes the mapping of the various rule types onto the corresponding
parts of the hybrid architecture. All state data encapsulated in domain entities (Table
7.1) is managed by the BEP. Within the EPA, rule types a to h can be directly reflected.
The update interface between BEP and EPA allows for the additional rule types h and
i within the EPA. Finally, rule types e and f are possible in the EPA when a query
interface between both components is present.

While the presented hybrid system might be effective in general, the efficiency of
the approach, however, mainly depends on the communication paradigm that is used
to communicate between EPA and BEP. Therefore, different communication solutions
and their advantages and disadvantages are described in the next sections.

7.3.2 SYNCHRONOUS CONTEXT-UPDATE

Figure 7.3 shows an adapted version of the general hybrid approach introduced in Fig-
ure 7.2. In particular, the synchronous communication algorithm is presented in four
sequential steps.

Events arrive at the EPA in step 1 . Only rules of type a to d can be activated in
step 2 . If at least one rule of type h or i is activated, the update interface of the BEP
is called synchronously in step 3 , i.e., the EPA halts until the BEP acknowledges the
message. Since it is assumed that the utilization of the BEP’s update interface yielded
a change in one of the domain entities, another evaluation cycle is triggered at the EPA.
This leads to the potential activation of rule types e and f as the rule engine utilizes
the BEP’s query interface while evaluating the rules’ LHS in step 4 .

The major advantage of this solution is that due to the synchronous nature, both
communication partners are always consistent with each other, as long there is no
network partition in between. Hence, multiple requesters may use the BEP’s update
and query interfaces concurrently. For example, it is possible to change the user’s
number of points in the BEP via an external interface concurrently to the reception of
additional events of this user in EPA. Moreover, it is also possible to enable multiple
EPAs, for example, to distribute event processing on multiple instances working in
conjunction with the same BEP.

However, two main disadvantages arise out of this design. First, due to blocking
behavior of synchronous calls, the rule execution and update operations are delayed.
Hence, the response time might not be sufficient even for moderate workloads. Fur-
thermore, when sampling rates of the event sources are high, i.e., there are many
events to be processed concurrently, the request queues of the update and query in-
terfaces at the BEP may overload and start to reject requests after a particular timeout
period. This leads to the loss of tuples and wrong results with regards to the business

89

7 Gamification Runtime Environment Concept

Event Processing Agent

(Gamification Logic)

Enterprise

Applications

Business Entity Provider

(Gamification Data)

Event Sources
Event Sources

Event Sources

Event Sources
Event Sources
Event Sinks

Rule

Engine

API
Working

Memory

Database

QueryAPIUpdateAPI

1 2

3 4

Figure 7.3: Synchronous context update procedure

logic. Second, situations can occur where events may cause the querying of the BEP,
although no update took place. This results in many unnecessary calls to the query
interface and, thus, introduce further delays.

Although the synchronous approach works in general, the solution might be very
inefficient, especially when large amounts of events have to be processed and many
rules of type e , f , h , and i reside within the rule engine. Thus, the approach heavily
contradicts the real-time requirements (Section 4.3).

7.3.3 ASYNCHRONOUS CONTEXT-UPDATE

Alternatively, the communication can be conducted asynchronously. While this may
speed up communication in general, race conditions leading to wrong results and in-
consistencies may occur when domain data from the BEP is required.

The first example scenario concerns one single process (e.g., the EPA) as shown in
Figure 7.3 which issues an update (step 3) followed by a query (step 4). When at least
the update is done asynchronously, there is no guarantee that the subsequent query
returns the correct result since the query might return a result without the update
having taken place. Such inconsistencies may lead to further errors. For example, if
the query returns an inconsistent result, an unintended consequence (e.g., another
update) might happen.

To avoid this scenario, a proxy component (called BEP proxy) is introduced in the
EPA that manages the data between EPA and BEP more efficiently and acts as central
synchronization point (Figure 7.4). This proxy implements the same interface specifica-
tion of the update and query interfaces defined by the BEP. Hence, this proxy takes
care of the same entity management functionality as the BEP except persistence of
the occurring data.

Compared to the synchronous case, the EPA only communicates with the local BEP
proxy. All updates and queries are issued against the proxy. In the update step 2 , the
proxy stores the data internally and lazily replicates the data to the BEP in step 4 . Vice

90

7.4 Business Entity Provider

Event Processing Agent

(Gamification Logic)

Enterprise

Applications

Business Entity Provider

(Gamification Data)

Event Sources
Event Sources

Event Sources

Event Sources
Event Sources
Event Sinks

Rule

Engine

API
Working

Memory

Database

QueryAPIUpdateAPI

BEP Proxy1

2

3

4 5

Figure 7.4: Asynchronous context update procedure

versa, query results might be retrieved directly from the proxy 3 . After starting the EPA
(e.g., after a failure or a restart) the BEP proxy can be always reconstructed from the
persistent data of the BEP in step 5 .

This approach avoids race conditions between exactly one EPA and BEP. Further-
more, it heavily accelerates the communication by several orders of magnitude (see
Chapter 8) compared to the synchronous case. However, the low-level updates in
the proxy force a constantly growing memory. Hence, there is a space-time trade-off
which is characterized in Section 8.4.2. Additionally, the second distributed scenario as
described below is not sufficiently covered.

In the second scenario, multiple processes may modify data in the BEP concurrently.
These changes can be triggered by multiple different EPAs or by an external authority
directly within the BEP (e.g., an administrator). In such cases, there is no guarantee for
one process to contain the concurrent updates from all other processes. Since a global
synchronization point is missing, the individual processes may operate on stale data.

As an idea, different locking strategies (e.g., pessimistic or optimistic locking) have
to be applied to synchronize the access of multiple processes accordingly. However,
traditional transactional scopes have not been investigates for reactive production rule
or event-stream systems so far. Thus, these problems need to be addressed by future
research and are beyond the scope of this thesis.

7.4 BUSINESS ENTITY PROVIDER

Until now, the BEP has been considered domain-independently. However, for the rest
of this thesis, it is necessary to describe gamification-specific adaptations. This in-
cludes the concrete description of the underlying data model and the query and update
interfaces as postulated by the hybrid solution.

91

7 Gamification Runtime Environment Concept

7.4.1 DATA MODEL

Every BEP is characterized through a data model representing the conceptual entities
on a technical level. Figure 7.5 presents the entity model as class diagram in Unified
Modeling Language (UML). As such, the data model mainly reflects the concepts of
GaML and their relationships as introduced in Chapter 5 except gamification rules. In
addition to the entities, association classes reflect concrete instances of a concept.
For example, the class Badge2Avatar represents properties such as the date when
the badge was obtained, an optional reason, and if the player exhibits the badge in a
so-called showcase element. These information are stored for each badge that one
player receives at runtime. Note that in Figure 7.5 standard UML semantics apply, i.e.,
associations with no explicit cardinalities refer to many-to-many relationships. Further-
more, this data model refers to some specific data types such as AGGREGATION or
POINTTYPE which are defined as enumerations presented in Figure 7.6.

Additionally, some specific functional runtime requirements are reflected in this data
model. In particular this concerns conceptual requirements CR9 (Narration), CR13 (Con-
text), CR15 (Avatar), CR16 (Marketplace), and CR19 (Team) which have been defined
as requirements for the runtime system (Chapter 4). First, the avatar concept CR15

is introduced reflecting several virtual representations that a player can have. For this
class, the user may decide if the avatar is publicly shared or which avatar is used by
default. Furthermore, the majority of classes is associated with the avatar class such as
point, badge, or role. Second, the data model reflects the context CR13 of all entities
based on the various association classes. Third, the team class CR19 is introduced.
For the sake of brevity, however, it is only associated with the point class in Figure 7.5.
Nonetheless, it is important to mention that all classes which have an association with
the avatar class are also associated with the team class. Fourth, the marketplace CR16

concept is introduced. In this entity, users may offer their earned virtual items or real
goods to others, either for free (e.g., as a gift) or for a self-defined price. The according
class is used to track all ongoing transactions that may take place over time. Finally,
narrations are recorded for each avatar instance. Similar to the notifications, narrations
contain attributes for the text, title as well as a link to an optional image. Moreover,
Boolean flags signify, whether the messages have been read by the user or not.

In addition to these functional requirements, the data model reflects further non-
functional requirements as determined in Section 4.3. For example, there are three
many-to-many associations between the avatar and the point entity. While the first re-
flects the assignment of new points as required in standard gamification scenarios, the
others implement important runtime requirements. The AggregatedPlayerPoints class
is used at runtime to store the user’s aggregated points, i.e., points are aggregated
from the Points2Avatar class for all different aggregation methods (e.g., sum, average,
min, or max) and deleted afterwards. Consequently, the user’s overall points have to
be calculated from both relations. In addition, the Redemption class stores all points
that were spent by the user at runtime (e.g., for buying or trading real or virtual goods).

Finally, it is important to note that Figure 7.5 reflects only a part of the entire data
model. In fact, the figure presents an avatar-centric perspective, i.e., the root element
is the Avatar concept in relation to all other concepts. For the sake of readability, some
entities have been omitted. A similar diagram could be drawn with the Team entity
as the root entity. This is, for example, indicated by the presented team entity which
references the Point entity in a many-to-many association which has a class TeamPoints
attached. The same applies for all other entities which relate to the Team entity as
defined by GaML. Furthermore, Figure D.1 shows the associations between entities
and the image entity which has been omitted from Figure 7.5 as well.

92

7.4 Business Entity Provider

 id : long
 isPublic : Boolean
 name : String
 isDefault : Boolean

Avatar

 id : Long
 PID : String
 name : String
 abbreviation : Stri...
 isDefault : Boolean
 isInternal : Boolean
 type : POINTTYPE

Point

 id : long
 playerID : long
 name : String
 email : String
 password : String
 zip : String
 country : String

Player

 id : long
 BID : String
 name : String
 description : String
 hidden : Boolean

Badge

 id : Long
 MID : String
 name : String
 description : String
 lowerBound : Double
 upperBound : Double
 type : MTYPE

Mission

 id : Long
 assignedOn : Date
 completedOn : Date
 rejectedOn : Date
 blockedOn : Date
 status : MSTATUS

Mission2Avatar

 id : long
 name : String
 description : String
 price : double
 type : GOODTYPE

Item

 id : long
 name : String
 receivedOn : Date
 reason : String
 consumed : Boolean

Item2Avatar
 id : Long
 amount : Double
 receivedOn : Date
 reason : String

Points2Avatar

 id : long
 SID : String
 name : String
 description : String
 benefit : String
 duration : long

Skill

 id : Long
 level : Double

Skill2Avatar

 id : Long
 amount : double
 receivedOn : Date
 reason : String

TeamPoints

 id : Long
 name : String

Team

 id : long
 logical : BOOLOP

Mission2Submission

 id : long
 LID : String
 name : String
 threshold : double

Level

 id : long
 message : String
 read : boolean
-category : NOTCATEGORY
-type : NOTTYPE

Notification

 id : long
 RID : String
 name : String
 description : String

Role

 receivedOn : Date
 reason : String
 SCPos : Int

Badge2Avatar

 id : long
 requirement : MREQ

Mission2NextMission

 id : long
 LID : String
 name : String
 agg : AGGREGATION

Leaderboard

-id : long
-amount : double
-on : double
-reason : String

Redemption

-id : long
-aggregatedAmount : double
-aggMethod : AGGREGATION

AggregatedPlayerPoints

-id : long
-price : Double
-offeredOn : Date
-attribute

Marketplace

-id : long
-message : String
-title : String
-read : boolean
-type : NARRATIONTYPE

NarrationMessages

1

0..*

0..*

1

0..1

0..*

0..*

1

1

0..*

1..*

0..*

1

0..*

1

1..*

1

0..*

subMissions

friends

nextMissions

soldTo

offer

Figure 7.5: Player and avatar perspective of data model

 AVAILABLE
 COMPLETED
 BLOCKED
 DECLINED

<<enumeration>>
MSTATUS

 AND
 OR

<<enumeration>>
BOOLOP

 WEAK
 STRONG
 INHIBIT

<<enumeration>>
MREQ

 ADVANCING
 REDEEMABLE
 KARMA
 SKILLPOINT
 AUXILIARY
 REPUTATION

<<enumeration>>
POINTTYPE

 USER
 RULE

<<enumeration>>
MTYPE

 VIRTUAL
 REAL

<<enumeration>>
GOODTYPE

 SUM
 COUNT
 AVG
 MED
 MIN
 MAX

<<enumeration>>
AGGREGATION

 TEAMMISSION
 MISSION
 ITEM
 BADGE
 SKILL
 LEVEL
 FRIEND
 POINT
 OTHER

<<enumeration>>
NOTCATEGORY

 ADD
 REMOVE
 CHANGE
 COMPLETE
 ACTIVATE
 OTHER

<<enumeration>>
NOTTYPE

Figure 7.6: Enumerations used in the data model

Additional semantics in this data model are not explicitly presented as they com-
pletely comply with the static semantics (e.g., unique constrains, not null constraints,
value ranges, referential integrity of associations) given in Chapter 5. However, addi-
tional processing functionality and derived (transient) data structures and queries might
be defined on top of this data model. These aspects are considered in the query and
update interfaces of the business entity provider as described in the following sections.

93

7 Gamification Runtime Environment Concept

7.4.2 UPDATE AND QUERY INTERFACES

On the one hand, the update interface comprises four kinds of methods. First, meth-
ods to create or insert new domain concepts as meta-data (e.g., badges or points). As
shown in the example below3, these methods require a certain classID, which uniquely
identifies the respective domain entity, and a list of key-value pairs for the correspond-
ing properties of that domain entity:

create(ClassID, <property1>=<value1>, ..., <propertyN>=<valueN>) : INT

Second, methods to insert concrete instances of the concepts, i.e., tuples which are
inserted into one of the association classes. Besides simple insertion, these methods
have to implement the specific semantics determined by the various game mechanics.
For example, a point update for a player’s avatar has to be checked with regards to the
point semantics, i.e., the point amount in the update message must be positive in case
it refers to an advancing point type.

givePoints(ID, amount=<val>, avatar=<val>, reason=<val>) : BOOLEAN
giveBadge(ID, avatar=<val>) : BOOLEAN
giveMission(ID, avatar=<val>) : BOOLEAN

Third, methods to delete or update domain concepts and cascading the operation to
all its corresponding children when required.

delete(ClassID, ID) : BOOLEAN
update(ClassID, ID, <prop1>=<val1>, ..., <propN>=<valN>) : BOOLEAN

Fourth, miscellaneous methods for administration purposes. As those are very im-
plementation-specific they are considered later in the evaluation (Chapter 8).

On the other hand, the query interface offers methods to retrieve the state of the
domain entities or transient data structures derived from the entities. First, so-called
getter methods return all instances of an entity, i.e., an avatar or team:

getPointsForAvatar(pointID=<val>, avatarID=<val>, agg=<val>) : Score
getBadgesForAvatar(avatarID=<val>) : List
getMissionsForAvatar(avatarID=<val>) : List
getAvatarLeaderboard(pointID=<val>, order=<val>) : List

...

getPointsForTeam(pointID=<val>, teamID=<val>, agg=<val>) : Score
getBadgesForTeam(teamID=<val>) : List
getTeamLeaderboard(pointID=<val>, order=<val>) : List
getMissionsForTeam(teamID=<val>) : List

For example, the Score entity returned by the getPointsForAvatar method contains
the aggregated amount of points for various aggregation methods and the associated
avatar object of the player. As another example, several sorted score objects for mul-
tiple avatars are returned by the getAvatarLeaderboard method subsumed in a list
structure.

Second, so-called has methods returning true or false if an avatar or team owns at
least one instance of the entity in question.

3Note that the following examples are specified independently of any programming language. Concrete
examples of the update and query interfaces in the Java programming language can be found in Ap-
pendix B.

94

7.5 Event Processing Agent

hasAvatarMission(missionID=<val>, avatarID=<val>)
hasAvatarBadge(missionID=<val>, avatarID=<val>)

...

hasTeamMission(missionID=<val>, teamID=<val>)
hasTeamBadge(missionID=<val>, teamID=<val>)

This notation is used later when the compilation procedure of GaML into correspond-
ing calls for the update and query interfaces is described (Section 7.6).

7.5 EVENT PROCESSING AGENT

Within the hybrid architecture presented in Section 7.3, the EPA has been described as
a domain-independent component that is capable of rule and complex event process-
ing based on the events received from the enterprise information systems. Similar
to the discussion on the BEP, this section introduces additional gamification-specific
adaptations for the EPA. Primarily this includes a presentation of the concrete event
processing procedure within the EPA as well as the introduction of standardized ga-
mification events and rules which are automatically deployed in every instance of the
runtime environment.

7.5.1 EVENT PROCESSING PROCEDURE

The concrete event processing procedure of the proposed gamification system is based
on three premises. First, besides events, avatars and teams are considered as first-
class citizens in the rule engine as well, i.e., they are not necessarily queried over the
BEP’s query interface in each evaluation cycle but remain in the working memory once
loaded. This is necessary to avoid additional communication overhead in each evalua-
tion loop. Although it is assumed that these objects change very seldom, the EPA may
request the BEP in each cycle to check for possible changes and reload the entities
completely, if a change has occurred.

Second, all events are retracted after their validity period (duration), i.e., point-in-time
events are retracted immediately after each evaluation cycle and interval events are
retracted after their particular validity period has expired4.

Third, there are reserved event types with predefined semantics in the context of
gamification, i.e., they cannot be freely chosen by a designer or rule author as they are
used to process standard scenarios (cf. Section 7.5.2).

Figure 7.7 presents the overall processing algorithm which is initiated upon the re-
ception of events from the host application. In a first step, the incoming set of events
is converted into two stacks LE and RE containing the events in descending order with
regards to the events’ timestamps, i.e., the stack’s top element refers to the oldest
event, the last event in the stack to the most recent one. Based on the LE, the first
event is popped off the stack and basic consistency checks are performed, e.g., if the
event contains at least a player ID and that the event type is set.

Subsequently, it is checked if the event is of the special type selectAvatar. This event
might be issued by players to initially select their avatar or to change between different
avatars. In both cases, the EPA tries to retrieve the avatar from the BEP.

4Recall that the validity period of interval events is determined by the event’s occurrence timestamp plus
its duration.

95

7 Gamification Runtime Environment Concept

LE = RE =

Received Stack of

Events

E.playerid==null ||

E.type==null

E = pop LE

YES

LE.empty()?

NO

NO

E.type==deleteUser?

updateAPI.

deleteAvatar

(E.avatarID);
YES

ruleEngine.

deleteAvatar

(E.avatarID);

ruleEngine.

fireAllRules()
YES E = pop RENO

ruleEngine.

retract

(E);

ENDYES

RE.empty()?

ruleEngine.

insert(E);

NO

AvatarMap.

contains(E.playerID)?

YES

E = E.setAvatarID(

AvatarMap.get(E.playerID).ID)

A = queryAPI.

getCurrentAvatar

(E.playerID);

NO
AvatarMap.

put(E.playerID, A);

E.type==selectAvatar?

NO

YES

A==null? NO

YES

A = queryAPI.

createAvatar(E.pla

yerID)

ruleEngine.

insert(A);

Create event

newUser

ruleEngine.

insert(newUser);

ruleEngine.

fireAllRules();

ruleEngine.hasAvatar

(E.avatarID)?
YES

ruleEngine.

insert(A);

NO

A = queryAPI.

getAvatar

(E.avatarID);

updateAPI.

setDefaultAvatar

(E.playerID, A.ID)

AvatarMap.remove

(E.playerID);

Figure 7.7: Procedure for processing received events within the EPA

If the BEP does not contain the referenced avatar, the player obviously uses it for
the first time. Therefore, the avatar is created at the BEP and the instance is inserted
into the rule engine. To signify the creation, another special event called newUser is
created for the avatar and inserted into the rule engine as well. Standard rules may
now react on this newUser event, for example, to assign this avatar the initial missions
or rewards (Section 7.5.2).

However, if the BEP contains the avatar, i.e., the user switches to an existing one,
this avatar is inserted into the rule engine, if it does not already exist in-memory (e.g.,
after a system restart). In the last step of both subprocesses, the currently selected
avatar is stored in a local lookup table called AvatarMap.

Similarly, the same process is applied for the case that there is no explicit selectA-
vatar event, i.e., a player who has no stored avatar in the local lookup table issues any
other gamification-specific event.

After these cases have been checked, it is ensured that the player’s current avatar is
determined. Therefore, the event is enriched by the corresponding avatar ID based on
the player’s ID from the original event.

Subsequently, it is checked, whether the event is of type deleteUser which is a
special management event to delete an avatar representation from the runtime envi-
ronment. This deletion affects the BEP using the update interface as well as the local

96

7.5 Event Processing Agent

deletion of the avatar entity from the rule engine’s working memory. In this case, the
processing is already finished and the next element is retrieved from the LE.

Finally, the event is inserted into the rule engine to trigger the rule matching process.
This entire procedure is repeated until LE is empty. Afterwards, the conflict set of

the rule engine is processed (ruleEngine.fireAllRules), i.e., potential updates and
queries as specified by the conflict set are issued against the BEP.

Finally, the RE as copy of LE is processed to check if the events have point-in-time
semantics. If so, these events are removed from the rule engine’s working memory.
The procedure stops when RE is empty.

For the sake of simplicity this algorithm has been described for players and their
associated avatars only. However, all checks in which an avatar ID is involved are also
performed for team entities as well.

7.5.2 STANDARDIZED EVENTS AND RULES

In the general case, it has been assumed that the rule author creates all rules from
scratch. However, there are rules which can be considered as essential for every ga-
mification scenario. These standard gamification rules are reported below in Drools
Rule Language (DRL), a well-known language for writing production rules with event
processing capabilities [70].

Listings 7.1 and 7.2 refer to standard rules for the acceptance or rejection of missions
offered to the user. As such, these rules also require the definition of two standard
events, namely acceptMission and rejectMission. When the first occurs, the mission
in question is assigned to the issuing avatar and set to “available”. In the latter case, the
mission in question is assigned to the avatar and set to “rejected”. To cover the same
functionality for teams, similar rules are used (not depicted).

1 rule ’ACCEPT_MISSION’
2 when
3 $a : Avatar($aid : avatarID)
4 $evt : EventObject(type=="acceptMission", data[’missionName’]!=null, $aid==

avatarID) from entry-point eventstream
5 then
6 updateAPI.addMissionToAvatar($aid, $evt.get(’missionName’));
7 update($a);

Listing 7.1: Core rule for user-accepted missions (accept)

1 rule ’DECLINE_MISSION’
2 when
3 $a : Avatar($aid : id)
4 EventObject(type=="rejectMission", $mname:data[’missionName’], $aid==

avatarID) from entry-point eventstream
5 then
6 updateAPI.rejectMissionForAvatar($aid, $mname);
7 update($a);

Listing 7.2: Core rule for user-accepted missions (decline)

Furthermore, Listings 7.3 and 7.4 refer to the automatic retraction of point-in-time or
interval events respectively. In both cases, the rules’ salience values determine the
order of execution when multiple rules have been activated for the same event. Using
the lowest possible integer value for the salience attribute, both rules are executed
with the lowest priority. In the case of interval events, furthermore, the retraction does
not happen immediately, but a timer is started based on the event’s duration. After the
timer expired, the activating event is removed from the working memory.

97

7 Gamification Runtime Environment Concept

1 rule ’RETRACT_POINT_EVENTS’
2 salience Integer.MIN_VALUE
3 when
4 $evt : EventObject(eventDuration==0) from entry-point eventstream
5 then
6 retract($evt);

Listing 7.3: Core rule for deleting point-in-time events

1 rule ’RETRACT_INTERVAL_EVENTS’
2 salience Integer.MIN_VALUE
3 timer(expr:$duration;)
4 when
5 $evt : EventObject($duration : eventDuration > 0) from entry-point

eventstream
6 then
7 retract($evt);

Listing 7.4: Core rule for deleting interval events

Some gamification concepts allow interaction mechanisms, e.g., activating a skill
or consuming a virtual item. For these purposes, additional core rules exist. For ex-
ample, Listing 7.5 shows the core rule which handles the event for activating a skill
(activateSkill), given that the skill in question is not active at the moment. If true,
the rule’s LHS tries to activate the skill. If successful, the skill is presented as activated
on the front-end using the BEP’s update interface. Furthermore, a new interval event
activatedSkill is inserted into the rule engine where the duration equals the skill’s
availability period which is returned by the activation operation.

According to Listing 7.4, the delayed event is automatically retracted when the avail-
ability period of the skill expires, i.e., the player is allowed to activate the skill for the
avatar again. Note that in some games, skills may have an additional cool-down period
which has to expire before the skill can be reused. This is not reflected in this example,
but would be a simple extension to GaML’s meta-model as well as the required rules.

1 rule ’SRID’
2 when
3 $a : Avatar($aid : avatarID)
4 evt : EventObject(type==’activateSkill’, $sname:data[’skillName’], $aid==

avatarID) from entry-point eventstream
5 not(EventObject(type==’activatedSkill’, data[’skillName’]==$sname, $aid==

avatarID) from entry-point internalstream)
6 then
7 long duration = updateAPI.activateSkill($aid, $sname);
8 EventObject as = new EventObject(evt);
9 as.setType(’activatedSkill’)

10 as.setEventDuration(duration);
11 entryPoints[’internalstream’].insert(as);
12 update($a);

Listing 7.5: Core rule for activating skills

Similar to the latter case, there are rules for handling the semantics of virtual items.
In this case, however, no interval event is created that signifies the activation of the
item since items are considered to be consumed after their usage. Nonetheless, for
items and goods additional rules are necessary to process redeem and trade events
which are used to calculate the redemption of points for goods or the exchange of
goods between entities or into points.

Finally, there are core rules that comprise a specific LHS but where the RHS still
has to be defined by the gamification or IT expert. For example, Listing 7.6 shows the

98

7.5 Event Processing Agent

rule for newly created avatars. This rule is activated on the standard event newUser
(Section 7.5.1). The gamification expert, however, still has to determine what happens
when new avatars are created (e.g., the first time they enter the system). By default,
no action would take place.

1 rule ’newUser’
2 when
3 $a : Avatar($aid: avatarID)
4 $event : EventObject(type==’newUser’, $aid==avatarID) from entry-point

eventstream
5 then
6 ...

Listing 7.6: Core rule for new users or avatars

Based on these core rules, Table 7.5 summarizes the corresponding standard event
types which have the semantics described above. The table’s second column indicates
whether the event is reserved in either case (always) or only if the according mecha-
nisms are configured by the gamification or IT expert (on rule). Moreover, the shown
events might be also used in conjunction with other, non-core events for other design
purposes. For example, a rule may check, if a player accepted five missions in a row
for a particular avatar instance.

Type Reserved Reason

newUser always reserved to trigger a configurable, initial assignment
rule when new avatars are created for the first time.

deleteUser always reserved to trigger a configurable deletion rule, i.e., a
rule that determines the consequence when an
avatar is deleted by its owner (i.e., user or player).

selectAvatar always reserved to signify that the player selects a different
default avatar.

newTeam always reserved to trigger a configurable, initial assignment
rule when a new team is created.

deleteTeam always reserved to trigger a configurable deletion rule, i.e., a
rule that determines what happens if a team is
deleted.

joinTeam always reserved to trigger a configurable rule when a
player’s avatar joins a new team.

leaveTeam always reserved to trigger a configurable rule when a
player’s avatar leaves a team.

acceptMission always reserved to signify that an entity has accepted an
offered mission manually.

declineMission always reserved to signify that an entity has declined to
participate in an offered mission.

activateSkill on rule reserved to signify that an entity has activated a
particular skill.

activatedSkill on rule reserved to signify that a skill is currently activated
and cannot be reactivated.

99

7 Gamification Runtime Environment Concept

Type Reserved Reason

consumeVirtu-
alItem

on rule reserved to signify that an entity has used a virtual
item.

redeemPoints on rule reserved to signify that points are redeemed for a
real good or virtual item.

trade always reserved to signify a trade between two entities.

movement on rule reserved to signify that an entity is at specific
location.

Table 7.5: Reserved events in the gamification runtime environment and their prede-
fined semantics

This closes the description of gamification-specific adaptations in the context of the
presented hybrid architecture. In the next section, the compilation procedure from
GaML into running code for this generic gamification platform is described.

7.6 COMPILATION PROCEDURE

In the following text, the compilation procedure from valid GaML instances into exe-
cutable code for the generic gamification runtime environment is presented. Derived
from the overall structure of this thesis (Figure 1.1), a more detailed procedure is shown
in Figure 7.8.

The overall procedure is derived from a typical model driven architecture process
which comprises a Platform Independent Model (PIM), Platform Specific Model (PSM),
and code level as shown in the lower lane of Figure 7.8 [113]. As the name implies,
the PIM is a model which is independent from any specific technology (e.g., gamifi-
cation system) or computational model (e.g., imperative, abstract state machine, or
rule-based) [82, 113]. Here, GaML is considered as the PIM.

The PSM is a model which is dictated by a specific technology (e.g., through pro-
gramming languages, APIs, or tools). In the case of this thesis, the provided interfaces
of a specific gamification system or solution are determining the PSM. Using trans-
formers, instances of the PIM can be translated into one or more PSMs [113].

Eventually, the PSM can be translated into running code which can be executed as
computer program. In most scenarios, the PSM and code model are closely coupled
[113]. For example, a PSM in the Java programming language is inherently coupled
with the bytecode compiled from the sources for the Java runtime environment. In
this thesis, the code level is represented through a running instance of the proposed
gamification runtime system5.

In this section, the translation of GaML (i.e., the PIM) into code for the runtime
environment (i.e., exactly one PSM) is presented. More precisely, this process starts
with a GaML instance describing an arbitrary gamification concept (Chapter 5). A parser

5Theoretically, more levels have to be distinguished in practical scenarios. For example, the rule language
within the gamification runtime environment enforces again the generation of programming language
code on multiple levels. However, for the sake of simplicity the entire system represents the code
level herein.

100

7.6 Compilation Procedure

GaML Instance

(Chapter 5)

Abstract Syntax

Tree

Static Semantics

(Section 5.4)

Platform

Independent Model

(PIM)

Platform Specific

Model

(PSM)

Parse
(Section 8.2.1)

Generate
(Section 7.6)

Gamification

Run-time
(Section 7.3)

Deploy
(Section 8.2.1)

CodeTransform Transform

API Calls

(Section 7.4)

Drools Rule

Language

(Section 7.5)

Figure 7.8: Conceptual transformation of GaML into code for the gamification runtime
environment

program tries to parse the respective instance. Since the parser is a generated artifact
and, therefore, contains no novel concepts, its description is deferred to the evaluation
chapter in this thesis (Section 8.2.1).

If parsing is successful, i.e., the instance complies with the syntax, an Abstract Syn-
tax Tree (AST) is created representing the instance. Based on the AST, static semantics
as described in Section 5.3 are validated. If these tests pass as well, the GaML instance
can be translated into the platform-specific model determined by the gamification run-
time environment.

The target model of the gamification runtime system comprises the provided in-
terfaces of the BEP and EPA as presented in Sections 7.4 and 7.5. For the BEP this
includes the update, query, and administration interfaces. For the EPA this includes
the event and administration interfaces for creating rules. Furthermore, the rule engine
which is included within the EPA defines its own production rule model. Therefore, the
translation of GaML into runtime code comprises two steps.

First, GaML rules, i.e., conditions and consequences, have to be translated into a
specific rule language for the EPA’s rule engine. Throughout this thesis, the Drools
Rule Language (DRL) is used as a well-known language for representing rules in a
rule engine. Second, all other concepts (i.e., meta-data) are translated into API calls.
Furthermore, the translated rules from the first step are wrapped into valid API calls
(e.g., createRule) as well.

Finally, all API calls are imported into one or more running gamification platform in-
stances. Since this deployment step depends on a concrete implementation and does
not need conceptual consideration, it is deferred to Section 8.2.1 in the evaluation chap-
ter.

The remaining text is structured in accordance with the two-fold compilation process,
i.e., the translation of entities and meta-data (Section 7.6.1) is considered separately
from the compilation of rules (Section 7.6.2).

7.6.1 COMPILATION OF ENTITIES

In general, all entity definitions of GaML are compiled into methods defined by the
update or query interfaces of the BEP. For each entity definition in a GaML instance,
there is exactly one corresponding method call in one of the BEP’s update or query
interfaces.

A translation example for the point element is given in Listing 7.7. On the left-hand
side, the GaML definition for a point element is given with all required parameters. On

101

7 Gamification Runtime Environment Concept

the right-hand side, the corresponding method call available on the update interface is
shown in JSON-RPC notation [105]. Note that this call is directly executable as remote
service call within the gamification runtime environment and is presented in more detail
in Chapter 8.

The pattern used in Listing 7.7 is used throughout the following text, i.e., the left-
hand side represents a source code in GaML, the translation itself is represented by
an arrow (=⇒), and the right-hand side represents the target code. The text in angle
brackets refers to parameters (terminals) or non-terminals which have to be further
specified either by the gamification expert or through other compilation rules beyond
the currently shown example.

1 point <ID> {
2 name=’<dName>’,
3 abbreviation=’<abbrv>’,
4 type=<POINTTYPE >
5 }

=⇒
1 {’id’:0,’method’:’createPoint’

, params:[’<ID>’,’<dName>’,
’<abbrv>’,<POINTTYPE >}

Listing 7.7: Translation example for the point entity

The same translation principles also apply to other L1 concepts that are described in
Section 5.2.1. For instance, Listing 7.8 presents the compilation of the badge concept
into the corresponding API method. Note that the image is passed to the method call
as argument, i.e., to upload the image to the runtime system6.

1 badge <ID> {
2 name=’<dName>’,
3 description=’<description >’,
4 image=’’,
5 hidden=<hddn>
6 }

=⇒
1 {id:0,method:’createBadge’,

params:[’<ID>’,’<dName>’,’<
description >’,,<hddn>}

Listing 7.8: Translation example for badge entity

As presented in Chapter 5 some of the L1 concepts (e.g., badge, points, or skill
concepts) directly allow the definition of when clauses or rules to express the circum-
stances under which the defining concept can be achieved. Despite the fact that rule
translations are discussed in Section 7.6.2, Listing 7.9 presents the result after all sub-
compilations have been processed.

1 badge <ID> {
2 name=<dName>,
3 description=<abbrv>,
4 image=,
5 hidden=<hddn>
6

7 when player {
8 <PlayerConditions >
9 }

10 }

=⇒

1 {id:0,method:’createBadge’,
params:[’<ID>’,’<dName>’,’<
description >’,’’,’<
hddn>’}

1 {id:1,method:’createRule’,
params:[’GRID1’,

2 ’Avatar($aid : avatarID)\n <
PlayerConditions >’,

3 ’updateAPI.addBadgeToAvatar(
$aid, <ID>);’}

Listing 7.9: Translation example for badge entity including an optional when clause

6For practical implementation, however, this possesses some limitations and is solved differently in the
evaluation.

102

7.6 Compilation Procedure

In this example, the badge compilation shown in Listing 7.8 is extended by an optional
when clause determining the conditions under which the badge can be received by a
player.

Again, the entity itself is translated into the corresponding create call of the BEP.
Moreover, there is a second call createRule which contains the rule’s generated ID
(GRID1), condition, and consequence as strings. Within the gamification runtime en-
vironment this rule is assembled to a DRL rule shown below, i.e., the individual argu-
ments of the JSON-RPC call are put into placeholders of a generic rule template.

1 rule ’GRID1’
2 when
3 Avatar($aid : avatarID)
4 <PlayerConditions >
5 then
6 updateAPI.addBadgeToAvatar($aid, <ID>)

Listing 7.10: Rule assembled from Listing 7.9

For the remaining text, all rule translations are presented directly in the target lan-
guage for the sake of readability. However, all rules are eventually wrapped into API
calls as shown in Listing 7.9.

7.6.2 COMPILATION OF RULES

The translation of GaML rules into executable rules for the gamification runtime envi-
ronment can be divided into two parts, namely the compilation of the When and Then
non-terminals of the source language. Coherently, this section considers the condition
parts first. The corresponding consequences are explained afterwards.

7.6.2.1 RULE CONDITIONS - GENERAL ELEMENTS

In Chapter 5 the conditional parts of GaML have been categorized into three classes,
i.e., conditions that may apply to players and their avatars only, to teams only, or both
of them. This structure is retained in the following text starting with conditions that
apply to both entities first.

As a preliminary consideration, it has to be recalled that both, avatars and teams,
can be made explicit through a variable binding in GaML (cf. Chapter 5). The compiler
has to deal with these variables bindings. More precisely, each condition in a GaML
rule refers to one so-called upper entity, i.e., either a team or an avatar, to signify if
this condition refers to groups or individuals respectively. Listings 7.11 and 7.12 refer to
example translations.

1 when player <pVariable > {
2 <PlayerConditions >
3 }

=⇒
1 when
2 Avatar(<pVariable > : avatarID)
3 <PlayerConditions >

Listing 7.11: Example translation of an outer player to avatar entity

1 when team <tVariable > {
2 <TeamConditions >
3 }

=⇒
1 when
2 Team(<tVariable > : teamID)
3 <TeamConditions >

Listing 7.12: Example translation of an outer team entity

103

7 Gamification Runtime Environment Concept

In case the source’s condition refers to a player, the target language uses the cur-
rently selected avatar instance of that player. This is consistent with the assumption
that the avatar is considered as runtime concept since a player may have multiple vir-
tual representations in the game (cf. Chapter 4). Therefore, the gamification expert
can write the rules in an avatar agnostic manner and, thus, may abstract from concrete
runtime instances of the player. In case the source’s condition refers to a team, the
compiler generates the target code for the same runtime entity.

Furthermore, the terminals <pVariable> and <tVariable> might be used as entity
binding ID. This ID is either taken explicitly from the GaML definition or enumerated
implicitly by the compiler if no ID is given. Those IDs are maintained by the compiler
in a symbol table in order to allow for nested entity bindings within one rule. A simple
example for the variable resolution is given in Listing 7.13.

1 when player $pid {
2 <PlayerConditions >
3 } then { give 1 XP to $pid }

=⇒

1 when
2 Avatar($pid : avatarID)
3 <PlayerConditions >
4 then
5 updateAPI.givePointsToAvatar

(’XP’, $pid, 1);

Listing 7.13: Simple example for variable binding

Here, the player’s current avatar is explicated through the ID $pid. This ID is used
in the consequence to explicitly express that the outer avatar receives the reward. In
this example, it would be semantically equivalent to omit the to clause in the GaML
source code as well as the variable definition of the condition since the compiler would
generate an implicit variable instead7.

A more complex example is shown in Listing 7.14. Here, multiple entities are nested
having different conditions. In particular, this example refers to a condition where some
player issues a TestAction, has more than 10 TestPoints in total, has 50% luck, and
belongs to a team where at least one player (the player himself or another teammate)
has more than 20 TestPoints in total. If the condition is fulfilled, the utmost player
receives two, all players of the team three, and the inner player four TestPoints.

1 when player $p1 {
2 did useraction TestAction
3 and has point TestPoint , SUM > 10
4 and has luck P(0.5)
5 and belongs to team $t1 which {
6 has player $p2 who {
7 has point TestPoint , SUM > 20
8 }
9 }

10 } then {
11 give 2 TestPoint to $p1
12 give 3 TestPoint to $t1
13 give 4 TestPoint to $p2
14 }

Listing 7.14: Complex example for variable binding

Again each entity has been explicated through an ID which is used in the corre-
sponding consequence to give each entity its defined reward. However, removing the
to clauses or the explicit variables from this example, would not yield a semantic equiv-
alent anymore and even would lead to a wrong outcome. In fact, the resulting switch

7Broken references in the consequences are avoided before compile-time through static semantics.

104

7.6 Compilation Procedure

to implicit variable bindings generated by the compiler implies that the utmost entity
$p1 would receive all three consequences.

Given these preliminary considerations, the translation of each conditional element
is explained below based on the structure of Chapter 5.

Boolean Constraints (E12a) All single conditions can be correlated with standard
Boolean operators (see Figure 5.4). These Boolean expressions are directly used for
the target DRL representation. While GaML defines all operators, except logical ”not”,
with infix notation, the compiler generates them for prefix notation. Furthermore, log-
ical ”and” is implicitly assumed in DRL between consecutive conditions. Correspond-
ingly, Listing 7.15 shows an exemplary translation:

1 when player {
2 (<Condition1 >
3 and <Condition2 >
4 and not <Condition3 >)
5 or <Condition4 >
6 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 (or (<Condition1 >
4 <Condition2 >
5 (not <Condition3 >))
6 (<Condition4 >))

Listing 7.15: Example translation of Boolean operators

General References (E12b, E12c, E12d) This category subsumes conditional ele-
ments which are translated in a similar manner. This applies to the conditionals of
badges (E12b), levels (E12c), and items (E12d). Listing 7.16 shows one example trans-
lation per element.

1 when player {
2 has badge <B1>
3 and has level <L1>
4 and has item <I1>
5 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 eval(queryAPI.hasAvatarBadge($

aid, ’<B1>’) == true)
4 eval(queryAPI.hasAvatarLevel($

aid, ’<L1>’) == true)
5 eval(queryAPI.hasAvatarItem($

aid, ’<I1>’) == true)

Listing 7.16: Example translation of general reference conditions

All conditions are translated into calls against the BEP’s query interface. The target
template for these calls is similar across all elements, i.e., the method name includes
the upper entity class it belongs to (e.g., avatar), the class of the condition element
(e.g., badge). Furthermore, the method’s parameters take the variable binding ID of the
upper entity class (here, the implicitly generated $aid), and the ID of the referenced
condition element (e.g., <B1>).

Each call is embedded into the eval function, a specific DRL construct to evaluate
arbitrary expressions. Here, it is used to validate, if the BEP’s response equals to true.
Note that this condition is also applicable to the entity team. For this case, all method
names of the BEP’s query interface contain the same-named term. This applies for
these conditions as well as additional ones described below.

Mission Condition (E12e) In contrast to the former conditions, the mission element
uses the mission’s status which has to be reflected as an additional parameter in the
generated target code (Listing 7.17). Upon compilation, the specific enumeration types

105

7 Gamification Runtime Environment Concept

introduced in Section 7.4.1 are used to determine the mission state. Finally, this exam-
ple shows that if no mission status is specified, the completed status is assumed by
default.

1 when player {
2 has mission <M2>
3 has mission <M3> completed
4 has mission <M4> available
5 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 eval(queryAPI.hasAvatarMission

($aid, ’<M2>’, MSTATUS.
COMPLETED) == true)

4 eval(queryAPI.hasAvatarMission
($aid, ’<M3>’, MSTATUS.
COMPLETED) == true)

5 eval(queryAPI.hasAvatarMission
($aid, ’<M4>’, MSTATUS.
AVAILABLE) == true)

Listing 7.17: Example translation of several mission conditions

Skill Condition (E12f)

The condition whether the entity has a skill, optionally at a particular level or activated,
is translated as presented in Listing 7.18.

1 when player {
2 has skill <ID>
3 has skill <ID2> level=<lvl>
4 has skill <ID3> level=<lvl>

active
5 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 eval(queryAPI.hasAvatarSkill($

aid, <ID>) == true)
4 eval(queryAPI.getAvatarSkill($

aid, <ID2>) == <lvl>)
5 eval(queryAPI.

getActiveAvatarSkill($aid,
<ID3>) == <lvl>)

Listing 7.18: Example translation of skill condition

In all cases, the avatar’s current state is retrieved from the BEP and the response is
compared either with the result true or the required level <lvl>. Note that the active
clause is part of the method’s name rather than an additional parameter.

Point Condition (E12g)

The point condition examines, if the aggregated quantity of points compared to a
threshold is fulfilled by the entity. The abstract translation rule executed by the compiler
is presented in Listing 7.19.

1 when player {
2 has point <PID>, <

AGGREGATION > <OPERATOR> <
NUMEXPR>

3 }

=⇒

1 Avatar($aid : avatarID)
2 eval(queryAPI.

getPointsForAvatar($aid, ’<
PID>’, AGGREGATION.<
AGGREGATION >).amount <
OPERATOR > <NUMEXPR >)

Listing 7.19: Example translation of point condition

Here, the additional parameters are influencing the operator and the right operand
within the DRL eval function. While the point ID, the aggregation method, and the
operator refer directly to terminals, numeric expressions (NUMEXPR) have be translated
further as shown later on.

106

7.6 Compilation Procedure

Luck Condition (E12h)

Similarly, Listing 7.20 shows the translation of the luck condition. However, the BEP is
not required in this case. Instead, a helper class is used to generate a pseudo-random
number between 0 and 1 which is compared numerically against a defined threshold8.

1 when player {
2 has luck P(<NUMEXPR >)
3 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 eval(LuckHelper.getRandom() <=

<NUMEXPR >)

Listing 7.20: Example translation of luck condition

Location Condition (E12i)

The location condition examines, if the entity is at a particular location with regards to
longitude and latitude. Listing 7.21 shows an example translation.

1 when player {
2 is at location(lat <comp1> <

lat>, long <comp2> <lon>)
3 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 EventObject(type=’movement’,

avatarID==$aid, eval(
PositionMatcher.calculate(
Long.parseLong(data[’
longitude’]), ’<comp1>’, <
lon>, Long.parseLong(data[’
latitude’]), ’<comp2>’, <
lat>)==true)

Listing 7.21: Example translation for location condition

The user’s or team’s current position is determined over the standardized event
movement (Section 7.5.2) which is automatically available, if at least one rule requires a
current location in its condition. The EPA provides a procedure to match the target po-
sition with the source position. This procedure must allow for a configurable precision
at runtime9.

Leader Condition (E12j)

Finally, Listing 7.22 shows the translation of the leader condition. In this case, the BEP’s
query interface is used to retrieve the latest leaderboard as provided in the correspond-
ing GaML specification.

1 leaderboard Board1 {
2 name = <LID>, point = <PID>,

aggregation = <AGG>,
order = <ORDER>

3 }
4

5 when player {
6 is top (to=<TO>, leaderboard

= <LID>)
7 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 $value : eval(queryAPI.

getAvatarLeaderboardPos($
aid, ’<PID>’, AGGREGATION
.<AGG>, ’<ORDER>’))

4 eval($value > 0 && $value <=
<TO>)

Listing 7.22: Example translation of leader condition

8Note that GaML does not allow to specify the underlying probability distribution function. Therefore,
numbers are drawn from an uniform distribution currently.

9Note that GaML does not allow to define a particular radius around the specified location. However, this
would comprise a simple extension to GaML’s grammar and compiler and is subject to future work.

107

7 Gamification Runtime Environment Concept

Here, the result from the leaderboard method is explicated through the variable
$value which is used in the subsequent eval statement within DRL to check the value
range. Recalling the data model (Section 7.4.1), it is important to note that leaderboards
are transient data structures. Therefore, they are uniquely identified through the com-
bination of point ID and aggregation method, i.e., even if an entity may participate in
multiple leaderboards, those can be referenced precisely.

7.6.2.2 PLAYER CONDITIONS

After the presentation of conditions that apply equally to avatars and teams, this sec-
tion is concerned with avatar- or player-specific conditions. More precisely, the player
construct in GaML comprises three unique language constructs, namely the examina-
tion of virtual roles, the belongingness to a team, and the issuing of user actions for
oneself or in relationship to other players.

Role Condition (E12k) Listing 7.23 shows the general rule for translating the role
condition construct, i.e., if the player’s current avatar has a particular role.

1 when player {
2 has role <RID>
3 }

=⇒
1 Avatar($aid : avatarID)
2 eval(queryAPI.hasAvatarRole($

aid, ’<RID>’))

Listing 7.23: Example translation of role condition

Team Belongingness (E12q) This language element is used to identify, if a player’s
avatar belongs to a particular team which is in a certain state. For this purpose, GaML
defines an avatar- or player-specific construct whose general translation is presented in
Listing 7.24.

1 when player {
2 belongs to team <tVariable >

which <TeamOr>
3 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 (Team(<tVariable > : teamID,

players.contains($aid))
4 <TeamOr >)

Listing 7.24: Example translation for player-team relationships

In this case, the team expression of GaML is directly translated into a DRL statement
which joins all teams with the respective avatar. The resulting list can be further pruned
with the which statement where the non-terminal TeamOr is compiled as presented in
Section 7.6.2.3.

User Actions and Events (E12l-E12p) Only players are allowed to issue user actions
in the system (Section 5.2.2). The GaML statements did <EventDef> and another
player did <EventDef> refer to the issuing of events for oneself or other players (oppo-
nents or teammates). Thus, the following text describes the non-terminal EventDef as
a general building block to process events.

Listing 7.25 shows a simple example of an event condition referring to an event type
(E12l) and two property constraints (E12m). It is shown that the event’s type is directly
translated into the type property. Additional constraints on the event’s payload are
converted based on their defined type in GaML, e.g., a number is explicitly converted
into an integer representation or text is retained as string representation in DRL. In

108

7.6 Compilation Procedure

addition, the event is automatically joined with the enclosing entity as defined in the
GaML source, in this case, the avatar. Finally, the event is consumed from particu-
lar entry-points. Hereby, the event’s class determines which entry-point is selected.
For example, external events or user actions are consumed from the eventstream as
shown in Listing 7.25 and internal events from the internalstream entry-point (not de-
picted).

1 useraction <EVENTTYPE > {
2 properties {
3 <PROP1> : Number,
4 <PROP2> : Text
5 }
6 }
7

8 when player {
9 did <VAR> : useraction <

EVENTTYPE >, <PROP1> <
COMPERATOR > <NUMEXPR>, <
PROP2> = <EQUALITYTYPES >

10 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 <VAR> : EventObject(type==’<

EVENTTYPE >’, Integer.
parseInt(data[’<PROP1>’]) <
COMPERATOR > <NUMEXPR>, data
[’<PROP2>’]==’<
EQUALITYTYPES >’, avatarID==
$aid) from entry-point
eventstream

Listing 7.25: Translation of event type (E12l, E12m)

Listing 7.26 shows a translation example for the joining of events for the same and
another player. In this example, the player has to consecutively issue two events of
the same type, i.e., the second event has to arrive after the first one. Although the
events’ types are equal, the customer’s ID in the events’ payloads has to be different.
Furthermore, the overall condition becomes true, if any other player, additionally, issued
an event of the same type and for the same customer ID as in the first event. All
operators, i.e., the two join (E12n) and the after temporal (E12o) operators can be
directly translated into DRL shown in Listing 7.26.

1 when player {
2 did evt1 : useraction <

EVENTTYPE >
3 and did evt2 : useraction <

EVENTTYPE >, customer <>
evt1.customer , this after
evt1

4 and another player did evt3
: useraction <EVENTTYPE >,
customer == evt1.

customer
5 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 evt1 : EventObject(type=’<

EVENTTYPE >’, duration >0,
avatarID==$aid) from
entry-point internalstream

4

5 evt2 : EventObject(type=’<
EVENTTYPE >’, duration >0,
data[’customer’]!=evt1.data
[’customer’], this after
evt1, avatarID==$aid)) from
entry-point internalstream

6

7 evt3 : EventObject(type=’<
EVENTTYPE >’, duration >0,
data[’customer’]==evt1.data
[’customer’], avatarID!=$
aid) from entry-point
internalstream

Listing 7.26: Translation of event joins and temporal operators

Additionally, events which participate in at least one join condition require the abstrac-
tion of this event into an interval event. Otherwise it would be retracted automatically
after the evaluation cycle and the join of events with different timestamps may fail.

109

7 Gamification Runtime Environment Concept

Therefore, for such events additional rules are generated which add a configurable du-
ration to the events and insert those into the internal entry-point called internalstream.
In fact, there is exactly one abstraction rule generated per event type when the event
in question participates in at least one join condition. This rule reacts on the incoming
point-in-time event and creates interval events out of them by adding a duration to a
copy of the event (Listing 7.27).

1 when
2 old_evt : EventObject(type==’<XYZ>’, duration==0) from entry-point

eventstream
3 then
4 EventObject interval_evt = new EventObject(old_evt);
5 interval_evt.setDuration(<GlobalExpirationTime >);
6 entryPoints[’internalstream’].insert(interval_event);

Listing 7.27: Creation of an interval event using global expiration time

There are two different ways to influence and design the duration for the event. First,
a global expiration time can be configured in the gamification runtime environment.
Without modifications to the GaML instance shown above, this global time is added
to the respective events as shown in Listing 7.27. Consequently, the gamification or IT
expert has to define a maximal time period that applies equally across all events, i.e.,
the event type with the longest necessary duration defines the duration for all other
events. Although this mechanism is convenient, it is not very efficient with regards to
resource utilization.

Therefore, the second approach allows to define a maximal duration per condition.
In this case, the IT expert may utilize GaML’s time window operator (E12p) to specify
the event’s duration. Based on the specified time window, the event’s duration is
selected and inserted instead of the global expiration time (Listing 7.27). If multiple time
windows are specified for the same event type, the maximum duration is selected.

Consequently, the resulting target code in Listing 7.26 references the events from the
entry-point internalstream rather than the external eventstream. Moreover, the event
selection checks the duration attribute for being greater than zero, i.e., the rule only
reacts on interval based events. The IT expert is responsible for selecting appropriate
window sizes at design-time in conjunction with the business logic, i.e., he or she has
to keep in mind that events are retracted after the specified time windows and, thus,
cannot be joined correctly anymore.

The same procedure applies to event aggregation, i.e., where events or their pay-
loads are aggregated over specific time windows as shown in Listing 7.28. Again,
events referring to a particular time window are consumed from the internal stream
after they have been abstracted to an interval event as described above.

110

7.6 Compilation Procedure

1 when player {
2 did useraction <EVENTTYPE >,

<AGG>(<PROPERTY >) <
COMPARATOR > <NUMEXPR>
within <TIME>

3 }

=⇒

1 when
2 Avatar($aid : avatarID)
3 Number(doubleValue <COMPARATOR

> <NUMEXPR >) from
accumulate(

4 evt1 : EventObject(type==’<
EVENTTYPE >’, duration >0,
$prop:Double.parseDouble(
data[’<PROPERTY >’]), $aid
==avatarID) over
window:time(<TIME>) from
entry-point
internalstream , <AGG>($
prop))

Listing 7.28: Example translation for event aggregation over time windows

Finally, the lastsFor operator requires a more complex translation as presented in
Listing 7.29 (source) and Listing 7.30 (target).

1 useraction <eventName > {
2 properties { <joinProperty >:Decimal, customer:Number }
3 inverseEvent { name = <deleteEvent >, joins on=<joinProperty > }
4 }
5

6 when player {
7 did evt1 : useraction <eventName >, customer = ’3’, lastsFor=<timePeriod >
8 } <Then>

Listing 7.29: Example source code for lastsFor operator

The GaML source defines an event and its inverse delete event having a customer
ID and join value as attributes. This event is used by a condition where the customer ID
has to be 3 and the event should last for the specified time period within the system,
i.e., the inverse delete event must not occur in between. Otherwise, the condition
is not satisfied anymore. This mechanism might be utilized, for example, to prevent
cheating scenarios where the user constantly creates and deletes content in and from
the system merely for the purpose of getting more rewards.

Listing 7.30 shows the resulting target code. Again, the first rule is generated based
on the idea that the point-in-time event has to be abstracted into an interval event
(RID1) first, i.e., omitting all additional constraints and operations on that event (e.g.,
checking the customer ID). As explained for events in join conditions or under time
windows, RID1 generates a copy of the event and adds the duration defined by the
lastsFor operator. The rule RID3 reacts on this newly created interval event and delays
the rule consequence as defined by the duration property.

In the meantime, the user may issue the inverse event, i.e., the delete event, as
external one. This activates rule RID2 which immediately leads to a retraction of the
interval event created by RID1, thus, canceling the activation of rule RID3. The join of
both, the original and the inverse event, in rule RID2 is accomplished using the joinsOn
attribute of the corresponding GaML definition.

1 rule ’RID1’
2 when
3 Avatar($aid : avatarID)
4 evt1 : EventObject(type==’<eventName >’, duration=0, $aid==avatarID)

from entry-point eventstream
5 then
6 EventObject obj = new EventObject(evt1);
7 obj.setEventDuration(<timePeriod >);

111

7 Gamification Runtime Environment Concept

8 entryPoints[’internalstream’].insert(obj);
9

10 rule ’RID2’
11 when
12 Avatar($aid:avatarID)
13 evt1:EventObject(type==’<eventName >’, duration >0, $aid==avatarID) from

entry-point internalstream
14 evt2:EventObject(type==’<deleteEvent >’, $aid==avatarID, data[’<

joinProperty >’]==evt1.data[’<joinProperty’]) from entry-point
eventstream

15 then
16 retract(evt1); retract(evt2);
17

18 rule ’RID3’
19 delay(expr:$duration;)
20 when
21 Avatar($aid:avatarID)
22 evt1:EventObject(type==’<eventName >’, $duration:duration >0, avatarID==$

aid) from entry-point internalstream
23 then
24 EventObject obj = new EventObject(evt1);
25 obj.setType(’expired_’+<eventName >);
26 obj.setEventDuration(<GlobalExpirationTime >);
27 entryPoints[’internalstream’].insert(obj);
28

29 rule ’RID4’
30 when
31 Avatar($aid:avatarID)
32 evt1:EventObject(type==’expired_’+<eventName >, avatarID==$aid, data[’

customer’]==’3’) from entry-point internalstream
33 then
34 <Then>

Listing 7.30: Example target code for lastsFor operator

If, however, RID3 is executed successfully, another event (’expired_’+<eventName>)
as copy of the interval event is created to signify that the interval event was success-
fully delayed. This new event is again marked as an interval event either based on the
globally configured expiration time or based on a specified time window in GaML. This
activates the last rule RID4. In addition, all omitted constraints and operations on the
original event are now applied to the abstracted event. This is necessary to allow for
multiple lastsFor operators within the same rule but with different timings, i.e., all event
conditions having a lastsFor condition are required to go through their own three pre-
processing rules until all of them or jointly processed in the rule RID4. Consequently,
the lastFor operator has the highest precedence in GaML.

7.6.2.3 TEAM CONDITIONS

Team Belongingness (E12q) The only team-specific condition is to check, if one or
more particular avatars belong to the team in question and, optionally, are in a particular
state to prune the result. Listing 7.31 shows an exemplary translation from GaML to
DRL.

1 when team {
2 has player $pid who <

PlayerOr >
3 }

=⇒

1 when
2 Team($tid : teamID)
3 (Avatar($pid : avatarID,

teams.contains($tid))
4 <PlayerOr >)

Listing 7.31: Example translation of player or avatar belongingness

112

7.6 Compilation Procedure

In this example, the avatar’s belongingness is checked using the entities teams prop-
erty. In addition to the membership, the avatar may have to comply with some ar-
bitrary condition as specified in the who clause of GaML. Here, all above describe
player-specific or player-independent condition clauses might be used.

This concludes the translation procedure for rule conditions. Subsequently, the com-
pilation of rule consequences is described in more detail.

7.6.2.4 RULE CONSEQUENCES

As shown in Chapter 5, possible consequences include new events (E13a), points
(E13b), notifications (E13c), narrative messages (E13d), badges (E13e), items (E13f),
missions (E13g), and skills (E13h). Selected code generations are presented below.

Event Consequences (E13a) Listing 7.32 present a translation example for event con-
sequences. The then clause in GaML creates a new event type with exactly one
key value pair. Furthermore, the event is issued for an entity identified through its ID
(<EID>), i.e., the corresponding condition has to make the player (avatar) or team explicit
using a variable.

Within the target code, those information is mapped onto Java code. This includes
the creation of a new event object and using the setter methods to set the event type,
the avatar’s id, and all key value pairs. Finally, the event is inserted into the internal
entry-point internalstream from where it can be consumed by other rules.

1 then {
2 create event <EVENTTYPE >(<

PROP1>=<VAL1>) to <EID>
3 }

=⇒

1 then
2 EventObject newEv = new

EventObject();
3 newEv.setType(<EVENTTYPE >);
4 newEv.setAvatarID(<EID>);
5 newEv.put(<PROP1>,<VAL1>);
6 entryPoints["internalstream"

].insert(newEv);

Listing 7.32: Example translation of event consequences

Other consequences (E13b-E13h) All other consequences follow two particular pat-
terns, namely a pattern for giving and a pattern for deleting an instance of the concept
in question.

Listing 7.33 shows a general translation example for assignment consequences, i.e.,
where the current avatar of the player is assigned a new instance of the respective
entity. Again, the same also applies directly to consequences for team entities. In
this case, there are methods in the BEP’s update interface available whose method
name contain the term Team instead of Avatar. Here, it depends on the type of the
referenced <EID> which entity is addressed by the method’s name. If no to clause is
specified in GaML the class of the utmost entity is used (see Section 7.6.2.1).

113

7 Gamification Runtime Environment Concept

1 then {
2 give <AMNT> <PID> to <EID>
3 give badge <BID> to <EID>
4 give mission <MID> to <EID>
5 notify ’<TEXT>’ to <EID>
6 narration(name=’<dName>’,

description=’<DESC>’,
recipient=<EID>)

7 }

=⇒

1 then
2 updateAPI.givePointsToAvatar

(<PID>, <EID>, <AMNT>);
3 updateAPI.addBadgeToAvatar(<

BID>, <EID>);
4 updateAPI.addMissionToAvatar

(<MID>, <EID>);
5 updateAPI.notifyAvatar(<EID>

’<TEXT>’);
6 updateAPI.narrateAvatar(<EID

>, ’<dName>’, ’<DESC>’);

Listing 7.33: Example translations assignment consequences

The same structure applies also to the deletion of instances within consequences.
Listing 7.34 presents example translations for selected elements. In contrast to the
assignment of points or badges, the methods’ names include the term remove rather
than give or add.

1 then {
2 remove <AMNT> <PID> from <EID>
3 remove badge <BID> from <EID>
4 remove mission <MID> from <EID

>
5 ...
6 }

=⇒

1 then
2 updateAPI.

removePointsFromAvatar(<
PID>, <EID>, <AMNT>);

3 updateAPI.
removeBadgeFromAvatar(<
BID>, <EID>);

4 updateAPI.
removeMissionFromAvatar(<
MID>, <EID>);

5 ...

Listing 7.34: Example translations of deletion consequences

7.6.3 COMPILATION OF TERMINALS

The last sections deferred the translation of terminals. Some of the terminals (e.g.,
COMPARATOR, ID, STRING, or AGGREGATION) can be directly reused in the DRL,
i.e., there is no additional translation necessary. Other terminals such as NUMEXPR
or TIME, however, require a more complex translation procedure and are presented
below.

For example, every terminal of type TIME has to be translated into a corresponding
millisecond representation as shown in Listing 7.35.

1 static def int toMilliseconds(TIME time) {
2 time.value * 1000 * switch time.name {
3 case ’w’: 7*24*60*60
4 case ’d’: 24*60*60
5 case ’h’: 60*60
6 case ’min’: 60
7 default: 1
8 }
9 }

Listing 7.35: Compilation of TIME terminal

As another example, Listing 7.36 shows the translation of numeric expressions into
its corresponding DRL part. This generation has been used, for example, in Listing
7.28 to convert the numeric expression into to the respective expression of the target
language to compare its results against an aggregation threshold.

114

7.6 Compilation Procedure

1 static def dispatch generateCode(NUMEXPR expr) {
2 val it = expr
3 if (operand1 != null) {
4 ’’’«operand1.generateCode» «IF operator != null»«operator» «operand2.

generateCode»«ENDIF»’’’
5 } else if (innerOperand1 != null) {
6 ’’’(«innerOperand1.generateCode»«IF innerOperator != null» «

innerOperator» «innerOperand2.generateCode»«ENDIF»)’’’ +
7 ’’’IF operator != null» «operator» «operand2.generateCode»«ENDIF»’’’
8 }
9 }

10

11 static def dispatch generateCode(NUMERICOPERAND operand) {
12 val it = operand
13

14 if (refOp != null) {
15 ’’’$«refOp.eventRef.name».«refOp.^var.name ?: ’$aid’»’’’
16 } else if (d != 0d) {
17 d.toString
18 } else if (^int != 0) {
19 ^int.toString
20 } else {
21 ’0’
22 }
23 }

Listing 7.36: Translation of numeric expressions

7.6.4 SYSTEMATIZATION

This chapter introduced the gamification runtime environment in two main parts as
shown in Figure 7.9. First, a generic hybrid architecture comprising a database (Busi-
ness Entity Provider) and rule engine with event processing capabilities (Event Pro-
cessing Agent) has been proposed based on a discussion of the non-functional require-
ments of Chapter 4 and their associated trade-offs.

Second, since all parts of the hybrid architecture have been described as domain-
independent components, Sections 7.4 and 7.5 provided gamification-specific adapta-
tions. It has been argued that those specific adaptations (e.g., syntax and semantics
of APIs, rule language model) comprise the platform specific model used by the gami-
fication runtime environment.

GaML Instance

(Chapter 5)

Abstract Syntax

Tree

Static Semantics

(Section 5.4)

Parse
(Section 8.2.1)

Generate
(Section 7.6)

Gamification

Run-time
(Section 7.3)

Deploy
(Section 8.2.1)

API Calls

(Section 7.4)

Drools Rule

Language

(Section 7.5)

Figure 7.9: Summary of the conceptual translation procedure

Afterwards, the gap between the GaML model developed in Chapter 5 on the one
hand and the PSM and runtime environment on the other hand, has been bridged by a
model-to-model translation, i.e., from GaML into executable code for the gamification
runtime environment.

However, with regards to Figure 7.9, two aspects have not been considered. First,
the generation and implementation of the parser to create the AST has been omitted.

115

7 Gamification Runtime Environment Concept

Second, the transformation of the API calls (i.e., PSM) into the actual runtime system
was not presented. Since both aspects are very implementation-specific they are con-
sidered in Section 8.2.1 of the evaluation.

Furthermore, the remaining thesis described the evaluation of the developed artifacts
with regards to their feasibility and non-functional requirements. For example, this
comprises the presentation of the implemented gamification runtime environment on
a fine-grained level as well as their evaluation with regards to requirements such as
performance, reusability, or flexibility. Additionally, GaML is evaluated with regards to
the stated design objectives.

116

8 EVALUATION
In this chapter, the contributions of this thesis are evaluated with regards to feasibility,
implementation, efficiency, and applicability. First, the applications where the gamifica-
tion platform was utilized to implement real and productive scenarios are introduced.
Based on these applications, the various artifacts of this thesis are evaluated. Second,
the implementations of GaML and the generic runtime environment for gamification
are validated. Third, the applicability of GaML with regards to its design goals (Sec-
tion 5.1) is evaluated. Finally, the overall benefit of the gamification platform and its
methodology and tools is evaluated in an end-user test.

8.1 APPLICATION SCENARIOS

In the following, five real and productive business applications are introduced. These
applications are a selection of all cases where gamification was introduced using the
concepts provided by this thesis. They have been selected to examine the different as-
pects and contributions (e.g., reusability in different domains) of this thesis. Throughout
the evaluation, all of them are considered in more detail.

8.1.1 SAP TWOGO

This application covers the gamification of a carpooling system, where people can share
rides with each other. The already gamified solution is deployed in a large company with
approximately 8,000 regular users. In contrast to traditional commuting applications,
users are automatically matched once they posted their ride intents. However, in a
corporate context the problem exists that people need to be motivated to share their
car as a driver which is often perceived as being less flexible and inconvenient.

In accordance with the gamification process (Chapter 3), the first step was to analyze
the business process as well as its potential users. Therefore, a qualitative analysis has
been conducted to find out what motivates the users of the application in general. This
analysis yielded that people especially use the application to be ecologically sustain-
able, to extend their social network, to arrive at work with less stress, or perceive a
smaller likelihood of accidents. Furthermore, it was observed that there were many
passengers willing to share rides, however, drivers do not participate equally often as
they are less flexible on the one hand and have to accept disadvantages in corporate
tax regulation with their company cars on the other hand.

117

8 Evaluation

After a thorough requirements analysis, the design phase started as proposed by the
overall development process. Multiple iterations were taken to create and design the
gamification concept and discuss it with all stakeholders involved in the project (e.g.,
product owner, architect, managers, and business experts). Furthermore, a design con-
test was conducted where nine teams proposed very different gamification concepts
based on the findings of the requirements phase. All these concepts were synthesized
into an overall concept for the carpooling application.

The major parts of the gamification include mechanisms to reinforce and uncover
the observed intrinsic motivations such as collecting points for saving carbon-dioxide
or meeting people. In particular, the carbon-points can then be used to grow a virtual
tree which, once completed, is planted in reality to reinforce the need of being eco-
logically sustainable further. Additional badges were introduced for special situations,
e.g., sharing a ride with the company’s CEO or to fetch a colleague after 10pm from a
particular bar. A virtual story was invented to on-board new users quicker by fostering
curiosity. For experienced users, collective goals such as saving one million kilograms
of carbon-dioxide were proposed. Moreover, experienced users may select from a set
of avatar roles which makes them responsible for certain aspects in the solution (e.g.,
to announce new goals for all users of the solution).

The implementation of this overall design was also divided into multiple iterations,
i.e., the first iterations were concerned with the implementation of basic game mechan-
ics and simple operational rules. Subsequent iterations added the remaining concepts
then. The examples shown in this thesis refer to the early iterations as its results are
in a productive state. The concrete rules are shown later when the integration scenario
is elaborated in more detail (Section 8.3). Figure 8.1 shows the visualization of points
in the user interface of the target carpooling system. Nevertheless, other concepts
and rules have been introduced over the system’s lifetime without changing the host
application. This indicates that the platform provides the desired degree of flexibility
with regards to design changes to a running gamification concept.

Figure 8.1: Example screenshot from the SAP TwoGo gamification project

118

8.1 Application Scenarios

8.1.2 SAP NETWORKING LUNCH

This application covers the gamification of a networking application which automati-
cally matches users, who typically do not know each other, for lunches, coffee breaks,
or other networking opportunities. Before starting the gamification process, this app-
lication was used by approximately 10000 users (around 7000 male and 3000 female
users) where 1000 users use the application at least once per day. The gamification
process was applied to investigate the business model and requirements in order to
design a comprehensive gamification concept.

The final concept foresees different missions that should engage users to explore
and use all aspects of the application. Gamification is used to reward various user ac-
tions, e.g., the user gains points for each added colleague or accepted meeting. If a
specific amount of points has been achieved, the user completes a particular mission,
receives a badge, and is assigned another mission. For example, after accepting the
first meeting, the user completes the Accept First Meeting mission, receives the cor-
responding badge and gets the next mission (e.g., Host a Group Meeting). In order to
support latent psychological factors such as curiosity or surprise, some of the badges
are hidden by default. Figure 8.2 shows an example of the networking application and
some of the badges users may earn along their usage and participation.

Figure 8.2: Example screenshots from the SAP Networking Lunch gamification project

119

8 Evaluation

8.1.3 SAP FINANCIAL FACT SHEET

In contrast to the previous applications, this scenario covers the gamification of a stan-
dard economical business process from an ERP system, namely a financial fact sheet
application that is used for generating leads. Furthermore, this scenario specifically
aims at mobile application where the gamification should be introduced.

With regards to the gamification concept, employees should be engaged to gener-
ate more leads by reminding customers who have not paid their bills yet. Therefore,
users may gain several points for successful reminders or delegating tasks to their
colleagues by writing notes. Users gain more points the higher the total payment is.
Further elements include notifications, time pressure, and competition. For example,
bonus missions are unlocked that allow to acquire more points when a customer pays
within a given time period. Moreover, gamification elements have been used to on-
board new users quickly by guiding them through the application’s capabilities. For
instance, gamification goals encourage the users to find and explore all available views
and possibilities of the application. Figure 8.3 shows the integration of the gamification
aspect into the existing mobile application.

Figure 8.3: Example screenshots from the SAP Financial Fact Sheet gamification
project

Moreover, this scenario also requires a more complex integration with the existing
system landscape on the back-end side, i.e., the gamified mobile application is only the
final representation for the user. However, in the background the gamification platform
has to be integrated with further systems such as an ERP system that holds the rel-
evant business data and a mobile application management platform (e.g., SAP Mobile
Platform) that offers additional enterprise-related services for mobile applications. Be-
cause of its additional complexity with regards to integration, this scenario is selected
for Section 8.6 to validate the benefits of the thesis’ approach.

120

8.1 Application Scenarios

8.1.4 SOCCER TRAINING APPLICATION

This application scenario is again different compared to the aforementioned applications
with regards to two main aspects.

The first different aspect is that the host application itself qualifies as a serious game
rather than gamification according to the respective definitions. As such the application
is an ensemble of several mini-games which are used to train mental soccer skills such
as reaction times as well as faster perception and assessment of different situations.
Figure 8.4 shows one of these mini-games, namely BrainShift. All games have been
developed together with the chief-psychologist of a soccer club playing in the German
Bundesliga and, thus, were designed based on current psychological findings to train
the players’ perceptions and reactions in a gameful experience. Each mini-game is
composed of several game levels which increase in difficulty. In each game level, ten
rounds can be played with the goal to reach as many points as possible. Based on the
achieved score the player either has to repeat the level or qualifies for the next one.

Figure 8.4: Example screenshot from the Soccer application with gamification

The gamification runtime system is used to store the achieved score and generate
aggregated structures such as avatar levels or leaderboards. Trainers then can use
the platform’s analytical features to analyze players’ development over time or to com-
pare their performances. One special requirement was that the games should be also
playable offline (e.g., while traveling). Therefore, the game was completely developed
for the mobile client and only synchronizes with the gamification runtime environment
when an online connection is available. Consequently, the runtime is used as Achieve-
ment System (AS) in accordance with the derived solution classes of Chapter 6. This
leads to the second different aspect of this application scenario.

After deployment of the first version, it was recognized that the integration and cus-
tomization is not flexible enough with regards to design changes. For example, the
soccer trainer was not able to configure and maintain the point calculation rules for
the different levels without a recompilation and redistribution of the mobile application.
Therefore, the second version of this application utilizes the features of the gamifica-

121

8 Evaluation

tion platform further by introducing business and event processing rules as proposed
in this thesis to allow a more flexible design at runtime. With regards to the solution
classes, the new requirements transformed the gamification runtime from an AS into
a Generic Gamification Platform (GGP). This demonstrates that the proposed runtime
environment is highly flexible and reusable even for very specific types of applications.

After multiple iterations within the gamification process, this application is now used
as a daily exercise in addition to traditional ones.

8.1.5 CHIO EVENT APPLICATION

This application concerns the gamification of the CHIO (Concours Hippique Interna-
tional Officiel), which is an international horse sport event that takes place annually and
is visited by around 360,000 visitors [56]. A mobile application has been developed
to engage and entertain visitors. The application comprises quizzes, votings, leader-
boards, and other interesting statistics for visitors as well as the organizers.

Figure 8.5: Example figures from the CHIO gamification project

122

8.2 Implementation

Here, the gamification runtime has been used as an achievement system. Visitors di-
rectly interacted with the gamification runtime over their smart phone applications. For
example, they could vote for their favorite horse rider or participate in quizzes testing
their knowledge on the riders in particular and the event in general. The riders with the
most votes were shown on publicly available scoreboards in the tournament area. Fig-
ure 8.5 depicts an example screenshot of the mobile application on the left hand side
and the public scoreboard showing the most popular horse riders on the right hand
side.

Overall, this application has been used by around 5300 users1 to complete the quiz
or to vote for the most popular horse riders.

8.1.6 ADDITIONAL APPLICATIONS

Besides the five selected examples, the developed gamification platform has been in-
tegrated or used in a variety of other application contexts such as help desk and support
applications, knowledge management tools (e.g., MediaWiki), HR applications, portals,
education and learning environments, or e-ticketing and loyalty scenarios. However,
since these cases are either still under development or do not contribute to the valida-
tion of the thesis’ design goals, they are not discussed further.

Overall, it is argued that the quantity and quality of the applications which have been
gamified using the developed platform demonstrate the desired degree of reusability.
This statement is supported by the heterogeneous types and requirements of these
applications. Furthermore, flexibility is considered to be high as the examples demon-
strate that the platform supports the user in the adoption of design changes in multiple
different application scenarios.

8.2 IMPLEMENTATION

Up to now, the two main artifacts of this thesis, i.e., GaML (Chapter 5) and the pro-
posed runtime system (Chapter 7) have been conceptualized and described on a the-
oretical level only. Therefore, this section describes concrete implementations, i.e.,
software components and tools, to demonstrate the general feasibility of the theoreti-
cal concepts and to enable their practical use. In accordance with the thesis’ structure,
the implementation of GaML is described first, followed by the presentation of the
runtime environment’s implementation.

8.2.1 GAMIFICATION MODELING LANGUAGE

The implementation of GaML complies with the transformation process presented in
Figure 7.8 where a parser creates an AST based on a valid GaML instance and a code
generator creates code in the target language using the created AST. In the following
text, the implementation of these two building blocks is described.

8.2.1.1 PARSER

In order to validate instances of GaML with respect to its meta-model and static seman-
tics (Chapter 5), a textual editor has been created using xText [73] including lexer and

1Statistics are based on the first event in 2013 where the application has been deployed.

123

8 Evaluation

parser2. Hereby, xText requires an EBNF-similar (Extended Backus-Naur-Form) gram-
mar as .xtext file. This .xtext file complies fully to the conceptualized grammar of
Chapter 5 and Appendix A. From his grammar, a recursive descendant parser is auto-
matically generated using the ANTLR parser generator [151]3.

Furthermore, the grammar is used to generate an Ecore model which represents the
meta-model or abstract syntax of GaML. Based on this model, the xText framework
can automatically generate an Eclipse-based editor where IT or domain experts may
write valid GaML instances. Figure 8.6 shows an example from the resulting editor.

Figure 8.6: Carpooling example in GaML editor

The example shows that GaML authors are supported through visual highlighting of
the language’s keywords, code completion for terminals, and immediate presentation
of syntactic and semantic errors, i.e., when the input does not comply to the language’s
meta-model.

With no additional input to xText, this environment parses a well-formed GaML in-
stance and stops after creating the internal parse tree for this instance. In order to

2The final editor can be found in the supplementary materials of this thesis.
3A recursive descendant parser is a type of top-down parser and, thus, allows to decide for languages of

class LL(k) whether an instance belongs to the language or not. As an implication, the input grammar
has been left refactored to avoid infinite left recursions.

124

8.2 Implementation

check static semantics on the AST, the meta-model (i.e., the Ecore meta-model) can
be enriched directly with the OCL expressions given in Chapter 5. Afterwards, the ed-
itor considers these additional constraints leading to the display of errors or warnings
when constraints are not met.

Figure 8.7 shows a selected application of two invariants for the redeemable point
semantics (e.g., Listing 5.3) which are introduced within the meta-model.

Figure 8.7: OCL expressions applied in Ecore meta-model

8.2.1.2 CODE GENERATION

The code generation part concerns the translation of GaML into valid API calls for the
implemented gamification runtime. As explained in the transformation process (Fig-
ure 7.8), business and event processing rules reflecting GaML conditions and conse-
quences are generated and wrapped into API-calls as well.

Figure 8.8 shows a more concrete version of the general compilation process pre-
sented in Figure 7.8 (p. 101) considering five steps. First, GaML elements that describe
master data such as points or badges are directly translated into the corresponding API
calls using the JSON-RPC (Javascript Object Notation - Remote Procedure Call) repre-
sentation. Second, all GaML rules are translated into the Drools Rule Language (DRL)
since the core rule engine of the prototypical runtime environment is implemented
using Drools. Third, the generated rules are also wrapped into API calls for the ga-
mification runtime environment. Fourth, one Javascript Object Notation (JSON) file
with all API commands plus all referenced resources of the GaML source (e.g., images
for badges, levels, or items) are packaged and zipped into one consumable package.
Finally, the generated ZIP file can be imported into the system using the platform’s
administration User Interface (UI).

125

8 Evaluation

GaML

Element
Drools Rules

API Calls
(1)

(2)

(3)

Binary

Resources

ZIP Package AdminUI
(4)

(4)

(5)

Figure 8.8: Compile process of GaML into code for the gamification runtime environ-
ment

The code generation has been implemented with the xText framework utilizing the
Xpand template engine which allows for model-to-text translations. Input to the frame-
work is one .xtend file which implements the code generation for each element of
GaML’s meta-model. This translation procedure complies fully to the compilation con-
cept described in Chapter 7.6.

Figure 8.9 shows a running example of the code compilation. In the left window
pane, the source file CarPool.gaml can be found whose content is shown in the right
window pane. Furthermore, within the left window pane, the src-gen folder contains
the corresponding CarPool.zip which holds a file gp_concept.json that consists of all
API calls in JSON format as well as all images referenced by CarPool.gaml. By contract,
these images have to be provided in the resources folder next to the original source
file.

Figure 8.9: Example of code generation within GaML editor

126

8.2 Implementation

8.2.2 GAMIFICATION RUNTIME ENVIRONMENT

The gamification platform runtime as conceptualized in Chapter 7 has been imple-
mented as web application for the SAP HANA Cloud platform or other JavaEE web-
containers such as Tomcat. The SAP HANA Cloud platform offers hosting and man-
agement of standard Java web applications, however, does not fully comply with the
official JavaEE standard as some features such as Enterprise Java Beans (EJB) or Java
Messaging Service (JMS) functionality are missing by default.

In general, the entire system consists of five components delivered as WAR-files
(Web Archive), namely an AchievementProvider reflecting the BEP of Chapter 7, a
RuleEngine reflecting the EPA of Chapter 7, a central Gateway component for access-
ing the AchievementProvider and the RuleEngine, an AdminUI that allows domain and
gamification experts to design, model, and maintain the gamification concept, and a
GamificationWidget component which can be used to for integrating visual gamifica-
tion elements into the front-end of the host application (Figure 8.10).

<<component>>
Gamification Server

<<component>>
Gateway

<<component>>
AchievementProvider

<<component>>
RuleEngine

<<component>>
AdminUI

<<component>>
Host Application

<<component>>
Gamification Widgets

<<component>>
Core Application

Figure 8.10: Components of gamification runtime environment

The internal structure of these five components as well as the overall implemented
architecture is shown in the following text.

8.2.2.1 COMPONENT: ACHIEVEMENT PROVIDER

Figure 8.11 shows the internal structure and external interfaces of the Achievement-
Provider component. In conjunction with the conceptualized architecture of Chapter 7,
this component offers a Query- and UpdateAPI4 which allow to query and update the
state of the domain entities. Additional APIs provide management and retrieval func-
tionalities for other aspects of these entities. For example, the AnalyticsAPI enables
specific analytical queries, e.g., to determine engagement criteria such as the num-
ber of registered users or user actions grouped by teams, player, or timestamp. The
AdminAPI can be used to manage data and meta-data that only IT experts and the ad-
ministrators of the solution are allowed to change, for example, creating master data for
domain entities such as badges or points. Finally, the UserConfigAPI is used to change
user-specific settings such as the avatar names, privacy settings, or badge showcases.
All described API components inherit from an abstract API component which defines
common functionality. In particular, the Abstract API requires the JPAManager which
abstracts specific database operations. The JPAManager itself requires the data model
(i.e., collection of domain entities) and a JDBCInterface. The latter is also required as
an external interface and is resolved and bound at runtime using the web-container’s
Java Naming Directory Interface (JNDI) mechanism.

4Excerpts for all APIs are given in Appendix B.

127

8 Evaluation

<<component>>
AchievementAPI

<<component>>
Webservice
Marshaller

<<component>>
JPAManager

<<component>>
UpdateAPI

<<component>>
QueryAPI

<<component>>
UserConfigAPI

<<component>>
AdminAPI

<<component>>
PictureService

<<component>>
PictureServlet

<<component>>
AbstractAPI

<<component>>
JsonRPC

<<component>>
EventHandler

<<component>>
AnalyticsAPI

<<component>>
Domain Entities

Webservice

IUpdateAPIIQueryAPI

IJPA

IUserConfigAPI IAdminAPI IPictureService

WebserviceJMSProvider

IAnalyticsAPI

JDBCInterface

Figure 8.11: Component diagram of AchievementProvider

All APIs are exposed over a generic web-interface. In between, a generic marshalling
component handles incoming Hypertext Transfer Protocol (HTTP) requests via POST or
GET, dispatches the request to the respective API and serializes the result in a client-
readable format, e.g., JSON. In the AchievementProvider only one concrete implemen-
tation of this generic marshalling component exists, namely, a JsonRPC marshaller that
takes RPCs calls in JSON representation and reflectively calls the corresponding inter-
faces.

For example, the JSON GET request for player data shown in Listing 8.1 on the left
side calls the corresponding method implementation of the IQueryAPI shown on the
right side.

1 {’method’:’getPlayer’,’id’:1
23,params:[’some.
player@domain.com’]}

1 public Player getPlayer(
String uid);

Listing 8.1: Mapping of JSON-RPC call to corresponding Java interface method

A prior binding procedure wires the marshaller and the API implementations in the
deployment phase. It is important to mention that in a productive environment, multi-
ple web-interfaces may exist which are bound differently to the APIs to allow control
for different user roles. For example, normal users are allowed to call a public web-
interface that binds the IQueryAPI and IUserConfigAPI only, i.e., all other APIs cannot
be requested. In contrast, there is admin web-interface in place that utilizes all APIs
but is specially secured for administrative purposes.

In addition to the web-interfaces, the IAdminAPI and IUpdateAPI can be utilized also
via JMS which can be used to exchange messages asynchronously as shown later.

128

8.2 Implementation

8.2.2.2 COMPONENT: RULEENGINE

The RuleEngine component is responsible for the management and execution of com-
plex event processing and business rules based on the gamification domain entities.
Figure 8.12 shows the component’s internal structure which represents the implemen-
tation of the EPA conceptualized in Chapter 7.

Core component is the complex event processor and business rule engine which im-
plements efficient event processing based on RETE and CEP. For this purpose, Drools
Experts and Drools Fusion [70] have been reused and wrapped behind the IRuleEngine
interface. Incoming events are processed and delegated by the EventManager which
implements the proposed event life-cycle as introduced in Chapter 7 such as point-in-
time semantics or eager player checking.

<<component>>
RuleEngine

<<component>>
Webservice Marshaller

<<component>>
JsonRPC

<<component>>
CEP

<<component>>
RuleService

<<component>>
EventManager

<<component>>
JPAManager

<<component>>
AbstractAPI

<<component>>
JavaSDK

<<component>>
EventHandler

<<component>>
Domain Entities

IRuleEngine

IRuleService

IRuleService

IJPA

IEventManager

IQueryAPI

IUpdateAPI

IAdminAPI

RuleEngine

AchievementProvider

<<JNDI>> JDBCInterface

Webservice RuleEngine

JMSProvider

Figure 8.12: Component diagram of RuleEngine

Based on the incoming events the RuleEngine uses the JavaSDK component to
retrieve state from the domain entities utilizing the interfaces defined by the Achieve-
mentProvider. Depending on the component configuration, the JavaSDK either calls
synchronously to the AchievementProvider or provides status over its local in-memory
storage. Correspondingly, the JavaSDK updates status synchronously or asynchron-
ously with the AchievementProvider.

Prior to deployment of rules in the CEP component, the RuleService manages the
life-cycle of rules, i.e., creations, updates, and deployments. Again, this component
requires the AbstractAPI as common implementation for all APIs. The dependencies
to subsequent components equal the descriptions for the AchievementProvider.

The RuleEngine’s APIs, i.e., IRuleService and IEventManager, are exposed as web-
interfaces. Alternatively, the latter is also accessible over JMS to support asynchronous
messaging scenarios.

129

8 Evaluation

8.2.2.3 COMPONENT: GATEWAY

In general, the Gateway can be considered as a proxy for the AchievementProvider and
the RuleEngine as it encapsulates both components transparently for the client.

<<component>>
gateway

<<component>>
Webservice
Marshaller

<<component>>
SecurityPackage

<<component>>
JavaSDK

<<component>>
JAX-RS (REST)

<<component>>
JAX-WS (SOAP)

<<component>>
JsonRPC

IQueryAPI

IUserConfig

IUpdateAPI

IAdminAPI

IAnalyticsAPI

IRuleService

IEventManager

Webservice

SSO & User Management

AchievementProvider

RuleEngine

JMSProvider

Figure 8.13: Component diagram of Gateway

In its simplest form, this component exposes the interfaces of the already introduced
JavaSDK as web interfaces. Based on the configuration, the components are either
accessed directly using JsonRPC calls or indirectly over JMS.

In addition to this simple delegation mechanism, the APIs are exposed as JsonRPC,
plain RESTful service, or SOAP-webservice (Simple Object Access Protocol). Further-
more, all requests are checked with regards to standard security mechanisms such
as Single Sign-On (SSO), Cross-Site-Request-Forgery (XSRF), or Cross-Site-Scripting
(XSS). If configured, enhanced security mechanisms can be utilized such as user
anonymization. Some of these mechanisms (e.g., XSRF or anonymization) are imple-
mented by the SecurityPackage component, while others (e.g., SSO or user manage-
ment) are consumed via JNDI services.

Finally, this component might be also used as load balancer or monitor for high-
availability scenarios. In the first case, requests can be dispatched to different Achieve-
mentProviders or RuleEngines when utilization of resources becomes too high. In the
latter case, the gateway may mask failures of the downstream components. A precise
definition of these additional features is not explained further. Instead, Chapter 9 gives
an outlook on additional engineering aspects which are not covered in this evaluation.

8.2.2.4 COMPONENT: ADMINUI

To manage and maintain the content within the gamification platform, there is an ad-
ministration UI in place which is presented exemplarily in Figure 8.14. This user inter-

130

8.2 Implementation

face comprises several management views to control the runtime system, especially
it provides a graphical interface to all APIs of the back-end components. Regulated by
the security services, only administrators can access this panel.

Figure 8.14: Examples for the administration user interface

Figure 8.14 shows on top the overview page that presents the cardinalities of current
game mechanics at a glance. In the lower picture, the rule editor for writing and editing
rules is shown as example5.

8.2.2.5 COMPONENT: GAMIFICATION WIDGETS

Beside the AdminUI, there are several independent gamification front-end widgets
available that support the integration of visual gamification aspects into the host app-
lication. Therefore, this component consists of platform-dependent artifacts, e.g., for
web or mobile applications where the gamification platform is later integrated. These
widgets have several advantages for developers of the target application. First, they
allow for rapid introduction of gamification into the target application as they hide the
complexity of communication with the back-end and reduce the amount of code that

5Supplementary pictures can be found in Appendix D.

131

8 Evaluation

has to be implemented repeatedly in every application. Second, updates to the widgets
can be introduced on the fly without touching the host application. For example, the
look and feel of widgets can be configured on the server side or new widget features
can be delivered without the necessity of application recompilation and redistribution.
Third, in some embodiments such as web applications, developers do not need to care
for security mechanisms such as Same-Origin-Policy (SOP) and its implications. For ex-
ample, in the case of SOP, a developer who writes his own widgets has to either place
the widgets on the gamification server6 or has to reimplement the system’s provided
web interfaces within the host application delegating all calls to the actual gamification
runtime environment in the background.

Each widget is equipped with a small API that also allows for client-specific config-
urations. Some of these settings can be either defined on the client or server side. If
one particular option is set on both sides, then the server-specified configuration is the
dominating one.

The following text describes some of the available widgets and their use. Notifi-
cations can be, for example, integrated on web-sites using pre-implemented scripts.
Listing 8.2 shows how the host application may consume the notification script from
the running platform instance. The client then receives notifications accordingly with no
additional effort as shown in Figure 8.15. Additionally, this script allows for client-side
configuration such as setting the user’s name (i.e., for whom notifications are retrieved),
the style (i.e., how the widget looks graphically), or if notifications for entities should
be displayed or not.

1 <script src="https://domain.com/gamification/sap_gp_notifications.js" id="
SGPNotificationScript">

2 SGPNotifications.setUserName("some.player@domain.com");
3 SGPNotifications.addStyleClasses(["customStyle"]);
4 SGPNotifications.showPoints(true);
5 </script>

Listing 8.2: Programmatic integration of notification widgets

Figure 8.15: Example instance of notifica-
tion widget

Figure 8.16: Example instance of mis-
sion widget

As another example, Figure 8.16 shows the usage of a mission widget which re-
quires the user to accept, reject, or temporarily ignore an offered goal. The mission
widget hides all communication that is necessary with the back-end such as checking
for new missions and sending accept or reject events. Listing 8.3 shows the integra-
tion code. The widget script is dynamically retrieved from the corresponding back-end.

6This is considered as not practicable when the gamification platform is consumed as an external man-
aged service.

132

8.2 Implementation

Figure 8.17: Assemble of different gamification widgets

The developer may configure the widget, e.g., by setting the user name, root mission
of the corresponding storyline, and the ID of the container where the widget should be
bound to.

1 <script src="https://domain.com/gamification/sap_gp_missions.js">
2 var config = {
3 username : <userid>,
4 rootMission : <missionID>,
5 showIn : <divID>,
6 colorPrimary : #550000
7 colorSecondary : #FFFFFF
8 }
9 SGPMissions.init(config);

10 </script>

Listing 8.3: Programmatic integration of mission widget

Figure 8.17 shows additional submodules such as profile widgets containing the
avatar, a mission widget showing the user’s current progress, or a badge showcase. All
of these widgets can be consumed in a similar fashion as presented for the notification
and the user-accepted mission widget.

Besides widgets for the web-sites, this component consists of further modules for
other target platforms. For example, Figure 8.18 shows the integration of widgets on
the iOS platform integrated into the Financial Fact Sheet application (Section 8.1.3).

The integration effort is comparable to web applications. First, the mobile framework
has to be configured and initialized as shown in Listing 8.4.

1 [[GamificationDataCenter defaultCenter] initPlatformWithURL:@"<<https://
targetgamificationplatform.com>>" useSSO:YES];

Listing 8.4: Initialization of mobile gamification widgets

Then, a profile or mission view might be allocated and added to one of the existing
views of the host application as shown in Figure 8.5 and 8.6.

1 PrivateProfile *playersProfile = [[PrivateProfile alloc] initWithFrame:self.
view.bounds];

133

8 Evaluation

Figure 8.18: Integrated gamification widgets within mobile application

2 [self.scrollView addSubview:mView];

Listing 8.5: Addition of gamification profile to host application

1 MissionView *mView = [[MissionView alloc] initWithFrame:frame mission:_gData.
usersProfile.missionList[i]];

2 [self.scrollView addSubview:mView];

Listing 8.6: Addition of mission view to host application

Again, these widgets can be configured for different behaviors and styles either on
the client or server side to allow adaptations at runtime. Further examples and a more
detailed discussion on the requirements, design, specification, and technical realization
of these widgets can be found in [134, 174].

8.2.2.6 SYNCHRONOUS DEPLOYMENT MODE

So far, the individual components with their internal structure and externally provided
and required interfaces have been shown. The assembly of these individual compo-
nents reflecting the overall implemented infrastructure for the synchronous mode is
presented in Figure 8.19.

For the sake of a clear presentation, Figure 8.19 presents all server side compo-
nents on the same logical web server, i.e., the Gateway, AchievementProvider, and
RuleEngine all reside on the same node7. Internally the Gateway communicates over
the web interfaces of the AchievementProvider as well as the RuleEngine (i.e., via loop-
back IP address). Also the required interface of the RuleEngine is wired internally to
the provided web interface of the AchievementProvider.

7Since all components can communicate over RPC, they might be of course distributed across multiple
physical nodes in practical embodiments.

134

8.2 Implementation

<<component>>
Gamification Server

<<component>>
Gateway

<<component>>
AchievementProvider

<<component>>
RuleEngine

<<component>>
Database

<<component>>
SecurityServices

<<component>>
AdminUI

<<component>>
Host Application

<<component>>
Gamification Widgets

<<component>>
Core Application

Webservice

<<JNDI>> ISecurity

Webservice

Webservice

Webservice

<<JNDI>> JDBCInterface

Figure 8.19: Component diagram of gamification platform in synchronous mode

In the deployment phase of the web bundles, both components are also dynamically
bound to Java Database Connectivity (JDBC) interfaces provided by the infrastructure’s
runtime environment. Hence, both components may communicate with a common
database using the JPAManager component. The same applies to the SecuritySer-
vices which are bound dynamically at deployment, e.g., the gamification platform is
registered as service provider at the identity provider to allow for SSO.

The AdminUI is an external component that utilizes the Gateway’s APIs to access the
back-end. In a practical scenario, the AdminUI is static web content which is delivered
to the client and resides there as an instance (e.g., in the client’s browser). Therefore,
Figure 8.19 shows an instance of the AdminUI component residing on the client side.

Finally, the gamified host application communicates with the gamification platform
over the web interfaces either directly using the web interfaces of the Gateway or
indirectly using the provided Gamification Widgets. In this thesis not all possible inte-
gration scenarios are considered. Nonetheless, the typical and proposed scenario is
that the back-end of the host application is instrumented to send relevant user actions
and other events to the gamification platform. On the front-end side, widgets from the
Gamification Widgets component might be reused to enable the visual aspects and
appearance of gamification elements.

8.2.2.7 ASYNCHRONOUS DEPLOYMENT MODE

Figure 8.20 shows the component orchestration when the platform is configured in
asynchronous mode. For the sake of simplicity, the same deployment structure as in
the synchronous mode is used.

In contrast to the synchronous mode, three message channels separated by topic
(marked with the UML stereotype <<topic>>) are established over a message broker
(ActiveMQ) running in publish/subscribe mode. As UML does not explicitly support
the notion of message queues, each provided-required pair annotated with <<topic>>
can be considered either as observer pattern, i.e., the receiver subscribes to a topic
of interest and subsequently receives all published messages for that topic or as an
endpoint for publishing messages, i.e., the sender publishes tuples for the topic. In the
first case (subscription), the corresponding arc is annotated with ”receive”, in the latter
case with ”publish”.

The three utilized topics are UserActions, Consequences, and Notifications. The
UserActions topic is used to publish all events from the host application. This topic

135

8 Evaluation

<<component>>
Gamification Server

<<component>>
Gateway

<<component>>
AchievementProvider

<<component>>
RuleEngine

<<component>>
Database

<<component>>
ActiveMQ

<<component>>
SecurityServices

<<component>>
AdminUI

<<component>>
Host Application

<<component>>
Gamification Widgets

<<component>>
Core Application

delegate

<<topic>> Consequences

Webservice

<<JNDI>> JDBCInterface

<<topic>> Consequences

<<topic>> Notifications

<<topic>> UserActions

<<topic> Notifications

<<JNDI>> ISecurity

Webservice

<<topic>> Notifications

<<topic>> UserActions

Webservice

publish receive

publish

receive

publishpublish

receive

Figure 8.20: Component diagram of gamification platform in asynchronous mode

has the RuleEngine as the only subscriber which receives all events issued by the host
application.

Over the Consequences topic all events created by the RuleEngine component are
published, i.e., when gamification relevant messages have to be sent. For this topic,
the AchievementProvider is the only subscriber, thus, receiving all updates from the
RuleEngine.

The message loop for the client is closed by the third Notifications topic. Here, the
RuleEngine and the AchievementProvider are publishing messages. The subscribers
for notifications are the host application or the Gamification Widgets embedded within.

Since only the IUpdateAPI and IAdminAPI are provided over the JMS channel, there
are still standard web interfaces available which might be utilized by the host application
to retrieve entity state when required.

This description concludes the implementation section for the runtime environment.
In the next section, it is described how this platform has been utilized to implement
and run various applications as introduced in Section 8.1.

8.3 INTEGRATION

In this section, the actual integration scenarios for two selected applications are shown.
First, this includes a representative excerpt from the GaML instance describing the ga-
mification concept. Second, the integrated architecture comprising the host application
and gamification runtime environment is presented.

8.3.1 SAP TWOGO

Listing 8.7 shows parts of the SAP TwoGo gamification concept described in Section
8.1.1.

In this concept two user actions, namely a rideIntent and ride, are defined. The first
declares a meeting request ID (mrid) property as well as its inverse action deleteRideIn-
tent that joins on the request ID. The latter, additionally, signifies through the carbon
and the kilometers which were saved in the ride, if the user who issued the event was
the driver, and an ID that uniquely identifies the number of the ride.

Furthermore, there is an internal event called socializerEvent which is used to repre-
sent all users who shared a ride with each other.

136

8.3 Integration

The concept features four different point categories, namely Socializer, Experience,
Kilometer, and Carbon points. Based on the Experience point category several levels
such as Rookie or TricycleRider are defined.

1 concept CARPOOL {
2

3 useraction rideIntent {
4 properties { mrid:Decimal }
5 inverseEvent { name = deleteRideIntent , joins on=mrid }
6 }
7

8 useraction ride {
9 properties { carbonImpact:Decimal, kilometers:Decimal, driver:Boolean,

rideId:Number }
10 }
11

12 internalevent socializerEvent { properties {pid:Text, friend:Text} }
13

14 point Socializer { name="Socializer Point", abbreviation="SP"
15

16 when player {
17 did evt1 : useraction ride
18 and another player did evt2 : useraction ride, rideId=evt1.rideId
19 and not did internalevent socializerEvent , pid=evt1.player, friend=evt2

.player
20 } then {
21 create event socializerEvent(pid=evt1.player, friend=evt2.player)
22 }
23

24 when player { did internalevent socializerEvent }
25 then { give 1 Socializer }
26 }
27

28 point XP {
29 name="Experience Point", abbreviation="XP", type=ADVANCING
30

31 when player { did useraction rideIntent , lastsFor 24h}
32 then { give 1 XP }
33

34 when player { did evt1:useraction ride, driver=false }
35 then { give 10+evt1.kilometers/10 XP }
36 }
37

38 level Rookie { name = "TwoGo Rookie", threshold = 5 XP }
39

40 level TricycleRider { name = "Rider of a Tricycle", threshold = 10 XP }
41

42 //...
43

44 point Carbon {
45 name="Carbon Point", abbreviation="CP"
46

47 when player {
48 did evt1:useraction ride
49 }
50 then {
51 give evt1.carbonImpact/10
52 }
53 }
54

55 point KilometerPoints {
56 name="KM Points", abbreviation="KMP"

137

8 Evaluation

57

58 when player { did evt1 : useraction ride } then { give evt1.kilometers *
1.6 KilometerPoints }

59 }
60

61 //...
62 }

Listing 8.7: GaML excerpt from the SAP TwoGo gamification concept

The Experience metric also defines two direct rules how points for this category
might be achieved. First, users may receive one XP when they are creating a ride
intent to signify their willingness to share a ride. This intent has to reside at least for 24
hours in the system, i.e., there is no inverse user action deleteRideIntent in between. If
so, the user receives one XP. Furthermore, for each actual ride users receive one-tenth
of their saved kilometers plus ten as Experience points.

Similarly, kilometer and carbon points are given when a ride has been done. In
particular one-tenth of the saved carbon is added as points as well as 1.6-times the
saved kilometers as kilometer points.

Finally, Socializer points are given when a socializer event occurs. However, this
event cannot be issued by users directly but is generated when the following situation
happens: if users are doing a ride together, all of them are sending their ride event
through the application to the gamification runtime system. The first condition in the
Socializer point definition says that if two different players did a ride with each other
and never had a ride before (i.e., there is already a socializer event available), then a
socializer event is created (Listing 8.7, line 16-22). In this case, the second rule applies
and gives the player the point (Listing 8.7, line 24f.).

This basic concept has been compiled into executable code deployed within the
gamification runtime system. In order to receive events and calculate the game me-
chanics, the runtime was integrated with the actual host application, i.e., the TwoGo
system. Figure 8.21 shows the integration architecture. Please note, that in the follow-
ing the gamification runtime environment is considered as one large component called
Gamification Platform with no further assumption on how the components described
in Section 8.2.2 are structured.

The TwoGo system itself schematically consists of a Microsoft Outlook plug-in that
manages incoming calendar meeting requests signifying ride intents, a Matcher that
matches users based on their intents, and a front-end for the user interaction. The host
application uses the JavaSDK component introduced in Section 8.2.2 to communicate
with the gamification platform in a transparent way. In particular, the Outlook plug-in,
and the Matcher are using the IEventManager interface to communicate ride intents
or rides respectively. Furthermore, the TwoGo front-end required gamification data
over the provided web interface using the provided IQueryAPI. This applies also to the
Matcher which may use current gamification data to influence the matching algorithm.

In this embodiment, the provided gamification widget component was not used.
Hence, the front-end implements its own graphical elements to represent the gamifi-
cation as shown previously in Figure 8.1.

8.3.2 SAP NETWORKING LUNCH

An excerpt of the gamification concept expressed in GaML for the Networking Lunch
application is given in Listing 8.8.

Altogether, there are seven explicit user actions and one internal event which are
used to track the corresponding scores. In fact, for each of the user actions, there is

138

8.3 Integration

<<component>>
SAP TwoGo

<<component>>
Matcher

<<component>>
OutlookPlugin

<<component>>
Gamification Platform

<<component>>
TwoGo Frontend

<<component>>
JavaSDK

<<component>>
AdminUI

<<component>>
Database

Webservice

IEventManager

Webservice

IQueryAPI

JDBCInterface

Figure 8.21: Integration architecture for SAP TwoGo application

one corresponding point category which is, usually, increased by one when the event
happens. For example, the addBuddy event increases Buddy points. Only the Accept-
edMeeting category is computed slightly differently as it is reset to zero if a decline-
Meeting user action occurs.

Similar to the TwoGo case, combinations of two users from different cost centers
who attended a meeting in real-life are joined together signified through an internal
meeting event.

1 concept NetworkingLunch {
2 useraction attendMeeting {
3 properties { costCenter:Number, _type:Text }
4 }
5

6 internalevent meeting {
7 properties { pid1:Text, pid2:Text, costCenter1:Number, costCenter2:Number

}
8 }
9

10 useraction addBuddy
11 useraction addTag
12 useraction addNote
13 useraction addedAvailability
14 useraction acceptedMeeting
15 useraction declineMeeting
16

17 point MeetingPoints {
18 name="Meeting Points",
19 abbreviation = "MP"
20

21 when player {

139

8 Evaluation

22 did evt1 : useraction attendMeeting
23 and another player did evt2 : useraction attendMeeting , costCenter <>

evt1.costCenter
24 and not did internalevent meeting, pid1=evt1.player, pid2=evt2.player
25 } then {
26 create event meeting(pid1=evt1.player, pid2=evt2.player, costCenter1=

evt1.costCenter , costCenter2=evt2.costCenter)
27 }
28

29 when player {did internalevent meeting }
30 then { give 1 }
31 }
32

33 point AcceptedMeetings {
34 name = "AcceptedMeetings"
35

36 when player {did useraction acceptedMeeting}
37 then { give 1}
38

39 when player {did useraction declineMeeting}
40 then { set 0 }
41 }
42

43 point Attended1_1Lunch {
44 name="Attended1:1Lunch"
45

46 when player { did useraction attendMeeting , _type="1:1" }
47 then { give 1 }
48 }
49

50 point Buddies {
51 name = "Buddies"
52 when player { did useraction addBuddy } then {give 1 }
53 }
54

55 point Tags {
56 name = "Tags"
57 when player {did useraction addTag } then { give 1 }
58 }
59

60 //...
61

62 badge ReadyToNetwork {name="ReadyToNetwork", image="readytonetwork.png"}
63 badge OnTime {name = "OnTime", image="ontime.png"}
64 //...
65 badge FullHouse {name = "FullHouse", image="fullhouse.png", hidden}
66

67 mission startmission1 {
68 name="Get Ready to Network",
69 description="Get Ready to Network",
70 initiatedBy=rule
71

72 when player {
73 has point Availabilities , SUM >= 1
74 and has point Tags, SUM >=1
75 } then {
76 give badge ReadyToNetwork
77 }
78 }
79

80 mission startmission2 {
81 name = "On my Calendar",

140

8.3 Integration

82 description = "On My Calendar",
83 initiatedBy=rule
84

85 when player {
86 has point AcceptedMeetings , SUM=1
87 } then {
88 give badge OnTime
89 }
90 }
91

92 mission startmission3 {
93 name = "I’ve Got Buddies",
94 description = "I’ve Got Buddies",
95 initiatedBy=user
96

97 when player { has point Buddies, SUM=1 }
98 then { give badge Buddy }
99 }

100

101 mission PeoplePerson {
102 name = "People, Persons, etc.",
103 description = "Accept 25 meetings in a row",
104 available when player {
105 (has mission startmission1
106 and has mission startmission2 completed)
107 or has mission startmission3 completed
108 }
109

110 when player {
111 has point AcceptedMeetings , SUM=25
112 } then {
113 give badge FullHouse
114 }
115 }
116

117 mission CircleOfFriends {
118 name = "Circle of Friends",
119 description = "Circle of Friends"
120

121 //...
122 }
123 }

Listing 8.8: GaML excerpt from SAP Networking Lunch gamification concept

Based on the point categories, there are several missions modeled whereas the
missions startmission1, startmission2, and startmission3 are defined as entry missions
as they do not define an availability clause. In addition, these missions are declared
to be rule-driven, i.e., they are assigned automatically to each user that enters the
system. To fulfill, for example, the mission startmission1, users have to create at least
one availability time slot and one tag expressing their preferred conversation topic in
the host application. Afterwards, the ReadyToNetwork badge is given. Further, the
mission PeoplePerson comprises a pre-condition which requires either the second or
the third mission to be completed. If this pre-condition is met, the mission is assigned
to the user. For the sake of brevity, only exemplary rules are shown, i.e., this case
defines further 25 missions in a similar way.

The remaining missions, typically, check if one of the point categories exceeds a
particular threshold, gives one or more badges, and assigns the next missions. For ex-
ample, the PeoplePerson mission checks if the user has accepted 25 meetings in a row

141

8 Evaluation

and gives the FullHouse badge. Furthermore, the completion leads to the fulfillment of
the Accept25Meetings mission’s pre-condition etc.

<<component>>
SAP Networking Lunch

<<component>>
Gamification Platform

<<component>>
Frontend

<<component>>
Gamification Widgets

<<component>>
Matcher

<<component>>
JavaSDK

<<component>>
CoreApplication

<<component>>
AdminUI

<<component>>
Database

<<component>>
Database

Webservice

IEventManager

JDBCInterface JDBCInterface

Figure 8.22: Integration architecture for SAP Networking Lunch application

From a technical perspective, Figure 8.22 shows the integration of the gamification
into the host application. Very similar to the TwoGo case, there are a front-end, a core
application, and a matcher. In contract, the back-end uses the JavaSDK component only
to issue events against the gamification platform’s IEventManager interface. State,
on the other hand, is retrieved by the gamification widgets which have been weaved
directly into the front-end of the Networking Lunch application. As described before,
these widgets use the web-interface (primarily the IQueryAPI interface) to render the
gamification state of the player.

8.4 PERFORMANCE ANALYSIS

In this section, the overall runtime behavior and performance of the proposed gamifi-
cation environment is investigated in two steps.

First, the Networking Lunch application (Section 8.1.2) is used as an example to in-
vestigate the overall performance and compare the different deployment options with
each other. Furthermore, the measurements are compared against a pure CEP im-
plementation which has very high performance but lacks persistent state data. This
measurement is used as performance baseline to compare all other proposed solu-
tions against it.

Second, the statements of the performance behavior are generalized by investigating
the impact of individual factors towards performance. These factors are then combined
into a general performance model for the deployment modes. It is shown that this
model enables the forecasting of average response times and throughputs with an
acceptable estimation error.

142

8.4 Performance Analysis

8.4.1 EVALUATION SETUP

For the first part of the performance evaluation, the Networking Lunch application is
utilized as it includes a representative set of rules, i.e., it contains rules that heavily
require or update state upon rule processing. Overall the evaluation is based on 46
complex event processing and production rules. Given the types of rules from Section
7.3, Table 8.1 shows the quantities per rule type, i.e., the rule set contains 30 rules that
require context in each evaluation cycle within its LHS and updating the context in the
RHS. Further 15 rules take events in the LHS and update context on the RHS.

Table 8.1: Quantities of rule types in the SAP Networking Lunch application

PPPPPPPPPRHS

LHS
(a)-(d) (e)-(f)

(g) 1 0

(h)-(i) 15 30

The experiments are performed for 2n experimental users with n = 3, ..., 12. Each
user creates on average 0.67 events/second which is extrapolated based on the current
usage statistics of the application, whereby user behavior was extrapolated by replac-
ing day with seconds at constant event probabilities to test in fast motion and to avoid
the overhead of too many simulation threads. Overall, one simulated user corresponds
to

0.67 Events
s

0.67 Events
1 day

=
0.67 Events ∗ 86400 s

0.67 Events ∗ s
= 86400 Users. (8.1)

Given the assumption that the user behavior can be linearly extrapolated, the sys-
tem’s behavior for 2n experimental users corresponds to the behavior 2n

∗86400 Users,
i.e., 6.91 ∗ 105, 1.38 ∗ 106, ..., 3.54 ∗ 108 “real users”.

Eight different event types or user actions (e.g., addBuddy, acceptMeeting, or addTag
(Section 8.3.2)) are created for all possible actions users can perform in the application.
For the experiment, each event type is triggered with a certain probability defined by
the application scenario. These probabilities are fixed for each user, and thus, in an
observation time of 5 minutes, the average number of events in total is

2n Users ∗ 0.67
Events
User ∗ s

∗ 300s = 201 ∗ 2n Events. (8.2)

In order to take measurements, the codebase has been instrumented with mea-
surement points on which loggers passively write the currently processed data tuple
including timestamps. Timestamps are recorded with System.nanoTime() which pro-
vides a higher resolution (< 10µs) than System.currentTimeMillis() (15ms) [97].

Figure 8.23 shows the locations of measurement points for the synchronous deploy-
ment model. The presented queuing network model consists of the core components
which are involved in the overall processing shown as nodes. Two queues are involved
at the CEP and BEP nodes representing the request queues of the server. These
queues schedule incoming request with the first-come, first-served (FCFS) strategy.

143

8 Evaluation

CEP BEP

query/
update

query result

BEP_c3

CEP_c1

CEP_c2

BEP_c2

BEP_c1

JavaSDK

PRO_c1
PRO_c2

Figure 8.23: Measurement points for synchronous model (based on [40])

At each component (node) the entry time tin and exit time tout of the processed tu-
ple are measured. All measured entry and exit times are stored in the sets Tin, j =
{tin,1, j, tin,2, j, ..., tin,k j, j} and Tout, j = {tout,1, j, tout,2, j, ..., tout,k j, j} respectively with j represent-
ing the j-th iteration starting at the entry point of the CEP node and ending at the exit
point of the BEP node. In each iteration, a tuple may pass the CEP node multiple times
based on the deployed rules. Hence, each iteration has its own number of passed ser-
vices expressed through k j. The processing or service time at the i-th node in the j-th
iteration is tp,i, j = tout,i, j − tin,i, j with i = 1, ..., k j. Hence, the total service time tst for one
tuple is

tst, j =

k j∑
i=1

tp,i, j (8.3)

excluding waiting times in queues. Consequently, the overall processing time ta for
one iteration is ta, j = max(Tout, j) − min(Tin, j), i.e., including service and queuing times.
For the following text, the time ta, j is considered as the general response time8. In
the following experiments, the discrete distribution of ta over all iterations and all user
requests for the selected Networking Lunch application is measured. Based on this
distribution, standard scores such as average or percentiles are presented.

It is important to note that subsequent rules might be triggered upon state update in
the BEP. Since ta considers only the unidirectional passing of nodes including loops at
the CEP node, the overall processing time ttotal, i.e., the time until the entire system is
in a consistent state after the arrival of one event, is:

ttotal = max(Tout,l) −min(Tin,1) (8.4)

with l being the number of iterations.
Correspondingly, Figure 8.24 shows the measurement model for the asynchronous

mode. Additional measurement points were introduced at the message broker, local
BEP, and JavaSDK that holds the state context.

As the underlying technology platform is based on the Java programming language,
reliable performance results are difficult to achieve as many different factors influence
its accuracy. Even very simple Java classes (e.g., 32-bit linear feedback shift register)
lead to deviations in performance results [33]. Factors for unreliable measurements
include cache misses, multi-threading and the synchronization of threads, or memory

8Please note that the general response time ta, j does not include delay times in the CEP node caused by
time windows or temporal rules as intended or imposed by the gamification design. For example, an
intended time delay might be caused when joining two confirm actions of two different users. Since
the second event may arrive with a time delay, the response for the first event cannot be computed
immediately but upon arrival of the second event only. Since the selected application scenario does not
contain such constraints, those delay times are avoided and not considered for the sake of simplicity.

144

8.4 Performance Analysis

CEP Local BEP

BEP

ActiveMQ

ActiveMQ

query result

update

query/
update

CEP_c1

CEP_c2

BEP_c3

BEP_c2

BEP_c1

MB1_c1

MB1_c2

MB2_c1
MB2_c2

CEP_c3

CEP_c4

CEP_c5

JavaSDK

PRO_c1
PRO_c2

Figure 8.24: Measurement points for asynchronous model (based on [40])

management functionalities such as garbage collection or object finalization in the Java-
Virtual Machine (VM) [33, 34]. Furthermore, the operating system may foster context-
switches of the Java-VM process among processes or processing units when multiple
physical processors are present. In addition, the Java-VM uses various techniques to
optimize the code at runtime such as Just-in-time (JIT) compilation or lazy class loading.
In the first case, Java programs run system independently using bytecode. This byte-
code is interpreted at first. Meanwhile, the Java-VM collects statistics, e.g., number of
method invocations and branches. Based on these statistics, JIT compilation is used to
determine and compile parts of the bytecode into optimized machine code for the un-
derlying system after a particular threshold of execution steps for the considered code
part is exceeded. This results in faster running code. Since this process is completely
transparent to the developer, consequently, there is no guarantee when optimization of
the code is finished. In order to get reliable performance measurements, this so-called
warm-up phase has to be excluded from the collected data.

Considering these specifics, the experiments were run under the following condi-
tions. First, all components (one web server with all web applications deployed) run
within the same single VM process and load was produced from a separate Java-VM
process. Second, the operating system was configured to run each Java-VM on a sepa-
rate physical processing core (with hyper-threading disabled) and all other non Java-VM
processes were scheduled on the remaining physical cores using CPU affinity flags.
Third, memory-specific settings such as heap size (-Xmx,-Xms) and the size of perma-
nent generations (-XX:MaxPermSize) were set to the maximum hardware resource of
the machine in order to avoid unnecessary garbage collection cycles by the Java-VM.
Fourth, after each experiment, the Java-VM was forced multiple times to do garbage
collection and object finalization, since the respective functions are only a hint for the
Java-VM and, thus, do not provide guarantee that all stale objects have been removed
from the heap.

The specification of the underlying hardware is a machine with 32GB RAM, 16-cores
Intel Xeon L5640 processors, and Windows Server operating system.

8.4.2 EXPERIMENTAL RESULTS

Besides the synchronous and asynchronous strategies from Section 7.3, the following
text refers to two additional strategies that are included for comparison reasons.

First, a plain CEP implementation is used as a baseline measurement. Based on
prior research it is assumed that this implementation has the highest performance

145

8 Evaluation

with regards to processing of events and facts in the main memory. Therefore, in this
variant, there is no explicit AchievementProvider that persists state but all events and
facts are kept in the rule engine’s volatile working memory as dictated by the general
approach.

Second, for the evaluation an additional strategy as mix of the described synchronous
and asynchronous approaches is included. Here, the implementation and the data of
the query interface resides locally at the EPA, hence, allows for fast local state re-
trieval. Updates, on the other hand, are synchronized with the local state repository
and synchronously updated with the remote BEP. Hence, this strategy behaves ba-
sically like the asynchronous approach except that updates to the BEP are replicated
synchronously. Although this case would occur rarely in practice, it is included for the-
oretical consideration since it combines the proposed synchronous and asynchronous
strategies.

Figures 8.25a and 8.26 present the average and maximum response times for all four
approaches.

In the average case, the asynchronous strategy excels the synchronous strategies
significantly up to seven orders of magnitude (1024 users). It is important to note that
beyond 1024 experimental users, the synchronous case is not only significantly slower,
but due to limited queues, the server starts to reject requests after a particular timeout
which results in errors and makes results incomparable. Therefore, synchronous data is
only presented up to 1024 users. For the asynchronous case, event rates beyond 4096
users reached the capacities of the simulation environment. Before this point, i.e., until
2048 experimental users, the proposed asynchronous approach is only slightly slower
compared to the plain CEP baseline measurement (i.e., 0.98ms-4.31ms).

Response Time Average

Number of Users

t i
n

m
s

●

●

●

●

●

●

●

●

8 16 32 64 128 256 512 1024 2048 4096

1e
+

01
1e

+
03

1e
+

05
1e

+
07

● Sync
Sync Local
Async
CEP Only

Figure 8.25: Experimental average response times (in ms)

In the maximum case, the difference between the synchronous and asynchronous
approach is smaller (four orders of magnitude for 1024 users). However, analyzing the
underlying response time distributions yields that large response times are much more
likely in the synchronous case, i.e., 95% of all responses are slower than 106 ms. The

146

8.4 Performance Analysis

distribution of the asynchronous case shows that only 1% of the responses are slower
than 105 ms but 98% are faster than 100 ms.

(b) Response Time Max

Number of Users

t i
n

m
s

●

●

●

●

●

●

●

●

8 16 32 64 128 256 512 1024 2048 4096

1e
+

04
1e

+
05

1e
+

06
1e

+
07

1e
+

08 ● Sync
Sync Local
Async
CEP Only

Figure 8.26: Experimental maximum response times (in ms)

For example, Figure 8.27 shows the response time distributions at 1024 experimen-
tal users for the synchronous (a) and the asynchronous (b) case respectively. While
the synchronous approach has to deal frequently with high response times, the asyn-
chronous case only shows such high response times in rare cases.

(a) 1024 Users

Response Time in ms

F
re

qu
en

cy

0.0e+00 1.0e+08 2.0e+08

0
10

00
00

20
00

00
30

00
00

(b) 1024 Users

Response Time in ms

F
re

qu
en

cy

0e+00 2e+04 4e+04

0
10

00
00

20
00

00
30

00
00

Figure 8.27: Comparison of response time distributions between synchronous and
asynchronous case at 1024 experimental users

Furthermore, two phases can be distinguished in the average case. First, the phase
in which the systems runs normally. In this phase, the data distribution is highly right-
skewed as shown in Figure 8.28a. Second, the phase where the system runs under
high load. This phase is characterized through an increasing frequency of high response
times (e.g., Fig. 8.28b - 8.28d). For example, in the synchronous case, the first phase
persists until 16 users. The second phase starts at 32 users and ends at 1024 users,

147

8 Evaluation

i.e., when tuples are rejected from the waiting queues. It is important to note that
Figure 8.28d corresponds to Figure 8.27 but with a different scaling on the y-axis.

In the asynchronous case, the first phase persists until 2048 users, i.e., two orders
of magnitude later with regards to the amount of events (Eq. 8.2).

(a) 8 Users

Response Time in ms

F
re

qu
en

cy

0 5000 10000 15000 20000 25000

0
50

0
10

00
15

00

(b) 32 Users

Response Time in ms
F

re
qu

en
cy

0.0e+00 1.0e+06 2.0e+06 3.0e+06

0
10

00
20

00
30

00
40

00

(c) 256 Users

Response Time in ms

F
re

qu
en

cy

0e+00 1e+07 2e+07 3e+07 4e+07

0e
+

00
4e

+
03

8e
+

03

(d) 1024 Users

Response Time in ms

F
re

qu
en

cy

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0
50

00
15

00
0

25
00

0
35

00
0

Figure 8.28: Evolution of response times for synchronous communication

This statement is further supported by Figure 8.29, where a response time threshold
of 500ms is considered. Already for 8 users, 8% of all events are too late in the
synchronous case. For 256 users, already 95% of the events are above the threshold.
In contrast, events are delayed in the asynchronous case starting at 512 experimental
users (3%).

Nevertheless, the speed-up in the asynchronous case comes at the cost of grow-
ing memory in the EPA. The resulting space-time trade-off is presented in Figure 8.30
where the speed-up is compared to the inverse memory consumption of the asyn-
chronous approach. As presented, the intersection can be found around 32 experimen-
tal users, i.e., for small workloads the synchronous case might be preferred. Larger
workloads may be deployed in an asynchronous setting. This trade-off, however, does
not take into account the individual costs for performance or memory. For example,
at the presented trade-off point already 60% of events are highly delayed in the syn-
chronous case which might not be acceptable either. Thus, a cost-benefit trade-off
might look different. Overall, the compromise of memory and response time is not
generalizable but depends on the workload, rules, and deployment model of the exper-
imental setup described above. Because of these limitations, Section 8.4.4 develops

148

8.4 Performance Analysis

Slow Reponse Times (> 500ms)

Number of Users

S
lo

w
 R

es
po

ns
es

 in
 %

●

●

●

●

●

●

● ●

8 16 32 64 128 256 512 1024 2048 4096

0
20

40
60

80
10

0
● Sync

Sync Local
Async
CEP Only

Figure 8.29: Slow response times compared to a fixed 500ms threshold

1e
+

01
1e

+
03

1e
+

05
1e

+
07

Space−Time Trade−off

Number of Users

R
es

po
ns

e
tim

e
in

 m
s

●

●

●

●

●

●

●

●

5e
−

05
5e

−
04

5e
−

03
5e

−
02

In
ve

rs
e

M
em

or
y

C
on

su
m

pt
io

n
in

 1
/M

iB

8 16 32 64 128 256 512 1024

●

Median Response Time Sync−Async
Inverse Memory Consumption

Figure 8.30: Space-time trade-off of response-time versus inverse memory consump-
tion in the event processing agent

a generic performance model that can be used to forecast the runtime behavior of the
gamification system for arbitrary gamified application scenarios.

149

8 Evaluation

8.4.3 DISCUSSION

As shown above, the plain synchronous system is up to seven orders of magnitude
slower and runs already under overload at 32 experimental users. Moreover, data tu-
ples are discarded under overload conditions leading even to wrong results in the BEP.
Holding the context local in the EPA with synchronous communication shifts the over-
load phase to 512 experimental users. Therefore, the synchronous communication may
not acceptable in cases where the system has to process high rates of events.

The asynchronous case with local BEP is able to compete with the baseline CEP
measurement in the median or average case. The overload phase occurs at 4069 users.
The same holds for the pure CEP implementation. Hence, it is argued that the hybrid
concept of Section 7.3 with asynchronous communication serves all the requirements
of Section 4.3 including high performance in the asynchronous mode.

8.4.4 GENERIC PERFORMANCE MODEL

So far, the performance results provide a strong indicator for the runtime behavior of the
overall system. However, the results are not generalizable as they can be interpreted
only in the context of the considered application, namely the Networking Lunch appli-
cation. The main reason for this specificity is that the previous consideration is a naïve
regression of the number of users on the average response time ta in a given applica-
tion, i.e., omitting the parameters and resulting behaviors of the individual components
within the presented performance models (Figures 8.23 and 8.24). For instance, the
performance behavior of the CEP node in Figure 8.23 depends on the number and
characteristics of the deployed production and event processing rules. Based on these
parameters, the node’s response time may increase or decrease or the number of out-
put tuples changes which affects the behavior of subsequent nodes. The modeling of
these aspects is described in the following text.

As part of this thesis, [40] investigated the different performance behaviors tp for
each node of the performance models individually and provides a more general model
for the runtime environment to model and forecast the average response time ta. In
fact, queuing networks are used to simulate and forecast ta based on the statistical
dependencies between single services with well-known performance behavior using
response time functions of tp. The resulting model might be used then by practition-
ers to forecast the performance behavior of the system and to decide for the correct
deployment and infrastructure options.

As preliminary consideration, 20 factors that impact the overall system performance
were identified in a quantitative pre-study. Table 8.2 shows which factors have been
studied and found twelve relevant factors for the system’s overall performance.

Based on the pre-study non-relevant and some of the relevant factors were excluded
from further consideration as they only had a minor impact on performance. The set of
remaining factors F = {F1, F2, ..., F8} is marked as modeled in Table 8.2.

For each considered factor, all services or nodes Smode of the performance models
(Section 8.4.1) for the synchronous (Figure 8.23) and asynchronous (Figure 8.24) modes
were measured individually. Hence, there is exactly one response time function t for
each combination of service si, factor F j, and the selected mode mode ∈ {sync, async}:

tsi,F j,mode : R+ → R+ (8.5)

150

8.4 Performance Analysis

Cost Factor (#) Relevant Modeled

Number of Users (1) X X

Events/s/User (2) X X

U
se

rs

Event Type Distribution (3) X X

Number of Rules (4) – –

Number of Alpha Nodes (5) X X

Number of Beta Nodes (6) X X

Node Types (7) X –

Number of Abstractions (8) X X

Working Memory Growth Rate (9) X –

Independent Rule Streams (10) ? –

Number of UpdateAPI calls (11) X X

Number of QueryAPI calls (12) X X

Size of Tables (13) – –

R
ul

es

Structure of Tables (14) ? –

Database (15) X –

Queue Scheduling Algorithm (16) X –

Connection Pools: max. Number of Threads (17) – –

Connection Pools: Accept Count (18) – –

Transmission Packet Sizes (19) ? –In
fr

as
tr

uc
tu

re

RAM of Server (20) – –

Table 8.2: Summary of examined cost factors in the performance model: X = yes; – =
no; ? = unknown [40]

with si ∈ Smode being i-th service in the set of all services for the selected mode
and F j ∈ F the j-th performance factor9. Each F j is again a set of values character-
ized by the factor’s nature (e.g., FNumber O f Users = {50, 100, ..., 1000}, FEvents Per UserSecond =
{0.1, 0.15, ..., 1}, etc.). For each discrete value v ∈ F j the simulation was executed for
five minutes, hence, there are samples of N values available which are aggregated by
mean:

tsi,F j,mode(v) =
1
N

N∑
k=1

tsi,F j,mode,k(v) , ∀v ∈ F j (8.6)

The simulation of events across all experimental users from the event source always
complied with an exponential distribution (which is also consistent with the assumption

9Recall that tsi ,F j ,mode is a more precise definition of tp based on the newly introduced modeling context.

151

8 Evaluation

200 40 60 80

0.
00

0.
04

0.
08

0.
12

λ = 0.114

Interarrival Time in ms

D
en

si
ty

Interarrival Time Distribution

Figure 8.31: Distribution of event interarrival times for 250 users and 0.5 events per
user-second (based on [40])

of queuing network models). Figure 8.31, for example, shows the experimental density
of the inter-arrival times of events (i.e., the time between two consecutive events)
for 250 users issuing 0.5 events per second. This results in a negative exponential
distribution with an average inter-arrival time of 8ms.

Afterwards, the collected data was statistically analyzed. Based on the measured
and aggregated service times tsi,F j,mode, the Ordinary Least Squares (OLS) method was
applied to retrieve polynomial models. In fact, M + 1 different models were estimated
with OLS to select the best model based on quality criteria, i.e.,

t̂si,F j,mode(v) =

M∑
m=0

βmvm (8.7)

.
To select the best model, M has been successively increased from one to ten to ob-

tain the constant polynomial (m = 0) and the m-th polynomial. With each new parameter
the polynomial fits better to the data (i.e., residual errors are minimized). However, to
avoid over-fitting and to comply with statistical parsimony, information criteria, namely
Akaike Information Criterion (AIC) [4], Bayesian Information Criterion (BIC) [110], and
Cross-Validation (CV) [115], were used to determine the model that explains variance
best in comparison to the number of regression coefficients. The AIC is, hereby, de-
fined as

AIC = −2log(Lm) + 2pm (8.8)

with Lm being the maximum-likelihood of the estimated parameters and pm the num-
ber of coefficients of the i-th estimated model. Hence, the quality of m-th model is
penalized by the number of regression coefficient. The ratio, where AIC is minimal is
selected as the best model.

152

8.4 Performance Analysis

Since AIC tends to select models with too many parameters on large data sets, BIC
normalizes the number of parameters by the sample size N to further penalize non-
parsimonious models.

BIC = −2log(Lm) + 2pmlog(N) (8.9)

In addition, CV is a method that empirically validates test data against the trained
model. For this purpose, CV divides the sample into k subsets of equal size and esti-
mates the i-th model from the k − 1 subsets and tests the model with the remaining
subset.

Component Criterion R2 β0 β1 β2

CEP CV .79 -.72 .07 -

Proxy CV .83 .02 -.72*10-4 .28*10-6

BEP Query BIC/CV .97 1.14 .01 -

BEP Update All .26 4.92 -.01 -

Table 8.3: Service time polynomials for number of users factor in synchronous mode
(based on [40])

As an example, Table 8.3 shows the estimation for t̂si,FNumber o f Users,sync , ∀si ∈ Ssync,
i.e., the response time functions for all nodes in the synchronous model for the factor
Number of Users. It is shown that CV or BIC decide for the most parsimonious model.
Additionally, all slopes and intercepts are significant against at least a 10% level. For
instance, the CEP node follows a linear function, while the proxy is estimated with a
second degree polynomial.

Correspondingly, Table 8.4 shows the estimated processing times at all nodes for
factor Number of Users in the asynchronous embodiment, i.e., polynomial estimations
for

t̂si,FNumber o f Users,async , ∀si ∈ Sasync.

The complete set of estimated models for all remaining combinations of services
and factors can be found in [40].

After their estimation, all polynomials have been validated in the context of the re-
spective queuing network model using a simulation tool for queuing networks, namely
JSIMGraph [27]. For this purpose, the average response time ta for the entire sys-
tem, i.e., the services altogether, was predicted in three steps and compared to the
measured response times of the running system. First, based on the estimated poly-
nomials, the average service times for each node were forecasted. Second, the service
times were given as input to each node of the corresponding queuing network. Third,
the simulation was run with JSIMGraph until the overall response time has been pre-
dicted.

Afterwards, the predicted values were compared to the measured response time
of the overall system. Table 8.5 shows the differences of measured and predicted
response times for a selection of scenarios such as 50 users, 100 α or β nodes in the
gamification rules, and 500 abstractions within the rule engine.

153

8 Evaluation

Component Inf. Cri. R2 β0 β1 β2

MB1 All .97 7.70*10-1 1.48*10-3 1.18*10-6

CEP All .97 4.88*10-1 -2.10*10-4 1.90*10-6

Proxy AIC/BIC .81 3.14*10-2 2.13*10-7 -

CEP Query All .17 2.07*10-2 -3.98*10-6 -

CEP Update All .13 1.65*10-2 2.61*10-6 -

MB2 All .04 2.05*10-1 1.82*10-5 -

BEP Update All .34 0.56*101 6.00*10-2 -

Table 8.4: Service time polynomials for number of users factor in asynchronous mode
(based on [40])

Scenario Measured Predicted MRE

50 Users 11.46 10.62 .07

100 Alpha Nodes 402.48 348.07 .13

100 Beta Nodes 49.56 61.02 .23

500 Abstractions 343.82 398.90 .16

MMRE .15

S
y

n
c

PRED(25) 1

200 Users 7.55 8.99 .19

500 Alpha Nodes 22.45 22.13 .01

100 Beta Nodes 7.71 8.94 .16

500 Abstractions 223.67 245.30 .09

MMRE 0.12

A
s
y

n
c

PRED(25) 1

Table 8.5: Quantitative validation of cost model comparing measured and predicted re-
sponse times (based on [40])

As criteria for assessing the prediction quality, Magnitude of Relative Error (MRE) for
each scenario as defined by [37] is used:

MREi =
| Actual Valuei − Predicted Valuei |

ActualValuei
(8.10)

All single MREs are averaged using Mean Magnitude of Relative Error (MMRE):

MMREi =
1
n

n∑
i=1

| Actual Valuei − Predicted Valuei |

ActualValuei
(8.11)

154

8.4 Performance Analysis

or using the Percentage Relative Error Deviation (PRED) measure:

PRED(x) =
1
n

n∑
i=1

1, i f MREi ≤
x

100

0, else
(8.12)

as defined by [138, 157]. A good prediction is characterized by a MMRE close to zero
or PRED close to 1. Thus, it is argued that individual factors, i.e., where the remain-
ing factors are kept constant, are adequately predicted using the three-step prediction
approach as described above.

After the successful prediction and validation of individual, isolated nodes, the next
step is concerned with the assessment of the overall performance model. More pre-
cisely, in the following step the polynomials are applied to predict the average perfor-
mance behavior of the Networking Lunch application for 200 users in both, the syn-
chronous and asynchronous, modes.

More specifically, in the synchronous case, these users issued 0.01 events per user-
second which equals an average inter-arrival time of 500ms. In the asynchronous case
users issued 0.1 events per second which equals an inter-arrival time of 50ms. The
RETE graph representing the gamification rules comprised 14 α-nodes, 8 β-nodes, and
1 abstraction step (Figure D.7). Measurements were taken over five minutes. Further-
more, the rest of the setup as described in Section 8.4.1 applies.

The measurement results for this exemplary case can be found in Table 8.6. Here,
the average response time in the synchronous case was 200.26ms and 11.56ms in the
asynchronous case. Note that these values refer to the average response time ta as
introduced in Section 8.4.1.

Scenario Measured (ms) Estimation (ms) MRE

200 Users / Sync Mode 200.26 287.51 .44

200 Users / Async Mode 11.56 13.27 .15

Table 8.6: Validation of cost model comparing measured and predicted response times
for SAP Networking Lunch application (based on [40])

As well as for the runtime prediction of the single nodes, three basic steps have to
be executed, i.e., forecasting concrete services times using the polynomials, inserting
the estimated services times into the corresponding nodes of the queuing networks,
and simulate the queuing network based on the provided arguments.

The predicted times are shown in Table 8.6 which are taken from the simulation
of JSIMGraph as shown in Figure 8.32 for the synchronous case and Figure 8.33 for
the asynchronous case. For the former, 287.50ms are forecasted which equals an ac-
ceptable MRE of 0.44. For the latter, 13.27ms are forecasted which refers to a good
estimation (MRE = 0.15) in the asynchronous case.

Although predictions seem to be adequately based on the proposed performance
models, there are many possibilities to improve the estimation quality further. There-
fore, the next section discusses the theoretical and practical limitations of the intro-
duced performance model.

155

8 Evaluation

Figure 8.32: Response time prediction for synchronous case

Figure 8.33: Response time prediction for asynchronous case

8.4.5 DISCUSSION OF GENERIC PERFORMANCE MODEL

Compared to the experimental results of Section 8.4.2, the presented generic perfor-
mance model provides a better means to estimate the performance behavior of the
overall system in both deployment modes given multiple factors which are determined
by the gamification concept (i.e., gamification rules), the behavior of the target user
in the host application, and additional system factors determined by the underlying
infrastructure. In fact, it has been shown that the estimation error of the model is
comparably low (< 100ms in absolute numbers). It is argued that this model provides a
suitable means to forecast and judge about the system’s behavior in most practical sce-
narios based on the input parameters before the actual deployment. Thus, it may help
practitioners to select the correct deployment mode and infrastructure based on the
gamification concept and the host application to ensure perceived real-time feedback.

Nonetheless, this model still possesses drawbacks with regards to generalization
and estimation quality. First, some factors which have shown a minor performance

156

8.5 Applicability

impact were excluded due to the results of the pre-study. However, also these factors
influence performance and their omission may affect prediction quality negatively.

Second, the factors have been observed and modeled individually in a laboratory
experiment. However, in order to carry out all interactions between factors, a so-called
full factorial design has to be observed, i.e., measurements, models, and estimations
have to be done for all permutations. Due to large effort, these experiments were
omitted in this thesis and are subject to future work.

Third, general queuing networks possess limitations with regards to estimation qual-
ity, especially when stateful services are present. Some mechanisms (e.g., β-nodes
in the RETE graph or database tables) require the queuing network to know what has
happened in the past in order to forecast the response time of the node in question.
However, queuing networks are based on first-order Markov chains, i.e., they decide
for the next state based on the previous state and a particular transition probability only.
To enable transition probabilities into one of the subsequent states based on the entire
history, hence, would result in a state explosion which cannot be simulated efficiently
anymore. Therefore, the prediction quality is limited to the distributional assumption of
the services.

Fourth, the application of the performance model needs preparation steps, i.e., it
cannot be used out of the box. For each new case, the service times have to be
derived using the presented polynomials, the resulting times have to be inserted into
a tool such as JSIMGraph including the selection of the correct distribution for each
node, the modeling of events and probabilities, etc. Finally, the simulation has to be
executed to obtain estimations for average response times and throughput. Overall,
this limits the application of the performance model as it requires high technology skills
to obtain a correct estimation. Hence, future work is subject to reduce the efforts of
the overall prediction model application process.

8.5 APPLICABILITY

After discussing the general feasibility of GaML in Section 8.2.1 and the corresponding
runtime with regards to implementation, conceptual and technical integration, reusabil-
ity, and performance behavior, this section investigates the applicability of the language.
As the gamification runtime environment is controlled by GaML instances, it is argued
that if the language is applicable, then the runtime system is applicable as well. For
this purpose, a user acceptance study was conducted to evaluate the readability and
modifiability design goals of GaML to allow IT and gamification experts to work with
the platform in a practical manner.

8.5.1 STUDY DESIGN

The study consisted of 36 questions clustered into seven major blocks10. In the first
block, four exogenous factors were measured: prior IT expertise (ITEXP) on a 5-point
Likert scale, gamification expertise (GAMEXP) on a 5-point Likert scale, gender (GEND)
as binary dummy variable, and age (AGE) in six disjoint bins (<16, 16-25, 26-35, 36-45,
46-55, >55).

The second block comprised four general gamification multiple-choice questions to
record if participants are familiar with gamification concepts (CORG). For example, this

10The complete questionnaire can be found in Appendix C.

157

8 Evaluation

block includes questions such as “How might points, levels, and badges be connected
in the context of gamification?” or “What is a mission?”.

Furthermore, 17 questions were asked in blocks three to six. In these blocks, par-
ticipants had to give answers to valid GaML instances with increasing complexity and
difficulty. Listing 8.9 shows a simple GaML example from question block three.

1 useraction actualRide {
2 properties {
3 carbondioxid:Decimal,
4 kilometers:Decimal,
5 driver:Boolean,
6 rideId:Number
7 }
8 }

Listing 8.9: Example listing for simple GaML question

Based on this listing, participants were asked which of the following eight statements
are true:

• It defines a user action called actualRide.

• This actualRide user action has four custom properties.

• 12.2 is a correct value for kilometers.

• 12.2 is a correct value for rideId.

• 5 is a correct value for kilometers.

• 5 is a correct value for rideId.

• The field driver holds the driver’s name.

• The field driver can have the value true or false.

Participants could select multiple answers before they proceed to the next question.
In this example, five questions are correct (see Appendix C). In the subsequent blocks,
more complex examples and questions were given. For instance, participants were
faced with the following listing:

1 concept CARPOOL {
2 useraction rideIntent
3 useraction actualRide {
4 properties { carbondioxid:Decimal, kilometers:Decimal, driver:Boolean,

rideId:Number }
5 }
6 point XP {
7 name="Experience Point", abbreviation="XP", type=ADVANCING
8

9 when player { did useraction rideIntent , lastsFor 24h }
10 then { give 1 XP }
11

12 when player { did useraction rideIntent }
13 then { give 5 XP }
14

15 when player { did evt1 : useraction actualRide }
16 then { give 10+(evt1.carbonoxid/10) XP }
17 }}

Listing 8.10: Example listing for complex GaML question

158

8.5 Applicability

Based on this, the participants were asked several questions, e.g., “How many
points does Bob have immediately, after 5 minutes, 60 hours, and another ride in-
tent?”. In this case, participants have to explicitly write their answers into free text
inputs. Another example question based on Listing 8.9 is “Which rewards are given
for which actions?”. Here, participants have to select three correct answers out of five
possible ones:

• Making an actualRide with 20 (kg) saved carbon-dioxide gives the user 10 XP.

• Making an actualRide with 20 (kg) saved carbon-dioxide gives the user 12 XP.

• Creating a rideIntent gives 6 XP instantly.

• Creating a rideIntent gives 5 XP instantly and 1 more after the intent existed for
at least 24h.

• Creating a rideIntent gives no points instantly and 6 after the intent existed for at
least 24h.

It is important to note that participants did not receive any direct feedback on the
correctness of their answers to ensure unbiased results on subjective measures at the
end of the study. Moreover, participants did not get any trainings beforehand to avoid
the influence of additional factors (e.g., that some participants learn the language faster
than others). Overall, 76 correct answers could be given based on single choice, mul-
tiple choice, or free text input. These answers were used to measure the participants’
correctness (CORU) and to assess their understandability of the language’s abstract
syntax and meta-model. Furthermore, the questionnaire also included questions were
participants had to decide between different design alternatives. These questions were
used to measure, if participants do not only understand the language but if they would
be able to decide for correct modifications to an existing concept.

Within the seventh block, usage intentions were measured using the System Usabil-
ity Scale (SUS) by [38] which is an reliable instrument (Cronbach’s α > .91) for measur-
ing the usability of information systems [192]. The SUS questionnaire comprises ten
core questions such as “I think that I would like to use this language frequently” or
“I found the language unnecessarily complex” measured on 5-point Likert scales [38].
The overall SUS score for one individual is calculated from the items with

SUS = 2.5 ∗
10∑
i=1

qi (8.13)

where qi is the final value of i-th item from the questionnaire with qi = vi − 1 if i is
odd (with vi being the actual rated value) and qi = 5− vi if i is even in order to revert the
inverse items.

In accordance with [19], the overall impression (SUSO) has been measured on an
additional 7-point Likert scale (11th SUS-related question). Although SUS has been de-
veloped to assess general system usability, test questions were modified by replacing
the word “system” with “language” in conjunction with [19].

The preliminary questionnaire has been pre-tested three times by five different and
randomly-selected reviewers to eliminate language ambiguities and improve the overall
questionnaire. In the third repetition, no additional improvements were proposed by the
reviewers.

159

8 Evaluation

8.5.2 DESCRIPTIVE STATISTICS

The survey was completed by 42 participants (125 starts / 387 views). Six responses
were removed from the sample since these participants either filled out the question-
naire 150% faster compared to the median completion time or left missing values.
From the remaining 36 participants, there are 28 men and 8 women (Table 8.7).

Gender Absolute frequency Relative frequency

Male 28 0.78

Female 8 0.22

Table 8.7: Distribution of variable GEND

The average IT expertise (ITEXP) in the sample is 3.36 (1.48), prior gamification ex-
pertise (GAMEXP) is 2.86 (1.40). On average participants are between 26-34 years old
(Table 8.8).

Gamification questions (CORG) were answered with 90.74% (12.88) correctness
on average and 100% on median whereas GaML-related questions (CORU) were an-
swered with an 88.2% (9.18) precision on average and 90% on median which leads
to an overall correctness (CORA) of 88.51% (8.75) or 91.21% on average or median
respectively. The accumulated SUS score stays at the 68.26 percentile and the over-
all SUS score (SUSO) averages to 4.89 (0.92). Although the questions on SUS were
substituted with the word language, Cronbach’s α is 0.87 which accounts for a reliable
measurement (α > 0.6 is considered as reliable [59]). The null hypothesis of normality
is rejected in all cases at least against a 1% significance level according to Shapiro-
Wilk-Test except for the SUS measure.

Variable Mean S.D. Median Shapiro-Wilk

Test (p-value)

Cronbach’s α

ITEXP 3.36 1.48 4 1.6*10-4 -

GAMEXP 2.86 1.40 3 1.7*10-3 -

AGE 3.17 (26-34) 0.81 3 2.7*10-4 -

CORG 90.74 12.88 100 1.1*10-6 -

CORU 88.20 9.18 90 0.01 -

CORA 88.51 8.75 91.21 0.01 -

SUS 68.26 18.31 67.50 0.45 0.87

SUSO 4.89 0.92 5 2.7*10-5 -

Table 8.8: Descriptive statistics for variables

Correlations between these variables are presented in Table 8.9. In this table, corre-
lations are marked with boldface if they are significant against a 10% level according to
Pearson’s correlation test. A more detailed view of correlations can be found in the cor-

160

8.5 Applicability

relation diagram of Figure C.1 where for each combination the correlation, significance,
distribution, and polynomial fit is presented.

SUS SUSO CORG CORU CORA ITEXP GAMEXP AGE GEND

SUS 1 .77 .36 .51 .54 .19 -.26 -.07 .12

SUSO - 1 .31 .32 .35 .20 -.21 -.13 .16

CORG - - 1 .36 .51 .46 -.16 .00 .08

CORU - - - 1 .99 .32 -.03 -.45 .23

CORA - - - - 1 .38 -.06 -.41 .23

ITEXP - - - - - 1 .04 -.01 .59

GAM-

EXP

- - - - - - 1 -.13 .14

AGE - - - - - - - 1 -.01

Table 8.9: Correlation matrix of exogenous variables

Based on the significant correlations, the following statements can be concluded:

1. The higher the average SUS score (SUS), the higher the overall SUS (SUSO) rating
which is consistent with [19].

2. The higher the SUS score (SUS), the higher the correctness of answers (CORG,
CORU, CORA).

3. The higher the overall SUS (SUSO) score, the higher the correctness of answers
(CORG, CORU, CORA).

4. The higher the correctness in one category (i.e., CORG, CORU, CORA), the higher
the correctness in all other categories (CORG, CORU, CORA), i.e., having higher
correctness in general gamification questions yields higher correctness in GaML
understandability and vice versa.

5. The higher the IT expertise (ITEXP), the higher the correctness of answers in
all categories (CORG,CORU,CORA), i.e., IT expertise helps to give more precise
answers on general gamification questions as well as GaML-related questions.

6. The lower the age (AGE), the higher the correctness of answers (CORU, CORA).

7. Men (GEND) had higher IT expertise (ITEXP) in this study.

161

8
E

valuation

E
N

02
_0

1
E

N
02

_0
3

E
N

02
_0

5
E

N
02

_0
7

E
N

02
_0

9

0 1 2 3 4 5

I think that I would like to use this language frequently

I found the language unnecessarily complex

I thought the language was easy to use

I think that I would need the support of a technical person to be able to use this language

I found the various functions in this language were well integrated

I thought there was too much inconsistency in this language

I would imagine that most people would learn to use this language very quickly

I found the langu

I felt very confident using the language

I needed to learn a lot of things before I could get going with this language

3.58 (0.21)

2.31 (0.2)

3.67 (0.18)

2.58 (0.26)

3.67 (0.2)

1.81 (0.2)

3.86 (0.22)

1.97 (0.2)

3.33 (0.2)

2.14 (0.25)

age very awkward to use

Figure 8.34: System usability scale item averages

162

8.5 Applicability

8.5.3 INTERPRETATION AND DISCUSSION OF RESULTS

First, it is important to note that exogenous demographic variables are not correlated,
except GEND and ITEXP as more men than women participated who had more IT ex-
pertise overall. In fact, the correlation diagram in Figure C.1 shows that the remaining
correlations are well distributed across all boundary values. Therefore, results can be
interpreted independent of AGE, ITEXP, GAMEXP, and partially GEND (i.e., without IT-
EXP).

Second, results show that gamification concepts in general (90.74%) and GaML-
related descriptions (88.2%) are well understood which accounts for a high under-
standing of GaML’s meta-model and, therefore, provides evidence that design goals
DO3and DO4are fulfilled. Looking closer at the data reveals the following additional
interpretations. For instance, older participants understand GaML worse than younger
people, although this group understands gamification concepts as well as youngers
do. Furthermore, higher levels of IT expertise lead to higher correctness of answers in
all categories. On the other side, GAMEXP has no significant influence on precision.
Hence, it is concluded that still IT expertise helps to give more precise answers in
general whereas expertise in gamification brings neither advantage nor disadvantage
in answering the questions. This effect can probably be explained with the nature of
the study as both, the questions and answers in all categories, require strong analytical
and structured thinking.

Third, the SUS evaluation shows moderate usage intentions on average (68.26 per-
centile) with a high standard deviation (18.31 percentiles). SUS itself is reliably mea-
sured according to Cronbach’s α being 0.87. Figure 8.34 presents the mean and stan-
dard errors for all individual items of the SUS scores. Positive questions are ranging
between 3.31 and 3.86. Participants especially think that they can learn the language
quickly and that GaML is easy to use. Besides these positive results, the data also
suggests improvements that are necessary for adopting the language in practical sce-
narios.

More precisely, the interpretation of the five inverse SUS items shows that partici-
pants primarily demand support of technical persons to use the language (2.58), that
the language seems somehow complex (2.31), and that they need to learn some things
beforehand (2.14). All these effects could be arguably diminished using prior trainings
which were not given to participants before conducting the study. The remaining items
capturing awkwardness and language inconsistencies are comparably low (< 2).

Fourth, the average SUS score (68.26) is within one standard deviation (11.6), but
outside one standard error (2.6) of the mean SUS score (71.4) for a Good rating as
established in [19]. This statement is further supported by the average SUSO score
(4.89) which is, on the one hand, strongly correlated with the SUS score and, on the
other hand, is also within one standard deviation of the Good rating in conjunction with
[19]. However, adjective judgments have to be interpreted cautiously as these scales
have been established for system usability studies and are not specific to any kind of
formal languages.

Besides the quantitative questionnaire, participants gave qualitative feedback on the
language. This feedback supports the observations further as participants with high
gamification expertise demand a graphical editor as concrete syntax whereas IT experts
tend to demand a more parsimonious declarative language with less textual constructs.
Although the abstract syntax of GaML is well understood, it is acknowledged that for
both target groups different kinds of concrete syntaxes have to be offered, e.g., a
textual syntax for IT experts and a graphical syntax for gamification or domain experts
(see Section 9.2).

163

8 Evaluation

Overall, it is concluded that GaML seems to provide an adequate means for gamifi-
cation and non-gamification experts to discuss and maintain gamification concepts in a
formal way and, therefore, is highly applicable for these roles in gamification projects.
Since the language is automatically compilable into executable code for the developed
gamification runtime environment, it is further argued that the applicability of the ga-
mification platform itself is given implicitly. Additional ways for improving the various
aspects of GaML as shown by this user study are discussed in Chapter 9.

8.6 VALIDATION OF BENEFITS

So far, the individual artifacts of this thesis have been validated individually with regards
to the stated requirements (Section 4.3) or design goals (Section 5.1). Therefore, this
section describes an integrative perspective across all deliverables of this thesis to
validate the benefits (e.g., increase in motivational and participation, time savings for
implementation) of for one real application scenario. These benefits are investigated
using the SAP Customer Financial Fact Sheet application introduced in Section 8.1.

8.6.1 MOTIVATIONAL IMPACT

In [134] a mobile widget framework on top of the existing gamification runtime environ-
ment has been conceptualized and applied to reduce the efforts for the integration and
visualization of gamification elements within mobile applications. Figure 8.3 (p. 120)
presents the integration of some mobile widgets within the target application.

The subsequent study showed that there are significant improvements in how long
subjects are engaged with the mobile application. Several engagement criteria were
measured such as the number of notes and reminders participants wrote, the over-
all usage time of the application in minutes, and the sum of points that participants
achieved. Furthermore, the SUS score has been applied again to measure subjective
usability with ten items on 5-point Likert scales (Appendix C.2).

Table 8.10 presents the improvements of the gamified application (Group B) against
the classical ungamified application (Group A). All of these variables are normally dis-
tributed (Shapiro-Wilk-Test) and have homogeneous variances (F-Test), except the num-
ber of written reminders. Hence, mean differences between groups A and B are tested
with Wilcoxon-Whitney-Mann-Test for number of reminders and t-Test for the remain-
ing variables.

On average, participants wrote 1.85 more reminders (U-value: 0, p-value: 0.008) and
1.9 more notes (t-value: 2.6, p-value: 0.04) to customers with gamification enabled.
Furthermore, participants were engaged 8.6 minutes longer (t-value: 5.18, p-value:
8.5*10-4) with the application leading to 8.9 more experience points (t-value: 3.72,
p-value: 5.9*10-3) on average. Finally, participants rated subjective usability 29.25%
higher (t-value: 4.78, p-value: 2.5*10-3), i.e., usability increases by 52%. According
to [19], this raises the application’s usability adjective from OK (below average) to Ex-
cellent (above average). Moreover, the presented mean differences are not only sta-
tistically significant, but Cohen’s d suggests a strong effect (> 0.8) of this difference
whereas

d =
µA − µB√(
σ2

A + σ2
B

)
/2

(8.14)

164

8.6 Validation of Benefits

with µA and µB being the provided sample means of the groups as well as σ2
A and

σ2
B the sample variances respectively [58]. All other statistical tests are explained in

Appendix E. Furthermore, the relative improvements for each measured factor with
regards to means and standard error are graphically presented in Figure 8.35.

Variable Group Mean S.D. W F t U d

A 1.75 0.43 0.009
Reminders (count)

B 3.60 0.89 0.046
- - 0.008 2.64

Notes (count)
A 0.50 0.50 0.12

0.06 0.04 - 1.68
B 2.40 1.52 0.49

A 7.00 2.55 0.54
Usage Time (minutes)

B 15.60 2.70 0.12
0.91 8.5*10−4 - 3.27

Points (count)
A 11.50 3.64 0.80

0.89 5.9*10−3 - 2.35
B 20.40 3.91 0.42

A 56.25 11.79 0.47
SUS Score (percentile)

B 85.50 6.93 0.65
0.33 2.5*10−3 - 3.02

Table 8.10: A/B Analysis of ungamified (A) versus gamified (B) SAP Financial Fact Sheet
application11

A B

R
em

in
de

rs
 (

C
ou

nt
)

0
1

2
3

4
5

A B

N
ot

es
 (

C
ou

nt
)

0
1

2
3

4

A B

U
sa

ge
 T

im
e

(M
in

ut
es

)

0
5

10
15

20

A B

E
xp

er
ie

nc
e

P
oi

nt
s

(C
ou

nt
)

0
5

10
15

20
25

A B

S
U

S
 S

co
re

 (
P

er
ce

nt
ile

)

0
20

40
60

80
10

0

Figure 8.35: Variable means with standard error of ungamified (A) versus gamified (B)
SAP Financial Fact Sheet application

11S.D.: sample standard deviation; W: p-value of Shapiro-Wilk-Test for normality; F: p-value of F-Test
for variance homogeneity; t: p-value of t-Test for mean differences; U: p-value of U-Test for mean
differences; d: Cohen’s d for effect size of mean difference.

165

8 Evaluation

8.6.2 INTEGRATION

In order to achieve the presented results, the gamification concept was modeled in
GaML. An excerpt of this application is given in Listing 8.11. For example, there are
different user actions such as playerSentReminder or playerCreateNote expressing the
various actions of users in the mobile application. The customerPaid action defines
further properties signifying additional data such as the pay amount. Furthermore, point
categories, levels, badges, and missions are defined. For example, Experience Points
might be achieved in three different ways. First, they are given when the customer
pays a bill within at most 14 days after a reminder has been sent or when the customer
has been visited in person. While in the former case, the user’s resulting points are
calculated based on the pay amount as specified by the numeric expression, in the
latter case 3 points are statically given. Second, they are given upon completion of the
readHelp mission which gives one additional ExperiencePoint when reading the help
for the very first time.

1 concept FFS {
2 useraction playerSentReminder
3 useraction playerCreatedNote
4

5 useraction customerPaid {
6 properties { daysToLastReminder: Number, visitedCustomer:Boolean, amnt:

Decimal }
7 }
8

9 useraction appStarted
10 useraction readHelp
11

12 point Experience {
13 name = "Experience",
14 abbreviation = "XP"
15

16 when player { did evt:useraction customerPaid , daysToLastReminder <= 14 }
17 then { give 5+(evt.amnt/10000) Experience }
18

19 when player { did useraction customerPaid , visitedCustomer = true }
20 then { give 3 Experience }
21 }
22

23 point ReminderPoints {
24 name = "ReminderPoints", abbreviation = "RP"
25

26 when player { did useraction playerSentReminder }
27 then { give 1 ReminderPoints }
28 }
29

30 point NotePoints {
31 name = "NotePoints",
32 abbreviation = "NP"
33

34 when player { did useraction playerCreatedNote }
35 then { give 1 NotePoints }
36 }
37

38 level PennyPincher { name = "Penny Pincher", threshold = 10 Experience }
39

40 level NickelNurser { name = "Nickel Nurser", threshold = 15 Experience }
41

42 //...
43

166

8.6 Validation of Benefits

44 badge Epic { name = "EPIC", image = "EPIC.png"}
45

46 badge IceBreaker { name = "Ice Breaker", image = "IceBreaker.png" }
47

48 //...
49

50 mission startApp {
51 name = "Start app",
52 description = "Start the app mission"
53

54 when player {
55 did evt1 : useraction appStarted , COUNT(evt1) = 1
56 } then {
57 give 1 Experience
58 }
59 }
60

61 mission readHelp {
62 name = "Read help",
63 description = "Read help mission"
64

65 when player { did evt1 : useraction readHelp , COUNT(evt1) = 1 }
66 then { give 1 Experience }
67 }
68

69 mission Remind3Customers {
70 name = "Remind 3 customers", description = "Remind 3 customers mission",

initiatedBy = rule
71

72 when player { has point ReminderPoints , SUM >= 3 }
73 then { give badge IceBreaker }
74 }
75

76 mission Remind10Customers {
77 name = "Remind 10 customers", description = "Remind 10 customers",
78 available when player {
79 has mission Remind3Customers completed
80 }
81

82 when player { has point ReminderPoints , SUM >= 10 }
83 then { give badge EPIC }
84 }
85 }

Listing 8.11: GaML excerpt from SAP Financial Fact Sheet application

This GaML definition has been compiled into JSON-RPC calls compliant to the run-
time’s API and deployed automatically using the runtime’s import functionality (Fig-
ure 8.36). Furthermore, the integration into the existing mobile application has been
achieved through the aforementioned mobile library which can be done in three steps.
First, the framework has to be globally initialized by the application where different
settings such as the gamification platform’s endpoint or authentication method can be
configured (Listing 8.12).

1 [[GamificationDataCenter defaultCenter] initPlatformWithURL:@"https://
smpdemogamification.neo.ondemand.com" siteID:@"SiteID" useSSO:NO];

Listing 8.12: Initialization example of mobile widgets

Second, different views might be programmatically initialized and reused to show the
gamification to the end user as presented in Listing 8.13 and Listing 8.14. For example,
developers may choose to reuse an entire gamification profile (Listing 8.13) including

167

8 Evaluation

<<component>>
Gamification Platform

<<component>>
Customer Financial FactSheet

<<component>>
SAP Mobile Platform

<<component>>
SAP ERP

<<component>>
MBOs

<<component>>
Controllers

<<component>>
AppViews

<<component>>
Gamification Widgets

<<component>>
DataPump

<<component>>
Database

<<component>>
Database

<<component>>
AdminUI

SMPAPI

Webservice

BAPI

JDBCInterface

JDBCInterface

Figure 8.36: Integration architecture for SAP Financial Fact Sheet application

several subviews for missions, badges, levels, or leaderboards, or only parts thereof
(e.g., Listing 8.14) which can be added to arbitrary views of the application. Besides
programmatic initialization, the addition of views can be also accomplished using the
drag-and-drop storyboard mechanism of the integrated development environment.

1 PrivateProfile *playersProfile = [[PrivateProfile alloc] initWithFrame:self
.view.bounds];

2 [self.scrollView addSubview:mView];

Listing 8.13: Initialization of mobile player profile widget

1 MissionView *mView = [[MissionView alloc] initWithFrame:frame mission:
_gData.usersProfile.missionList[i]];

2 [self.scrollView addSubview:mView];

Listing 8.14: Initialization of mobile mission widget

Finally, the application has to be instrumented for the various actions that users can
do by calling the API of the runtime system (Listing 8.15).

1 [self sendRequest:@{@"method":@"receiveEvents", @"id":[@"submit_"
stringByAppendingString:eventType], @"params":@[@[@{@"siteId":_siteID,@"
type":eventType ,@"playerid":self.user,@"data":dataDict[@"data"]}]]}];

Listing 8.15: Example instrumentation for sending events from host application

In accordance with Figure 8.36, the mobile application itself consumes its content
from the SAP Mobile Platform, a general data management technology for mobile so-
lutions. This platform accesses a standard ERP system for back-end data. The ERP
system’s provided interfaces were used by a so-called DataPump component which re-
ceives events from the ERP (e.g., payments received from the customer) and converts
and sends them to the gamification platform to calculate the user’s progress which is
eventually displayed in the mobile application.

168

8.6 Validation of Benefits

Step Task Time

#1 Designing gamification concept 1 hour

#2 Formalizing and deploying gamification
concept with GaML

0.5 hours

#3 Integrating gamification widgets into host
application

4 hours

#4 Integrating ERP system with gamification
runtime environment for back-end data

43 hours

Table 8.11: Time exposure for complete gamification enablement

Table 8.11 summarizes the time which has been spent in each phase. First, the
designing phase took one hour since only a simple gamification concept has been pro-
posed, i.e., only some game mechanics were utilized. To write the gamification design
in GaML another 30 minutes were utilized. This time also includes the deployment
within the gamification runtime system. Further four hours were spent to integrate
the mobile gamification widgets into the existing application, i.e., to visualize and rep-
resent the widgets. Finally, approximately five days were necessary to implement the
DataPump component and integrate it between gamification platform and ERP system.

Hence, overall approximately six days were used to accomplish a gamified version of
the presented mobile application whereby the additional back-end integration utilized
the most time. With regards to the artifacts developed in this thesis, however, the time
spent in steps #2 and #3 is comparably low. In fact, for the other applications (e.g., the
TwoGo or Networking Lunch case), in particular steps #2 and #3 took several weeks
for implementation and integration of the gamification concepts, i.e., without GaML,
automatic compilation, and gamification front-end widgets. Hence, it is argued that the
presented artifacts accelerate these specific phases of the gamification process.

It is also important to note that the presented development times exclude the time
benefits from reusing the conceptualized gamification runtime environment. Without
such a platform, each gamification project would require additional effort to implement
the gamification within the IS. However, since time efforts for such from-scratch imple-
mentations of gamification concepts have not been reported yet, a presentation of the
benefit is subject of future work.

In the end, the integration into this sample took less than half a day for one developer
unexperienced with the usage of the framework. The overall process from writing the
concept with GaML until its deployment within the generic gamification platform as
well as the mobile application as exemplary front-end took approximately one day. After
that the application was fully operational and functional with respect to the intended
gamification concept.

8.6.3 CONCLUSION

With this application scenario the validity of the thesis’ approach with respect to the
gamification process (Chapter 3) could be shown. This specifically concerns the design
and implementation phases as well as the artifacts that are flowing between those
two.

169

8 Evaluation

First, a gamification concept was created which has a traceable motivational impact
as hypothesized by gamification. Second, the entire gamification concept could be de-
scribed and formalized using GaML in a very short amount of time. Third, the GaML
instance describing the concept could be directly compiled into the underlying gamifi-
cation runtime environment. Fourth, the widget framework allows for an easy and fast
integration of the visual gamification aspects into the front-end, thus, enabling the a
mobile application with gamification. Finally, the gamification platform allows for the
immediate execution of the desired gamification concept.

Nonetheless, the results have to be interpreted cautiously and cannot be generalized
for two reasons. First, the presented application and the corresponding gamification
concept are not representative with regards to complexity. For example, real industry
projects would require the integration with further and more complex ISs from the
company’s infrastructure. For example, in the presented case, the integration with
external systems such as ERP still requires high integration effort in the implementation
and testing phases of the gamification process. Therefore, additional engineering work
is required to implement pre-integrations with external systems which would reduce
implementation efforts significantly further.

Second, the gamification concept would be more sophisticated in a real-world indus-
try project and, moreover, would require additional adaptation costs in the long run.
These general costs and the potential benefits of the proposed solutions are not mea-
sured or presented herein. A subsequent longitudinal study has to be conducted in
order to provide more insight into subsequent problems and the precise benefits of
the artifacts developed by this thesis.

8.7 SYSTEMATIZATION

In this chapter, the artifacts of this thesis were evaluated with regards to feasibility, non-
functional requirements, and benefits. In summary, the chapter illustrated the following
aspects.

This chapter evaluated the feasibility of the Gamification Modeling Language by pre-
senting its implementation artifacts, i.e., a textual editor with syntax highlighting and
code completion as well as a code generator for a specific target language (Section
8.2.1). In addition, the feasibility of the gamification runtime environment was shown
by presenting the concrete implementation of its components as well as the overall
architecture (Section 8.2.2).

Furthermore, using these two main artifacts, five real-world applications from the
industry have been gamified in a very short amount of time (Section 8.1 and Section
8.3). It is argued that this demonstrates a high degree of reusability. The statement
is further supported by the fact that these gamified applications are from very differ-
ent domains, hence, the runtime environment is not specific to a particular application
class. Once implemented, all applications benefited additionally from the external ga-
mification services since design changes can be flexibly incorporated at runtime.

Based on the selected SAP Network Lunch case, the performance requirements
were validated since the platform is able to serve hundreds of thousands of users
on a single processing node (Section 8.4). However, for larger scenarios distributed
algorithms for horizontal scale-out have to be investigated. This specific consideration
is, however, beyond the scope of this thesis (see Section 9.2).

The applicability of the approach was validated based on a comprehensive user study
(Section 8.5). The study showed that GaML is a highly understandable language for do-
main and IT experts. Furthermore, domain experts are able to accomplish very simple

170

8.7 Systematization

modifications based on the textual representation. Therefore, GaML is considered as
applicable. Since the runtime environment can be controlled by the modeling language,
it is argued that the runtime is applicable as well even for domain experts.

Finally, the SAP Financial Fact Sheet application was selected to validate the overall
benefits (Section 8.6). Based on a user study, it could be shown that a compelling and
motivating gamification scenario was implemented. Using the artifacts of this thesis,
the implementation efforts to enable the gamification design could be reduced from a
few weeks or several days to approximately four hours. These benefits apply only to
the integration artifacts (e.g., SDKs and widget libraries) of the runtime environment,
thus, excludes the direct benefits of the runtime system. Hence, the real benefits with
regards to time and effort of the overall approach are arguably much larger. Since this is
only a qualitative statement, future work has to analyze and quantify the total benefit.

Based on this project, it is also argued that required degree of integrability is high
since developers are supported by Software Development Kits (SDKs) and widget li-
braries. Since these artifacts require only a few lines of code, it is argued that the
desired low degree of invasivity is met as well.

Overall, these results have to be interpreted cautiously as they cannot be generalized
and applied to large-scale industry projects. Nonetheless, they provide a strong indica-
tor that developers continuously benefit from the concepts developed in this thesis.

171

9 SUMMARY AND OUTLOOK
This final chapter summarizes the results of this thesis and reflects them in the context
of the research questions stated in Chapter 1. Based on the results and designed arti-
facts, further research questions and engineering activities are proposed in the outlook
section.

9.1 SUMMARY

The overall research goal of this thesis was to investigate and conceptualize a generic
gamification platform with high degrees of flexibility, integrability, reusability, and per-
formance. Based on this goal, this thesis developed the following contributions to the
field of gamification.

1. The definition of a precise gamification process from a software development
and life-cycle perspective (Chapter 3): With the help of the provided process,
researchers and practitioners understand the different tasks and roles that are
involved in an ideal gamification project. Moreover, experts can analyze and un-
derstand pitfalls in the overall process. Furthermore, the process might be used
to define the non-functional requirements for gamification-related technologies
as those have to comply with the specific requirements determined by the sur-
rounding process.

2. A comprehensive analysis and structure of the defining game design elements
that have been translated to the domain of gamification (Chapter 4): The result-
ing taxonomy may help researchers and practitioners to identify appropriate ele-
ments for their gamification designs and concepts. The classification might be
also helpful to structure new elements accordingly, i.e., elements which have not
been translated into the gamification domain so far. Eventually, these concep-
tual elements can be already used at this stage to assess and compare related
gamification solutions regarding their provided functionalities.

3. The formalization of the analyzed game design elements and their relationships
into the gamification modeling language, a novel domain-specific language (Chap-
ter 5): The usage of this language solved four major problems between the design
and implementation phases of gamification projects. First, the language bridges
the communication gap between domain and IT experts, i.e., users from both

173

9 Summary and Outlook

roles can discuss gamification concepts more effectively. Second, researchers
may use the language as a common means to discuss, compare, and design
gamification concepts in theoretical work. Third, it helps to rigorously assess ga-
mification technologies with regards to their functional features, i.e., to proof if a
technology is compliant with GaML or a certain subset thereof. Finally, the lan-
guage helps IT experts to speed up the implementation process since GaML is
automatically compilable into runtime environments for corresponding gamifica-
tion technologies.

4. A derivation of solution classes for related gamification technologies (Chapter 6):
This thesis introduced a distinction of existing gamification solutions into achieve-
ment systems, integration gamification solutions, and generic gamification plat-
forms based on their non-functional properties. These classes and the description
of their inherent structures and behaviors may help researchers and practitioners
who are in charge of planning, executing, and operating the gamification project
to select the technology or approach that fits best to the project’s requirements.

5. The design, implementation, and evaluation of a novel and generic runtime en-
vironment for gamification concepts (Chapter 7): Since the analysis of related
work based on GaML’s elements yielded that none of the existing runtime envi-
ronments suffices all functional and non-functional requirements, the necessity
for a new platform approach has been demonstrated. The developed runtime
environment fulfills all requirements determined by GaML as well as all derived
non-functional requirements.

6. An automated compilation procedure of GaML into executable code for the pro-
posed runtime environment (Chapter 7): Besides the practically relevant speed-up
of development and maintenance activities, the approach also demonstrates ex-
emplarily how GaML or a subset thereof can be transformed into target code or
models for arbitrary gamification runtime environments.

Besides these general contributions, four concrete research questions have been
formulated. In the following, each research question is reflected by briefly summarizing
the concrete results and findings within this thesis.

RESEARCH QUESTION 1: WHICH GAMIFICATION CONCEPTS, STRUCTURES, AND
RELATIONSHIPS EXIST AND HAVE TO BE PROVIDED BY A GENERIC GAMIFICATION
PLATFORM?

Based on a comprehensive review of the existing gamification research literature (Chap-
ter 4), game mechanics were surveyed which have been isolated from games and
applied in non-game contexts by gamification researchers and practitioners. These ele-
ments have been structured in accordance with the general game design hierarchy by
[65] and provided the functional foundations for the rest of the thesis.

Overall, 19 elements were identified on the first game interface pattern (L1) level
(Table 4.1 and Table 4.2). Further eight coarse-grained conceptual requirements were
identified with regards to the second game design pattern and mechanics (L2) level of
Deterding’s taxonomy (Section 4.2.2) which have been decomposed into 26 core ele-
ments in Chapter 5. Each gamification concept has been described and disambiguated
by defining its concrete name, providing a comprehensive definition from literature,
outlining possible synonyms and subtypes, and referring to the corresponding citations.

174

9.1 Summary

In addition, relationships (e.g., associations, aggregations, compositions) between the
presented elements were described.

As the review covered the most important gamification literature and another more
recent review in [91] did not yield any novel elements beyond the considered ones, this
research question is answered appropriately.

However, the requirements are subject to change and might be potentially incom-
plete (cf. Section 9.2). Nonetheless, future modifications and enhancements can be
easily incorporated into the proposed schema of the framework.

RESEARCH QUESTION 2: HOW CAN THESE CONCEPTS BE REPRESENTED IN A
FORMAL WAY WHICH IS, NONETHELESS, UNDERSTANDABLE FOR GAMIFICATION
AND DOMAIN EXPERTS?

Because of a missing taxonomy there was also no formal mechanism in place to de-
scribe gamification concepts in a rigorous manner. Consequently, appropriate tool sup-
port for expressing gamification concepts and proofing its correctness was missing,
e.g., to validate whether a particular instance complies with the specified meta-model
and static semantics.

Therefore, this thesis proposed GaML as a formal domain-specific language (Chapter
5). The current proposal of GaML’s abstract syntax reflects all concepts and relation-
ships identified under research question one. Furthermore, a textual representation
was chosen as the concrete syntax.

Besides its formality, the language was designed as domain-specific language to be
at least understandable for IT and domain experts. Moreover, domain experts should
be able to do simple modifications based on an existing instance. The subsequent
user study showed that participants who have never seen GaML before are able to
correctly answer understandability and modifiability questions with a 90% precision on
average. As the study collected data across all levels of gamification and IT expertise,
this positive statement applies to both groups equally. Based on the results of the
study, it is argued further that this also validates the logical coherence of the presented
requirements and taxonomy of research question one.

Moreover, the evaluation chapter presents appropriate tool support for writing in-
stances of GaML, i.e., domain or gamification experts are supported through visual
highlighting of the language’s keywords, code completion for terminals, and immediate
presentation of syntactic and semantic errors (Chapter 8).

Overall, the design goals of GaML in particular and the research question in general
are considered to be fulfilled.

RESEARCH QUESTION 3: WHICH SERVICES, COMPONENTS, AND STRUCTURES ARE
NECESSARY TO CONSTITUTE A GENERIC PLATFORM FOR GAMIFICATION WHICH
SUPPORTS ALL IDENTIFIED CONCEPTS OF RESEARCH QUESTIONS ONE AND TWO?

Based on elements dictated by GaML, it has been found that none of the 29 ana-
lyzed solutions suffices all conceptual and functional requirements (Chapter 6). The
related technologies have been classified into three main solution classes determining
the supported requirements. Based on the non-functional requirements, it has been
argued that one class, namely the Generic Gamification Platform (GGP) class, can be
considered as appropriate for enterprise gamification projects. However, all three ana-
lyzed solutions within this class do not fully comply with the formalized requirements
(Chapter 6).

175

9 Summary and Outlook

Therefore, a novel runtime environment has been proposed in Chapter 7 based
on service-oriented and event-driven principles from the corresponding architecture
paradigms. In itself, the runtime system is a hybrid architecture type comprising a busi-
ness entity provider fulfilling persistence and transactional requirements and an event
processor fulfilling at least soft real-time event processing. Both components interact
and communicate with each other by the means of events in different communication
modes.

Using the architecture’s APIs, clients may interact with this runtime environment. By
describing the translation and mapping of GaML elements into corresponding calls of
the runtime system, it has been shown that the platform and its APIs support all desired
functional requirements. As useful side-effect for software engineers and developers,
valid instances of GaML can be directly compiled into code for the presented runtime,
i.e., the gamification model can be directly executed within the runtime environment.

Overall, this research question is considered to be answered since the proposed
gamification runtime environment supports all surveyed and formalized requirements
as presented in the evaluation.

RESEARCH QUESTION 4: HOW CAN THE IDENTIFIED SERVICES AND COMPONENTS
BE SEAMLESSLY INTEGRATED WITH ARBITRARY ENTERPRISE INFORMATION
SYSTEMS?

The overall platform has been designed to be consumable as a service, i.e., clients
may use standard means to access the API, e.g., issuing RPCs using REST, SOAP, or
JSON-RPC interfaces. Based on these services, five real-world applications used in
enterprises could be gamified in a short amount of time (Chapter 8). It is argued that
this demonstrates a high degree of flexibility and reusability of the approach in general.

Using only the low-level services (e.g., REST or SOAP), however, requires a lot of
time for the integration of the gamification runtime with the host application, e.g., to in-
strument the information system sending events or to present the tangible gamification
elements on the front-end. Therefore, software development kits and reusable graphi-
cal widgets for various target platforms have been introduced in Chapter 8. These wid-
gets provide a convenient mechanism to work with the platform’s services on a more
coarse-grained level of integration. With these additional components, the integration
effort could be significantly reduced, e.g., from multiple days (when implemented from
scratch) to four hours for the integration into one of the selected real enterprise mobile
applications (Section 8.6).

Besides aspects such as high flexibility and reusability, performance behavior, i.e.,
feedback in soft real-time, was considered as very important. Therefore, based on the
platform prototype a comprehensive performance analysis has been conducted. This
analysis comprised two steps.

First, a case-based performance comparison between different architecture alterna-
tives has been carried out. For example, it has been shown that the asynchronous
architecture alternative is faster by seven orders of magnitude compared to the pure
synchronous case. It could be shown that the proposed extensions for managing per-
sistent state data within event-driven technologies (e.g., CEP) introduce just a marginal
performance overhead. In contrast to existing event-driven systems this allows the
effective encapsulation of state data and ex post analytics.

Second, to generalize from the case-based performance, a generic performance
model has been introduced using queuing networks and a relevant selection of factors
which have an influence on the system’s overall performance. The presented model

176

9.2 Outlook

allows for a prediction accuracy between 85% and 90% according to MRE. Hence,
the model is suited for practitioners to forecast the system’s performance based on
estimated or measured parameters such as the event workload or the number of gami-
fication rules. Vice versa, the model can be used during planning to precisely calculate
the capacity and to correctly provision the underlying infrastructure.

Based on these performance models it has been shown that the runtime environ-
ment may support hundreds of thousands parallel users even on a single instance
depending on parameters determined by the gamification concept or the underlying
infrastructure.

Since the proposed artifacts could significantly reduce the implementation and in-
tegration efforts for gamification with a low degree of invasivity and high degree of
performance as required by the surrounding gamification process, this research ques-
tion is considered to be appropriately answered.

9.2 OUTLOOK

Although this thesis solved major problems with regards to an effective and efficient
gamification process (Chapter 3) or the state-of-the-art technologies (Chapter 6), subse-
quent questions and problems emerged out of the solved ones. Those are summarized
in the following starting with questions related to the introduced GaML and ending with
additional questions for the gamification runtime environment.

9.2.1 TAXONOMY COMPLETENESS

The entire stack from meta-model, methods, and technical solutions proposed in this
thesis is, implicitly, merely as complete as the initial and surveyed requirements of
Chapter 4 are. Hence, a change in the requirements has to be potentially reflected in all
proposed artifacts, i.e., the GaML specification, the compiler, the runtime environment,
and the integration artifacts. Therefore, to drive the development of GaML further, a
lively discussion in academia and industry has to be initiated that eventually may lead
to a standardization of the language.

For this purpose, game mechanics have to be surveyed beyond the existing research
literature, e.g., by reviewing additional industry examples or non-research publications,
as provided herein. For example, other kinds of game mechanics or relationships be-
tween can be observed as requirements in practical projects and which are not pro-
vided by GaML yet. This list of additional elements includes, for example, virtual items
that are connected to a level progress structure, arbitrary conditions for avatar levels
rather than just connecting point thresholds to them, or further elements such as virtual
rooms or redeemable items (e.g., [43]).

9.2.2 OPERATIONAL SEMANTICS OF GAML

The dynamic semantics of GaML have been described as translational semantics, i.e.,
based on a particular target language and, furthermore, a certain computational model
(i.e., rule-based processing). Hence, the semantics are closely coupled with the utilized
runtime technologies.

However, to abstract further from the target code and specifics of the implemen-
tation, the dynamic semantics should be defined with a well-defined mechanism, for
example, using operational or denotational semantics [82]. As this would enable the
abstraction from a specific computational model, it is argued that this could help to

177

9 Summary and Outlook

establish the language further. For example, the specification could be used by other
vendors to propose other kinds of gamification runtimes (e.g., runtimes based on an
imperative computational model) that comply with the operational semantics and, thus,
fully support the intended concepts of the source language.

9.2.3 GRAPHICAL RULE EDITOR

In this thesis, GaML’s concrete syntax has been proposed to be textual. However, the
corresponding study shows that this textual representation negatively correlates with
the participants’ usage intentions of the language, despite the fact that they under-
stand it well. For example, in the study people reported that they may need additional
trainings, otherwise they may refuse to use it.

Nonetheless, based on the qualitative feedback that was gathered, it can be con-
cluded that representing the language with a graphical concrete syntax such as a form-
based graphical editor may increase adoption and usage intentions.

Hence, it is proposed that a graphical editor based on the full presented meta-model
or a subset thereof is created and compared with the textual form in a controlled ex-
periment. The working hypothesis here would be that the graphical editor increases
the various aspects with regards to ease of use and usage intentions without harming
understandability and modifiability.

Furthermore, this thesis has not studied the benefits of GaML compared to the tar-
get language, i.e., DRL herein. Another experiment could, therefore, show how much
GaML improves the understandability and modifiability compared to a technical lan-
guage which has to be used without GaML being in place.

Finally, the consideration of GaML’s writeability has been completely omitted in this
thesis, i.e., IT experts and, more specifically, domain experts are able to write valid
GaML instances on their own. In general domain-specific languages are not intended
to be writeable for domain experts [82]. However, having a graphical editor as concrete
syntax for GaML in place would allow studying this specific property as well. In par-
ticular, the working hypothesis would be that domain experts are at least able to write
simple gamification concepts on their own using a graphical editor.

9.2.4 AUTOMATIC DERIVATION OF BUSINESS ENTITY PROVIDER SEMANTICS

Given the proposed architecture of the runtime environment in asynchronous mode, a
so-called BEP proxy component was introduced to manage the state information locally
within the EPA (Section 7.3.3). It has been argued that this proxy has to provide exactly
the same interfaces including syntax and semantics as the master BEP plus handling
and synchronizing the messages in between.

In practice, the major disadvantage of this approach is that it is cumbersome to
implement on the one hand and hard to maintain over the system’s life-time on the
other hand.

More precisely, on the first implementation, the semantics of the interfaces’ meth-
ods have to be implemented twice, i.e., once for the real BEP and once for the BEP
proxy. Although syntax and semantics are required to be equal, both components may
use different implementation approaches to handle the data. For example, the real BEP
may use a database connection to persist the data, while the BEP proxy uses internal
data structures for efficiency purposes and has to deal with the message replication1.

1Of course, it is conceivable that the BEP proxy may use an in-memory database and, thus, may reuse
the implementation. However, this applies only to the data management and does not include the
message passing functionality

178

9.2 Outlook

More general, the BEP and the BEP proxy could be even based on different technolo-
gies or written in different programming languages.

Furthermore, the application developer has to ensure that every change in the mas-
ter BEP has to be reflected in the BEP proxy as well. While inconsistencies in the
syntax of interface implementations might be already detected at compile-time, chang-
ing the semantics may easily introduce inconsistent behaviors between the different
implementations.

Hence, it is proposed to investigate an automatic procedure that derives the BEP
proxy implementation from a general BEP’s specification. This could be done, for ex-
ample, in a model-driven way where a common meta-model is used to generate both
implementations of the BEP, potentially based on different programming languages
and technology platforms, automatically.

9.2.5 IMPROVED SYNCHRONIZATION STRATEGIES FOR TRANSACTIONAL
PROCESSING

In addition to the inconsistency problems regarding syntax and semantics, it has been
highlighted in Section 7.3.3 that the approach is not scalable without additional effort.
This concerns, for example, having one event processor instance per user, i.e., mul-
tiple EPAs, which are accessing and modifying the data concurrently. For this pur-
pose transactional mechanisms have to be investigated and proposed for rule-based
and event-based systems. However, simply translating optimistic locking strategies as
known from database technologies would require the introduction of rollback mecha-
nisms and, thus, requires to hold events and other data longer within memory than
necessary for the business logic. Furthermore, while a rollback takes places, event pro-
cessing has to be stopped or at least deferred. However, these mechanisms contradict
the performance requirements of real-time event processing.

These problems and additional questions regarding horizontal scalability have to be
answered to allow for a flexible and independent distribution of the proposed hybrid
architecture.

9.2.6 ADDITIONAL ENGINEERING ASPECTS

The gamification platform has been considered as a generic component in this thesis.
Hence, some implementation details were omitted which have been either partially
implemented in the thesis’ prototype only or are at least in preparation. The following
list compiles a non-exhaustive list of additional features which are necessary for a real
and productive gamification service.

First, the BEP and the EPA may support some kind of plug-in mechanisms that al-
lows others (e.g., third parties) to extend the current functionality, e.g., by adding new
entities and domain concepts, new or modified API interface definitions, or new core
rules and events. Furthermore, the plug-in mechanism may allow to exchange specific
technologies, e.g., a certain rule engine or persistency manager.

Second, multi-tenancy considerations have not been focused in this thesis. Taking
the current approach, each tenant (i.e., customer with exactly one gamification concept)
would require its own distinguished instance of the platform. However, with regards to
resource utilization it may be more efficient that multiple tenants share the same phys-
ical system. For this purpose, additional technology-specific concepts are necessary to
investigate. While the BEP might be simply enabled for multiple tenants by introduc-
ing an additional tenant column in the database schema, there are equivalent concepts

179

9 Summary and Outlook

for handling multi-tenancy in rule-based or event-driven technologies yet that consider
the nature of gamification rules and events. Additionally, the tenant notion might be
extended to gamification concepts, i.e., one customer may want to consolidate mul-
tiple disjoint gamification concepts under the same instance. This would require the
implementation and management of a two-dimensional tenant structure.

Third, security mechanisms within the gamification runtime environment have only
been partially considered and, therefore, require additional improvements. For exam-
ple, in Chapter 7 a global visibility flag per avatar has been proposed, i.e., to let the user
decide whether he or she wants to be visible to others or not. However, in practical
enterprise scenarios it would be necessary to configure the visibility and accessibility
of all gamification elements individually, i.e., the player may decide that he shows some
of the badges but not the points. For this configuration it is also necessary to reflect
that there are interdependencies between the elements.

Finally, the widgets proposed for fast front-end integration have been presented
in Section 8.2.2.5 as fixed software components, i.e., they are fixed with regards to
the presented content (e.g., collection of badges), the supported technologies (e.g.,
JavaScript), and their look and feel (e.g., only customizable via style sheets). For exam-
ple, there is exactly one widget for notifications, user-accepted mission, etc.

However, for practical scenarios it would be useful to model custom widgets in the
back-end first. For example, domain experts may design individual graphical compo-
nents with their own look and feel comprising a set of specific gamification elements.
The resulting design model is stored independent of the final technology platform.
Furthermore, these models can be used to automatically generate technology-specific
widgets which can be integrated and consumed by the front-end instead of the prede-
termined widgets. This would allow for more flexible gamification widgets beyond the
ones proposed by this thesis.

180

BIBLIOGRAPHY
[1] C. Abt. Serious Games. University Press of America, 1987.

[2] E. Adams. Fundamentals of Game Design. New Riders, 2010.

[3] J. Agrawal, Y. Diao, and D. Gyllstrom. Efficient Pattern Matching over Event
Streams. SIGMOD, 2008.

[4] H. Akaike. A new Look at the Statistical Model Identification. Automatic Control,
IEEE Transactions on, 19(6):716 – 723, dec 1974.

[5] L. Albert. Average Case Complexity Analysis of RETE Pattern-Match Algorith-
mand Average Size of Join in Databases. In C. Veni Madhavan, editor, Founda-
tions of Software Technology and Theoretical Computer Science, volume 405 of
Lecture Notes in Computer Science, pages 223–241. Springer Berlin Heidelberg,
1989.

[6] J. Allen. Maintaining Knowledge about Temporal Intervals. Communications of
the ACM, 26(11):832–843, 1983.

[7] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Archi-
tectures and Applications. Springer, 2004.

[8] A. Alves. Extensions to Logic Programming Inference Engines to Support CEP.
In RuleML ’09, 2009.

[9] L. Alwitt. Maintaining Attention to a Narrative Event. Advances in Psychology
Research, 18:99–114, 2002.

[10] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, and R. Studer. A Rule-
Based Language for Complex Event Processing and Reasoning. In P. Hitzler and
T. Lukasiewicz, editors, RR 2010, LNCS 6333, pages 42–57. Springer-Verlag, 2010.

[11] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic. Retractable Complex Event
Processing and Stream Reasoning. In N. Bassiliandes, G. Governatori, and
A. Paschke, editors, Rule-Based Reasoning, Programming, and Applications,
RuleML 2011, pages 122–137, 2011.

[12] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query Language: Se-
mantic Foundations and Query Execution. VLDB Journal, 15:121–142, 2006.

181

Bibliography

[13] E. Årseth, L. Manovich, F. Mäyrä, K. Salen, and M. J. Wolf. Define Real, Moron!
Some Remarks on Game Ontologies. In DIGAREC Keynote-Lectures, 10(6):50–
68, 2009.

[14] J. Avey, T. S. Wernsing, and F. Luthans. Can Positive Employees Help Positive Or-
ganizational Change? Impact of Psychological Capital and Emotions on Relevant
Attitudes and Behavior. Journal of Applied Behavioral Sciences, 44:pp. 48–70,
2008.

[15] B. Babcock, M. Datar, and R. Motwani. Load Shedding in Data Stream Systems.
In C. Aggarwal, editor, Data Streams, volume 31 of Advances in Database Sys-
tems, pages 127–147. Springer US, 2007.

[16] Badgeville, The Behavior Plattform. Available on http://www.badgeville.com/
platform/ (retrieved on 09.05.2012).

[17] A. B. Bakker and E. Demerouti. The Job Demand-Resource Model: State of the
Art. Journal of Managerial Psychology, 22:pp. 309–328, 2007.

[18] A. B. Bakker and E. Demerouti. Towards a Model of Work Engagement. Career
Development International, 13:pp. 209–223, 2008.

[19] A. Bangor, P. Kortum, and J. Miller. Determining what Individual SUS Scores
Mean: Adding an Adjective Rating Scale. Journal of Usability Studies, 4(3):114–
123, 2009.

[20] F. Barachini. Frontiers in Run-Time Prediction for the Production-System
Paradigm. AI Magazine, 15(3):47, 1994.

[21] F. Barachini, H. Mistelberger, and A. Gupta. Run-time Prediction for Production
Systems. In Proceedings of the Association for the Advancement of Artificial
Intelligence, pages 478–485, 1992.

[22] P. Barr. Video Game Values: Play as Human-Computer Interaction. PhD thesis,
Victoria University of Wellington, 2007.

[23] Beintoo. Available on http://documentation.beintoo.com/home/api-docs (re-
trieved on 18.11.2013).

[24] A. Bell. From the Front Lines DOA with SOA. Communications of ACM,
51(10):27–28, 2008.

[25] D. Bell and J. Grimson. Distributed Database Systems. Addison-Wesley Longman
Publishing Co., Inc., 1992.

[26] K. C. Berridge and T. E. Robinson. What is the Role of Dopamine in Reward: He-
donic Impact, Reward Learning, or Incentive Salience. Brain Research Reviews,
28(3):309–369, 1998.

[27] M. Bertoli, G. Casale, and G. Serazzi. JSIMGraph, 2013. Available on http:
//jmt.sourceforge.net/JSIMg.html (retrieved on 26.11.2013).

[28] Bigdoor Media, 2012. Available on http://www.bigdoor.com/how-it-works/
(retrieved on 05.05.2012).

182

http://www.badgeville.com/platform/
http://www.badgeville.com/platform/
http://documentation.beintoo.com/home/api-docs
http://jmt.sourceforge.net/JSIMg.html
http://jmt.sourceforge.net/JSIMg.html
http://www.bigdoor.com/how-it-works/

Bibliography

[29] S. Bista, S. Nepal, N. Colineau, and C. Paris. Using Gamification in an Online
Community. In Collaborative Computing: Networking, Applications and Work-
sharing (CollaborateCom), 2012 8th International Conference on, pages 611–618,
2012.

[30] S. Bjoerk. Game Design Pattern Wiki, 2012. Available on http://gdp2.tii.se/
index.php/ (retrieved on 12.06.2012).

[31] Bjoerk, Staffan and Holopainen, Jussi. Patterns in Game Design. Charles River
Media Inc., 2005.

[32] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo. An Approach of Early Disease
Detection using CEP and SOA. In Third International Conferences on Advanced
Service Computing, pages 143–148, 2011.

[33] B. Boyer. Robust Java benchmarking, Part 1: Issues. Available on http:
//www.ibm.com/developerworks/java/library/j-benchmark1/ (retrieved on
26.11.2013).

[34] B. Boyer. Robust Java benchmarking, Supplement. Available on
http://www.ellipticgroup.com/html/benchmarkingArticle.html (retrieved
on 26.11.2013).

[35] B. Brathwaite and I. Schreiber. Challenges for Game Designers. Cengage Learn-
ing, 2009.

[36] R. S. Brewer, G. E. Lee, Y. Xu, C. Desiato, M. Katchuck, and P. M. Johnson. Lights
Off. Game On. The Kukui Cup: A Dorm Energy Competition. In Proceedings of
the CHI 2011 Workshop Gamification: Using Game Design Elements in Non-
Game Contexts, 2011.

[37] L. C. Briand, K. El Emam, D. Surmann, I. Wieczorek, and K. D. Maxwell. An
Assessment and Comparison of Common Software Cost Estimation Modeling
Techniques. In Software Engineering, 1999. Proceedings of the 1999 Interna-
tional Conference on, pages 313 –323, may 1999.

[38] J. Brooke. SUS-A Quick and Dirty Usability Scale. Usability Evaluation in Industry,
189:194, 1996.

[39] R. Bruns and J. Dunkel. Event-Driven Architecture: Softwarearchitektur für
ereignisgesteuerte Geschäftsprozesse. Springer, 2010.

[40] S. Brunstein. Cost Model for the SAP Gamification Platform. Master’s thesis,
Johannes Kepler University Linz, 2013.

[41] T. Buckel. Zum Potential von Event-Driven Architecture für komplexe Un-
ternehmensnetzwerke. In Multikonferenz Wirtschaftsinformatik, pages 83–95.
GITO, 2012.

[42] Bunchball. Available on wiki.bunchball.com (retrieved on 26.02.2014).

[43] Bunchball Inc. Available on http://www.bunchball.com/ (retrieved on
09.05.2012).

[44] Bunchball Inc. Gamification 101: An Introduction to the Use of Game Dy-
namics to Influence Behavior, 2010. Available on http://www.bunchball.com/
gamification/gamification101.pdf (retrieved on 27.07.2011).

183

http://gdp2.tii.se/index.php/
http://gdp2.tii.se/index.php/
http://www.ibm.com/developerworks/java/library/j-benchmark1/
http://www.ibm.com/developerworks/java/library/j-benchmark1/
http://www.ellipticgroup.com/html/benchmarkingArticle.html
wiki.bunchball.com
http://www.bunchball.com/
http://www.bunchball.com/gamification/gamification101.pdf
http://www.bunchball.com/gamification/gamification101.pdf

Bibliography

[45] E. Byrne. Game Level Design. Cengage Learning, 2005.

[46] R. Caillois. Man, Play and Games. University of Illinois Press, Urbana, Chicago,
2001.

[47] E. H. Calvillo-Gámez, P. Cairns, and A. L. Cox. Assessing the Core Elements of
the Game Experience, chapter 4, pages 47–71. Springer, 2010.

[48] J. M. Carroll. The Adventure of Getting To Know a Computer. Computer,
15(11):49–58, 1982.

[49] J. M. Carroll and J. C. Thomas. Metaphor and the Cognitive Representation
of Computing Systems. IEEE Transactions on Systems, Man, and Cybernetics,
12:107–16, 1982.

[50] CellCast. Available on http://enterprise-gamification.com/mediawiki/
index.php?title=CellCast_Solution (retrieved on 18.11.2013).

[51] CellCast. Available on http://www.mlearning.com/cellcast/downloads/
Gamification.pdf (retrieved on 18.11.2013).

[52] S. Chakravarthy and R. Adaikkalavan. Events and Streams: Harnessing and Un-
leashing Their Synergy! In Proceedings of the Second International Conference
on Distributed Event-based Systems, DEBS ’08, pages 1–12, New York, NY, USA,
2008. ACM.

[53] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification Lan-
guage for Active Databases. Data & Knowledge Engineering, 14(1):1 – 26, 1994.

[54] J. Cheesman and J. Daniels. UML Components. Addison-Wesley Reading, 2001.

[55] A. Chinaei. Programming Languages, 2010. Available on http://ece.uprm.
edu/~ahchinaei/courses/2010jan/icom4036/slides/03icom4036Intro.pdf
(retrieved on 10.08.2013).

[56] CHIO Aachen. Available on http://www.chioaachen.de/ (retrieved on
04.12.2012).

[57] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in
Software Engineering (THE KLUWER INTERNATIONAL SERIES IN SOFTWARE
ENGINEERING Volume 5). Springer, 1st edition, Oct. 1999.

[58] J. Cohen. Statistical Power Analysis for the Behavioral Sciences (2nd Edition).
Routledge, 2 edition, Jan. 1988.

[59] L. J. Cronbach. Coefficient Alpha and The Internal Consistency of Tests. Psych-
moetrika, 16:pp. 297–334, 1951.

[60] C. Crumlish and E. Malone. Designing Social Interfaces: Principles, Patterns, and
Practices for Improving the User Experience. Yahoo Press, 2009.

[61] M. Csikszentmihalyi. Beyond Boredom and Anxiety. Jossey Bass, San Francisco,
CA, 1 edition, 1975.

[62] M. Csikszentmihalyi. Flow: The Psychology of Optimal Experience. Harper Peren-
nial Modern Classics, New York, 2008.

184

http://enterprise-gamification.com/mediawiki/index.php?title=CellCast_Solution
http://enterprise-gamification.com/mediawiki/index.php?title=CellCast_Solution
http://www.mlearning.com/cellcast/downloads/Gamification.pdf
http://www.mlearning.com/cellcast/downloads/Gamification.pdf
http://ece.uprm.edu/~ahchinaei/courses/2010jan/icom4036/slides/03icom4036Intro.pdf
http://ece.uprm.edu/~ahchinaei/courses/2010jan/icom4036/slides/03icom4036Intro.pdf
http://www.chioaachen.de/

Bibliography

[63] C. J. Date. An Introduction to Database Systems. Pearson Addison-Wesley,
Boston, MA, 8. edition, 2004.

[64] E. Demerouti, A. B. Bakker, F. Nachreiner, and W. B. Schaufeli. The Job Demands-
Resource Model of Burnout. Journal of Applied Psychology, 86:pp. 499–512,
2001.

[65] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. From Game Design Elements
to Gamefulness: Defining Gamification. In MindTrek ’11 Proceedings of the 15th
International Academic MindTrek Conference: Envisioning Future Media Environ-
ments, pages 9–15. ACM, 2011.

[66] S. Deterding, R. Kahled, L. Nacke, and D. Dixon. Gamification: Toward a Defini-
tion. In CHI 2011, pages 1–4, 2011.

[67] R. B. Doorenbos. Production Matching for Large Learning Systems. PhD thesis,
University of Southern California, 1995.

[68] J. Dormans. Engineering Emergence: Applied Theory for Game Design. Univer-
sity of Amsterdam, 2012.

[69] S. Dromgoole. A View from the Marketplace: Games Now and Going Forward.,
2011. Available on http://de.scribd.com/doc/13714815/Sean-Dromgoole-
CEO-Some-Research-Gamevision (retrieved on 08.08.2011).

[70] Drools, 2012. Available on http://www.jboss.org/drools/documentation (re-
trieved on 05.05.2012).

[71] K. Duggan and K. Shoup. Business Gamification for Dummies. John Wiley &
Sons, 2013.

[72] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and J. Togelius. Towards
a Video Game Description Language. Artificial and Computational Intelligence in
Games, 6:85–100, 2013.

[73] Eclipse Xtext, 2013. Available on http://www.eclipse.org/Xtext/ (retrieved on
09.10.2013).

[74] Entertainment Software Association. Essential Facts About the Game Indus-
try: 2013 Sales, Demographic and Usage Data, 2011. Available on: http:
//www.theesa.com/facts/pdfs/esa_ef_2013.pdf (retrieved on 12.02.2014).

[75] J. Erickson and K. Siau. Web Services, Service-oriented Computing, and Service-
oriented Architecture: Separating Hype from Reality. Journal of Database Man-
agement, 19(3):42–54, 2008.

[76] T. Erl. SOA Design Patterns. Prentice-Hall, 2009.

[77] Esper, 2012. Available on http://esper.codehaus.org (retrieved on
05.05.2012).

[78] EventZero. Available on http://www.eventzero.com/ (retrieved on 09.05.2012).

[79] J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius. A Card Game Descrip-
tion Language. In Applications of Evolutionary Computation, pages 254–263.
Springer, 2013.

185

http://de.scribd.com/doc/13714815/Sean-Dromgoole-CEO-Some-Research-Gamevision
http://de.scribd.com/doc/13714815/Sean-Dromgoole-CEO-Some-Research-Gamevision
http://www.jboss.org/drools/documentation
http://www.eclipse.org/Xtext/
http://www.theesa.com/facts/pdfs/esa_ef_2013.pdf
http://www.theesa.com/facts/pdfs/esa_ef_2013.pdf
http://esper.codehaus.org
http://www.eventzero.com/

Bibliography

[80] C. L. Forgy. On the Efficient Implementation of Production Systems. PhD thesis,
Carnegie-Mellon University, 1979.

[81] C. L. Forgy. RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence, 19(1):17 – 37, 1982.

[82] M. Fowler. Domain-Specific Languages. Pearson Education, 2010.

[83] T. Fullerton. Game Design Workshop: A Playcentric Approach to Creating Innova-
tive Games. CRC Press, 2008.

[84] GamInside, 2013. Available on http://gaminside.com/ (retrieved on
26.02.2013).

[85] Gigya, 2012. Available on http://developers.gigya.com/010_Developer_
Guide/40_Gamification/030_Configuration_and_Administration (retrieved
on 29.05.2012).

[86] Gigya, 2012. Available on http://www.gigya.com/gamification (retrieved on
29.05.2012).

[87] B. Gnauk, L. Dannecker, and M. Hahmann. Leveraging Gamification in Demand
Dispatch Systems. In Proceedings of the 2012 Joint EDBT/ICDT Workshops,
pages 103–110. ACM, 2012.

[88] F. Groh. Gamification: State of the Art Definition and Utilization. In N. Asaj,
B. Könings, M. Poguntke, F. Schaub, B. Wiedersheim, and M. Weber, editors,
Proceedings of the 4th Seminar on Research Trends in Media Informatics, pages
39–45, 2011.

[89] A. Gupta. Parallelism in Production Systems: The Sources and the Expected
Speed-up. Technical report, Carnegie Mellon University, 1984.

[90] J. Hamari and V. Eranti. Framework for Designing and Evaluating Game Achieve-
ments. In Proceedings of DiGRA 2011 Conference, 2011.

[91] J. Hamari, J. Koivisto, and H. Sarsa. Does Gamification Work? - A Literature
Review of Empirical Studies on Gamification. In Proceedings of the 47th Hawaii
International Conference on System Sciences. HICSS, 2014.

[92] J. Hartung and B. Elpelt. Multivariate Statistik: Lehr- und Handbuch der ange-
wandten Statistik. R. Oldenbourg, München, Wien, 7 edition, 2007.

[93] M. Herger. Gamification and Law or How to stay out of Prison despite Gami-
fication. Available on http://enterprise-gamification.com/index.php/en/
blog/4-blog/65-gamification-and-law-or-how-to-stay-out-of-prison-
despite-gamification (retrieved on 21.06.2012).

[94] P. Herzig, M. Ameling, and A. Schill. Workplace Psychology and Gamification:
Theory and Application. In T. Reiners and L. Wood, editors, Gamification in Edu-
cation and Business. Springer, 2014.

[95] P. Herzig, S. Strahringer, and M. Ameling. Gamification of ERP Systems - Ex-
ploring Gamification Effects on User Acceptance Constructs. In Multikonferenz
Wirtschaftsinformatik, pages 793–804. GITO, 2012.

186

http://gaminside.com/
http://developers.gigya.com/010_Developer_Guide/40_Gamification/030_Configuration_and_Administration
http://developers.gigya.com/010_Developer_Guide/40_Gamification/030_Configuration_and_Administration
http://www.gigya.com/gamification
http://enterprise-gamification.com/index.php/en/blog/4-blog/65-gamification-and-law-or-how-to-stay-out-of-prison-despite-gamification
http://enterprise-gamification.com/index.php/en/blog/4-blog/65-gamification-and-law-or-how-to-stay-out-of-prison-despite-gamification
http://enterprise-gamification.com/index.php/en/blog/4-blog/65-gamification-and-law-or-how-to-stay-out-of-prison-despite-gamification

Bibliography

[96] D. L. Hoffman and T. P. Novak. Flow Online: Lessons Learned and Future
Prospects. Journal of Interactive Marketing, 23(1):pp. 23–34, 2009.

[97] D. Holmes. Inside the Hotspot VM: Clocks, Timers and Scheduling Events.
Available on http://blogs.sun.com/dholmes/entry/inside_the_hotspot_vm_
clocks (retrieved on 26.11.2013).

[98] K. Huotari and J. Hamari. Defining Gamification: A Service Marketing Perspec-
tive. In Proceeding of the 16th International Academic MindTrek Conference,
MindTrek ’12, pages 17–22, New York, NY, USA, 2012. ACM.

[99] IBM Netcool Impact. Available on http://www-01.ibm.com/software/tivoli/
products/netcool-impact/ (retrieved on 09.05.2012).

[100] Informatica Rule Point. Available on http://www.informatica.com/us/
products/complex-event-processing/ (retrieved on 09.05.2012).

[101] iOS GameCenter, 2013. Available on http://developer.apple.com/ (retrieved
on 26.02.2013).

[102] C. M. Jarque and A. K. Bera. Efficient Tests for Normality, Homoscedasticity
and Serial Independence of Regression Residuals. Economics Letters, pages S.
255–259, 1980.

[103] A. Järvinen. Games Without Frontiers: Theories and Methods for Game Studies
and Design. PhD thesis, University of Tampere, 2008.

[104] N. M. Josuttis. SOA in Practice - The Art of Distributed System Design. O’Reilly,
2007.

[105] JSON-RPC 2.0 Specification. Available on http://www.jsonrpc.org/
specification (retrieved on 02.03.2014).

[106] J. Juul. The Open and the Closed: Games of Emergence and Games of Pro-
gression. In F. Mayer, editor, Proceedings of Computer Games and Digital Cul-
tures Conference, pages 323–329. Tampere University Press, Tampere University
Press, 2002.

[107] J. Juul. Half-real: Video Games Between Rules and Fictional Worlds. MIT Press,
2005.

[108] T. Kaczmarek and K. Wecekl. Hype over Service Oriented Architecture Continues.
WIRTSCHAFTSINFORMATIK, 50(1):52–58, 2008.

[109] K. M. Kapp. The Gamification of Learning and Instruction: Game-Based Methods
and Strategies for Training and Education. Pfeiffer, 2012.

[110] D. R. A. Kenneth P. Burnham. Multimodel Inference: Understanding AIC and BIC
in Model Selection. Sociological Methods & Research, 33(2):261–304, 2004.

[111] C. Kisslat. A Tutorial to Machinations Diagrams, 2013. Available
on http://www.kisslat.com/Machinations.swf?file=http://www.kisslat.
com/wp-content/uploads/2012/08/example.xml (retrieved on 10.12.2013).

[112] A. Kleppe. Software Language Engineering: Creating Domain-specific Languages
using Metamodels. Pearson Education, 2008.

187

http://blogs.sun.com/dholmes/entry/inside_the_hotspot_vm_clocks
http://blogs.sun.com/dholmes/entry/inside_the_hotspot_vm_clocks
http://www-01.ibm.com/software/tivoli/products/netcool-impact/
http://www-01.ibm.com/software/tivoli/products/netcool-impact/
http://www.informatica.com/us/products/complex-event-processing/
http://www.informatica.com/us/products/complex-event-processing/
http://developer.apple.com/
http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
http://www.kisslat.com/Machinations.swf?file=http://www.kisslat.com/wp-content/uploads/2012/08/example.xml
http://www.kisslat.com/Machinations.swf?file=http://www.kisslat.com/wp-content/uploads/2012/08/example.xml

Bibliography

[113] A. G. Kleppe, J. B. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

[114] M. J. Koepp, R. N. Gunn, A. D. Lawrence, V. J. Cunningham, A. Dagher, T. Jones,
D. J. Brooks, C. J. Bench, and P. Grasby. Evidence for Striatal Dopamine Release
During a Video Game. Nature, 393:266–268, 1998.

[115] R. Kohavi. A Study of Cross-validation and Bootstrap for Accuracy Estimation and
Model Selection. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA,
USA, 1995. Morgan Kaufmann Publishers Inc.

[116] A. Kozlenkov, D. Jeffery, and A. Paschke. State Management and Concurrency
in Event Processing. In Proceedings of the Third ACM International Conference
on Distributed Event-Based Systems, DEBS ’09, pages 23:1–23:4, New York, NY,
USA, 2009. ACM.

[117] J. Kraemer and B. Seeger. Semantics and Implementation of Continuous Slid-
ing Window Queries over Data Streams. ACM Trans. Database Systems, 34(1),
2009.

[118] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA - Service-oriented Architec-
ture Best Practices. Prentice Hall International, 2005.

[119] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley
Professional, 2004.

[120] S. Kuo, B. Lee, and W. Tian. Real-Time Digital Signal Processing: Implementa-
tions and Applications. Wiley and Sons Ltd., 2006.

[121] A. Lang, D. Potter, and M. E. Grabe. Making News Memorable: Applying Theory
to the Production of Local Television News. Journal of Broadcasting & Electronic
Media, 47(1):113–123, 2003.

[122] Leaderboarded, 2013. Available on http://www.leaderboarded.com/ (retrieved
on 26.02.2013).

[123] M. LeBlanc. The Game Design Reader: A Rules of Play Anthology, chapter Tools
for Creating Dramatic Game Dynamics, pages 438–459. The MIT Press, 2006.

[124] O. Levina and V. Stantchev. Realizing Event-Driven SOA. In Int. Conf. on Internet
and Web Applications and Services, pages 37–42, Venice/Mestre, 2009. IEEE.

[125] S. Lim and B. Reeves. Being in the Game: Effects of Avatar Choice and
Point of View on Psychophysiological Responses during Play. Media Psychology,
12(4):348–370, 2009.

[126] D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, New York, 2007.

[127] D. Luckham. SOA, EDA, BPM and CEP are all Complementary - Part 1, 2012.
Available on http://complexevents.com/wp-content/uploads/2007/05/SOA_
EDA_Part_1.pdf (retrieved on 03.03.2012).

[128] D. Luckham. SOA, EDA, BPM and CEP are all Complementary - Part 2, 2012.

188

http://www.leaderboarded.com/
http://complexevents.com/wp-content/uploads/2007/05/SOA_EDA_Part_1.pdf
http://complexevents.com/wp-content/uploads/2007/05/SOA_EDA_Part_1.pdf

Bibliography

[129] D. Luckham and R. Schulte. Event Processing Glossary, July 2008. Avail-
able on http://www.ep-ts.com/component/option,com_docman/task,doc_
download/gid,66/Itemid,84/ (retrieved on 08.05.2012).

[130] F. Luthans. The Need for and Meaning of Positive Organizational Behavior. Jour-
nal of Organizational Behavior, 23:695–706, 2002.

[131] F. Luthans, C. M. Youssef, and B. J. Avolio. Psychological Capital: Developing the
Human Competitive Edge. Oxford University Press, Oxford, 2007.

[132] T. Mahlmann. Modelling and Generating Strategy Games Mechanics. PhD the-
sis, IT University of Copenhagen, 2013.

[133] T. W. Malone. Heursitics for Designing Enjoyable User Interfaces: Lessons from
Computer Games. In Proceedings of the Conference on Human Factors in Com-
puter Systems, 1982.

[134] A. Manger. Wiederverwendbare UI Widgets für Gamification Software. Master’s
thesis, Technische Universität Dresden, 2013.

[135] S. McCallum. Gamification and Serious Games for Personalized Health. Studies
in health technology and informatics, 177:85–96, 2012.

[136] J. McGonigal. Reality is Broken: Why Games Make Us Better and How They
Can Change The World. The Penguin Press, New York, 2011.

[137] Y. Mei and S. Madden. Zstream: a cost-based query processor for adaptively
detecting composite events. In SIGMOD, pages 193–206, 2009.

[138] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting Best Practices for Effort
Estimation. Software Engineering, IEEE Transactions on, 32(11):883 –895, nov.
2006.

[139] R. B. Miller. Response Time in Man-Computer Conversational Transactions. In
Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, part
I, AFIPS ’68 (Fall, part I), pages 267–277, New York, NY, USA, 1968. ACM.

[140] R. C. Milton. An Extended Table of Critical Values for the Mann-Whitney
(Wilcoxon) Two-Sample Statistic. Statistical Association, 59:pp. 925–934, 1964.

[141] M. Montola, T. Nummenmaa, A. Lucerano, M. Boberg, and H. Korhonen. Apply-
ing Game Achievements Systems to Enhance User Experience in a Photo Sharing
Service. In MindTrek’09: Proceedings of the 13th International MindTrek Confer-
ence: Everyday Life in the Ubiquitous Era, pages 94–97, 2009.

[142] Mplifyr, 2013. Available on https://www.mplifyr.com/ (retrieved on
03.04.2013).

[143] OASIS. Reference Model for Service Oriented Architecture 1.0, 2006. Avail-
able on http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf (retrieved on
19.06.2012).

[144] H. Obweger, J. Schiefer, M. Suntinger, and R. Thullner. Entity-Based State Man-
agement for Complex Event Processing. In N. Bassiliandes, G. Governatori,
and A. Paschke, editors, Rule-Based Reasoning, Programming, and Applications,
pages 154–169. Springer, 2011.

189

http://www.ep-ts.com/component/option,com_docman/task,doc_download/gid,66/Itemid,84/
http://www.ep-ts.com/component/option,com_docman/task,doc_download/gid,66/Itemid,84/
https://www.mplifyr.com/
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

Bibliography

[145] M. Oja and J. Riekki. Ubiquitous Framework for Creating and Evaluating Per-
suasive Applications and Games. In Grid and Pervasive Computing Workshops,
2012.

[146] Open Badges. Available on http://openbadges.org/en-US/ (retrieved on
29.05.2012).

[147] A. P. B. L. Pablo Gay and J. Meléndez. Service Workflow Monitoring through
Complex Event Processing. In Emerging Technologies and Factory Automation
(ETFA), 2010.

[148] R. Paharia. Loyalty 3.0: How to Revolutionize Customer and Employee Engage-
ment with Big Data and Gamification. McGraw Hill Professional, 2013.

[149] M. P. Papazoglou. Service-oriented computing: Concepts, Characteristics and
Directions. In Proceedings of the Fourth International Conference on Web Infor-
mation Systems Engineering, pages 3–12, 2003.

[150] M. P. Papazoglou, P. Traverso, S. Dustar, and F. Leymann. Service-oriented Com-
puting: State of the Art and Research Challenges. Computer, 40(11):38–45, 2007.

[151] T. Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013.

[152] A. Paschke and A. Kozlenkov. Rule-Based Event Processing and Reaction Rules.
In G. Governatori, J. Hall, and A. Paschke, editors, Rule Interchange and Applica-
tions, RuleML 2009, pages 53–66. Springer, 2009.

[153] N. Paton. Active database systems. In ACM Computer Surveys. ACM Press,
1989.

[154] C. Pettey and R. van der Meulen. Gartner Says by 2014, 80 Percent of Current
Gamified Applications Will Fail to Meet Business Objectives Primarily Due to Poor
Design, 2012. Available on http://www.gartner.com/newsroom/id/2251015 (re-
trieved on 28.03.2014).

[155] PlayStation Network. Available on http://de.playstation.com/psn/ (retrieved
on 09.05.2012).

[156] PlayVox, 2013. Available on http://www.arcaris.com/ (retrieved on
26.02.2013).

[157] D. Port and M. Korte. Comparative Studies of the Model Evaluation Criterions
MMRE and PRED in Software Cost Estimation Research. In Proceedings of the
Second ACM-IEEE international symposium on Empirical software engineering
and measurement, ESEM ’08, pages 51–60, New York, NY, USA, 2008. ACM.

[158] Practically Green. Available on http://www.practicallygreen.com/ (retrieved
on 09.05.2012).

[159] Progress Apama Event Processing Platform. Available on http://
www.progress.com/en/apama/event-processing-platform.html (retrieved on
09.05.2012).

[160] PunchTab. Available on http://www.punchtab.com (retrieved on 09.05.2012).

[161] PunchTab. Available on http://www.punchtab.com/developer-docs#
leaderboard (retrieved on 09.05.2012).

190

http://openbadges.org/en-US/
http://www.gartner.com/newsroom/id/2251015
http://de.playstation.com/psn/
http://www.arcaris.com/
http://www.practicallygreen.com/
http://www.progress.com/en/apama/event-processing-platform.html
http://www.progress.com/en/apama/event-processing-platform.html
http://www.punchtab.com
http://www.punchtab.com/developer-docs#leaderboard
http://www.punchtab.com/developer-docs#leaderboard

Bibliography

[162] B. Reeves and J. L. Read. Total Engagement: Using Games and Virtual Worlds
to Change the Way People Work and Businesses Compete. Harvard Business
Press, Boston, MA, 2009.

[163] L. Reinecke. Games at Work: The Recreational Use of Computer Games During
Work Hours. Cyberpsychology, Behavior and Social Networking, 12(4):pp. 461–
465, Aug. 2009.

[164] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation Systems.
Communications of the ACM, 43(12):45–48, 2000.

[165] Results.com. Available on http://info.results.com/ (retrieved on 18.11.2013).

[166] R. Ross and G. Lam. Capturing Business Rules. Wiley Computer Publishing,
2000.

[167] R. RuleML. Available on: http://reaction.ruleml.org (retrieved on
08.05.2012).

[168] M.-L. Ryan. Narrative as Virtual Reality: Immersion and Interactivity in Literature
and Electronic Media. Johns Hopkins University Press Baltimore, MA, 2001.

[169] R. M. Ryan and E. L. Deci. Self-Determination Theory and the Facilitation of In-
trinsic Motivation, Social Development, and Well-Being. American Psychologist,
55:pp. 68–78, 2000.

[170] L. Sachs and J. Hedderich. Angewandte Statistik: Methodensammlung mit R.
Springer Verlag, Berlin, Heidelberg, New York, 12 edition, 2006.

[171] K. Salen and E. Zimmermann. Rules of Play: Game Design Fundamentals. MIT
Press, 2004.

[172] E. Sandewall. Combining Logic and Differential Equations for Describing Real-
World Systems. KR 1989, 1989.

[173] J. Schell. The Art of Game Design: A Book of Lenses. Elsevier Inc., 2008.

[174] D. Schlachter. Einbindung von Funktionen einer generischen Gamification Plat-
tform in mobile Anwendungen. Master’s thesis, Duale Hochschule Baden-
Württemberg, 2012.

[175] M. L. Scott. Programming Language Pragmatics. Morgan Kaufmann, third edition
edition, 2009.

[176] T. Sellis, C. Lin, and L. Raschid. Coupling production systems and database sys-
tems. In ACM SIGMOD International Conference on the Management of Data,
1993.

[177] M. Sicart. Defining Game Mechanics. Game Studies, 8(2):1–14, 2008.

[178] L. Singer and K. Schneider. It was a Bit of a Race: Gamification of Version Control.
In Games and Software Engineering (GAS), 2012 2nd International Workshop on,
pages 5–8, June 2012.

[179] E. J. Sinz. SOA und die bewährten methodischen Grundlagen der Entwicklung
betrieblicher IT-Systeme. WIRTSCHAFTSINFORMATIK, 1:70–72, 2008.

191

http://info.results.com/
http://reaction.ruleml.org

Bibliography

[180] D. Sottara, P. Mello, and M. Proctor. A Configurable Rete-OO Engine for Reason-
ing with Different Types of Imperfect Information. IEEE Transactions on Knowl-
edge and Data Engineering, 22:1535–1548, 2010.

[181] Steam. Available on https://developer.valvesoftware.com/wiki/Steam_
Web_API (retrieved on 18.11.2013).

[182] N. Stojanovic and A. Artikis. On Complex Event Processing for Real-Time Situa-
tional Awareness. In N. Bassiliandes, G. Governatori, and A. Paschke, editors,
Rule-Based Reasoning, Programming, and Applications, RuleML 2011, pages
114–121, 2011.

[183] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 Requirements of Real-time
Stream Processing. SIGMOD Rec., 34(4):42–47, Dec. 2005.

[184] Streambase. Available on http://www.streambase.com/ (retrieved on
08.05.2012).

[185] Sybase Inc. FlexStreams, 2013. Available on http://www.sybase.
de/products/financialservices-solutions/complex-event-processing (re-
trieved on 09.05.2012).

[186] K. Teymourian, M. Rohde, and A. Paschke. Fusion of Background Knowledge
and Streams of Events. In Proceedings of the 6th ACM International Conference
on Distributed Event-Based Systems, pages 302–313. ACM, 2012.

[187] M. Thielscher. A General Game Description Language for Incomplete Informa-
tion Games. In AAAI, volume 10, pages 994–999, 2010.

[188] N. Thillainathan, H. Hoffmann, and J. M. Leimeister. Shack City - A Serious
Game for Apprentices in the Field of Sanitation, Heating, and Cooling (SHaC). In
Informatik 2013 - Virtuelle Welten und Gamification, Koblenz, Germany, 2013.

[189] J. Thom, D. R. Millen, and J. DiMicco. Removing Gamification from an Enter-
prise. In Proceedings CSCW, pages 1067–1070, 2012.

[190] Tibco. Available on http://www.tibco.com/products/business-
optimization/complex-event-processing/default.jsp (retrieved on
08.05.2012).

[191] P. Trkman, A. Kovacic, and A. Popovic. SOA Adoption Phases. A Case Study.
Business Information Systems Engineering, 4:201–212, 2011.

[192] T. S. Tullis and J. N. Stetson. A Comparison of Questionnaires for Assessing
Website Usability. In Usability Professional Association Conference, 2004.

[193] Userinfuser. Available on http://code.google.com/p/userinfuser/ (retrieved
on 29.05.2012).

[194] E. D. Valle, S. Ceri, F. van Harmelen, and D. Fensel. It’s a Streaming World!
Reasoning upon Rapidly Changing Information. The Semantic Web, pages 83–
89, 2009.

[195] W. M. van der Aalst. Pi Calculus versus Petri Nets: Let us Eat "Humble Pie"
Rather Than Further Inflate the "Pi Hype". BPTrends, 3(5):1–11, 2005.

192

https://developer.valvesoftware.com/wiki/Steam_Web_API
https://developer.valvesoftware.com/wiki/Steam_Web_API
http://www.streambase.com/
http://www.sybase.de/products/financialservices-solutions/complex-event-processing
http://www.sybase.de/products/financialservices-solutions/complex-event-processing
http://www.tibco.com/products/business-optimization/complex-event-processing/default.jsp
http://www.tibco.com/products/business-optimization/complex-event-processing/default.jsp
http://code.google.com/p/userinfuser/

Bibliography

[196] B. von Halle. Business Rules Applied: Building Better Systems Using the Busi-
ness Rule Approach. Wiley Computer Publishing, 2002.

[197] K. Werbach and D. Hunter. For the Win: How Game Thinking Can Revolutionize
Your Business. Wharton Digital Press, 2012.

[198] B. Wolf, P. Herzig, I. Behrens, A. Majumdar, and M. Ameling. Data Stream Pro-
cessing in Factory Automation. In Emerging Technologies and Factory Automa-
tion (ETFA), 2010 IEEE Conference on, pages 1 –8, sept. 2010.

[199] XBox Live. Available on http://www.xbox.com/ (retrieved on 09.05.2012).

[200] P. Yuan and H. Jin. A Composite-Event-Based Message-Oriented Middleware. In
M. Li, X.-H. Sun, Q.-n. Deng, and J. Ni, editors, Grid and Cooperative Computing,
volume 3032 of Lecture Notes in Computer Science, pages 700–707. Springer
Berlin Heidelberg, 2004.

[201] J. P. Zagal, M. Mateas, C. Fernández-Vara, B. Hochhalter, and N. Lichti. Towards
an Ontological Language for Game Analysis. In DiGRA 2005 Conference, 2005.

[202] G. Zichermann and C. Cunningham. Gamification by Design: Implementing
Game Mechanics in Web and Mobile Apps. O’Reilly Media, 2011.

[203] Zurmo. Available on http://zurmo.org/wiki (retrieved on 18.11.2013).

193

http://www.xbox.com/
http://zurmo.org/wiki

A GAML ELEMENTS
This appendix presents the entire specification of GaML’s grammar. This also includes
selected examples as presented in Chapter 5.

A.1 TERMINALS

DATATYPE

Boolean
�� ��

�Text
�� �

�

�
�DATETYPE

�NUMTYPE

�

NUMTYPE

Number
�� ��

�Decimal
�� �

�

DATETYPE

Date
�� ��

�Time
�� �

�

Figure A.1: Terminal rules

195

A GaML Elements

TIME

INT h
����

�min
�� �� s
���

�

COMPARATOR

>
����

� <
����<=
�� �� =
����>=
�� ��<>
�� �

�

AGGREGATION

SUM
�� ��

�MAX
�� ��MIN
�� �

�

Figure A.2: Terminal rules 2

196

A.1 Terminals

NUMEXPR

NUMERICOPERAND �
�OPERATOR NUMEXPR

�

�
� (

���NUMERICOPERAND �
�OPERATOR NUMEXPR

�

)
����

�
��

�OPERATOR NUMEXPR

�

�

OPERATOR

+
����

� -
���� /
���� *
����hat
�� �� %
���

�

RefOp

ID .
��� ID�

�player
�� �

�

Figure A.3: General numeric expressions

197

A GaML Elements

NUMERICOPERAND

INT�
�DOUBLE

�RefOp

�

TIMEOPERAND

NOW
�� ��

�TIME

�

EQUALITYTYPES

STRING�
� true

�� ��
�false

�� �
�

�

Figure A.4: Operand types

198

A.2 L1 Concepts

A.2 L1 CONCEPTS

Model

concept
�� �ID {

����
� Element�

�
�

�

}
���

Element

GameLevel�
�Point

�Skill

�Mission

�Role

�Leaderboard

�Level

�Good

�Badge

�Event

�

Figure A.5: Space syntax (as shown in Figure 5.1)

199

A GaML Elements

GameLevel

gameLevel
�� �ID {

����
�

�name
�� �=

���STRING ,
���completed

�� �When �
�

��
� ,

���completeOpenMissions
�� �

�

�
�

��
� ,

���followUpGameLevel
�� �=

���ID

�

�
�

��
� ,

���description
�� �=

���STRING

�

�
� Element�

�
�

�

}
���

Figure A.6: Game level syntax (as shown in Figure 5.2)

200

A.2 L1 Concepts

Event

EventClass ID �
�EventBody

�

EventClass

useraction
�� ��

�internalevent
�� ��externalevent
�� �

�

EventBody

{
���EventData �

� InverseEvent

�

}
���

InverseEvent

inverseEvent
�� �{

���name
�� �=

���ID ,
���joins on

�� �=
���ID }

���
EventData

properties
�� �{

���Field �
� ,

���Field�
�

�

�

}
���

Field

ID :
���DATATYPE

Figure A.7: Event syntax

Badge

badge
�� �ID {

���name
�� �=

���STRING �
�

��
� ,

���description
�� �=

���STRING

�

,
���image

�� �=
���STRING �

�
��

� ,
���hidden

�� �
�

�
�When

�

}
���

Figure A.8: Achievement syntax

201

A GaML Elements

Point

point
�� �ID {

����
�

��
�default

�� �
�

name
�� �=

���STRING �
�

��
� ,

���description
�� �=

���STRING

�

�
�

��
� ,

���abbreviation
�� �=

���STRING

�

�
�

��
� ,

���internal
�� �

�

�
� ,

���type
�� �=

���POINTTYPE

�

�
�

��
� Rule�

�
�

�

}
���

POINTTYPE

ADVANCING
�� ��

�REDEEMABLE
�� ��KARMA
�� ��SKILLPOINT
�� ��AUXILIARY
�� �

�

�

�REPUTATION
�� �[

���INT ,
���INT]

���

�

Figure A.9: Point syntax

202

A.2 L1 Concepts

Mission

mission
�� �ID {

����
�

�name
�� �=

���STRING ,
���description

�� �=
���STRING �

�
��

� ,
���available

�� �When

�

�
�

��
� ,

���initiatedBy
�� �=

��� rule
�� ��

�user
�� �

�

�

�

�
��

� �
�not

�� �
�

Rule �
� or

�� ��
�not

�� �
�

�

�
�Rule

�

�

�

�

�

}
���

Figure A.10: Mission syntax

203

A GaML Elements

Skill

skill
�� �ID {

����
�

�name
�� �=

���STRING �
�

� ,
���description

�� �=
���STRING �

�
� ,

���image
�� �=

���STRING �
�

� ,
���benefit

�� �=
���STRING �

�
� ,

���point
�� �=

���ID �
�

��
� ,

���available
�� �for

�� �TIME

�

}
���

Figure A.11: Skill syntax

Level

level
�� �ID {

���name
�� �=

���STRING ,
����

�
�threshold

�� �=
���NUMERICOPERAND ID �

�
��

� ,
���image

�� �=
���STRING

�

}
���

Figure A.12: Level syntax

204

A.2 L1 Concepts

Good

good
�� �ID {

����
�

�name
�� �=

���STRING ,
���description

�� �=
���STRING �

�
� ,

���image
�� �=

���STRING �
� ,

���GoodType

�

�
�

��
� ,

���price
�� �=

���NUMERICOPERAND ID

�

}
���

GoodType

type
�� �=

��� REAL
�� ��

�VIRTUAL
�� �

�

Figure A.13: Good syntax

Role

role
�� �ID {

���name
�� �=

���STRING ,
����

�
��

�skills
�� �{

���ID �
� ,

���ID�
�

�

�

}
���

�

�

�
��

�description
�� �=

���STRING

�

�
�

��
�image

�� �=
���STRING

�

}
���

Figure A.14: Role syntax

205

A GaML Elements

Leaderboard

leaderboard
�� �ID {

����
�

�name
�� �=

���STRING ,
���point

�� �=
���ID �

�
� ,

���aggregation
�� �=

���AGGREGATION �
�

� ,
���order

�� �=
��� ascending

�� ��
�descending

�� �
�

�
�

� ,
���assembles

�� �=
����

� player
�� ��

�team
�� �

�

�

}
���

Figure A.15: Leaderboard syntax

206

A.3 Condition Elements

A.3 CONDITION ELEMENTS

Rule

When Then

When

when
�� � PlayerEntity {

����
�validFrom

�� �=
���DATE

�

�
�

��
�validTo

�� �=
���DATE

�

PlayerOr �
�

� }
���

�

�TeamEntity {
����

�validFrom
�� �=

���DATE

�

�
�

��
�validTo

�� �=
���DATE

�

TeamOr }
���

�

PlayerEntity

player
�� ��

�EntityVariable

�

TeamEntity

team
�� ��

�EntityVariable

�

EntityVariable

ID

Figure A.16: General condition syntax (as shown in Figure 5.3)

207

A GaML Elements

PlayerOr

PlayerAnd �
� or

�� �PlayerAnd�
�

�

�

PlayerAnd

PlayerTopElem �
� and

�� �PlayerTopElem�
�

�

�

PlayerTopElem

PlayerAtom�
� (

���PlayerOr)
����PlayerNegation

�

PlayerAtom

PlayerCondition

PlayerNegation

not
�� �PlayerTopElem

Figure A.17: Boolean constraint and conditions syntax (as shown in Figure 5.4)

PlayerCondition

Condition�
�has

�� �RoleRefs

�did
�� �EventDef

�belongs
�� �to

�� �TeamEntity which
�� �{

���TeamOr }
����another

�� �player
�� �did

�� �EventDef

�

Figure A.18: Player condition syntax (as shown in Figure 5.4)

208

A.3 Condition Elements

TeamOr

TeamAnd �
� or

�� �TeamAnd�
�

�

�

TeamAnd

TeamTopElem �
� and

�� �TeamTopElem�
�

�

�

TeamTopElem

TeamAtom�
� (

���TeamOr)
����TeamNegation

�

TeamAtom

TeamCondition

TeamNegation

not
�� �TeamTopElem

Figure A.19: Boolean constraint and conditions syntax

TeamCondition

Condition�
�has

�� �PlayerEntity who
�� �{

���PlayerOr }
���

�

Figure A.20: Team condition syntax (as shown in Figure 5.5)

209

A GaML Elements

EventDef

�
� ID :

���
�

EventCondition

EventCondition

EventClass ID �
� ,

���lastsFor
�� �TIME

�

�
�

��
� ,

��� ID�
�player

�� �
�

RIGHTTERM�
�

�

�

�

�
��

� ,
���this

�� �TEMPORAL ID�
�DATE

�

�
�

�

�

�

�
��

� ,
����

� AGGREGATION (
���ID)

����
�COUNT

�� �(
���ID)

���
�

�
�

�COMPARATOR NUMEXPR

�

�

�
��

�within
�� �TIME

�

�

Figure A.21: Event condition syntax

210

A.3 Condition Elements

RIGHTTERM

COMPARATOR NUMERICOPERAND�
�TIMEOPERAND

�

�
� =

���EQUALITYTYPES

�

Figure A.22: Event condition right term syntax

Condition

has
�� � BadgeRefs�

�PointRefs

�LevelRefs

� ItemRefs

�SkillRefs

�MissionRefs

�

�

�has
�� � BadgeRef�

�PointRef

�LevelRef

� ItemRef

�SkillRef

�MissionRef

�

�has
�� �Luck

�is
�� �Leader

�is
�� �at

�� �LocationDef

�

Figure A.23: Condition references syntax

211

A GaML Elements

BadgeRef

badge
�� �ID

LevelRef

level
�� �ID

ItemRef

good
�� �ID

MissionRef

mission
�� �MissionItem

MissionItem

ID �
� available

�� ��
�completed

�� �
�

�

Figure A.24: Condition item references syntax

SkillRef

skill
�� �SkillItem

SkillItem

ID �
�level

�� �=
���INT

�

�
�active

�� �
�

Figure A.25: Skill condition syntax

PointRef

point
�� �ID ,

���AGGREGATION COMPARATOR NUMEXPR

Figure A.26: Point condition syntax

Luck

luck
�� �P(

�� �NUMEXPR)
���

Figure A.27: Random condition syntax

212

A.3 Condition Elements

LocationDef

location
�� �(

���lat
�� �COMPARATOR NUMEXPR ,

����
�

�long
�� �COMPARATOR NUMEXPR)

���
Figure A.28: Location condition syntax

Leader

top
�� �(

���to
�� �=

���NUMEXPR �
� ,

���from
�� �=

���NUMEXPR

�

�
�

� ,
���leaderboard

�� �=
���ID)

���
Figure A.29: Leader condition syntax

RoleRef

role
�� �ID

Figure A.30: Role condition syntax

213

A GaML Elements

TEMPORAL

before
�� ��

�after
�� ��coincidences
�� ��during
�� ��finishes
�� ��finished by
�� ��includes
�� ��meets
�� ��met by
�� ��overlaps
�� ��overlapped by
�� ��starts
�� ��started by
�� �

�

Figure A.31: Event condition syntax

214

A.4 Consequence Elements

A.4 CONSEQUENCE ELEMENTS

Then

then
�� �{

���Consequence �
� ,

���Consequence�
�

�

�

}
���

Consequence

EventRefCons�
�GeneralRefCons

�PointRefCons

�Notification

�Narration

�

Figure A.32: General consequence syntax (as shown in Figure 5.6)

215

A GaML Elements

EventRefCons

create
�� ��

�delete
�� �

�

event
�� �ID �

�
��

� (
���ID =

��� NUMEXPR�
�EQUALITYTYPES

�

�
�

��
� ,

���ID =
��� NUMEXPR�

�EQUALITYTYPES

�

�
�

�

�

)
���

�

�

�
��

�for
�� �EntityCond

�

EntityCond

ID

Figure A.33: Event consequence syntax

PointRefCons

give
�� �NUMEXPR �

� ID

�

�
�to

�� �EntityCond

�

�
�remove

�� �NUMEXPR �
� ID

�

�
�from

�� �EntityCond

�

�set
�� �NUMEXPR �

� ID

�

�
�for

�� �EntityCond

�

�

Figure A.34: Point consequence syntax

216

A.4 Consequence Elements

Notification

notify
�� �STRING �

�to
�� �EntityCond

�

�
�notify

�� �(
���message

�� �=
���STRING ,

���title
�� �=

���STRING �
�

��
� ,

���image
�� �=

���STRING

�

�
�

� ,
���type

�� �=
����

� information
�� ��

�corrective
�� �

�

�

�

�
��

�to
�� �EntityCond

�

)
���

�

Figure A.35: Notification consequence syntax

Narration

narration
�� �(

���name
�� �=

���STRING ,
���description

�� �=
���STRING �

�
��

� ,
���recipient

�� �=
���EntityCond

�

�
� ,

���image
�� �=

���STRING

�

�
�

��
� ,

���video
�� �=

���STRING

�

�
� ,

���audio
�� �=

���STRING

�

)
���

Figure A.36: Narration consequence syntax

217

A GaML Elements

GeneralRefCons

give
�� � BadgeRefCons�

�MissionRefCons

�GoodRefCons

�SkillRefCons

�

�
�to

�� �EntityCond

�

�

�delete
�� � BadgeRefCons�

�MissionRefCons

�GoodRefCons

�SkillRefCons

�

�
�from

�� �EntityCond

�

�

BadgeRefCons

badge
�� �ID

MissionRefCons

mission
�� �ID

GoodRefCons

good
�� �ID

SkillRefCons

skill
�� �ID

Figure A.37: General consequence syntax

218

B EXCERPT FROM API
SPECIFICATION

In this appendix, excerpts from the interfaces which can be utilized by the client are
given.

B.1 IADMINAPI

1 public interface IAdminAPI {
2 long create(String gpType, Map<String, Object> keyValuePairs) throws

Exception;
3

4 long update(String gpType, long ID, Map<String, Object> keyValuePairs)
throws Exception

5

6 long createApp(String name, String description , String owner);
7 boolean deleteApp(String name);
8

9 boolean deleteAllPlayers();
10 boolean deleteAllTeams();
11

12 long createPoint(String name, String abbreviation , PointType pointType);
13 long createPoint(String name, String abbreviation , boolean isInternal ,

PointType pointType);
14 boolean deletePoint(long id);
15

16 ...
17 }

B.2 IQUERYAPI

1 public interface IQueryAPI {
2 Player getPlayer(String playerID);
3 Avatar getAvatar(String avatarID);
4 Team getTeam(String teamID);
5 Mission getMission(String id);
6 Badge getBadge(String badgeName);
7

219

B Excerpt from API Specification

8 boolean hasAvatarBadge(String avatarID , String badgeName);
9 Collection <Badge> getBadgesForAvatar(String avatarID);

10

11 boolean hasAvatarLevel(String avatarID , String badgeName);
12 Level getLevelForAvatar(String avatarID, String pointName);
13 Collection <Level> getAllLevelsForAvatar(String avatarID);
14

15 Collection <Mission2Avatar > getMissionsForAvatar(String avatarID);
16 boolean hasAvatarMission(String avatarID, String missionName , MSTATUS

status);
17

18 Score getPointsForAvatar(String avatarID, String pointName , AGGREGATION
agg);

19

20 ...
21

22 boolean hasTeamBadge(String teamID, String badgeName);
23 boolean hasTeamLevel(String teamID, String badgeName);
24 boolean hasTeamMission(String teamID, String missionName , MSTATUS status);
25 Collection <Mission2Avatar > getMissionsForTeam(String teamID);
26

27 ...
28 }

B.3 IUPDATEAPI

1 public interface IUpdateAPI {
2 Player createPlayer(String playerID);
3 Avatar createAvatar(String avatarID, String playerID);
4

5 boolean givePointsToAvatar(String avatarId , String pointType , double
amount);

6 boolean givePointsToAvatar(String avatarID , String pointType , double
amount, String reason);

7

8 boolean addMissionToAvatar(String avatarID , String missionName);
9 boolean completeAvatarMission(String avatarID, String missionName);

10 boolean rejectMissionForAvatar(String avatarID , String missionName);
11

12 boolean addBadgeToAvatar(String avatarID, String badgeName);
13 boolean addBadgeToAvatar(String avatarID, String badgeName , String reason

);
14

15 boolean activateSkill(long avatarId , String skillName);
16

17 boolean addAvatarToTeam(String avatarID, String teamID);
18 boolean deleteAvatarFromTeam(String avatarID, String teamID);
19

20 ...
21

22 boolean givePointsToTeam(String avatarId, String pointType , double amount
);

23 boolean givePointsToTeam(String teamID, String pointType , double amount,
String reason);

24

25 boolean addMissionToTeam(String teamID, String missionName);
26 boolean completeTeamMission(String teamID, String missionName);
27 boolean rejectMissionForTeam(String teamID, String missionName);
28

29 boolean addBadgeToTeam(String teamID, String badgeName);

220

B.4 IAnalyticsAPI

30 boolean addBadgeToTeam(String teamID, String badgeName , String reason);
31 }

B.4 IANALYTICSAPI

1 public interface IAnalyticsAPI {
2 List<XYValue> getAnalyticsQuery(Date start, Date end, AGGREGATION agg,

String metric, String groupByString , String filter);
3

4 List<XYValue> getAnalyticsQuery(
5 Date start,
6 Date end,
7 AGGREGATION agg,
8 String metric,
9 String groupByString ,

10 String filter1,
11 String filter2);
12

13 List<XYValue> getLagQuery(Date start, Date end, AGGREGATION agg,
String metric, String groupBy, String site, int lagAmount);

14 }

B.5 IUSERCONFIG

1 public interface IUserConfig {
2

3 boolean changePublicFlag(String avatarID, boolean isPublic);
4 boolean updateAvatarName(long avatarId , String avatarname);
5

6 Collection <UserConfig > getUserConfig(long avatarId);
7 boolean updateUserConfig(long avatarId , String key, String value);
8 boolean setShowcaseBadge(String avatarID, String badgeName , int position)

;
9

10 ...
11 }

B.6 IRULESERVICE

1 public interface IRuleService {
2 Collection <Rule> getAllRules();
3 Rule getRule(long id);
4 boolean deleteRule(long id) throws RuleRuntimeException;
5 long createRule(String name, String description , String when, String then

, String delayClause , Integer priority, Date validFrom , Date validTo)
throws RuleRuntimeException;

6 boolean deployAllRules() throws RuleSyntaxException;
7 boolean deployRule(long ruleId) throws RuleSyntaxException;
8

9 ...
10 }

221

B Excerpt from API Specification

B.7 IEVENTMANAGER

1 public interface IRuleService {
2 boolean receiveEvents(EventObject[] obj);
3 boolean resetRuleEngine();
4 }

222

C GAML STUDY
This appendix contains the artifacts and supplementary materials to the GaML study
of Section 8.5.

C.1 QUESTIONNAIRE

In this section the complete questionnaire which was used for the user study of GaML
is presented. As described in Section 8.5, the user study consists of seven blocks
which are outlined below. For each block, the GaML example and corresponding ques-
tions are shown. The correct answers are marked with italics.

C.1.1 BLOCK 1

IN01: ASSESS YOURSELF IN TERMS OF IT KNOWLEDGE AS WELL AS GAMIFICATION
KNOWLEDGE (SINGLE-CHOICE)

• IT-Experience (e.g., Programming Languages, SQL, Development) (1-5 Scale)

• Gamification Experience (1-5 Scale)

IN02: HOW OLD ARE YOU? (SINGLE-CHOICE)

• < 16

• 16-25

• 26-35

• 36-45

• 46-55

• > 55

IN03: WHAT IS YOUR GENDER? (SINGLE CHOICE)

• Female

• Male

223

C GaML Study

C.1.2 BLOCK 2

GC01: WHAT WOULD YOU EXPECT, WHEN READING THE TERM MISSION? A MISSION
... (MULTIPLE-CHOICE)

• ... can be completed by performing specified tasks.

• ... is completed when a single task is done.

• ... can give the user certain things (badges, points, etc.) upon completion.

• ... can be linked to other missions, so that these missions are only available after
the mission is completed.

• ... can be composed of several other missions and all of them have to be com-
pleted, to complete the main mission.

• ... only has a single reward for the user, e.g. giving him a badge or some points.

GC02: WHAT WOULD YOU THINK A USER ACTION DESCRIBES? (MULTIPLE-CHOICE)

• ... does something to or with the user.

• ... is triggered when a user does or did something.

• ... creates a new user.

GC03: WHAT MIGHT AN INTERNAL EVENT BE? (MULTIPLE-CHOICE)

• ... is only seen by a single user, handling his or her internal information.

• ...is not seen by any user and is only used internally for handling certain informa-
tion.

• ...is used by programmers temporarily, to write down an event before they think
of a better name.

GC04: HOW MIGHT POINTS, LEVELS, AND BADGES BE CONNECTED IN THE CONTEXT
OF GAMIFICATION? (MULTIPLE-CHOICE)

• Badges can be bought using points. Levels depend on the number of badges you
have.

• Levels are reached by having at least a given amount of points. Badges are inde-
pendent of both.

• A user reaches a certain level, as soon as he has enough points. Badges may
additionally be awarded for levels, points or other achievements.

• Badges are gained for specific point amounts. Levels are independent from an-
other.

• All three are completely independent from another.

224

C.1 Questionnaire

C.1.3 BLOCK 3

GS02: WHAT DO YOU EXPECT THIS PART OF THE CODE TO DO? (MULTIPLE-CHOICE)

1 useraction actualRide {
2 properties {
3 carbondioxid:Decimal,
4 kilometers:Decimal,
5 driver:Boolean,
6 rideId:Number
7 }
8 }

Listing C.1: GaML example code for question block 3.1

• It defines a user action called actualRide.

• This actualRide user action has four custom properties.

• 12.2 is a correct value for kilometers.

• 12.2 is a correct value for rideId.

• 5 is a correct value for kilometers.

• 5 is a correct value for rideId.

• The field driver holds the driver’s name.

• The field driver can have the value true or false.

GS02: WHAT DO YOU EXPECT THIS PART OF THE CODE TO DO? (MULTIPLE-CHOICE)

1 point XP {
2 name="Experience Point",
3 abbreviation="XP",
4 type=ADVANCING
5 }

Listing C.2: GaML example code for question block 3.2

• It creates a new point category called XP.

• The point category is called Experience Point.

• It is a point category, which is used to represent a player’s progress.

• The created point category has an abbreviation "XP" and a long name "Experience
Point".

• It gives a user a point in the category XP.

225

C GaML Study

GS03: WHAT DO YOU EXPECT THIS PART OF THE CODE TO DO? (MULTIPLE-CHOICE)

1 when player {
2 has point XP, SUM > 3
3 }
4 then {
5 give badge IceBreaker
6 }

Listing C.3: GaML example code for question block 3.3

• The when block has to be true, so the then block is executed.

• The then block has to be true, so the when block is executed.

• The Ice Breaker badge is given, if the user has 3 or more points in a random point
category.

• When the Ice Breaker badge is earned, the user’s XP points are set to at least 3.

• As soon as the user has at least 3 XP points, he or she receives the Ice Breaker
badge.

GS04: WHAT DOES THE WHOLE CODE BLOCK DEFINE? (SINGLE-CHOICE)

1 concept CARPOOL {
2 useraction rideIntent
3

4 useraction actualRide {
5 properties { carbondioxid:Decimal, kilometers:Decimal, driver:Boolean,

rideId:Number }
6 }
7

8 internalevent socializerEvent {
9 properties {userid:Text, friend:Text }

10 }
11

12 point Socializer { name="Socializer Point", abbreviation="SP" }
13

14 point XP { name="Experience Point", abbreviation="XP", type=ADVANCING }
15 }

Listing C.4: GaML example code for question block 3.4

• It defines a new Gamification concept called "concept".

• It defines a new Gamification concept called "CARPOOL".

• It defines a new Gamification concept without any specific name.

• It defines a new Gamification concept called "socializerEvent".

GS05: HOW ARE THE EVENTS OF THIS CODE DEFINED? (MULTIPLE-CHOICE)

• There are two user events and one internal event.

• "Santa Claus" is a possible value for the property "friend" in socializerEvent.

• The useraction rideIntent does not have any custom properties.

• The only non-numerical property of actualRide is "driver".

• There are three user events.

226

C.1 Questionnaire

GS06: WHAT DO YOU THINK IS EXPLICITLY KNOWN ABOUT EACH "ACTUAL RIDE"
THAT USERS ARE DOING? TRY NOT TO "READ BETWEEN THE LINES" OR FIND
IMPLICIT INFORMATION (E.G. THOUGH THERE IS AN EVENT WITH DRIVER ID AND
FRIEND ID, ONE DOES NOT EXPLICITLY KNOW, WHETHER THIS FRIEND WAS ON THE
SAME RIDE OR NOT.) (MULTIPLE-CHOICE)

• ... how much carbondioxid the user saved with the ride.

• ... how old the user is.

• ... whether the user was a passenger.

• ... whether the user was the driver.

• ... how many people shared the ride.

• ... which is the user’s id.

C.1.4 BLOCK 4

1 concept CARPOOL {
2 useraction rideIntent
3

4 useraction actualRide {
5 properties { carbondioxid:Decimal, kilometers:Decimal, driver:Boolean,

rideId:Number }
6 }
7

8 point XP {
9 name="Experience Point",

10 abbreviation="XP",
11 type=ADVANCING
12

13 when player { did useraction rideIntent , lastsFor 24h }
14 then { give 1 XP }
15

16 when player { did useraction rideIntent }
17 then { give 5 XP }
18

19 when player { did evt1 : useraction actualRide }
20 then { give 10+(evt1.carbondioxid/10) XP }
21 }
22 }

Listing C.5: GaML example code for question block 4

GA01: WHAT IS TRUE ABOUT THE POINT DEFINITION? (MULTIPLE-CHOICE)

• It defines a point category called XP with long name "Experience Point".

• It defines a point category called "Experience Point".

• XP points can be gained in four different ways.

GA02: WHICH REWARDS ARE GIVEN FOR WHAT? (MULTIPLE-CHOICE)

• Making an "actualRide" with 20 (kg) "carbonoxid" saved, the user receives 10 XP
points.

227

C GaML Study

• Making an "actualRide" with 20 (kg) "carbonoxid" saved, the user receives 12 XP
points.

• Creating a rideIntent gives 6 XP points instantly.

• Creating a rideIntent gives 5 XP points instantly and 1 more after the intent ex-
isted for at least 24h.

• Creating a rideIntent gives no points instantly and 6 after the intent existed for at
least 24h.

GA03: BOB IS A USER OF THE GAMIFIED CARPOOL APPLICATION. HE HAS JUST
CREATED HIS ACCOUNT AND HIS XP ARE CURRENTLY 0. (FREE-TEXT)

• After creating his first rideIntent he has 5 XP points.

• After the rideIntent was in the system for 60h he has 6 XP points.

• His ride has taken place and the actual Ride event was triggered. Without know-
ing how much carbon he saved, he has to have at least 16 XP points by now.

• The actualRide saved 50kg of carbon. Consequently, Bob has 21 XP points now.

• Just two minutes ago he created another rideIntent. Thus he should have 26 XP
points now.

C.1.5 BLOCK 5

1 concept CARPOOL {
2

3 point XP { name="Experience Point", abbreviation="XP", type=ADVANCING }
4

5 badge Epic { name = "EPIC", image = "epic.png", hidden }
6

7 badge IceBreaker { name = "Ice Breaker", image="breaker.png", hidden }
8

9 level PennyPincher { name = "Penny Pincher", threshold=10 XP }
10

11 level NickelNurser { name = "Nickel Nurser", threshold = 15 XP }
12

13 level DonaldDuck { name ="Donald Duck", threshold = 20 XP }
14

15 mission Remind3Customers {
16 name = "Remind3Customers",
17 description = "Mission to 3 Remind 3 Customers",
18 init=rule
19

20 when player { has point XP, SUM > 3 }
21 then { give badge IceBreaker }
22

23 nextMissions { Remind10Customers }
24 }
25

26 mission Remind10Customers {
27 name = "The 10 Reminder Mission",
28 description = "Remind 10 Customers"
29

30 when player { has point XP, SUM >= 10 }
31 then { give badge Epic }

228

C.1 Questionnaire

32

33 nextMissions { Remind50Customers ,YourNewJob }
34 }
35 }

Listing C.6: GaML example code for question block 5

GM01: WHAT DOES THE CODE DEFINE? (SINGLE-CHOICE)

• Two missions, three levels, two badges, one point category.

• Two missions, four levels, two badges, one point category.

• Two missions, three levels, one badge, one point category.

• Four missions, three levels , two badges, one point category.

GM02: MOST GAMIFICATION CONCEPTS FEATURE BADGES THAT USERS GET FOR
SPECIAL ACTIONS. HOWEVER, SOME BADGES ARE SO HARD TO GET THAT IT WOULD
NOT BE VERY MOTIVATING TO SHOW THEM TO THE USERS IN ADVANCE. WITHIN THE
GIVEN CONCEPT, WHICH BADGE(S) IS/ARE KNOWN IN ADVANCE (MULTIPLE-CHOICE)

• The Epic Badge

• The IceBreaker Badge.

• The Fail Badge.

• None of the three above.

GM03: WHEN IS THE USER GIVEN THE ICEBREAKER BADGE? (SINGLE-CHOICE)

• When the user has 3 or more XP points.

• When the user has 3 or more points in any point category.

• Never.

• It is given together with the EPIC Badge.

GM04: ASSUME THAT ALICE HAS 12 XP POINTS. FILL THE TEXT WITH THE CORRECT
INFORMATION. NOTE THAT FIELDS CAN REMAIN EMPTY IN SOME CASES
(FREE-TEXT)

• With the given XP points Alice should be the level called: Penny Pincher

• In addition, she should have the following badge(s): IceBreaker, Epic

• She has already completed the mission(s): Remind3Customers and Remind10-
Customers

• She is entitled to do the following mission(s): Remind50Customer and YourNew-
Job

229

C GaML Study

C.1.6 BLOCK 6

1 concept CARPOOL {
2

3 useraction A
4 useraction B
5

6 point XP { name="Experience Point", abbreviation="XP", type=ADVANCING }
7

8 badge Epic { name = "EPIC", image = "epic.png" }
9

10 badge IceBreaker { name = "IceBreaker", image = "icebreaker.png" }
11

12

13 mission SomeNewMission {
14 name="SomeNewMission",
15 description="SomeNewMission"
16

17 when player {
18 (
19 has badge IceBreaker
20 and did ua1 : useraction A
21 and did useraction B, this after ua1
22)
23 or
24 (
25 is at location(lat=1.2, long=1.3)
26 and has luck P(0.7)
27)
28 }
29

30 then {
31 give badge Epic, give 10 XP
32 }
33 }
34 }

GC01: MARK ALL THE REWARDS FOR COMPLETING THE MISSION
"SOMENEWMISSION". (MULTIPLE-CHOICE)

• ... the Ice-Breaker badge

• ... the EPIC Badge

• ... 10 XP points.

• ... between 3 and 7 XP points.

GC02: MARK ALL CORRECT CONSTELLATIONS THAT LEAD TO THE MISSION
"SOMENEWMISSION" BEING FINISHED. (MULTIPLE-CHOICE)

• ... have the IceBreaker Badge and trigger userevent A before userevent B.

• ... have the Epic Badge and trigger userevent A before userevent B.

• ... have the Epic Badge and trigger userevent B before userevent A.

• ... have the IceBreaker Badge and trigger userevent B before userevent A.

230

C.1 Questionnaire

• ... be in geo position 1.2, 1.3 and be lucky.

• ... be in geo position 1.2, 1.3 independent of any luck.

• ... trigger userevent A before B.

• ... trigger userevent B before A.

GC03: HOW WOULD YOU EXPECT THE LUCK(0.7) CODE TO WORK? (SINGLE-CHOICE)

• In 7 out of 10 cases the user is lucky.

• In 3 out of 10 cases the user is lucky.

• If the user already had luck 7 times, he will be unlucky next time.

• If the user already had luck 3 times, he will be unlucky next time.

GC04: ASSUME THE FOLLOWING SCENARIO: BOB HAS THE ICEBREAKER BADGE AND
IS AT GEO POSITION 1.2, 1.3. HE NOW ISSUES EVENT A AND IS LUCKY. ALICE HAS
THE ICEBREAKER BADGE AND IS AT GEO POSITION 1.2, 1.3. SHE FIRST ISSUES
EVENT A AND THEN B BUT IS NOT LUCKY. JOHN HAS THE ICEBREAKER BADGE AND
IS AT GEO POSITION 1.2, 1.3. HE FIRST ISSUES EVENT B AND THEN A AND IS LUCKY.
TRENT DOES NOT HAVE THE ICEBREAKER BADGE. HE IS AT GEO POSITION 1.2, 1.3
AND NOT LUCKY. MARY HAS THE ICEBREAKER BADGE. SHE FIRST ISSUES EVENT A
AND THEN B AND IS LUCKY. WHICH OF THEM FINISHES THE MISSION?
(MULTIPLE-CHOICE)

• ... Bob.

• ... Trent.

• ... John.

• ... Alice.

• ... Mary.

231

C GaML Study

C.2 SYSTEM USABILITY SCALE

Question

SUS1 I think that I would like to use this language frequently

SUS2 I found the language unnecessarily complex

SUS3 I thought the language was easy to use

SUS4 I think that I would need the support of a technical person to be able to use
this language

SUS5 I found the various functions in this language were well integrated

SUS6 I thought there was too much inconsistency in this language

SUS7 I would imagine that most people would learn to use this language very
quickly

SUS8 I found the language very awkward to use

SUS9 I felt very confident using the language

SUS10 I needed to learn a lot of things before I could get going with this language

SUSO Overall, I would rate the user-friendliness of this language as:

Table C.1: System usability scale questions

232

C
.3

C
orrelation

M
atrix

C.3 CORRELATION MATRIX

x

D
en

si
ty SUS

2 3 4 5 6

0.77 *** 0.36 *

65 75 85 95

0.51 ** 0.54 ***

1 2 3 4 5

0.19

−0.26

2.0 3.0 4.0 5.0

−0.067

40
80

0.12

2
4

6

●

●●

●

●

●● ●●

●

●

● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●●● ●

●

●

x

D
en

si
ty SUSO

0.31

.
0.32

.
0.35 * 0.20

−0.21

−0.13

0.16

● ●●

●

● ●

● ●

●

●●

●

●

●●

●

● ●

●

●●

●● ●

●

●

●

●

● ●

●

●

● ●● ● ● ●●

●

● ●

●●

●

●●

●

●

●●

●

● ●

●

●●

●●●

●

●

●

●

● ●

●

●

●●● ●

x

D
en

si
ty CORG

0.36 * 0.51 ** 0.46 ** −0.16

−3.2e−17

60
80

10
0

0.078

65
80

95

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●
●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●●●

●

x

D
en

si
ty CORU

0.99*** 0.32

.
−0.035

−0.45

**
0.23

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●● ●

●

● ●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●● ●

●

●●

●
●

●

●

●●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

● ●
●

●

x

D
en

si
ty CORA

0.38 * −0.062

−0.41

*

70
85

10
0

0.23

1
3

5 ●

●●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●●

●

●

●

● ●

●●

●

● ●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●● ●

●●

●

●

●

● ●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●●

●

●

●

● ●

● ●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●●

●

●

●

● ●

● ●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●●

●

●

●

●

x

D
en

si
ty ITEXP

0.039

−0.004

0.59 ***

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

x

D
en

si
ty GAMEXP

−0.13

1
3

5

0.14

2.
0

3.
5

5.
0

●

●

●●●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●● ●

●

● ●

●

●

●

● ●●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

● ●● ●

●

● ●

●

●

●

● ●●●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●●●

●

● ●

●

●

●

●●●● ●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●● ●

●

●●

●

●

●

●●●● ●

●

●

●

●

●

●●●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●● ●

●

●●

●

●

●

●●●● ●

●

●

●

●

●

●●●

●

●

●●

●

●

●

● ●

●

●

●

●

●● ●●

●

●●

●

●

●

●●●● ●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●●

●

●

●

●

●● ● ●

●

●●

●

●

●

●●● ● ●

●

●

●

x

D
en

si
ty AGE

0.028

40 60 80 100

● ●●

●●

●● ●● ●●

●

● ●●●● ●● ●●

●

● ●

●

● ● ● ● ●

●●

● ●

●

● ● ●●

●●

●●●●●●

●

●●● ●● ●● ●●

●

●●

●

●● ●● ●

●●

●●

●

●

60 70 80 90 100

●●●

●●

● ●●● ●●

●

● ●●● ●●● ●●

●

●●

●

● ●● ●●

●●

●●

●

● ●● ●

● ●

●● ●●● ●

●

● ● ●● ●●● ●●

●

● ●

●

● ● ● ●●

●●

● ●

●

●

70 75 80 85 90 95

●● ●

●●

●● ●●● ●

●

● ● ●● ●●● ●●

●

●●

●

● ●● ●●

●●

●●

●

● ●●●

●●

● ●●● ● ●

●

● ● ●●● ●●● ●

●

● ●

●

●●●●●

●●

● ●

●

●

1 2 3 4 5

●●●

● ●

●●● ●● ●

●

●● ●● ● ●●● ●

●

●●

●

● ● ●●●

● ●

●●

●

● ●● ●

●●

● ●●● ●●

●

●●● ●●● ●●●

●

● ●

●

●●● ●●

●●

● ●

●

●

1.0 1.2 1.4 1.6 1.8 2.0

1.
0

1.
6

x

D
en

si
ty GEND

Figure C.1: Correlation diagram for variables of GaML study 1

1Significance levels: ∗∗∗ < 0.1%,∗∗ < 1%,∗ < 5%,. < 10%.

233

D SUPPLEMENTARY PICTURES

D.1 DATA MODEL

 id : long
 name : String
 mimeType : String
 img : byte[]

Image

Skill

Avatar

Badge Level

Item Mission Role

Point

0..10..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1 0..1

0..1

0..1

Figure D.1: Class diagram for associations with image entity

235

D Supplementary Pictures

-id : int
-name : String
-description : String
-when : String
-then : String
-validTo : Date
-validFrom : Date
-delay : String
-priority : Integer
-isDeployed : Boolean

Rule

-id : int
-lName : String

RuleLanguage

-id : long
-type : String
-dateTime : Date
-duration : Long
-siteId : String
-data : Map<String, String>
-created : Date

EventObject

-playerID : long
-avatarID : long

UserAction

-issuerID : String

External

-playerID : long
-avatarID : long

Interim

0..*

1

cause0..*

0..*

Figure D.2: Class diagram for event model

D.2 GRAPHICAL ARTIFACTS OF GAMIFICATION PLATFORM

Figure D.3: Rule editor in the gamification platform prototype

236

D.2 Graphical Artifacts of Gamification Platform

Figure D.4: Gamification analytics in the gamification platform prototype

Figure D.5: Administration of user profile in the gamification platform prototype

237

D Supplementary Pictures

Figure D.6: Additional widgets in the gamification platform prototype

238

D
.3

R
E

TE
G

raph
of

N
etw

orking
Lunch

R
ules

D.3 RETE GRAPH OF NETWORKING LUNCH RULES

Figure D.7: Optimized RETE graph representation for the SAP Networking Lunch application

239

E STATISTICAL TESTS

The following section introduces important statistical tests and procedures which are
used in this paper.

E.1 (MULTIVARIATE) ANALYSIS OF VARIANCE

Multivariate analysis of variance is used to show if the means of g samples with the
same k features are significantly different. The null hypothesis is rejected when there
exists a group mean that is significantly different from one other group mean. Analysis
of variance requires two assumptions. First, multivariate normal distribution and ho-
moscedasticity, that is, the variance of the group samples are unknown but equal [170,
p. 423].

HYPOTHESES:

H0 : µ1 = ... = µg
H1 : ∃µi , µ j , j = 1...g

TEST STATISTIC:

It is assumed that there exists a data matrix X consisting of n cases (rows) and k
features (columns) and Λ = |W|

|T| , that is, the ratio of inter-group variance and intra-
group variance. Hereby, T captures the variance that is shared between all groups and
is calculated via T = M

′

M whereas M is the mean centered matrix for each feature
M = {mi j} = xi j − x̄ j, j = 1, ..., k with x̄ j = 1

n
∑n

i=1 xi j. Obviously, this can be also written
using matrices operations: T = X

′

X − x̄x̄
′

= X
′

X − 1
n (X1)(1

′

X) [92]
Moreover, a matrix W is necessary that captures the variance within the groups.

Given that g groups should examined, W =
∑g

i=1 Wi. Wi is calculated in the same
manner as T with the only difference that not all n cases are included but only cases
that belong to this ith group.

241

E Statistical Tests

Afterwards, a F-test can be applied to test if the variance shared between the groups
is relatively larger than the variance shared within the groups. If yes, one can assume
that different reasons are causing the means in the different groups.

F =
1 −Λ

1
s

Λ
1
s

ν2

ν1
∼ Fν1;ν2;1−α (E.1)

with ν1 = k(g − 1) and ν2 = s
[
(n − 1) − k+g

2

]
−

k(g−1)−2
2 degrees of freedom whereas

s =
√

k2(g−1)2−4
k2+(g−1)2−5 [92, p. 699].

Alternatively, a χ2 test exists

χ2 = −[n − 1 −
1
2

(k + g)]lnΛ ∼ χ2
ν;1−α (E.2)

with ν = k(g − 1) degrees of freedom [92, p. 699].
It is important to denote, that this is the most general case called multivariate analysis

of variance (MANOVA), that is, for g groups and k features. Given that g = 2 and k = 1,
the procedure is called analysis of variance (ANOVA) only and test statistics are much
more reduced under this assumption [170, p. 424].

TEST DECISION:

The null hypothesis has to be rejected if either the F value or the χ2 value exceeds the
self-chosen significance level α of the respective distribution with ν1, ν2 or ν degrees of
freedom respectively.

E.2 WILCOXON-MANN-WHITNEY TEST

The Wilcoxon-Mann-Whitney Test (also called U-test) can be used if the distributional
assumption of normality cannot be guaranteed across all k features. Thus, it is an
alternative test statistic to (M)ANOVA. However, the test is designed for two samples
only and not g groups as in (M)ANOVA. Furthermore, there exist only two assumptions
for the U-test. First, both samples have to follow continuous distributions. Second,
both samples have to be independent from each other [170, p. 390].

HYPOTHESES:

H0 : µ1 = µ2
H1 : µ1 , µ2

TEST STATISTIC:

The n observations of both samples are sorted in ascending order: x1 ≤ x2 ≤ ... ≤ xn
whereas in this order one has to remember if the xith value is out of sample A or B.
Each value of the sorted sample gets a rank in accordance to its position. Afterwards
a rank sum is calculated for the A and B samples, that is, RA =

∑n
i=1 posxi∈A and RB =∑n

i=1 posxi∈B.
Given that sample A consists of n1 and sample B of n2 cases, the U value is either

U1 = n1n2 +
n1(n1 + 1)

2
− RA (E.3)

242

E.3 Jarque-Bera Test

or

U2 = n1n2 +
n2(n2 + 1)

2
− RB (E.4)

depending on whichever value is smaller [170, pp. 391-393].

TEST DECISION:

The null hypothesis is rejected if the U value is lesser equals than the critical value of a
specific Wilcoxon distribution against a self-chosen significance level α:

Û ≤ Un1;n2;α (E.5)

Critical Values of the Wilcoxon distribution can be found in [140]

E.3 JARQUE-BERA TEST

The test of Jarque-Bera can be used as a statistical test to decide whether a sample
is normal distributed or not. The null hypothesis declares, that the sample is normal
distributed, the opposite hypothesis declares, that the sample is not normal distributed.

HYPOTHESES:

H0 : F (Y) = Φ (Y)
H1 : F (Y) , Φ (Y)

TEST STATISTIC:

The test statistic is based on kurtosis and skewness of the sample’s empirical distribu-
tion and is calculated as follows according to [102, S. 257].

JB = T

 µ2
3

6µ3
2

+
1
24

µ4

µ2
2

− 3

2 ∼ χ2 (2) (E.6)

with µ j = 1
T
∑T

t=1 u j
t = 1

T
∑T

t=1 (x − x̄) j representing the second, third or fourth mo-
ments of the normal distribution respectively.

TEST DECISION:

The null hypothesis H0 is rejected, if the JB-value exceeds a self-chosen significance
value of a χ2 distribution with two degrees of freedom.

E.4 T-TEST

The t-Test is used to decide whether an estimated parameter is significantly different
from zero or not.

HYPOTHESES:

H0 : βi = 0
H1 : βi , 0

243

E Statistical Tests

TEST STATISTIC:

The estimated parameter value is evaluated against the standard error of the param-
eter estimation. When estimated with maximum likelihood, the standard error itself
is the standard deviation of the covariance matrix which is calculated from the inverse
Fisher information matrix I

(
βi
)

= −E(H)ii whereas H is the Hesse matrix of all second
order partial derivatives. Since maximum likelihood needs a distributional probability
assumption, bootstrapping can be applied to calculate t-values when no distributional
assumption can be made.

t − value =
β̂i

se
(
β̂i

) =
β̂i√
−E(H)−1

ii

∼ tT−1,(1−α/2) (E.7)

TEST DECISION:

The null hypothesis is rejected, if the t-Value is greater than the corresponding value
of the student t-distribution with T − 1 degrees of freedom with a self-chosen critical
significance level. Since βi is tested for equality one has to apply the two sided version
of the test.

244

STATEMENT OF AUTHORSHIP
I declare that I have written this Dissertation, titled “Gamification as a Service - Concep-
tualization of a Generic Enterprise Gamification Platform” independently. There were
no other references and resources used as stated in the work. I indicated literal or
accordingly adopted quotations.

Dresden, July 9, 2014

Philipp Herzig, M.Sc.

245

	Title page
	Contents
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Abstract
	Acknowledgement
	Introduction
	Motivation
	Research Objective and Research Questions
	Research Design
	Thesis Structure
	Publications
	Conference and Journal Papers
	Patents

	Foundations
	Gamification
	Definition
	Emergence and Progression Aspects of Games
	Biology & Psychology of Games

	Enterprise Architectures
	Overview
	Service Oriented Architecture
	Event Driven Architecture
	Definition, Characteristics, and Building Blocks
	Complex Event and Stream Processing

	Production Rules
	Contextual Event Processing
	Comparison of Approaches

	Gamification Process
	General Process
	Gamification Process
	Contributions

	Conceptual Requirements
	Approach
	General Gamification Requirements
	Game Interface Patterns
	Atomic Concepts
	Aggregated Concepts

	Gamification Rules
	Types of Rules
	Rule Conditions
	Rule Consequences (CR23)

	Non-Functional Requirements
	Systematization

	GaML - Conceptual Gamification Modeling Language
	Design Objectives
	Syntax and Meta-Model
	General Elements
	Condition Elements
	Entity-independent Conditions
	Player-specific Conditions
	Team-specific Condition

	Consequence Elements

	Static Semantics
	Systematization

	Related Work
	Languages
	Game Description Language
	Machinations
	Serious Game Structure and Logic Modeling Language
	Others
	Systematization

	Gamification Solutions
	Achievement Systems
	Integrated Gamification Solutions
	Generic Gamification Platforms
	Bunchball
	Badgeville
	IActionable
	Systematization

	Others
	Systematization

	Gamification Runtime Environment Concept
	General Scenario
	Solution Approaches
	Relational Databases
	Complex Event Processing

	Hybrid Approach
	General Case
	Synchronous Context-Update
	Asynchronous Context-Update

	Business Entity Provider
	Data Model
	Update and Query Interfaces

	Event Processing Agent
	Event Processing Procedure
	Standardized Events and Rules

	Compilation Procedure
	Compilation of Entities
	Compilation of Rules
	Rule Conditions - General Elements
	Player Conditions
	Team Conditions
	Rule Consequences

	Compilation of Terminals
	Systematization

	Evaluation
	Application Scenarios
	SAP TwoGo
	SAP Networking Lunch
	SAP Financial Fact Sheet
	Soccer Training Application
	CHIO Event Application
	Additional Applications

	Implementation
	Gamification Modeling Language
	Parser
	Code Generation

	Gamification Runtime Environment
	Component: Achievement Provider
	Component: RuleEngine
	Component: Gateway
	Component: AdminUI
	Component: Gamification Widgets
	Synchronous Deployment Mode
	Asynchronous Deployment Mode

	Integration
	SAP TwoGo
	SAP Networking Lunch

	Performance Analysis
	Evaluation Setup
	Experimental Results
	Discussion
	Generic Performance Model
	Discussion of Generic Performance Model

	Applicability
	Study Design
	Descriptive Statistics
	Interpretation and Discussion of Results

	Validation of Benefits
	Motivational Impact
	Integration
	Conclusion

	Systematization

	Summary and Outlook
	Summary
	Outlook
	Taxonomy Completeness
	Operational Semantics of GaML
	Graphical Rule Editor
	Automatic Derivation of Business Entity Provider Semantics
	Improved Synchronization Strategies for Transactional Processing
	Additional Engineering Aspects

	GaML Elements
	Terminals
	L1 Concepts
	Condition Elements
	Consequence Elements

	Excerpt from API Specification
	IAdminAPI
	IQueryAPI
	IUpdateAPI
	IAnalyticsAPI
	IUserConfig
	IRuleService
	IEventManager

	GaML Study
	Questionnaire
	Block 1
	Block 2
	Block 3
	Block 4
	Block 5
	Block 6

	System Usability Scale
	Correlation Matrix

	Supplementary Pictures
	Data Model
	Graphical Artifacts of Gamification Platform
	RETE Graph of Networking Lunch Rules

	Statistical Tests
	(Multivariate) Analysis of Variance
	Wilcoxon-Mann-Whitney Test
	Jarque-Bera Test
	t-Test

