
Ubiquitous Computing
Edited by Eduard Babkin

Edited by Eduard Babkin

Photo by ktsimage / iStock

The aim of this book is to give a treatment of the actively developed domain of
Ubiquitous computing. Originally proposed by Mark D. Weiser, the concept of

Ubiquitous computing enables a real-time global sensing, context-aware informational
retrieval, multi-modal interaction with the user and enhanced visualization

capabilities. In effect, Ubiquitous computing environments give extremely new
and futuristic abilities to look at and interact with our habitat at any time and from

anywhere. In that domain, researchers are confronted with many foundational,
technological and engineering issues which were not known before. Detailed cross-
disciplinary coverage of these issues is really needed today for further progress and

widening of application range. This book collects twelve original works of researchers
from eleven countries, which are clustered into four sections: Foundations, Security

and Privacy, Integration and Middleware, Practical Applications.

ISBN 978-953-307-409-2

U
biquitous C

om
puting

UBIQUITOUS COMPUTING

Edited by Eduard Babkin

INTECHOPEN.COM

UBIQUITOUS COMPUTING

Edited by Eduard Babkin

INTECHOPEN.COM

Ubiquitous Computing
http://dx.doi.org/10.5772/638
Edited by Eduard Babkin

Contributors

Vivian C. Kalempa, Kaoru Ota, Mianxiong Dong, Long Zheng, Minyi Guo, Song Guo, Jean-Yves Tigli, Stéphane
Lavirotte, Nicolas Ferry, Gaëtan Rey, Vincent Hourdin, Michel Riveill, Orlewilson B. Maia, Nairon Saraiva Viana, Vicente
Ferreira de Lucena Jr, Ren-Song Ko, Sin-Jae Lee, Hyun-Seok Kim, Jin-Young Choi, Eduard Babkin, Habib Abdulrab, Oleg
Kozyrev, Rita Francese, Ignazio Passero, Genoveff Tortora, Dewi Agushinta R., Marie-Luce Bourguet, Mauro Marcelo
Mattos, Marcos Forte, Wanderley Lopes de Souza, Antonio Francisco Do Prado, Carlos Eduardo Cirilo

© The Editor(s) and the Author(s) 2011
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2011 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Ubiquitous Computing
Edited by Eduard Babkin

p. cm.

ISBN 978-953-307-409-2

eBook (PDF) ISBN 978-953-51-5523-2

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,350+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

108,000+
International authors and editors

114M+
Downloads

We are IntechOpen,
the first native scientific

publisher of Open Access books

Meet the editor

Eduard Babkin is a professor at the National Research
University - Higher School of Economics in Nizhny
Novgorod, in Russia. Currently, he is the head of the
department of information systems and technologies at
that university, and both an associate member of LITIS
laboratory at National Institute of Applied Sciences
(Rouen, France). Eduard Babkin has ten years of practi-

cal experience in R&D, architecting and project management of complex
distributed systems for large international telecommunication companies.
In 2007, Eduard Babkin obtained his PhD degree in Computer Science at
the National Institute of Applied Sciences. His scientific interests include
enterprise engineering, multi-agent systems, knowledge representation
and processing.

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Part 2

Chapter 6

Chapter 7

Preface IX

Foundations 1

Machine Biological Clock:
Exploring the Time Dimension
in an Organic-Based Operating System 3
Mauro Marcelo Mattos

Anywhere/Anytime Software and Information
Access via Collaborative Assistance 31
Ren-Song Ko

Uncertainty and Error Handling
in Pervasive Computing: A User’s Perspective 49
Marie-Luce Bourguet

Content Adaptation in Ubiquitous Computing 67
Wanderley Lopes de Souza, Antonio Francisco do Prado,
Marcos Forte and Carlos Eduardo Cirilo

Caching in Ubiquitous Computing Environments:
Light and Shadow 95
Mianxiong Dong, Long Zheng, Kaoru Ota,
Jun Ma, Song Guo, and Minyi Guo

Privacy and Security 111

Security Analysis of the RFID Authentication
Protocol using Model Checking 113
Hyun-Seok Kim, Jin-Young Choi, and Sin-Jae Lee

On Modeling of Ubiquitous Computing
Environments featuring Privacy 127
Vivian C. Kalempa, Rodrigo Campiolo, Lucas Guardalben,
Urian K. Bardemaker, João Bosco M. Sobral

Contents

Part 1

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Part 2

Chapter 6

Chapter 7

Preface XI

Foundations 1

Machine Biological Clock:
Exploring the Time Dimension
in an Organic-Based Operating System 3
Mauro Marcelo Mattos

Anywhere/Anytime Software and Information
Access via Collaborative Assistance 31
Ren-Song Ko

Uncertainty and Error Handling
in Pervasive Computing: A User’s Perspective 49
Marie-Luce Bourguet

Content Adaptation in Ubiquitous Computing 67
Wanderley Lopes de Souza, Antonio Francisco do Prado,
Marcos Forte and Carlos Eduardo Cirilo

Caching in Ubiquitous Computing Environments:
Light and Shadow 95
Mianxiong Dong, Long Zheng, Kaoru Ota,
Jun Ma, Song Guo, and Minyi Guo

Privacy and Security 111

Security Analysis of the RFID Authentication
Protocol using Model Checking 113
Hyun-Seok Kim, Jin-Young Choi, and Sin-Jae Lee

On Modeling of Ubiquitous Computing
Environments featuring Privacy 127
Vivian C. Kalempa, Rodrigo Campiolo, Lucas Guardalben,
Urian K. Bardemaker, João Bosco M. Sobral

Contents

X Contents

Integration Middleware 149

WComp, a Middleware for Ubiquitous Computing 151
Nicolas Ferry, Vincent Hourdin, Stéphane Lavirotte,
Gaëtan Rey, Michel Riveill and Jean-Yves Tigli

Semantically Enriched Integration Framework
for Ubiquitous Computing Environment 177
Habib Abdulrab, Eduard Babkin and Oleg Kozyrev

Practical Applications 197

Current Challenges for Mobile Location-Based
Pervasive Content Sharing Applications 199
R. Francese, I. Passero and Genoveffa Tortora

Case Study: The Condition
of Ubiquitous Computing Application in Indonesia 215
Dewi Agushinta R., Tb. Maulana Kusuma,
Bismar Junatas and Deni Trihasta

Using the iDTV as the Center
of an Ubiquitous Environment 225
Orlewilson B. Maia, Nairon S. Viana and Vicente F. de Lucena Jr

Part 3

Chapter 8

Chapter 9

Part 4

Chapter 10

Chapter 11

Chapter 12

Preface

The aim of this book is to give a treatment of the actively developed domain of Ubiq-
uitous computing (also known as ubicomp). In that domain, due to miniaturization,
reduced costs of electronic components and advanced information technologies, de-
velopers are now off ered a wide range of practical opportunities to design, develop
and deploy thousands of the coin-sized sensors and mechanical devices at multiple
locations.

Originally proposed by Mark D. Weiser in 1988, the concept of Ubiquitous computing
may be considered as an evolutionary development of traditional computational meth-
ods and platforms. However, ubicomp enables real-time global sensing, context-aware
informational retrieval, multi-modal interaction with the user and enhanced visual-
ization capabilities. In eff ect, ubiquitous computing environments give extremely new
and futuristic abilities to look at and interact with in our habitat at any time and from
anywhere.

Unforeseen ability to fuse rich diversity of information retrieval, processing and ac-
cess methods available in ubiquitous computing environments, practically invisible
devices and tight connectivity of distributed components raise many foundational,
technological and engineering issues which were not even known prior to the third,
ubicomp, wave of computing. Detailed cross-disciplinary coverage of those issues is
really needed today for further progress and widening of application domains.

This book collects twelve original works of researchers from eleven countries, which
represent diff erent aspects of cutt ing-edge research and application of Ubiquitous
computing. The submissions are clustered into four sections:

• Foundations
• Security and Privacy
• Integration and Middleware
• Practical Applications

Section Foundations is opened by the work of Mauro Marcelo Matt os where the con-
cept of Knowledge-based Operating System (KBOS) is discussed. KBOS has ability of
knowing how to perform tasks and how to self-adapt to the  uctuations of resource

XII Preface

availability when interacting with the surrounding environment. Studies of ubicomp
foundations are continued by Ren-Song Ko who presents an original concept of mu-
tual assistant networks (MANs) which combines social networks with wireless sensor
networks, and provides an infrastructure for new location-aware social network ap-
plications, in which people may share the local and timely information that cannot be
obtained on time from the Internet. Uncertainty and error handling in the case of the
invisibility of the devices and lacking of user’s awareness is studied by Marie-Luce
Bourguet. For resolving that problem the author off ers exploiting users’ correct men-
tal models of the devices and data properties. Foundational technologies for content
adaptation in Ubiquitous computing are considered by Wanderley Lopes de Souza1,
Antonio Francisco do Prado, Marcos Forte and Carlos Eduardo Cirilo. In their work
the authors describe the Internet Content Adaptation Framework (ICAF), and suggest
to apply ontologies for content adaptation. Mianxiong Dong, Long Zheng, Kaoru Ota,
Song Guo, and Minyi Guo shed light on and study shadows of caching mechanisms for
improving communication in Ubiquitous computing environment. They discuss the
concept of Ubiquitous Multi-Processor (UMP) and off er an optimized algorithm for
resource allocation to a processing node, which can improve the overall performance
of the UMP system.

Extremely important and challenging issues of security and privacy in Ubiquitous
computing environments are considered in three consecutive works of the second Sec-
tion. Hyun-Seok Kim, Jin-Young Choi, and Sin-Jae Lee propose comprehensive Secu-
rity Analysis of the RFID Authentication Protocol using model checking formalism of
Failure Divergence Re nement (FDR). Based on the results of model checking authors
recon rm the existence of known security  aws and propose new schemes for secure
RFID communication. Vivian C. Kalempa, Rodrigo Campiolo, Lucas Guardalben, Uri-
an K. Bardemaker, and João Bosco M. Sobral explore the challenges to ensuring privacy
in ubiquitous computing environments and propose to extend a metamodel of such
environments to the aspects provacy.

Section Integration and Middleware is focused on the problems of interoperability
in the joint context of ubiquitous computing environment, existing IT-infrastructure
and people society. In their work, Nicolas Ferry, Vincent Hourdin, St éphane Lavirott e,
Ga¨etan Rey, Michel Riveill and Jean-Yves Tigli propose WComp, which is a middle-
ware for ubiquitous computing capable of managing the dynamicity and heteroge-
neity of entities in the soft ware infrastructure. The proposed middleware solution is
built in accordance with the principles of Web Service Oriented Architecture for De-
vice (WSOAD). Habib Abdulrab, Eduard Babkin and Oleg Kozyrev describe semanti-
cally enriched integration framework for ubiquitous computing environment, which is
called Ontology Mediator.

The last section of the application of ubicomp in practical sett ings starts with the work
of R. Francese, I. Passero & Genoveff a Tortora. The authors discuss current challenges
for mobile location-based pervasive content sharing applications. Interesting factual
information and observations are presented by Dewi Agushinta R. , Tb. Maulana

XIPreface

Kusuma, Bismar Junatas and Deni Trihasta in the case study research which is about
ubiquitous computing applications in Indonesia. Orlewilson B. Maia, Nairon S. Viana
and Vicente F. de Lucena Jr observe benets and opportunities of using the interactive
Digital Television (iDTV) systems as the Center of and Ubiquitous Environment in par-
ticular circumstances of Brasilia.
Upon acquaintance with the presented scientic works, the readers will obtain con-
sistent comprehension of major foundations of Ubiquitous computing environments,
their exciting opportunities and challenges, relevant scientic methods and practice-
oriented technologies. The editor of the book strongly believes that as a result, the re-
search community will be expanded with new pioneers and enthusiasts who have a
goal to advance the ubicomp as “that which informs but doesn’t demand our focus or
att ention.”

Eduard Babkin
National Research University,

Higher School of Economics
Nizhny Novgorod,

Russia

X Preface

availability when interacting with the surrounding environment. Studies of ubicomp
foundations are continued by Ren-Song Ko who presents an original concept of mu-
tual assistant networks (MANs) which combines social networks with wireless sensor
networks, and provides an infrastructure for new location-aware social network ap-
plications, in which people may share the local and timely information that cannot be
obtained on time from the Internet. Uncertainty and error handling in the case of the
invisibility of the devices and lacking of user’s awareness is studied by Marie-Luce
Bourguet. For resolving that problem the author offers exploiting users’ correct men-
tal models of the devices and data properties. Foundational technologies for content
adaptation in Ubiquitous computing are considered by Wanderley Lopes de Souza1,
Antonio Francisco do Prado, Marcos Forte and Carlos Eduardo Cirilo. In their work
the authors describe the Internet Content Adaptation Framework (ICAF), and suggest
to apply ontologies for content adaptation. Mianxiong Dong, Long Zheng, Kaoru Ota,
Song Guo, and Minyi Guo shed light on and study shadows of caching mechanisms for
improving communication in Ubiquitous computing environment. They discuss the
concept of Ubiquitous Multi-Processor (UMP) and offer an optimized algorithm for
resource allocation to a processing node, which can improve the overall performance
of the UMP system.

Extremely important and challenging issues of security and privacy in Ubiquitous
computing environments are considered in three consecutive works of the second Sec-
tion. Hyun-Seok Kim, Jin-Young Choi, and Sin-Jae Lee propose comprehensive Secu-
rity Analysis of the RFID Authentication Protocol using model checking formalism of
Failure Divergence Renement (FDR). Based on the results of model checking authors
reconrm the existence of known security aws and propose new schemes for secure
RFID communication. Vivian C. Kalempa, Rodrigo Campiolo, Lucas Guardalben, Uri-
an K. Bardemaker, and João Bosco M. Sobral explore the challenges to ensuring privacy
in ubiquitous computing environments and propose to extend a metamodel of such
environments to the aspects provacy.

Section Integration and Middleware is focused on the problems of interoperability
in the joint context of ubiquitous computing environment, existing IT-infrastructure
and people society. In their work, Nicolas Ferry, Vincent Hourdin, St éphane Lavirott e,
Ga¨etan Rey, Michel Riveill and Jean-Yves Tigli propose WComp, which is a middle-
ware for ubiquitous computing capable of managing the dynamicity and heteroge-
neity of entities in the software infrastructure. The proposed middleware solution is
built in accordance with the principles of Web Service Oriented Architecture for De-
vice (WSOAD). Habib Abdulrab, Eduard Babkin and Oleg Kozyrev describe semanti-
cally enriched integration framework for ubiquitous computing environment, which is
called Ontology Mediator.

The last section of the application of ubicomp in practical settings starts with the work
of R. Francese, I. Passero & Genoveffa Tortora. The authors discuss current challenges
for mobile location-based pervasive content sharing applications. Interesting factual
information and observations are presented by Dewi Agushinta R. , Tb. Maulana

Preface XIII

Kusuma, Bismar Junatas and Deni Trihasta in the case study research which is about
ubiquitous computing applications in Indonesia. Orlewilson B. Maia, Nairon S. Viana
and Vicente F. de Lucena Jr observe bene ts and opportunities of using the interactive
Digital Television (iDTV) systems as the Center of and Ubiquitous Environment in par-
ticular circumstances of Brasilia.
Upon acquaintance with the presented scienti c works, the readers will obtain con-
sistent comprehension of major foundations of Ubiquitous computing environments,
their exciting opportunities and challenges, relevant scienti c methods and practice-
oriented technologies. The editor of the book strongly believes that as a result, the re-
search community will be expanded with new pioneers and enthusiasts who have a
goal to advance the ubicomp as “that which informs but doesn’t demand our focus or
att ention.”

Eduard Babkin
National Research University,

Higher School of Economics
Nizhny Novgorod,

Russia

Part 1

Foundations

Part 1

Foundations

1

Machine Biological Clock:
Exploring the Time Dimension in

an Organic-Based Operating System
Mauro Marcelo Mattos

FURB – University of Blumenau
Brazil

1. Introduction
Ubiquitous Computing (UbiCom), Autonomic Computing (AC) and Organic Computing
(OC) research has produced a substantial body of work dealing with smart devices, smart
environments and smart interaction technologies.
Ubiquitous computing was introduced by (Weiser, 1991) and is related to a vision of people
and environments augmented with computational resources providing information and
services when and where they could be desired, going beyond than just infrastructure
aspects, and suggesting new paradigms of interaction inspired by widespread access to
information and computational capabilities (Abowd & Mynatt, 2000) (Poslad, 2009). This
vision involves social, technological, engineering and foundational questions (Milner, 2006).
UbiCom environments are increasingly challenging domains when compared with those
traditional – also not so easy to deal with traditional computing applications domains.
According to (Brachman, 2002) in such scenario there exists the need for a software
infrastructure that supports all sorts of heterogeneities (hardware, operating systems,
networks, protocols and applications).
Autonomic Computing is related to someone or something acting or occurring
involuntarily. It is related to the ability to manage the computing enterprise through
hardware and software that automatically and dynamically responds to the requirements of
the business. This means self-healing, self-configuring, self-optimizing, and self-protecting
hardware and software that behaves in accordance to defined service levels and policies
(Murch, 2004)(Balasubramaniam, et al., 2005).
Organic Computing is a research field emerging around the conviction that problems of
organization in complex systems in computer science, telecommunications, neurobiology,
molecular biology, ethology, and possibly even sociology can be tackled scientifically in a
unified way, by means of which progress in understanding aspects of organization in either
field can be fruitful in the others (Würtz, 2008). OC systems are based on a general
architecture, which would permit users to create specific applications by defining goal
hierarchies (Malsburg, 2008) taking advantages of one of the key attributes of biological
systems making it possible to adapt and change on multiple time scales as they evolve,
develop, and grow, and they should do so without external direction or control (Bellman,
Landauer, & Nelson, 2008).

1

Machine Biological Clock:
Exploring the Time Dimension in

an Organic-Based Operating System
Mauro Marcelo Mattos

FURB – University of Blumenau
Brazil

1. Introduction
Ubiquitous Computing (UbiCom), Autonomic Computing (AC) and Organic Computing
(OC) research has produced a substantial body of work dealing with smart devices, smart
environments and smart interaction technologies.
Ubiquitous computing was introduced by (Weiser, 1991) and is related to a vision of people
and environments augmented with computational resources providing information and
services when and where they could be desired, going beyond than just infrastructure
aspects, and suggesting new paradigms of interaction inspired by widespread access to
information and computational capabilities (Abowd & Mynatt, 2000) (Poslad, 2009). This
vision involves social, technological, engineering and foundational questions (Milner, 2006).
UbiCom environments are increasingly challenging domains when compared with those
traditional – also not so easy to deal with traditional computing applications domains.
According to (Brachman, 2002) in such scenario there exists the need for a software
infrastructure that supports all sorts of heterogeneities (hardware, operating systems,
networks, protocols and applications).
Autonomic Computing is related to someone or something acting or occurring
involuntarily. It is related to the ability to manage the computing enterprise through
hardware and software that automatically and dynamically responds to the requirements of
the business. This means self-healing, self-configuring, self-optimizing, and self-protecting
hardware and software that behaves in accordance to defined service levels and policies
(Murch, 2004)(Balasubramaniam, et al., 2005).
Organic Computing is a research field emerging around the conviction that problems of
organization in complex systems in computer science, telecommunications, neurobiology,
molecular biology, ethology, and possibly even sociology can be tackled scientifically in a
unified way, by means of which progress in understanding aspects of organization in either
field can be fruitful in the others (Würtz, 2008). OC systems are based on a general
architecture, which would permit users to create specific applications by defining goal
hierarchies (Malsburg, 2008) taking advantages of one of the key attributes of biological
systems making it possible to adapt and change on multiple time scales as they evolve,
develop, and grow, and they should do so without external direction or control (Bellman,
Landauer, & Nelson, 2008).

 Ubiquitous Computing

4

The pervasiveness characteristic of these demands also implies the growing dependency on
the expectance to obtaining the proper services when the system is fault-free and especially
when it encounters perturbations. So, it is important to qualitatively and quantitatively
associate some measures of trust in the system’s ability to actually deliver the desired
services in the presence of faults.
Since the first steps in the computing history we have seen the field of Software Engineering
expand in several ways including the application of software architecture principles to the
development of systems. Software architecture involves both the structure and organization
by which modern system components and subsystems interact to form systems, and the
properties of systems that can best be designed and analyzed at the system level. The
importance of software architecture for software development is widely recognized, yet
transfer of innovative techniques and methods from research to practice is slow (Krutchen,
2004) (Osterweil, 2007)(Kruchten, Capilla, & Dueñas, 2009)(Buschmann, 2010) and costly
(Lagerström, von Würtemberg, Holm, & Luczak, 2010) due to rapid and continuous
technology changes.
One important aspect to be pointed is that the current computing platform is made upon a
vast collection of code – operating systems1, programming languages, compilers, libraries,
run-time systems, middleware – and hardware that make possible a program to execute.
This platform has not evolved beyond computer architectures, operating systems (OS), and
programming languages of the 1960’s and 1970’s (Hunt G., et al., 2005)(Hunt & Larus, 2007).
In consequence, application and operating system errors are a continuing source of
problems in computing. Existing approaches to software development have proven
inadequate in offering a good tradeoff between the assurance, reliability, availability, and
performance in such a way that software remains notoriously buggy and crash-prone (Naur
& Randell, 1969) (Anderson, 1972) (Randell, 1979) (Linde, 1975)(Kupsch & Miller,
2009),(Ackermann, 2010). In this context, the OS is probably the most crucial piece of
software that runs on any computer (Iyoengar, Sachdev, & Raja, 2007).
The preceding paragraphs bring us a scenario that is contrasting: from one side the
landscapes of software engineering domains are constantly evolving and for the other side,
the computing environments (hardware, OS, telecommunication infrastructure and tools)
have historically proved not be robust enough. In this ever-changing scenario, the
mainstream research in software engineering goes in a direction trying to propose
innovative solutions in the realm of building, running, and managing software systems.
In order to find an appropriate solution to development and design of the new class of
systems an appropriate paradigm seems necessary. We choose to take the opposite direction
towards the past to try to figure out what could be changed in the beginning of the process
in order to minimize the recurrent problems that we are faced in developing and using
software. As a consequence we proposed a new software architecture where:
• the only alive (runnable) entity is the operating system, and
• the operating system has the ability of learning based on past experiences on what to

do, how to do it and when start learning about solving tasks.

1 In this work, we refer to the concept of operating system in a broader sense, involving the categories of
general purpose, embedded, stand-alone or networked, because we need to get an overview first, before
examining each class in depth. Moreover, the aspects under review do not require differentiation
between these classes.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

5

In the present work, we aim at attracting the reader’s attention towards the conception of a
system with the ability of knowing how to perform tasks and how to self-adapt to the
fluctuations of resource availability when interacting with the surrounding environment.
We call this system as a Knowledge-based Operating System (KBOS).
The work is organized as follows: a problem’s contextualization related to the current
paradigm of computing systems development is presented in section 2; some fundamental
concepts are reviewed in section 3; a knowledge-based operating system concept in section
4; section 5 presents some related works and in the conclusion section the final comments
are presented.

2. Current paradigm
Sequential programs can be described by a single flow of execution and by the use of simple
programming structures such as loops and nested function calls. The execution context of
these programs in some point of the run time is defined by the value of the program
counter, the value of the cpu registers and the content of the program’s stack.
The figure 1 presents an overview of the current paradigm in computing. From a software
development perspective, to develop software is to follow some method (software
development life cycle) in order to go from requisites analysis to implementation. Also, let
us to consider that a program can be represented by a development team (figure 1b) and
that a particular software development team, in general, does know nothing about other
team’s work. This could lead us to situations like:
• similar code continues to be developed by different teams;
• programming errors continues to be introduced in different points of the development

steps;
• information about the final run-time environment remains unavailable for the OS;
• race conditions between non synchronized programs remains leading to instabilities;
In other words: the development team does not have ENOUGH information about ALL
POSSIBLE ENVIRONMENTS where the software will be used2.
From the users perspective, to use a software is a matter of clicking over some icon and
expecting the corresponding program to start running. The user knows about the purpose of
a program and has some expectation about its behavior.
From the operating system’s perspective, all knowledge that is previously known is about
slicing (and possibly trying to protect) binary (executable) code over the time (figure 1a).
Regardless of which method was chosen to develop a particular application, at some point
we will move to the phase of code generation. In this moment, all the documents (and
source code) will be stored in files (figure 1b) and the compiler will generate a string of bits
that we used to call: a program.
At this moment, the OS comes to scene - remembering that the main purpose of an operating
system is to share computational resources among competing users. To do this efficiently a
designer must respect the technological limitations of these resources (Peng, Li, & Mili, 2007).
One of the difficulties of OS design is the highly unpredictable nature of the demands made
upon them mainly because the relationship between different applications are not
considered as a functional/non-functional requisite at the design time. This happens

2 We should to consider that each user’s machine probably will have different hardware and software
configurations that in some moment could be running a particular buggy combination of factors.

 Ubiquitous Computing

4

The pervasiveness characteristic of these demands also implies the growing dependency on
the expectance to obtaining the proper services when the system is fault-free and especially
when it encounters perturbations. So, it is important to qualitatively and quantitatively
associate some measures of trust in the system’s ability to actually deliver the desired
services in the presence of faults.
Since the first steps in the computing history we have seen the field of Software Engineering
expand in several ways including the application of software architecture principles to the
development of systems. Software architecture involves both the structure and organization
by which modern system components and subsystems interact to form systems, and the
properties of systems that can best be designed and analyzed at the system level. The
importance of software architecture for software development is widely recognized, yet
transfer of innovative techniques and methods from research to practice is slow (Krutchen,
2004) (Osterweil, 2007)(Kruchten, Capilla, & Dueñas, 2009)(Buschmann, 2010) and costly
(Lagerström, von Würtemberg, Holm, & Luczak, 2010) due to rapid and continuous
technology changes.
One important aspect to be pointed is that the current computing platform is made upon a
vast collection of code – operating systems1, programming languages, compilers, libraries,
run-time systems, middleware – and hardware that make possible a program to execute.
This platform has not evolved beyond computer architectures, operating systems (OS), and
programming languages of the 1960’s and 1970’s (Hunt G., et al., 2005)(Hunt & Larus, 2007).
In consequence, application and operating system errors are a continuing source of
problems in computing. Existing approaches to software development have proven
inadequate in offering a good tradeoff between the assurance, reliability, availability, and
performance in such a way that software remains notoriously buggy and crash-prone (Naur
& Randell, 1969) (Anderson, 1972) (Randell, 1979) (Linde, 1975)(Kupsch & Miller,
2009),(Ackermann, 2010). In this context, the OS is probably the most crucial piece of
software that runs on any computer (Iyoengar, Sachdev, & Raja, 2007).
The preceding paragraphs bring us a scenario that is contrasting: from one side the
landscapes of software engineering domains are constantly evolving and for the other side,
the computing environments (hardware, OS, telecommunication infrastructure and tools)
have historically proved not be robust enough. In this ever-changing scenario, the
mainstream research in software engineering goes in a direction trying to propose
innovative solutions in the realm of building, running, and managing software systems.
In order to find an appropriate solution to development and design of the new class of
systems an appropriate paradigm seems necessary. We choose to take the opposite direction
towards the past to try to figure out what could be changed in the beginning of the process
in order to minimize the recurrent problems that we are faced in developing and using
software. As a consequence we proposed a new software architecture where:
• the only alive (runnable) entity is the operating system, and
• the operating system has the ability of learning based on past experiences on what to

do, how to do it and when start learning about solving tasks.

1 In this work, we refer to the concept of operating system in a broader sense, involving the categories of
general purpose, embedded, stand-alone or networked, because we need to get an overview first, before
examining each class in depth. Moreover, the aspects under review do not require differentiation
between these classes.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

5

In the present work, we aim at attracting the reader’s attention towards the conception of a
system with the ability of knowing how to perform tasks and how to self-adapt to the
fluctuations of resource availability when interacting with the surrounding environment.
We call this system as a Knowledge-based Operating System (KBOS).
The work is organized as follows: a problem’s contextualization related to the current
paradigm of computing systems development is presented in section 2; some fundamental
concepts are reviewed in section 3; a knowledge-based operating system concept in section
4; section 5 presents some related works and in the conclusion section the final comments
are presented.

2. Current paradigm
Sequential programs can be described by a single flow of execution and by the use of simple
programming structures such as loops and nested function calls. The execution context of
these programs in some point of the run time is defined by the value of the program
counter, the value of the cpu registers and the content of the program’s stack.
The figure 1 presents an overview of the current paradigm in computing. From a software
development perspective, to develop software is to follow some method (software
development life cycle) in order to go from requisites analysis to implementation. Also, let
us to consider that a program can be represented by a development team (figure 1b) and
that a particular software development team, in general, does know nothing about other
team’s work. This could lead us to situations like:
• similar code continues to be developed by different teams;
• programming errors continues to be introduced in different points of the development

steps;
• information about the final run-time environment remains unavailable for the OS;
• race conditions between non synchronized programs remains leading to instabilities;
In other words: the development team does not have ENOUGH information about ALL
POSSIBLE ENVIRONMENTS where the software will be used2.
From the users perspective, to use a software is a matter of clicking over some icon and
expecting the corresponding program to start running. The user knows about the purpose of
a program and has some expectation about its behavior.
From the operating system’s perspective, all knowledge that is previously known is about
slicing (and possibly trying to protect) binary (executable) code over the time (figure 1a).
Regardless of which method was chosen to develop a particular application, at some point
we will move to the phase of code generation. In this moment, all the documents (and
source code) will be stored in files (figure 1b) and the compiler will generate a string of bits
that we used to call: a program.
At this moment, the OS comes to scene - remembering that the main purpose of an operating
system is to share computational resources among competing users. To do this efficiently a
designer must respect the technological limitations of these resources (Peng, Li, & Mili, 2007).
One of the difficulties of OS design is the highly unpredictable nature of the demands made
upon them mainly because the relationship between different applications are not
considered as a functional/non-functional requisite at the design time. This happens

2 We should to consider that each user’s machine probably will have different hardware and software
configurations that in some moment could be running a particular buggy combination of factors.

 Ubiquitous Computing

6

Fig. 1. Current paradigm: software from an inside-out perspective (a), and from an outside-
in perspective (b).

because the structure of an OS requires a series of fine-grained event-handler functions for
handling events. These event-handler functions must execute quickly and always return to
the main event-loop.
Behind the “software layer that manages the hardware” concept (Tanenbaum, 2008), an OS
could be better described as a software architecture (Perry & Wolf, 1992) which embeds a
large number of design decisions related to hardware interface, programming languages
and tools that have a direct impact in almost every software that will be deployed. So, an
OS architecture involves a set of functional components related to management of processes,
memories, files, devices (input/output operations), security and user interface. In general
they are organized in layers.
The first level is the hardware that requires the OS attention by emitting signals to the CPU
thru some kind of interrupt model. These hardware events are converted to some kind of
logical messages to be dispatched to the application running on that computing device
(figure 1a). This conversion exports an abstract view on hardware so that programmers do
not have to deal with low level details.
The analysis on the set of clues presented leads us to speculate on the influence that some of
the key concepts related to current paradigm: multiprogramming3, operator, and program -
can contribute to the recurrence of the historical problems4.

3 There is a class of embedded applications that, for the very specific nature, are not affected by the
principle of interruption (have deterministic behavior). Even these, however, could be to some extent,
included in this reflection.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

7

2.1 Multiprogramming
The computing device, in general, can run several applications at a time leading us to some
kind of multiprogramming environment. The main difficulty of multiprogramming is that
the concurrent activities can interact in a time-dependent manner which makes it practically
impossible to locate programming errors by systematic testing.
Perhaps, more than anything else, this explains the difficulty of making operating systems
reliable (Hansen, 1973), (Hansen, 1977) (Post & Kagan, 2003).
One of the most fundamental design decisions in conceiving a new OS architecture is related
to the definition of the type of kernel: non-preemptive or preemptive. This decision imposes
a tradeoff between the coupling in the time domain and resource sharing. A non-preemptive
kernel makes the OS able to share resources among tasks but couples the tasks in the time
domain while a preemptive kernel decouples the tasks in the time domain but enforces the
resource sharing (Samek, 2009).

2.2 Operator
Another interesting aspect to be considered is about the figure of a computer operator5.
In 1961 Klausman wrote: “… I define a computer operator as a job responsibility of a person who
is in charge of the computing equipment while it is in normal operating condition. The
equipment includes the processor, its console or supervisory control panel, and the peripheral
equipments on-line or off-line. The operator may have assistants to change tapes, paper forms
or the like. Normal operating condition is that in which the system is able to operate in
continuous or automatic mode without intervention for relatively long periods of time. These
periods may be interrupted by occasional transient errors which do not cause maintenance
service. The operator's responsibilities include the running of production programs, programs
being debugged, and service routines, such as compilers, tape correction routines, etc. The
operator's responsibility also includes the diagnosis and action taken as a consequence of
transient errors. In addition is the general area of communications into which the operator fits.
To intelligently operate the system his knowledge should transcend mere ability to push
buttons, an activity which may steadily decrease with the growth in sophistication of the
programming art and engineering developments during the sixties… It is conceivable that a
data processing system will be completely automatic. A real time clock built into the system
will turn it on in the morning or the middle of the night. Automatic tape changes will mount
and dismount tapes - feed cards, forms and the like. And the operator - where is he? He isn't -
the function ceases to exist. This may not happen tomorrow or next year but it is coming. In an
industry which is literally begging for competent personnel it seems to me that operators have
nothing to fear from this progress, for more challenging jobs have appeared and will continue
to be created for decades to come…” (Klausman, 1961).
Currently, the figure of the computer operator was replaced by the figure of the end user
and, in this context, one of the programmer’s role is to arrange virtual buttons in a graphical
user interface for user to press them and thus make the program work.

4 It is important to emphasize that we are analyzing some characteristics in order to understand what
could be the cause of recurring issues, and we are not arguing for or against the current paradigm.
5 Even considering the class of embedded operating systems for the specific purpose, the concept of
operator remains valid (albeit virtually) once the set of interactions between the external world and the
controlled device is performed through a set of well established interfaces – replacing buttons for
function calls. Under the functional perspective, there is no difference between pressing a button or
calling a function.

 Ubiquitous Computing

6

Fig. 1. Current paradigm: software from an inside-out perspective (a), and from an outside-
in perspective (b).

because the structure of an OS requires a series of fine-grained event-handler functions for
handling events. These event-handler functions must execute quickly and always return to
the main event-loop.
Behind the “software layer that manages the hardware” concept (Tanenbaum, 2008), an OS
could be better described as a software architecture (Perry & Wolf, 1992) which embeds a
large number of design decisions related to hardware interface, programming languages
and tools that have a direct impact in almost every software that will be deployed. So, an
OS architecture involves a set of functional components related to management of processes,
memories, files, devices (input/output operations), security and user interface. In general
they are organized in layers.
The first level is the hardware that requires the OS attention by emitting signals to the CPU
thru some kind of interrupt model. These hardware events are converted to some kind of
logical messages to be dispatched to the application running on that computing device
(figure 1a). This conversion exports an abstract view on hardware so that programmers do
not have to deal with low level details.
The analysis on the set of clues presented leads us to speculate on the influence that some of
the key concepts related to current paradigm: multiprogramming3, operator, and program -
can contribute to the recurrence of the historical problems4.

3 There is a class of embedded applications that, for the very specific nature, are not affected by the
principle of interruption (have deterministic behavior). Even these, however, could be to some extent,
included in this reflection.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

7

2.1 Multiprogramming
The computing device, in general, can run several applications at a time leading us to some
kind of multiprogramming environment. The main difficulty of multiprogramming is that
the concurrent activities can interact in a time-dependent manner which makes it practically
impossible to locate programming errors by systematic testing.
Perhaps, more than anything else, this explains the difficulty of making operating systems
reliable (Hansen, 1973), (Hansen, 1977) (Post & Kagan, 2003).
One of the most fundamental design decisions in conceiving a new OS architecture is related
to the definition of the type of kernel: non-preemptive or preemptive. This decision imposes
a tradeoff between the coupling in the time domain and resource sharing. A non-preemptive
kernel makes the OS able to share resources among tasks but couples the tasks in the time
domain while a preemptive kernel decouples the tasks in the time domain but enforces the
resource sharing (Samek, 2009).

2.2 Operator
Another interesting aspect to be considered is about the figure of a computer operator5.
In 1961 Klausman wrote: “… I define a computer operator as a job responsibility of a person who
is in charge of the computing equipment while it is in normal operating condition. The
equipment includes the processor, its console or supervisory control panel, and the peripheral
equipments on-line or off-line. The operator may have assistants to change tapes, paper forms
or the like. Normal operating condition is that in which the system is able to operate in
continuous or automatic mode without intervention for relatively long periods of time. These
periods may be interrupted by occasional transient errors which do not cause maintenance
service. The operator's responsibilities include the running of production programs, programs
being debugged, and service routines, such as compilers, tape correction routines, etc. The
operator's responsibility also includes the diagnosis and action taken as a consequence of
transient errors. In addition is the general area of communications into which the operator fits.
To intelligently operate the system his knowledge should transcend mere ability to push
buttons, an activity which may steadily decrease with the growth in sophistication of the
programming art and engineering developments during the sixties… It is conceivable that a
data processing system will be completely automatic. A real time clock built into the system
will turn it on in the morning or the middle of the night. Automatic tape changes will mount
and dismount tapes - feed cards, forms and the like. And the operator - where is he? He isn't -
the function ceases to exist. This may not happen tomorrow or next year but it is coming. In an
industry which is literally begging for competent personnel it seems to me that operators have
nothing to fear from this progress, for more challenging jobs have appeared and will continue
to be created for decades to come…” (Klausman, 1961).
Currently, the figure of the computer operator was replaced by the figure of the end user
and, in this context, one of the programmer’s role is to arrange virtual buttons in a graphical
user interface for user to press them and thus make the program work.

4 It is important to emphasize that we are analyzing some characteristics in order to understand what
could be the cause of recurring issues, and we are not arguing for or against the current paradigm.
5 Even considering the class of embedded operating systems for the specific purpose, the concept of
operator remains valid (albeit virtually) once the set of interactions between the external world and the
controlled device is performed through a set of well established interfaces – replacing buttons for
function calls. Under the functional perspective, there is no difference between pressing a button or
calling a function.

 Ubiquitous Computing

8

2.3 Program
One last aspect to be discussed refers to the concept of program (Haigh, 2002): basically a
program is a binary expression of some algorithm written in a programming language.
The classical computing model is based on detailed algorithmic control, rests entirely on the
insight of the programmer into the specific application of the program and has a strong
dependency of abstraction layers. The machine is deterministic and blindingly fast, but is
considered as totally clueless. The programmer is in possession of all creative
infrastructures, in the form of goals, methods, interpretation, world knowledge and
diagnostic ability (Malsburg, 2008).
This approach can work for any well-defined and sufficiently narrow tasks. But, if the
system fails, the programmers would diagnose and debug the errors. They would determine
what knowledge to add or modify, how to program it, and how to modify and rebalance the
pre-existing programs to accommodate the new performance without harming the parts that
already worked well (Hayes-Roth, 2006).
Automation in adaptation, learning, and knowledge acquisition is very limited – a tiny
fraction of the overall knowledge required, which the engineers mostly prepared manually.
The strategy to cope with the increasing complexity of software systems is to adopt some
kind of infrastructure based on several levels of abstractions (Kramer & Magee, 2007), (da
Costa, Yamin, & Geyer, 2008).

3. Fundamental concepts
“…Computers, unfortunately, are not as adept at forming internal representations of the
world. ... Instead of gathering knowledge for themselves, computers must rely on human
beings to place knowledge directly into their memories…” (Arnold & Bowie, 1985).
Before proceeding, we must establish a conceptual basis related to the context of this work.

3.1 Data, information, knowledge, knowledge-acquisition
To (Frost, 1986): Knowledge is the symbolic representation of aspects of some named universe
of discourse, and Data is a special case of knowledge and means the symbolic representation
of simple aspects of some named universe of discourse.
(Meadow & Yuan, 1997) in they work on measuring the impact of information on
development affirm that "we can consider that the terms data, information and knowledge
represent regions in an epistemological continuum. They are not specific points, because
each one has many definitions and variations. Data generally means a set of symbols with
little or no meaning to a recipient, information is a set of symbols that have meaning or
significance to its recipient, and knowledge means the accumulation and integration of
information received and processed by a recipient”.
Although there is no unanimity (Lenat & Feigenbaum, 1988) (Davis, Shrobe, & Szolovits,
1993) (Duch, 2007), the researchers agree that knowledge representation is the study of how
knowledge about the world can be represented and what kinds of reasoning can be done
with that knowledge.
Knowledge in the context of this work is conceived as being a set of logical-algebraic
operational structures that makes possible to organize the system's functioning according to
interconnection and behavior laws.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

9

It is well known that a significant obstacle to the construction of knowledge-based systems
is the process of knowledge acquisition(Shadbolt, O'hara, & Crow, 1999). The key to this
process is how we may effectively acquire the knowledge that will be implemented in the
knowledge base. In an operating system environment, this is not an easy task. It is usually
done by hooking the calls to operating system application programming interface (API) and
recording logs for further analysis (Skjellum, et al., 2001). This approach is a time and
resources consuming process and presents, as the main drawbacks:
i. the data gathering process impacts the overall performance, influencing other

applications that aren't involved in the application context being considered;
ii. this impact on performance also interferes with the application being considered;
iii. and this scenario probably will be different from that of where the application was

developed.

3.2 Intelligence, machine intelligence and finite state machines
Also, there is no consensus on the definition of intelligence. (Legg & Hutter, 2007) in their
work on "machine intelligence" states that, in general, most definitions share the fact that
intelligence is a property of an entity (an agent) which interacts with an external problem or
situation (usually unknown or partially known), and has the ability to succeed with respect
to one or more goals (the goals) from a wide range of possibilities (not just some specific
situations).
A particular view for machine intelligence is presented by (Costa, 1993) where he introduces
a definition for the concept of machine intelligence, shows the practical possibility to this
definition and provides an indication of its need, it gives you an objective content and
shows the value and usefulness that such a definition may have to the computing science in
general, and artificial intelligence in particular. Rocha Costa started from the intelligence
definition given by J. Piaget and established how the conditions for such a definition could
be interpreted in the machine domain. The definition presented assumes that it must be
recognized the operating autonomy of the machines. This leads to abandon, or at least put on
second plan, the perspective of contrived imitation for intelligent behavior from humans or
animals and adopt the point of view that he calls naturalism - to consider machine
intelligence as a natural phenomenon on the machines.
A common and straight way of modeling behavior is extending the event-action paradigm
to explicitly include the dependency on the execution context through a finite state machine
(FSM). An FSM is an efficient way to specify constraints of the overall behavior of a
particular system. Also FSMs have an expressive graphical representation in the form of
state diagrams - directed graphs in which nodes denote states, and connectors denote state
transitions. The FSM has a drawback, the phenomenon known as state explosion, related to
the fact that there is an implicit notion of repetition of states. To make its use more practical,
state machines can be supplemented with variables. In this case, they are called extended
state machines, and can apply the underlying formalism to much more complex problems
than could be practical without including the variables (Samek, 2009).

3.3 Time and cognition
“…I'm trying to understand how time works. And that's a huge question that has lots of
different aspects to it. A lot of them go back to Einstein and space-time and how we measure

 Ubiquitous Computing

8

2.3 Program
One last aspect to be discussed refers to the concept of program (Haigh, 2002): basically a
program is a binary expression of some algorithm written in a programming language.
The classical computing model is based on detailed algorithmic control, rests entirely on the
insight of the programmer into the specific application of the program and has a strong
dependency of abstraction layers. The machine is deterministic and blindingly fast, but is
considered as totally clueless. The programmer is in possession of all creative
infrastructures, in the form of goals, methods, interpretation, world knowledge and
diagnostic ability (Malsburg, 2008).
This approach can work for any well-defined and sufficiently narrow tasks. But, if the
system fails, the programmers would diagnose and debug the errors. They would determine
what knowledge to add or modify, how to program it, and how to modify and rebalance the
pre-existing programs to accommodate the new performance without harming the parts that
already worked well (Hayes-Roth, 2006).
Automation in adaptation, learning, and knowledge acquisition is very limited – a tiny
fraction of the overall knowledge required, which the engineers mostly prepared manually.
The strategy to cope with the increasing complexity of software systems is to adopt some
kind of infrastructure based on several levels of abstractions (Kramer & Magee, 2007), (da
Costa, Yamin, & Geyer, 2008).

3. Fundamental concepts
“…Computers, unfortunately, are not as adept at forming internal representations of the
world. ... Instead of gathering knowledge for themselves, computers must rely on human
beings to place knowledge directly into their memories…” (Arnold & Bowie, 1985).
Before proceeding, we must establish a conceptual basis related to the context of this work.

3.1 Data, information, knowledge, knowledge-acquisition
To (Frost, 1986): Knowledge is the symbolic representation of aspects of some named universe
of discourse, and Data is a special case of knowledge and means the symbolic representation
of simple aspects of some named universe of discourse.
(Meadow & Yuan, 1997) in they work on measuring the impact of information on
development affirm that "we can consider that the terms data, information and knowledge
represent regions in an epistemological continuum. They are not specific points, because
each one has many definitions and variations. Data generally means a set of symbols with
little or no meaning to a recipient, information is a set of symbols that have meaning or
significance to its recipient, and knowledge means the accumulation and integration of
information received and processed by a recipient”.
Although there is no unanimity (Lenat & Feigenbaum, 1988) (Davis, Shrobe, & Szolovits,
1993) (Duch, 2007), the researchers agree that knowledge representation is the study of how
knowledge about the world can be represented and what kinds of reasoning can be done
with that knowledge.
Knowledge in the context of this work is conceived as being a set of logical-algebraic
operational structures that makes possible to organize the system's functioning according to
interconnection and behavior laws.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

9

It is well known that a significant obstacle to the construction of knowledge-based systems
is the process of knowledge acquisition(Shadbolt, O'hara, & Crow, 1999). The key to this
process is how we may effectively acquire the knowledge that will be implemented in the
knowledge base. In an operating system environment, this is not an easy task. It is usually
done by hooking the calls to operating system application programming interface (API) and
recording logs for further analysis (Skjellum, et al., 2001). This approach is a time and
resources consuming process and presents, as the main drawbacks:
i. the data gathering process impacts the overall performance, influencing other

applications that aren't involved in the application context being considered;
ii. this impact on performance also interferes with the application being considered;
iii. and this scenario probably will be different from that of where the application was

developed.

3.2 Intelligence, machine intelligence and finite state machines
Also, there is no consensus on the definition of intelligence. (Legg & Hutter, 2007) in their
work on "machine intelligence" states that, in general, most definitions share the fact that
intelligence is a property of an entity (an agent) which interacts with an external problem or
situation (usually unknown or partially known), and has the ability to succeed with respect
to one or more goals (the goals) from a wide range of possibilities (not just some specific
situations).
A particular view for machine intelligence is presented by (Costa, 1993) where he introduces
a definition for the concept of machine intelligence, shows the practical possibility to this
definition and provides an indication of its need, it gives you an objective content and
shows the value and usefulness that such a definition may have to the computing science in
general, and artificial intelligence in particular. Rocha Costa started from the intelligence
definition given by J. Piaget and established how the conditions for such a definition could
be interpreted in the machine domain. The definition presented assumes that it must be
recognized the operating autonomy of the machines. This leads to abandon, or at least put on
second plan, the perspective of contrived imitation for intelligent behavior from humans or
animals and adopt the point of view that he calls naturalism - to consider machine
intelligence as a natural phenomenon on the machines.
A common and straight way of modeling behavior is extending the event-action paradigm
to explicitly include the dependency on the execution context through a finite state machine
(FSM). An FSM is an efficient way to specify constraints of the overall behavior of a
particular system. Also FSMs have an expressive graphical representation in the form of
state diagrams - directed graphs in which nodes denote states, and connectors denote state
transitions. The FSM has a drawback, the phenomenon known as state explosion, related to
the fact that there is an implicit notion of repetition of states. To make its use more practical,
state machines can be supplemented with variables. In this case, they are called extended
state machines, and can apply the underlying formalism to much more complex problems
than could be practical without including the variables (Samek, 2009).

3.3 Time and cognition
“…I'm trying to understand how time works. And that's a huge question that has lots of
different aspects to it. A lot of them go back to Einstein and space-time and how we measure

 Ubiquitous Computing

10

time using clocks. But the particular aspect of time that I'm interested in is the arrow of time:
the fact that the past is different from the future. We remember the past, but we don't
remember the future. There are irreversible processes. There are things that happen, like you
turn an egg into an omelette, but you can't turn an omelette into an egg. …”(Biba, 2010)
Despite the importance, of the concept of time has been discussed in several venues
(Church, 2006), (Stenger, 2001). However, it is undeniable that THE CONCEPT is
implicitly linked to daily activities by establishing a sequence, seemingly logical, of real-
world events.
According to (Carroll, 2008), from the perspective of physics, “the nature of time is
intimately connected with the problem of quantum gravity. At the classical level, Einstein's
general relativity removes time from its absolute Newtonian moorings, but it continues to
play an unambiguous role; time is a coordinate on four-dimensional space-time, however, it
measures the space-time interval traversed by objects moving slower than light.
Under the Quantum Mechanics perspective, there are considered some fundamental aspects
like the position and momentum of a particle what imperfectly reflect the reality of the
underlying quantum state. It is therefore perfectly natural to imagine that, in a full theory of
quantized gravity, the space-time itself would emerge as an approximation to something
deeper. And if space-time is an emergent phenomenon, surely time must be”.
Once the knowledge representation is captured, inferences can be made including extending
forward from the known past and present to the unknown (prediction or statistical
syllogism) and/or determining the causality by extending from the known data back to
hypothesis (explanation or abduction) (Josephson & Josephson, 1994).
Thus, every knowledge representation model requires a representation of time, of the
temporal relationship between events and has to deal with uncertainty. In some systems, the
time model is such that the actions should be considered instantaneous, and only one action
can occur at some given time, while in others, where there is an association between an
action and a time reference, the inference module can automatically derive other relations.
In a more philosophical perspective (Overton, 1994) states that the cycle of time is a deep
metaphor entailing a relational field of both nonclosed cycles (spirals) and direction that
emerges in a broader sense across a several scientific disciplines. In the context of the
organic narrative, the cognition and personality are understood as emerging from a
fundamental relational theory of the embodied mind. In the context of the mechanical
narrative, the development is understood as being limited to variation (and only variation),
and cognition and personality emerge from a theory of the computational mind.
In computing, a more practical approach on this subject has been addressed in research on
intelligent agents. To illustrate, we selected two works in which the relationship between
time and are intrinsic cognition although greater attention is devoted to the cognitive aspect.
A promising approach called action awareness is based on to provide agents with reflective
capabilities where agents can reflect on the effects and expected performance of their actions
(Stulp & Beetz, 2006). Another approach is based on an efficient thought concept (Hayes-
Roth, 2006) that is based on a list of eight steps that the most complex organizations, in
general, perform in parallel. This approach states that the intelligent being:
• observes what’s happening in the environment,
• assesses the situation for significant threats and opportunities,
• determines what changes would be desirable,

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

11

• generates possible plans to operate those changes,
• projects the likely outcomes of those plans,
• selects the best plan, and
• communicates that plan to key parties before implementing it.
Throughout the process, the intelligent being validates and improves its model.

3.4 Biological clock
According to (Schmidt, Collette, Cajochen, & Peigneux, 2007) “… There is evidence that the
interaction between homeostatic and circadian factors is not linear throughout the day and
can affect a wide range of neuro behavioral events. However, the impact of potential time-
of-day variations on brain activity and cognitive performance remains largely ignored in
cognitive psychology and neuropsychology, despite the fact that Ebbinghaus (1885/1964)
already reported more than one century ago that learning of nonsense syllables is better in
the morning than in the evening...”.
According to (GSLC, 2010), “living organisms evolved an internal biological clock, called the
circadian rhythm, to help their bodies adapt themselves to the daily cycle of day and night
(light and dark) as the Earth rotates every 24 hours. The term 'circadian' comes from the
Latin words for about (circa) a day (diem). Circadian rhythms are controlled by clock genes
that carry the genetic instructions to produce proteins. The levels of these proteins rise and
fall in rhythmic patterns. These oscillating biochemical signals control various functions,
including when we sleep and rest, and when we are awake and active. Circadian rhythms
also control body temperature, heart activity, hormone secretion, blood pressure, oxygen
consumption, metabolism and many other functions. A biological clock has three parts: a
way to receive light, temperature or other input from the environment to set the clock; the
clock itself, which is a chemical timekeeping mechanism; and genes that help the clock
control the activity of other genes”.
People (and other animals) are able to perceive the duration of intervals between events
however the organism’s internal clocks are not exactly 24 hours long. Associative learning
is dependent upon time perception, and the mechanisms of time perception are related to an
internal clock. In situations in which there are many different time intervals, these can be
combined for the assessment of the typical interval (Schmidt, Collette, Cajochen, &
Peigneux, 2007).

3.5. Situated agents
“...unfortunately, programming situated agents is quite difficult. Interacting with a dynamic
and largely unpredictable environment introduces a number of significant problems. Most
of these problems are related to the way the agents use the plans that determine their
behavior. Traditionally, plans were used literally; the agent did exactly what the plan said.
This placed a heavy burden on the plan maker, because it had to foresee all the possible
ways in which the agent’s interaction with the environment might unfold. Today, it becomes
clear that an agent should have the ability to interpret plans in a more sensible and context-
dependent way; it should be able to improvise, to interrupt, resume and sequence activities,
to actively forage for information and to use the current situations to disambiguate
references in its plans” (Schaad, 1998).

 Ubiquitous Computing

10

time using clocks. But the particular aspect of time that I'm interested in is the arrow of time:
the fact that the past is different from the future. We remember the past, but we don't
remember the future. There are irreversible processes. There are things that happen, like you
turn an egg into an omelette, but you can't turn an omelette into an egg. …”(Biba, 2010)
Despite the importance, of the concept of time has been discussed in several venues
(Church, 2006), (Stenger, 2001). However, it is undeniable that THE CONCEPT is
implicitly linked to daily activities by establishing a sequence, seemingly logical, of real-
world events.
According to (Carroll, 2008), from the perspective of physics, “the nature of time is
intimately connected with the problem of quantum gravity. At the classical level, Einstein's
general relativity removes time from its absolute Newtonian moorings, but it continues to
play an unambiguous role; time is a coordinate on four-dimensional space-time, however, it
measures the space-time interval traversed by objects moving slower than light.
Under the Quantum Mechanics perspective, there are considered some fundamental aspects
like the position and momentum of a particle what imperfectly reflect the reality of the
underlying quantum state. It is therefore perfectly natural to imagine that, in a full theory of
quantized gravity, the space-time itself would emerge as an approximation to something
deeper. And if space-time is an emergent phenomenon, surely time must be”.
Once the knowledge representation is captured, inferences can be made including extending
forward from the known past and present to the unknown (prediction or statistical
syllogism) and/or determining the causality by extending from the known data back to
hypothesis (explanation or abduction) (Josephson & Josephson, 1994).
Thus, every knowledge representation model requires a representation of time, of the
temporal relationship between events and has to deal with uncertainty. In some systems, the
time model is such that the actions should be considered instantaneous, and only one action
can occur at some given time, while in others, where there is an association between an
action and a time reference, the inference module can automatically derive other relations.
In a more philosophical perspective (Overton, 1994) states that the cycle of time is a deep
metaphor entailing a relational field of both nonclosed cycles (spirals) and direction that
emerges in a broader sense across a several scientific disciplines. In the context of the
organic narrative, the cognition and personality are understood as emerging from a
fundamental relational theory of the embodied mind. In the context of the mechanical
narrative, the development is understood as being limited to variation (and only variation),
and cognition and personality emerge from a theory of the computational mind.
In computing, a more practical approach on this subject has been addressed in research on
intelligent agents. To illustrate, we selected two works in which the relationship between
time and are intrinsic cognition although greater attention is devoted to the cognitive aspect.
A promising approach called action awareness is based on to provide agents with reflective
capabilities where agents can reflect on the effects and expected performance of their actions
(Stulp & Beetz, 2006). Another approach is based on an efficient thought concept (Hayes-
Roth, 2006) that is based on a list of eight steps that the most complex organizations, in
general, perform in parallel. This approach states that the intelligent being:
• observes what’s happening in the environment,
• assesses the situation for significant threats and opportunities,
• determines what changes would be desirable,

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

11

• generates possible plans to operate those changes,
• projects the likely outcomes of those plans,
• selects the best plan, and
• communicates that plan to key parties before implementing it.
Throughout the process, the intelligent being validates and improves its model.

3.4 Biological clock
According to (Schmidt, Collette, Cajochen, & Peigneux, 2007) “… There is evidence that the
interaction between homeostatic and circadian factors is not linear throughout the day and
can affect a wide range of neuro behavioral events. However, the impact of potential time-
of-day variations on brain activity and cognitive performance remains largely ignored in
cognitive psychology and neuropsychology, despite the fact that Ebbinghaus (1885/1964)
already reported more than one century ago that learning of nonsense syllables is better in
the morning than in the evening...”.
According to (GSLC, 2010), “living organisms evolved an internal biological clock, called the
circadian rhythm, to help their bodies adapt themselves to the daily cycle of day and night
(light and dark) as the Earth rotates every 24 hours. The term 'circadian' comes from the
Latin words for about (circa) a day (diem). Circadian rhythms are controlled by clock genes
that carry the genetic instructions to produce proteins. The levels of these proteins rise and
fall in rhythmic patterns. These oscillating biochemical signals control various functions,
including when we sleep and rest, and when we are awake and active. Circadian rhythms
also control body temperature, heart activity, hormone secretion, blood pressure, oxygen
consumption, metabolism and many other functions. A biological clock has three parts: a
way to receive light, temperature or other input from the environment to set the clock; the
clock itself, which is a chemical timekeeping mechanism; and genes that help the clock
control the activity of other genes”.
People (and other animals) are able to perceive the duration of intervals between events
however the organism’s internal clocks are not exactly 24 hours long. Associative learning
is dependent upon time perception, and the mechanisms of time perception are related to an
internal clock. In situations in which there are many different time intervals, these can be
combined for the assessment of the typical interval (Schmidt, Collette, Cajochen, &
Peigneux, 2007).

3.5. Situated agents
“...unfortunately, programming situated agents is quite difficult. Interacting with a dynamic
and largely unpredictable environment introduces a number of significant problems. Most
of these problems are related to the way the agents use the plans that determine their
behavior. Traditionally, plans were used literally; the agent did exactly what the plan said.
This placed a heavy burden on the plan maker, because it had to foresee all the possible
ways in which the agent’s interaction with the environment might unfold. Today, it becomes
clear that an agent should have the ability to interpret plans in a more sensible and context-
dependent way; it should be able to improvise, to interrupt, resume and sequence activities,
to actively forage for information and to use the current situations to disambiguate
references in its plans” (Schaad, 1998).

 Ubiquitous Computing

12

We find that statement important to resume the actual paradigm. In our point of view, the
actual paradigm can be introduced as follows: “unfortunately, programming is quite
difficult. Interacting with a dynamic and largely unpredictable environment introduces a
number of significant problems. Most of these problems are related to the way the
programmers develop programs that determine their behavior. Traditionally, programs are
used literally; the program does exactly what was programmed to do. This place a heavy
burden on the programmer, because he has to foresee all the possible ways in which the
program’s interaction with the environment might unfold.
Unfortunately, our programs, in general, continues to be forged as static pieces of
instructions.

3.6 World model
One aspect of fundamental importance in the robotics research area, and one that it is
neglected by the operating systems designers refers to the fact that in robotics projects there
is always a mapping function between reality and an internal representation denominated
"world model". In other words, there is some form of explicit environment representation
where the robot will operate. And it is this world model that determines what decisions are
made.
It is important to make a distinction between two types of world models:
i. those that only describe the current state of the agent’s surroundings, and
ii. those that include more general knowledge about other possible states and ways of
achieving these states. The first models are commonly referred as environment models and
typically include some kind of spatial 3-D description of the physical objects in the
environment. It contains dynamic and situation-dependent knowledge and can be used, for
instance, in navigation tasks. The models of the second kind are referred as world models,
and typically include more stable and general knowledge about: objects, properties of
objects, relationships between objects, events, processes, and so on (Davidsson, 1994).
Accordingly Grimm et. al (2001), the main requirements to be reached in this class of
projects are: robustness; reliability; modularity; flexibility; adaptability; integration of
multiple sensors; resolution of multiple objectives; global reasoning, and intelligent
behavior.
This aspect is also considered in autonomous agents research area. As stated in (Franklin &
Graesser, 1996) “... Autonomous agent means a system situated in, and part of, an
environment, which senses that environment and acts on it, over time, in pursuit of its own
agenda. It acts in such a way as to possibly influence what it senses at a later time...”.
That is, the agent is structurally coupled to its environment. If an operating system does not
have an internal representation of its own relationship with surroundings, how can we
suppose that it can make intelligent decisions? That is one of the main problems to be solved
by the designers of new generation operating systems. It must be clear that by affirming that
the operating system doesn't have an internal representation of its internal state we mean
that it's not enough to collect statistical data about all the processes and other countable
things that occur when the system is running. Instead, it has to collect them in order to be
able to infer something about what is happening at some particular moment. This is a much
more complex process that cannot be achieved by writing multitudes of scripts and building
lots of administration tools.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

13

3.7 Comments
In this section, we presented a set of concepts for which there is no unanimity among
researchers. It was not our intention to present a complete review of the disciplines, but
point out a few aspects that we consider important in the context of this work.
We followed a path starting from the more abstract concepts (knowledge, intelligence, time)
towards the more concrete ones (biological clock).
We are considering the biological clock as the starting point to establish a time unit
compatible with that found in humans and over which we do our daily tasks (including
learning, planning and dealing with uncertainties - requisites from Ubicom, AC, and OC)
and that does have no relationship with the real time clock used in machines.
After these considerations we can conclude that the complex and dynamic nature of the
environment were software solutions are developed (and where they will be executed) has
the effect that the operating system:
• does not have complete control over the environment;
• does not have the capacity to devise complete models of its environment (not only its

counters and pointers);
• does not possess complete information about the environment, and
• cannot completely trust the information it does have, because it is usually uncertain,

imprecise, noisy, or outdated due to the nature of its perceptual processes.
At this point we have collected evidences pointing to the expectation that we need to build
systems capable to export some kind of intelligent behavior. To achieve these goal artificial
systems must have direct access to their environments beyond the information stored in logs
It is not enough to have elaborated reasoning, learning and planning capabilities because
such an intelligent entity has to be able to autonomously acquire its required information
through perception and carry out contemplated actions. In other words, it is necessary to
make those “intelligent entities” more sensitive to context, enabling them to sense their
environment, decide which aspects of a situation are really important, and infer the user’s
intention from concrete actions. Those actions may be dependent on time, place end/or even
the past interactions with user.
These limitations have been a central driving force behind the creation of a new operating
system based on knowledge abstraction. The main goal is to bring together knowledge
about artificial intelligence, robotics and physics in order to produce a new class of
operating systems able to cope with the presented challenges.

4. A Knowledge-based operating system model
The novel concept introduced in Mattos (2003) says that a knowledge-based operating
system (KBOS) is: “an embodied, situated, adaptive and autonomic system based on
knowledge abstraction which has identity and intelligent behavior when executed”. The
whole system is built inside a shell which gives the endogenous characteristic. A hyper
dimensional world model enables the entire system to perceive evolving and/or fluctuating
execution conditions.
The endogeneity characteristic of the system insofar as the world model is surrounded by
the hardware, i.e. the world model is the system. The world model can be characterized as
the surrounding membrane of a biological cell. The nucleus is the hardware. Therefore, the
membrane acts as an interface between the external environment and internal environment.
Using the analogy of the cell, we cannot break through the membrane to access the inner

 Ubiquitous Computing

12

We find that statement important to resume the actual paradigm. In our point of view, the
actual paradigm can be introduced as follows: “unfortunately, programming is quite
difficult. Interacting with a dynamic and largely unpredictable environment introduces a
number of significant problems. Most of these problems are related to the way the
programmers develop programs that determine their behavior. Traditionally, programs are
used literally; the program does exactly what was programmed to do. This place a heavy
burden on the programmer, because he has to foresee all the possible ways in which the
program’s interaction with the environment might unfold.
Unfortunately, our programs, in general, continues to be forged as static pieces of
instructions.

3.6 World model
One aspect of fundamental importance in the robotics research area, and one that it is
neglected by the operating systems designers refers to the fact that in robotics projects there
is always a mapping function between reality and an internal representation denominated
"world model". In other words, there is some form of explicit environment representation
where the robot will operate. And it is this world model that determines what decisions are
made.
It is important to make a distinction between two types of world models:
i. those that only describe the current state of the agent’s surroundings, and
ii. those that include more general knowledge about other possible states and ways of
achieving these states. The first models are commonly referred as environment models and
typically include some kind of spatial 3-D description of the physical objects in the
environment. It contains dynamic and situation-dependent knowledge and can be used, for
instance, in navigation tasks. The models of the second kind are referred as world models,
and typically include more stable and general knowledge about: objects, properties of
objects, relationships between objects, events, processes, and so on (Davidsson, 1994).
Accordingly Grimm et. al (2001), the main requirements to be reached in this class of
projects are: robustness; reliability; modularity; flexibility; adaptability; integration of
multiple sensors; resolution of multiple objectives; global reasoning, and intelligent
behavior.
This aspect is also considered in autonomous agents research area. As stated in (Franklin &
Graesser, 1996) “... Autonomous agent means a system situated in, and part of, an
environment, which senses that environment and acts on it, over time, in pursuit of its own
agenda. It acts in such a way as to possibly influence what it senses at a later time...”.
That is, the agent is structurally coupled to its environment. If an operating system does not
have an internal representation of its own relationship with surroundings, how can we
suppose that it can make intelligent decisions? That is one of the main problems to be solved
by the designers of new generation operating systems. It must be clear that by affirming that
the operating system doesn't have an internal representation of its internal state we mean
that it's not enough to collect statistical data about all the processes and other countable
things that occur when the system is running. Instead, it has to collect them in order to be
able to infer something about what is happening at some particular moment. This is a much
more complex process that cannot be achieved by writing multitudes of scripts and building
lots of administration tools.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

13

3.7 Comments
In this section, we presented a set of concepts for which there is no unanimity among
researchers. It was not our intention to present a complete review of the disciplines, but
point out a few aspects that we consider important in the context of this work.
We followed a path starting from the more abstract concepts (knowledge, intelligence, time)
towards the more concrete ones (biological clock).
We are considering the biological clock as the starting point to establish a time unit
compatible with that found in humans and over which we do our daily tasks (including
learning, planning and dealing with uncertainties - requisites from Ubicom, AC, and OC)
and that does have no relationship with the real time clock used in machines.
After these considerations we can conclude that the complex and dynamic nature of the
environment were software solutions are developed (and where they will be executed) has
the effect that the operating system:
• does not have complete control over the environment;
• does not have the capacity to devise complete models of its environment (not only its

counters and pointers);
• does not possess complete information about the environment, and
• cannot completely trust the information it does have, because it is usually uncertain,

imprecise, noisy, or outdated due to the nature of its perceptual processes.
At this point we have collected evidences pointing to the expectation that we need to build
systems capable to export some kind of intelligent behavior. To achieve these goal artificial
systems must have direct access to their environments beyond the information stored in logs
It is not enough to have elaborated reasoning, learning and planning capabilities because
such an intelligent entity has to be able to autonomously acquire its required information
through perception and carry out contemplated actions. In other words, it is necessary to
make those “intelligent entities” more sensitive to context, enabling them to sense their
environment, decide which aspects of a situation are really important, and infer the user’s
intention from concrete actions. Those actions may be dependent on time, place end/or even
the past interactions with user.
These limitations have been a central driving force behind the creation of a new operating
system based on knowledge abstraction. The main goal is to bring together knowledge
about artificial intelligence, robotics and physics in order to produce a new class of
operating systems able to cope with the presented challenges.

4. A Knowledge-based operating system model
The novel concept introduced in Mattos (2003) says that a knowledge-based operating
system (KBOS) is: “an embodied, situated, adaptive and autonomic system based on
knowledge abstraction which has identity and intelligent behavior when executed”. The
whole system is built inside a shell which gives the endogenous characteristic. A hyper
dimensional world model enables the entire system to perceive evolving and/or fluctuating
execution conditions.
The endogeneity characteristic of the system insofar as the world model is surrounded by
the hardware, i.e. the world model is the system. The world model can be characterized as
the surrounding membrane of a biological cell. The nucleus is the hardware. Therefore, the
membrane acts as an interface between the external environment and internal environment.
Using the analogy of the cell, we cannot break through the membrane to access the inner

 Ubiquitous Computing

14

parts of it. So any form of influence in the cell must occur in a process similar to osmosis, i.e.
provide stimulus to the interface which will translate the stimulus to the internal
representation of the cell.

4.1 A KBOS World Model
We have identified 3 dimensions over which such a new operating system paradigm has to
be based:
• physical dimension,
• behavioral dimension, and
• temporal dimension
The physical dimension describes the physical hardware components and their structural
relationship. The behavioral dimension is described by extended state machines. Each
device has a state machine for describing is physical primary behavior we called this as:
physical context of a device (PCD). A state machine describes the dynamic aspects of the
component’s behavior. The current state of some device is represented by a string of bits
(figure 2).

Fig. 2. Physical context of a device

Each device has a state machine that describes, in a more high level of abstraction, the
functional aspects of it - we call it a logical context of a device (LCD) (figure 3).

Fig. 3. Logical context of a device

One aspect that we would like to point is that the LCD use a fuzzy notation to express
functional aspects of a particular device like available space (i.e. a disk unit could express
space availability ranging from completely full to completely empty), communication link
availability and so on.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

15

Merging all the PCD and LCD results in a bit mask that represents the current state of the
world (figure 4). This world status word (WSW) is used to trigger the execution of plans that
were conceived as context-sensitive. It can be observed that the status word may also to
represent some world’s configurations for which yet there are no plans available.
For example, we could have an action plan describing what TO do in a situation where the
network connection is good and the disk space is at least 50% available - let's call it the ideal
solution. In a situation where the network connection is bad and disk space is less than 20%
could lead to bad behavior in the plan. Perceiving this, a KBOS can start the learning stage,
where it will test whether the optimal solution will work well or it will fail at some point of
the present situation. If the solution works well, the system learns and registers at its
knowledge base that the ideal solution also works for this situation. If not, the system will
take to choose alternative plans in order to cope with the situation.
One could to observe that the bit mask is highly sensitive to fluctuations of the possible
states of the world what can lead to a combinatorial explosion of states. Thus, a requirement
for development of applications for a KBOS is explicitly to conceive exception conditions for
each individual application. This characteristic leads to the development of more context-
sensitive applications.
The description above characterizes one difference in designing software when compared
with the traditional way of doing (figure 1). In our approach, the software development
process should be guided by the dynamics of the application. Furthermore, we believe it
should be abolished the phase of binary code generation - at the end of the compiling
process as we always have done until now.
In this new perspective, the process of building a program should to finish by delivering a
set of technical information to be provided to the assimilation interface of a KBOS which is
the module effectively responsible for to transform that information into execution plans.
The act of transforming a program in an execution plan for a KBOS is a three-step process.
The first step involves the traditional process of software development (conception, design,
implementation, testing) - including the constraints demanded by the context of a KBOS
environment.
The second step involves generating, instead of an executable code, a meta-model
containing:
• an extended state machine describing the dynamic behavior of the entire application

and,
• the source code associated with the effective implementation of the application logic for

each state/sub-state.
The third step involves submitting the meta-model to the KBOS assimilation interface for
effective generation of a set of execution plans.
Our contribution stems from the fact that we are recognizing the importance of providing
for the KBOS more than binary code (executable) to manage. Figure 5 reinforces the fact that
we are not arguing about how we use to obtain information about the domain of a particular
application, or how we should map this information in terms of software architecture or
even trying to change the current paradigm of programming.
An execution plan is built in a parallel functional decision tree (Schaad, 1998) format and
represents the lowest level of code that KBOS recognizes and executes. So, in a broader
sense, of knowledge of a KBOS emerges from a library of execution plans and from the
system’s experience in to execute them according to environment fluctuations.

 Ubiquitous Computing

14

parts of it. So any form of influence in the cell must occur in a process similar to osmosis, i.e.
provide stimulus to the interface which will translate the stimulus to the internal
representation of the cell.

4.1 A KBOS World Model
We have identified 3 dimensions over which such a new operating system paradigm has to
be based:
• physical dimension,
• behavioral dimension, and
• temporal dimension
The physical dimension describes the physical hardware components and their structural
relationship. The behavioral dimension is described by extended state machines. Each
device has a state machine for describing is physical primary behavior we called this as:
physical context of a device (PCD). A state machine describes the dynamic aspects of the
component’s behavior. The current state of some device is represented by a string of bits
(figure 2).

Fig. 2. Physical context of a device

Each device has a state machine that describes, in a more high level of abstraction, the
functional aspects of it - we call it a logical context of a device (LCD) (figure 3).

Fig. 3. Logical context of a device

One aspect that we would like to point is that the LCD use a fuzzy notation to express
functional aspects of a particular device like available space (i.e. a disk unit could express
space availability ranging from completely full to completely empty), communication link
availability and so on.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

15

Merging all the PCD and LCD results in a bit mask that represents the current state of the
world (figure 4). This world status word (WSW) is used to trigger the execution of plans that
were conceived as context-sensitive. It can be observed that the status word may also to
represent some world’s configurations for which yet there are no plans available.
For example, we could have an action plan describing what TO do in a situation where the
network connection is good and the disk space is at least 50% available - let's call it the ideal
solution. In a situation where the network connection is bad and disk space is less than 20%
could lead to bad behavior in the plan. Perceiving this, a KBOS can start the learning stage,
where it will test whether the optimal solution will work well or it will fail at some point of
the present situation. If the solution works well, the system learns and registers at its
knowledge base that the ideal solution also works for this situation. If not, the system will
take to choose alternative plans in order to cope with the situation.
One could to observe that the bit mask is highly sensitive to fluctuations of the possible
states of the world what can lead to a combinatorial explosion of states. Thus, a requirement
for development of applications for a KBOS is explicitly to conceive exception conditions for
each individual application. This characteristic leads to the development of more context-
sensitive applications.
The description above characterizes one difference in designing software when compared
with the traditional way of doing (figure 1). In our approach, the software development
process should be guided by the dynamics of the application. Furthermore, we believe it
should be abolished the phase of binary code generation - at the end of the compiling
process as we always have done until now.
In this new perspective, the process of building a program should to finish by delivering a
set of technical information to be provided to the assimilation interface of a KBOS which is
the module effectively responsible for to transform that information into execution plans.
The act of transforming a program in an execution plan for a KBOS is a three-step process.
The first step involves the traditional process of software development (conception, design,
implementation, testing) - including the constraints demanded by the context of a KBOS
environment.
The second step involves generating, instead of an executable code, a meta-model
containing:
• an extended state machine describing the dynamic behavior of the entire application

and,
• the source code associated with the effective implementation of the application logic for

each state/sub-state.
The third step involves submitting the meta-model to the KBOS assimilation interface for
effective generation of a set of execution plans.
Our contribution stems from the fact that we are recognizing the importance of providing
for the KBOS more than binary code (executable) to manage. Figure 5 reinforces the fact that
we are not arguing about how we use to obtain information about the domain of a particular
application, or how we should map this information in terms of software architecture or
even trying to change the current paradigm of programming.
An execution plan is built in a parallel functional decision tree (Schaad, 1998) format and
represents the lowest level of code that KBOS recognizes and executes. So, in a broader
sense, of knowledge of a KBOS emerges from a library of execution plans and from the
system’s experience in to execute them according to environment fluctuations.

 Ubiquitous Computing

16

Fig. 4. A KBOS world model in an overall perspective

Fig. 5. Overview of the proposed software development process.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

17

We should point some important characteristics:
• Knowledge = source code + dynamic models: traditionally, the last phase of compiling

process is the binary code generation. An executable code doesn’t carries additional
information about the intentions of a particular program. In function of that, operating
systems has to be prepared for both – well behavior and non-conforming programs;

• Learning interface: in a KBOS environment the assimilation interface grabs the input
pack (source code + dynamic models) and analyses its own knowledge base in order to
identify similar procedures. If it finds two different solutions for the same problem
it could produce plans to be evaluated by itself in order to identify which one is the
best to be adopted. The outcome is a new set of plans to be inserted in its knowledge
base.

• Executable plans (Schaad, 1998) instead programs: in our point of view, at same time
that the program represents the programmer’s knowledge about some domain, it also
carries no additional information when executed by some computing device. In a
KBOS, we bring to the environment that knowledge and make it available to the OS.

Traditionally, a plan is regarded as an ordered collection of executable primitives, or
macros, that are decomposable into primitives. We have chosen decision trees as a plan
representation structure in KBOS in function of a number of distinct advantages over other
representations for reactive plans (Schaad, 1998):
• simplicity: decision trees are easy to implement in any programming language and the

associated run-time system can also be simple;
• efficiency: decision trees execute very efficiently.
• stepped execution model: decision trees are a natural fit with the stepped, ex-ante

arbitrated execution model and with the design principle of improvisation underlying it
• transparency: decision trees are easy to understand and debug
• layering: layering is important for expressing temporal coherence, such as persistence

and sequences, and for code reuse.
In this context, a plan is a data structure that maps a state machine and the program source
code to a set of parallel functional decision trees (PFDT) using the notation described in
(Schaad, 1998). A plan consists of a set of instructions expressed in the notation of PFDT -
the steppables (figure 6a). Each plan is encapsulated by an envelope, which, among other
things allows the recording of information about the context of the world (physical,
behavioral and temporal) at any given time.

Fig. 6. An execution plan (a), and the plan tested in an ideal development environment (b)

The development of applications for KBOS introduces a requirement that the developer use
an ideal development environment – an environment where it is possible to implement
plans without interference from other applications/tasks (equivalent to running a program
in a single-TASK operating system). This ideal environment has an abstract clock unit which

 Ubiquitous Computing

16

Fig. 4. A KBOS world model in an overall perspective

Fig. 5. Overview of the proposed software development process.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

17

We should point some important characteristics:
• Knowledge = source code + dynamic models: traditionally, the last phase of compiling

process is the binary code generation. An executable code doesn’t carries additional
information about the intentions of a particular program. In function of that, operating
systems has to be prepared for both – well behavior and non-conforming programs;

• Learning interface: in a KBOS environment the assimilation interface grabs the input
pack (source code + dynamic models) and analyses its own knowledge base in order to
identify similar procedures. If it finds two different solutions for the same problem
it could produce plans to be evaluated by itself in order to identify which one is the
best to be adopted. The outcome is a new set of plans to be inserted in its knowledge
base.

• Executable plans (Schaad, 1998) instead programs: in our point of view, at same time
that the program represents the programmer’s knowledge about some domain, it also
carries no additional information when executed by some computing device. In a
KBOS, we bring to the environment that knowledge and make it available to the OS.

Traditionally, a plan is regarded as an ordered collection of executable primitives, or
macros, that are decomposable into primitives. We have chosen decision trees as a plan
representation structure in KBOS in function of a number of distinct advantages over other
representations for reactive plans (Schaad, 1998):
• simplicity: decision trees are easy to implement in any programming language and the

associated run-time system can also be simple;
• efficiency: decision trees execute very efficiently.
• stepped execution model: decision trees are a natural fit with the stepped, ex-ante

arbitrated execution model and with the design principle of improvisation underlying it
• transparency: decision trees are easy to understand and debug
• layering: layering is important for expressing temporal coherence, such as persistence

and sequences, and for code reuse.
In this context, a plan is a data structure that maps a state machine and the program source
code to a set of parallel functional decision trees (PFDT) using the notation described in
(Schaad, 1998). A plan consists of a set of instructions expressed in the notation of PFDT -
the steppables (figure 6a). Each plan is encapsulated by an envelope, which, among other
things allows the recording of information about the context of the world (physical,
behavioral and temporal) at any given time.

Fig. 6. An execution plan (a), and the plan tested in an ideal development environment (b)

The development of applications for KBOS introduces a requirement that the developer use
an ideal development environment – an environment where it is possible to implement
plans without interference from other applications/tasks (equivalent to running a program
in a single-TASK operating system). This ideal environment has an abstract clock unit which

 Ubiquitous Computing

18

is used only for purposes of temporal ordering of the plans. The recording the execution
time of a plan is a matter of increment the time counter (figure 6b).
If a plan is completely executed during an abstract interval, we register the value 1 as the
time that plan needs to complete its task. Otherwise, if a plan requires more than one time
unit, for each subsequent block of commands, that fits inside a time unit, we will increment
this value until we get the end of the plan – observing that this procedure happens only at
testing/debugging time.
In the situation where some sub-plans (any path within a program) have not been validated
by the testing phase, the time of this path is recorded as invalid (-1). This information will
allow the KBOS to become aware that the path was not previously tested and makes the
KBOS to switch to a stage of learning.
At this stage, the plan being executed is monitored to assess effects on other plans being
executed. As time passes and newer executions of this plan does not cause side effects, the
plan starts being promoted to a condition in which he is regarded as reliable. Thus, one of
the ways the KBOS acquires knowledge about the effects of some plan's behavior is by
reinforcement learning.
If some error condition is detected, the system can provide to programmer the set of
envelops with information about the environmental conditions at the error time. This adds
important information about the timing in which the error occurred. Naturally it is not our
expectation that a KBOS will develop the ability to correct programming logic errors.

4.2 The time dimension
Different definitions of time granularity have been proposed in the literature. All these
definitions use partitions of a fixed temporal domain to represent temporal structures
(Clifford & Rao, 1987), (Puppis, 2006).
In the current paradigm of computing systems, the time is a variable that has to be explicitly
read (get-time()/get-date() functions) in order to enable software entities to perceive the time
flow. The structure that we propose for the temporal domain is suitable for the needs of a
KBOS and it is represented by a quadtree-like bit structure which enables to represent since
the smallest observable or interesting time unit as well as a very coarse granularity (fig. 7).

Fig. 7. The quadtree-like structure for representing time units (sub-units) in KBOS.

The term quadtree is used to describe a class of hierarchical data structures whose common
property is that they are based on the principle of recursive decomposition of space.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

19

Hierarchical data structures are useful because of their ability to focus on the interesting
subsets of the data, resulting in an efficient representation and improved execution times,
and it is thus particularly useful for performing set operations. Hierarchical data structures
are attractive because of their conceptual clarity and ease of implementation (Samet, 1984).
This model allows to record and check the occurrence of an event on various time scales
(figure 8) using the same universal structure, and with a very small computational cost. In
this context, the manipulation of events is just a matter of bitwise operations (AND, OR,
XOR, NOT) against the structure.

Fig. 8. Recording the occurrence of an event

There is a single global structure to represent the time for all instances of execution plans.
Each execution plan can use sub-structures of the overall structure to represent time units in
the application's domain. Thus, a reference to a specific unit of time is characterized as an
index in this structure.
Once we have identified an universal structure to represent time units, the next step was to
define the machine biological clock (MBC) and its computational representation.

4.3 Machine biological clock
As seen before, living organisms have some sort of internal biological clock that helps to
define what is called: the circadian rhythm - the rhythm used to synchronize the internal
actions within the body.

Fig. 9. Machine biological clock and work capacity

The MBC follows the same principle - a unit of time observable in the time’s system
structure (figure 9). However, we should to highlight that the events and actions taken

 Ubiquitous Computing

18

is used only for purposes of temporal ordering of the plans. The recording the execution
time of a plan is a matter of increment the time counter (figure 6b).
If a plan is completely executed during an abstract interval, we register the value 1 as the
time that plan needs to complete its task. Otherwise, if a plan requires more than one time
unit, for each subsequent block of commands, that fits inside a time unit, we will increment
this value until we get the end of the plan – observing that this procedure happens only at
testing/debugging time.
In the situation where some sub-plans (any path within a program) have not been validated
by the testing phase, the time of this path is recorded as invalid (-1). This information will
allow the KBOS to become aware that the path was not previously tested and makes the
KBOS to switch to a stage of learning.
At this stage, the plan being executed is monitored to assess effects on other plans being
executed. As time passes and newer executions of this plan does not cause side effects, the
plan starts being promoted to a condition in which he is regarded as reliable. Thus, one of
the ways the KBOS acquires knowledge about the effects of some plan's behavior is by
reinforcement learning.
If some error condition is detected, the system can provide to programmer the set of
envelops with information about the environmental conditions at the error time. This adds
important information about the timing in which the error occurred. Naturally it is not our
expectation that a KBOS will develop the ability to correct programming logic errors.

4.2 The time dimension
Different definitions of time granularity have been proposed in the literature. All these
definitions use partitions of a fixed temporal domain to represent temporal structures
(Clifford & Rao, 1987), (Puppis, 2006).
In the current paradigm of computing systems, the time is a variable that has to be explicitly
read (get-time()/get-date() functions) in order to enable software entities to perceive the time
flow. The structure that we propose for the temporal domain is suitable for the needs of a
KBOS and it is represented by a quadtree-like bit structure which enables to represent since
the smallest observable or interesting time unit as well as a very coarse granularity (fig. 7).

Fig. 7. The quadtree-like structure for representing time units (sub-units) in KBOS.

The term quadtree is used to describe a class of hierarchical data structures whose common
property is that they are based on the principle of recursive decomposition of space.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

19

Hierarchical data structures are useful because of their ability to focus on the interesting
subsets of the data, resulting in an efficient representation and improved execution times,
and it is thus particularly useful for performing set operations. Hierarchical data structures
are attractive because of their conceptual clarity and ease of implementation (Samet, 1984).
This model allows to record and check the occurrence of an event on various time scales
(figure 8) using the same universal structure, and with a very small computational cost. In
this context, the manipulation of events is just a matter of bitwise operations (AND, OR,
XOR, NOT) against the structure.

Fig. 8. Recording the occurrence of an event

There is a single global structure to represent the time for all instances of execution plans.
Each execution plan can use sub-structures of the overall structure to represent time units in
the application's domain. Thus, a reference to a specific unit of time is characterized as an
index in this structure.
Once we have identified an universal structure to represent time units, the next step was to
define the machine biological clock (MBC) and its computational representation.

4.3 Machine biological clock
As seen before, living organisms have some sort of internal biological clock that helps to
define what is called: the circadian rhythm - the rhythm used to synchronize the internal
actions within the body.

Fig. 9. Machine biological clock and work capacity

The MBC follows the same principle - a unit of time observable in the time’s system
structure (figure 9). However, we should to highlight that the events and actions taken

 Ubiquitous Computing

20

during this time interval are considered as instantaneous in such a way that a KBOS can only
to consider this timescale for inference purposes. For analogy, in general, people do not
perceive time units smaller than 1 second but we know that the internal functioning of the
body works in smaller fractions of a second. In the same way, a KBOS is still capable of
performing operations in fractions of seconds according to the characteristics of hardware
but it will only perceive the time flow from the MBC units.
The MBC is a unit of time derived from the real time clock of the computing device. Thus,
the size of the MBC (in units of fractions of seconds) is a matter of individual adjustment -
each class of devices that share the same hardware characteristics should also share the
same MBC. In the same way, different classes should have different MBC.
From the MBC concept it is possible to derive the concept of work capacity (WC) - a unit that
measures the device's ability to perform tasks, which is measured in units of MBC (fig.8).
As more tasks needs to be executed by unit of MBC, less WC the device will present, and
vice-versa.
This characteristic allows the system perceive that it is in an overcharged situation and this
"feeling" will be propagated for all active plans instantly- i.e. in the time interval between
two MBC time units. In this moment, all plans automatically will start to adapt themselves
to that fluctuation condition. In the current paradigm, this situation could be evidenced, for
example, because the queue of processes is long, or because the rate of context switching is
high. However, if all processes are not context-aware, the system cannot adapt easily.
In a fairly high level of abstraction, this unit of work capacity enables a KBOS to make
decisions when interacting with other devices in a community(Goumopoulos & Kameas,
2009) and to discover "how good it is" when comparing with the neighborhood devices -
again, this characteristic could lead to some kind of measure of "social behavior" of the
machine.

4.4 Time perception
Perceiving a time flow is a matter of to be situated. In order to achieve this goal, we had to
conceive a complementary data structure to PFDT, refered before as envelop. We will depict
a sample of how we made possible for plans to perceive the time flow without the need of
explicitly asking it to the operating system.
The figure 10a shows a plan previously tested at the development environment by the
programmer. This plan when comes to the user’s machine and is assimilated will have the
time units adjusted to the real MBC of the target device.
The figure 10b shows the plan being executed in a real situation sharing the cpu time with
other plans but running according the time units previously defined.
The figure 10c shows a tipical situation where the availability of cpu is reduced by the fact
the system needs to execute more plans. In this case, some part of the first envelop is sliced
and scheduled to be executed in a time further. When the unfinished part of the first
envelop starts running, its time recorded will be different from the actual MBC making with
all further function calls be made with an indication of a delayed situation.
To a better understanding, the figure 11 shows an example of a java program that is time
dependent as a sample of how we deal with time in the current paradigm.
 In general, the program needs to call the System.currentTimeMillis() function in order to
discover the current time and make some calculation to discover if it is delayed, on time or
ahead of time (when comparing with previous execution of the same plan). Also, in general,

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

21

Fig. 10. A tested plan (a), the plan running in a real environment (b), and a plan perceiving it
is delayed (c).

Fig. 11. Explicit time example

 Ubiquitous Computing

20

during this time interval are considered as instantaneous in such a way that a KBOS can only
to consider this timescale for inference purposes. For analogy, in general, people do not
perceive time units smaller than 1 second but we know that the internal functioning of the
body works in smaller fractions of a second. In the same way, a KBOS is still capable of
performing operations in fractions of seconds according to the characteristics of hardware
but it will only perceive the time flow from the MBC units.
The MBC is a unit of time derived from the real time clock of the computing device. Thus,
the size of the MBC (in units of fractions of seconds) is a matter of individual adjustment -
each class of devices that share the same hardware characteristics should also share the
same MBC. In the same way, different classes should have different MBC.
From the MBC concept it is possible to derive the concept of work capacity (WC) - a unit that
measures the device's ability to perform tasks, which is measured in units of MBC (fig.8).
As more tasks needs to be executed by unit of MBC, less WC the device will present, and
vice-versa.
This characteristic allows the system perceive that it is in an overcharged situation and this
"feeling" will be propagated for all active plans instantly- i.e. in the time interval between
two MBC time units. In this moment, all plans automatically will start to adapt themselves
to that fluctuation condition. In the current paradigm, this situation could be evidenced, for
example, because the queue of processes is long, or because the rate of context switching is
high. However, if all processes are not context-aware, the system cannot adapt easily.
In a fairly high level of abstraction, this unit of work capacity enables a KBOS to make
decisions when interacting with other devices in a community(Goumopoulos & Kameas,
2009) and to discover "how good it is" when comparing with the neighborhood devices -
again, this characteristic could lead to some kind of measure of "social behavior" of the
machine.

4.4 Time perception
Perceiving a time flow is a matter of to be situated. In order to achieve this goal, we had to
conceive a complementary data structure to PFDT, refered before as envelop. We will depict
a sample of how we made possible for plans to perceive the time flow without the need of
explicitly asking it to the operating system.
The figure 10a shows a plan previously tested at the development environment by the
programmer. This plan when comes to the user’s machine and is assimilated will have the
time units adjusted to the real MBC of the target device.
The figure 10b shows the plan being executed in a real situation sharing the cpu time with
other plans but running according the time units previously defined.
The figure 10c shows a tipical situation where the availability of cpu is reduced by the fact
the system needs to execute more plans. In this case, some part of the first envelop is sliced
and scheduled to be executed in a time further. When the unfinished part of the first
envelop starts running, its time recorded will be different from the actual MBC making with
all further function calls be made with an indication of a delayed situation.
To a better understanding, the figure 11 shows an example of a java program that is time
dependent as a sample of how we deal with time in the current paradigm.
 In general, the program needs to call the System.currentTimeMillis() function in order to
discover the current time and make some calculation to discover if it is delayed, on time or
ahead of time (when comparing with previous execution of the same plan). Also, in general,

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

21

Fig. 10. A tested plan (a), the plan running in a real environment (b), and a plan perceiving it
is delayed (c).

Fig. 11. Explicit time example

 Ubiquitous Computing

22

only some portions of the code running in a system have to deal with such constraints, so
we have a mix of code dealing with time and code that was not conceived to deal with time
running together in the same environment. For example, the method
doSomethingExactlyOnTime() could be started exactly on time, but become late because the
multitasking environment could be scheduled other code to run changing the time when
doSomethingExactlyOnTime() will effectively receive the CPU. If the code structure of that
method is not build as the sample code (lines 14-16), the late execution could cause the
entire system to present some strange behavior. And we are not talking about real-time
applications, but desktop ones.
The figure 12 shows how a plan (in KBOS context) deal with time perception: each
procedure/function has to explicitly declare sections where the time dimension has to be
considered as a functional requisite.
In this example we can observe that there are three methods implementing the logic for
processChanges() each one ending with one of the reserved words: _Late, _OnTime and
_AheadOfTime.
During the execution of a plan, the system activates the appropriated section (late, onTime or
aheadOfTime) according to the situation of the world model as previously described. If the
developer does not know what to do in some situation, he can explicitly use an
IDoNotKnowWhatToDo clause and the KBOS run-time will start trying to learn how to deal
with that situation. This leads to some possibilities:
• the knowledge-base already have some other plan that already was tested before – this

plan is activated;
• the knowledge-base does not have other plan – then the KBOS starts to follow the

execution of the plan verifying what happens, for example, if the plan is delayed or
cancelled.

In the example (figure 10), the method processChanges1…() was developed dealing with the
three situations but in the situation where method processChanges2…() is dispatched late, the
programmer explicitly declared that iDontKnowWhatToDoInThisSituation() (on line 20).
To support this model of function dispatch, the KBOS adopts a mapping function that
makes possible to convert a n-dimensional world status to an one-dimensional status word
The way we have implemented this functionality is changing the standard procedure call
protocol:

call [memory address].
Instead, we have adopted the protocol:

 call [memory address [World Status Word, CurrentMBC]].
When the destination address points to an iDontKnowWhatToDoInThisSituation, the system
switches to a learning state. Under this condition, the KBOS can decide to let the
procedure/function called run in one of the other possibilities programmed, or to cancel the
call once the “programmer” doesn’t know how his program could behave under that
condition.
If the system let the procedure/function call to continue, the system will learn what happens
and will register the behavior of that part of the code under inadequate conditions in the
PLAN’S state machine. So that the system will develop the capacity of observing the way a
module works in order to decide, in the future, if it will allow or not that code to run
again. Notice that this cannot grant that the code will do it right in the future.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

23

Fig. 12. Implicit time example.

The possibility to deal with time perception information is made explicit to the programmer
in development time so, it allows him to make decisions for building/conceiving self-
adaptive plans. On the other hand this introduces an additional level of difficulty because
the programmers are not traditionally accustomed to thinking of time dimension in the
conception of their programs.
The time dimension also makes it possible to introduce the vague notion of space concept if
two different plans perceive that both are delayed it is equivalent to say to each one that
there is someone else sharing resources within the same MBC unit. This could leads, for
example, that the logical path of some plan could be changed to another path that
implements the same functionality but demands less resources. The self-adaptive and self-
reconfigurable characteristics of the system are based on this facility.

5. Related work
In general, the operating system designers are concerned primarily with problems of a
purely quantitative nature (e.g. performance) (Hansen, 2000) (Peng, Li, & Mili, 2007) while
qualitative aspects should receive more attention. Before continuing, it is important to look
at the efforts already made towards changing the situation presented. We emphasize that
we are excluding from this analysis those works aimed at improving the current model like
(Hunt & Larus, 2007) (Lee, et al., 2010) mainly because we are interested in going deeper in
the area of knowledge-based systems at operating system level.
By reviewing the literature, it is possible to find some references to a knowledge-based
operating system. ((Sansonnet, Castan, Percebois, Botella, & Perez, 1982),(Vilensky, Arens, &
Chin, 1984),(Blair, Mariani, Nicol, & Shepherd, 1987),(Chikayama, Sato, & Miyazaki,
1988),(Moon, 1985),(Larner, 1990),(Ali & Karlsson, 1990), (Xie, Du, Chen, Zheng, & Sun,
1995),(Patki, Raghunathan, & Khurshid, 1997), (Jankowski & Skowron, 2007)). Other
approaches involve the application of artificial intelligence techniques through kernel

 Ubiquitous Computing

22

only some portions of the code running in a system have to deal with such constraints, so
we have a mix of code dealing with time and code that was not conceived to deal with time
running together in the same environment. For example, the method
doSomethingExactlyOnTime() could be started exactly on time, but become late because the
multitasking environment could be scheduled other code to run changing the time when
doSomethingExactlyOnTime() will effectively receive the CPU. If the code structure of that
method is not build as the sample code (lines 14-16), the late execution could cause the
entire system to present some strange behavior. And we are not talking about real-time
applications, but desktop ones.
The figure 12 shows how a plan (in KBOS context) deal with time perception: each
procedure/function has to explicitly declare sections where the time dimension has to be
considered as a functional requisite.
In this example we can observe that there are three methods implementing the logic for
processChanges() each one ending with one of the reserved words: _Late, _OnTime and
_AheadOfTime.
During the execution of a plan, the system activates the appropriated section (late, onTime or
aheadOfTime) according to the situation of the world model as previously described. If the
developer does not know what to do in some situation, he can explicitly use an
IDoNotKnowWhatToDo clause and the KBOS run-time will start trying to learn how to deal
with that situation. This leads to some possibilities:
• the knowledge-base already have some other plan that already was tested before – this

plan is activated;
• the knowledge-base does not have other plan – then the KBOS starts to follow the

execution of the plan verifying what happens, for example, if the plan is delayed or
cancelled.

In the example (figure 10), the method processChanges1…() was developed dealing with the
three situations but in the situation where method processChanges2…() is dispatched late, the
programmer explicitly declared that iDontKnowWhatToDoInThisSituation() (on line 20).
To support this model of function dispatch, the KBOS adopts a mapping function that
makes possible to convert a n-dimensional world status to an one-dimensional status word
The way we have implemented this functionality is changing the standard procedure call
protocol:

call [memory address].
Instead, we have adopted the protocol:

 call [memory address [World Status Word, CurrentMBC]].
When the destination address points to an iDontKnowWhatToDoInThisSituation, the system
switches to a learning state. Under this condition, the KBOS can decide to let the
procedure/function called run in one of the other possibilities programmed, or to cancel the
call once the “programmer” doesn’t know how his program could behave under that
condition.
If the system let the procedure/function call to continue, the system will learn what happens
and will register the behavior of that part of the code under inadequate conditions in the
PLAN’S state machine. So that the system will develop the capacity of observing the way a
module works in order to decide, in the future, if it will allow or not that code to run
again. Notice that this cannot grant that the code will do it right in the future.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

23

Fig. 12. Implicit time example.

The possibility to deal with time perception information is made explicit to the programmer
in development time so, it allows him to make decisions for building/conceiving self-
adaptive plans. On the other hand this introduces an additional level of difficulty because
the programmers are not traditionally accustomed to thinking of time dimension in the
conception of their programs.
The time dimension also makes it possible to introduce the vague notion of space concept if
two different plans perceive that both are delayed it is equivalent to say to each one that
there is someone else sharing resources within the same MBC unit. This could leads, for
example, that the logical path of some plan could be changed to another path that
implements the same functionality but demands less resources. The self-adaptive and self-
reconfigurable characteristics of the system are based on this facility.

5. Related work
In general, the operating system designers are concerned primarily with problems of a
purely quantitative nature (e.g. performance) (Hansen, 2000) (Peng, Li, & Mili, 2007) while
qualitative aspects should receive more attention. Before continuing, it is important to look
at the efforts already made towards changing the situation presented. We emphasize that
we are excluding from this analysis those works aimed at improving the current model like
(Hunt & Larus, 2007) (Lee, et al., 2010) mainly because we are interested in going deeper in
the area of knowledge-based systems at operating system level.
By reviewing the literature, it is possible to find some references to a knowledge-based
operating system. ((Sansonnet, Castan, Percebois, Botella, & Perez, 1982),(Vilensky, Arens, &
Chin, 1984),(Blair, Mariani, Nicol, & Shepherd, 1987),(Chikayama, Sato, & Miyazaki,
1988),(Moon, 1985),(Larner, 1990),(Ali & Karlsson, 1990), (Xie, Du, Chen, Zheng, & Sun,
1995),(Patki, Raghunathan, & Khurshid, 1997), (Jankowski & Skowron, 2007)). Other
approaches involve the application of artificial intelligence techniques through kernel

 Ubiquitous Computing

24

implants6 to achieve better interfaces in traditional operating systems ((Pasquale, 1987),
(Chu, Delp, Jamieson, Siegel, & Whinston, 1989), (Zomaya, Clements, & Olariu,
1998);(Kandel, Zhng, & Henne, 1998); (Holyer & Pehlivan, 2000),(Lim & Cho, 2007)).
However, all failed to achieve its objectives because the conceptual basis for the meaning of
"knowledge" or "intelligence" was not properly established. In general, due to project's time
constraints, prototypes are constructed using existing and proven technologies wherever
possible, rather than implementing core technologies from scratch.
In (Stulp & Beetz, 2006) was proposed a novel computational model for the acquisition and
application of action awareness, showing that it can be obtained by learning predictive
action models from observed experience and also demonstrating how action awareness can
be used to optimize, transform and coordinate underspecified plans with highly
parametrizable actions in the context of robotic soccer. The system works in two moments:
i. idle time, when the agent learns prediction models from the actions in the action library; and
ii. operation time, when action chains are generated.
In (Tannenbaum, 2009) we found that self-awareness means learned behaviors that emerge
in organisms whose brains have a sufficiently integrated, complex ability for associative
learning and memory. Continual sensory input of information related to the organism
causes its brain to learn its (the organism’s) physical characteristics, and produce neural
pathways, which come to be reinforced, so that the organism starts recognizing, several
features associated to each reinforced pathway. The self-image characteristic provides a
mechanistic basis for the rise of the concept of emergency of behavior that, on its turn, is
connected to the concepts of self-awareness and self-recognition. On the basis of all that
process there is the notion of time perception.

6. Conclusion
We have given an overview of an endogenous self-adaptive and self-reconfigurable
approach to operating system design that we call: knowledge-based operating system.
In order to get there, we presented some evidences that lead us to go back in the origins of
the modern computing and figure out what could be the reasons why we still are dealing
with problems identified a long time ago.
In our point of view, the concepts of program, multitasking and operator are strong
candidates to be considered.
A program is a rigid expression of the programmer’s knowledge acquired during the
software development life cycle that is transformed into a string of bits and expected to be
managed by the OS. As the hardware was expensive, the OS designers found in the
multitasking a way to better share the computational resources between different users. The
operator was needed in order to make the installation ready for all users demanding
computational resources.
We do not eliminate the concepts of program multitasking and operator, but instead,
repositioned these concepts in the perspective of:
• a program shall be replaced by a plan of execution, whose code is generated internally

by the system and externally to the user's environment by the traditional process of
generating executable code; this changes the perspective of software setup towards a
software learning;

6 See (Seltzer, Small, & Smith, 1995) for a kernel implant explanation.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

25

• The concept of multitasking becomes a tool to support the concept of MBC in that it
now plans are explicitly able to: (a) perceive when they were sliced, and (b) perceives
the fluctuation of resources availability of the computing device.

This characteristic allows the conception and development of really context-aware
applications.
Insofar as the characteristics of adaptability become part of the system, the characteristics of
the user-machine relationship become enriched.
We demonstrate that the concept of knowledge in this phase of the project is a matter of self-
knowledge, or the computing device knowledge about its ability to perform tasks and to
self-adapt to the fluctuations of resource availability in the environment.
To the extent that context-aware applications begin to take into account these characteristics,
a new concept of intelligence and perception of intelligent behavior becomes evident.
In the context of this work, the role of the programmer now has a double function:
• on the one hand, it continues to map the knowledge of some application's domain for

an encoding tool;
• on the other hand, it assumes the role of teaching the system how to perform the

application's role.
This relationship expands the possibilities of what we call today the reuse of code for the
reuse of knowledge.
Based on what was presented we could start thinking in terms of the machine's identity
concept, which is resultant from the embodiment, situatedness, adaptiveness and autonomic
characteristics of a KBOS. This leads to the emergence concept - a property of a total system
which cannot be derived from the simple summation of properties of its constituent
subsystems.
In this sense, the set of characteristics enables the system to perceive, in an individualized
manner, a set of events occurring in some instant of time. Thus, the intelligent behavior
emerges from the previous characteristics plus the relationship between the system and the
surrounding environment (Müller-Schloer, 2004).
We believe that the major contribution of this work has been to present a new way of
designing systems that can evolve in a natural way for the machines (Costa, 1993) opening
an avenue for research in conceiving really embodied software artifacts on the context of
ubiquitous computing environment.

7. References
Abowd, G. D., & Mynatt, E. D. (2000, March). Charting Past, Present, and Future Research in

Ubiquitous Computing. Transactions on Computer-Human Interaction, 7, pp. 29-
58.

Ackermann, T. (2010). Quantifying Risks in Service Networks:Using Probability
Distributions for the Evaluation of Optimal Security Levels. AMCIS 2010
Proceedings.

Ali, K. A., & Karlsson, R. (1990). The Muse Or-parallel Prolog model and its performance. In
S. Debray, & M. Hermenegildo (Ed.), Proceedings of the 1990 North American
Conference on Logic Programming (Austin, Texas, USA) (pp. 757-776). Cambridge,
MA: MIT Press.

 Ubiquitous Computing

24

implants6 to achieve better interfaces in traditional operating systems ((Pasquale, 1987),
(Chu, Delp, Jamieson, Siegel, & Whinston, 1989), (Zomaya, Clements, & Olariu,
1998);(Kandel, Zhng, & Henne, 1998); (Holyer & Pehlivan, 2000),(Lim & Cho, 2007)).
However, all failed to achieve its objectives because the conceptual basis for the meaning of
"knowledge" or "intelligence" was not properly established. In general, due to project's time
constraints, prototypes are constructed using existing and proven technologies wherever
possible, rather than implementing core technologies from scratch.
In (Stulp & Beetz, 2006) was proposed a novel computational model for the acquisition and
application of action awareness, showing that it can be obtained by learning predictive
action models from observed experience and also demonstrating how action awareness can
be used to optimize, transform and coordinate underspecified plans with highly
parametrizable actions in the context of robotic soccer. The system works in two moments:
i. idle time, when the agent learns prediction models from the actions in the action library; and
ii. operation time, when action chains are generated.
In (Tannenbaum, 2009) we found that self-awareness means learned behaviors that emerge
in organisms whose brains have a sufficiently integrated, complex ability for associative
learning and memory. Continual sensory input of information related to the organism
causes its brain to learn its (the organism’s) physical characteristics, and produce neural
pathways, which come to be reinforced, so that the organism starts recognizing, several
features associated to each reinforced pathway. The self-image characteristic provides a
mechanistic basis for the rise of the concept of emergency of behavior that, on its turn, is
connected to the concepts of self-awareness and self-recognition. On the basis of all that
process there is the notion of time perception.

6. Conclusion
We have given an overview of an endogenous self-adaptive and self-reconfigurable
approach to operating system design that we call: knowledge-based operating system.
In order to get there, we presented some evidences that lead us to go back in the origins of
the modern computing and figure out what could be the reasons why we still are dealing
with problems identified a long time ago.
In our point of view, the concepts of program, multitasking and operator are strong
candidates to be considered.
A program is a rigid expression of the programmer’s knowledge acquired during the
software development life cycle that is transformed into a string of bits and expected to be
managed by the OS. As the hardware was expensive, the OS designers found in the
multitasking a way to better share the computational resources between different users. The
operator was needed in order to make the installation ready for all users demanding
computational resources.
We do not eliminate the concepts of program multitasking and operator, but instead,
repositioned these concepts in the perspective of:
• a program shall be replaced by a plan of execution, whose code is generated internally

by the system and externally to the user's environment by the traditional process of
generating executable code; this changes the perspective of software setup towards a
software learning;

6 See (Seltzer, Small, & Smith, 1995) for a kernel implant explanation.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

25

• The concept of multitasking becomes a tool to support the concept of MBC in that it
now plans are explicitly able to: (a) perceive when they were sliced, and (b) perceives
the fluctuation of resources availability of the computing device.

This characteristic allows the conception and development of really context-aware
applications.
Insofar as the characteristics of adaptability become part of the system, the characteristics of
the user-machine relationship become enriched.
We demonstrate that the concept of knowledge in this phase of the project is a matter of self-
knowledge, or the computing device knowledge about its ability to perform tasks and to
self-adapt to the fluctuations of resource availability in the environment.
To the extent that context-aware applications begin to take into account these characteristics,
a new concept of intelligence and perception of intelligent behavior becomes evident.
In the context of this work, the role of the programmer now has a double function:
• on the one hand, it continues to map the knowledge of some application's domain for

an encoding tool;
• on the other hand, it assumes the role of teaching the system how to perform the

application's role.
This relationship expands the possibilities of what we call today the reuse of code for the
reuse of knowledge.
Based on what was presented we could start thinking in terms of the machine's identity
concept, which is resultant from the embodiment, situatedness, adaptiveness and autonomic
characteristics of a KBOS. This leads to the emergence concept - a property of a total system
which cannot be derived from the simple summation of properties of its constituent
subsystems.
In this sense, the set of characteristics enables the system to perceive, in an individualized
manner, a set of events occurring in some instant of time. Thus, the intelligent behavior
emerges from the previous characteristics plus the relationship between the system and the
surrounding environment (Müller-Schloer, 2004).
We believe that the major contribution of this work has been to present a new way of
designing systems that can evolve in a natural way for the machines (Costa, 1993) opening
an avenue for research in conceiving really embodied software artifacts on the context of
ubiquitous computing environment.

7. References
Abowd, G. D., & Mynatt, E. D. (2000, March). Charting Past, Present, and Future Research in

Ubiquitous Computing. Transactions on Computer-Human Interaction, 7, pp. 29-
58.

Ackermann, T. (2010). Quantifying Risks in Service Networks:Using Probability
Distributions for the Evaluation of Optimal Security Levels. AMCIS 2010
Proceedings.

Ali, K. A., & Karlsson, R. (1990). The Muse Or-parallel Prolog model and its performance. In
S. Debray, & M. Hermenegildo (Ed.), Proceedings of the 1990 North American
Conference on Logic Programming (Austin, Texas, USA) (pp. 757-776). Cambridge,
MA: MIT Press.

 Ubiquitous Computing

26

Anderson, J. P. (1972). Computer Security Technology Planning Study Vol. 1. HQ Eletctronic
Systems Division (AFSC), Deputy for Command and Management Systems,
Bedford,Massachusetts.

Arnold, W. R., & Bowie, J. S. (1985). Artificial intelligence: a personal, commonsense journey.
Upper Saddle River, NJ, USA: Prentice-Hall.

Balasubramaniam, D., Morrison, R., Kirby, G., Mickan, K., Warboys, B., Robertson, I., et al.
(2005). A software architecture approach for structuring autonomic systems. ACM
SIGSOFT Software Engineering Notes, 30 (4), 1-7.

Barham, P., Isaacs, R., Mortier, R., & Harris, T. (2006). Learning Communitacion Patterns in
Sigularity. First Workshop on Tackling Computing Systems Problems with
Machine Learning Techniques (SysML) - Co-located with SIGMETRICS 2006. Saint-
Malo, France.

Bellman, K. L., Landauer, C., & Nelson, P. R. (2008). Systems Engineering for Organic
Computing. In R. P. Würtz (Ed.), Understanding Complex Systems (p. 355).
Bochum, Germany: Springer-Werlag.

Biba, E. (2010, March 01). Physicist Sean Carroll on "What is time"? Retrieved July 15, 2010,
from Wired Science: http://www.wired.co.uk/news/archive/2010-
03/01/physicist-sean-carroll-on-what-is-time

Blair, G. S., Mariani, J. A., Nicol, J. R., & Shepherd, D. (1987). A Knowledge-base Operating
System. The Computer Journal, 30 (3), 193-200.

Brachman, R. J. (2002, Nov/Dec). Systems that know what they're doing. IEEE Intelligent
Systems, 67-71.

Buschmann, F. (2010, September-October). On architecture styles and paradigms. IEEE
Software, 92-94.

Carroll, S. M. (2008). What if Time Really Exists? arXiv:0811.3772v1 .
Chikayama, T., Sato, H., & Miyazaki, T. (1988). Overview of the parallel inference machine

operating system (PIMOS). Proceedings of the International Conference of Fifth
Generation Computer Systems., pp. 230-251.

Chu, C. H., Delp, E. J., Jamieson, L. H., Siegel, H. J., & Whinston, A. B. (1989, June). A model
for an intelligent operating system for executing image understanding tasks on a
reconfigurable parallel architecture. Journal of Parallel and Distributed Computing,
pp. 598-622.

Church, R. M. (2006). Behavioristic, cognitive, biological, and quantitative explanations of
timing. In E. A. Wasserman, & T. R. Zentall (Eds.), Comparative cognition:
Experimental explorations of animal intelligence. (pp. 24-269). New York, NY,
EUA: Oxford University Press.

Costa, A. C. (1993). Inteligência de máquina: esboço de uma abordagem construtivista.
Federal University of Rio Grande do Sul, Institute of Informatics, Porto Alegre,
Brazil.

da Costa, C. A., Yamin, A. C., & Geyer, C. F. (2008). Toward a general software
infrastructure for ubiquitous computing. IEEE Pervasive Computing, 7 (1), 64-73.

Davidsson, P. (1994). Autonomous Agents and the Concept of Concepts (Thesis). Lund
University.

Davis, R., Shrobe, H., & Szolovits, P. (1993). What Is a Knowledge Representation? AI
Magazine, 14 (1), 17-33.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

27

Duch, W. (2007). What is computational intelligence and where is it going? Challenges for
Computational Intelligence, 63, 1-13.

Fleisch, B. D. (1983). Operating systems: a perspective on future trends. SIGOPS Operating
Systems Review, 17 (2), pp. 14-17.

Franklin, S., & Graesser, A. (1996). Is it an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents. In J. P. Muller, M. Wooldridge, & N. R. Jennings (Eds.),
Lecture Notes in Computer Science (Vol. 1193, pp. 21-35). London, UK: Springer-
Verlag.

Frost, R. A. (1986). Introduction to Knowledge Base Systems. Collins.
Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., Tom, S. G., et al. (2001). System-

level Programming Abstractions for Ubiquitous Computing. Proceedings of the 8th
Workshop on Hot Topics in Operating Systems (HotOS-VIII).

GSLC. (2010, May 28). The time of our lives. Retrieved September 29, 2010, from
Learn.Genetics - Genetic Science Learning Center:
http://learn.genetics.utah.edu/content/begin/dna/clockgenes/

Haigh, T. (2002, January-March). Software in the 1960s as concept, service, and product.
IEEE Annals of the History of Computing, 24 (1), pp. 5-13.

Hansen, P. B. (1973). Operating systems principles. Upper Saddle River, NJ, USA: Prentice-
Hall,Inc.

Hansen, P. B. (1977). The architecture of concurrent programs. Upper Saddle River, NJ,
USA: Prentice-Hall,Inc.

Hansen, P. B. (2000). The evolution of operating systems. In Classic operating systems: from
batch processing to distributed systems (pp. 1-36). New York, NY, USA: Springer-
Verlag New York, Inc.

Hayes-Roth, R. (2006). Puppetry vs. creationism: why AI must cross the chasm. IEEE
Intelligent Systems, 21 (5), 7-9.

Holyer, I., & Pehlivan, H. (2000). A Recovery Mechanism for Shells. The Computer Journal,
43 (3), 168-176.

Hunt, G. C., & Larus, J. R. (2007). Singularity: rethinking the software stack. SIGOPS
Operating Systems Review, 41 (2), 37-49.

Hunt, G., Larus, J., Abadi, M., Aiken, M., Barham, P., Fähndrich, M., et al. (2005). An
overview of the Singularity project. Redmond, WA: Microsoft Research.

Iyoengar, K., Sachdev, V., & Raja, M. K. (2007). A security comparison of open-source and
closed-source operating systems. Proceedings of South West Decision Sciences
Thirty-eighth Anual Conference. San Diego, CA, USA.

Jankowski, A., & Skowron, A. (2007). A Wistech Paradigm for Intelligent Systems. (J. Peters,
A. Skowron, I. Düntsch, J. Grzymala-Busse, E. Orlowska, & L. Polkowski, Eds.)
Lecture Notes in Computer Science:Transactions on Rough Sets VI, 4374, pp. 94-
132.

Josephson, J. R., & Josephson, S. G. (1994). Abductive Inference:Computation,
Philosophy,Technology. New York: Cambridge University Press.

Kandel, A., Zhng, Y.-Q., & Henne, M. (1998). On use of fuzzy logic technology in operating
systems. Fuzzy Sets and Systems, 99 (3), 241-251.

Klausman, E. F. (1961). Training the computer operator. ACM '61:Proceedings of the 1961
16th ACM national meeting (pp. 131.401-131.404). New York, NY, USA: ACM.

 Ubiquitous Computing

26

Anderson, J. P. (1972). Computer Security Technology Planning Study Vol. 1. HQ Eletctronic
Systems Division (AFSC), Deputy for Command and Management Systems,
Bedford,Massachusetts.

Arnold, W. R., & Bowie, J. S. (1985). Artificial intelligence: a personal, commonsense journey.
Upper Saddle River, NJ, USA: Prentice-Hall.

Balasubramaniam, D., Morrison, R., Kirby, G., Mickan, K., Warboys, B., Robertson, I., et al.
(2005). A software architecture approach for structuring autonomic systems. ACM
SIGSOFT Software Engineering Notes, 30 (4), 1-7.

Barham, P., Isaacs, R., Mortier, R., & Harris, T. (2006). Learning Communitacion Patterns in
Sigularity. First Workshop on Tackling Computing Systems Problems with
Machine Learning Techniques (SysML) - Co-located with SIGMETRICS 2006. Saint-
Malo, France.

Bellman, K. L., Landauer, C., & Nelson, P. R. (2008). Systems Engineering for Organic
Computing. In R. P. Würtz (Ed.), Understanding Complex Systems (p. 355).
Bochum, Germany: Springer-Werlag.

Biba, E. (2010, March 01). Physicist Sean Carroll on "What is time"? Retrieved July 15, 2010,
from Wired Science: http://www.wired.co.uk/news/archive/2010-
03/01/physicist-sean-carroll-on-what-is-time

Blair, G. S., Mariani, J. A., Nicol, J. R., & Shepherd, D. (1987). A Knowledge-base Operating
System. The Computer Journal, 30 (3), 193-200.

Brachman, R. J. (2002, Nov/Dec). Systems that know what they're doing. IEEE Intelligent
Systems, 67-71.

Buschmann, F. (2010, September-October). On architecture styles and paradigms. IEEE
Software, 92-94.

Carroll, S. M. (2008). What if Time Really Exists? arXiv:0811.3772v1 .
Chikayama, T., Sato, H., & Miyazaki, T. (1988). Overview of the parallel inference machine

operating system (PIMOS). Proceedings of the International Conference of Fifth
Generation Computer Systems., pp. 230-251.

Chu, C. H., Delp, E. J., Jamieson, L. H., Siegel, H. J., & Whinston, A. B. (1989, June). A model
for an intelligent operating system for executing image understanding tasks on a
reconfigurable parallel architecture. Journal of Parallel and Distributed Computing,
pp. 598-622.

Church, R. M. (2006). Behavioristic, cognitive, biological, and quantitative explanations of
timing. In E. A. Wasserman, & T. R. Zentall (Eds.), Comparative cognition:
Experimental explorations of animal intelligence. (pp. 24-269). New York, NY,
EUA: Oxford University Press.

Costa, A. C. (1993). Inteligência de máquina: esboço de uma abordagem construtivista.
Federal University of Rio Grande do Sul, Institute of Informatics, Porto Alegre,
Brazil.

da Costa, C. A., Yamin, A. C., & Geyer, C. F. (2008). Toward a general software
infrastructure for ubiquitous computing. IEEE Pervasive Computing, 7 (1), 64-73.

Davidsson, P. (1994). Autonomous Agents and the Concept of Concepts (Thesis). Lund
University.

Davis, R., Shrobe, H., & Szolovits, P. (1993). What Is a Knowledge Representation? AI
Magazine, 14 (1), 17-33.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

27

Duch, W. (2007). What is computational intelligence and where is it going? Challenges for
Computational Intelligence, 63, 1-13.

Fleisch, B. D. (1983). Operating systems: a perspective on future trends. SIGOPS Operating
Systems Review, 17 (2), pp. 14-17.

Franklin, S., & Graesser, A. (1996). Is it an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents. In J. P. Muller, M. Wooldridge, & N. R. Jennings (Eds.),
Lecture Notes in Computer Science (Vol. 1193, pp. 21-35). London, UK: Springer-
Verlag.

Frost, R. A. (1986). Introduction to Knowledge Base Systems. Collins.
Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., Tom, S. G., et al. (2001). System-

level Programming Abstractions for Ubiquitous Computing. Proceedings of the 8th
Workshop on Hot Topics in Operating Systems (HotOS-VIII).

GSLC. (2010, May 28). The time of our lives. Retrieved September 29, 2010, from
Learn.Genetics - Genetic Science Learning Center:
http://learn.genetics.utah.edu/content/begin/dna/clockgenes/

Haigh, T. (2002, January-March). Software in the 1960s as concept, service, and product.
IEEE Annals of the History of Computing, 24 (1), pp. 5-13.

Hansen, P. B. (1973). Operating systems principles. Upper Saddle River, NJ, USA: Prentice-
Hall,Inc.

Hansen, P. B. (1977). The architecture of concurrent programs. Upper Saddle River, NJ,
USA: Prentice-Hall,Inc.

Hansen, P. B. (2000). The evolution of operating systems. In Classic operating systems: from
batch processing to distributed systems (pp. 1-36). New York, NY, USA: Springer-
Verlag New York, Inc.

Hayes-Roth, R. (2006). Puppetry vs. creationism: why AI must cross the chasm. IEEE
Intelligent Systems, 21 (5), 7-9.

Holyer, I., & Pehlivan, H. (2000). A Recovery Mechanism for Shells. The Computer Journal,
43 (3), 168-176.

Hunt, G. C., & Larus, J. R. (2007). Singularity: rethinking the software stack. SIGOPS
Operating Systems Review, 41 (2), 37-49.

Hunt, G., Larus, J., Abadi, M., Aiken, M., Barham, P., Fähndrich, M., et al. (2005). An
overview of the Singularity project. Redmond, WA: Microsoft Research.

Iyoengar, K., Sachdev, V., & Raja, M. K. (2007). A security comparison of open-source and
closed-source operating systems. Proceedings of South West Decision Sciences
Thirty-eighth Anual Conference. San Diego, CA, USA.

Jankowski, A., & Skowron, A. (2007). A Wistech Paradigm for Intelligent Systems. (J. Peters,
A. Skowron, I. Düntsch, J. Grzymala-Busse, E. Orlowska, & L. Polkowski, Eds.)
Lecture Notes in Computer Science:Transactions on Rough Sets VI, 4374, pp. 94-
132.

Josephson, J. R., & Josephson, S. G. (1994). Abductive Inference:Computation,
Philosophy,Technology. New York: Cambridge University Press.

Kandel, A., Zhng, Y.-Q., & Henne, M. (1998). On use of fuzzy logic technology in operating
systems. Fuzzy Sets and Systems, 99 (3), 241-251.

Klausman, E. F. (1961). Training the computer operator. ACM '61:Proceedings of the 1961
16th ACM national meeting (pp. 131.401-131.404). New York, NY, USA: ACM.

 Ubiquitous Computing

28

Kramer, J., & Magee, J. (2007). Self-Managed Systems: an Architectural Challenge. 2007
Future of Software Engineering (May 23 - 25, 2007). International Conference on
Software Engineering (pp. 259-268). Washington, DC, EUA: IEEE Computer
Society.

Kruchten, P., Capilla, R., & Dueñas, J. C. (2009). The decision view's role in software
architecture practice. IEEE Software, 26 (2), 36-42.

Krutchen, P. (2004). An Ontology of Architectural Design Decisions in Software Intensive
Systems. 2nd Groningen Workshop Software Variability, (pp. 54-61).

Kupsch, J. A., & Miller, B. P. (2009). Manual vs. automated vulnerability assessment: a case
study. First International Workshop on Managing Insider Security Threats (MIST
2009). West Lafayette, IN.

Lagerström, R., von Würtemberg, L. M., Holm, H., & Luczak, O. (2010). Identifying factors
affecting software development cost. Proc. of the Fourth International Workshop of
Software Quality and Maintainability (SQM).

Larner, D. L. (1990). A distributed, operating system based, blackboard architecture for real-
time control. IEA/AIE '90: Proceedings of the 3rd international conference on
Industrial and engineering applications of artificial intelligence and expert systems
(pp. 99-108). Charleston, South Carolina, US: ACM.

Lee, S.-M., Suh, S.-B., Jeong, B., Mo, S., Jung, B. M., Yoo, J.-H., et al. (2010). Fine-grained I/O
access control of the mobile devices based on the Xen architecture. of the 15th
Annual international Conference on Mobile Computing and Networking (Beijing,
China, September 20 - 25, 2009) (pp. 273-284). Beijing, China: ACM, NY, USA.

Legg, S., & Hutter, M. (2007, December). Universal intelligence: a definition of machine
intelligence. Minds and Machines, pp. 391-444.

Lenat, D. B., & Feigenbaum, E. A. (1988). On the thresholds of knowledge. Proceedings of
the International Workshop on Artificial Intelligence for Industrial Applications
(IEEE AI'88), (pp. 291-300). Hitachi City, Japan.

Lim, S., & Cho, S.-B. (2007). Intelligent OS process scheduling using fuzzy inference with
user models. IEA/AIE'07: Proceedings of the 20th international conference on
Industrial, engineering, and other applications of applied intelligent systems (pp.
725-234). Kyoto, Japan: Springer-Verlag.

Linde, R. (1975). Operating Systems Penetration. AFIPS Conference Proceedings, 44.
Malsburg, C. v. (2008). The Organic Future of Information Technology. In R. P. Würtz (Ed.),

Understanding Complex Systems (p. 355). Bochum: Springer-Verlag.
Mattos, M. M. (2003). Fundamentos conceituais para a construção de sistemas operacionais

baseados em conhecimento (thesis). thesis, UFSC - Universidade Federal de Santa
Catarina, PPGEP - Programa de Pós-Graduação em Engenharia de Produção,
Florianópolis, Brazil.

Meadow, C. T., & Yuan, W. (1997). Measuring the impact of information: defining the
concepts. Information Processing & Management, 33 (6), 697-714.

Milner, R. (2006, March). Ubiquitous computing: shall we understand it? The Computer
Journal, 383-389.

Moon, D. A. (1985, June). Architecture of the Symbolics 3600. SIGARCH Computer
Architecture News., 13 (3), pp. 76-83.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

29

Müller-Schloer, C. (2004). Organic omputing: on the feasibility of controlled emergence. 2nd
IEEE/ACM/IFIP International Conference on Hardware e Software Codesign and
System Synthesis. Stockholm,Sweden: ACM Press.

Murch, R. (2004). Autonomic Computing. IBM Press.
Naur, P., & Randell, B. (1969). Software Engineering: Report of a Conference Sponsored by

the NATO Science Committee. In P. Naur, & B. Randell (Ed.). (p. 136). Garmisch,
Germany: Scinetific Affairs Division, NATO.

Osterweil, L. J. (2007). A future for software engineering? FOSE '07: 2007 Future of Software
Engineering (May 23-25,2007) International Conference on Software Engineering
(pp. 1-11). Washington, DC, USA: IEEE Computer Society.

Overton, W. F. (1994). The arrow of time and the cycle of time: concepts of change,
cognition, and embodiment. (L. A. Pervin, Ed.) Psychological Inquiry: An
International Journal of Peer Commentary and Review., 5 (3), 215-237.

Pasquale, J. C. (1987). Using expert systems to manage distributed computer systems.
Berkeley, CA, USA: University of California at Berkeley.

Patki, A. B., Raghunathan, G. V., & Khurshid, A. (1997). FUZOS - Fuzzy Operating System
Support for Information Technology. Proceedings of Second On-line World
Conference on Soft Computing in Engineering,Design and Manufacturing. (pp. 23-
27). Bedfordshire,UK: Cranfield University.

Peng, Y., Li, F., & Mili, A. (2007). Modeling the evolution of operating systems: an empirical
study. Journal of Systems Software, 80 (1), 1-15.

Perry, D. E., & Wolf, A. L. (1992, October). Foundations for the study of software
architecture. (ACM, Ed.) ACM SIGSOFT Software Engineering Notes, 17 (4), pp. 40-
52.

Pfleeger, S. L. (2010, July/August). Anatomy of an Intrusion. IEEE IT Professional, 12 (4),
pp. 20-28.

Poole, D., Mackworth, A., & Goebel, R. (1997). Computational intelligence: a logical
approach. Oxford, UK: Oxford University Press.

Poslad, S. (2009). Smart Devices and Services, in Ubiquitous Computing: Smart Devices,
Environments and Interactions. Chichester,UK: John Wiley & Sons, Ltd.

Post, G., & Kagan, A. (2003). Computer security and operating system updates. Information
and Software Technology, 45 (8), 461-467.

Ragunath, P. K., Velmourougan, S., Davachelvan, P., Kayalvizhi, S., & Ravimohan, R. (2010,
January). Evolving a new model (SDLC Model-2010) for software development life
cycle (SDLC). International Journal of Computer Science and Network Security, 10
(1), pp. 112-119.

Randell, B. (1979). Software engineering in 1968. ICSE '79: Proceedings of the 4th
international conference on Software engineering (pp. 1-10). Munich, Germany:
IEEE Press.

Samek, M. (2009). Practical UML Statechars in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems (2a ed.). Newton, MA, USA: Newnes.

Sansonnet, J. P., Castan, M., Percebois, C., Botella, D., & Perez, J. (1982, March). Direct
execution of lisp on a list-directed architecture. SIGARCH Computer Architecture
News, 10 (2), pp. 132-139.

Schaad, R. (1998). Representation and Execution of Situated Action Sequences (Thesis).
Universitat Zürich.

 Ubiquitous Computing

28

Kramer, J., & Magee, J. (2007). Self-Managed Systems: an Architectural Challenge. 2007
Future of Software Engineering (May 23 - 25, 2007). International Conference on
Software Engineering (pp. 259-268). Washington, DC, EUA: IEEE Computer
Society.

Kruchten, P., Capilla, R., & Dueñas, J. C. (2009). The decision view's role in software
architecture practice. IEEE Software, 26 (2), 36-42.

Krutchen, P. (2004). An Ontology of Architectural Design Decisions in Software Intensive
Systems. 2nd Groningen Workshop Software Variability, (pp. 54-61).

Kupsch, J. A., & Miller, B. P. (2009). Manual vs. automated vulnerability assessment: a case
study. First International Workshop on Managing Insider Security Threats (MIST
2009). West Lafayette, IN.

Lagerström, R., von Würtemberg, L. M., Holm, H., & Luczak, O. (2010). Identifying factors
affecting software development cost. Proc. of the Fourth International Workshop of
Software Quality and Maintainability (SQM).

Larner, D. L. (1990). A distributed, operating system based, blackboard architecture for real-
time control. IEA/AIE '90: Proceedings of the 3rd international conference on
Industrial and engineering applications of artificial intelligence and expert systems
(pp. 99-108). Charleston, South Carolina, US: ACM.

Lee, S.-M., Suh, S.-B., Jeong, B., Mo, S., Jung, B. M., Yoo, J.-H., et al. (2010). Fine-grained I/O
access control of the mobile devices based on the Xen architecture. of the 15th
Annual international Conference on Mobile Computing and Networking (Beijing,
China, September 20 - 25, 2009) (pp. 273-284). Beijing, China: ACM, NY, USA.

Legg, S., & Hutter, M. (2007, December). Universal intelligence: a definition of machine
intelligence. Minds and Machines, pp. 391-444.

Lenat, D. B., & Feigenbaum, E. A. (1988). On the thresholds of knowledge. Proceedings of
the International Workshop on Artificial Intelligence for Industrial Applications
(IEEE AI'88), (pp. 291-300). Hitachi City, Japan.

Lim, S., & Cho, S.-B. (2007). Intelligent OS process scheduling using fuzzy inference with
user models. IEA/AIE'07: Proceedings of the 20th international conference on
Industrial, engineering, and other applications of applied intelligent systems (pp.
725-234). Kyoto, Japan: Springer-Verlag.

Linde, R. (1975). Operating Systems Penetration. AFIPS Conference Proceedings, 44.
Malsburg, C. v. (2008). The Organic Future of Information Technology. In R. P. Würtz (Ed.),

Understanding Complex Systems (p. 355). Bochum: Springer-Verlag.
Mattos, M. M. (2003). Fundamentos conceituais para a construção de sistemas operacionais

baseados em conhecimento (thesis). thesis, UFSC - Universidade Federal de Santa
Catarina, PPGEP - Programa de Pós-Graduação em Engenharia de Produção,
Florianópolis, Brazil.

Meadow, C. T., & Yuan, W. (1997). Measuring the impact of information: defining the
concepts. Information Processing & Management, 33 (6), 697-714.

Milner, R. (2006, March). Ubiquitous computing: shall we understand it? The Computer
Journal, 383-389.

Moon, D. A. (1985, June). Architecture of the Symbolics 3600. SIGARCH Computer
Architecture News., 13 (3), pp. 76-83.

Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System

29

Müller-Schloer, C. (2004). Organic omputing: on the feasibility of controlled emergence. 2nd
IEEE/ACM/IFIP International Conference on Hardware e Software Codesign and
System Synthesis. Stockholm,Sweden: ACM Press.

Murch, R. (2004). Autonomic Computing. IBM Press.
Naur, P., & Randell, B. (1969). Software Engineering: Report of a Conference Sponsored by

the NATO Science Committee. In P. Naur, & B. Randell (Ed.). (p. 136). Garmisch,
Germany: Scinetific Affairs Division, NATO.

Osterweil, L. J. (2007). A future for software engineering? FOSE '07: 2007 Future of Software
Engineering (May 23-25,2007) International Conference on Software Engineering
(pp. 1-11). Washington, DC, USA: IEEE Computer Society.

Overton, W. F. (1994). The arrow of time and the cycle of time: concepts of change,
cognition, and embodiment. (L. A. Pervin, Ed.) Psychological Inquiry: An
International Journal of Peer Commentary and Review., 5 (3), 215-237.

Pasquale, J. C. (1987). Using expert systems to manage distributed computer systems.
Berkeley, CA, USA: University of California at Berkeley.

Patki, A. B., Raghunathan, G. V., & Khurshid, A. (1997). FUZOS - Fuzzy Operating System
Support for Information Technology. Proceedings of Second On-line World
Conference on Soft Computing in Engineering,Design and Manufacturing. (pp. 23-
27). Bedfordshire,UK: Cranfield University.

Peng, Y., Li, F., & Mili, A. (2007). Modeling the evolution of operating systems: an empirical
study. Journal of Systems Software, 80 (1), 1-15.

Perry, D. E., & Wolf, A. L. (1992, October). Foundations for the study of software
architecture. (ACM, Ed.) ACM SIGSOFT Software Engineering Notes, 17 (4), pp. 40-
52.

Pfleeger, S. L. (2010, July/August). Anatomy of an Intrusion. IEEE IT Professional, 12 (4),
pp. 20-28.

Poole, D., Mackworth, A., & Goebel, R. (1997). Computational intelligence: a logical
approach. Oxford, UK: Oxford University Press.

Poslad, S. (2009). Smart Devices and Services, in Ubiquitous Computing: Smart Devices,
Environments and Interactions. Chichester,UK: John Wiley & Sons, Ltd.

Post, G., & Kagan, A. (2003). Computer security and operating system updates. Information
and Software Technology, 45 (8), 461-467.

Ragunath, P. K., Velmourougan, S., Davachelvan, P., Kayalvizhi, S., & Ravimohan, R. (2010,
January). Evolving a new model (SDLC Model-2010) for software development life
cycle (SDLC). International Journal of Computer Science and Network Security, 10
(1), pp. 112-119.

Randell, B. (1979). Software engineering in 1968. ICSE '79: Proceedings of the 4th
international conference on Software engineering (pp. 1-10). Munich, Germany:
IEEE Press.

Samek, M. (2009). Practical UML Statechars in C/C++, Second Edition: Event-Driven
Programming for Embedded Systems (2a ed.). Newton, MA, USA: Newnes.

Sansonnet, J. P., Castan, M., Percebois, C., Botella, D., & Perez, J. (1982, March). Direct
execution of lisp on a list-directed architecture. SIGARCH Computer Architecture
News, 10 (2), pp. 132-139.

Schaad, R. (1998). Representation and Execution of Situated Action Sequences (Thesis).
Universitat Zürich.

 Ubiquitous Computing

30

Schmidt, C., Collette, F., Cajochen, C., & Peigneux, P. (2007). A time to think: circadian
rhythms in human cognition. Cognitive Neuropsychology, 24 (7), 755-789.

Seltzer, M., Small, C., & Smith, K. (1995). The case for extensible operating systems.
Harward Computer Center for Research in Computing Technology.

Shadbolt, N., O'hara, K., & Crow, L. (1999, October). The experimental evaluation of
knowledge acquisition techniques and methods: history, problems and new
directions. International Journal of Human-Computer Studies, 51 (4), pp. 729-755.

Shibayama, S., Sakai, H., & Takewaki, T. (1988). Overview of knowledge base mechanism.
Proceedings of the International Conference on Fifth Generation Computer
Systems, pp. 197-207.

Skjellum, A., Dimitrov, R., Angaluri, S. V., Coulouris, G., Uthayopas, P., Scott, S. L., et al.
(2001, May). Systems Administration. International Journal of High Performance
Computing Applications, 15 (2), pp. 143-161.

Stenger, V. J. (2001). Time's arrows point both ways: the view from nowhen. Skeptic, 8 (4),
92-95.

Stulp, F., & Beetz, M. (2006). Action awareness – enabling agents to optimize, transform, and
coordinate plans. Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (pp. 8-12). Hakodate,
Hokkaido, Japan: ACM.

Tanenbaum, A. S. (2008). Modern Operating Systems. Prentice Hall.
Tannenbaum, E. (2009, June). Speculations on the emergence of self-awareness in big-

brained organisms. Consciousness and Cognition, 18 (2), pp. 414-427.
Vilensky, R., Arens, Y., & Chin, D. (1984, June). Talking to UNIX in English: an overview of

UC. Communications of ACM, 27 (6), pp. 574-593.
Weiser, M. (1991, September). The Computer for the Twenty-First Century. Scientific

American, 94-10.
Wilensky, R., Chin, D. N., Luria, M., Martin, J., Mayfield, J., & Wu, D. (2000, April). The

Berkeley UNIX Consultant Project. Artificial Intelligence Review, 14 (1-2), pp. 43-
88.

Würtz, R. P. (2008). Introduction: Organic Computing. In R. P. Würtz (Ed.), Understanding
Complex Systems (p. 355). Bochum, Germany: Springer-Verlag.

Xie, L., & Yi, J. (1998). A model for intelligent resource management in a large distributed
system. Science in China Series E: Technological Sciences, 41 (1), pp. 13-21.

Xie, L., Du, X., Chen, J., Zheng, Y., & Sun, Z. (1995). An introduction to intelligent operating
system KZ2. SIGOPS Operating Systems Review, 29 (1), pp. 29-46.

Yokote, Y. (1992). The Apertos reflective Operating System: the concept and its
implementation. Conference Proceedings on Object-Oriented Programming
Systems, Languages, and Applications -OOPSLA '92. 27, pp. 414-434. New York,
NY,EUA: ACM.

Yuhua, Z., Honglei, T., & Li, X. (1993, May). And/Or parallel execution of logic programs:
exploiting dependent And-parallelism. SIGPLAN Notices, pp. 19-28.

Zomaya, A. Y., Clements, M., & Olariu, S. (1998, March). A framework for reinforcement
based scheduling in parallel processor systems. IEEE Transactions on Parallel and
Distributed Systems., 249-260.

0

Anywhere/Anytime Software and Information
Access via Collaborative Assistance

Ren-Song Ko
National Chung Cheng University

Taiwan

1. Introduction

The development of computing has recently been dominated by three trends: the emergence
of a wide range of embedded systems with diverse architectures and purpose; the rise of
relatively high-speed mobile communication devices such as smart phones, personal digital
assistants (PDAs), portable media players, ebook readers, etc; and the development of cloud
computing, offering virtually unlimited data storage and computing resources, which may
extend the capabilities of resource-constrained mobile devices. As a consequence, these
devices and infrastructures have begun to pervade our daily life, creating a new paradigm
in the interaction between people and computing environments along the lines of that
envisioned by Weiser (Weiser, 1991), and thus opening up the potential of many novel
applications.
For instance, the ubiquitous presence of computers allows people to carry with them only a
minimal amount of computing hardware and software, depending on ambient computers to
boost performance as needed. A smart phone may not have sufficient computation power to
playback a high-definition movie but,rather than running the media playback software on a
single device, one could look for available computers nearby and connect them together to
constitute an ad-hoc system (Ko et al., 2008). The software can then utilize the resources of all
participating devices to accomplish the execution collaboratively. Such a system is unplanned
and organized on a temporary basis, usually to execute a specific task.
Another possible application is the timely information query. Even with sophisticated search
engines available nowadays, the answers to some questions (e.g., “is the department store
crowed now?” or “can someone take a snapshot of the car race now?”) are time-sensitive
and may become less significant if they cannot be obtained immediately; only people who are
currently near the store or the race track can provide the appropriate responses. Similarly, with
the ubiquity of mobile network-connected devices, it is highly possible to find such people and
thus applications requiring timely information become feasible.

1.1 Problems
However, the scale of ubiquitous computing is huge, and so is the need to enable
interoperability among mobile devices and infrastructures. Thus, realizing a system for
ubiquitous applications as described above may face the following research challenges.

2

 Ubiquitous Computing

30

Schmidt, C., Collette, F., Cajochen, C., & Peigneux, P. (2007). A time to think: circadian
rhythms in human cognition. Cognitive Neuropsychology, 24 (7), 755-789.

Seltzer, M., Small, C., & Smith, K. (1995). The case for extensible operating systems.
Harward Computer Center for Research in Computing Technology.

Shadbolt, N., O'hara, K., & Crow, L. (1999, October). The experimental evaluation of
knowledge acquisition techniques and methods: history, problems and new
directions. International Journal of Human-Computer Studies, 51 (4), pp. 729-755.

Shibayama, S., Sakai, H., & Takewaki, T. (1988). Overview of knowledge base mechanism.
Proceedings of the International Conference on Fifth Generation Computer
Systems, pp. 197-207.

Skjellum, A., Dimitrov, R., Angaluri, S. V., Coulouris, G., Uthayopas, P., Scott, S. L., et al.
(2001, May). Systems Administration. International Journal of High Performance
Computing Applications, 15 (2), pp. 143-161.

Stenger, V. J. (2001). Time's arrows point both ways: the view from nowhen. Skeptic, 8 (4),
92-95.

Stulp, F., & Beetz, M. (2006). Action awareness – enabling agents to optimize, transform, and
coordinate plans. Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (pp. 8-12). Hakodate,
Hokkaido, Japan: ACM.

Tanenbaum, A. S. (2008). Modern Operating Systems. Prentice Hall.
Tannenbaum, E. (2009, June). Speculations on the emergence of self-awareness in big-

brained organisms. Consciousness and Cognition, 18 (2), pp. 414-427.
Vilensky, R., Arens, Y., & Chin, D. (1984, June). Talking to UNIX in English: an overview of

UC. Communications of ACM, 27 (6), pp. 574-593.
Weiser, M. (1991, September). The Computer for the Twenty-First Century. Scientific

American, 94-10.
Wilensky, R., Chin, D. N., Luria, M., Martin, J., Mayfield, J., & Wu, D. (2000, April). The

Berkeley UNIX Consultant Project. Artificial Intelligence Review, 14 (1-2), pp. 43-
88.

Würtz, R. P. (2008). Introduction: Organic Computing. In R. P. Würtz (Ed.), Understanding
Complex Systems (p. 355). Bochum, Germany: Springer-Verlag.

Xie, L., & Yi, J. (1998). A model for intelligent resource management in a large distributed
system. Science in China Series E: Technological Sciences, 41 (1), pp. 13-21.

Xie, L., Du, X., Chen, J., Zheng, Y., & Sun, Z. (1995). An introduction to intelligent operating
system KZ2. SIGOPS Operating Systems Review, 29 (1), pp. 29-46.

Yokote, Y. (1992). The Apertos reflective Operating System: the concept and its
implementation. Conference Proceedings on Object-Oriented Programming
Systems, Languages, and Applications -OOPSLA '92. 27, pp. 414-434. New York,
NY,EUA: ACM.

Yuhua, Z., Honglei, T., & Li, X. (1993, May). And/Or parallel execution of logic programs:
exploiting dependent And-parallelism. SIGPLAN Notices, pp. 19-28.

Zomaya, A. Y., Clements, M., & Olariu, S. (1998, March). A framework for reinforcement
based scheduling in parallel processor systems. IEEE Transactions on Parallel and
Distributed Systems., 249-260.

0

Anywhere/Anytime Software and Information
Access via Collaborative Assistance

Ren-Song Ko
National Chung Cheng University

Taiwan

1. Introduction

The development of computing has recently been dominated by three trends: the emergence
of a wide range of embedded systems with diverse architectures and purpose; the rise of
relatively high-speed mobile communication devices such as smart phones, personal digital
assistants (PDAs), portable media players, ebook readers, etc; and the development of cloud
computing, offering virtually unlimited data storage and computing resources, which may
extend the capabilities of resource-constrained mobile devices. As a consequence, these
devices and infrastructures have begun to pervade our daily life, creating a new paradigm
in the interaction between people and computing environments along the lines of that
envisioned by Weiser (Weiser, 1991), and thus opening up the potential of many novel
applications.
For instance, the ubiquitous presence of computers allows people to carry with them only a
minimal amount of computing hardware and software, depending on ambient computers to
boost performance as needed. A smart phone may not have sufficient computation power to
playback a high-definition movie but,rather than running the media playback software on a
single device, one could look for available computers nearby and connect them together to
constitute an ad-hoc system (Ko et al., 2008). The software can then utilize the resources of all
participating devices to accomplish the execution collaboratively. Such a system is unplanned
and organized on a temporary basis, usually to execute a specific task.
Another possible application is the timely information query. Even with sophisticated search
engines available nowadays, the answers to some questions (e.g., “is the department store
crowed now?” or “can someone take a snapshot of the car race now?”) are time-sensitive
and may become less significant if they cannot be obtained immediately; only people who are
currently near the store or the race track can provide the appropriate responses. Similarly, with
the ubiquity of mobile network-connected devices, it is highly possible to find such people and
thus applications requiring timely information become feasible.

1.1 Problems
However, the scale of ubiquitous computing is huge, and so is the need to enable
interoperability among mobile devices and infrastructures. Thus, realizing a system for
ubiquitous applications as described above may face the following research challenges.

2

1.1.1 Software reuse
Given the number and variety of mobile and embedded devices, software development is, in
most cases, a complex and time-consuming process since heterogeneous environments raise
problems above and beyond source code level portability, which has a significant impact on
ease of software reuse. With careful coding, the software may be compiled into native code
for various platforms. Nevertheless, the software will probably be difficult to deploy and use.
The source code has to be compiled for the target platform, either by vendors or users, and
the computing environment needs to be correctly configured to the required hardware and
shared libraries. While this problem may be alleviated by platform-independent intermediate
bytecode and virtual machines (e.g., Java), a higher level of portability vis-a-vis performance
also needs to be considered (Ko & Mutka, 2002). For instance, while a multimedia application
may run perfectly on a desktop, it may run so slowly on a mobile device as to be unusable. One
way to improve performance would be to reduce the output quality. An alternative would be
to improve software to detect and exploit special the functionality of particular devices.
To achieve a higher level of portable performance, information on the resources available on
the target devices is necessary but, unfortunately, not available until run time. Therefore,
instead of making assumptions regarding the capabilities of target devices, developers
specify performance and resource requirements during the software development stage. The
software may then determine at run time whether it can run on the target platform, or, even
better, adapt itself to the computing environment by adjusting performance and resource
requirements.

1.1.2 Dynamic computing environment
These computing environments are open and dynamic; i.e., usage is not confined to a fixed
location, and people carrying computers may join and leave the environment at will. Thus,
the environment may change during the execution of an application, leading to problems such
as resource variability, system errors, and changing requirements.
To improve system dependability, robustness, and availability, software execution has to be
aware of environmental changes and take appropriate actions to accommodate these changes.
Traditionally, such auto-adapting mechanisms may be implemented at the code level, e.g.,
explicit coding of environmental conditions and corresponding remedial actions. However,
such approaches are specifically targeted and the adaptive capabilities are often limited in
scope, brittle, costly to change, and difficult to reuse. Furthermore, they lack a global
view of software systems, so they usually only detect the symptoms but not true sources of
environmental changes and thus may not be able to determine the most suitable response.

1.1.3 Resources and information location
Dramatic improvements in the quality of and accessibility to networks makes it increasingly
feasible to use collections of networked commodity devices as computational resources. Thus,
the widespread use of dynamically-assembled collections of computers, located on local and
even wide area networks, as powerful computational resources is becoming possible. For
instance, a computational task might be initially mapped to available computers within a
workgroup, but then extended or migrated to other resources provided by a commercial
computational services provider because of changes in computational characteristics or
resource availability. However, locating computational resources or information that are
relevant to users’ interests can be challenging for ubiquitous computing since it needs to

32 Ubiquitous Computing

determine which resource is the best candidate at minimum cost given the heterogeneous,
dynamic nature of the resources involved.
For example, searching for devices to constitute an ad-hoc system, a good resource discovery
mechanism may need to consider many factors including user interfaces, architectures, or
physical locations to minimize the costs of interoperability among participants. In addition,
it is preferable that all ad-hoc system participants be in geographic proximity to promote
ease of interaction. It is also highly likely that people currently close to the store would
have an answer to the query, “is the department store crowed now?”. Therefore, a range of
physical locations must be incorporated within a resource discovery mechanism; e.g., routing
mechanisms using geographic parameters such as Greedy Forwarding (GF) (Finn, 1987) may
be used to locate participants and initiate communication among them.

1.2 Possible solutions
Due to the problems described above, the rapid the development of ubiquitous applications
usually requires identifying appropriate middleware abstractions and organizing successful
protocols, algorithms, and software modules into generic middleware platforms. An ideal
platform should allow applications to handle the resource constraints of the ubiquitous
devices but, at the same time, exploit their unique features such as availability of location
information, embedded sensors, mobility, and spontaneous interaction.

1.2.1 Adaptive systems
To cope with dynamic computing environments, the concept of reflective systems that have
the capability to reason and act autonomously was proposed (Maes, 1987). Such a system
provides a representation of its own behavior which is amenable to inspection and adaptation,
and so is able to observe its current state and alter its behavior at run time. Reflection has
been added into various systems, including languages (Java Platform Standard Edition API
Specification, n.d.), operating systems (Jr & Kofuji, 1996; Yokote, 1992), and middleware (Blair
et al., 1998; Kon et al., 2000; Wang & Lee, 1998). These systems allow users to inspect internal
states and modify several aspects of implementation, execution, and communication at run
time and can adapt themselves flexibly to heterogeneous and dynamic environments.
Many projects have proposed to implement reflection from various perspectives to provide
possible solutions for adaptive software development in ubiquitous computing. The
paper (da Costa et al., 2008) describes the fundamental issues such as heterogeneity,
dependability and security, privacy and trust, mobility, transparent user interaction, etc. A
number of software architectures have provided solutions for particular classes of systems
and specific domains of concerns to allow users simultaneously interact and collaborate using
multiple heterogeneous devices.
For instance, the projects outlined in (Cheng et al., 2006; Garlan et al., 2004; Oreizy et al., 1999)
adopt an architecture-based approach in which system architectural models are maintained
at run time and used as the basis for system adaptation. External control mechanisms,
considered in separable modules, allow system adaptation to become the responsibility of
components outside the system which can thus can be analyzed, modified, extended, and
reused across different systems. The architectural models usually provide a global view of the
system, allowing one to better identify the sources of environmental changes.
BEACH (Tandler, 2001) provides a software infrastructure for synchronous collaboration
with many different devices, supporting different forms of interaction and hardware
configurations. The layered architecture of Aura (Garlan et al., 2002) can anticipate requests

33Anywhere/Anytime Software and Information Access via Collaborative Assistance

1.1.1 Software reuse
Given the number and variety of mobile and embedded devices, software development is, in
most cases, a complex and time-consuming process since heterogeneous environments raise
problems above and beyond source code level portability, which has a significant impact on
ease of software reuse. With careful coding, the software may be compiled into native code
for various platforms. Nevertheless, the software will probably be difficult to deploy and use.
The source code has to be compiled for the target platform, either by vendors or users, and
the computing environment needs to be correctly configured to the required hardware and
shared libraries. While this problem may be alleviated by platform-independent intermediate
bytecode and virtual machines (e.g., Java), a higher level of portability vis-a-vis performance
also needs to be considered (Ko & Mutka, 2002). For instance, while a multimedia application
may run perfectly on a desktop, it may run so slowly on a mobile device as to be unusable. One
way to improve performance would be to reduce the output quality. An alternative would be
to improve software to detect and exploit special the functionality of particular devices.
To achieve a higher level of portable performance, information on the resources available on
the target devices is necessary but, unfortunately, not available until run time. Therefore,
instead of making assumptions regarding the capabilities of target devices, developers
specify performance and resource requirements during the software development stage. The
software may then determine at run time whether it can run on the target platform, or, even
better, adapt itself to the computing environment by adjusting performance and resource
requirements.

1.1.2 Dynamic computing environment
These computing environments are open and dynamic; i.e., usage is not confined to a fixed
location, and people carrying computers may join and leave the environment at will. Thus,
the environment may change during the execution of an application, leading to problems such
as resource variability, system errors, and changing requirements.
To improve system dependability, robustness, and availability, software execution has to be
aware of environmental changes and take appropriate actions to accommodate these changes.
Traditionally, such auto-adapting mechanisms may be implemented at the code level, e.g.,
explicit coding of environmental conditions and corresponding remedial actions. However,
such approaches are specifically targeted and the adaptive capabilities are often limited in
scope, brittle, costly to change, and difficult to reuse. Furthermore, they lack a global
view of software systems, so they usually only detect the symptoms but not true sources of
environmental changes and thus may not be able to determine the most suitable response.

1.1.3 Resources and information location
Dramatic improvements in the quality of and accessibility to networks makes it increasingly
feasible to use collections of networked commodity devices as computational resources. Thus,
the widespread use of dynamically-assembled collections of computers, located on local and
even wide area networks, as powerful computational resources is becoming possible. For
instance, a computational task might be initially mapped to available computers within a
workgroup, but then extended or migrated to other resources provided by a commercial
computational services provider because of changes in computational characteristics or
resource availability. However, locating computational resources or information that are
relevant to users’ interests can be challenging for ubiquitous computing since it needs to

32 Ubiquitous Computing

determine which resource is the best candidate at minimum cost given the heterogeneous,
dynamic nature of the resources involved.
For example, searching for devices to constitute an ad-hoc system, a good resource discovery
mechanism may need to consider many factors including user interfaces, architectures, or
physical locations to minimize the costs of interoperability among participants. In addition,
it is preferable that all ad-hoc system participants be in geographic proximity to promote
ease of interaction. It is also highly likely that people currently close to the store would
have an answer to the query, “is the department store crowed now?”. Therefore, a range of
physical locations must be incorporated within a resource discovery mechanism; e.g., routing
mechanisms using geographic parameters such as Greedy Forwarding (GF) (Finn, 1987) may
be used to locate participants and initiate communication among them.

1.2 Possible solutions
Due to the problems described above, the rapid the development of ubiquitous applications
usually requires identifying appropriate middleware abstractions and organizing successful
protocols, algorithms, and software modules into generic middleware platforms. An ideal
platform should allow applications to handle the resource constraints of the ubiquitous
devices but, at the same time, exploit their unique features such as availability of location
information, embedded sensors, mobility, and spontaneous interaction.

1.2.1 Adaptive systems
To cope with dynamic computing environments, the concept of reflective systems that have
the capability to reason and act autonomously was proposed (Maes, 1987). Such a system
provides a representation of its own behavior which is amenable to inspection and adaptation,
and so is able to observe its current state and alter its behavior at run time. Reflection has
been added into various systems, including languages (Java Platform Standard Edition API
Specification, n.d.), operating systems (Jr & Kofuji, 1996; Yokote, 1992), and middleware (Blair
et al., 1998; Kon et al., 2000; Wang & Lee, 1998). These systems allow users to inspect internal
states and modify several aspects of implementation, execution, and communication at run
time and can adapt themselves flexibly to heterogeneous and dynamic environments.
Many projects have proposed to implement reflection from various perspectives to provide
possible solutions for adaptive software development in ubiquitous computing. The
paper (da Costa et al., 2008) describes the fundamental issues such as heterogeneity,
dependability and security, privacy and trust, mobility, transparent user interaction, etc. A
number of software architectures have provided solutions for particular classes of systems
and specific domains of concerns to allow users simultaneously interact and collaborate using
multiple heterogeneous devices.
For instance, the projects outlined in (Cheng et al., 2006; Garlan et al., 2004; Oreizy et al., 1999)
adopt an architecture-based approach in which system architectural models are maintained
at run time and used as the basis for system adaptation. External control mechanisms,
considered in separable modules, allow system adaptation to become the responsibility of
components outside the system which can thus can be analyzed, modified, extended, and
reused across different systems. The architectural models usually provide a global view of the
system, allowing one to better identify the sources of environmental changes.
BEACH (Tandler, 2001) provides a software infrastructure for synchronous collaboration
with many different devices, supporting different forms of interaction and hardware
configurations. The layered architecture of Aura (Garlan et al., 2002) can anticipate requests

33Anywhere/Anytime Software and Information Access via Collaborative Assistance

from a higher layer by observing current demands, and adjust its performance and resource
usage characteristics accordingly. HESTIA (Hill et al., 2004) provides a secure infrastructure
for ubiquitous computing environments. It addresses the incompatible interoperation
problem of securing critical information services in large-scale environments. Analysis of
extensive surveys on software infrastructures and frameworks which support the construction
of ubiquitous systems is given in (Endres et al., 2005).
Furthermore, many systems (de Lara et al., 2001; Flissi et al., 2005; Gu et al., 2004; Stevenson
et al., 2003) adopt component-based software infrastructure for ubiquitous environments,
which can take advantage of the exported interfaces and the structured nature of these
applications to perform adaptation without modifying the applications. These applications
are designed as assemblies of distributed software components and are dynamically
discovered according to the end-user’s physical location and device capabilities. With this
approach, an application can add new behaviors after deployment. In addition, the system
will dynamically partition the application and offload some components to a powerful nearby
surrogate. This allows for delivery of the application in a ubiquitous computing environment
without significant fidelity degradation. McKinley, et al. (Mckinley et al., 2004) provide a
review of technologies related to compositional adaptation.

1.2.2 Service composition
An approach similar to that of component-based software systems is to combine multiple
primitive programs for a complex task. For example, shell pipes in Unix provide useful
data I/O mechanisms, employing multiple programs to work together, and complex tasks
are accomplished by coordinating sequences of primitive programs. These programs
are “connected” by pipes which facilitate exchange of data among them. Truong and
Harwood (Truong & Harwood, 2003) extended this concept and proposed a shell that provides
distributed computing over a peer-to-peer network and is characterized by good scalability.
Another related topic is the composition of web services. Programmers may use the Web
Services Description Language (WSDL) to specify characteristics and access of web services,
and thus web services can be composed to provide a complicated service. However, WSDL
does not support semantic descriptions; thus, a composition always requires intervention by
a programmer. To enable web services to perform a dynamic composition by themselves,
Martin et al. (Martin et al., 2004) proposed the OWL-S approach, in which a client program
and web services may have a common consensus on the semantics of the terms in WSDL
by a third-party ontology, and thus a web service can automatically interact with another
web service by a priori setting the rule for the semantics. Mokhtar et al. (Mokhtar et al.,
2007) extended the OWL-S approach and proposed a conversation-based service composition
method named COCOA that aims for the dynamic composition of services to complete a user
task. With COCOA, a service as well as a user task is transformed to an automata, and an
algorithm is proposed to combine the automata of different services.
QoS-aware composition is another important issue of web service composition. For example,
Li et al. (Li et al., 2001) propose a hierarchical adaptive QoS architecture for multimedia
applications. A multimedia service is delivered by multiple service configurations, each of
which involves a different set of service components. Each service component is executed as a
process. Components cooperate through protocols over network communication. Usually, the
composition of web services needs to satisfy given optimization criteria, such as the overall
cost or response time, and can be formulated as a NP-hard optimization problem (Canfora
et al., 2005). Canfora et al. (Canfora et al., 2005) proposed a genetic algorithm for the NP-hard

34 Ubiquitous Computing

QoS-aware composition problem. In addition, Wada et al. (Wada et al., 2008) proposed
a multi-objective genetic algorithm to deal with optimization criteria with trade-offs, and
Berbner et al. (Berbner et al., 2006) proposed a fast heuristic that was 99% close to optimal
solutions in most cases. Furthermore, various middleware and frameworks (Issa et al., 2006;
Yu & Lin, 2005; Zeng et al., 2004) have been proposed to realize QoS-aware web service
compositions.

1.2.3 Resource discovery
As mentioned earlier, design of such a resource discovery mechanism becomes increasingly
difficult under ubiquitous computing conditions in which useful information servers are
not known a priori. Porter and Sen (Porter & Sen, 2007) classified two approaches for
resource discovery mechanisms, namely referral (Candale & Sen, 2005; Sen & Sajja, 2002;
Singh et al., 2001; Yolum & Singh, 2005) and matchmaker (Albrecht et al., 2008; Iamnitchi
& Foster, 2004; Jha et al., 1998; Ogston & Vassiliadis, 2001). In the referral approach, the
resource providers provide both services and referrals to other providers. Providers which
provide high quality services are likely to be recommended by many providers. Providers
must, however, ascertain the trustworthiness and expertise of other providers to measure the
value of a recommendation. For example, in (Candale & Sen, 2005), the performance of a
provider is measured by the satisfaction obtained by its clients. This mechanism requires
learning both the performance levels of different service providers as well as the quality of
referrals provided by other providers by exchanging information.
Another possible solution to this problem is to use a matchmaker: a dedicated resource
discovery server that arranges the connections. Assuming clients are truthful in their
interactions with the matchmaker, optimal matches can be found. For example, in the SWORD
architecture (Albrecht et al., 2008), a resource query will be processed by a distributed query
processor to find candidate nodes whose characteristics match the specified requirements.
Then, the optimized subset of the candidate nodes will be determined by the optimizer
component accounting for desired device characteristics, such as load and network location,
and inter-device characteristics, such as latency and bandwidth.
Furthermore, several efforts (Albrecht et al., 2008; Balazinska et al., 2002; Huang & Steenkiste,
2003) have explored resource discovery mechanisms in large-scale environments. The system
must scale to thousands of devices and be highly available. It also has to support high rates of
measurement updates from participating devices, from static characteristics such as operating
system, processor speed, and network coordinates to more dynamic characteristics such as
available CPU capacity, memory, and disk storage.

1.3 Organization of this article
The remainder of this article is organized as follows. Section 2 describes the idea of
ad-hoc systems in detail and how it may be realized by the adaptive software framework,
FRAME, implemented as part of the adaptive software architecture project, ASAP. Under
FRAME, software components can be discovered, loaded, combined, adapted, and executed
on the target platforms in accordance with available resources and performance constraints.
Software may have a list of specifications, specified during the development stage, to gather
information about its environment. During execution, the software may check the list for
environmental changes, and then respond accordingly. Therefore, an ad-hoc system can be
constructed and executed without human intervention.

35Anywhere/Anytime Software and Information Access via Collaborative Assistance

from a higher layer by observing current demands, and adjust its performance and resource
usage characteristics accordingly. HESTIA (Hill et al., 2004) provides a secure infrastructure
for ubiquitous computing environments. It addresses the incompatible interoperation
problem of securing critical information services in large-scale environments. Analysis of
extensive surveys on software infrastructures and frameworks which support the construction
of ubiquitous systems is given in (Endres et al., 2005).
Furthermore, many systems (de Lara et al., 2001; Flissi et al., 2005; Gu et al., 2004; Stevenson
et al., 2003) adopt component-based software infrastructure for ubiquitous environments,
which can take advantage of the exported interfaces and the structured nature of these
applications to perform adaptation without modifying the applications. These applications
are designed as assemblies of distributed software components and are dynamically
discovered according to the end-user’s physical location and device capabilities. With this
approach, an application can add new behaviors after deployment. In addition, the system
will dynamically partition the application and offload some components to a powerful nearby
surrogate. This allows for delivery of the application in a ubiquitous computing environment
without significant fidelity degradation. McKinley, et al. (Mckinley et al., 2004) provide a
review of technologies related to compositional adaptation.

1.2.2 Service composition
An approach similar to that of component-based software systems is to combine multiple
primitive programs for a complex task. For example, shell pipes in Unix provide useful
data I/O mechanisms, employing multiple programs to work together, and complex tasks
are accomplished by coordinating sequences of primitive programs. These programs
are “connected” by pipes which facilitate exchange of data among them. Truong and
Harwood (Truong & Harwood, 2003) extended this concept and proposed a shell that provides
distributed computing over a peer-to-peer network and is characterized by good scalability.
Another related topic is the composition of web services. Programmers may use the Web
Services Description Language (WSDL) to specify characteristics and access of web services,
and thus web services can be composed to provide a complicated service. However, WSDL
does not support semantic descriptions; thus, a composition always requires intervention by
a programmer. To enable web services to perform a dynamic composition by themselves,
Martin et al. (Martin et al., 2004) proposed the OWL-S approach, in which a client program
and web services may have a common consensus on the semantics of the terms in WSDL
by a third-party ontology, and thus a web service can automatically interact with another
web service by a priori setting the rule for the semantics. Mokhtar et al. (Mokhtar et al.,
2007) extended the OWL-S approach and proposed a conversation-based service composition
method named COCOA that aims for the dynamic composition of services to complete a user
task. With COCOA, a service as well as a user task is transformed to an automata, and an
algorithm is proposed to combine the automata of different services.
QoS-aware composition is another important issue of web service composition. For example,
Li et al. (Li et al., 2001) propose a hierarchical adaptive QoS architecture for multimedia
applications. A multimedia service is delivered by multiple service configurations, each of
which involves a different set of service components. Each service component is executed as a
process. Components cooperate through protocols over network communication. Usually, the
composition of web services needs to satisfy given optimization criteria, such as the overall
cost or response time, and can be formulated as a NP-hard optimization problem (Canfora
et al., 2005). Canfora et al. (Canfora et al., 2005) proposed a genetic algorithm for the NP-hard

34 Ubiquitous Computing

QoS-aware composition problem. In addition, Wada et al. (Wada et al., 2008) proposed
a multi-objective genetic algorithm to deal with optimization criteria with trade-offs, and
Berbner et al. (Berbner et al., 2006) proposed a fast heuristic that was 99% close to optimal
solutions in most cases. Furthermore, various middleware and frameworks (Issa et al., 2006;
Yu & Lin, 2005; Zeng et al., 2004) have been proposed to realize QoS-aware web service
compositions.

1.2.3 Resource discovery
As mentioned earlier, design of such a resource discovery mechanism becomes increasingly
difficult under ubiquitous computing conditions in which useful information servers are
not known a priori. Porter and Sen (Porter & Sen, 2007) classified two approaches for
resource discovery mechanisms, namely referral (Candale & Sen, 2005; Sen & Sajja, 2002;
Singh et al., 2001; Yolum & Singh, 2005) and matchmaker (Albrecht et al., 2008; Iamnitchi
& Foster, 2004; Jha et al., 1998; Ogston & Vassiliadis, 2001). In the referral approach, the
resource providers provide both services and referrals to other providers. Providers which
provide high quality services are likely to be recommended by many providers. Providers
must, however, ascertain the trustworthiness and expertise of other providers to measure the
value of a recommendation. For example, in (Candale & Sen, 2005), the performance of a
provider is measured by the satisfaction obtained by its clients. This mechanism requires
learning both the performance levels of different service providers as well as the quality of
referrals provided by other providers by exchanging information.
Another possible solution to this problem is to use a matchmaker: a dedicated resource
discovery server that arranges the connections. Assuming clients are truthful in their
interactions with the matchmaker, optimal matches can be found. For example, in the SWORD
architecture (Albrecht et al., 2008), a resource query will be processed by a distributed query
processor to find candidate nodes whose characteristics match the specified requirements.
Then, the optimized subset of the candidate nodes will be determined by the optimizer
component accounting for desired device characteristics, such as load and network location,
and inter-device characteristics, such as latency and bandwidth.
Furthermore, several efforts (Albrecht et al., 2008; Balazinska et al., 2002; Huang & Steenkiste,
2003) have explored resource discovery mechanisms in large-scale environments. The system
must scale to thousands of devices and be highly available. It also has to support high rates of
measurement updates from participating devices, from static characteristics such as operating
system, processor speed, and network coordinates to more dynamic characteristics such as
available CPU capacity, memory, and disk storage.

1.3 Organization of this article
The remainder of this article is organized as follows. Section 2 describes the idea of
ad-hoc systems in detail and how it may be realized by the adaptive software framework,
FRAME, implemented as part of the adaptive software architecture project, ASAP. Under
FRAME, software components can be discovered, loaded, combined, adapted, and executed
on the target platforms in accordance with available resources and performance constraints.
Software may have a list of specifications, specified during the development stage, to gather
information about its environment. During execution, the software may check the list for
environmental changes, and then respond accordingly. Therefore, an ad-hoc system can be
constructed and executed without human intervention.

35Anywhere/Anytime Software and Information Access via Collaborative Assistance

Section 3 introduces the Distributed Shell System, or DISHES, in which a mobile user can
issue a shell script of a task, and DISHES will automatically locate the required programs
and retrieve the necessary data. The required programs will be dispatched and executed on
their host computers. Intermediate results will be piped between the host computer through
networks, and final result will be I/O redirected to the user-specified location.
In Sec. 4, we present the basic idea of mutual assistant networks (MANs) which combine social
networks and wireless sensor networks (WSNs) to query local and timely information. The
proposed infrastructure uses routing protocols commonly adopted in WSNs, such as GF, to
forward the query to someone who may have an answer. Conceptually, people in MANs serve
the role played by sensors in WSNs; they may accept queries from others, gather information
based on queries, and then respond. Such a new social network application will promote the
sharing of knowledge and bring people closer together. Finally, a summary is given in Sec. 5.

2. Ad-Hoc systems

2.1 Overview
As mentioned earlier, the ubiquity of computers makes it possible to combine several
resource-limited devices as an ad-hoc system to complete a complex computing task. Imagine
a scenario in which a user watches a movie on his smart phone. Referring to Fig. 1, to
completely execute on the smart phone, the media player software needs to decoding the
multimedia stream, output video and audio, and interact with the user. Due to limited
computing capability, the performance or quality of the video and audio may be unacceptably
poor. In addition, the small size of the phone may lead to an unpleasant interaction experience.

Fig. 1. The media player software needs to decode the multimedia stream, output video and
audio, and interact with the user. Due to limited computing capability, the performance or
quality of the video and audio may be unacceptably poor.

Alternatively, the user may search ambient devices for their hardware features. For example,
he may find a TV for its big LCD display, a Hi-Fi audio system for its stereo sound quality, and
a PC for its computing power. He can connect these devices together to form an ad-hoc system
as shown in Fig. 2. After the media player software is launched, the appropriate part of the
code will be distributed to each device, i.e., the code for audio processing to the Hi-Fi audio
system, the code for video processing to the TV, and the code for decoding the multimedia
stream to the PC. As a consequence, instead of watching the movie on the smart phone, the
user may enjoy the smoother movie on the ad-hoc system with a larger image on the TV and
better sound from the Hi-Fi audio system.
One challenge to realizing ad-hoc systems is the diversity of participating devices. It is
impossible to know the performance of components on each device in advance to determine
the appropriate component distribution. In Fig. 2, before distributing the video processing
component to the TV, one must first know if the TV has the appropriate resource for video
processing. Such performance information can only be known after the ad-hoc system is
formed. Manually probing the performance of each participating device is difficult for the

36 Ubiquitous Computing

Fig. 2. The media player software executes on an ad-hoc system consisting of a smart phone,
a TV, a Hi-Fi audio system, and a PC. The components are distributed to the appropriate
participating devices in which all specifications are satisfied for a better movie watching
experience.

average user, but the adaptive software framework, FRAME (Ko & Mutka, 2002), may provide
a better solution to alleviate this configuration problem.

2.2 The adaptive software framework, FRAME
In many mass production industries, such as automobiles and electronics, final products are
assembled from parts. The parts may be built by various vendors, but they are plug-in
compatible if they have the required functionality. It is technically impossible for vendors
to develop parts that may work perfectly in every environment. As a consequence, vendors
usually specify how well the parts may perform in certain environments, and users can select
appropriate parts based on these specifications. If, under certain conditions, a part fails or
does not perform as required, it can be replaced with an appropriate part. For example,
regular tires are designed for normal weather conditions, but may be prone to skidding on
snow and thus may not meet safety requirements. Consequently, special snow tires may be
used to achieve better safety.
A similar idea was adopted in FRAME. In addition to function implementation as normal
components, specifications for required resources were added as shown in Fig. 3(a). The
specifications allow FRAME to identify an appropriate participating device for execution.
FRAME is a middleware which provides APIs for Java applications to adapt themselves to
heterogeneous environments. Figure 3 illustrates the component structure and its middleware
architecture. A component provides abstract function interfaces without exposing detailed
implementations. Similar to components in the automobile and electronic industries, a
component may have multiple implementations developed by various vendors. Different
implementations may require different resources and produce different quality of results;
these are specified as specifications. The components of an application are not linked during
the development stage, but are “assembled” at run time after determining the resources

37Anywhere/Anytime Software and Information Access via Collaborative Assistance

Section 3 introduces the Distributed Shell System, or DISHES, in which a mobile user can
issue a shell script of a task, and DISHES will automatically locate the required programs
and retrieve the necessary data. The required programs will be dispatched and executed on
their host computers. Intermediate results will be piped between the host computer through
networks, and final result will be I/O redirected to the user-specified location.
In Sec. 4, we present the basic idea of mutual assistant networks (MANs) which combine social
networks and wireless sensor networks (WSNs) to query local and timely information. The
proposed infrastructure uses routing protocols commonly adopted in WSNs, such as GF, to
forward the query to someone who may have an answer. Conceptually, people in MANs serve
the role played by sensors in WSNs; they may accept queries from others, gather information
based on queries, and then respond. Such a new social network application will promote the
sharing of knowledge and bring people closer together. Finally, a summary is given in Sec. 5.

2. Ad-Hoc systems

2.1 Overview
As mentioned earlier, the ubiquity of computers makes it possible to combine several
resource-limited devices as an ad-hoc system to complete a complex computing task. Imagine
a scenario in which a user watches a movie on his smart phone. Referring to Fig. 1, to
completely execute on the smart phone, the media player software needs to decoding the
multimedia stream, output video and audio, and interact with the user. Due to limited
computing capability, the performance or quality of the video and audio may be unacceptably
poor. In addition, the small size of the phone may lead to an unpleasant interaction experience.

Fig. 1. The media player software needs to decode the multimedia stream, output video and
audio, and interact with the user. Due to limited computing capability, the performance or
quality of the video and audio may be unacceptably poor.

Alternatively, the user may search ambient devices for their hardware features. For example,
he may find a TV for its big LCD display, a Hi-Fi audio system for its stereo sound quality, and
a PC for its computing power. He can connect these devices together to form an ad-hoc system
as shown in Fig. 2. After the media player software is launched, the appropriate part of the
code will be distributed to each device, i.e., the code for audio processing to the Hi-Fi audio
system, the code for video processing to the TV, and the code for decoding the multimedia
stream to the PC. As a consequence, instead of watching the movie on the smart phone, the
user may enjoy the smoother movie on the ad-hoc system with a larger image on the TV and
better sound from the Hi-Fi audio system.
One challenge to realizing ad-hoc systems is the diversity of participating devices. It is
impossible to know the performance of components on each device in advance to determine
the appropriate component distribution. In Fig. 2, before distributing the video processing
component to the TV, one must first know if the TV has the appropriate resource for video
processing. Such performance information can only be known after the ad-hoc system is
formed. Manually probing the performance of each participating device is difficult for the

36 Ubiquitous Computing

Fig. 2. The media player software executes on an ad-hoc system consisting of a smart phone,
a TV, a Hi-Fi audio system, and a PC. The components are distributed to the appropriate
participating devices in which all specifications are satisfied for a better movie watching
experience.

average user, but the adaptive software framework, FRAME (Ko & Mutka, 2002), may provide
a better solution to alleviate this configuration problem.

2.2 The adaptive software framework, FRAME
In many mass production industries, such as automobiles and electronics, final products are
assembled from parts. The parts may be built by various vendors, but they are plug-in
compatible if they have the required functionality. It is technically impossible for vendors
to develop parts that may work perfectly in every environment. As a consequence, vendors
usually specify how well the parts may perform in certain environments, and users can select
appropriate parts based on these specifications. If, under certain conditions, a part fails or
does not perform as required, it can be replaced with an appropriate part. For example,
regular tires are designed for normal weather conditions, but may be prone to skidding on
snow and thus may not meet safety requirements. Consequently, special snow tires may be
used to achieve better safety.
A similar idea was adopted in FRAME. In addition to function implementation as normal
components, specifications for required resources were added as shown in Fig. 3(a). The
specifications allow FRAME to identify an appropriate participating device for execution.
FRAME is a middleware which provides APIs for Java applications to adapt themselves to
heterogeneous environments. Figure 3 illustrates the component structure and its middleware
architecture. A component provides abstract function interfaces without exposing detailed
implementations. Similar to components in the automobile and electronic industries, a
component may have multiple implementations developed by various vendors. Different
implementations may require different resources and produce different quality of results;
these are specified as specifications. The components of an application are not linked during
the development stage, but are “assembled” at run time after determining the resources

37Anywhere/Anytime Software and Information Access via Collaborative Assistance

(a) Component

(b) Middleware architecture

Fig. 3. The adaptive software framework, FRAME consists of three modules, namely
assembly, execution, and communication. In addition to function implementation,
specifications for required resources are added for components in FRAME.

of the computing environment with their specifications. If the application fails to work
appropriately because of dynamic environmental changes, it may also use the FRAME APIs
to replace component implementations for better performance or quality of execution without
down-time. In summary, FRAME provides the following features:

• Developers may specify specifications for component implementations.

• Application components may be automatically distributed to single or multiple
participating devices.

• Before execution, FRAME may probe the available resources from the computing
environment and then adapt themselves to the computing environment via a special
process called assembly.

• During execution, FRAME may detect run-time environmental changes and, if necessary,
invoke the assembly process without down-time.

38 Ubiquitous Computing

Referring to Fig. 3(b), these features are implemented as three modules, namely assembly,
execution, and communication. The assembly module resolves the components of
an application and discovers all possible component implementations, then distributes
and verifies the implementation specifications for participating devices to determine the
appropriate execution devices. The execution module distributes each component to the
selected execution device following the assembly process. It also monitors the specifications
during run-time and, if necessary, invokes the assembly process for more appropriate
implementations without down-time. The communication module provides necessary data
marshalling/unmarshalling mechanisms for cooperation among components on different
devices.
The assembly process is worthy of special attention. The traditional approach to component
implementation selection is to use condition statements such as if-else statements as shown
in Table 1. There may be nested if-else statements and each is used to decide the appropriate
implementation of a component. Once an implementation is selected, execution flow may
go into the inner if-else statements to select the appropriate implementation of other
components. However, from a software engineering perspective, the condition statements
approach is primitive. As the numbers of components and their implementations increase, the
code tends toward so-called “spaghetti code” that has a complex and tangled control structure
and the software will become more difficult to maintain or modify. The most important
limitation of this approach is that condition statements are hard-coded, so the availability
of all implementations needs to be known during the development stage. It is impossible
to integrate newly-developed implementations without rewriting and recompiling the code,
and, of course, the down-time.
if (constraints of component 1 with implementation 1)
{ // select component 1 with implementation 1

if (constraints of component 2 with implementation 1)
{ // select component 2 with implementation 1

// check each implementation of component 3, 4,...
}
else if (constraints of component 2 with implementation 2)
{ // select component 2 with implementation 2

// check each implementation of component 3, 4,...
}
... // more else if blocks for other implementations of component 2

}
else if (constraints of component 1 with implementation 2)
{ // select component 1 with implementation 2

// similar as the code in the if block of
// component 1 with implementation 1

}
... // more else if blocks for other implementations of component 1

Table 1. if-else statement structure for the component implementation selection

39Anywhere/Anytime Software and Information Access via Collaborative Assistance

(a) Component

(b) Middleware architecture

Fig. 3. The adaptive software framework, FRAME consists of three modules, namely
assembly, execution, and communication. In addition to function implementation,
specifications for required resources are added for components in FRAME.

of the computing environment with their specifications. If the application fails to work
appropriately because of dynamic environmental changes, it may also use the FRAME APIs
to replace component implementations for better performance or quality of execution without
down-time. In summary, FRAME provides the following features:

• Developers may specify specifications for component implementations.

• Application components may be automatically distributed to single or multiple
participating devices.

• Before execution, FRAME may probe the available resources from the computing
environment and then adapt themselves to the computing environment via a special
process called assembly.

• During execution, FRAME may detect run-time environmental changes and, if necessary,
invoke the assembly process without down-time.

38 Ubiquitous Computing

Referring to Fig. 3(b), these features are implemented as three modules, namely assembly,
execution, and communication. The assembly module resolves the components of
an application and discovers all possible component implementations, then distributes
and verifies the implementation specifications for participating devices to determine the
appropriate execution devices. The execution module distributes each component to the
selected execution device following the assembly process. It also monitors the specifications
during run-time and, if necessary, invokes the assembly process for more appropriate
implementations without down-time. The communication module provides necessary data
marshalling/unmarshalling mechanisms for cooperation among components on different
devices.
The assembly process is worthy of special attention. The traditional approach to component
implementation selection is to use condition statements such as if-else statements as shown
in Table 1. There may be nested if-else statements and each is used to decide the appropriate
implementation of a component. Once an implementation is selected, execution flow may
go into the inner if-else statements to select the appropriate implementation of other
components. However, from a software engineering perspective, the condition statements
approach is primitive. As the numbers of components and their implementations increase, the
code tends toward so-called “spaghetti code” that has a complex and tangled control structure
and the software will become more difficult to maintain or modify. The most important
limitation of this approach is that condition statements are hard-coded, so the availability
of all implementations needs to be known during the development stage. It is impossible
to integrate newly-developed implementations without rewriting and recompiling the code,
and, of course, the down-time.
if (constraints of component 1 with implementation 1)
{ // select component 1 with implementation 1

if (constraints of component 2 with implementation 1)
{ // select component 2 with implementation 1

// check each implementation of component 3, 4,...
}
else if (constraints of component 2 with implementation 2)
{ // select component 2 with implementation 2

// check each implementation of component 3, 4,...
}
... // more else if blocks for other implementations of component 2

}
else if (constraints of component 1 with implementation 2)
{ // select component 1 with implementation 2

// similar as the code in the if block of
// component 1 with implementation 1

}
... // more else if blocks for other implementations of component 1

Table 1. if-else statement structure for the component implementation selection

39Anywhere/Anytime Software and Information Access via Collaborative Assistance

Fig. 4. All possible implementation combinations of an application: each row represents a
possible implementation combination and the constraints of a combination constitute a
software constraint set.

FRAME uses a different approach than condition statements to select appropriate component
implementations. By identifying all component implementations of an application via service
discovery, the assembly module builds all possible combinations of the application as shown
in Fig. 4. Each combination has a set of specifications, called a software specification set, which
consists of all the specifications from the involved component implementations. Since no two
implementations should have same set of specifications, the mapping between combinations
and software specification sets is one-to-one. By solving which specification set is feasible,
i.e., all specifications in the software specification set are satisfied, the corresponding feasible
combination will be found.
To realize ad-hoc systems, the assembly module distributes components to participating
devices prior to constructing the software specification sets. There might be more than one
possible distribution of components, and we call each possibility a distribution. For each
distribution, the assembly module constructs all possible software specification sets and
determine whether a feasible specification set exists. A distribution is feasible if it has a
feasible software specification set, and then the application is assembled from the feasible
distribution. In other words, the assembly process for an ad-hoc system application is to
find a feasible distribution from all possible distributions. For the example of the media
player software in Fig. 2, there may be an implementation for the audio component with
good sound quality, and all its specifications are satisfied on the Hi-Fi audio system, but not
the PC and the TV. Thus the audio component implementation will be executed on the Hi-Fi
audio system. As a consequence, an ad-hoc system for the media player is constituted without
human intervention.

40 Ubiquitous Computing

3. Distributed Shell System

This section introduces another approach for accomplishing a resource intensive task by
using ambient computing resources. The approach is based on the concept that many single
machine systems provide a command line interface (e.g., shell) which allows a user to issue
a command consisting of many primitive programs to accomplish a complex task. These
programs are coordinated by the pipe mechanism and the result may be stored as a file via
the I/O redirection. DISHES (DIstributed SHEll System) (Lai & Ko, 2010) extends this idea to
ubiquitous computing environments, in which a mobile device user can issue a command
specifying the data location and a sequence of programs to process the data. When a mobile
device receives the command, it will seek out appropriate ambient devices which have the
required programs and send tasks-to-do to these devices. Each device may retrieve the data
from the specified location and execute the designated program to process the data. Once
finished, it will send the result to other devices for further processing or back to the user’s
mobile device. Thus, a complicated task can be achieved by the sequential cooperation of
multiple primitive programs.
Imagine a scenario in which a student in a school library is looking for research literature with
the keywords “ubiquitous computing” in descending order of the year published. He may
issue the following command with his smart phone:

grep ‘‘ubiquitous computing’’ http://myschool.edu.tw/reference_list |
sort -k 2,2 -r > sorting_result

Based on the command, the student’s smart phone will find devices providing the required
programs (grep and sort). Suppose computer A provides grep and computer B provides
sort, as depicted in Fig. 5. Then A will retrieve the client information from the specified data
location, http://myschool.edu.tw/reference_list, execute grep “ubiquitous
computing” to pick up the literature containing the phrase “ubiquitous computing”,
and send the intermediate result to B via the pipe. After receiving the intermediate result from
A, B will execute sort -k 2,2 -r to sort the literature by publication year. The final sorted
result will be sent back to the student’s smart phone and stored as the file, sorting_result,
via the I/O redirection.
In the above example, the student only specifies the data location and a sequence of programs.
DISHES will automatically seek out appropriate computers with the required programs to
process the data retrieved from the specified location. Moreover, a complicated task may
be accomplished by gluing multiple primitive programs (grep and sort). These primitive
programs do not have to be stored in or executed on the student’s smart phone. They can
be executed on the other computers (A and B) for better performance, and the results will be
returned to the user. With this approach, the hardware and software of a mobile device may
be kept as simple as possible, allowing the device volume, weight, and cost to be minimized.
Thus, DISHES boosts people’s mobility. Besides, gluing together multiple primitive programs
to perform a complicated task can reduce software development costs. Note that though both
DISHES and FRAME use ambient computing resources to execute resource intensive tasks,
their fundamental purposes and approaches are different. DISHES tries to reuse the software
that has been well established on single machine systems without making any modifications.
There is no software migration involved in DISHES and the shared resources are software
oriented; that is, users look for ambient computing resources completely from a software
perspective. On the other hand, when building an ad-hoc system, users select a device based

41Anywhere/Anytime Software and Information Access via Collaborative Assistance

Fig. 4. All possible implementation combinations of an application: each row represents a
possible implementation combination and the constraints of a combination constitute a
software constraint set.

FRAME uses a different approach than condition statements to select appropriate component
implementations. By identifying all component implementations of an application via service
discovery, the assembly module builds all possible combinations of the application as shown
in Fig. 4. Each combination has a set of specifications, called a software specification set, which
consists of all the specifications from the involved component implementations. Since no two
implementations should have same set of specifications, the mapping between combinations
and software specification sets is one-to-one. By solving which specification set is feasible,
i.e., all specifications in the software specification set are satisfied, the corresponding feasible
combination will be found.
To realize ad-hoc systems, the assembly module distributes components to participating
devices prior to constructing the software specification sets. There might be more than one
possible distribution of components, and we call each possibility a distribution. For each
distribution, the assembly module constructs all possible software specification sets and
determine whether a feasible specification set exists. A distribution is feasible if it has a
feasible software specification set, and then the application is assembled from the feasible
distribution. In other words, the assembly process for an ad-hoc system application is to
find a feasible distribution from all possible distributions. For the example of the media
player software in Fig. 2, there may be an implementation for the audio component with
good sound quality, and all its specifications are satisfied on the Hi-Fi audio system, but not
the PC and the TV. Thus the audio component implementation will be executed on the Hi-Fi
audio system. As a consequence, an ad-hoc system for the media player is constituted without
human intervention.

40 Ubiquitous Computing

3. Distributed Shell System

This section introduces another approach for accomplishing a resource intensive task by
using ambient computing resources. The approach is based on the concept that many single
machine systems provide a command line interface (e.g., shell) which allows a user to issue
a command consisting of many primitive programs to accomplish a complex task. These
programs are coordinated by the pipe mechanism and the result may be stored as a file via
the I/O redirection. DISHES (DIstributed SHEll System) (Lai & Ko, 2010) extends this idea to
ubiquitous computing environments, in which a mobile device user can issue a command
specifying the data location and a sequence of programs to process the data. When a mobile
device receives the command, it will seek out appropriate ambient devices which have the
required programs and send tasks-to-do to these devices. Each device may retrieve the data
from the specified location and execute the designated program to process the data. Once
finished, it will send the result to other devices for further processing or back to the user’s
mobile device. Thus, a complicated task can be achieved by the sequential cooperation of
multiple primitive programs.
Imagine a scenario in which a student in a school library is looking for research literature with
the keywords “ubiquitous computing” in descending order of the year published. He may
issue the following command with his smart phone:

grep ‘‘ubiquitous computing’’ http://myschool.edu.tw/reference_list |
sort -k 2,2 -r > sorting_result

Based on the command, the student’s smart phone will find devices providing the required
programs (grep and sort). Suppose computer A provides grep and computer B provides
sort, as depicted in Fig. 5. Then A will retrieve the client information from the specified data
location, http://myschool.edu.tw/reference_list, execute grep “ubiquitous
computing” to pick up the literature containing the phrase “ubiquitous computing”,
and send the intermediate result to B via the pipe. After receiving the intermediate result from
A, B will execute sort -k 2,2 -r to sort the literature by publication year. The final sorted
result will be sent back to the student’s smart phone and stored as the file, sorting_result,
via the I/O redirection.
In the above example, the student only specifies the data location and a sequence of programs.
DISHES will automatically seek out appropriate computers with the required programs to
process the data retrieved from the specified location. Moreover, a complicated task may
be accomplished by gluing multiple primitive programs (grep and sort). These primitive
programs do not have to be stored in or executed on the student’s smart phone. They can
be executed on the other computers (A and B) for better performance, and the results will be
returned to the user. With this approach, the hardware and software of a mobile device may
be kept as simple as possible, allowing the device volume, weight, and cost to be minimized.
Thus, DISHES boosts people’s mobility. Besides, gluing together multiple primitive programs
to perform a complicated task can reduce software development costs. Note that though both
DISHES and FRAME use ambient computing resources to execute resource intensive tasks,
their fundamental purposes and approaches are different. DISHES tries to reuse the software
that has been well established on single machine systems without making any modifications.
There is no software migration involved in DISHES and the shared resources are software
oriented; that is, users look for ambient computing resources completely from a software
perspective. On the other hand, when building an ad-hoc system, users select a device based

41Anywhere/Anytime Software and Information Access via Collaborative Assistance

Fig. 5. The student issues the command with his smart phone to find research literature with
the keyword “ubiquitous computing”. DISHES finds computers providing the specified
programs, and coordinates their execution via the remote pipe and I/O redirection
mechanisms.

on the hardware features it provides. For example, in Fig. 2, the user may consider adding the
TV into the ad-hoc system for the multimedia application because of its big LCD display.
The main feature of DISHES is the implementation of the remote version of the pipe and
I/O redirection without any modification to the original programs. The remote pipe allows
the standard output of one process to be fed directly as the standard input to another over
networks. It may be realized by the assistance of two agent processes as depicted in Fig. 6(a).
For example, to construct a remote pipe from process P1 of device A to process P2 of device B,
two agent processes, AP1 on A and AP2 on B, are created with two regular UNIX pipes, from
P1 to AP1 and AP2 to P2. Moreover, a socket connection between AP1 and AP2 is constructed.
Thus, AP1 may receive the output of P1 from the regular UNIX pipe and relay it to AP2 via the
socket connection, and then AP2 may feed the output to P2 via the other regular UNIX pipe.
Consequently, we have a remote pipe from P1 to P2. Note that the tasks of the agent processes
AP1 and AP2 are to relay the information, regardless of the output of P1. Therefore, the remote
pipe is realized without any modification to the original programs.
Similar to the remote pipe, two agent processes, AP3 on A and AP4 on B, are needed for remote
I/O redirection, as illustrated in Fig. 6(b). The output of P3 is fed to AP3 via a regular UNIX
pipe, and then to AP4 via a socket connection. Finally, the output is saved to file via a regular
UNIX I/O redirection mechanism.
Traditional shells on single machine systems use an explicit specified list of directories (e.g.,
via the environment variable PATH under UNIX) for searching programs by name. However,
due to the dynamic characteristics of ubiquitous computing environments, program locations
are usually unknown in advance. Therefore, similar to the assembly module in FRAME,
service discovery mechanisms may be incorporated to search programs in an unfamiliar
environment. In addition, the intermediate results of one computer may be transmitted
to another computer for subsequent program execution via the network, so performance
optimization may need to be considered during the service discovery (e.g., to find a sequence
of computers so that the total communication time for transmitting the intermediate results
is minimized). The problem can be formulated as a minimum sequential workflow problem
in static environments and solved by a polynomial algorithm (Lai & Ko, 2010). However, it

42 Ubiquitous Computing

(a) remote pipe

(b) remote I/O redirection

Fig. 6. Implementation of remote pipe and I/O redirection. Agents are needed to relay
information between processes on different devices.

becomes an on-line problem under ubiquitous computing environments and requires further
study.

4. Mutual Assistant Networks

In this section, we introduce the concept of integrating social networks which connect people
and ubiquitous computing which connects computers, allowing people to use not only
ambient computing resources, but also human resources. For example, a user may want to
know if a festival is worth going to before setting out. Such information is timely; it becomes
useless after the festival ends and thus must be answered by someone who is currently near
the festival. Given the ubiquitous existence of people carrying network-connected devices,
finding people close to the festival who are willing to help is quite feasible. Thus, the objective
of mutual assistant networks (MANs) is to provide necessary mechanisms to bridge the user
and these people. Referring to Fig. 7, a MAN will forward the user’s question about the
festival to people near the festival to collect their opinions. Similar to WSNs, a MAN may
analyze and aggregate the data, and then return the results to the user.
The features of MAN applications and WSN applications are similar in some aspects.
WSNs can collect information about physical environments from sensors while MANs collect
knowledge or opinions from people. Both can use geographical parameters to specify whether
data is collected from sensors or people. Therefore, many proposed WSN infrastructures
may also be adopted for MANs, such as geographic routing, network configuration and
coordination, data dissemination, and data aggregation, to name just a few.

43Anywhere/Anytime Software and Information Access via Collaborative Assistance

Fig. 5. The student issues the command with his smart phone to find research literature with
the keyword “ubiquitous computing”. DISHES finds computers providing the specified
programs, and coordinates their execution via the remote pipe and I/O redirection
mechanisms.

on the hardware features it provides. For example, in Fig. 2, the user may consider adding the
TV into the ad-hoc system for the multimedia application because of its big LCD display.
The main feature of DISHES is the implementation of the remote version of the pipe and
I/O redirection without any modification to the original programs. The remote pipe allows
the standard output of one process to be fed directly as the standard input to another over
networks. It may be realized by the assistance of two agent processes as depicted in Fig. 6(a).
For example, to construct a remote pipe from process P1 of device A to process P2 of device B,
two agent processes, AP1 on A and AP2 on B, are created with two regular UNIX pipes, from
P1 to AP1 and AP2 to P2. Moreover, a socket connection between AP1 and AP2 is constructed.
Thus, AP1 may receive the output of P1 from the regular UNIX pipe and relay it to AP2 via the
socket connection, and then AP2 may feed the output to P2 via the other regular UNIX pipe.
Consequently, we have a remote pipe from P1 to P2. Note that the tasks of the agent processes
AP1 and AP2 are to relay the information, regardless of the output of P1. Therefore, the remote
pipe is realized without any modification to the original programs.
Similar to the remote pipe, two agent processes, AP3 on A and AP4 on B, are needed for remote
I/O redirection, as illustrated in Fig. 6(b). The output of P3 is fed to AP3 via a regular UNIX
pipe, and then to AP4 via a socket connection. Finally, the output is saved to file via a regular
UNIX I/O redirection mechanism.
Traditional shells on single machine systems use an explicit specified list of directories (e.g.,
via the environment variable PATH under UNIX) for searching programs by name. However,
due to the dynamic characteristics of ubiquitous computing environments, program locations
are usually unknown in advance. Therefore, similar to the assembly module in FRAME,
service discovery mechanisms may be incorporated to search programs in an unfamiliar
environment. In addition, the intermediate results of one computer may be transmitted
to another computer for subsequent program execution via the network, so performance
optimization may need to be considered during the service discovery (e.g., to find a sequence
of computers so that the total communication time for transmitting the intermediate results
is minimized). The problem can be formulated as a minimum sequential workflow problem
in static environments and solved by a polynomial algorithm (Lai & Ko, 2010). However, it

42 Ubiquitous Computing

(a) remote pipe

(b) remote I/O redirection

Fig. 6. Implementation of remote pipe and I/O redirection. Agents are needed to relay
information between processes on different devices.

becomes an on-line problem under ubiquitous computing environments and requires further
study.

4. Mutual Assistant Networks

In this section, we introduce the concept of integrating social networks which connect people
and ubiquitous computing which connects computers, allowing people to use not only
ambient computing resources, but also human resources. For example, a user may want to
know if a festival is worth going to before setting out. Such information is timely; it becomes
useless after the festival ends and thus must be answered by someone who is currently near
the festival. Given the ubiquitous existence of people carrying network-connected devices,
finding people close to the festival who are willing to help is quite feasible. Thus, the objective
of mutual assistant networks (MANs) is to provide necessary mechanisms to bridge the user
and these people. Referring to Fig. 7, a MAN will forward the user’s question about the
festival to people near the festival to collect their opinions. Similar to WSNs, a MAN may
analyze and aggregate the data, and then return the results to the user.
The features of MAN applications and WSN applications are similar in some aspects.
WSNs can collect information about physical environments from sensors while MANs collect
knowledge or opinions from people. Both can use geographical parameters to specify whether
data is collected from sensors or people. Therefore, many proposed WSN infrastructures
may also be adopted for MANs, such as geographic routing, network configuration and
coordination, data dissemination, and data aggregation, to name just a few.

43Anywhere/Anytime Software and Information Access via Collaborative Assistance

Fig. 7. A MAN can forward a user’s question about the festival to the people close to the
event and collect their responses. The MAN then analyzes and aggregates the data, and then
returns the results to the user.

The current prototype has been implemented on the Android platform, with the architecture
illustrated in Fig. 8. It provides APIs for MAN applications implemented into four
modules. The user profile module manages user information under MAN, including
identity. It also maintains a credit system to encourage users to share knowledge and a
reputation system to track the validity of information that users have provided depending
on feedback ratings provided by questioners. The networking module can deliver messages
to destinations via routing techniques using geographic parameters such as GF (Finn, 1987)
and GPSR (Karp & Kung, 2000). The data processing module provides various functions for
manipulating information collected from people, including statistics, indexing, aggregation,
and dissemination. The sensor module is basically an abstraction layer allowing applications
to access the various hardware sensors present in devices.

Fig. 8. The architecture of the current MAN prototype. MAN applications are developed
through four modules, namely networking, user profile, data processing, and sensor.

Several social networking projects have been prosed to connect people, including
WhozThat (Beach et al., 2008), SocialFusion (Beach et al., 2010), MoSoSo (Tsai et al., 2009),
and Micro-Blog (Gaonkar et al., 2008). SocialFusion is a system capable of systematically
integrating diverse data streams including sensors for mobile social networks that enable
new context-aware applications such as context-aware video screens and mobile health
applications. Note that one conceptual difference between the MAN and SocialFusion is
that MAN uses people as sensors. As many of the infrastructure design considerations for

44 Ubiquitous Computing

MANs originate from WSNs, the infrastructure can handle thousands or millions of nodes,
i.e., people, spread over a large area. Many of constraints and challenges facing WSNs are
also found in MANs. For example, a MAN is more expansive and dynamic than the current
TCP/IP network and may create new types of traffic patterns that are quite different from
the conventional Internet and raise demand for new approaches to minimize the amount
and range of communication through local collaboration, such as aggregation or duplicate
data suppression. How, where, and what information is generated and consumed by users
will affect the way information is compressed, routed, and aggregated. Furthermore, MANs
connect people who may not have had any prior social interaction, so it is more appropriate
to address people by physical properties, such as location or proximity, than by names or IP
addresses. There is also a need for advanced query interfaces and resource discovery engines
to effectively support user-level functions.
MAN is still a developing project that requires further improvements. The goal of the
architecture design is to provide service abstractions as a base for the development of new
applications. The modular architecture design allows new protocols or algorithms, along
with the integration of third party services; e.g., Google Maps for specifying geographic
parameters.

5. Conclusion

This article illustrates three possible approaches for people to access the computing and
information resources from ambient devices and other people anytime and anywhere.
FRAME can realize the concept of ad-hoc systems in which a user may utilize hardware
features from the computers nearby for better performance and interfaces. DISHES allows
a user to coordinate the execution of a sequence of programs located on different devices
without modifications. MANs provides an infrastructure for new location-aware social
network applications, in which people may share the local and timely information that cannot
be obtained in time from the Internet. With the ubiquitous existence of computers, there is no
need to carry excess software and hardware, and thus people’s mobility will be boosted. In
addition, the ubiquitous existence of people carrying mobile devices may promote sharing of
knowledge and thus extend the senses of human beings to a normally inaccessible locations
via knowledge sharing.

6. References

Albrecht, J., Oppenheimer, D., Vahdat, A. & Patterson, D. A. (2008). Design and
Implementation Tradeoffs for Wide-Area Resource Discovery, ACM Transactions on
Internet Technology 8(4): 1–44.

Balazinska, M., Balakrishnan, H. & Karger, D. (2002). INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery, Proceedings of the First International
Conference on Pervasive Computing, Springer-Verlag, Zurich, Switzerland, pp. 195–210.

Beach, A., Gartrell, M., Akkala, S., Elston, J., Kelley, J., Nishimoto, K., Ray, B., Razgulin, S.,
Sundaresan, K., Surendar, B., Terada, M. & Han, R. (2008). WhozThat? Evolving an
Ecosystem for Context-Aware Mobile Social Networks, IEEE Network 22(4): 50–55.

Beach, A., Gartrell, M., Xing, X., Han, R., Lv, Q., Mishra, S. & Seada, K. (2010). Fusing Mobile,
Sensor, and Social Data To Fully Enable Context-Aware Computing, Proceedings of
the Eleventh Workshop on Mobile Computing Systems & Applications, ACM, Annapolis,
Maryland, pp. 60–65.

45Anywhere/Anytime Software and Information Access via Collaborative Assistance

Fig. 7. A MAN can forward a user’s question about the festival to the people close to the
event and collect their responses. The MAN then analyzes and aggregates the data, and then
returns the results to the user.

The current prototype has been implemented on the Android platform, with the architecture
illustrated in Fig. 8. It provides APIs for MAN applications implemented into four
modules. The user profile module manages user information under MAN, including
identity. It also maintains a credit system to encourage users to share knowledge and a
reputation system to track the validity of information that users have provided depending
on feedback ratings provided by questioners. The networking module can deliver messages
to destinations via routing techniques using geographic parameters such as GF (Finn, 1987)
and GPSR (Karp & Kung, 2000). The data processing module provides various functions for
manipulating information collected from people, including statistics, indexing, aggregation,
and dissemination. The sensor module is basically an abstraction layer allowing applications
to access the various hardware sensors present in devices.

Fig. 8. The architecture of the current MAN prototype. MAN applications are developed
through four modules, namely networking, user profile, data processing, and sensor.

Several social networking projects have been prosed to connect people, including
WhozThat (Beach et al., 2008), SocialFusion (Beach et al., 2010), MoSoSo (Tsai et al., 2009),
and Micro-Blog (Gaonkar et al., 2008). SocialFusion is a system capable of systematically
integrating diverse data streams including sensors for mobile social networks that enable
new context-aware applications such as context-aware video screens and mobile health
applications. Note that one conceptual difference between the MAN and SocialFusion is
that MAN uses people as sensors. As many of the infrastructure design considerations for

44 Ubiquitous Computing

MANs originate from WSNs, the infrastructure can handle thousands or millions of nodes,
i.e., people, spread over a large area. Many of constraints and challenges facing WSNs are
also found in MANs. For example, a MAN is more expansive and dynamic than the current
TCP/IP network and may create new types of traffic patterns that are quite different from
the conventional Internet and raise demand for new approaches to minimize the amount
and range of communication through local collaboration, such as aggregation or duplicate
data suppression. How, where, and what information is generated and consumed by users
will affect the way information is compressed, routed, and aggregated. Furthermore, MANs
connect people who may not have had any prior social interaction, so it is more appropriate
to address people by physical properties, such as location or proximity, than by names or IP
addresses. There is also a need for advanced query interfaces and resource discovery engines
to effectively support user-level functions.
MAN is still a developing project that requires further improvements. The goal of the
architecture design is to provide service abstractions as a base for the development of new
applications. The modular architecture design allows new protocols or algorithms, along
with the integration of third party services; e.g., Google Maps for specifying geographic
parameters.

5. Conclusion

This article illustrates three possible approaches for people to access the computing and
information resources from ambient devices and other people anytime and anywhere.
FRAME can realize the concept of ad-hoc systems in which a user may utilize hardware
features from the computers nearby for better performance and interfaces. DISHES allows
a user to coordinate the execution of a sequence of programs located on different devices
without modifications. MANs provides an infrastructure for new location-aware social
network applications, in which people may share the local and timely information that cannot
be obtained in time from the Internet. With the ubiquitous existence of computers, there is no
need to carry excess software and hardware, and thus people’s mobility will be boosted. In
addition, the ubiquitous existence of people carrying mobile devices may promote sharing of
knowledge and thus extend the senses of human beings to a normally inaccessible locations
via knowledge sharing.

6. References

Albrecht, J., Oppenheimer, D., Vahdat, A. & Patterson, D. A. (2008). Design and
Implementation Tradeoffs for Wide-Area Resource Discovery, ACM Transactions on
Internet Technology 8(4): 1–44.

Balazinska, M., Balakrishnan, H. & Karger, D. (2002). INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery, Proceedings of the First International
Conference on Pervasive Computing, Springer-Verlag, Zurich, Switzerland, pp. 195–210.

Beach, A., Gartrell, M., Akkala, S., Elston, J., Kelley, J., Nishimoto, K., Ray, B., Razgulin, S.,
Sundaresan, K., Surendar, B., Terada, M. & Han, R. (2008). WhozThat? Evolving an
Ecosystem for Context-Aware Mobile Social Networks, IEEE Network 22(4): 50–55.

Beach, A., Gartrell, M., Xing, X., Han, R., Lv, Q., Mishra, S. & Seada, K. (2010). Fusing Mobile,
Sensor, and Social Data To Fully Enable Context-Aware Computing, Proceedings of
the Eleventh Workshop on Mobile Computing Systems & Applications, ACM, Annapolis,
Maryland, pp. 60–65.

45Anywhere/Anytime Software and Information Access via Collaborative Assistance

Berbner, R., Spahn, M., Repp, N., Heckmann, O. & Steinmetz, R. (2006). Heuristics for
QoS-aware Web Service Composition, Proceedings of the IEEE International Conference
on Web Services, IEEE Computer Society, Washington, DC, USA, pp. 72–82.

Blair, G. S., Coulson, G., Robin, P. & Papathomas, M. (1998). An Architecture for Next
Generation Middleware, Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, Springer-Verlag, London.

Candale, T. & Sen, S. (2005). Effect of referrals on convergence to satisficing distributions,
Proceeding of the 4th International Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, The Netherlands, pp. 347–354.

Canfora, G., Di Penta, M., Esposito, R. & Villani, M. L. (2005). An Approach for QoS-aware
Service Composition based on Genetic Algorithms, Proceedings of the 2005 conference
on Genetic and Evolutionary Computation, ACM, Washington DC, USA, pp. 1069–1075.

Cheng, S.-W., Garlan, D. & Schmerl, B. (2006). Architecture-based Self-Adaptation in the
Presence of Multiple Objectives, Proceedings of the 2006 International Workshop on
Self-Adaptation and Self-Managing Systems, ACM, New York, NY, USA, pp. 2–8.

da Costa, C. A., Yamin, A. C. & Geyer, C. F. R. (2008). Toward a General Software Infrastructure
for Ubiquitous Computing, IEEE Pervasive Computing 7(1): 64–73.

de Lara, E., Wallach, D. S. & Zwaenepoel, W. (2001). Puppeteer: Component-based
Adaptation for Mobile Computing, Proceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems, San Francisco, California.

Endres, C., Butz, A. & MacWilliams, A. (2005). A Survey of Software Infrastructures and
Frameworks for Ubiquitous Computing, Mobile Information Systems 1(1): 41–80.

Finn, G. G. (1987). Routing and Addressing Problems in Large Metropolitan-Scale
Internetworks, Research ISI/RR-87-180, Information Sciences Institute.

Flissi, A., Gransart, C. & Merle, P. (2005). A Component-based Software Infrastructure for
Ubiquitous Computing, Proceedings of the 4th International Symposium on Parallel and
Distributed Computing, IEEE Computer Society, Washington, DC, USA, pp. 183–190.

Gaonkar, S., Li, J., Choudhury, R. R., Cox, L. & Schmidt, A. (2008). Micro-Blog: Sharing
and Querying Content Through Mobile Phones and Social Participation, Proceeding
of the 6th International Conference on Mobile Systems, Applications and Services, ACM,
Breckenridge, CO, USA, pp. 174–186.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. & Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure,
Computer 37(10): 46–54.

Garlan, D., Siewiorek, D., Smailagic, A. & Steenkiste, P. (2002). Project Aura: Toward
Distraction-Free Pervasive Computing, IEEE Pervasive Computing 1(2): 22–31.

Gu, X., Messer, A., Greenberg, I., Milojicic, D. & Nahrstedt, K. (2004). Adaptive Offloading for
Pervasive Computing, IEEE Pervasive Computing 3(3): 66–73.

Hill, R., Al-Muhtadi, J., Campbell, R., Kapadia, A., Naldurg, P. & Ranganathan, A. (2004). A
Middleware Architecture for Securing Ubiquitous Computing Cyber Infrastructures,
IEEE Distributed Systems Online 5(9).

Huang, A.-C. & Steenkiste, P. (2003). Network-Sensitive Service Discovery, Proceedings of the
4th conference on USENIX Symposium on Internet Technologies and Systems, USENIX
Association, Seattle, WA.

Iamnitchi, A. & Foster, I. (2004). A Peer-to-Peer Approach to Resource Location in Grid
Environments , Grid Resource Management: State of the Art and Future Trends, Kluwer
Academic Publishers, Norwell, MA, USA, pp. 413–429.

46 Ubiquitous Computing

Issa, H., Assi, C. & Debbabi, M. (2006). QoS-Aware Middleware for Web Services Composition
- A Qualitative Approach, Proceedings of the 11th IEEE Symposium on Computers and
Communications, IEEE Computer Society, Washington, DC, USA, pp. 359–364.

Java Platform Standard Edition API Specification (n.d.).
URL: http://download.oracle.com/javase/6/docs/api/

Jha, S., Chalasani, P., Shehory, O. & Sycara, K. (1998). A Formal Treatment of Distributed
Matchmaking, Proceedings of the second International Conference on Autonomous Agents,
ACM, Minneapolis, Minnesota, United States, pp. 457–458.

Jr, J. M. A. & Kofuji, S. T. (1996). Bootstrapping the Object Oriented Operating System Merlin:
Just Add Reflection, in C. Zimmerman (ed.), Advances in Object-Oriented Metalevel
Architectures and Reflection, CRC Press, chapter 5.

Karp, B. & Kung, H. T. (2000). GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks, Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking, ACM, Boston, MA, US, pp. 243–254.

Ko, R.-S., Lai, C.-C., Yen, C.-K. & Mutka, M. W. (2008). Component-Based Ad Hoc
Systems for Ubiquitous Computing, International Journal of Pervasive Computing
and Communications Special Issue on Towards merging Grid and Pervasive Computing
4(4): 333–353.

Ko, R.-S. & Mutka, M. W. (2002). A Component-Based Approach for Adaptive Soft Real-Time
Java within Heterogeneous Environments, A special issue of Parallel and Distributed
Real-Time Systems 5(1): 89–104.

Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., MagalhÃčes, L. C. & Campbell, R. H.
(2000). Monitoring, Security, and Dynamic Configuration with the dynamicTAO
Reflective ORB, Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware’2000), number 1795 in
LNCS, Springer-Verlag, New York, pp. 121–143.

Lai, C.-C. & Ko, R.-S. (2010). DISHES: A Distributed Shell System Designed for
Ubiquitous Computing Environment, International Journal of Computer Networks &
Communications 2(1): 66–83.

Li, B., Kalter, W. & Nahrstedt, K. (2001). A Hierarchical Quality of Service Control Architecture
for Configurable Multimedia Applications, Journal of High Speed Networks, Special
Issue on Management of Multimedia Networking, IOS Press.

Maes, P. (1987). Computational Reflection, PhD thesis, Laboratory for Artificial Intelligence, Vrije
Universiteit Brussel, Brussels, Belgium.

Martin, D. L., Paolucci, M., McIlraith, S. A., Burstein, M. H., McDermott, D. V., McGuinness,
D. L., Parsia, B., Payne, T. R., Sabou, M., Solanki, M., Srinivasan, N. & Sycara, K. P.
(2004). Bringing Semantics to Web Services: The OWL-S Approach, Proceedings of the
first International Workshop on Semantic Web Services and Web Process Composition, San
Diego, CA, USA, pp. 26–42.

Mckinley, P. K., Sadjadi, S. M., Kasten, E. P. & Cheng, B. H. (2004). Composing Adaptive
Software, IEEE Computer 37(7).

Mokhtar, S. B., Georgantas, N. & Issarny, V. (2007). COCOA: COnversation-based service
COmposition in pervAsive computing environments with QoS support, Journal of
Systems and Software 80(12): 1941–1955.

Ogston, E. & Vassiliadis, S. (2001). Matchmaking Among Minimal Agents Without a
Facilitator, Proceedings of the 5th International Conference on Autonomous Agents, ACM,
Montreal, Quebec, Canada, pp. 608–615.

47Anywhere/Anytime Software and Information Access via Collaborative Assistance

Berbner, R., Spahn, M., Repp, N., Heckmann, O. & Steinmetz, R. (2006). Heuristics for
QoS-aware Web Service Composition, Proceedings of the IEEE International Conference
on Web Services, IEEE Computer Society, Washington, DC, USA, pp. 72–82.

Blair, G. S., Coulson, G., Robin, P. & Papathomas, M. (1998). An Architecture for Next
Generation Middleware, Proceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing, Springer-Verlag, London.

Candale, T. & Sen, S. (2005). Effect of referrals on convergence to satisficing distributions,
Proceeding of the 4th International Joint Conference on Autonomous Agents and Multiagent
Systems, Utrecht, The Netherlands, pp. 347–354.

Canfora, G., Di Penta, M., Esposito, R. & Villani, M. L. (2005). An Approach for QoS-aware
Service Composition based on Genetic Algorithms, Proceedings of the 2005 conference
on Genetic and Evolutionary Computation, ACM, Washington DC, USA, pp. 1069–1075.

Cheng, S.-W., Garlan, D. & Schmerl, B. (2006). Architecture-based Self-Adaptation in the
Presence of Multiple Objectives, Proceedings of the 2006 International Workshop on
Self-Adaptation and Self-Managing Systems, ACM, New York, NY, USA, pp. 2–8.

da Costa, C. A., Yamin, A. C. & Geyer, C. F. R. (2008). Toward a General Software Infrastructure
for Ubiquitous Computing, IEEE Pervasive Computing 7(1): 64–73.

de Lara, E., Wallach, D. S. & Zwaenepoel, W. (2001). Puppeteer: Component-based
Adaptation for Mobile Computing, Proceedings of the 3rd USENIX Symposium on
Internet Technologies and Systems, San Francisco, California.

Endres, C., Butz, A. & MacWilliams, A. (2005). A Survey of Software Infrastructures and
Frameworks for Ubiquitous Computing, Mobile Information Systems 1(1): 41–80.

Finn, G. G. (1987). Routing and Addressing Problems in Large Metropolitan-Scale
Internetworks, Research ISI/RR-87-180, Information Sciences Institute.

Flissi, A., Gransart, C. & Merle, P. (2005). A Component-based Software Infrastructure for
Ubiquitous Computing, Proceedings of the 4th International Symposium on Parallel and
Distributed Computing, IEEE Computer Society, Washington, DC, USA, pp. 183–190.

Gaonkar, S., Li, J., Choudhury, R. R., Cox, L. & Schmidt, A. (2008). Micro-Blog: Sharing
and Querying Content Through Mobile Phones and Social Participation, Proceeding
of the 6th International Conference on Mobile Systems, Applications and Services, ACM,
Breckenridge, CO, USA, pp. 174–186.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B. & Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure,
Computer 37(10): 46–54.

Garlan, D., Siewiorek, D., Smailagic, A. & Steenkiste, P. (2002). Project Aura: Toward
Distraction-Free Pervasive Computing, IEEE Pervasive Computing 1(2): 22–31.

Gu, X., Messer, A., Greenberg, I., Milojicic, D. & Nahrstedt, K. (2004). Adaptive Offloading for
Pervasive Computing, IEEE Pervasive Computing 3(3): 66–73.

Hill, R., Al-Muhtadi, J., Campbell, R., Kapadia, A., Naldurg, P. & Ranganathan, A. (2004). A
Middleware Architecture for Securing Ubiquitous Computing Cyber Infrastructures,
IEEE Distributed Systems Online 5(9).

Huang, A.-C. & Steenkiste, P. (2003). Network-Sensitive Service Discovery, Proceedings of the
4th conference on USENIX Symposium on Internet Technologies and Systems, USENIX
Association, Seattle, WA.

Iamnitchi, A. & Foster, I. (2004). A Peer-to-Peer Approach to Resource Location in Grid
Environments , Grid Resource Management: State of the Art and Future Trends, Kluwer
Academic Publishers, Norwell, MA, USA, pp. 413–429.

46 Ubiquitous Computing

Issa, H., Assi, C. & Debbabi, M. (2006). QoS-Aware Middleware for Web Services Composition
- A Qualitative Approach, Proceedings of the 11th IEEE Symposium on Computers and
Communications, IEEE Computer Society, Washington, DC, USA, pp. 359–364.

Java Platform Standard Edition API Specification (n.d.).
URL: http://download.oracle.com/javase/6/docs/api/

Jha, S., Chalasani, P., Shehory, O. & Sycara, K. (1998). A Formal Treatment of Distributed
Matchmaking, Proceedings of the second International Conference on Autonomous Agents,
ACM, Minneapolis, Minnesota, United States, pp. 457–458.

Jr, J. M. A. & Kofuji, S. T. (1996). Bootstrapping the Object Oriented Operating System Merlin:
Just Add Reflection, in C. Zimmerman (ed.), Advances in Object-Oriented Metalevel
Architectures and Reflection, CRC Press, chapter 5.

Karp, B. & Kung, H. T. (2000). GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks, Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking, ACM, Boston, MA, US, pp. 243–254.

Ko, R.-S., Lai, C.-C., Yen, C.-K. & Mutka, M. W. (2008). Component-Based Ad Hoc
Systems for Ubiquitous Computing, International Journal of Pervasive Computing
and Communications Special Issue on Towards merging Grid and Pervasive Computing
4(4): 333–353.

Ko, R.-S. & Mutka, M. W. (2002). A Component-Based Approach for Adaptive Soft Real-Time
Java within Heterogeneous Environments, A special issue of Parallel and Distributed
Real-Time Systems 5(1): 89–104.

Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., MagalhÃčes, L. C. & Campbell, R. H.
(2000). Monitoring, Security, and Dynamic Configuration with the dynamicTAO
Reflective ORB, Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware’2000), number 1795 in
LNCS, Springer-Verlag, New York, pp. 121–143.

Lai, C.-C. & Ko, R.-S. (2010). DISHES: A Distributed Shell System Designed for
Ubiquitous Computing Environment, International Journal of Computer Networks &
Communications 2(1): 66–83.

Li, B., Kalter, W. & Nahrstedt, K. (2001). A Hierarchical Quality of Service Control Architecture
for Configurable Multimedia Applications, Journal of High Speed Networks, Special
Issue on Management of Multimedia Networking, IOS Press.

Maes, P. (1987). Computational Reflection, PhD thesis, Laboratory for Artificial Intelligence, Vrije
Universiteit Brussel, Brussels, Belgium.

Martin, D. L., Paolucci, M., McIlraith, S. A., Burstein, M. H., McDermott, D. V., McGuinness,
D. L., Parsia, B., Payne, T. R., Sabou, M., Solanki, M., Srinivasan, N. & Sycara, K. P.
(2004). Bringing Semantics to Web Services: The OWL-S Approach, Proceedings of the
first International Workshop on Semantic Web Services and Web Process Composition, San
Diego, CA, USA, pp. 26–42.

Mckinley, P. K., Sadjadi, S. M., Kasten, E. P. & Cheng, B. H. (2004). Composing Adaptive
Software, IEEE Computer 37(7).

Mokhtar, S. B., Georgantas, N. & Issarny, V. (2007). COCOA: COnversation-based service
COmposition in pervAsive computing environments with QoS support, Journal of
Systems and Software 80(12): 1941–1955.

Ogston, E. & Vassiliadis, S. (2001). Matchmaking Among Minimal Agents Without a
Facilitator, Proceedings of the 5th International Conference on Autonomous Agents, ACM,
Montreal, Quebec, Canada, pp. 608–615.

47Anywhere/Anytime Software and Information Access via Collaborative Assistance

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D. S. & Wolf, A. L. (1999). An Architecture-Based Approach to
Self-Adaptive Software, IEEE Intelligent Systems 14(3): 54–62.

Porter, J. & Sen, S. (2007). Searching for Collaborators in Agent Networks, Proceedings of the
2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology - Workshops, IEEE Computer Society, Washington, DC, USA, pp. 508–511.

Sen, S. & Sajja, N. (2002). Robustness of Reputation-based Trust: Boolean Case, Proceeding
of the first International Joint Conference on Autonomous Agents and Multiagent Systems,
ACM, Bologna, Italy, pp. 288–293.

Singh, M. P., Yu, B. & Venkatraman, M. (2001). Community-based service location,
Communications of the ACM 44(4): 49–54.

Stevenson, G., Nixon, P. & Ferguson, R. I. (2003). A General Purpose Programming
Framework for Ubiquitous Computing Environments, System Support for Ubiquitous
Computing Workshop, Seattle, USA.

Tandler, P. (2001). Software Infrastructure for Ubiquitous Computing Environments:
Supporting Synchronous Collaboration with Heterogeneous Devices, Proceedings of
the 3rd international conference on Ubiquitous Computing, Springer-Verlag, London, UK,
pp. 96–115.

Truong, M. T. & Harwood, A. (2003). Distributed Shell over Peer-to-Peer Networks,
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, USA, pp. 269–278.

Tsai, F. S., Han, W., Xu, J. & Chua, H. C. (2009). Design and development of a
mobile peer-to-peer social networking application, Expert Systems with Applications
36(8): 11077–11087.

Wada, H., Champrasert, P., Suzuki, J. & Oba, K. (2008). Multiobjective Optimization of
SLA-Aware Service Composition, Proceedings of the 2008 IEEE Congress on Services
- Part I, IEEE Computer Society, Washington, DC, USA, pp. 368–375.

Wang, Y.-M. & Lee, W.-J. (1998). COMERA: COM Extensible Remoting Architecture,
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), USENIX, pp. 79–88.

Weiser, M. (1991). The Computer for the 21st Century, Scientific American 265(3): 66–75.
Reprinted in IEEE Pervasive Computing, Jan-Mar 2002, pp. 19-25.

Yokote, Y. (1992). The Apertos Reflective Operating System: The Concept and Its
Implementation, in A. Paepcke (ed.), Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Vol. 27, ACM Press,
New York, NY, pp. 414–434.

Yolum, P. & Singh, M. P. (2005). Engineering Self-Organizing Referral Networks for
Trustworthy Service Selection, IEEE Transactions on Systems, Man and Cybernetics, Part
A 35(3): 396–407.

Yu, T. & Lin, K.-J. (2005). A Broker-Based Framework for QoS-Aware Web Service
Composition, Proceedings of the 2005 IEEE International Conference on e-Technology,
e-Commerce and e-Service, IEEE Computer Society, Washington, DC, USA, pp. 22–29.

Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J. & Chang, H. (2004).
QoS-Aware Middleware for Web Services Composition, IEEE Transactions on Software
Engineering 30(5): 311–327.

48 Ubiquitous Computing

3

Uncertainty and Error Handling in
Pervasive Computing: A User’s Perspective

Marie-Luce Bourguet
School of Electronic Engineering and Computer Science,

Queen Mary, University of London
U.K.

1. Introduction
From this chapter’s perspective, pervasive computing is a new class of multimodal systems,
which employs passive types of interaction modalities, based on perception, context,
environment and ambience (Abowd & Mynatt, 2000; Feki, 2004; Oikonomopoulos et al.,
2006). By contrast, early multimodal systems were mostly based on the recognition of active
modes of interaction, for example speech, handwriting and direct manipulation. The
emergence of novel pervasive computing applications, which combine active interaction
modes with passive modality channels raises new challenges for the handling of uncertainty
and errors. For example, context-aware pervasive systems can sense and incorporate data
about lighting, noise level, location, time, people other than the user, as well as many other
pieces of information to adjust their model of the user’s environment. In affective
computing, sensors that can capture data about the user’s physical state or behaviour, are
used to gather cues which can help the system perceive the user’s emotions (Kapoor &
Picard, 2005; Pantic, 2005). In the absence of recognition or perception error, more robust
interaction is then obtained by fusing explicit user inputs (the active modes) and implicit
contextual information (the passive modes). However, in the presence of errors, the
invisibility of the devices that make up the pervasive environment and the general lack of
user’s awareness of the devices and collected data properties render error handling very
difficult, if not impossible.
Despite recent advances in computer vision techniques and multi-sensor systems, designing
and implementing successful multimodal and ubiquitous computing applications remain
difficult. This is mainly because our lack of understanding of how these technologies can be
best used and combined in the user interface often leads to interface designs with poor
usability and low robustness. Moreover, even in more traditional multimodal interfaces
(such as speech and pen interfaces) technical issues remain. Speech recognition systems, for
example, are still error-prone. Their accuracy and robustness depends on the size of the
application’s vocabulary, the quality of the audio signal and the variability of the voice
parameters. Signal and noise separation also remains a major challenge in speech
recognition technology.
Recognition-based multimodal interaction is thus still error prone, but in pervasive
computing applications, where the capture and the analysis of passive modes are key, the
possibilities of errors and misinterpretations are even greater. Furthermore, in pervasive

Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D. S. & Wolf, A. L. (1999). An Architecture-Based Approach to
Self-Adaptive Software, IEEE Intelligent Systems 14(3): 54–62.

Porter, J. & Sen, S. (2007). Searching for Collaborators in Agent Networks, Proceedings of the
2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology - Workshops, IEEE Computer Society, Washington, DC, USA, pp. 508–511.

Sen, S. & Sajja, N. (2002). Robustness of Reputation-based Trust: Boolean Case, Proceeding
of the first International Joint Conference on Autonomous Agents and Multiagent Systems,
ACM, Bologna, Italy, pp. 288–293.

Singh, M. P., Yu, B. & Venkatraman, M. (2001). Community-based service location,
Communications of the ACM 44(4): 49–54.

Stevenson, G., Nixon, P. & Ferguson, R. I. (2003). A General Purpose Programming
Framework for Ubiquitous Computing Environments, System Support for Ubiquitous
Computing Workshop, Seattle, USA.

Tandler, P. (2001). Software Infrastructure for Ubiquitous Computing Environments:
Supporting Synchronous Collaboration with Heterogeneous Devices, Proceedings of
the 3rd international conference on Ubiquitous Computing, Springer-Verlag, London, UK,
pp. 96–115.

Truong, M. T. & Harwood, A. (2003). Distributed Shell over Peer-to-Peer Networks,
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, USA, pp. 269–278.

Tsai, F. S., Han, W., Xu, J. & Chua, H. C. (2009). Design and development of a
mobile peer-to-peer social networking application, Expert Systems with Applications
36(8): 11077–11087.

Wada, H., Champrasert, P., Suzuki, J. & Oba, K. (2008). Multiobjective Optimization of
SLA-Aware Service Composition, Proceedings of the 2008 IEEE Congress on Services
- Part I, IEEE Computer Society, Washington, DC, USA, pp. 368–375.

Wang, Y.-M. & Lee, W.-J. (1998). COMERA: COM Extensible Remoting Architecture,
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS), USENIX, pp. 79–88.

Weiser, M. (1991). The Computer for the 21st Century, Scientific American 265(3): 66–75.
Reprinted in IEEE Pervasive Computing, Jan-Mar 2002, pp. 19-25.

Yokote, Y. (1992). The Apertos Reflective Operating System: The Concept and Its
Implementation, in A. Paepcke (ed.), Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), Vol. 27, ACM Press,
New York, NY, pp. 414–434.

Yolum, P. & Singh, M. P. (2005). Engineering Self-Organizing Referral Networks for
Trustworthy Service Selection, IEEE Transactions on Systems, Man and Cybernetics, Part
A 35(3): 396–407.

Yu, T. & Lin, K.-J. (2005). A Broker-Based Framework for QoS-Aware Web Service
Composition, Proceedings of the 2005 IEEE International Conference on e-Technology,
e-Commerce and e-Service, IEEE Computer Society, Washington, DC, USA, pp. 22–29.

Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J. & Chang, H. (2004).
QoS-Aware Middleware for Web Services Composition, IEEE Transactions on Software
Engineering 30(5): 311–327.

48 Ubiquitous Computing

3

Uncertainty and Error Handling in
Pervasive Computing: A User’s Perspective

Marie-Luce Bourguet
School of Electronic Engineering and Computer Science,

Queen Mary, University of London
U.K.

1. Introduction
From this chapter’s perspective, pervasive computing is a new class of multimodal systems,
which employs passive types of interaction modalities, based on perception, context,
environment and ambience (Abowd & Mynatt, 2000; Feki, 2004; Oikonomopoulos et al.,
2006). By contrast, early multimodal systems were mostly based on the recognition of active
modes of interaction, for example speech, handwriting and direct manipulation. The
emergence of novel pervasive computing applications, which combine active interaction
modes with passive modality channels raises new challenges for the handling of uncertainty
and errors. For example, context-aware pervasive systems can sense and incorporate data
about lighting, noise level, location, time, people other than the user, as well as many other
pieces of information to adjust their model of the user’s environment. In affective
computing, sensors that can capture data about the user’s physical state or behaviour, are
used to gather cues which can help the system perceive the user’s emotions (Kapoor &
Picard, 2005; Pantic, 2005). In the absence of recognition or perception error, more robust
interaction is then obtained by fusing explicit user inputs (the active modes) and implicit
contextual information (the passive modes). However, in the presence of errors, the
invisibility of the devices that make up the pervasive environment and the general lack of
user’s awareness of the devices and collected data properties render error handling very
difficult, if not impossible.
Despite recent advances in computer vision techniques and multi-sensor systems, designing
and implementing successful multimodal and ubiquitous computing applications remain
difficult. This is mainly because our lack of understanding of how these technologies can be
best used and combined in the user interface often leads to interface designs with poor
usability and low robustness. Moreover, even in more traditional multimodal interfaces
(such as speech and pen interfaces) technical issues remain. Speech recognition systems, for
example, are still error-prone. Their accuracy and robustness depends on the size of the
application’s vocabulary, the quality of the audio signal and the variability of the voice
parameters. Signal and noise separation also remains a major challenge in speech
recognition technology.
Recognition-based multimodal interaction is thus still error prone, but in pervasive
computing applications, where the capture and the analysis of passive modes are key, the
possibilities of errors and misinterpretations are even greater. Furthermore, in pervasive

 Ubiquitous Computing

50

computing applications, the computing devices have become invisible and the users may
not be aware of their behaviour that is captured by the system. They may also have a wrong
understanding of what data is captured by the various devices, and how it is used. In most
cases, they do not receive any feedback about the system’s status and beliefs. As a result,
many traditional methods of multimodal error correction become ill adapted to pervasive
computing applications. When faced with errors, users encounter a number of new
challenges: understanding the computer’s responses or change of behaviour; analysing the
cause of the system’s changed behaviour; and devising ways to correct the system’s wrong
beliefs.
This chapter addresses these problems. It exposes the new challenges raised by novel
pervasive computing applications for the handling of uncertainty and errors, and it
discusses the inadequacies of known multimodal error handling strategies for this type of
applications. It is organised as follows. In the next section, we explain our usage of the
words multimodal and pervasive computing and we propose our own definitions, which
are based on the notions of active and passive modes of interaction. We also describe a
number of pervasive computing applications, which will serve in the remainder of the
chapter to illustrate the new challenges raised by this type of applications. In section 3 of the
chapter, we briefly review the various recognition error handling strategies that can be
found in the multimodal interaction literature, then in section 4, we show that many of these
multimodal error handling strategies, where active modes only are used, are ill adapted to
pervasive computing applications. We also discuss the new challenges arising from the
deployment of novel pervasive computing applications for error correction. In section 5, we
suggest that promoting users’ correct mental models of the devices and data properties that
make up a pervasive computing environment can render error handling more effective.
Section 6, finally, concludes the chapter.

2. Multimodal and pervasive computing
The concepts of multimodal interaction and of pervasive computing share many
commonalities, one of which is the lack of an accepted definition.

2.1 Active and passive modes
The concept of multimodal interaction partly arose from the difficulties met by the speech
recognition research community, in the early eighties, to implement satisfactorily robust
speech-based interfaces. The idea was to complement the error prone voice inputs with
more deterministic ones, such as mouse and keyboard inputs (i.e. direct manipulation and
typing). In parallel with the deployment of more robust touch screen and pen input
technologies, alternative recognition-based modalities of interaction (pen-based 2D gestures
and hand-writing) also started to emerge. Vision-based recognition modalities, i.e. inputs
captured by a camera, soon followed, complementing the list of recognition-based input
modalities, while at the same time opening new possibilities for context awareness and the
perception of passive modes of interaction (e.g. gaze and facial expressions). Until now, the
concept of multimodal interaction has never stopped evolving, encompassing yet more
input modes, which are increasingly based on perception and sensory information. The
various mission statements made by the Multimodal Interaction Working Group (MIWG) of
the W3C (World Wide Web Consortium) offer a good evidence of this evolution. In 2002
(W3C, 2002), the MIWG aimed to develop new technology to create “web pages you can

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

51

speak to and gesture at”. According to its charter, the MIWG was “tasked with the
development of specifications covering the following goals: To support a combination of
input modes, including speech, keyboards, pointing devices, touch pads and electronic
pens; To support the combination of aural and visual output modes; To support a
combination of local and remote speech recognition services; To support the use of servers
for speech synthesis and for streaming pre-recorded speech and music; To support a
combination of local and remote processing of ink entered using a stylus, electronic pen or
imaging device; To support varying degrees of coupling between visual and aural
interaction modes; To support the use of a remote voice dialog engine, e.g. a voice gateway
running VoiceXML; To support the coordination of interaction across more than one device,
e.g. cell phone and wall mounted display.” The MIWG’s charter, in 2002, was still resolutely
geared towards speech and pen interaction. In 2003, however, the same Working Group
(W3C, 2003), in a document dedicated to their multimodal interaction framework, was
listing the following input modes: speech, handwriting, keyboarding and pointing device,
but with the assumption that “other input recognition components may include vision, sign
language, DTMF (Dual-tone multi-frequency signaling), biometrics, tactile input, speaker
verification, handwritten identification, and other input modes yet to be invented”. Beside
the recognition component, The W3C also included a “System and Environment
component”, which “enables the interaction manager to find out about and respond to
changes in device capabilities, user preferences and environmental conditions“, hence
incorporating in their system specifications some of the aims of a pervasive computing
system.
Nowadays, in the HCI literature, the expression “pervasive computing” is mostly used to
describe connected computing devices in the environment. For example, the following
description of pervasive computing has been proposed by TechTarget©: in pervasive
computing, “the goal of researchers is to create a system that is pervasively and
unobtrusively embedded in the environment, completely connected, intuitive, effortlessly
portable, and constantly available“; and also: pervasive computing is the “possible future
state in which we will be surrounded by computers everywhere in the environment that
respond to our needs without our conscious use.“ In these statements, the notions of being
“unobtrusive“ and “without our conscious use“ add a dimension which was not present in
earlier (often speech-based) multimodal systems. To be unobtrusive and to not require our
conscious use, pervasive computing applications must rely on novel sources of information
which are called “passive“ modes of interaction. Examples of passive modes include vision-
based modes captured by cameras (e.g. gaze and facial recognition for affective computing),
sensory information (levels of lighting, temperature, noise, as well as biometrics
information), GPS (Global positionning System, for positioning and time information) and
tag technologies such as RFID (Radio Frequency Identification). In other words, the term
pervasive is used to qualify the system (the devices, their type and their connectivity),
whereas the term multimodal is often used to qualify the interaction. In this context, the
multimodal interface becomes the mean to interact with the pervasive system.
In this chapter, we will use the term “multimodal” to qualify systems, which make use of
several active modes of interaction, at least one of them being recognition-based (failing
that, we will simply talk of “interactive” systems). We will use the word “pervasive” to
qualify systems, which combine both active and passive modes of interaction. The next
section provides some examples of pervasive computing applications.

 Ubiquitous Computing

50

computing applications, the computing devices have become invisible and the users may
not be aware of their behaviour that is captured by the system. They may also have a wrong
understanding of what data is captured by the various devices, and how it is used. In most
cases, they do not receive any feedback about the system’s status and beliefs. As a result,
many traditional methods of multimodal error correction become ill adapted to pervasive
computing applications. When faced with errors, users encounter a number of new
challenges: understanding the computer’s responses or change of behaviour; analysing the
cause of the system’s changed behaviour; and devising ways to correct the system’s wrong
beliefs.
This chapter addresses these problems. It exposes the new challenges raised by novel
pervasive computing applications for the handling of uncertainty and errors, and it
discusses the inadequacies of known multimodal error handling strategies for this type of
applications. It is organised as follows. In the next section, we explain our usage of the
words multimodal and pervasive computing and we propose our own definitions, which
are based on the notions of active and passive modes of interaction. We also describe a
number of pervasive computing applications, which will serve in the remainder of the
chapter to illustrate the new challenges raised by this type of applications. In section 3 of the
chapter, we briefly review the various recognition error handling strategies that can be
found in the multimodal interaction literature, then in section 4, we show that many of these
multimodal error handling strategies, where active modes only are used, are ill adapted to
pervasive computing applications. We also discuss the new challenges arising from the
deployment of novel pervasive computing applications for error correction. In section 5, we
suggest that promoting users’ correct mental models of the devices and data properties that
make up a pervasive computing environment can render error handling more effective.
Section 6, finally, concludes the chapter.

2. Multimodal and pervasive computing
The concepts of multimodal interaction and of pervasive computing share many
commonalities, one of which is the lack of an accepted definition.

2.1 Active and passive modes
The concept of multimodal interaction partly arose from the difficulties met by the speech
recognition research community, in the early eighties, to implement satisfactorily robust
speech-based interfaces. The idea was to complement the error prone voice inputs with
more deterministic ones, such as mouse and keyboard inputs (i.e. direct manipulation and
typing). In parallel with the deployment of more robust touch screen and pen input
technologies, alternative recognition-based modalities of interaction (pen-based 2D gestures
and hand-writing) also started to emerge. Vision-based recognition modalities, i.e. inputs
captured by a camera, soon followed, complementing the list of recognition-based input
modalities, while at the same time opening new possibilities for context awareness and the
perception of passive modes of interaction (e.g. gaze and facial expressions). Until now, the
concept of multimodal interaction has never stopped evolving, encompassing yet more
input modes, which are increasingly based on perception and sensory information. The
various mission statements made by the Multimodal Interaction Working Group (MIWG) of
the W3C (World Wide Web Consortium) offer a good evidence of this evolution. In 2002
(W3C, 2002), the MIWG aimed to develop new technology to create “web pages you can

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

51

speak to and gesture at”. According to its charter, the MIWG was “tasked with the
development of specifications covering the following goals: To support a combination of
input modes, including speech, keyboards, pointing devices, touch pads and electronic
pens; To support the combination of aural and visual output modes; To support a
combination of local and remote speech recognition services; To support the use of servers
for speech synthesis and for streaming pre-recorded speech and music; To support a
combination of local and remote processing of ink entered using a stylus, electronic pen or
imaging device; To support varying degrees of coupling between visual and aural
interaction modes; To support the use of a remote voice dialog engine, e.g. a voice gateway
running VoiceXML; To support the coordination of interaction across more than one device,
e.g. cell phone and wall mounted display.” The MIWG’s charter, in 2002, was still resolutely
geared towards speech and pen interaction. In 2003, however, the same Working Group
(W3C, 2003), in a document dedicated to their multimodal interaction framework, was
listing the following input modes: speech, handwriting, keyboarding and pointing device,
but with the assumption that “other input recognition components may include vision, sign
language, DTMF (Dual-tone multi-frequency signaling), biometrics, tactile input, speaker
verification, handwritten identification, and other input modes yet to be invented”. Beside
the recognition component, The W3C also included a “System and Environment
component”, which “enables the interaction manager to find out about and respond to
changes in device capabilities, user preferences and environmental conditions“, hence
incorporating in their system specifications some of the aims of a pervasive computing
system.
Nowadays, in the HCI literature, the expression “pervasive computing” is mostly used to
describe connected computing devices in the environment. For example, the following
description of pervasive computing has been proposed by TechTarget©: in pervasive
computing, “the goal of researchers is to create a system that is pervasively and
unobtrusively embedded in the environment, completely connected, intuitive, effortlessly
portable, and constantly available“; and also: pervasive computing is the “possible future
state in which we will be surrounded by computers everywhere in the environment that
respond to our needs without our conscious use.“ In these statements, the notions of being
“unobtrusive“ and “without our conscious use“ add a dimension which was not present in
earlier (often speech-based) multimodal systems. To be unobtrusive and to not require our
conscious use, pervasive computing applications must rely on novel sources of information
which are called “passive“ modes of interaction. Examples of passive modes include vision-
based modes captured by cameras (e.g. gaze and facial recognition for affective computing),
sensory information (levels of lighting, temperature, noise, as well as biometrics
information), GPS (Global positionning System, for positioning and time information) and
tag technologies such as RFID (Radio Frequency Identification). In other words, the term
pervasive is used to qualify the system (the devices, their type and their connectivity),
whereas the term multimodal is often used to qualify the interaction. In this context, the
multimodal interface becomes the mean to interact with the pervasive system.
In this chapter, we will use the term “multimodal” to qualify systems, which make use of
several active modes of interaction, at least one of them being recognition-based (failing
that, we will simply talk of “interactive” systems). We will use the word “pervasive” to
qualify systems, which combine both active and passive modes of interaction. The next
section provides some examples of pervasive computing applications.

 Ubiquitous Computing

52

2.2 Pervasive computing applications
Novel pervasive computing applications have started to emerge, which address one or more
aims of a pervasive computing environment: being unobtrusive, being invisible and not
requiring users’ conscious interaction with the system. We describe briefly here five types of
pervasive computing applications: context-aware multimodal interaction systems, location-
aware systems, affective computing, smart home applications and wearable computers.

2.2.1 Context-aware multimodal interaction systems
Context-aware multimodal interaction systems make up one class of pervasive computing
applications where the emphasis is on using passive modalities (the context) to enhance the
interaction, especially its efficiency and robustness. (Dey, 2001) provides a good definition of
the word context: “context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves.” Still according to (Dey, 2001), a “system is context-aware if it uses context to
provide relevant information and/or services to the user, where relevancy depends on the
user’s task”. In a context-aware multimodal interaction system, perceived contextual
information is often used to complement or disambiguate an active mode of interaction,
such as speech (Stillman & Essa, 2001; Macho et al., 2005). For example, (Yoshimi & Pingali,
2002) describe a video conferencing application, which combines carefully placed multiple
distributed microphone pairs with calibrated cameras to identify the current speaker and
their location, in order to achieve a finer control of the speech recognition process. More
recently, (Luo et al., 2009) show that in a classroom environment, sources of contextual
information are abundant (people, activities, location, physical environment and computing
entities) that can influence the result of otherwise ambiguous multimodal fusion. Some
contextual information like illumination, temperature and noise level is obtained directly
from sensors, while other like user activities and location is dynamically obtained from a
Virtual Interactive Classroom (VIC) software platform. The VIC platform can display to the
lecturer, in real-time, emotion data, through attention detection, facial expression
recognition, physiological feature detection and speech emotion recognition processes for
every student in the virtual classroom and for groups of students engaged in discussion. In
this application, context is used to augment lecturer-student interaction with additional
information and communication opportunities. (Yue et al., 2005) describe an hypermedia
mobile system able to provide users with geographic information services at any time from
anywhere. This system encompasses a context-sensitive multimodal module in which
explicit multimodal user inputs and implicit contextual knowledge are integrated. Context
sensitive information is used to evaluate users cognitive load and attention interference
from the mobile environment, in order to adapt the interaction between the user and the
mobile device (e.g. adaptation of the level of complexity and detail of the displayed
information) as well as some aspects of the device’s interface (e.g. orientation-aware
adaptation of the display mode). Finally, (Crowley, 2006) proposes a framework for context
aware observation of human activity, in which a situation (i.e. the current state of the
environment) is described by a configuration of relations for observed entities. The stated
aim of such a framework is to provide a foundation for the design of systems that act as a
“silent partner” to assist humans in their activities in order to provide appropriate services
without explicit commands and configuration (i.e. unobtrusive systems that do not require
users conscious intervention).

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

53

2.2.2 Location-aware systems
Location-aware systems are a special type of context-aware systems where the emphasis is
on adapting a service to the user’s current location. Location-aware systems are typically
deployed in pervasive environments with highly mobile users. Their aim is to make mobile
devices know where they are and automatically do the right thing for that location, for
example automatically reconfiguring themselves, adapting their security level, or being able
to share information with nearby devices. (Khoury & Kamat, 2009) describe a system that
can dynamically track a user’s viewpoint and identify the objects and artefacts visible in the
mobile user’s field of view. In this system, the user’s spatial context is defined both by their
location (captured by GPS) and by their three-dimensional head orientation (captured by a
magnetic orientation tracking device). Indoors, GPS technology is of no use, but RFID tags
can help establish the location of a particular object or spot within the range of a few
centimeters. An alternative to expensive RFID tags is to use the Wireless Local Area
Network (WLAN) technique to sense and detect a location, as explained in (Tsai et al., 2010).
(Tsai et al., 2010) describe a location-aware tour guide system for museums where a location
position agent can sense the strengths of the signals from all the access points to which the
mobile devices can be linked. If the visitor changes location, a context-aware agent matches
the new coordinates on the museum map, which is shown on the visitor’s PDA. Nowadays,
advanced web browsers have also become location-aware and allow developers to find a
computer's location by looking at the surrounding WiFi networks (which is not as precise as
using a GPS, but more precise than relying on a user's IP address). Websites that use
location-aware browsing aim at bringing more relevant information, or saving users time
while searching.

2.2.3 Affective computing
Affective computing applications, another class of pervasive computing applications, can
sense users’ physiological state, track their activities and perceive their behaviour to infer
their psychological state, mood and level of satisfaction or dissatisfaction. The virtual
classroom application (Luo et al., 2009) mentioned already is an example of context-aware
affective computing application. (Kapoor & Picard, 2005) describe a framework that can
automatically extract non-verbal behaviours and features from face and postures, to detect
affective states associated with interest and boredom in children, which occur during
natural learning situations. Features are extracted from four different channels: the upper
face (brow and eye shape, likelihood of nod, shake and blink), the lower face (probability of
fidget and smile), the posture (current posture and level of activity), as well as information
from the status of the application (in this case an educational game). In (Benoit et al., 2007) a
driving assistant system is described that relies on passive modalities only (facial
expression, head movement and eye tracking) to capture the driver’s focus of attention and
predict their fatigue state. The driver’s face is monitored with a video camera and three
signs of hypo-vigilance are tracked: yawning, blinking (or eyes closure) and head motion.
Complex bio-inspired algorithms are then used in order to analyse the data and predict
attention and fatigue.

2.2.4 Smart homes
Smart home applications are becoming increasingly popular and an area of rapid expansion
for research and development. According to the Smart Homes Association, smart home

 Ubiquitous Computing

52

2.2 Pervasive computing applications
Novel pervasive computing applications have started to emerge, which address one or more
aims of a pervasive computing environment: being unobtrusive, being invisible and not
requiring users’ conscious interaction with the system. We describe briefly here five types of
pervasive computing applications: context-aware multimodal interaction systems, location-
aware systems, affective computing, smart home applications and wearable computers.

2.2.1 Context-aware multimodal interaction systems
Context-aware multimodal interaction systems make up one class of pervasive computing
applications where the emphasis is on using passive modalities (the context) to enhance the
interaction, especially its efficiency and robustness. (Dey, 2001) provides a good definition of
the word context: “context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves.” Still according to (Dey, 2001), a “system is context-aware if it uses context to
provide relevant information and/or services to the user, where relevancy depends on the
user’s task”. In a context-aware multimodal interaction system, perceived contextual
information is often used to complement or disambiguate an active mode of interaction,
such as speech (Stillman & Essa, 2001; Macho et al., 2005). For example, (Yoshimi & Pingali,
2002) describe a video conferencing application, which combines carefully placed multiple
distributed microphone pairs with calibrated cameras to identify the current speaker and
their location, in order to achieve a finer control of the speech recognition process. More
recently, (Luo et al., 2009) show that in a classroom environment, sources of contextual
information are abundant (people, activities, location, physical environment and computing
entities) that can influence the result of otherwise ambiguous multimodal fusion. Some
contextual information like illumination, temperature and noise level is obtained directly
from sensors, while other like user activities and location is dynamically obtained from a
Virtual Interactive Classroom (VIC) software platform. The VIC platform can display to the
lecturer, in real-time, emotion data, through attention detection, facial expression
recognition, physiological feature detection and speech emotion recognition processes for
every student in the virtual classroom and for groups of students engaged in discussion. In
this application, context is used to augment lecturer-student interaction with additional
information and communication opportunities. (Yue et al., 2005) describe an hypermedia
mobile system able to provide users with geographic information services at any time from
anywhere. This system encompasses a context-sensitive multimodal module in which
explicit multimodal user inputs and implicit contextual knowledge are integrated. Context
sensitive information is used to evaluate users cognitive load and attention interference
from the mobile environment, in order to adapt the interaction between the user and the
mobile device (e.g. adaptation of the level of complexity and detail of the displayed
information) as well as some aspects of the device’s interface (e.g. orientation-aware
adaptation of the display mode). Finally, (Crowley, 2006) proposes a framework for context
aware observation of human activity, in which a situation (i.e. the current state of the
environment) is described by a configuration of relations for observed entities. The stated
aim of such a framework is to provide a foundation for the design of systems that act as a
“silent partner” to assist humans in their activities in order to provide appropriate services
without explicit commands and configuration (i.e. unobtrusive systems that do not require
users conscious intervention).

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

53

2.2.2 Location-aware systems
Location-aware systems are a special type of context-aware systems where the emphasis is
on adapting a service to the user’s current location. Location-aware systems are typically
deployed in pervasive environments with highly mobile users. Their aim is to make mobile
devices know where they are and automatically do the right thing for that location, for
example automatically reconfiguring themselves, adapting their security level, or being able
to share information with nearby devices. (Khoury & Kamat, 2009) describe a system that
can dynamically track a user’s viewpoint and identify the objects and artefacts visible in the
mobile user’s field of view. In this system, the user’s spatial context is defined both by their
location (captured by GPS) and by their three-dimensional head orientation (captured by a
magnetic orientation tracking device). Indoors, GPS technology is of no use, but RFID tags
can help establish the location of a particular object or spot within the range of a few
centimeters. An alternative to expensive RFID tags is to use the Wireless Local Area
Network (WLAN) technique to sense and detect a location, as explained in (Tsai et al., 2010).
(Tsai et al., 2010) describe a location-aware tour guide system for museums where a location
position agent can sense the strengths of the signals from all the access points to which the
mobile devices can be linked. If the visitor changes location, a context-aware agent matches
the new coordinates on the museum map, which is shown on the visitor’s PDA. Nowadays,
advanced web browsers have also become location-aware and allow developers to find a
computer's location by looking at the surrounding WiFi networks (which is not as precise as
using a GPS, but more precise than relying on a user's IP address). Websites that use
location-aware browsing aim at bringing more relevant information, or saving users time
while searching.

2.2.3 Affective computing
Affective computing applications, another class of pervasive computing applications, can
sense users’ physiological state, track their activities and perceive their behaviour to infer
their psychological state, mood and level of satisfaction or dissatisfaction. The virtual
classroom application (Luo et al., 2009) mentioned already is an example of context-aware
affective computing application. (Kapoor & Picard, 2005) describe a framework that can
automatically extract non-verbal behaviours and features from face and postures, to detect
affective states associated with interest and boredom in children, which occur during
natural learning situations. Features are extracted from four different channels: the upper
face (brow and eye shape, likelihood of nod, shake and blink), the lower face (probability of
fidget and smile), the posture (current posture and level of activity), as well as information
from the status of the application (in this case an educational game). In (Benoit et al., 2007) a
driving assistant system is described that relies on passive modalities only (facial
expression, head movement and eye tracking) to capture the driver’s focus of attention and
predict their fatigue state. The driver’s face is monitored with a video camera and three
signs of hypo-vigilance are tracked: yawning, blinking (or eyes closure) and head motion.
Complex bio-inspired algorithms are then used in order to analyse the data and predict
attention and fatigue.

2.2.4 Smart homes
Smart home applications are becoming increasingly popular and an area of rapid expansion
for research and development. According to the Smart Homes Association, smart home

 Ubiquitous Computing

54

technology is: “the integration of technology and services through home networking for a
better quality of living“. The idea is that anything in the home that uses electricity can be put
on the home network and when commands are given, either by voice, remote control,
computer or mobile phone, the home reacts. Most applications relate to lighting, home
security, home theater and entertainment and thermostat regulation. A smart home system
may also automatically decide to turn off lights and TV sets when the user leaves the house,
adjust artificial lighting levels according to changes in day light, add items to an electronic
shopping list when the house fridge gets empty, etc. According to (Edmonds, 2010),
“Microsoft Chairman Bill Gates' home might be the most famous smart home to date.
Everyone in the home is pinned with an electronic tracking chip. As you move through the
rooms, lights come on ahead of you and fade behind you. Your favorite songs will follow
you throughout the house, as will whatever you're watching on television. The chip keeps
track of all that you do and makes adjustments as it learns your preferences. When two
different chips enter the same room, the system tries to compromise on something that both
people will like.“

2.2.5 Wearable computers
Finally, wearable computer applications, where the computing devices are worn on the
body, implies context recognition with on-body sensors. (Ferscha & Zia, 2009) present a
wearable computer, which aims at providing directional guidance for crowd evacuation, by
means of a belt worn by individuals in the crowd. The vibrotactile belt notifies individuals
in panic about exits. It has the capability to sense the neighbourhood, to extract the relative
spatial relations (distance and orientation) of all neighbours, and to interact with the person
wearing it in a natural and personal way. Smart textiles, used for example in fashion
(Vieroth et al., 2009) offer an extreme example of wearable computing where the pervasive
computing environment is the clothing.

3. Multimodal error Handling Strategies
This section of the chapter offers a brief review of error handling strategies in multimodal
interaction systems. We will then examine in section 4 how these strategies can or cannot be
applied to pervasive computing applications such as the ones presented in the previous
section.
Despite recent progress in recognition-based technologies for human–computer
interaction (speech, gestures, handwriting, etc.), recognition errors still occur and have
been shown to reduce the effectiveness of natural input modalities (Halverson et al., 1999;
Karat et al., 1999; Suhm et al., 1999). The impact of recognition errors on multimodal
systems’ usability varies according to the application and depends upon a number of
factors such as the amount of input required, the acceptability of uncorrected errors, the
benefits of using recognition-based modalities (as compared with other interaction
means), the availability of adequate error handling mechanisms, etc. (Bourguet, 2006) has
listed thirty different error handling strategies in recognition-based multimodal interfaces
and proposed a classification (see Fig. 1). According to this classification, an error
handling strategy can either be the responsibility of the machine (i.e. the multimodal
interface) or of the user, and can fulfil one of the three following purposes: error
prevention, error discovery and error correction.

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

55

Fig. 1. Taxonomy of multimodal error-handling strategies (adapted from (Bourguet, 2006))

3.1 Machine error handling
It appears from Fig. 1 that most strategies for error prevention can be attributed to the
machine. They work in two possible ways: either the interface is designed to influence or
constrain user behaviour into less error-prone interaction (i.e. ‘‘error reduction by design”),
or greater recognition accuracy is achieved through the use of additional or contextual
information (i.e. ‘‘error reduction by context”).
Error reduction by design techniques achieve error prevention by leading users towards the
production of inputs that are easier to recognise. The different techniques differ in the level
of constraints they impose on user behaviour and actions, and the degree of control the user
has on the interaction. For example, “Tap-to-speak interfaces” are interfaces in which users
must indicate to the system by a brief signal that they are going to talk before each utterance
(Oviatt et al., 1994). Another technique consists in implementing “guided dialogues” where
users are prompted to say or do something from a limited set of possible responses.
Another, less constraining technique, consists in controlling the system’s responses and
discourse level throughout the dialogue (“consistency and symmetry”) in order to shape the
users’ speech and actions to match that of the system’s (Heer et al., 2004).
Error reduction by context techniques achieve error reduction by augmenting users’ inputs
with redundant or contextual information. Context-aware systems, in particular, make use
of passive modalities and, according to our definitions, thus belong to the domain of
pervasive computing. Similarly, “Feature level integration” exploits intrinsic properties of
tightly coupled modalities such as speech and lip movements and does not require users to
consciously act multimodally.

 Ubiquitous Computing

54

technology is: “the integration of technology and services through home networking for a
better quality of living“. The idea is that anything in the home that uses electricity can be put
on the home network and when commands are given, either by voice, remote control,
computer or mobile phone, the home reacts. Most applications relate to lighting, home
security, home theater and entertainment and thermostat regulation. A smart home system
may also automatically decide to turn off lights and TV sets when the user leaves the house,
adjust artificial lighting levels according to changes in day light, add items to an electronic
shopping list when the house fridge gets empty, etc. According to (Edmonds, 2010),
“Microsoft Chairman Bill Gates' home might be the most famous smart home to date.
Everyone in the home is pinned with an electronic tracking chip. As you move through the
rooms, lights come on ahead of you and fade behind you. Your favorite songs will follow
you throughout the house, as will whatever you're watching on television. The chip keeps
track of all that you do and makes adjustments as it learns your preferences. When two
different chips enter the same room, the system tries to compromise on something that both
people will like.“

2.2.5 Wearable computers
Finally, wearable computer applications, where the computing devices are worn on the
body, implies context recognition with on-body sensors. (Ferscha & Zia, 2009) present a
wearable computer, which aims at providing directional guidance for crowd evacuation, by
means of a belt worn by individuals in the crowd. The vibrotactile belt notifies individuals
in panic about exits. It has the capability to sense the neighbourhood, to extract the relative
spatial relations (distance and orientation) of all neighbours, and to interact with the person
wearing it in a natural and personal way. Smart textiles, used for example in fashion
(Vieroth et al., 2009) offer an extreme example of wearable computing where the pervasive
computing environment is the clothing.

3. Multimodal error Handling Strategies
This section of the chapter offers a brief review of error handling strategies in multimodal
interaction systems. We will then examine in section 4 how these strategies can or cannot be
applied to pervasive computing applications such as the ones presented in the previous
section.
Despite recent progress in recognition-based technologies for human–computer
interaction (speech, gestures, handwriting, etc.), recognition errors still occur and have
been shown to reduce the effectiveness of natural input modalities (Halverson et al., 1999;
Karat et al., 1999; Suhm et al., 1999). The impact of recognition errors on multimodal
systems’ usability varies according to the application and depends upon a number of
factors such as the amount of input required, the acceptability of uncorrected errors, the
benefits of using recognition-based modalities (as compared with other interaction
means), the availability of adequate error handling mechanisms, etc. (Bourguet, 2006) has
listed thirty different error handling strategies in recognition-based multimodal interfaces
and proposed a classification (see Fig. 1). According to this classification, an error
handling strategy can either be the responsibility of the machine (i.e. the multimodal
interface) or of the user, and can fulfil one of the three following purposes: error
prevention, error discovery and error correction.

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

55

Fig. 1. Taxonomy of multimodal error-handling strategies (adapted from (Bourguet, 2006))

3.1 Machine error handling
It appears from Fig. 1 that most strategies for error prevention can be attributed to the
machine. They work in two possible ways: either the interface is designed to influence or
constrain user behaviour into less error-prone interaction (i.e. ‘‘error reduction by design”),
or greater recognition accuracy is achieved through the use of additional or contextual
information (i.e. ‘‘error reduction by context”).
Error reduction by design techniques achieve error prevention by leading users towards the
production of inputs that are easier to recognise. The different techniques differ in the level
of constraints they impose on user behaviour and actions, and the degree of control the user
has on the interaction. For example, “Tap-to-speak interfaces” are interfaces in which users
must indicate to the system by a brief signal that they are going to talk before each utterance
(Oviatt et al., 1994). Another technique consists in implementing “guided dialogues” where
users are prompted to say or do something from a limited set of possible responses.
Another, less constraining technique, consists in controlling the system’s responses and
discourse level throughout the dialogue (“consistency and symmetry”) in order to shape the
users’ speech and actions to match that of the system’s (Heer et al., 2004).
Error reduction by context techniques achieve error reduction by augmenting users’ inputs
with redundant or contextual information. Context-aware systems, in particular, make use
of passive modalities and, according to our definitions, thus belong to the domain of
pervasive computing. Similarly, “Feature level integration” exploits intrinsic properties of
tightly coupled modalities such as speech and lip movements and does not require users to
consciously act multimodally.

 Ubiquitous Computing

56

Error discovery by machine works in three possible ways: by using statistical data
(“thresholding”), by exploiting cross-modal information (“mutual disambiguation” and
“synchronisation models”), or by applying knowledge-based rules (Baber & Hone, 1993).
(Bourguet & Ando, 1998) have shown that to be effective at disambiguating interaction,
cross-modal information must be complementary but not always semantically rich. They
show for example that timing information from hand gestures (i.e. speech and gesture
synchronisation data) can be used to locate in the speech signal the parts that are more
semantically significant, such as important nominal expressions. In (Holle & Gunter, 2007) a
series of experiments are presented, which explore the extent to which iconic gestures
convey information not found in speech. The results suggest that listeners can use gestural
information to disambiguate speech. For example, an iconic gesture can facilitate the
processing of a lesser frequent word meaning.
Finally, with knowledge-based and cross-modal strategies, the automatic discovery of
recognition errors can sometimes lead to automatic correction as well. This is generally true
if the correct output figures in the list of alternative hypotheses produced during the
recognition process.

3.2 User error handling
On the users’ side, user prevention strategies rely on users’ spontaneous change of
behaviour to prevent errors. This is facilitated in natural multimodal interfaces by the
availability of multiple modalities of interaction, which allows users to exercise their natural
intelligence about when and how to deploy input modalities effectively (Oviatt, 1999).
When a recognition error occurs, users are normally in charge of notifying the machine. It is
important, however, that the machine facilitates error discovery. Machine-led discovery
techniques include implicit confirmation (Narayanan, 2002), explicit confirmation (e.g. when
in safety critical systems users are asked to confirm that what has been recognised or
understood is correct), visually displaying recognition results, and allowing the selection of
the correct result from a list of alternative hypotheses.
Once errors have been found, users can effectively help the machine resolve them, usually
by producing additional inputs. Studies of speech interfaces have found that the most
instinctive way for users to correct mistakes is to repeat (Suhm et al., 2002). However,
although repeating might be the most obvious way to correct when the system mishears, it
is often the worse for the system (Frankish et al., 1992). The main reason for this is that when
repeating, users tend to adjust their way of speaking (e.g. by over-articulating) to what they
believe is easier for the recogniser to interpret, which often has the opposite effect. In
handwriting, a similar strategy to repeating is to overwrite a misrecognised word. Linguistic
adaptation is another strategy that has been observed where users choose to rephrase their
speech, in the belief that it can influence error resolution: a word may be substituted for
another, or a simpler syntactic structure may be chosen (Oviatt, 2000). In multimodal
systems, it has been suggested that users are willing to repeat their input at least once, after
which they will tend to switch to another modality (Oviatt & van Gent, 1996). For example,
if speech input failed repeatedly when entering data in a form, users may switch to the
keyboard in order to type their entry. Alternative strategies include locating a recognition
error by touching a misrecognised word on a writing-sensitive screen where recognition
output is displayed, then correcting the error by choosing from a list of alternative words,
typing, handwriting, or editing using gestures drawn on the display (Suhm et al., 1999).

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

57

To summarize this section it can be said that an extensive body of work exists in multimodal
error handling and that a large number of strategies have been proposed and tried.
However, most of these strategies assume the use of active modalities. In the next section of
the paper, we show that many of these strategies are ill adapted to pervasive computing
applications, where passive modalities play an important role.

4. Error handling in pervasive computing
4.1 Machine error handling
In “traditional” multimodal user interfaces, machine error handling plays an important role
in error prevention. In particular, error reduction by design (see Fig. 1) is a major error
handling strategy, which aims at preventing interaction errors by influencing or guiding
users’ behaviour. In pervasive computing, where, in general, the devices must not interfere
with social interaction and human behaviour, error reduction by design goes against the
fundamental principle of unobtrusiveness. In many pervasive computing applications,
especially context and location aware applications (e.g. the hypermedia mobile system (Yue
et al., 2005), the silent partner concept (Crowley, 2006) and the dynamic user-viewpoint
tracking system (Khoury & Kamat, 2009)) as well as in smart home applications, the aim is
indeed of anticipating and not influencing users’ needs and actions. (Matsumiya et al., 2003)
specifically address the problem of unobtrusiveness and “zero disturbance” in pervasive
computing. The authors present an authentication model, which aims at authenticating
mobile users without interfering with their mobile behaviour. They describe a ‘‘zero-stop”
authentication model that can actively authenticate users in an environment populated with
various mobile and embedded devices without disturbing users’ movements. In pervasive
applications, where unobtrusiveness and zero disturbance is a major concern, one of the
most important error handling strategy class (error reduction by design) thus becomes
inapplicable.
In contrast, the second class of machine error handling strategies for error prevention: error
reduction by context (see Fig. 1), plays an important role in pervasive computing applications.
The use of context and multi-sensors information to render user-system interaction more
robust and efficient is one major aim of context-aware multimodal applications (e.g. the
video conferencing application (Yoshimi & Pingali, 2002) and the virtual classroom
application (Luo et al., 2009)). Another example of such strategy is provided by “machine lip
reading” techniques which consist in combining acoustic information from the speech signal
with visual information captured from the shapes of the speaker’s lips to achieve more
robust speech recognition without requiring any additional user inputs (Meier et al., 2000).
As far as the automatic correction of recognition errors is concerned, it can be achieved in
current multimodal interfaces, by using semantic, pragmatic, and common sense knowledge (see
Fig. 1). (Singh, 2002) has collected common sense statements from the public for the Open
Mind Common Sense Project, resulting in a database that currently contains more than
700,000 facts. The common sense statements have been used to reorder the recognition
hypotheses returned by a speech recogniser and filter out possibilities that ‘‘don’t make
sense”. In pervasive computing, the approach can be taken further by incorporating
knowledge about human behavioural and social signalling. As the field matures, such
knowledge will undoubtedly become invaluable to allow machines to automatically detect
and correct errors. For example, the understanding of users emotions through the analysis
of facial expressions (see the affective computing applications) will allow machines to
disambiguate between literal and ironic statements.

 Ubiquitous Computing

56

Error discovery by machine works in three possible ways: by using statistical data
(“thresholding”), by exploiting cross-modal information (“mutual disambiguation” and
“synchronisation models”), or by applying knowledge-based rules (Baber & Hone, 1993).
(Bourguet & Ando, 1998) have shown that to be effective at disambiguating interaction,
cross-modal information must be complementary but not always semantically rich. They
show for example that timing information from hand gestures (i.e. speech and gesture
synchronisation data) can be used to locate in the speech signal the parts that are more
semantically significant, such as important nominal expressions. In (Holle & Gunter, 2007) a
series of experiments are presented, which explore the extent to which iconic gestures
convey information not found in speech. The results suggest that listeners can use gestural
information to disambiguate speech. For example, an iconic gesture can facilitate the
processing of a lesser frequent word meaning.
Finally, with knowledge-based and cross-modal strategies, the automatic discovery of
recognition errors can sometimes lead to automatic correction as well. This is generally true
if the correct output figures in the list of alternative hypotheses produced during the
recognition process.

3.2 User error handling
On the users’ side, user prevention strategies rely on users’ spontaneous change of
behaviour to prevent errors. This is facilitated in natural multimodal interfaces by the
availability of multiple modalities of interaction, which allows users to exercise their natural
intelligence about when and how to deploy input modalities effectively (Oviatt, 1999).
When a recognition error occurs, users are normally in charge of notifying the machine. It is
important, however, that the machine facilitates error discovery. Machine-led discovery
techniques include implicit confirmation (Narayanan, 2002), explicit confirmation (e.g. when
in safety critical systems users are asked to confirm that what has been recognised or
understood is correct), visually displaying recognition results, and allowing the selection of
the correct result from a list of alternative hypotheses.
Once errors have been found, users can effectively help the machine resolve them, usually
by producing additional inputs. Studies of speech interfaces have found that the most
instinctive way for users to correct mistakes is to repeat (Suhm et al., 2002). However,
although repeating might be the most obvious way to correct when the system mishears, it
is often the worse for the system (Frankish et al., 1992). The main reason for this is that when
repeating, users tend to adjust their way of speaking (e.g. by over-articulating) to what they
believe is easier for the recogniser to interpret, which often has the opposite effect. In
handwriting, a similar strategy to repeating is to overwrite a misrecognised word. Linguistic
adaptation is another strategy that has been observed where users choose to rephrase their
speech, in the belief that it can influence error resolution: a word may be substituted for
another, or a simpler syntactic structure may be chosen (Oviatt, 2000). In multimodal
systems, it has been suggested that users are willing to repeat their input at least once, after
which they will tend to switch to another modality (Oviatt & van Gent, 1996). For example,
if speech input failed repeatedly when entering data in a form, users may switch to the
keyboard in order to type their entry. Alternative strategies include locating a recognition
error by touching a misrecognised word on a writing-sensitive screen where recognition
output is displayed, then correcting the error by choosing from a list of alternative words,
typing, handwriting, or editing using gestures drawn on the display (Suhm et al., 1999).

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

57

To summarize this section it can be said that an extensive body of work exists in multimodal
error handling and that a large number of strategies have been proposed and tried.
However, most of these strategies assume the use of active modalities. In the next section of
the paper, we show that many of these strategies are ill adapted to pervasive computing
applications, where passive modalities play an important role.

4. Error handling in pervasive computing
4.1 Machine error handling
In “traditional” multimodal user interfaces, machine error handling plays an important role
in error prevention. In particular, error reduction by design (see Fig. 1) is a major error
handling strategy, which aims at preventing interaction errors by influencing or guiding
users’ behaviour. In pervasive computing, where, in general, the devices must not interfere
with social interaction and human behaviour, error reduction by design goes against the
fundamental principle of unobtrusiveness. In many pervasive computing applications,
especially context and location aware applications (e.g. the hypermedia mobile system (Yue
et al., 2005), the silent partner concept (Crowley, 2006) and the dynamic user-viewpoint
tracking system (Khoury & Kamat, 2009)) as well as in smart home applications, the aim is
indeed of anticipating and not influencing users’ needs and actions. (Matsumiya et al., 2003)
specifically address the problem of unobtrusiveness and “zero disturbance” in pervasive
computing. The authors present an authentication model, which aims at authenticating
mobile users without interfering with their mobile behaviour. They describe a ‘‘zero-stop”
authentication model that can actively authenticate users in an environment populated with
various mobile and embedded devices without disturbing users’ movements. In pervasive
applications, where unobtrusiveness and zero disturbance is a major concern, one of the
most important error handling strategy class (error reduction by design) thus becomes
inapplicable.
In contrast, the second class of machine error handling strategies for error prevention: error
reduction by context (see Fig. 1), plays an important role in pervasive computing applications.
The use of context and multi-sensors information to render user-system interaction more
robust and efficient is one major aim of context-aware multimodal applications (e.g. the
video conferencing application (Yoshimi & Pingali, 2002) and the virtual classroom
application (Luo et al., 2009)). Another example of such strategy is provided by “machine lip
reading” techniques which consist in combining acoustic information from the speech signal
with visual information captured from the shapes of the speaker’s lips to achieve more
robust speech recognition without requiring any additional user inputs (Meier et al., 2000).
As far as the automatic correction of recognition errors is concerned, it can be achieved in
current multimodal interfaces, by using semantic, pragmatic, and common sense knowledge (see
Fig. 1). (Singh, 2002) has collected common sense statements from the public for the Open
Mind Common Sense Project, resulting in a database that currently contains more than
700,000 facts. The common sense statements have been used to reorder the recognition
hypotheses returned by a speech recogniser and filter out possibilities that ‘‘don’t make
sense”. In pervasive computing, the approach can be taken further by incorporating
knowledge about human behavioural and social signalling. As the field matures, such
knowledge will undoubtedly become invaluable to allow machines to automatically detect
and correct errors. For example, the understanding of users emotions through the analysis
of facial expressions (see the affective computing applications) will allow machines to
disambiguate between literal and ironic statements.

 Ubiquitous Computing

58

4.2 User error handling
According to the definitions we proposed in section 2.1, the main difference between a
multimodal system and a pervasive one, is the nature of the interaction modes: active versus
passive modes. All the user strategies for error handling described in section 3, assume
active modes of interaction and users complete awareness (but not necessarily control) of all
aspects of the interaction. In fact, they also assume that the source and cause of the error can
somehow be located and identified by the user or by the machine. For example, to be able to
“exercise their natural intelligence about when and how to deploy input modalities
effectively” (user error prevention strategies), users must have a good understanding of the
properties and characteristics of each modality. They must also be able to anticipate the
performance quality they are likely to obtain from the systems that recognise and interpret
these modalities. Similarly, user error correction strategies such as modality switch and cross-
modal correction require users to be able to identify the faulty recognition process in order to
choose a more appropriate alternative.
Fig. 2 summarises some characteristics of the devices that are used in pervasive computing
applications as well as some properties of the data that these devices capture (passive
modalities), which are likely to make error handling by users difficult and render known
user error handling strategies, such as the ones presented in section 3.2, impractical.

Fig. 2. Device and data issues in pervasive computing applications (adapted from (Bourguet,
2008))

First of all, many of the devices and sensors have become invisible (Invisibility). Several
devices and sensors are connected in the pervasive environment, and it may not be possible
to know which of them has collected data (Multiplicity). Given the multiplicity of the
devices, it may also be difficult to know the specific properties of each of them, in particular
how sensitive a particular device is (Sensitivity) and how similar or different all the devices
are in their characteristics (Disparity). From the user’s perspective, when the system seems to
behave abnormally (following a recognition or sensing error), the invisibility of the devices
implies that the user cannot locate the faulty system (in order, for example, to avoid using

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

59

it). The multiplicity of the devices means that even if they can be located, which device(s)
caused the error may not be obvious. The unknown sensitivity of the devices does not allow
users to adapt their behaviour in order to provide better quality inputs, and the disparity of
the devices does not allow users to devise and re-use appropriate strategies for error
handling.
As far as data properties are concerned, the user may not know which data is captured by
the pervasive system (What data) and for what purpose it has been captured (Use). These two
properties are inherent to most affective computing applications. Not knowing what is
captured and for what purpose may let the user wonder about the appropriateness of the
data use and give rise to problems of miss-trust (Trustworthiness). Questions can also arise
about the performance quality of the various recognition and sensing processes, and in
particular about the accuracy of the collected data (Accuracy). Finally, in relation with the
multiplicity of the devices, how is the data combined with other to build complex
representations of the environment and of the user and make inferences is another source of
uncertainty (Combination).
Let’s imagine that an affective computing application has wrongly inferred from the
analysis of an image of the user’s face, combined with a low level of user’s activity, that the
user is anxious or in difficulty. The system may then embark on trying to comfort the user
by accordingly changing its behaviour and response mode (for example by lowering the
level of difficulty of the user’s current activity). In this situation, the user is faced with a
number of challenges: (1) understanding the computer’s change of behaviour (e.g. “the
system is trying to comfort me”); (2) analysing possible causes of the system’s changed
behaviour (e.g. “the system believes I am unhappy”); and (3) devising ways of correcting the
system’s wrong belief (e.g. “I should smile more!”). However, in order to devise an error
correction strategy, the user must know the type of data or data combination that is at the
origin of the wrong inference (What data and Combination), by which device it has been
captured (Multiplicity), where the device is located (Invisibility), how to provide better inputs
(Sensitivity and Accuracy). In other words, when data has been wrongly interpreted in a
pervasive environment, error correction is difficult because it may be impossible to know
which device is responsible, and what combination of data contributed to the wrong
interpretation. Even when users are aware of what data is captured, for example images of
their face, it may not be clear how the data is used by the system, and how accurate is the
data. Finally, when it comes to try and influence system’s behaviour and beliefs, it will be
necessary to understand how sensitive the devices are, and how disparate or homogeneous
they are in their properties and characteristics.
Another issue in pervasive computing, is that users may not always be aware of their own
actions, which have been captured and exploited by the system to enhance the interaction
(see for example the “virtual classroom” application (Luo et al., 2009). The use of passive
modalities, for example through the capture of spontaneous gestures and facial expressions,
is an important property of pervasive environments. However, the shift from an
environment where the user is always the conscious actor of every input received by the
system, to an environment where the user is only one possible source of inputs among
others (see context and location aware applications), or where the inputs produced by the
user are produced unconsciously (see affective computing applications), is a dramatic one.
For example, the “driving assistant” application (Benoit et al., 2007) explicitly relies on the
fact that users have little or no control on the data captured by the system, so it can detect
dangerous behaviour in driving conditions.

 Ubiquitous Computing

58

4.2 User error handling
According to the definitions we proposed in section 2.1, the main difference between a
multimodal system and a pervasive one, is the nature of the interaction modes: active versus
passive modes. All the user strategies for error handling described in section 3, assume
active modes of interaction and users complete awareness (but not necessarily control) of all
aspects of the interaction. In fact, they also assume that the source and cause of the error can
somehow be located and identified by the user or by the machine. For example, to be able to
“exercise their natural intelligence about when and how to deploy input modalities
effectively” (user error prevention strategies), users must have a good understanding of the
properties and characteristics of each modality. They must also be able to anticipate the
performance quality they are likely to obtain from the systems that recognise and interpret
these modalities. Similarly, user error correction strategies such as modality switch and cross-
modal correction require users to be able to identify the faulty recognition process in order to
choose a more appropriate alternative.
Fig. 2 summarises some characteristics of the devices that are used in pervasive computing
applications as well as some properties of the data that these devices capture (passive
modalities), which are likely to make error handling by users difficult and render known
user error handling strategies, such as the ones presented in section 3.2, impractical.

Fig. 2. Device and data issues in pervasive computing applications (adapted from (Bourguet,
2008))

First of all, many of the devices and sensors have become invisible (Invisibility). Several
devices and sensors are connected in the pervasive environment, and it may not be possible
to know which of them has collected data (Multiplicity). Given the multiplicity of the
devices, it may also be difficult to know the specific properties of each of them, in particular
how sensitive a particular device is (Sensitivity) and how similar or different all the devices
are in their characteristics (Disparity). From the user’s perspective, when the system seems to
behave abnormally (following a recognition or sensing error), the invisibility of the devices
implies that the user cannot locate the faulty system (in order, for example, to avoid using

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

59

it). The multiplicity of the devices means that even if they can be located, which device(s)
caused the error may not be obvious. The unknown sensitivity of the devices does not allow
users to adapt their behaviour in order to provide better quality inputs, and the disparity of
the devices does not allow users to devise and re-use appropriate strategies for error
handling.
As far as data properties are concerned, the user may not know which data is captured by
the pervasive system (What data) and for what purpose it has been captured (Use). These two
properties are inherent to most affective computing applications. Not knowing what is
captured and for what purpose may let the user wonder about the appropriateness of the
data use and give rise to problems of miss-trust (Trustworthiness). Questions can also arise
about the performance quality of the various recognition and sensing processes, and in
particular about the accuracy of the collected data (Accuracy). Finally, in relation with the
multiplicity of the devices, how is the data combined with other to build complex
representations of the environment and of the user and make inferences is another source of
uncertainty (Combination).
Let’s imagine that an affective computing application has wrongly inferred from the
analysis of an image of the user’s face, combined with a low level of user’s activity, that the
user is anxious or in difficulty. The system may then embark on trying to comfort the user
by accordingly changing its behaviour and response mode (for example by lowering the
level of difficulty of the user’s current activity). In this situation, the user is faced with a
number of challenges: (1) understanding the computer’s change of behaviour (e.g. “the
system is trying to comfort me”); (2) analysing possible causes of the system’s changed
behaviour (e.g. “the system believes I am unhappy”); and (3) devising ways of correcting the
system’s wrong belief (e.g. “I should smile more!”). However, in order to devise an error
correction strategy, the user must know the type of data or data combination that is at the
origin of the wrong inference (What data and Combination), by which device it has been
captured (Multiplicity), where the device is located (Invisibility), how to provide better inputs
(Sensitivity and Accuracy). In other words, when data has been wrongly interpreted in a
pervasive environment, error correction is difficult because it may be impossible to know
which device is responsible, and what combination of data contributed to the wrong
interpretation. Even when users are aware of what data is captured, for example images of
their face, it may not be clear how the data is used by the system, and how accurate is the
data. Finally, when it comes to try and influence system’s behaviour and beliefs, it will be
necessary to understand how sensitive the devices are, and how disparate or homogeneous
they are in their properties and characteristics.
Another issue in pervasive computing, is that users may not always be aware of their own
actions, which have been captured and exploited by the system to enhance the interaction
(see for example the “virtual classroom” application (Luo et al., 2009). The use of passive
modalities, for example through the capture of spontaneous gestures and facial expressions,
is an important property of pervasive environments. However, the shift from an
environment where the user is always the conscious actor of every input received by the
system, to an environment where the user is only one possible source of inputs among
others (see context and location aware applications), or where the inputs produced by the
user are produced unconsciously (see affective computing applications), is a dramatic one.
For example, the “driving assistant” application (Benoit et al., 2007) explicitly relies on the
fact that users have little or no control on the data captured by the system, so it can detect
dangerous behaviour in driving conditions.

 Ubiquitous Computing

60

Furthermore, the invisibility of the devices in pervasive computing raises one of the most
important challenges for error discovery by users. This is because when the devices
responsible for capturing and analysing interaction data become invisible, it becomes
increasingly difficult for users to identify the causes of the errors. In multimodal interfaces,
the machine is primarily in charge of enabling error discovery by providing adequate
feedback on its status and beliefs (machine-led discovery). In pervasive computing, the
additional challenge is thus to devise ways of providing the necessary feedback while
remaining invisible and unobtrusive. The users’ ability to devise error handling strategies is
generally dependent on the availability of system’s feedback about its current status and
beliefs. (Bourguet, 2008) describes an experimental study that aims to test users spontaneous
change of behaviour in situation of error correction, when the cause and source of the error
cannot easily be identified. The context of the experiment is multimodal (speech and pen
interaction) and not pervasive, but it gives an insight into users’ opportunistic error
handling strategies in complex error situations. The study is designed to verify if users are
likely to modify some aspects of their input when repeating a complex multimodal
command (a command that combines speech and gestures), in the belief that it can help
error resolution. In particular, the study aims at comparing users modality synchronisation
patterns in normal situations of interaction, and in situations of error correction. It was
found that when repeating a multimodal command, users are likely to use different
modality synchronisation patterns to try and influence the performance of recognition-
based modalities, but only if the source of the error can be identified. Synchronisation
patterns that significantly depart from typical patterns should thus be interpreted with in
view the possibility that the user is in error recovery mode, and modality integration
techniques should be able to adapt to changing synchronisation patterns. However, users
only seem to be able to adapt their behaviour when they can identify the source and nature
of the system error. In absence of cues about the origin of the error, they either choose to
repeat the command in the same way it was originally entered or they give up on the
interaction. This result let us foresee new challenges for handling errors in pervasive
computing applications, where the cause and nature of the errors are likely to be difficult to
anticipate and identify.
Users’ ability to understand the systems and devices used in human computer interaction,
allow them to make prediction about future events, which in turns allow them to devise
appropriate strategies for system error handling. The ‘‘invisibility”, ‘‘what data”, and ‘‘use”
properties shown in Fig. 2 particularly affect the ability of users to predict future events and
to prevent errors from occurring. In other words, error handling necessitates accurate users’
mental models of the multimodal and pervasive computing systems. In the next section, we
discuss the merits and difficulties of promoting through system design good users’ mental
models in pervasive computing applications.

5. Towards more usable pervasive computing applications
According to (Norman, 1988), a mental model is “the model people have of themselves,
others, the environment, and the things with which they interact.“ Mental models allow us
to make predictions before carrying out an action about its possible effects. When they are
correct or sufficiently accurate, we can use them to solve unexpected problems, if however
they are inadequate, they can lead to difficulties. When interacting with devices, users build

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

61

and employ two types of mental models: structural and functional models (Preece et al.,
1994).
Users can build a structural model of a system when they have grasped, understood and
stored in memory the structure of how the devices work. Typically, structural models are
simplified models that enable the person using them to make predictions about the
behaviour of the devices they represent. In other words, a structural model is a
representation of “how-it-works”. The advantage of structural models is that by explaining
how a device works, they allow a user to predict the effects of any possible sequence of
actions, and hence to work out how to achieve most tasks possible with the device (Preece et
al., 1994). They are particularly useful when a device breaks down or, by extension, when it
commits errors. However, constructing a structural model is difficult and often requires a
great deal of effort.
A model that represents “how to do it” is a functional model. To build a functional model,
users must have acquired procedural knowledge about how to use the devices. Functional
models are normally constructed using existing knowledge of similar domains and
situations, but in desktop and mobile HCI, the widely used visual interface metaphors (e.g.
the office desk metaphor with its file and folder icons) have become the models that users
learn. Most of the time, functional models are sufficient and people seem to get by without
using structural models (very few computer users know about the internals of a computer
and how it works, but every regular computer user knows how to use it in order to
accomplish their task). Indeed, according to (Preece et al., 1994), users tend to develop
functional-based mental models of systems while remaining largely unaware of their
structural aspects.
During multimodal error handling, however, both structural and functional mental models
are useful. For example, users achieve error prevention by effectively allocating inputs to
modalities, sometimes producing complementary or redundant inputs. The allocation of
inputs to modalities necessitates a good understanding of the devices used for data capture,
of the nature of the captured data, and of the use that is made of it. In other words, it
necessitates a good mental representation of “how it works” in order to predict the system’s
responses to a planned sequence of actions. Similarly, user correction strategies require
adequate knowledge about “how to do things” in order to come up with alternative ways
of inputting information, which will effectively repair system’s errors.
In pervasive computing, the invisibility and unobtrusiveness requirements make it
impossible to develop visual interface metaphors, which have become so familiar in more
traditional computing applications. Hence even functional mental models are difficult to
convey and build. Generally, users get to find out about a system through its physical
interface and its behaviour, i.e. what is called the system image. In pervasive computing, the
system’s physical interface may have completely disappeared, rendering the system image
evasive, to say the least. The system image also includes the system’s behaviour, i.e. the
way it responds. The difficulty in pervasive computing is that the system’s response may
not be in relation with any user’s conscious action but with environmental changes, and
hence appear to be unpredictable or incomprehensible. If the system image is not able to
convey to the users the designer’s model in a clear and obvious way, then it is likely that the
users will develop incorrect mental models. Consequently, they will experience great
difficulties in understanding the system, using the system and knowing what to do when
the system doesn’t behave in the way they assumed it would.

 Ubiquitous Computing

60

Furthermore, the invisibility of the devices in pervasive computing raises one of the most
important challenges for error discovery by users. This is because when the devices
responsible for capturing and analysing interaction data become invisible, it becomes
increasingly difficult for users to identify the causes of the errors. In multimodal interfaces,
the machine is primarily in charge of enabling error discovery by providing adequate
feedback on its status and beliefs (machine-led discovery). In pervasive computing, the
additional challenge is thus to devise ways of providing the necessary feedback while
remaining invisible and unobtrusive. The users’ ability to devise error handling strategies is
generally dependent on the availability of system’s feedback about its current status and
beliefs. (Bourguet, 2008) describes an experimental study that aims to test users spontaneous
change of behaviour in situation of error correction, when the cause and source of the error
cannot easily be identified. The context of the experiment is multimodal (speech and pen
interaction) and not pervasive, but it gives an insight into users’ opportunistic error
handling strategies in complex error situations. The study is designed to verify if users are
likely to modify some aspects of their input when repeating a complex multimodal
command (a command that combines speech and gestures), in the belief that it can help
error resolution. In particular, the study aims at comparing users modality synchronisation
patterns in normal situations of interaction, and in situations of error correction. It was
found that when repeating a multimodal command, users are likely to use different
modality synchronisation patterns to try and influence the performance of recognition-
based modalities, but only if the source of the error can be identified. Synchronisation
patterns that significantly depart from typical patterns should thus be interpreted with in
view the possibility that the user is in error recovery mode, and modality integration
techniques should be able to adapt to changing synchronisation patterns. However, users
only seem to be able to adapt their behaviour when they can identify the source and nature
of the system error. In absence of cues about the origin of the error, they either choose to
repeat the command in the same way it was originally entered or they give up on the
interaction. This result let us foresee new challenges for handling errors in pervasive
computing applications, where the cause and nature of the errors are likely to be difficult to
anticipate and identify.
Users’ ability to understand the systems and devices used in human computer interaction,
allow them to make prediction about future events, which in turns allow them to devise
appropriate strategies for system error handling. The ‘‘invisibility”, ‘‘what data”, and ‘‘use”
properties shown in Fig. 2 particularly affect the ability of users to predict future events and
to prevent errors from occurring. In other words, error handling necessitates accurate users’
mental models of the multimodal and pervasive computing systems. In the next section, we
discuss the merits and difficulties of promoting through system design good users’ mental
models in pervasive computing applications.

5. Towards more usable pervasive computing applications
According to (Norman, 1988), a mental model is “the model people have of themselves,
others, the environment, and the things with which they interact.“ Mental models allow us
to make predictions before carrying out an action about its possible effects. When they are
correct or sufficiently accurate, we can use them to solve unexpected problems, if however
they are inadequate, they can lead to difficulties. When interacting with devices, users build

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

61

and employ two types of mental models: structural and functional models (Preece et al.,
1994).
Users can build a structural model of a system when they have grasped, understood and
stored in memory the structure of how the devices work. Typically, structural models are
simplified models that enable the person using them to make predictions about the
behaviour of the devices they represent. In other words, a structural model is a
representation of “how-it-works”. The advantage of structural models is that by explaining
how a device works, they allow a user to predict the effects of any possible sequence of
actions, and hence to work out how to achieve most tasks possible with the device (Preece et
al., 1994). They are particularly useful when a device breaks down or, by extension, when it
commits errors. However, constructing a structural model is difficult and often requires a
great deal of effort.
A model that represents “how to do it” is a functional model. To build a functional model,
users must have acquired procedural knowledge about how to use the devices. Functional
models are normally constructed using existing knowledge of similar domains and
situations, but in desktop and mobile HCI, the widely used visual interface metaphors (e.g.
the office desk metaphor with its file and folder icons) have become the models that users
learn. Most of the time, functional models are sufficient and people seem to get by without
using structural models (very few computer users know about the internals of a computer
and how it works, but every regular computer user knows how to use it in order to
accomplish their task). Indeed, according to (Preece et al., 1994), users tend to develop
functional-based mental models of systems while remaining largely unaware of their
structural aspects.
During multimodal error handling, however, both structural and functional mental models
are useful. For example, users achieve error prevention by effectively allocating inputs to
modalities, sometimes producing complementary or redundant inputs. The allocation of
inputs to modalities necessitates a good understanding of the devices used for data capture,
of the nature of the captured data, and of the use that is made of it. In other words, it
necessitates a good mental representation of “how it works” in order to predict the system’s
responses to a planned sequence of actions. Similarly, user correction strategies require
adequate knowledge about “how to do things” in order to come up with alternative ways
of inputting information, which will effectively repair system’s errors.
In pervasive computing, the invisibility and unobtrusiveness requirements make it
impossible to develop visual interface metaphors, which have become so familiar in more
traditional computing applications. Hence even functional mental models are difficult to
convey and build. Generally, users get to find out about a system through its physical
interface and its behaviour, i.e. what is called the system image. In pervasive computing, the
system’s physical interface may have completely disappeared, rendering the system image
evasive, to say the least. The system image also includes the system’s behaviour, i.e. the
way it responds. The difficulty in pervasive computing is that the system’s response may
not be in relation with any user’s conscious action but with environmental changes, and
hence appear to be unpredictable or incomprehensible. If the system image is not able to
convey to the users the designer’s model in a clear and obvious way, then it is likely that the
users will develop incorrect mental models. Consequently, they will experience great
difficulties in understanding the system, using the system and knowing what to do when
the system doesn’t behave in the way they assumed it would.

 Ubiquitous Computing

62

One fundamental advantage of structural models is that they allow a user to predict the
effects of any possible sequence of actions. As mentioned already, an additional difficulty in
pervasive computing is that users are not always aware of the actions that have been
captured, and the effects that can be observed (system’s response) may have been triggered
by environmental changes that users have not perceived or paid attention to. Here the
“what data” property, once more, is the main obstacle. Structural models, in principle, also
allow to work out how to achieve most tasks possible with the device. However, in
pervasive computing, the notion of task is not always relevant, as the pervasive system is
sometimes working on our behalf (see the smart home applications) or is trying to
automatically adapt to our needs and affective state (see location-aware systems and
affective computing applications).
Some work has highlighted the importance of a user-centred approach to the design of
pervasive computing applications. (Ciarletta & Dima, 2000) have adapted the OSI reference
model (Open Systems Interconnection model) to pervasive computing, adding a model of
the user to their pervasive computing conceptual model (see Fig. 3). In particular, the
abstract layer formalizes the necessity of maintaining consistency between the user’s
reasoning and expectations (Mental Models) and the logic and state of the pervasive
computing application (Application). The intention is that, given the limited techniques that
pervasive computing applications developers can use to communicate the state of the
application, the proposed conceptual model will “force pervasive developers to consider the
user’s point-of-view much more than developers in traditional environments”.

Fig. 3. Pervasive computing conceptual model (reproduced from (Ciarletta & Dima, 2000))

(Dobson & Nixon, 2004) clearly state that it is vitally important that users can predict when
and how pervasive systems will adapt (i.e. respond to inputs and environmental changes),
and can perceive why a particular adaptation has occurred. Arbitrary behavioural changes
are incomprehensible to users and make a pervasive system completely unusable; on the
other hand, single behaviour is unattractive in that it prevents a system from adapting to
context. The difficulty is thus to find the optimal balance between adaptability (reactivity to
contextual changes) and comprehensibility (leading to predictability). They conclude that
predictability can arise in pervasive computing applications from having a close, structured
and easily grasped relationship between the context and the behavioural change that context
engenders. In other words, an application’s behavioural variation should emerge
“naturally” from the context that causes it to adapt, and any change in behaviour should be
accompanied by a perceptible change in the context that “makes sense” for the application
at hand. Moreover, the changes should correspond to external contextual cues that convey
the need for the behavioural change to the user. This way, users should be able to build

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

63

functional mental models that allow them to use pervasive computing applications in most
normal situations. Functional models might not be enough, however, to cope with abnormal
situations where error handling has become necessary.
More recently, (Leichtenstern & Andre, 2008) explore the idea of using mobile phones as
interfaces with pervasive computing environments, as they are devices that most users are
already familiar with. The mobile interface is designed following a usage model which
specifies various contexts, users and environment, as well as the user’s goals and mental
model. The mobile interface, while remaining familiar, is adaptable according to the current
state of the usage model.

6. Conclusion
In this chapter we addressed the new challenges raised by novel pervasive computing
applications for the handling of uncertainty and errors. We exposed the differences between
“traditional” multimodal systems and pervasive computing applications, such as context
and location aware systems, affective computing applications, smart homes and wearable
computers. In particular, we discussed the inadequacies of known multimodal error
handling strategies in pervasive environments, where the devices are heterogeneous and
have become invisible, and where users largely remain unaware of the types and properties
of the data that these devices capture and exploit. We observed that most traditional error
strategies for error prevention have become impractical because they are irreconcilable with
the fundamental principle of unobtrusiveness in pervasive computing. We also observed
that most user strategies for handling errors were dependent on users being able to identify
the source and cause of the error and on users having good structural and functional mental
models of the interactive systems.
With the increasing diversity of devices, contexts of use, and users, the design of effective
means of error prevention, detection, and correction will be a determinant factor of usability
and users’ acceptance of pervasive computing applications. This chapter has highlighted the
necessity of providing users with appropriate support to allow them to devise and deploy
adequate strategies for handling errors. However, error handling in pervasive computing
applications is more complex than in current multimodal interfaces. In pervasive
computing, it will be of paramount importance that users are supported in their forming of
adequate mental models of the system. These mental models should provide users with the
correct knowledge of what data is captured and recorded, and how it is used. Because of the
invisibility of the devices and the necessity of being unobtrusive, supporting the
development of adequate mental models is more challenging than in traditional interfaces.
Provided that the pervasive computing application successfully promotes adequate mental
models, it can be anticipated that users will develop whole new strategies to cope with
errors in pervasive computing applications, and research to gain a better understanding of
these strategies will be needed in order to devise appropriate interface designs and
techniques to support them.

7. References
Abowd, G.D. & Mynatt, E.D. (2000). Charting past, present, and future research in

ubiquitous computing. ACM Transactions on Computer Human Interaction, Vol. 7, No.
1, (2000) 29–58

 Ubiquitous Computing

62

One fundamental advantage of structural models is that they allow a user to predict the
effects of any possible sequence of actions. As mentioned already, an additional difficulty in
pervasive computing is that users are not always aware of the actions that have been
captured, and the effects that can be observed (system’s response) may have been triggered
by environmental changes that users have not perceived or paid attention to. Here the
“what data” property, once more, is the main obstacle. Structural models, in principle, also
allow to work out how to achieve most tasks possible with the device. However, in
pervasive computing, the notion of task is not always relevant, as the pervasive system is
sometimes working on our behalf (see the smart home applications) or is trying to
automatically adapt to our needs and affective state (see location-aware systems and
affective computing applications).
Some work has highlighted the importance of a user-centred approach to the design of
pervasive computing applications. (Ciarletta & Dima, 2000) have adapted the OSI reference
model (Open Systems Interconnection model) to pervasive computing, adding a model of
the user to their pervasive computing conceptual model (see Fig. 3). In particular, the
abstract layer formalizes the necessity of maintaining consistency between the user’s
reasoning and expectations (Mental Models) and the logic and state of the pervasive
computing application (Application). The intention is that, given the limited techniques that
pervasive computing applications developers can use to communicate the state of the
application, the proposed conceptual model will “force pervasive developers to consider the
user’s point-of-view much more than developers in traditional environments”.

Fig. 3. Pervasive computing conceptual model (reproduced from (Ciarletta & Dima, 2000))

(Dobson & Nixon, 2004) clearly state that it is vitally important that users can predict when
and how pervasive systems will adapt (i.e. respond to inputs and environmental changes),
and can perceive why a particular adaptation has occurred. Arbitrary behavioural changes
are incomprehensible to users and make a pervasive system completely unusable; on the
other hand, single behaviour is unattractive in that it prevents a system from adapting to
context. The difficulty is thus to find the optimal balance between adaptability (reactivity to
contextual changes) and comprehensibility (leading to predictability). They conclude that
predictability can arise in pervasive computing applications from having a close, structured
and easily grasped relationship between the context and the behavioural change that context
engenders. In other words, an application’s behavioural variation should emerge
“naturally” from the context that causes it to adapt, and any change in behaviour should be
accompanied by a perceptible change in the context that “makes sense” for the application
at hand. Moreover, the changes should correspond to external contextual cues that convey
the need for the behavioural change to the user. This way, users should be able to build

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

63

functional mental models that allow them to use pervasive computing applications in most
normal situations. Functional models might not be enough, however, to cope with abnormal
situations where error handling has become necessary.
More recently, (Leichtenstern & Andre, 2008) explore the idea of using mobile phones as
interfaces with pervasive computing environments, as they are devices that most users are
already familiar with. The mobile interface is designed following a usage model which
specifies various contexts, users and environment, as well as the user’s goals and mental
model. The mobile interface, while remaining familiar, is adaptable according to the current
state of the usage model.

6. Conclusion
In this chapter we addressed the new challenges raised by novel pervasive computing
applications for the handling of uncertainty and errors. We exposed the differences between
“traditional” multimodal systems and pervasive computing applications, such as context
and location aware systems, affective computing applications, smart homes and wearable
computers. In particular, we discussed the inadequacies of known multimodal error
handling strategies in pervasive environments, where the devices are heterogeneous and
have become invisible, and where users largely remain unaware of the types and properties
of the data that these devices capture and exploit. We observed that most traditional error
strategies for error prevention have become impractical because they are irreconcilable with
the fundamental principle of unobtrusiveness in pervasive computing. We also observed
that most user strategies for handling errors were dependent on users being able to identify
the source and cause of the error and on users having good structural and functional mental
models of the interactive systems.
With the increasing diversity of devices, contexts of use, and users, the design of effective
means of error prevention, detection, and correction will be a determinant factor of usability
and users’ acceptance of pervasive computing applications. This chapter has highlighted the
necessity of providing users with appropriate support to allow them to devise and deploy
adequate strategies for handling errors. However, error handling in pervasive computing
applications is more complex than in current multimodal interfaces. In pervasive
computing, it will be of paramount importance that users are supported in their forming of
adequate mental models of the system. These mental models should provide users with the
correct knowledge of what data is captured and recorded, and how it is used. Because of the
invisibility of the devices and the necessity of being unobtrusive, supporting the
development of adequate mental models is more challenging than in traditional interfaces.
Provided that the pervasive computing application successfully promotes adequate mental
models, it can be anticipated that users will develop whole new strategies to cope with
errors in pervasive computing applications, and research to gain a better understanding of
these strategies will be needed in order to devise appropriate interface designs and
techniques to support them.

7. References
Abowd, G.D. & Mynatt, E.D. (2000). Charting past, present, and future research in

ubiquitous computing. ACM Transactions on Computer Human Interaction, Vol. 7, No.
1, (2000) 29–58

 Ubiquitous Computing

64

Baber, C. & Hone, K.S. (1993). Modelling error recovery and repair in automatic speech
recognition. International Journal of Man–Machine Studies, Vol. 39, No. 3, (1993) 495–
515

Benoit, A.; Bonnaud, L.; Caplier, A.; Damousis, I.; Tzovaras, D.; Jourde, F.; Nigay, L.;
Serrano, M. & Lawson, J.L. (2007). Multimodal signal processing and interaction for
a driving simulator: component-based architecture. Journal on Multimodal User
Interfaces, Vol. 1, No. 1, (2007)

Bourguet, M.L. & Ando, A. (1998). Synchronisation of speech and hand gestures during
multimodal human–computer interaction, Extented Abstracts CHI 1998, pp. 241-242,
Los Angeles, USA, April 1998, ACM Press

Bourguet, M.L. (2006). Towards a taxonomy of error handling strategies in recognition
based multimodal human–computer interfaces. Signal Processing journal, Vol. 86,
No.12, (December 2006) 3625–3643

Bourguet, M.L. (2008). Handling uncertainty in pervasive computing applications.
Computer Communications journal, Vol. 31, No. 18, (December 2008) 4234-4241

Ciarletta, L. & Dima, A. (2000). A Conceptual Model for Pervasive Computing, Proceedings of
the 2000 International Workshop on Parallel Processing, Washington, DC, USA, August
2000

Crowley, J.L. (2006). Things that See: Context-Aware Multi-modal Interaction. Lecture Notes
in Computer Science, Vol. 3948, (2006) 183-198

Dey, A.K. (2001). Understanding and Using Context. Journal of Personal and Ubiquitous
Computing, vol 25, (2001) 4-7

Dobson, S. & Nixon, P. (2004). More principled design of pervasive computing systems,
Proceedings of the Engineering for Human–Computer Interaction and Design,
Specification and Verification of Interactive Systems, pp. 292–305, Hamburg, Germany,
July 2004

Edmonds, M. (2010). How Smart Homes Work, Copyright © 2010 Discovery Communications
Inc. http://tlc.howstuffworks.com/home/smart-home1.htm

Feki, M.A.; Renouard, S.; Abdulrazak, B.; Chollet, G. & Mokhtari, M. (2004). Coupling
context awareness and multimodality in smart homes concept. Lecture Notes in
Computer Science, Vol. 3118 (2004) 906–913

Ferscha, A. & Zia, K. (2009). LifeBelt: Silent Directional Guidance for Crowd Evacuation,
Proceedings of 13th International Symposium on Wearable Computers (ISWC 09), pp. 19–
26, Linz, Austria, September 2009

Frankish, C.; Jones, D. & Hapeshi, K. (1992). Decline in accuracy of automatic speech
recognition as a function of time on task: fatigue or voice drift? International Journal
of Man–Machine Studies, Vol. 36, (1992) 797–816

Halverson, C.; Horn, D.; Karat, C. & Karat, J. (1999). The beauty of errors: patterns of error
correction in desktop speech systems, Proceedings of the INTERACT 99, pp. 133–140,
Edinburgh, UK, September 1999, IOS Press

Heer, J.; Good, N.; Ramirez, A.; Davis, M. & Mankoff, J. (2004). Presiding over accidents:
system direction of human action, Proceedings of the ACM CHI’04, pp. 463–470,
Vienna, Austria, April 2004

Holle, H. & Gunter, T.C. (2007). The role of iconic gestures in speech disambiguation: ERP
evidence. Journal of Cognitive Neuroscience, Vol. 19, No. 7, (2007) 1175–1192

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

65

Kapoor, A. & Picard, R.W. (2005). Multimodal affect recognition in learning environments,
Proceedings of the ACM MM’05, Singapore, November 2005

Karat, C.; Halverson, C.; Horn, D. & Karat, J. (1999). Patterns of entry and correction in large
vocabulary contentious speech recognition systems, Proceedings of the ACM CHI’99,
pp. 568–575, Pittsburgh, Pennsylvania, May 1999

Khoury, H.M. & Kamat, V.R. (2009). High-precision identification of contextual information
in location-aware engineering applications . Advanced Engineering Informatics
journal, Vol. 23, No. 4 (October 2009) 483-496

Leichtenstern, K. & Andre, E. (2008). User-centred development of mobile interfaces to a
pervasive computing environment, Proceedings of the First International Conference on
Advances in Computer–Human Interaction, pp. 114–119, Sainte Luce, Martinique,
February 2008

Luo, A.; Zhou, J.; Wang F. & Shen, L. (2009). Context Aware Multimodal Interaction Model
in Standard Natural Classroom. Lecture Notes in Computer Science, Vol. 5685, (2009)
13-23

Macho, D.; Padrell, J.; Abad, A.; Nadeu, C.; Hernando, J.; McDonough, J.; Wolfel, M.; Klee,
U.; Omologo, M.; Brutti, A.; Svaizer, P.; Potamianos G. & Chu, S.M. (2005).
Automatic speech activity detection, source localization, and speech recognition on
the chil seminar corpus, Proceedings of the IEEE International Conference on
Multimedia and Expo, pp. 876–879, Amsterdam, July 2005

Matsumiya, K.; Aoki, S.; Murase, M. & Tokuda, H. (2003). Active authentication for
pervasive computing environments. Lecture Notes in Computer Science, Vol. 2609,
(2003) 267–273

Meier, U.; Stiefelhagen, R.; Yang, J. & Waibel, A. (2000). Towards unrestricted lipreading.
International Journal of Pattern Recognition and Artificial Intelligence, Vol. 14 (2000)
571–585

Narayanan, S. (2002). Towards modeling user behavior in human–machine interactions:
effect of errors and emotions, Proceedings of the ISLE Workshop on Dialogue Tagging
for Multi-modal Human Computer Interaction, Edinburgh, UK, December 2002

Norman, D.A. (1988). The Psychology of Everday Things, Basic Books, New York
Oikonomopoulos, A.; Patras, I. & Pantic, M. (2006). Human action recognition with

spatiotemporal salient points. IEEE Transactions on Systems, Man and Cybernetics
Part B, Vol. 36, No.3, (2006) 710–719

Oviatt, S.; Cohen, P. & Wang, M. (1994). Toward interface design for human language
technology: modality and structure as determinants of linguistic complexity. Speech
Communication, Vol. 15, (1994) 283–300

Oviatt, S. & van Gent, R. (1996). Error resolution during multimodal human–computer
interaction, Proceedings of the Fourth International Conference on Spoken Language
Processing, pp. 204–207, Philadelphia, Pennsylvania, October 1996

Oviatt, S. (1999). Ten myths of multimodal interaction. Communication of the ACM, Vol. 42,
No. 11, (1999) 74–81

Oviatt, S. (2000). Taming recognition errors with a multimodal interface. Communications of
the ACM, Vol. 43, No. 9, (2000) 45–51

Pantic, M. (2005). Affective Computing, In: Encyclopedia of Multimedia Technology and
Networking, vol. 1, pp. 8–14, Hershy, PA, USA, Idea Group Reference

 Ubiquitous Computing

64

Baber, C. & Hone, K.S. (1993). Modelling error recovery and repair in automatic speech
recognition. International Journal of Man–Machine Studies, Vol. 39, No. 3, (1993) 495–
515

Benoit, A.; Bonnaud, L.; Caplier, A.; Damousis, I.; Tzovaras, D.; Jourde, F.; Nigay, L.;
Serrano, M. & Lawson, J.L. (2007). Multimodal signal processing and interaction for
a driving simulator: component-based architecture. Journal on Multimodal User
Interfaces, Vol. 1, No. 1, (2007)

Bourguet, M.L. & Ando, A. (1998). Synchronisation of speech and hand gestures during
multimodal human–computer interaction, Extented Abstracts CHI 1998, pp. 241-242,
Los Angeles, USA, April 1998, ACM Press

Bourguet, M.L. (2006). Towards a taxonomy of error handling strategies in recognition
based multimodal human–computer interfaces. Signal Processing journal, Vol. 86,
No.12, (December 2006) 3625–3643

Bourguet, M.L. (2008). Handling uncertainty in pervasive computing applications.
Computer Communications journal, Vol. 31, No. 18, (December 2008) 4234-4241

Ciarletta, L. & Dima, A. (2000). A Conceptual Model for Pervasive Computing, Proceedings of
the 2000 International Workshop on Parallel Processing, Washington, DC, USA, August
2000

Crowley, J.L. (2006). Things that See: Context-Aware Multi-modal Interaction. Lecture Notes
in Computer Science, Vol. 3948, (2006) 183-198

Dey, A.K. (2001). Understanding and Using Context. Journal of Personal and Ubiquitous
Computing, vol 25, (2001) 4-7

Dobson, S. & Nixon, P. (2004). More principled design of pervasive computing systems,
Proceedings of the Engineering for Human–Computer Interaction and Design,
Specification and Verification of Interactive Systems, pp. 292–305, Hamburg, Germany,
July 2004

Edmonds, M. (2010). How Smart Homes Work, Copyright © 2010 Discovery Communications
Inc. http://tlc.howstuffworks.com/home/smart-home1.htm

Feki, M.A.; Renouard, S.; Abdulrazak, B.; Chollet, G. & Mokhtari, M. (2004). Coupling
context awareness and multimodality in smart homes concept. Lecture Notes in
Computer Science, Vol. 3118 (2004) 906–913

Ferscha, A. & Zia, K. (2009). LifeBelt: Silent Directional Guidance for Crowd Evacuation,
Proceedings of 13th International Symposium on Wearable Computers (ISWC 09), pp. 19–
26, Linz, Austria, September 2009

Frankish, C.; Jones, D. & Hapeshi, K. (1992). Decline in accuracy of automatic speech
recognition as a function of time on task: fatigue or voice drift? International Journal
of Man–Machine Studies, Vol. 36, (1992) 797–816

Halverson, C.; Horn, D.; Karat, C. & Karat, J. (1999). The beauty of errors: patterns of error
correction in desktop speech systems, Proceedings of the INTERACT 99, pp. 133–140,
Edinburgh, UK, September 1999, IOS Press

Heer, J.; Good, N.; Ramirez, A.; Davis, M. & Mankoff, J. (2004). Presiding over accidents:
system direction of human action, Proceedings of the ACM CHI’04, pp. 463–470,
Vienna, Austria, April 2004

Holle, H. & Gunter, T.C. (2007). The role of iconic gestures in speech disambiguation: ERP
evidence. Journal of Cognitive Neuroscience, Vol. 19, No. 7, (2007) 1175–1192

Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective

65

Kapoor, A. & Picard, R.W. (2005). Multimodal affect recognition in learning environments,
Proceedings of the ACM MM’05, Singapore, November 2005

Karat, C.; Halverson, C.; Horn, D. & Karat, J. (1999). Patterns of entry and correction in large
vocabulary contentious speech recognition systems, Proceedings of the ACM CHI’99,
pp. 568–575, Pittsburgh, Pennsylvania, May 1999

Khoury, H.M. & Kamat, V.R. (2009). High-precision identification of contextual information
in location-aware engineering applications . Advanced Engineering Informatics
journal, Vol. 23, No. 4 (October 2009) 483-496

Leichtenstern, K. & Andre, E. (2008). User-centred development of mobile interfaces to a
pervasive computing environment, Proceedings of the First International Conference on
Advances in Computer–Human Interaction, pp. 114–119, Sainte Luce, Martinique,
February 2008

Luo, A.; Zhou, J.; Wang F. & Shen, L. (2009). Context Aware Multimodal Interaction Model
in Standard Natural Classroom. Lecture Notes in Computer Science, Vol. 5685, (2009)
13-23

Macho, D.; Padrell, J.; Abad, A.; Nadeu, C.; Hernando, J.; McDonough, J.; Wolfel, M.; Klee,
U.; Omologo, M.; Brutti, A.; Svaizer, P.; Potamianos G. & Chu, S.M. (2005).
Automatic speech activity detection, source localization, and speech recognition on
the chil seminar corpus, Proceedings of the IEEE International Conference on
Multimedia and Expo, pp. 876–879, Amsterdam, July 2005

Matsumiya, K.; Aoki, S.; Murase, M. & Tokuda, H. (2003). Active authentication for
pervasive computing environments. Lecture Notes in Computer Science, Vol. 2609,
(2003) 267–273

Meier, U.; Stiefelhagen, R.; Yang, J. & Waibel, A. (2000). Towards unrestricted lipreading.
International Journal of Pattern Recognition and Artificial Intelligence, Vol. 14 (2000)
571–585

Narayanan, S. (2002). Towards modeling user behavior in human–machine interactions:
effect of errors and emotions, Proceedings of the ISLE Workshop on Dialogue Tagging
for Multi-modal Human Computer Interaction, Edinburgh, UK, December 2002

Norman, D.A. (1988). The Psychology of Everday Things, Basic Books, New York
Oikonomopoulos, A.; Patras, I. & Pantic, M. (2006). Human action recognition with

spatiotemporal salient points. IEEE Transactions on Systems, Man and Cybernetics
Part B, Vol. 36, No.3, (2006) 710–719

Oviatt, S.; Cohen, P. & Wang, M. (1994). Toward interface design for human language
technology: modality and structure as determinants of linguistic complexity. Speech
Communication, Vol. 15, (1994) 283–300

Oviatt, S. & van Gent, R. (1996). Error resolution during multimodal human–computer
interaction, Proceedings of the Fourth International Conference on Spoken Language
Processing, pp. 204–207, Philadelphia, Pennsylvania, October 1996

Oviatt, S. (1999). Ten myths of multimodal interaction. Communication of the ACM, Vol. 42,
No. 11, (1999) 74–81

Oviatt, S. (2000). Taming recognition errors with a multimodal interface. Communications of
the ACM, Vol. 43, No. 9, (2000) 45–51

Pantic, M. (2005). Affective Computing, In: Encyclopedia of Multimedia Technology and
Networking, vol. 1, pp. 8–14, Hershy, PA, USA, Idea Group Reference

 Ubiquitous Computing

66

Preece, J.; Rogers, Y.; Sharp, H.; Benyon, D.; Holland, S. & Carey, T. (1994). Knowledge and
Mental Models, In: Human-Computer Interaction, pp. 123-139, Addison-Wesley

Singh, P. (2002). The public acquisition of commonsense knowledge, Proceedings of the AAAI
Spring Symposium: Acquiring (and Using) Linguistic (and World) Knowledge for
Information Access, Palo Alto, California, 2002

Stillman, S. & Essa, I. (2001). Towards reliable multimodal sensing in aware environments,
Proceedings of the PUI 2001, Orlando, Forida, November 2001

Suhm, B.; Myers, B. & Waibel, A. (1999). Model-based and empirical evaluation of
multimodal interactive error correction, Proceedings of the ACM CHI’99, pp. 584–591,
Pittsburgh, Pennsylvania, May 1999

Suhm, B.; Myers, B. & Waibel, A. (2001). Multimodal error correction for speech user
interfaces. ACM Transactions on Computer–Human Interaction, Vol. 8, No. 1, (2001)
60–98

Tsai, C.W.; Chou, S.Y. & Lin, S.W. (2010). Location-aware tour guide systems in museums.
Scientific Research and Essays journal, Vol. 5, No. 8, (April 2010) 714-720

Vieroth, R.; Löher, T.; Seckel, M.; Dils, C.; Kallmayer, C.; Ostmann, A. & Reichl, H. (2009).
Stretchable Circuit Board Technology and Application, Proceedings of 13th
International Symposium on Wearable Computers (ISWC 09), pp. 33–36, Linz, Austria,
September 2009

W3C. (2003) http://www.w3.org/TR/mmi-framework/
W3C. (2002) http://www.w3.org/2002/01/multimodal-charter.html
Yoshimi, B.H. & Pingali, G.S. (2002). A multi-modal speaker detection and tracking system

for teleconferencing, Proceedings of the ACM Conference on Multimedia, pp. 427-428,
Juan-les-Pin, France, December 2002

Yue, W.; Mu, S.; Wang, H. & Wang, G. (2005). TGH: A case study of designing natural
interaction for mobile guide systems, Proceedings of Mobile HCI’05, pp. 199-206,
Salzburg, Austria, September 2005

4

Content Adaptation in Ubiquitous Computing1
Wanderley Lopes de Souza1, Antonio Francisco do Prado1,

Marcos Forte2 and Carlos Eduardo Cirilo1
1Federal University of São Carlos
2Federal University of São Paulo

Brazil

1. Introduction
According to the predominant computing environments, the history of Computing can be
classified into the initial period of mainframes, the current one of personal computers, and
the future one of Ubiquitous Computing whose goal is to provide the user with easy access
to and processing of information at any time and from anywhere (Hansmann et al., 2003).
Mobile communication has contributed to drive the leap of Computing into this new era,
since it has given users unprecedented choice and freedom, enabling them to search for new
and rewarding ways to conduct their personal and professional affairs. In just one decade,
mobile networks have allowed for a growth rate that took fixed networks almost a century
to achieve, and the advances in mobile technologies have led to the transition from voice-
exclusive services to web-based content services.
This globalized mobility requires new architectures and protocols that allow mobile
networks to connect easily to several types of services and content providers spread over the
Internet. The futuristic view of the mobile Internet presupposes users with different profiles
using different access networks and mobile devices, requiring personalized services that
meet their needs, availability and locations. In this context, it is necessary to describe
information about people, places, devices and other objects that are considered relevant for
the interaction between users and services, including the users and services themselves.
The fields of Ubiquitous Computing include content adaptation, which involves converting
an original content into a large number of formats compatible with the user preferences, the
access device capabilities, the access network characteristics, and the delivery context. Due
to the infinity of possible adaptations, the greater the quantity of available adaptation
services, the higher the chances of meeting the user’s needs.
The content adaptation can occurs at several points along the data path, including the origin
server, the user device, and the edge device. An essential requirement for carrying out this
process is the establishment of an adaptation policy, which defines what adaptation is to be
done on a given content, when, and who should do it. To be effective, this policy must take
into account information on users, devices, access network, content, and service agreement.
The purpose of this Ubiquitous Computing book chapter is to do a survey on our main
contributions in the field of content adaptation. The sequence of this chapter is organized as

1 Supported by INCT-MACC/CNPq

 Ubiquitous Computing

66

Preece, J.; Rogers, Y.; Sharp, H.; Benyon, D.; Holland, S. & Carey, T. (1994). Knowledge and
Mental Models, In: Human-Computer Interaction, pp. 123-139, Addison-Wesley

Singh, P. (2002). The public acquisition of commonsense knowledge, Proceedings of the AAAI
Spring Symposium: Acquiring (and Using) Linguistic (and World) Knowledge for
Information Access, Palo Alto, California, 2002

Stillman, S. & Essa, I. (2001). Towards reliable multimodal sensing in aware environments,
Proceedings of the PUI 2001, Orlando, Forida, November 2001

Suhm, B.; Myers, B. & Waibel, A. (1999). Model-based and empirical evaluation of
multimodal interactive error correction, Proceedings of the ACM CHI’99, pp. 584–591,
Pittsburgh, Pennsylvania, May 1999

Suhm, B.; Myers, B. & Waibel, A. (2001). Multimodal error correction for speech user
interfaces. ACM Transactions on Computer–Human Interaction, Vol. 8, No. 1, (2001)
60–98

Tsai, C.W.; Chou, S.Y. & Lin, S.W. (2010). Location-aware tour guide systems in museums.
Scientific Research and Essays journal, Vol. 5, No. 8, (April 2010) 714-720

Vieroth, R.; Löher, T.; Seckel, M.; Dils, C.; Kallmayer, C.; Ostmann, A. & Reichl, H. (2009).
Stretchable Circuit Board Technology and Application, Proceedings of 13th
International Symposium on Wearable Computers (ISWC 09), pp. 33–36, Linz, Austria,
September 2009

W3C. (2003) http://www.w3.org/TR/mmi-framework/
W3C. (2002) http://www.w3.org/2002/01/multimodal-charter.html
Yoshimi, B.H. & Pingali, G.S. (2002). A multi-modal speaker detection and tracking system

for teleconferencing, Proceedings of the ACM Conference on Multimedia, pp. 427-428,
Juan-les-Pin, France, December 2002

Yue, W.; Mu, S.; Wang, H. & Wang, G. (2005). TGH: A case study of designing natural
interaction for mobile guide systems, Proceedings of Mobile HCI’05, pp. 199-206,
Salzburg, Austria, September 2005

4

Content Adaptation in Ubiquitous Computing1
Wanderley Lopes de Souza1, Antonio Francisco do Prado1,

Marcos Forte2 and Carlos Eduardo Cirilo1
1Federal University of São Carlos
2Federal University of São Paulo

Brazil

1. Introduction
According to the predominant computing environments, the history of Computing can be
classified into the initial period of mainframes, the current one of personal computers, and
the future one of Ubiquitous Computing whose goal is to provide the user with easy access
to and processing of information at any time and from anywhere (Hansmann et al., 2003).
Mobile communication has contributed to drive the leap of Computing into this new era,
since it has given users unprecedented choice and freedom, enabling them to search for new
and rewarding ways to conduct their personal and professional affairs. In just one decade,
mobile networks have allowed for a growth rate that took fixed networks almost a century
to achieve, and the advances in mobile technologies have led to the transition from voice-
exclusive services to web-based content services.
This globalized mobility requires new architectures and protocols that allow mobile
networks to connect easily to several types of services and content providers spread over the
Internet. The futuristic view of the mobile Internet presupposes users with different profiles
using different access networks and mobile devices, requiring personalized services that
meet their needs, availability and locations. In this context, it is necessary to describe
information about people, places, devices and other objects that are considered relevant for
the interaction between users and services, including the users and services themselves.
The fields of Ubiquitous Computing include content adaptation, which involves converting
an original content into a large number of formats compatible with the user preferences, the
access device capabilities, the access network characteristics, and the delivery context. Due
to the infinity of possible adaptations, the greater the quantity of available adaptation
services, the higher the chances of meeting the user’s needs.
The content adaptation can occurs at several points along the data path, including the origin
server, the user device, and the edge device. An essential requirement for carrying out this
process is the establishment of an adaptation policy, which defines what adaptation is to be
done on a given content, when, and who should do it. To be effective, this policy must take
into account information on users, devices, access network, content, and service agreement.
The purpose of this Ubiquitous Computing book chapter is to do a survey on our main
contributions in the field of content adaptation. The sequence of this chapter is organized as

1 Supported by INCT-MACC/CNPq

 Ubiquitous Computing

68

follows: section 2 deals with content adaptation, the Internet Content Adaptation Protocol
(ICAP), and an adaptation service that uses this protocol; section 3 deals with frameworks
for content adaptation, in particular the Internet Content Adaptation Framework (ICAF);
section 4 deals with ontologies and Web services for content adaptation, and an ICAF
extension for the use of these technologies; and section 5 presents some concluding remarks.

2. Content adaptation
Content adaptation involves modifying the representation of Internet content in order to
come up with versions that meet diverse user requirements and the distinct characteristics
of devices and access networks (Buchholz & Schill, 2003). Among the Internet content
adaptation services the following stand out (Beck et al., 2000):
a. Virus scan, searches for viruses before delivering the content to the user;
b. Ad Insertion, inserts advertisements into a content based on user interests and/or location;
c. Markup Language Translation, allows devices that do not support Hypertext Markup

Language (HTML) pages but support other markup languages (e.g., Wireless Markup
Language) to receive the content of such pages;

d. Data compression, allows the origin server to send its content in compressed form so that
the edge device can extract it, thereby reducing the bandwidth used in this communication;

e. Content Filtering, redirects an unauthorized content request or blocks a response
containing unsuitable content;

f. Image Transcodification, processes image files in order, for example, to transform its
format, reduce its size and/or resolution, or modify its color range; and

g. Language Translate, translates a Web page from one language to another.
These adaptation services require from an adaptation server special processing functions,
such as video and voice trans-coding, intelligent text processing and filtering, and many
others. Performing the adaptation services at the origin server has the advantage that the
content author has a full control on what and how to present the content to the user. On the
other hand, since these functions are quite different from the basic functions needed for
building Web servers, the authoring process becomes more complex and time consuming.
Another major drawback is the cost and the performance scalability issue of the origin
server. Performing the adaptation services at the end user device limits the adaptation to the
available functionality and capability of the device. It is therefore recommended to locate
these functions in a separate computer that could be shared by many different applications.

2.1 Internet Content Adaptation Protocol (ICAP)
ICAP (Elson & Cerpa, 2003) was first introduced in 1999 by Peter Danzig and John Schuster
from Network Appliance and further developed by the ICAP Forum, a coalition of Internet
businesses. ICAP is a client/server application protocol running on the top of TCP/IP,
similar in semantics and usage to HTTP/1.1, and designed to off-load specific Internet-
based content adaptation to dedicated servers. Each server may focus on a specific value
added service, thereby freeing up resources in the Web servers and standardizing the way
in which these services are implemented. At the core of this process there is an ICAP client
that intercepts HTTP messages and transmits them to the ICAP server for processing. The
ICAP server executes its adaptation service on these messages and sends them back to the
ICAP client. ICAP can be used in two modes as shown in Figure 1: request modification
mode (reqmode) and response modification mode (respmode).

Content Adaptation in Ubiquitous Computing

69

Origin server

ICAP server

ICAP client

Client

(1)

(4)

(5)

(2)(3)

(6)

ICAP server

ICAP client

Client

(1)

(2)

(3)

(4)(5)

(6)
Origin server

 (a) (b)

Fig. 1. (a) ICAP reqmode (b) ICAP respmode

In the reqmode, a user Client sends a request to an Origin server. This request is intercepted
by an ICAP client, which redirects it to an ICAP server. The ICAP server may then: (a) send
back a modified version of the request containing the original URI, and the ICAP client may
then send the modified request to the Origin server, or may first pipeline it to another ICAP
server for further modification; (b) modify the request so that it points to a page containing
an error message instead of the original URI; (c) return an encapsulated HTTP response
indicating an HTTP error. Figure 1(a) shows a data flow, where the message sequences in
cases (a) and (b) are 1, 2, 3, 4, 5, and 6, while the message sequence in case (c) is 1, 2, 3, and 6.
The response modification mode (respmode) is intended for post-processing performed on a
HTTP response before it is delivered to the user client. The ICAP client forwards the request
directly to the Origin server. The Origin server’s response is intercepted by the ICAP client,
which redirects it to an ICAP server. The ICAP server may then: (a) send back a modified
version of the response; or (b) return an error. Figure 1(b) shows a data flow for this case.
Although it is an essential part, the transaction semantics defined by ICAP is of limited use
without a control algorithm, that determines what adaptation or processing function should
be requested for what HTTP request or response passing through the ICAP client.

2.2 Adaptation policy
One fundamental aspect in content adaptation is the definition of an adaptation policy, i.e.,
what adaptation services are to be offered, which local or remote adaptors will execute these
adaptations, and when the latter should be requested. The following information is
necessary regarding the adaptation environment: characteristics and capacities of the access
device; personal user information and preferences; conditions of the communication
network; characteristics of the requested content; and the terms of the service agreement
between the service provider and the end user. As proposed in (Forte et al., 2006) and
illustrated in Figure 2, this information can be described and stored in device, user, network,
content and Service Level Agreement (SLA) profiles.

 Ubiquitous Computing

68

follows: section 2 deals with content adaptation, the Internet Content Adaptation Protocol
(ICAP), and an adaptation service that uses this protocol; section 3 deals with frameworks
for content adaptation, in particular the Internet Content Adaptation Framework (ICAF);
section 4 deals with ontologies and Web services for content adaptation, and an ICAF
extension for the use of these technologies; and section 5 presents some concluding remarks.

2. Content adaptation
Content adaptation involves modifying the representation of Internet content in order to
come up with versions that meet diverse user requirements and the distinct characteristics
of devices and access networks (Buchholz & Schill, 2003). Among the Internet content
adaptation services the following stand out (Beck et al., 2000):
a. Virus scan, searches for viruses before delivering the content to the user;
b. Ad Insertion, inserts advertisements into a content based on user interests and/or location;
c. Markup Language Translation, allows devices that do not support Hypertext Markup

Language (HTML) pages but support other markup languages (e.g., Wireless Markup
Language) to receive the content of such pages;

d. Data compression, allows the origin server to send its content in compressed form so that
the edge device can extract it, thereby reducing the bandwidth used in this communication;

e. Content Filtering, redirects an unauthorized content request or blocks a response
containing unsuitable content;

f. Image Transcodification, processes image files in order, for example, to transform its
format, reduce its size and/or resolution, or modify its color range; and

g. Language Translate, translates a Web page from one language to another.
These adaptation services require from an adaptation server special processing functions,
such as video and voice trans-coding, intelligent text processing and filtering, and many
others. Performing the adaptation services at the origin server has the advantage that the
content author has a full control on what and how to present the content to the user. On the
other hand, since these functions are quite different from the basic functions needed for
building Web servers, the authoring process becomes more complex and time consuming.
Another major drawback is the cost and the performance scalability issue of the origin
server. Performing the adaptation services at the end user device limits the adaptation to the
available functionality and capability of the device. It is therefore recommended to locate
these functions in a separate computer that could be shared by many different applications.

2.1 Internet Content Adaptation Protocol (ICAP)
ICAP (Elson & Cerpa, 2003) was first introduced in 1999 by Peter Danzig and John Schuster
from Network Appliance and further developed by the ICAP Forum, a coalition of Internet
businesses. ICAP is a client/server application protocol running on the top of TCP/IP,
similar in semantics and usage to HTTP/1.1, and designed to off-load specific Internet-
based content adaptation to dedicated servers. Each server may focus on a specific value
added service, thereby freeing up resources in the Web servers and standardizing the way
in which these services are implemented. At the core of this process there is an ICAP client
that intercepts HTTP messages and transmits them to the ICAP server for processing. The
ICAP server executes its adaptation service on these messages and sends them back to the
ICAP client. ICAP can be used in two modes as shown in Figure 1: request modification
mode (reqmode) and response modification mode (respmode).

Content Adaptation in Ubiquitous Computing

69

Origin server

ICAP server

ICAP client

Client

(1)

(4)

(5)

(2)(3)

(6)

ICAP server

ICAP client

Client

(1)

(2)

(3)

(4)(5)

(6)
Origin server

 (a) (b)

Fig. 1. (a) ICAP reqmode (b) ICAP respmode

In the reqmode, a user Client sends a request to an Origin server. This request is intercepted
by an ICAP client, which redirects it to an ICAP server. The ICAP server may then: (a) send
back a modified version of the request containing the original URI, and the ICAP client may
then send the modified request to the Origin server, or may first pipeline it to another ICAP
server for further modification; (b) modify the request so that it points to a page containing
an error message instead of the original URI; (c) return an encapsulated HTTP response
indicating an HTTP error. Figure 1(a) shows a data flow, where the message sequences in
cases (a) and (b) are 1, 2, 3, 4, 5, and 6, while the message sequence in case (c) is 1, 2, 3, and 6.
The response modification mode (respmode) is intended for post-processing performed on a
HTTP response before it is delivered to the user client. The ICAP client forwards the request
directly to the Origin server. The Origin server’s response is intercepted by the ICAP client,
which redirects it to an ICAP server. The ICAP server may then: (a) send back a modified
version of the response; or (b) return an error. Figure 1(b) shows a data flow for this case.
Although it is an essential part, the transaction semantics defined by ICAP is of limited use
without a control algorithm, that determines what adaptation or processing function should
be requested for what HTTP request or response passing through the ICAP client.

2.2 Adaptation policy
One fundamental aspect in content adaptation is the definition of an adaptation policy, i.e.,
what adaptation services are to be offered, which local or remote adaptors will execute these
adaptations, and when the latter should be requested. The following information is
necessary regarding the adaptation environment: characteristics and capacities of the access
device; personal user information and preferences; conditions of the communication
network; characteristics of the requested content; and the terms of the service agreement
between the service provider and the end user. As proposed in (Forte et al., 2006) and
illustrated in Figure 2, this information can be described and stored in device, user, network,
content and Service Level Agreement (SLA) profiles.

 Ubiquitous Computing

70

Fig. 2. Profiles and attributes
The user profile contains the user’s personal information and his content adaptation
preferences. Different users may wish to have different adaptations applied to a requested
content (e.g., one user prefers having images removed while another prefers the sound).
Adaptations not based on user preferences may be inconvenient or even undesirable.
The network profile can be dynamically obtained through agents that monitor parameters of
the communication network between provider and user. Parameters such as latency and
bandwidth guide some adaptation processes (e.g., images, video and audio on demand) so
that the adapted content is optimized for the conditions of the network of a given context.
The content profile, also generated dynamically, is based on characteristics of the requested
content. The applicable content modifications are determined based on information
extracted from the HTTP header and, if it is available, the set of content metadata.
The SLA profile contains the terms of the service agreement between the user and the access
provider, which can offer different plans, including bandwidth, connection time and added
value services, allowing users to choose the plan that best fits their needs.
The adaptation policy must also consider adaptation rules, which comprise a set of related
conditions and actions. These conditions refer to the profiles, reflecting the characteristics
and needs of the entities involved in the adaptation process, and determine the action to be
taken and the adaptation servers to be used. Figure 3 shows execution points for adaptation
rules: points 1 and 2 during the request stage, the former before the content search in the
cache and the latter after this search; points 3 and 4 during the response stage, the former
before the content storage in the cache and the latter after this storage. The execution point
definition for each rule depends on the adaptation service (e.g., an antivirus service should
be executed at point 3 to prevent a contaminated content from being stored in the cache).

Fig. 3. Execution points for processing adaptation rules

2.3 Content Classification and Filtering Service (CCFS)
CCFS allows for controlling the access to undesirable content. Three interrelated terms are
defined for this kind of service: (a) labeling is the process that describes a content associated

Profiles

Device

Display resolution

Operating System

Browser

Processor

Memory

Content

Type

Idiom

Title

SLA
User

 Connection Time

 Filtering Service

 Translation Service

User

Name

 Remove Images

Filter Profile

URLDB

KWDBNetwork
Delay

Bandwidth

Adaptation Proxy
1
4 3

2User
Origin
Server

Content Adaptation in Ubiquitous Computing

71

to a label without requiring the user to open the file to examine its content; (b) rating is the
process that confers values on a content based on certain suppositions/criteria, and if the
content has a label, it already possesses a prequalification which may or may not be
accepted by the filter; (c) filtering is the process aimed at blocking access to a content by
comparing its classification against the system’s definition of undesirable content. It should
be noted that CCFS is not restricted solely to illegal (e.g., racism) or inappropriate contents
(e.g., pornography), but also to undesirable contents in a corporation (e.g., shopping, chats).
The oldest and most commonly employed classification method is based on proprietary
Uniform Resource Locator (URL) collections, in which each URL is associated to a specific
content category. When a page is requested, the classifier checks its address in the database
to find its category. With the category definition the filter can block or release the access to
the site, according to the configured Internet policy. Keeping these collections updated is a
challenge for CCFS suppliers, since the rate at which new Internet pages are created far
exceeds their capacity to classify them (ICOGNITO, 2002).
A second generation of classifiers executes the analysis and classification of all Web traffic
requested by the user on demand (e.g. keywords, textual analysis, labels, image
analysis).When a page is received, it is classified according to its content, and the system
blocks or releases that page in line with the pre-established filtering policy. The classification
process is subject to the following problems: (a) under-blocking, when the filter fails to block
undesired content, usually due to an outdated URL database or, in the dynamic approaches,
an incorrect content classification; (b) over-blocking, when the filter blocks a content unduly,
usually due to the use of keywords without context analysis. Pages on sexual education and
medicine are the most commonly affected by this last problem (Rideout et al., 2002).
The CCFS we developed (Forte et al., 2006), illustrated in Figure 4, is part of a general
architecture encompassing a set of dedicated adaptation servers and a content adaptation
proxy. The purpose is to allow access to the available Internet content, independently of the
device the user is employing, and to adapt the content according to the user’s preferences.

Fig. 4. CCFS general architecture

Proxy ManagerICAP HTTP

Adaptation
Decision Engine Cache Local Adapter

Content Adaptation Proxy

User

Content Server

Classification and
Filtering Manager

URL

Image

Textual

Keywords

 URL

Classification and Filtering Server (CFS)

ICAP Labels

 Ubiquitous Computing

70

Fig. 2. Profiles and attributes
The user profile contains the user’s personal information and his content adaptation
preferences. Different users may wish to have different adaptations applied to a requested
content (e.g., one user prefers having images removed while another prefers the sound).
Adaptations not based on user preferences may be inconvenient or even undesirable.
The network profile can be dynamically obtained through agents that monitor parameters of
the communication network between provider and user. Parameters such as latency and
bandwidth guide some adaptation processes (e.g., images, video and audio on demand) so
that the adapted content is optimized for the conditions of the network of a given context.
The content profile, also generated dynamically, is based on characteristics of the requested
content. The applicable content modifications are determined based on information
extracted from the HTTP header and, if it is available, the set of content metadata.
The SLA profile contains the terms of the service agreement between the user and the access
provider, which can offer different plans, including bandwidth, connection time and added
value services, allowing users to choose the plan that best fits their needs.
The adaptation policy must also consider adaptation rules, which comprise a set of related
conditions and actions. These conditions refer to the profiles, reflecting the characteristics
and needs of the entities involved in the adaptation process, and determine the action to be
taken and the adaptation servers to be used. Figure 3 shows execution points for adaptation
rules: points 1 and 2 during the request stage, the former before the content search in the
cache and the latter after this search; points 3 and 4 during the response stage, the former
before the content storage in the cache and the latter after this storage. The execution point
definition for each rule depends on the adaptation service (e.g., an antivirus service should
be executed at point 3 to prevent a contaminated content from being stored in the cache).

Fig. 3. Execution points for processing adaptation rules

2.3 Content Classification and Filtering Service (CCFS)
CCFS allows for controlling the access to undesirable content. Three interrelated terms are
defined for this kind of service: (a) labeling is the process that describes a content associated

Profiles

Device

Display resolution

Operating System

Browser

Processor

Memory

Content

Type

Idiom

Title

SLA
User

 Connection Time

 Filtering Service

 Translation Service

User

Name

 Remove Images

Filter Profile

URLDB

KWDBNetwork
Delay

Bandwidth

Adaptation Proxy
1
4 3

2User
Origin
Server

Content Adaptation in Ubiquitous Computing

71

to a label without requiring the user to open the file to examine its content; (b) rating is the
process that confers values on a content based on certain suppositions/criteria, and if the
content has a label, it already possesses a prequalification which may or may not be
accepted by the filter; (c) filtering is the process aimed at blocking access to a content by
comparing its classification against the system’s definition of undesirable content. It should
be noted that CCFS is not restricted solely to illegal (e.g., racism) or inappropriate contents
(e.g., pornography), but also to undesirable contents in a corporation (e.g., shopping, chats).
The oldest and most commonly employed classification method is based on proprietary
Uniform Resource Locator (URL) collections, in which each URL is associated to a specific
content category. When a page is requested, the classifier checks its address in the database
to find its category. With the category definition the filter can block or release the access to
the site, according to the configured Internet policy. Keeping these collections updated is a
challenge for CCFS suppliers, since the rate at which new Internet pages are created far
exceeds their capacity to classify them (ICOGNITO, 2002).
A second generation of classifiers executes the analysis and classification of all Web traffic
requested by the user on demand (e.g. keywords, textual analysis, labels, image
analysis).When a page is received, it is classified according to its content, and the system
blocks or releases that page in line with the pre-established filtering policy. The classification
process is subject to the following problems: (a) under-blocking, when the filter fails to block
undesired content, usually due to an outdated URL database or, in the dynamic approaches,
an incorrect content classification; (b) over-blocking, when the filter blocks a content unduly,
usually due to the use of keywords without context analysis. Pages on sexual education and
medicine are the most commonly affected by this last problem (Rideout et al., 2002).
The CCFS we developed (Forte et al., 2006), illustrated in Figure 4, is part of a general
architecture encompassing a set of dedicated adaptation servers and a content adaptation
proxy. The purpose is to allow access to the available Internet content, independently of the
device the user is employing, and to adapt the content according to the user’s preferences.

Fig. 4. CCFS general architecture

Proxy ManagerICAP HTTP

Adaptation
Decision Engine Cache Local Adapter

Content Adaptation Proxy

User

Content Server

Classification and
Filtering Manager

URL

Image

Textual

Keywords

 URL

Classification and Filtering Server (CFS)

ICAP Labels

 Ubiquitous Computing

72

This architecture is based on the client-server model, in which the proxy captures the user’s
requests and the content server’s responses. The adaptation decision mechanism
implements the adaptation policy. If the adaptation policy defines the need for the CCFS,
the proxy will send an ICAP request to the Classification and Filtering Server (CFS).
The CFS was designed to allow for the easy integration of new Classification modules. The
Classification and Filtering Management module manages the Classification modules and,
using ICAP and including the ICAP and HTTP headers, manages the communications with
the Content Adaptation Proxy. It also filters the content based on the information sent by the
Classification modules. The profiles were implemented using the Composite Capability
/Preference Profile (CC/PP) (W3C, 2004a). Figure 5 shows a fragment of the user profile.

<rdf:Description rdf:ID="UserProfile">
<ccpp:component>
 <rdf:Description rdf:ID="Identification">
 <usr:UserName>mlobato</usr:UserName>
 <usr:Gender>Male</usr:Gender>
 <usr:Age>21</usr:Age>
 </rdf:Description>
</ccpp:component>
<ccpp:component>
 <rdf:Description rdf:ID="Preferences">
 <usr:ImageGrayScale>0</usr:ImageGrayScale>
 <usr:Filter_Profile>001</usr:Filter_Profile>
 <usr:UrlDB>001</usr:UrlDB>
 <usr:KWDB>005</usr:KWDB>
 </rdf:Description> ….

Fig. 5. Fragment of the user profile

The adaptation rules were implemented as clauses stored in a database, and they use the
Prolog inference mechanism to deduce the actions to be taken as a function of the conditions
to be met. Each adaptation executing point is represented at the rules base by a different
functor, allowing the rules of a given executing point to be processed. Figure 6 illustrates an
example of adaptation rule implementation to be invoked at the executing point 3.

Point_three(Ret,UserID.DeviceID,SLAID,Content):-
 contentIsText(Content),
 userPayforFilter(ContractID),
 =(Ret,’ content-filter.com filter’).

Fig. 6. Example of adaptation rule

In this adaptation rule the user identification (UserID), device identification (DeviceID),
service level agreement (SLAID), and content type (Content) are provided. If they met, the
action is stored in the variable Ret, which receives the values of the contentfilter.com and filter.
Figure 7 illustrates the sequence of a content adaptation. Starting from an HTTP request
from the user (1), the access provider sends the HTTP request to the adaptation proxy
together with the user identification (2). The adaptation decision mechanism pulls the user
profile and SLA from its database and verifies that the user chose a filtering service, which

Content Adaptation in Ubiquitous Computing

73

needs the requested content and the content profile. Failing to locate this content in its
cache, the proxy sends a request to the origin content server (3) and, upon receiving a
response (4), dynamically creates the content profile. Since the requested content is of text
type, all the requisites of CFS’s rule are met. Then, the decision mechanism creates an ICAP
request, attaching the user’s preferences (e.g., icap://adaptation.com/filter?filter_profile=001
&urldb=001&kwdb=005&append) and the content received from the Web server, and sends
them through the proxy to the adaptation server (5). The latter executes the requested
adaptation and returns the result to the proxy (6), which in turn sends it to the user (7).

Fig. 7. Sequence of a content adaptation

An ICAP request encapsulates the ICAP header, the HTTP request header, the HTTP
response header and the requested page body, the last two only when operating in respmod.
When this request reaches the CFS, the following information is extracted from the ICAP
header: the categories of content to be blocked (e.g., filter_profile=001); the URL databases
and categorized domains that will be used (e.g., urldb=001); and, if the adaptation is in
respmod, the database of keywords (e.g., kwdb=005). The domain and URL page requested by
the user are extracted from the HTTP request header. In respmod the requested content will
be extracted (body), allowing for classification by keywords. Figure 8 shows the states model
of this ICAP request.

2.4 CCFS evaluation
For the CCFS performance evaluation three computers were employed: the first executing
Linux Fedora Core 2 (2Ghz – 256MB) and the others Windows 2000 (700Mhz – 256MB).
Because the variations in the response times of the Origin Servers, including those due to the
Internet throughput, could interfere on this evaluation, an Apache 2 server was installed.
This enabled the tested pages to be cloned, restricting the data flow to the computers
involved in the case study. The software described in (Forte et al., 2007) was employed for
the content adaptation proxy implementation, with the addition of specific CCFS profiles
and rules, and was installed on the Linux platform. The CFS and its database, containing
651,620 categorized sites and 29 keywords, were installed on a Windows 2000 platform. Five
predefined links have been accessed: two links were not blocked by the filter, one was
blocked because of its address domain and another because of its URL address, and the last

User Profile
Filter_Profile=001; URLDB=001
KWDB=005; APPEND=TRUE

SLA Profile
PayForFilter=True

Content Profile
Type=Text

Filtering Server Rule
PayForFilter=True; ContentType=Text

Adaptation Proxy

ISP

1
HTTP + USER ID

HTTP

2

7

USER

Content Adaptation
Server ICAP

4
HTTPOrigin Content Server

5

6

3

Request Response

 Ubiquitous Computing

72

This architecture is based on the client-server model, in which the proxy captures the user’s
requests and the content server’s responses. The adaptation decision mechanism
implements the adaptation policy. If the adaptation policy defines the need for the CCFS,
the proxy will send an ICAP request to the Classification and Filtering Server (CFS).
The CFS was designed to allow for the easy integration of new Classification modules. The
Classification and Filtering Management module manages the Classification modules and,
using ICAP and including the ICAP and HTTP headers, manages the communications with
the Content Adaptation Proxy. It also filters the content based on the information sent by the
Classification modules. The profiles were implemented using the Composite Capability
/Preference Profile (CC/PP) (W3C, 2004a). Figure 5 shows a fragment of the user profile.

<rdf:Description rdf:ID="UserProfile">
<ccpp:component>
 <rdf:Description rdf:ID="Identification">
 <usr:UserName>mlobato</usr:UserName>
 <usr:Gender>Male</usr:Gender>
 <usr:Age>21</usr:Age>
 </rdf:Description>
</ccpp:component>
<ccpp:component>
 <rdf:Description rdf:ID="Preferences">
 <usr:ImageGrayScale>0</usr:ImageGrayScale>
 <usr:Filter_Profile>001</usr:Filter_Profile>
 <usr:UrlDB>001</usr:UrlDB>
 <usr:KWDB>005</usr:KWDB>
 </rdf:Description> ….

Fig. 5. Fragment of the user profile

The adaptation rules were implemented as clauses stored in a database, and they use the
Prolog inference mechanism to deduce the actions to be taken as a function of the conditions
to be met. Each adaptation executing point is represented at the rules base by a different
functor, allowing the rules of a given executing point to be processed. Figure 6 illustrates an
example of adaptation rule implementation to be invoked at the executing point 3.

Point_three(Ret,UserID.DeviceID,SLAID,Content):-
 contentIsText(Content),
 userPayforFilter(ContractID),
 =(Ret,’ content-filter.com filter’).

Fig. 6. Example of adaptation rule

In this adaptation rule the user identification (UserID), device identification (DeviceID),
service level agreement (SLAID), and content type (Content) are provided. If they met, the
action is stored in the variable Ret, which receives the values of the contentfilter.com and filter.
Figure 7 illustrates the sequence of a content adaptation. Starting from an HTTP request
from the user (1), the access provider sends the HTTP request to the adaptation proxy
together with the user identification (2). The adaptation decision mechanism pulls the user
profile and SLA from its database and verifies that the user chose a filtering service, which

Content Adaptation in Ubiquitous Computing

73

needs the requested content and the content profile. Failing to locate this content in its
cache, the proxy sends a request to the origin content server (3) and, upon receiving a
response (4), dynamically creates the content profile. Since the requested content is of text
type, all the requisites of CFS’s rule are met. Then, the decision mechanism creates an ICAP
request, attaching the user’s preferences (e.g., icap://adaptation.com/filter?filter_profile=001
&urldb=001&kwdb=005&append) and the content received from the Web server, and sends
them through the proxy to the adaptation server (5). The latter executes the requested
adaptation and returns the result to the proxy (6), which in turn sends it to the user (7).

Fig. 7. Sequence of a content adaptation

An ICAP request encapsulates the ICAP header, the HTTP request header, the HTTP
response header and the requested page body, the last two only when operating in respmod.
When this request reaches the CFS, the following information is extracted from the ICAP
header: the categories of content to be blocked (e.g., filter_profile=001); the URL databases
and categorized domains that will be used (e.g., urldb=001); and, if the adaptation is in
respmod, the database of keywords (e.g., kwdb=005). The domain and URL page requested by
the user are extracted from the HTTP request header. In respmod the requested content will
be extracted (body), allowing for classification by keywords. Figure 8 shows the states model
of this ICAP request.

2.4 CCFS evaluation
For the CCFS performance evaluation three computers were employed: the first executing
Linux Fedora Core 2 (2Ghz – 256MB) and the others Windows 2000 (700Mhz – 256MB).
Because the variations in the response times of the Origin Servers, including those due to the
Internet throughput, could interfere on this evaluation, an Apache 2 server was installed.
This enabled the tested pages to be cloned, restricting the data flow to the computers
involved in the case study. The software described in (Forte et al., 2007) was employed for
the content adaptation proxy implementation, with the addition of specific CCFS profiles
and rules, and was installed on the Linux platform. The CFS and its database, containing
651,620 categorized sites and 29 keywords, were installed on a Windows 2000 platform. Five
predefined links have been accessed: two links were not blocked by the filter, one was
blocked because of its address domain and another because of its URL address, and the last

User Profile
Filter_Profile=001; URLDB=001
KWDB=005; APPEND=TRUE

SLA Profile
PayForFilter=True

Content Profile
Type=Text

Filtering Server Rule
PayForFilter=True; ContentType=Text

Adaptation Proxy

ISP

1
HTTP + USER ID

HTTP

2

7

USER

Content Adaptation
Server ICAP

4
HTTPOrigin Content Server

5

6

3

Request Response

 Ubiquitous Computing

74

Fig. 8. States model of an ICAP request for CCFS

was blocked due to a restricted keyword. The load was progressively increased, adding one
user every 1.5s up to the limit of 200 users, each user accessing a link every 5s. Figure 9
shows the results of these scenarios. The difference between the response times in reqmod
and respmod is due to the addition of the content classification routine based on keywords.

0
10
20
30
40
50
60
70
80
90

100

7 21 34 47 61 74 88 101 115 128 142 155 169 182 196A
ve
ra
ge
 a
cc
es
s t
im
e
(m
s)

Simultaneous Users
Direct Reqmod Respmod

Fig. 9. Average response time versus number of users

For the CCFS efficiency evaluation the CFS and the Squid proxy (SourceForge, 2002) were
used in a Brazilian university administrative network, and in an informatics laboratory of
this university. During 48 hours 1,215,854 requests (6.8 GB) from the administrative network
and 409,428 requests (2.8 GB) from the laboratories’ network were checked. To minimize the
interference on the response time of the employees’ and students’ accesses, only the reqmod
was used by the adaptation server. Figure 10 depicts the results of this evaluation.

Category not found
Domain Classifying

domain urldb

Do (CheckDomain)

Filtering

category profile

Do (CheckProfile)

Body Classifying

body kwdb

Do (CheckBody)

Blocked
description

Do (CheckDomain)

Accepted
body

Do (CheckDomain)

ICAP request

Category based on URLCategory based on Domain

Category based on Body

Restricted category Nonrestricted category

Category not found (respmod)

Category not found

ICAP response

URL Classifying

url urldb

Do (CheckUrl)

1

Category not found (reqmod)

1

Content Adaptation in Ubiquitous Computing

75

Fig. 10. CCFS efficiency evaluation

Considering all the domains classified in the two networks, 3 were incorrectly classified in
restricted categories (over-blocking), and 22 were not classified passing incorrectly through
the filter (under-blocking). Among those that passed incorrectly through the filter, 19
belonged to .br domains, which demonstrates the lower efficiency of blacklists produced in
other countries. These 22 domains were tested again, with CCFS operating in respmod and
using keywords for the content analysis, and 16 were correctly categorized.

3. Frameworks for content adaptation
In the mid-90s most of the content adaptations were done in the proxy (Bharadvaj et al.,
1998; Smith et al., 1998). Since this approach tends to overload the proxy, services networks
were developed for intercepting the content delivery and adapting this content, and these
networks were mainly based on the Open Pluggable Edge Services (OPES) model
(Tomlinson et al., 2001). Since OPES distributes adaptations among dedicated servers, it
became feasible to build a single architecture offering several types of adaptation.
The OPES WG also developed the languages Intermediary Rule Markup Language (IRML)
and P for the specification of content adaptation rules. IRML is based on eXtensible Markup
Language (XML), and was designed to express service execution policies and to reflect the
interests of the origin server and user on a content transaction (Beck & Hofmann, 2003). P is
based on Smalltalk and C++, it is interpreted and has the following qualitative aspects:
exactness, flexibility, efficiency, simplicity, security and hardiness (Beck & Rousskov, 2003).
Several requirements must be considered when offering adaptation services. For instance, to
avoid overloading the proxy in a service network, it is important to distribute the adaptation
services among dedicated servers. Based on such requirements, the ideas of service
networks, and using the OPES model, some important works have been done.
(Beck & Hofmann, 2001) presents an architecture for executing content adaptations that
contains a decision-making mechanism based on a condition set. These conditions and
related actions constitute the adaptation rules, which are specified in IRML. However, these
conditions do not employ information related to the adaptation environment. (Ravindran et
al., 2002) proposes a framework to manage personalization of services, whose adaptation
policy is based on a combination of user preferences, device constraints, and content
characteristics. (Marques & Loureiro, 2004) presents an adaptation architecture specifically
designed for mobile devices, which offers image, audio, and text compression adaptations,
and uses access network information to decide the best adaptation to be carried out.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
 o

 m
 a

 i
n

s

Administrative Network

Accepted 1980 1170 992

Blocked 31 323 49

br com others
0

200

400

600

800

1000

1200

1400

D
 o

 m
 a

 i
n

s

Students Lab Network

Accepted 1229 704 640

Blocked 13 132 29

br com others

 Ubiquitous Computing

74

Fig. 8. States model of an ICAP request for CCFS

was blocked due to a restricted keyword. The load was progressively increased, adding one
user every 1.5s up to the limit of 200 users, each user accessing a link every 5s. Figure 9
shows the results of these scenarios. The difference between the response times in reqmod
and respmod is due to the addition of the content classification routine based on keywords.

0
10
20
30
40
50
60
70
80
90

100

7 21 34 47 61 74 88 101 115 128 142 155 169 182 196A
ve
ra
ge
 a
cc
es
s t
im
e
(m
s)

Simultaneous Users
Direct Reqmod Respmod

Fig. 9. Average response time versus number of users

For the CCFS efficiency evaluation the CFS and the Squid proxy (SourceForge, 2002) were
used in a Brazilian university administrative network, and in an informatics laboratory of
this university. During 48 hours 1,215,854 requests (6.8 GB) from the administrative network
and 409,428 requests (2.8 GB) from the laboratories’ network were checked. To minimize the
interference on the response time of the employees’ and students’ accesses, only the reqmod
was used by the adaptation server. Figure 10 depicts the results of this evaluation.

Category not found
Domain Classifying

domain urldb

Do (CheckDomain)

Filtering

category profile

Do (CheckProfile)

Body Classifying

body kwdb

Do (CheckBody)

Blocked
description

Do (CheckDomain)

Accepted
body

Do (CheckDomain)

ICAP request

Category based on URLCategory based on Domain

Category based on Body

Restricted category Nonrestricted category

Category not found (respmod)

Category not found

ICAP response

URL Classifying

url urldb

Do (CheckUrl)

1

Category not found (reqmod)

1

Content Adaptation in Ubiquitous Computing

75

Fig. 10. CCFS efficiency evaluation

Considering all the domains classified in the two networks, 3 were incorrectly classified in
restricted categories (over-blocking), and 22 were not classified passing incorrectly through
the filter (under-blocking). Among those that passed incorrectly through the filter, 19
belonged to .br domains, which demonstrates the lower efficiency of blacklists produced in
other countries. These 22 domains were tested again, with CCFS operating in respmod and
using keywords for the content analysis, and 16 were correctly categorized.

3. Frameworks for content adaptation
In the mid-90s most of the content adaptations were done in the proxy (Bharadvaj et al.,
1998; Smith et al., 1998). Since this approach tends to overload the proxy, services networks
were developed for intercepting the content delivery and adapting this content, and these
networks were mainly based on the Open Pluggable Edge Services (OPES) model
(Tomlinson et al., 2001). Since OPES distributes adaptations among dedicated servers, it
became feasible to build a single architecture offering several types of adaptation.
The OPES WG also developed the languages Intermediary Rule Markup Language (IRML)
and P for the specification of content adaptation rules. IRML is based on eXtensible Markup
Language (XML), and was designed to express service execution policies and to reflect the
interests of the origin server and user on a content transaction (Beck & Hofmann, 2003). P is
based on Smalltalk and C++, it is interpreted and has the following qualitative aspects:
exactness, flexibility, efficiency, simplicity, security and hardiness (Beck & Rousskov, 2003).
Several requirements must be considered when offering adaptation services. For instance, to
avoid overloading the proxy in a service network, it is important to distribute the adaptation
services among dedicated servers. Based on such requirements, the ideas of service
networks, and using the OPES model, some important works have been done.
(Beck & Hofmann, 2001) presents an architecture for executing content adaptations that
contains a decision-making mechanism based on a condition set. These conditions and
related actions constitute the adaptation rules, which are specified in IRML. However, these
conditions do not employ information related to the adaptation environment. (Ravindran et
al., 2002) proposes a framework to manage personalization of services, whose adaptation
policy is based on a combination of user preferences, device constraints, and content
characteristics. (Marques & Loureiro, 2004) presents an adaptation architecture specifically
designed for mobile devices, which offers image, audio, and text compression adaptations,
and uses access network information to decide the best adaptation to be carried out.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D
 o

 m
 a

 i
n

s

Administrative Network

Accepted 1980 1170 992

Blocked 31 323 49

br com others
0

200

400

600

800

1000

1200

1400

D
 o

 m
 a

 i
n

s

Students Lab Network

Accepted 1229 704 640

Blocked 13 132 29

br com others

 Ubiquitous Computing

76

Unlike the aforementioned works, we developed the Internet Content Adaptation
Framework (ICAF) (Forte et al., 2007), an extremely flexible framework thanks to the reuse
of its components. Moreover, this framework contains an adaptation policy based on the
user, device and SLA profiles, and based on the access network and content information.

3.1 Internet Content Adaptation Framework (ICAF)
ICAF has two main packages: Adaptation Proxy and Adaptation Server. The User and
Origin Server actors interact with the Adaptation Proxy through content requests and
responses. The Adaptation Proxy analyzes these interactions based on an adaptation policy
and uses the available services at the Adaptation Server, which in turn adapts the
transmitted content. Figure 11 illustrates the components of the Adaptation Proxy package.
Content Transfer Protocol is responsible for the communications between User and Origin
Server. It is generic enough to support most of the used protocols for content transmission
on the Internet, including: Hypertext Transfer Protocol (HTTP), Real-time Transport
Protocol (RTP), Simple Object Access Protocol (SOAP), and File Transfer Protocol (FTP).

Fig. 11. Components of the Adaptation Proxy package

Since the Adaptation Proxy requests remote adaptations to an Adaptation Server using
communication protocols, the Callout Protocol Client was defined for doing the remote
adaptation calls. This component supports different protocols, including those especially
created for this communication: ICAP, and OPES Callout Protocol (OCP) (Rousskov, 2005).
Cache was built to improve the ICAF’s performance. It temporarily stores requested contents
on the Internet, as well as Web pages, videos and images. Before requesting content to the
Origin Server, the Adaptation Proxy checks whether it is already in the Cache. If so, a request
to the Origin Server is avoided, speeding up the content delivery to the User.
Although it uses adaptation service modules, ICAF can do content adaptations locally via
the Local Adapter. As this component employs the proxy resources, its wide-scale use may
affect the Adaptation Proxy performance, and delay the content delivery to the User.

Content Adaptation in Ubiquitous Computing

77

The Adaptation Proxy data flow is controlled by the Proxy Manager, which receives, through
the Content Transfer Protocol, the User requests and the Origin Sever responses. Using the
information carried in these communication primitives, the Proxy Manager asks for an
adaptation analysis to the Adaptation Decision. If adaptation is needed the Proxy Manager
invokes locally or remotely this service. To avoid an unnecessary content request, the Proxy
Manager checks if this content is already in the Cache.
The ICAF’s adaptation policy takes into account the user’s interests and preferences, device
capabilities and constraints, access network conditions, content characteristics, and SLA for
building the adaptation rules. It is implemented through the Adaptation Decision, Profile
Loader, Adaptation Rules Updater and Network Data Collector components.
The Profile Loader gets the user, device and SLA profiles in the ProfilesDB database. For
inserting these profiles in this database an Internet interface must be available, which could
be a Web page with a form where the user fills out the data related to these profiles. The
SLA profile could be inserted in the same way by the system administrator.
The ICAF policy is controlled by the Adaptation Decision that receives: the access network
conditions from the Network Data Collector, which monitors the network parameters; the
profiles stored in the ProfilesDB from the Profile Loader; and the content to be analyzed from
the Proxy Manager. Based on this information set, the Adaptation Decision uses the
adaptations rules to decide what adaptations will be done, which servers (local and/or
remote) will execute these adaptations, and the order in which they will be executed.
To prevent processing of outdated rules, the Adaptation Rules Updater inserts, removes and
updates the adaptation rules implemented in the Adaptation Decision. The Rules Author
carries out these updates using an interface provided by the Adaptation Rules Updater.
The Content Adaptation Server is responsible for doing the content adaptations requested
by the Adaptation Proxy. Since different types of adaptation services can be offered, we
adopted the Component-Based Development approach to define a generic structure for the
Adaptation Servers, which includes the components illustrated in Figure 12. The Callout
Protocol Server handles the communications with the Adaptation Proxy, supporting several
protocols (e.g., ICAP, HTTP), analyzes the adaptation requests received from the Callout
Protocol Client, and defines the action to be taken and its parameters. Based on this
information, which is sent in the header of the appropriated protocol message, the Callout
Protocol Server asks for the requested adaptation to the Remote Adapter.

Fig. 12. Components of the Adaptation Server package

The Remote Adapter executes the content adaptations, its internal structure can vary
according to the type of adaptation offered by the Adaptation Server, and it carries out the
same functions of the Local Adapter but does not use the processing resources of the
Adaptation Proxy. The decision-making process of adapting the content locally or remotely
must consider the ratio between the execution times of the Callout Protocol and the content

 Ubiquitous Computing

76

Unlike the aforementioned works, we developed the Internet Content Adaptation
Framework (ICAF) (Forte et al., 2007), an extremely flexible framework thanks to the reuse
of its components. Moreover, this framework contains an adaptation policy based on the
user, device and SLA profiles, and based on the access network and content information.

3.1 Internet Content Adaptation Framework (ICAF)
ICAF has two main packages: Adaptation Proxy and Adaptation Server. The User and
Origin Server actors interact with the Adaptation Proxy through content requests and
responses. The Adaptation Proxy analyzes these interactions based on an adaptation policy
and uses the available services at the Adaptation Server, which in turn adapts the
transmitted content. Figure 11 illustrates the components of the Adaptation Proxy package.
Content Transfer Protocol is responsible for the communications between User and Origin
Server. It is generic enough to support most of the used protocols for content transmission
on the Internet, including: Hypertext Transfer Protocol (HTTP), Real-time Transport
Protocol (RTP), Simple Object Access Protocol (SOAP), and File Transfer Protocol (FTP).

Fig. 11. Components of the Adaptation Proxy package

Since the Adaptation Proxy requests remote adaptations to an Adaptation Server using
communication protocols, the Callout Protocol Client was defined for doing the remote
adaptation calls. This component supports different protocols, including those especially
created for this communication: ICAP, and OPES Callout Protocol (OCP) (Rousskov, 2005).
Cache was built to improve the ICAF’s performance. It temporarily stores requested contents
on the Internet, as well as Web pages, videos and images. Before requesting content to the
Origin Server, the Adaptation Proxy checks whether it is already in the Cache. If so, a request
to the Origin Server is avoided, speeding up the content delivery to the User.
Although it uses adaptation service modules, ICAF can do content adaptations locally via
the Local Adapter. As this component employs the proxy resources, its wide-scale use may
affect the Adaptation Proxy performance, and delay the content delivery to the User.

Content Adaptation in Ubiquitous Computing

77

The Adaptation Proxy data flow is controlled by the Proxy Manager, which receives, through
the Content Transfer Protocol, the User requests and the Origin Sever responses. Using the
information carried in these communication primitives, the Proxy Manager asks for an
adaptation analysis to the Adaptation Decision. If adaptation is needed the Proxy Manager
invokes locally or remotely this service. To avoid an unnecessary content request, the Proxy
Manager checks if this content is already in the Cache.
The ICAF’s adaptation policy takes into account the user’s interests and preferences, device
capabilities and constraints, access network conditions, content characteristics, and SLA for
building the adaptation rules. It is implemented through the Adaptation Decision, Profile
Loader, Adaptation Rules Updater and Network Data Collector components.
The Profile Loader gets the user, device and SLA profiles in the ProfilesDB database. For
inserting these profiles in this database an Internet interface must be available, which could
be a Web page with a form where the user fills out the data related to these profiles. The
SLA profile could be inserted in the same way by the system administrator.
The ICAF policy is controlled by the Adaptation Decision that receives: the access network
conditions from the Network Data Collector, which monitors the network parameters; the
profiles stored in the ProfilesDB from the Profile Loader; and the content to be analyzed from
the Proxy Manager. Based on this information set, the Adaptation Decision uses the
adaptations rules to decide what adaptations will be done, which servers (local and/or
remote) will execute these adaptations, and the order in which they will be executed.
To prevent processing of outdated rules, the Adaptation Rules Updater inserts, removes and
updates the adaptation rules implemented in the Adaptation Decision. The Rules Author
carries out these updates using an interface provided by the Adaptation Rules Updater.
The Content Adaptation Server is responsible for doing the content adaptations requested
by the Adaptation Proxy. Since different types of adaptation services can be offered, we
adopted the Component-Based Development approach to define a generic structure for the
Adaptation Servers, which includes the components illustrated in Figure 12. The Callout
Protocol Server handles the communications with the Adaptation Proxy, supporting several
protocols (e.g., ICAP, HTTP), analyzes the adaptation requests received from the Callout
Protocol Client, and defines the action to be taken and its parameters. Based on this
information, which is sent in the header of the appropriated protocol message, the Callout
Protocol Server asks for the requested adaptation to the Remote Adapter.

Fig. 12. Components of the Adaptation Server package

The Remote Adapter executes the content adaptations, its internal structure can vary
according to the type of adaptation offered by the Adaptation Server, and it carries out the
same functions of the Local Adapter but does not use the processing resources of the
Adaptation Proxy. The decision-making process of adapting the content locally or remotely
must consider the ratio between the execution times of the Callout Protocol and the content

 Ubiquitous Computing

78

adaptation. The lower the ratio the more the decision will be in favor of the remote
adaptation. A design example of the Remote Adapter was presented in section 2.3.
ICAF was built to support the same ICAP operating modes and the same execution points
defined in section 2.2. It was also developed to offer a basic structure for creating Internet
content adaptation applications through the reuse of its components.

3.2 ICAF reuse and evaluation
Figure 13 shows the components used in a case study, where the following components
were reused by ICAF direct instantiation: Local Adapter, Remote Adapter, Proxy Manager,
Cache, Adaptation Rules Updater, Network Data Collector, and Profile Loader.
ICAF’s adaptation policy takes into account adaptation rules and information related to the
adaptation environment. Since there are several ways of implementing this policy, including
by a procedural language algorithm, several ICAP components were customized and new
components were added to this framework.

Fig. 13. ICAF reuse example

The Adaptation Decision is responsible for the decision-making process of the ICAF’s
adaptation policy. For this case study, this component was customized to perform with an
inference mechanism, based on adaptation rules and environment’s information, for
defining the adaptation services to be executed. The Adaptation Decision decides the adapter
(local or/and remote) that will perform an adaptation and, if multiple adaptations are
required, decides the sequence of them. The inference mechanism was introduced through a
Prolog Knowledge Base (KB) for giving more flexibility to the ICAF´s adaptation policy, and
for giving some “intelligence” to the decision-making process.
To handle KB, the KB Manager was added to ICAF. It receives the updated adaptation rules
from Adaptation Rules Updater, translates these rules to Prolog, stores this translation in KB
and, when requested by the Adaptation Decision, carries out a query for retrieving
information on users, devices and access network. KB answers this query based on the user,
device and SLA profiles, and based on the access network and content information. Since

Content Adaptation in Ubiquitous Computing

79

KB is implemented in Prolog and ProfilesDB in SQL, the SQL2Prolog component was added
to ICAF for enabling KB to receive and analyze profiles stored in ProfilesDB.
Three components were customized with specific interfaces, characterizing the reuse
through specialization. Content Transfer Protocol was specialized for transmitting content
requests and responses through HTTP, which consists of two fields: the header and the
payload (i.e., content). The content is modified by an HTTP parser, which identifies the
semantic actions of this protocol. Callout Protocol Client and Callout Protocol Server were
specialized to allow for ICAP communication between the Adaptation Proxy and the
Adaptation Server. Upon receiving a service request, Callout Protocol Client encapsulates the
actions, parameters and content in an ICAP request and sends it to Callout Protocol Server.
This latter component retrieves the information for doing a semantic analysis of this request,
and asks the requested service to the Remote Adapter. After receiving the adapted content
from the Remote Adapter, Callout Protocol Server encapsulates this content in an ICAP
response for returning it to the Adaptation Proxy.
ICAF was developed having in mind the definition of an adaptation policy with a short
processing time, and the offer of adaptation services without degradation of the Internet’s
infrastructure performance. In this case study, these requirements were evaluated
measuring the adaptation policy and content adaptation execution times on a network with
five computers: one Adaptation Proxy, three Adaptation Servers and one User. The
Adaptation Proxy implementation was based on (SourceForge, 2003), the implementations
of the Image Adapter (IA) and Virus Scan (VS) servers were based on (Network, 2001), and
the implementation of the Content Filter (CF) server was based on the CFS presented in
section 2.3. The Origin Servers were accessed directly from Internet content servers.
For the performance evaluation of this case study, the model described in (Mastoli et al,
2003) was employed, and the temporal collecting points T0 to T7 were defined for measuring:
the origin server response time T(Origin Server); the processing time of the adaptation
policy T(Analysis); the adaptation time consumed by the ICAP protocol and by the content
adaptations T(Adaptation); and the delivery time of the content to the user after executing
all adaptations T(Delivery). Figure 14 depicts these points and measuring times.

Fig. 14. Temporal collecting points and measuring times

For this evaluation 1,000 requests for www.folha.com.br were executed with five different
kinds of adaptation on this Web page: no adaptation (NA), using each one of the Adaptation
Servers (VS, IA, CF) independently, and combining these servers (VS+IA+CF). Figure 15
shows the T(Origin Server), T(Analysis), T(Adaptation) and T(Delivery) average times.
The origin server response times are by far the longest ones, and the adaptation policy
processing times are similar for all adaptations. Without adaptation (NA) it was consumed
121 ms, corresponding to 103 ms of origin server response time, 17 ms of adaptation policy

 Ubiquitous Computing

78

adaptation. The lower the ratio the more the decision will be in favor of the remote
adaptation. A design example of the Remote Adapter was presented in section 2.3.
ICAF was built to support the same ICAP operating modes and the same execution points
defined in section 2.2. It was also developed to offer a basic structure for creating Internet
content adaptation applications through the reuse of its components.

3.2 ICAF reuse and evaluation
Figure 13 shows the components used in a case study, where the following components
were reused by ICAF direct instantiation: Local Adapter, Remote Adapter, Proxy Manager,
Cache, Adaptation Rules Updater, Network Data Collector, and Profile Loader.
ICAF’s adaptation policy takes into account adaptation rules and information related to the
adaptation environment. Since there are several ways of implementing this policy, including
by a procedural language algorithm, several ICAP components were customized and new
components were added to this framework.

Fig. 13. ICAF reuse example

The Adaptation Decision is responsible for the decision-making process of the ICAF’s
adaptation policy. For this case study, this component was customized to perform with an
inference mechanism, based on adaptation rules and environment’s information, for
defining the adaptation services to be executed. The Adaptation Decision decides the adapter
(local or/and remote) that will perform an adaptation and, if multiple adaptations are
required, decides the sequence of them. The inference mechanism was introduced through a
Prolog Knowledge Base (KB) for giving more flexibility to the ICAF´s adaptation policy, and
for giving some “intelligence” to the decision-making process.
To handle KB, the KB Manager was added to ICAF. It receives the updated adaptation rules
from Adaptation Rules Updater, translates these rules to Prolog, stores this translation in KB
and, when requested by the Adaptation Decision, carries out a query for retrieving
information on users, devices and access network. KB answers this query based on the user,
device and SLA profiles, and based on the access network and content information. Since

Content Adaptation in Ubiquitous Computing

79

KB is implemented in Prolog and ProfilesDB in SQL, the SQL2Prolog component was added
to ICAF for enabling KB to receive and analyze profiles stored in ProfilesDB.
Three components were customized with specific interfaces, characterizing the reuse
through specialization. Content Transfer Protocol was specialized for transmitting content
requests and responses through HTTP, which consists of two fields: the header and the
payload (i.e., content). The content is modified by an HTTP parser, which identifies the
semantic actions of this protocol. Callout Protocol Client and Callout Protocol Server were
specialized to allow for ICAP communication between the Adaptation Proxy and the
Adaptation Server. Upon receiving a service request, Callout Protocol Client encapsulates the
actions, parameters and content in an ICAP request and sends it to Callout Protocol Server.
This latter component retrieves the information for doing a semantic analysis of this request,
and asks the requested service to the Remote Adapter. After receiving the adapted content
from the Remote Adapter, Callout Protocol Server encapsulates this content in an ICAP
response for returning it to the Adaptation Proxy.
ICAF was developed having in mind the definition of an adaptation policy with a short
processing time, and the offer of adaptation services without degradation of the Internet’s
infrastructure performance. In this case study, these requirements were evaluated
measuring the adaptation policy and content adaptation execution times on a network with
five computers: one Adaptation Proxy, three Adaptation Servers and one User. The
Adaptation Proxy implementation was based on (SourceForge, 2003), the implementations
of the Image Adapter (IA) and Virus Scan (VS) servers were based on (Network, 2001), and
the implementation of the Content Filter (CF) server was based on the CFS presented in
section 2.3. The Origin Servers were accessed directly from Internet content servers.
For the performance evaluation of this case study, the model described in (Mastoli et al,
2003) was employed, and the temporal collecting points T0 to T7 were defined for measuring:
the origin server response time T(Origin Server); the processing time of the adaptation
policy T(Analysis); the adaptation time consumed by the ICAP protocol and by the content
adaptations T(Adaptation); and the delivery time of the content to the user after executing
all adaptations T(Delivery). Figure 14 depicts these points and measuring times.

Fig. 14. Temporal collecting points and measuring times

For this evaluation 1,000 requests for www.folha.com.br were executed with five different
kinds of adaptation on this Web page: no adaptation (NA), using each one of the Adaptation
Servers (VS, IA, CF) independently, and combining these servers (VS+IA+CF). Figure 15
shows the T(Origin Server), T(Analysis), T(Adaptation) and T(Delivery) average times.
The origin server response times are by far the longest ones, and the adaptation policy
processing times are similar for all adaptations. Without adaptation (NA) it was consumed
121 ms, corresponding to 103 ms of origin server response time, 17 ms of adaptation policy

 Ubiquitous Computing

80

Fig. 15. Measuring times versus adaptation services

processing time, and only 1 ms of delivery time. Therefore, the relatively short delay (17ms)
introduced by the inference mechanism can be considered satisfactory. With the VS and IA
servers the adaptation times were 5.3 ms and 2.5 ms respectively, and the delays introduced
by these servers can be also considered satisfactory. However, with the CF server the
adaptation time was 40 ms, and the delay introduced by this server is relevant.

4. Ontologies and Web services for content adaptation
To achieve interoperability among heterogeneous systems executing applications of a given
domain, it is essential to be able to share information, with a common and unambiguous
understanding of the terms and concepts used by these applications. In this context,
ontologies are important artifacts for making feasible the treatment of this heterogeneity.
Berners-Lee proposed the Semantic Web (Berners-Lee et al., 2001) as an evolution of the
traditional Web to allow for the manipulation of content by applications with the capacity to
interpret the semantics of information. The Web content can thus be interpreted by
machines through the use of ontologies, rendering the retrieval of information from the Web
less ambiguous and providing more precise responses to user requests.
The World Wide Web Consortium (W3C) guides the development, organization and
standardization of languages to promote interoperability among Web applications. These
languages include the Resource Description Framework (RDF) (W3C, 2004b), and the
Ontology Web Language (OWL) (W3C, 2004c).
OWL is a markup language used for publication and sharing of ontologies in the Web. In
this language, ontology is a set of definitions of classes, properties and restrictions relating
to the modes in which these classes and properties can be used.
Web services have been for years the basis of service-oriented architectures, but begun to
show deficiencies for service description, discovery, and composition due to the lack of
semantic support in Web Services Description Language (WSDL) (W3C, 2007), and in the
mechanism of storage and discovery services of Universal Description Discovery and
Integration (UDDI) (UDDI Spec TC, 2004). To integrate semantic Web to Web services the
Ontology Web Language for Services (OWL-S) (Martin et al., 2006) was developed.
OWL-S allows for the discovery, composition, invocation and monitoring of services, it has
a larger number of Application Programming Interfaces (APIs), and inherits tools from
OWL and from the Semantic Web Rule Language (SWRL) (Horrocks et al., 2003). OWL-S
combines elements of WSDL, OWL’s semantic markup and a language for rules description
(e.g., SWRL). The OWL-S model is composed of three parts: Service Model for describing

Content Adaptation in Ubiquitous Computing

81

how a Web service operates; Service Grounding for describing the access to a Web service,
and Service Profile for describing what the Web service does.
Service Model specifies the communication protocol, telling what information the requester
must send to or receive from the service provider at a given moment of the transaction. This
module distinguishes two types of processes: atomic and composite. The first one supply
abstract specifications of the information exchanged with the requester, corresponding to
operations the supplier can directly execute. The latter is employed to describe collections of
processes (atomic or composite) organized through some type of flow control structure.
Service Grounding describes how atomic processes are transformed into concrete messages,
which are exchanged via a network or through a procedure call. A “one-on-one” mapping
of atomic processes for WSDL specifications is defined.
Service Profile is a high level specification of the service provider and service functionalities,
including: contact information of a provider/service (e.g., serviceName, textDescription,
contactInformation); categorization attributes of the offered service (e.g., serviceParameter,
serviceCategory); and service functional representations in the form of Inputs, Outputs,
Preconditions, and Effects (IOPEs). IOPEs are described by the properties hasParameter,
hasInput, hasOutput, hasPrecondition, and hasEffect.
Since descriptions of OWL-S services are based on OWL, the OWL domain model can be
employed to structure the service descriptions, facilitating the reuse of OWL ontologies
already developed. In this sense, we extended ICAF for allowing the use of ontologies and
Web services in the development of content adaptation applications (Forte et al., 2008).

4.1 Adaptation policy specification with ontologies and Web services
One major challenge in Ubiquitous Computing is the description of the delivery context,
which is as a set of attributes that characterizes aspects related to the delivery of Web
content. For content adaptation the delivery context must contain even more information
that can be described in a set of profiles. For the CCFS development, presented in section 2,
these profiles were implemented using CC/PP, and the adaptation rules were implemented
as clauses stored in a database and the Prolog inference mechanism was employed. In this
section we propose to specify the same profiles in OWL, and to employ semantics in the
adaptation rules description for facilitating their extension and the addition of new rules.
To make available an infrastructure of adaptation servers over the Internet, we propose to
use Web service technology, since it offers a large number of tools, and well-defined
standards. Moreover, the use of ontologies and the inclusion of semantics in these standards
help the migration from the proprietary solutions, for the discovery and composition of
services, to an open distributed architecture based on the semantic Web.
The following information about the adaptation servers is essential: characteristics;
communication needs (e.g., protocols, addressing); and the conditions, for the execution of
their services, which are described by the adaptation rules. We propose to make available
this information via the adaptation server profile and to specify it in OWL, and the services
information via the service profile and to specify it in OWL-S.
All ontology models for the OWL profiles are based on the EMF Ontology Definition
Metamodel (EODM) (IBM, 2004), which is derived from the OMG's Ontology Definition
Metamodel (ODM) and implemented in the Eclipse Modeling Framework (EMF). These
models use the following OWL components: Classes that are the basic building blocks of an
OWL ontology; Individuals that are instances of classes; Object properties to relate individuals

 Ubiquitous Computing

80

Fig. 15. Measuring times versus adaptation services

processing time, and only 1 ms of delivery time. Therefore, the relatively short delay (17ms)
introduced by the inference mechanism can be considered satisfactory. With the VS and IA
servers the adaptation times were 5.3 ms and 2.5 ms respectively, and the delays introduced
by these servers can be also considered satisfactory. However, with the CF server the
adaptation time was 40 ms, and the delay introduced by this server is relevant.

4. Ontologies and Web services for content adaptation
To achieve interoperability among heterogeneous systems executing applications of a given
domain, it is essential to be able to share information, with a common and unambiguous
understanding of the terms and concepts used by these applications. In this context,
ontologies are important artifacts for making feasible the treatment of this heterogeneity.
Berners-Lee proposed the Semantic Web (Berners-Lee et al., 2001) as an evolution of the
traditional Web to allow for the manipulation of content by applications with the capacity to
interpret the semantics of information. The Web content can thus be interpreted by
machines through the use of ontologies, rendering the retrieval of information from the Web
less ambiguous and providing more precise responses to user requests.
The World Wide Web Consortium (W3C) guides the development, organization and
standardization of languages to promote interoperability among Web applications. These
languages include the Resource Description Framework (RDF) (W3C, 2004b), and the
Ontology Web Language (OWL) (W3C, 2004c).
OWL is a markup language used for publication and sharing of ontologies in the Web. In
this language, ontology is a set of definitions of classes, properties and restrictions relating
to the modes in which these classes and properties can be used.
Web services have been for years the basis of service-oriented architectures, but begun to
show deficiencies for service description, discovery, and composition due to the lack of
semantic support in Web Services Description Language (WSDL) (W3C, 2007), and in the
mechanism of storage and discovery services of Universal Description Discovery and
Integration (UDDI) (UDDI Spec TC, 2004). To integrate semantic Web to Web services the
Ontology Web Language for Services (OWL-S) (Martin et al., 2006) was developed.
OWL-S allows for the discovery, composition, invocation and monitoring of services, it has
a larger number of Application Programming Interfaces (APIs), and inherits tools from
OWL and from the Semantic Web Rule Language (SWRL) (Horrocks et al., 2003). OWL-S
combines elements of WSDL, OWL’s semantic markup and a language for rules description
(e.g., SWRL). The OWL-S model is composed of three parts: Service Model for describing

Content Adaptation in Ubiquitous Computing

81

how a Web service operates; Service Grounding for describing the access to a Web service,
and Service Profile for describing what the Web service does.
Service Model specifies the communication protocol, telling what information the requester
must send to or receive from the service provider at a given moment of the transaction. This
module distinguishes two types of processes: atomic and composite. The first one supply
abstract specifications of the information exchanged with the requester, corresponding to
operations the supplier can directly execute. The latter is employed to describe collections of
processes (atomic or composite) organized through some type of flow control structure.
Service Grounding describes how atomic processes are transformed into concrete messages,
which are exchanged via a network or through a procedure call. A “one-on-one” mapping
of atomic processes for WSDL specifications is defined.
Service Profile is a high level specification of the service provider and service functionalities,
including: contact information of a provider/service (e.g., serviceName, textDescription,
contactInformation); categorization attributes of the offered service (e.g., serviceParameter,
serviceCategory); and service functional representations in the form of Inputs, Outputs,
Preconditions, and Effects (IOPEs). IOPEs are described by the properties hasParameter,
hasInput, hasOutput, hasPrecondition, and hasEffect.
Since descriptions of OWL-S services are based on OWL, the OWL domain model can be
employed to structure the service descriptions, facilitating the reuse of OWL ontologies
already developed. In this sense, we extended ICAF for allowing the use of ontologies and
Web services in the development of content adaptation applications (Forte et al., 2008).

4.1 Adaptation policy specification with ontologies and Web services
One major challenge in Ubiquitous Computing is the description of the delivery context,
which is as a set of attributes that characterizes aspects related to the delivery of Web
content. For content adaptation the delivery context must contain even more information
that can be described in a set of profiles. For the CCFS development, presented in section 2,
these profiles were implemented using CC/PP, and the adaptation rules were implemented
as clauses stored in a database and the Prolog inference mechanism was employed. In this
section we propose to specify the same profiles in OWL, and to employ semantics in the
adaptation rules description for facilitating their extension and the addition of new rules.
To make available an infrastructure of adaptation servers over the Internet, we propose to
use Web service technology, since it offers a large number of tools, and well-defined
standards. Moreover, the use of ontologies and the inclusion of semantics in these standards
help the migration from the proprietary solutions, for the discovery and composition of
services, to an open distributed architecture based on the semantic Web.
The following information about the adaptation servers is essential: characteristics;
communication needs (e.g., protocols, addressing); and the conditions, for the execution of
their services, which are described by the adaptation rules. We propose to make available
this information via the adaptation server profile and to specify it in OWL, and the services
information via the service profile and to specify it in OWL-S.
All ontology models for the OWL profiles are based on the EMF Ontology Definition
Metamodel (EODM) (IBM, 2004), which is derived from the OMG's Ontology Definition
Metamodel (ODM) and implemented in the Eclipse Modeling Framework (EMF). These
models use the following OWL components: Classes that are the basic building blocks of an
OWL ontology; Individuals that are instances of classes; Object properties to relate individuals

 Ubiquitous Computing

82

to other individuals; and Datatype properties to relate individuals to data type, such as
integers, floats, and strings. OWL supports six main types of classes: named, intersection,
union, complement, restrictions, and enumerated.
The UserAgent field of the HTTP header is employed to identify the user’s access device and
to look up the device profile stored in the database. Figure 16 depicts an ontology model for
a device profile, describing the following characteristics: supported image formats
(Supported_image class); display information, including resolution (Display_Resolution class)
and colors (Color class); supported audio and video streaming (Streaming class); markup
languages supported by the device’s browser (Supported_Markup class), including their
properties (WML_UI, XHTML_UI and CHTML_UI classes); model and manufacturer
(Product_Info class); and security (Security class). One OWL characteristic present in this
model is the restriction insertion that helps the consistency checking and the validation of
this profile. For instance, Supported_ImageRestriction defines that the class Supported_Image
can only be instantiated with the individuals declared in the enumerated class Image_Format.

Fig. 16. Ontology model for a device profile

Figure 17 depicts an ontology model for a user profile. This model represents the User class
that encloses the Info and Service_Preferences subclasses. Info holds the following properties:
ID for retrieving the user’s information from the database, and FirstName/LastName for
identifying the user’s name. Service_Preferences contains the specifications of the adaptation
service properties, which can be configured by the user according to his/her preferences.

Content Adaptation in Ubiquitous Computing

83

ID_Required defines that the class Person has exactly one value for the property ID inside
Info. Three adaptation services are represented in this model: Antivirus, where the user can
choose to check or not viruses using a script language on a Web page; Image_Adapter, where
the user can define the action to be taken if a low throughput is detected (e.g., color and/or
resolution reductions, conversion to black and white); Classification_and_Filtering, where the
user can define the content types to be blocked (e.g., sex, shopping, games) and which URLs
(URLDB), databases, and keywords (KWDB) will be used for the classification.

Fig. 17. Ontology model for a user profile

The network profile is built dynamically using the agents that monitor network parameters.
The information in this profile is used to guide some adaptation processes (e.g., images,
video and audio on demand), for the optimization of the content adaptation as a function of
the network current conditions. Figure 18 depicts an ontology model for a network profile.

Fig. 18. Ontology model for a network profile

The content profile is built dynamically using the characteristics of the requested content.
The needed and applicable adaptations to the content depend on information extracted from
the HTTP header (e.g., the content has text and/or image, language) and depend on content
metadata, if available. Figure 19 depicts an ontology model for a content profile.

Fig. 19. Ontology model for a content profile

 Ubiquitous Computing

82

to other individuals; and Datatype properties to relate individuals to data type, such as
integers, floats, and strings. OWL supports six main types of classes: named, intersection,
union, complement, restrictions, and enumerated.
The UserAgent field of the HTTP header is employed to identify the user’s access device and
to look up the device profile stored in the database. Figure 16 depicts an ontology model for
a device profile, describing the following characteristics: supported image formats
(Supported_image class); display information, including resolution (Display_Resolution class)
and colors (Color class); supported audio and video streaming (Streaming class); markup
languages supported by the device’s browser (Supported_Markup class), including their
properties (WML_UI, XHTML_UI and CHTML_UI classes); model and manufacturer
(Product_Info class); and security (Security class). One OWL characteristic present in this
model is the restriction insertion that helps the consistency checking and the validation of
this profile. For instance, Supported_ImageRestriction defines that the class Supported_Image
can only be instantiated with the individuals declared in the enumerated class Image_Format.

Fig. 16. Ontology model for a device profile

Figure 17 depicts an ontology model for a user profile. This model represents the User class
that encloses the Info and Service_Preferences subclasses. Info holds the following properties:
ID for retrieving the user’s information from the database, and FirstName/LastName for
identifying the user’s name. Service_Preferences contains the specifications of the adaptation
service properties, which can be configured by the user according to his/her preferences.

Content Adaptation in Ubiquitous Computing

83

ID_Required defines that the class Person has exactly one value for the property ID inside
Info. Three adaptation services are represented in this model: Antivirus, where the user can
choose to check or not viruses using a script language on a Web page; Image_Adapter, where
the user can define the action to be taken if a low throughput is detected (e.g., color and/or
resolution reductions, conversion to black and white); Classification_and_Filtering, where the
user can define the content types to be blocked (e.g., sex, shopping, games) and which URLs
(URLDB), databases, and keywords (KWDB) will be used for the classification.

Fig. 17. Ontology model for a user profile

The network profile is built dynamically using the agents that monitor network parameters.
The information in this profile is used to guide some adaptation processes (e.g., images,
video and audio on demand), for the optimization of the content adaptation as a function of
the network current conditions. Figure 18 depicts an ontology model for a network profile.

Fig. 18. Ontology model for a network profile

The content profile is built dynamically using the characteristics of the requested content.
The needed and applicable adaptations to the content depend on information extracted from
the HTTP header (e.g., the content has text and/or image, language) and depend on content
metadata, if available. Figure 19 depicts an ontology model for a content profile.

Fig. 19. Ontology model for a content profile

 Ubiquitous Computing

84

The terms of the agreement between the access provider and the user are described in the
SLA profile. These providers offer to their users a variety of plans, including bandwidth,
connection time and several added value services, enabling the user to choose the plan that
best meets his/her needs. Figure 20 depicts an ontology model for a SLA profile.

Fig. 20. Ontology model for a SLA profile
Some characteristics described in the adaptation server profile are related to the Quality of
Service (QoS), including the server’s Availability and Reliability, the last characteristic for
evaluating the successful execution rate. This information, allied to MaxProcessTime,
RequiredBandwidth and Cost, helps the decision-making process when the service discovery
finds more than one service provider satisfying the delivery context needs. This profile also
defines the communication protocol between the proxy and the adaptation server. Figure 21
shows an ontology model for an adaptation server profile, where Supported_Execution_Points
specifies four execution points for processing adaptation rules, with exactly the same
meaning found in section 2.2. To help in consistency checking and validation of this profile,
it is inserted Supported_ProtocolsRestriction, restricting Supported_Protocols to be instantiated
with individuals declared in Protocols, and Supported_Execution_PointsRestriction, restricting
Supported_ExecutionPoints to be instantiated with individuals declared in Exec_Points.

Fig. 21. Ontology model for an adaptation server profile
Service characteristics, including the necessary conditions for its execution, can be associated
to the adaptation process, represented by the Inputs and Outputs, or associated to the
service, represented by the Preconditions and Effects, which help the adaptation policy
deciding whether or not to execute a given service. Figure 22 depicts these associations.

Content Adaptation in Ubiquitous Computing

85

Fig. 22. Associations of service characteristics

The service profile has the service characteristics and some exclusive functions that must be
specified in OWL-S. The main one is the mapping of OWL semantic specifications of other
profiles into WSDL syntactic specifications, allowing for the integration of ontologies and
Web services. The service profile also imports semantic specifications contained in other
profiles or other OWL ontologies to facilitate their reuse and to avoid ambiguities.
Figure 23 shows the OWL-S specification skeleton of a Markup Language Translation
Service (MLTS) profile. The Ontologies, to be imported to include the semantic information
needed for this service, are defined, the public ontology semwebglossary.owl, which specifies
terms of the semantic Web for avoiding ambiguous definitions, the content.owl profile, and
the device.owl profile are reused (1). SupportedMarkupLanguage class (2) and canBeConvertedTo
property (3), which will be used for defining the possible conversions to be carried out by
the service (4), are defined. The InputMarkupLanguage parameter indicates the markup
language to be converted (5), which is obtained from the Content_Type class of the content
profile, previously instantiated with information about the requested content. The
OutputMarkupLanguage parameter indicates the desired markup language that is defined in
the Supported_Markup class of the device profile, which in turn informs the supported
languages (6). The inputs, outputs, preconditions and effects are defined in the process
MarkupConverterProcess (7). The precondition SupportedTranslation is based on a SWRL rule
(8), which returns true when the needed translation belongs to the list defined in (4).
If it is not found a Web service that meets all the needs of a given adaptation, those needs
may be met by an appropriate composition of Web services, which should be identified. Let
S = {S1, S2,..., Sn} be a Web service set, where each Si is defined by a quadruple

 (), , ,i i i i
s s s sI O P E (1)

with its elements representing the sets of Inputs, Outputs, Preconditions and Effects of the
service Si. Let G = {G1, G2,...,Gm} be a goals set, where each goal Gj is defined by a quadruple

 (), , ,j j j j
g g g gI O P E (2)

with its elements representing the sets of Inputs, Outputs, Preconditions and Effects required
by the goal Gj. If there is at least one Si that satisfies

1 1

n m
ji

s g
i j

I I
= =

⊆∪ ∪ and
1 1

n m
ji

s g
i j

P P
= =

⊆∪ ∪ and (3)

 Ubiquitous Computing

84

The terms of the agreement between the access provider and the user are described in the
SLA profile. These providers offer to their users a variety of plans, including bandwidth,
connection time and several added value services, enabling the user to choose the plan that
best meets his/her needs. Figure 20 depicts an ontology model for a SLA profile.

Fig. 20. Ontology model for a SLA profile
Some characteristics described in the adaptation server profile are related to the Quality of
Service (QoS), including the server’s Availability and Reliability, the last characteristic for
evaluating the successful execution rate. This information, allied to MaxProcessTime,
RequiredBandwidth and Cost, helps the decision-making process when the service discovery
finds more than one service provider satisfying the delivery context needs. This profile also
defines the communication protocol between the proxy and the adaptation server. Figure 21
shows an ontology model for an adaptation server profile, where Supported_Execution_Points
specifies four execution points for processing adaptation rules, with exactly the same
meaning found in section 2.2. To help in consistency checking and validation of this profile,
it is inserted Supported_ProtocolsRestriction, restricting Supported_Protocols to be instantiated
with individuals declared in Protocols, and Supported_Execution_PointsRestriction, restricting
Supported_ExecutionPoints to be instantiated with individuals declared in Exec_Points.

Fig. 21. Ontology model for an adaptation server profile
Service characteristics, including the necessary conditions for its execution, can be associated
to the adaptation process, represented by the Inputs and Outputs, or associated to the
service, represented by the Preconditions and Effects, which help the adaptation policy
deciding whether or not to execute a given service. Figure 22 depicts these associations.

Content Adaptation in Ubiquitous Computing

85

Fig. 22. Associations of service characteristics

The service profile has the service characteristics and some exclusive functions that must be
specified in OWL-S. The main one is the mapping of OWL semantic specifications of other
profiles into WSDL syntactic specifications, allowing for the integration of ontologies and
Web services. The service profile also imports semantic specifications contained in other
profiles or other OWL ontologies to facilitate their reuse and to avoid ambiguities.
Figure 23 shows the OWL-S specification skeleton of a Markup Language Translation
Service (MLTS) profile. The Ontologies, to be imported to include the semantic information
needed for this service, are defined, the public ontology semwebglossary.owl, which specifies
terms of the semantic Web for avoiding ambiguous definitions, the content.owl profile, and
the device.owl profile are reused (1). SupportedMarkupLanguage class (2) and canBeConvertedTo
property (3), which will be used for defining the possible conversions to be carried out by
the service (4), are defined. The InputMarkupLanguage parameter indicates the markup
language to be converted (5), which is obtained from the Content_Type class of the content
profile, previously instantiated with information about the requested content. The
OutputMarkupLanguage parameter indicates the desired markup language that is defined in
the Supported_Markup class of the device profile, which in turn informs the supported
languages (6). The inputs, outputs, preconditions and effects are defined in the process
MarkupConverterProcess (7). The precondition SupportedTranslation is based on a SWRL rule
(8), which returns true when the needed translation belongs to the list defined in (4).
If it is not found a Web service that meets all the needs of a given adaptation, those needs
may be met by an appropriate composition of Web services, which should be identified. Let
S = {S1, S2,..., Sn} be a Web service set, where each Si is defined by a quadruple

 (), , ,i i i i
s s s sI O P E (1)

with its elements representing the sets of Inputs, Outputs, Preconditions and Effects of the
service Si. Let G = {G1, G2,...,Gm} be a goals set, where each goal Gj is defined by a quadruple

 (), , ,j j j j
g g g gI O P E (2)

with its elements representing the sets of Inputs, Outputs, Preconditions and Effects required
by the goal Gj. If there is at least one Si that satisfies

1 1

n m
ji

s g
i j

I I
= =

⊆∪ ∪ and
1 1

n m
ji

s g
i j

P P
= =

⊆∪ ∪ and (3)

 Ubiquitous Computing

86

1 1

n m
ji

s g
i j

O O
= =

⊇∪ ∪ and
1 1

n m
ji

s g
i j

E E
= =

⊇∪ ∪ (4)

…
<!ENTITY gloss "http://www.personal-reader.de/rdf/semwebglossary.owl">
<!ENTITY device "http://www.adaptationsrv.org/device.owl">
<!ENTITY content "http://www.adaptationsrv.org/content.owl">
…
<owl:Class rdf:ID="SupportedMarkupLanguage">
 <owl:oneOf rdf:parseType="Collection">
 <factbook:Language rdf:about="&gloss;#HTML"/>
 <factbook:Language rdf:about="&gloss;#XHTML"/>
 <factbook:Language rdf:about="&gloss;#XML"/>
 <factbook:Language rdf:about="&gloss;#CHTML"/>
 <factbook:Language rdf:about="&gloss;#WML"/>
 </owl:oneOf>
</owl:Class>
<owl:ObjectProperty rdf:ID="canBeConvertedTo">
 <rdfs:domain rdf:resource="#SupportedMarkupLanguage"/>
 <rdfs:range rdf:resource="#SupportedMarkupLanguage"/>
</owl:ObjectProperty>
<rdf:Description rdf:about="&gloss;#HTML"><canBeConvertedTo rdf:resource="&gloss;#WML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#XHTML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#XML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#cHTML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#XML">< canBeConvertedTo rdf:resource="&gloss;#XHTML"/></rdf:Description>
…
<process:Input rdf:ID="InputMarkupLanguage">
 <process:parameterType rdf:datatype="&xsd;#anyURI">&content;#Content_Type
 </process:parameterType>
</process:Input>
<process:Input rdf:ID="OutputMarkupLanguage">

<process:parameterType rdf:datatype="&xsd;#anyURI">&device;#Supported_Markup
</process:parameterType>

</process:Input>
…
<process:AtomicProcess rdf:ID="MarkupConverterProcess">
 <process:hasInput rdf:resource="#InputMarkupLanguage"/>
 <process:hasInput rdf:resource="#OutputMarkupLanguage"/>
 <process:hasInput rdf:resource="#InputString"/>
 <process:hasOutput rdf:resource="#OutputString"/>
 <process:hasPrecondition rdf:resource="#SupportedTranslation"/>
 <process:hasEffect rdf:resource= ="#MarkupLanguageConverted”/>
</process:AtomicProcess>
…
<expr:SWRL-Condition rdf:ID="SupportedTranslation">
 <rdfs:label>canBeConvertedTo(InputMarkupLanguage, OutputMarkupLanguage)</rdfs:label>
 <expr:expressionLanguage rdf:resource="&expr;#SWRL"/>
 <expr:expressionObject><swrl:AtomList><rdf:first>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#canBeConvertedTo"/>
 <swrl:argument1 rdf:resource="#InputMarkupLanguage"/>
 <swrl:argument2 rdf:resource="#OutputMarkupLanguage"/>
 </swrl:IndividualPropertyAtom>
 </rdf:first></swrl:AtomList></expr:expressionObject>
</expr:SWRL-Condition>
…

3

2

7

6

5

8

4

1

Fig. 23. OWL-S specification skeleton of a MLTS profile

Content Adaptation in Ubiquitous Computing

87

then Si is put in the services list that provides the required content adaptation. Otherwise, if
there is at least one Si that satisfies (3), there is no service to carry out alone the adaptation,
the composition algorithm is activated. Otherwise, the adaptation cannot be carried out.
One of the techniques used for the services composition is forward chaining (Lara et al., 2005).
Starting from a goal Gj, where an Si is found that satisfies (3), a new goal is defined

 Gk = (), , ,k k k k
g g g gI O P E (5)

where

 k
gI = i

sO and k
gP = i

sE (6)

This process is repeated until (4) is satisfied, otherwise the adaptation cannot be carried out.

4.2 Extended Internet Content Adaptation Framework (EICAF)
ICAF was extended to deal with ontologies and Web services. Figure 24 shows the EICAF
component model, where the following ICAF components were reused: Local Adapter, Cache,
Content Transfer Protocol, Network Data Collector and Remote Adapter. The components Callout
Protocol (Client and Server), Proxy Manager and Service Profile Updater were modified to
include new interfaces and functionalities for using semantic profiles and new protocols.
Matching and Composition, Ontologies Manager and Reasoner are new components, introduced
for managing the ontologies and for processing the adaptation policy.
Callout Protocol Client and Callout Protocol Server support ICAP and SOAP. The first, already
supported by ICAF, was kept to allow for communication with the servers previously
developed. The second was introduced to provide compatibility with Web services.

Fig. 24. EICAF component model

 Ubiquitous Computing

86

1 1

n m
ji

s g
i j

O O
= =

⊇∪ ∪ and
1 1

n m
ji

s g
i j

E E
= =

⊇∪ ∪ (4)

…
<!ENTITY gloss "http://www.personal-reader.de/rdf/semwebglossary.owl">
<!ENTITY device "http://www.adaptationsrv.org/device.owl">
<!ENTITY content "http://www.adaptationsrv.org/content.owl">
…
<owl:Class rdf:ID="SupportedMarkupLanguage">
 <owl:oneOf rdf:parseType="Collection">
 <factbook:Language rdf:about="&gloss;#HTML"/>
 <factbook:Language rdf:about="&gloss;#XHTML"/>
 <factbook:Language rdf:about="&gloss;#XML"/>
 <factbook:Language rdf:about="&gloss;#CHTML"/>
 <factbook:Language rdf:about="&gloss;#WML"/>
 </owl:oneOf>
</owl:Class>
<owl:ObjectProperty rdf:ID="canBeConvertedTo">
 <rdfs:domain rdf:resource="#SupportedMarkupLanguage"/>
 <rdfs:range rdf:resource="#SupportedMarkupLanguage"/>
</owl:ObjectProperty>
<rdf:Description rdf:about="&gloss;#HTML"><canBeConvertedTo rdf:resource="&gloss;#WML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#XHTML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#XML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#HTML">< canBeConvertedTo rdf:resource="&gloss;#cHTML"/></rdf:Description>
<rdf:Description rdf:about="&gloss;#XML">< canBeConvertedTo rdf:resource="&gloss;#XHTML"/></rdf:Description>
…
<process:Input rdf:ID="InputMarkupLanguage">
 <process:parameterType rdf:datatype="&xsd;#anyURI">&content;#Content_Type
 </process:parameterType>
</process:Input>
<process:Input rdf:ID="OutputMarkupLanguage">

<process:parameterType rdf:datatype="&xsd;#anyURI">&device;#Supported_Markup
</process:parameterType>

</process:Input>
…
<process:AtomicProcess rdf:ID="MarkupConverterProcess">
 <process:hasInput rdf:resource="#InputMarkupLanguage"/>
 <process:hasInput rdf:resource="#OutputMarkupLanguage"/>
 <process:hasInput rdf:resource="#InputString"/>
 <process:hasOutput rdf:resource="#OutputString"/>
 <process:hasPrecondition rdf:resource="#SupportedTranslation"/>
 <process:hasEffect rdf:resource= ="#MarkupLanguageConverted”/>
</process:AtomicProcess>
…
<expr:SWRL-Condition rdf:ID="SupportedTranslation">
 <rdfs:label>canBeConvertedTo(InputMarkupLanguage, OutputMarkupLanguage)</rdfs:label>
 <expr:expressionLanguage rdf:resource="&expr;#SWRL"/>
 <expr:expressionObject><swrl:AtomList><rdf:first>
 <swrl:IndividualPropertyAtom>
 <swrl:propertyPredicate rdf:resource="#canBeConvertedTo"/>
 <swrl:argument1 rdf:resource="#InputMarkupLanguage"/>
 <swrl:argument2 rdf:resource="#OutputMarkupLanguage"/>
 </swrl:IndividualPropertyAtom>
 </rdf:first></swrl:AtomList></expr:expressionObject>
</expr:SWRL-Condition>
…

3

2

7

6

5

8

4

1

Fig. 23. OWL-S specification skeleton of a MLTS profile

Content Adaptation in Ubiquitous Computing

87

then Si is put in the services list that provides the required content adaptation. Otherwise, if
there is at least one Si that satisfies (3), there is no service to carry out alone the adaptation,
the composition algorithm is activated. Otherwise, the adaptation cannot be carried out.
One of the techniques used for the services composition is forward chaining (Lara et al., 2005).
Starting from a goal Gj, where an Si is found that satisfies (3), a new goal is defined

 Gk = (), , ,k k k k
g g g gI O P E (5)

where

 k
gI = i

sO and k
gP = i

sE (6)

This process is repeated until (4) is satisfied, otherwise the adaptation cannot be carried out.

4.2 Extended Internet Content Adaptation Framework (EICAF)
ICAF was extended to deal with ontologies and Web services. Figure 24 shows the EICAF
component model, where the following ICAF components were reused: Local Adapter, Cache,
Content Transfer Protocol, Network Data Collector and Remote Adapter. The components Callout
Protocol (Client and Server), Proxy Manager and Service Profile Updater were modified to
include new interfaces and functionalities for using semantic profiles and new protocols.
Matching and Composition, Ontologies Manager and Reasoner are new components, introduced
for managing the ontologies and for processing the adaptation policy.
Callout Protocol Client and Callout Protocol Server support ICAP and SOAP. The first, already
supported by ICAF, was kept to allow for communication with the servers previously
developed. The second was introduced to provide compatibility with Web services.

Fig. 24. EICAF component model

 Ubiquitous Computing

88

Ontologies Manager handles the storage, retrieval and processing of the static ontologies
(device, user, SLA, adaptation server and service profiles) that are stored in a relational
database. This component also treats the service profiles that are inserted through Service
Profile Updater. The stored dynamic ontologies are generated on demand, from the
information obtained by the I_NData interface, for the network profile generation, and by
the I_Cdata interface, for the content profile generation.
To help the addition of new service profiles, Service Profile Updater provides a Web interface,
where the service author can insert information related to the adaptation services to be
converted to an OWL-S specification. Figure 25 shows some pages of this interface.

Fig. 25. Web interface for the insertion of service profiles

Initial page (A) is for insertion of service general information, mainly on the used protocol
and the execution points for invoking the service: if ICAP is used, then this will be the only
page available; if SOAP is used, then page (B) will be loaded. The operations are listed on
this page, starting with the URI insertion of service WSDL specification, whose information
will be converted in an OWL-S Service Grounding. Information about service profile URI is
also inserted on page (B), and the ontologies to be imported are defined. On page (C) the
mapping table of OWL semantic descriptions for WSDL parameters is filled out with the
parameters inserted from information kept in WSDL file. The SWRL rules are specified in
the Preconditions and Effects text boxes, and Generate Service Profile generates this profile.
EICAF was implemented in Java using several public APIs. The API OWL-S and the
relational database MySQL were used in Ontologies Manager. The API Pellet was used in
Reasoner, and the SPARQL module of the API OWL-S was used in Matching and Composition.
This component makes requests based on SPARQL, using information contained in profiles
and information inferred by the Reasoner, to locate the services that have inputs and outputs
compatible with the delivery context. The results of these requests are filtered to check their
conformity to preconditions and effects and, if a services composition is needed, Matching
and Composition will manage the execution order of them. Next, this component sends to
Proxy Manager, via the I_ADecision interface, the information regarding the services to be
invoked. Proxy Manager forwards this information, via the I_CPClient interface, to Callout

Content Adaptation in Ubiquitous Computing

89

Protocol Client that asks the services to the appropriated Adaptation Servers, which in turn
execute these services. Last, Proxy Manager sends the adapted content to the User.
Figure 26 illustrates the tasks of the Web services composition mechanism by means of a
delivery context example in which the user accesses the Web via a mobile phone. The
notation profile.class – context information indicates the profile name, the class name, and the
context information to be stored in this class. Since the user hired CCFS, the Pay_for_Filtering
property of the SLA profile was configured as true. Once this profile information has been
collected, the initial goal G1 = (HTML, XHTML, Pay_ for_Filtering, _) is established, and the
search for services to carry out this service is started. Matching and Composition discovers that
the CCFS S1 = (HTML, HTML, Pay_for_Filtering, _) meets the Inputs and Preconditions, but
does not support the Output XHTML. Since the goal G1 was only partially achieved, a new
goal G2 = (HTML, XHTML, _ , _) is established. A new search discovers that the MLTS S2 =
(HTML, XHTML, _ , _) meets completely this new goal, ending this composition process.

Fig. 26. Example of a delivery context

Fig. 27. Execution sequence of a content adaptation

Figure 27 illustrates the use of profiles and rules by means of an execution sequence of a
content adaptation. Based on a user HTTP or WAP request (1), Internet Service Provider
(ISP) sends the HTTP request to the Adaptation Proxy with the User identification (2). The
Ontology Manager of the Adaptation Proxy employs the USER_ID for retrieving the user’s

User.Filter_Profile – 001
SLA.Services – Pay_for_Filtering
Device.DisplayResolution – 320x200
Device.Supported_Markup – XHTML

Network.WAN – GPRS
Network.RTT – 10
Content.Type – HTML
Content.URL – www.test.com

 Ubiquitous Computing

88

Ontologies Manager handles the storage, retrieval and processing of the static ontologies
(device, user, SLA, adaptation server and service profiles) that are stored in a relational
database. This component also treats the service profiles that are inserted through Service
Profile Updater. The stored dynamic ontologies are generated on demand, from the
information obtained by the I_NData interface, for the network profile generation, and by
the I_Cdata interface, for the content profile generation.
To help the addition of new service profiles, Service Profile Updater provides a Web interface,
where the service author can insert information related to the adaptation services to be
converted to an OWL-S specification. Figure 25 shows some pages of this interface.

Fig. 25. Web interface for the insertion of service profiles

Initial page (A) is for insertion of service general information, mainly on the used protocol
and the execution points for invoking the service: if ICAP is used, then this will be the only
page available; if SOAP is used, then page (B) will be loaded. The operations are listed on
this page, starting with the URI insertion of service WSDL specification, whose information
will be converted in an OWL-S Service Grounding. Information about service profile URI is
also inserted on page (B), and the ontologies to be imported are defined. On page (C) the
mapping table of OWL semantic descriptions for WSDL parameters is filled out with the
parameters inserted from information kept in WSDL file. The SWRL rules are specified in
the Preconditions and Effects text boxes, and Generate Service Profile generates this profile.
EICAF was implemented in Java using several public APIs. The API OWL-S and the
relational database MySQL were used in Ontologies Manager. The API Pellet was used in
Reasoner, and the SPARQL module of the API OWL-S was used in Matching and Composition.
This component makes requests based on SPARQL, using information contained in profiles
and information inferred by the Reasoner, to locate the services that have inputs and outputs
compatible with the delivery context. The results of these requests are filtered to check their
conformity to preconditions and effects and, if a services composition is needed, Matching
and Composition will manage the execution order of them. Next, this component sends to
Proxy Manager, via the I_ADecision interface, the information regarding the services to be
invoked. Proxy Manager forwards this information, via the I_CPClient interface, to Callout

Content Adaptation in Ubiquitous Computing

89

Protocol Client that asks the services to the appropriated Adaptation Servers, which in turn
execute these services. Last, Proxy Manager sends the adapted content to the User.
Figure 26 illustrates the tasks of the Web services composition mechanism by means of a
delivery context example in which the user accesses the Web via a mobile phone. The
notation profile.class – context information indicates the profile name, the class name, and the
context information to be stored in this class. Since the user hired CCFS, the Pay_for_Filtering
property of the SLA profile was configured as true. Once this profile information has been
collected, the initial goal G1 = (HTML, XHTML, Pay_ for_Filtering, _) is established, and the
search for services to carry out this service is started. Matching and Composition discovers that
the CCFS S1 = (HTML, HTML, Pay_for_Filtering, _) meets the Inputs and Preconditions, but
does not support the Output XHTML. Since the goal G1 was only partially achieved, a new
goal G2 = (HTML, XHTML, _ , _) is established. A new search discovers that the MLTS S2 =
(HTML, XHTML, _ , _) meets completely this new goal, ending this composition process.

Fig. 26. Example of a delivery context

Fig. 27. Execution sequence of a content adaptation

Figure 27 illustrates the use of profiles and rules by means of an execution sequence of a
content adaptation. Based on a user HTTP or WAP request (1), Internet Service Provider
(ISP) sends the HTTP request to the Adaptation Proxy with the User identification (2). The
Ontology Manager of the Adaptation Proxy employs the USER_ID for retrieving the user’s

User.Filter_Profile – 001
SLA.Services – Pay_for_Filtering
Device.DisplayResolution – 320x200
Device.Supported_Markup – XHTML

Network.WAN – GPRS
Network.RTT – 10
Content.Type – HTML
Content.URL – www.test.com

 Ubiquitous Computing

90

profile, the SLA_ID of the user’s profile for retrieving the SLA profile, and the HTTP
User_Agent for retrieving the device profile. The need for executing a content adaptation on
the user’s request is verified (exec_point_1 and exec_point_2 of the adaptation server profile).
If so, the required services for this adaptation are executed (5)(6). If the requested content is
not in the Cache of the Adaptation Proxy, it sends a request to the Origin Server (3), which
responds with the content (4). Ontology Manager extracts information from this content to
complete the content profile. It is verified if the content of the Origin Server response needs
to be adapted (exec_point_3 and exec_point_4 of the adaptation server profile). If so, the
required services for this adaptation are executed (5)(6). Lastly, the duly adapted content is
sent to the ISP (7), which forwards it to the User (8).

4.3 EICAF evaluation
A case study was conducted involving the configuration illustrated in Figure 28: computers
(1) and (2) were configured with Windows XP (700Mhz/256MB, 3Ghz/1GB) and computer
(3) with the Linux Fedora Core 2 (2Ghz/256MB). The Apache JMeter was installed in
computer (1) to simulate user access, and the Adaptation Proxy with the CCFS and MTS
profiles was installed in computer (2). Because the variations in the response times of the
Origin Servers, including those due to the Internet throughput, could interfere on this
evaluation, an Apache 2 server with the virtual hosts resource was installed in computer (3).
This enabled the tested pages to be cloned, restricting the data flow to the computers
involved in the case study. A Tomcat/Axis server with the respective Remote Adapters,
which played the role of Adaptation Server, was also installed in computer (3).

Fig. 28. Configuration in the case study

Five predefined links have been accessed for 5 minutes with three of these links blocked by
the domain addresses. They were accessed using desktops and mobile phones, distributed
randomly among the users, so that in some cases the MLTS would have to be used. The load
was progressively increased, adding one user every 1.5s up to the limit of 20 users, each user
accessing a link every 5s. To simulate different devices, 20 samplers were configured with
the JMeter, each containing a different User-Agent.
Two test scenarios were defined: using ontologies, and carrying out the discovery and
composition services on demand, an average response time of 425 ms was obtained; without
using ontologies, and defining the discovery and composition services manually, an average
response time of 38 ms was achieved. The difference of 387 ms between these two average
response times can be attributed: 38.4% to the OWL-S API initialization, including all its

Content Adaptation in Ubiquitous Computing

91

dependencies (e.g., Jena); 25.6% to the ontologies load and validation, corresponding to the
dynamic and static profiles; and 36% to the matching and composition function. These
values were obtained with the IDE Netbeans profiler tool. Figure 29 indicates an increase in
response time and in processing demand caused by the use of ontologies in EICAF.

Fig. 29. Average Response Time versus Number of Users

From a qualitative standpoint, should be considered the enhanced flexibility and precision
resulting from the use of semantics in the discovery and composition mechanism that
aids the service authorship, and gives the user a high degree of satisfaction. It should
also be considered that this response time tends to decrease with the semantic APIs
improvement.

5. Conclusion
Applications involving multimedia usually require a certain level of QoS and, if this quality
cannot be guaranteed over the Internet, these applications should be able to adapt to the
available quality. ICAP defines the syntax and semantic for exchanging the content between
the ICAP client and the ICAP server, but it does not define any adaptation policy. In this
sense, we proposed a general architecture that considers a set of elements described in a set
of profiles, which affect the quality of the content delivered to the user, for controlling the
adaptation functions provided by the ICAP server. This architecture was employed in the
development of a CCFS. We also proposed ICAF, a component-based framework that
provides a flexible infrastructure for the Internet content adaptation domain, and we
described an experiment reusing this framework. Finally, we proposed the use of ontologies
and Web services to facilitate the development of content adaptation applications. To this
end, ICAF was extended to allow for the use of ontologies and Web services, existing
components were reused and adapted, and new components were introduced, thus
broadening the range of applications that can be developed from EICAF.

6. References
Beck, A.; Hofmann, M. & Condry, M. (2000). Example Services for Network Edge Proxies,

Internet-Draft, The Internet Society,

 Ubiquitous Computing

90

profile, the SLA_ID of the user’s profile for retrieving the SLA profile, and the HTTP
User_Agent for retrieving the device profile. The need for executing a content adaptation on
the user’s request is verified (exec_point_1 and exec_point_2 of the adaptation server profile).
If so, the required services for this adaptation are executed (5)(6). If the requested content is
not in the Cache of the Adaptation Proxy, it sends a request to the Origin Server (3), which
responds with the content (4). Ontology Manager extracts information from this content to
complete the content profile. It is verified if the content of the Origin Server response needs
to be adapted (exec_point_3 and exec_point_4 of the adaptation server profile). If so, the
required services for this adaptation are executed (5)(6). Lastly, the duly adapted content is
sent to the ISP (7), which forwards it to the User (8).

4.3 EICAF evaluation
A case study was conducted involving the configuration illustrated in Figure 28: computers
(1) and (2) were configured with Windows XP (700Mhz/256MB, 3Ghz/1GB) and computer
(3) with the Linux Fedora Core 2 (2Ghz/256MB). The Apache JMeter was installed in
computer (1) to simulate user access, and the Adaptation Proxy with the CCFS and MTS
profiles was installed in computer (2). Because the variations in the response times of the
Origin Servers, including those due to the Internet throughput, could interfere on this
evaluation, an Apache 2 server with the virtual hosts resource was installed in computer (3).
This enabled the tested pages to be cloned, restricting the data flow to the computers
involved in the case study. A Tomcat/Axis server with the respective Remote Adapters,
which played the role of Adaptation Server, was also installed in computer (3).

Fig. 28. Configuration in the case study

Five predefined links have been accessed for 5 minutes with three of these links blocked by
the domain addresses. They were accessed using desktops and mobile phones, distributed
randomly among the users, so that in some cases the MLTS would have to be used. The load
was progressively increased, adding one user every 1.5s up to the limit of 20 users, each user
accessing a link every 5s. To simulate different devices, 20 samplers were configured with
the JMeter, each containing a different User-Agent.
Two test scenarios were defined: using ontologies, and carrying out the discovery and
composition services on demand, an average response time of 425 ms was obtained; without
using ontologies, and defining the discovery and composition services manually, an average
response time of 38 ms was achieved. The difference of 387 ms between these two average
response times can be attributed: 38.4% to the OWL-S API initialization, including all its

Content Adaptation in Ubiquitous Computing

91

dependencies (e.g., Jena); 25.6% to the ontologies load and validation, corresponding to the
dynamic and static profiles; and 36% to the matching and composition function. These
values were obtained with the IDE Netbeans profiler tool. Figure 29 indicates an increase in
response time and in processing demand caused by the use of ontologies in EICAF.

Fig. 29. Average Response Time versus Number of Users

From a qualitative standpoint, should be considered the enhanced flexibility and precision
resulting from the use of semantics in the discovery and composition mechanism that
aids the service authorship, and gives the user a high degree of satisfaction. It should
also be considered that this response time tends to decrease with the semantic APIs
improvement.

5. Conclusion
Applications involving multimedia usually require a certain level of QoS and, if this quality
cannot be guaranteed over the Internet, these applications should be able to adapt to the
available quality. ICAP defines the syntax and semantic for exchanging the content between
the ICAP client and the ICAP server, but it does not define any adaptation policy. In this
sense, we proposed a general architecture that considers a set of elements described in a set
of profiles, which affect the quality of the content delivered to the user, for controlling the
adaptation functions provided by the ICAP server. This architecture was employed in the
development of a CCFS. We also proposed ICAF, a component-based framework that
provides a flexible infrastructure for the Internet content adaptation domain, and we
described an experiment reusing this framework. Finally, we proposed the use of ontologies
and Web services to facilitate the development of content adaptation applications. To this
end, ICAF was extended to allow for the use of ontologies and Web services, existing
components were reused and adapted, and new components were introduced, thus
broadening the range of applications that can be developed from EICAF.

6. References
Beck, A.; Hofmann, M. & Condry, M. (2000). Example Services for Network Edge Proxies,

Internet-Draft, The Internet Society,

 Ubiquitous Computing

92

 http://standards.nortelnetworks.com/opes/non-wg-doc/draft-beck-opes-esfnep-
01.txt

Beck, A.; Hofmann, M (2001). Enabling the Internet to Deliver Content-Oriented Services, In:
Web Caching and Content Deliver, A. Bestavros & M. Rabinovich (Eds), pp. 109-124,
Elsevier, ISBN 0-444-50950-X, The Netherlands

Beck, A. & Hofmann, M. (2003). IRML: A Rule Specification Language for Intermediary
Services, Internet-Draft, The Internet Society,

 http://tools.ietf.org/html/draft-beck-opes-irml-03
Beck, A. & Rousskov, A. (2003). P: Message Processing Language, OPES Internet-Draft, The

Internet Society, http://tools.ietf.org/html/draft-ietf-opes-rules-p-00
Berners-Lee, T.; Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific American, May

2001, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9584&rep=
rep1&type=pdf

Bharadvaj, H.; Joshi, A. & Auephanwiriyakul, S. (1998). An Active Transcoding Proxy to
Support Mobile Web Access, Proceedings of the 17th Symposium on Reliable Distributed
Systems, pp. 118-123, ISBN 0-8186-9218-9, West Lafayette-IN (USA), October 1998,
IEEE Computer Society, USA

Buchholz, S. & Schill, A. (2003). Adaptation-Aware Web Caching: Caching in the Future
Pervasive Web, Proceedings of the 13th GI/ITG Conference Kommunikation in verteilten
Systemen (KiVS), pp. 55-66, ISBN 3-540-00365-7, Leipzig (Germany), Februray 2003,
Springer-Verlag, Germany

Forte, M.; Souza, W. L. & Prado, A. F. (2006). A content classification and filtering server
for the Internet, Proceedings of the 21st Annual ACM Symposium on Applied
Computing, Vol. 2, pp. 1166 – 1171, ISBN 1-59593-108-2, Dijon (France), April 2006,
ACM, USA

Forte, M.; Claudino, R. A. T.; Souza, W. L.; Prado, A. F. & Santana, L. H. Z. (2007). A
Component-Based Framework for the Internet Content Adaptation Domain,
Proceedings of the 22nd Annual ACM Symposium on Applied Computing, Vol. 2, pp.
1450-1455, ISBN 1-59593-480-4, Seoul (Korea), March 2007, ACM, USA

Forte, M; Souza, W. L. & Prado, A. F. (2008). Using ontologies and Web services for content
adaptation in Ubiquitous Computing, Journal of Systems and Software, Vol. 81 , No 3,
 March 2008, pp. 368-381, ISSN 0164-1212

Elson, J. & Cerpa, A. (2003). Internet Content Adaptation Protocol (ICAP), Request for
Comments 3507, The Internet Society,

 http://www.icap-forum.org/documents/ specification/rfc3507.txt
Hansmann, U.; Merk, L.; Nicklous, M. S. & Stober, T. (2003). Pervasive Computing. Springer-

Verlag, ISBN 3-540-00218-9, Germany
Horrocks, I. et al (2003). SWRL: A Semantic Web Rule Language Combining OWL and

RuleML, DAML, http://www.daml.org/2003/11/swrl/
IBM (2004). IBM Integrated Ontology Development Toolkit,
 http://www.alphaworks.ibm. com/tech/semanticstk
ICOGNITO Technologies Ltd (2002). Dynamic Filtering of Internet Content: An Overview of

Next Generation Filtering Technology, http://www.icognito.com

Content Adaptation in Ubiquitous Computing

93

Lara, R. et al. (2005). D2.4.2 Semantics for Web Service Discovery and Composition,
KnowledgeWeb,

 http://knowledgeweb.semanticweb.org/semanticportal/ deliverables/D2.4.2.pdf
Marques, M. C. & Loureiro, A. F. (2004). Adaptation in Mobile Computing, Proceedings of the

22nd Brazilian Symposium on Computer Networks, pp. 439-452, Gramado-RS (Brazil),
Mai 2004, Brazilian Computer Society, Brazil

Martin, D. et al. (2006). OWL-S: Semantic Markup for Web Services. DAML,
 http://www.ai.sri.com/daml/services/owl-s/1.2/overview/
Mastoli, V.; Desai, V.; Shi, W (2003). SEE: a service execution environment for edge

services, Proceedings of the Third IEEE Workshop on Internet Applications, pp. 61-65,
ISBN 0-7695-1972-5, San Jose-CA (USA), June 2003, IEEE Computer Society,
USA

Network Apliance Inc (2001). Demo ICAP-Server by Network Appliance,
 http://www.icap-forum.org/icap?do=resources&subdo=specification
Ravindran, G.; Jaseemudin, M. & Rayhan, A (2002). A Management Framework for Service

Personalization, In: Management of Multimedia on the Internet, Lecture Notes in
Computer Science (LNCS) 2496, Kelvin C. Almeroth & Masum Hasan (Eds), pp.
276-288, Springer-Verlag, ISBN 3-540-44271-5, Germany

Rideout, V.; Richardson, C. & Resnick, P. (2002). See No Evil: How Internet Filters Affect the
Search for Online Health Information, The Henry J. Kaiser Family Foundation,
http://www.kff.org/entmedia/20021210a-index.cfm

Rousskov, A (2005). Open Pluggable Edge Services (OPES) Callout Protocol (OCP) Core,
Request for Comments 4037, The Internet Society,

 https://tools.ietf.org/html/rfc4037
Smith, J.; Mohan, R. & Li, C. (1998). Content-based Transcoding of Images in the Internet,

Proceedings of the 1998 IEEE International Conference on Image Processing, Vol. 3, pp. 7-
11, ISBN 0-8186-8821-1, Chicago-IL (USA), October 1998, IEEE Computer Society,
USA

SourceForge (2002). Squid Web Proxy as ICAP Client,
 http://icap-server.sourceforge.net/ squid.html
SourceForge (2003). Shweby Proxy Server, http://shweby.sourceforge.net/
Tomlinson, G.; Chen, R. & Hofmann, M. (2001). A Model for Open Pluggable Edge Services,

Internet- Draft, The Internet Society,
 http://tools.ietf.org/html/draft-tomlinson-opes-model-00
UDDI Spec TC (2004). UDDI Version 3.0.2, OASIS,
 http://www.uddi.org/pubs/ uddi_v3.htm
W3C (2004a). Composite Capability/Preference Profiles (CC/PP): Structure and

Vocabularies 1.0,
 http://www.w3.org/TR/CCPP-struct-vocab/
W3C (2004b). RDF/XML Syntax Specification (Revised),
 http://www.w3.org/TR/REC-rdf-syntax/
W3C (2004c). OWL Web Ontology Language Overview,
 http://www.w3.org/TR/owl-features/

 Ubiquitous Computing

92

 http://standards.nortelnetworks.com/opes/non-wg-doc/draft-beck-opes-esfnep-
01.txt

Beck, A.; Hofmann, M (2001). Enabling the Internet to Deliver Content-Oriented Services, In:
Web Caching and Content Deliver, A. Bestavros & M. Rabinovich (Eds), pp. 109-124,
Elsevier, ISBN 0-444-50950-X, The Netherlands

Beck, A. & Hofmann, M. (2003). IRML: A Rule Specification Language for Intermediary
Services, Internet-Draft, The Internet Society,

 http://tools.ietf.org/html/draft-beck-opes-irml-03
Beck, A. & Rousskov, A. (2003). P: Message Processing Language, OPES Internet-Draft, The

Internet Society, http://tools.ietf.org/html/draft-ietf-opes-rules-p-00
Berners-Lee, T.; Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific American, May

2001, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.9584&rep=
rep1&type=pdf

Bharadvaj, H.; Joshi, A. & Auephanwiriyakul, S. (1998). An Active Transcoding Proxy to
Support Mobile Web Access, Proceedings of the 17th Symposium on Reliable Distributed
Systems, pp. 118-123, ISBN 0-8186-9218-9, West Lafayette-IN (USA), October 1998,
IEEE Computer Society, USA

Buchholz, S. & Schill, A. (2003). Adaptation-Aware Web Caching: Caching in the Future
Pervasive Web, Proceedings of the 13th GI/ITG Conference Kommunikation in verteilten
Systemen (KiVS), pp. 55-66, ISBN 3-540-00365-7, Leipzig (Germany), Februray 2003,
Springer-Verlag, Germany

Forte, M.; Souza, W. L. & Prado, A. F. (2006). A content classification and filtering server
for the Internet, Proceedings of the 21st Annual ACM Symposium on Applied
Computing, Vol. 2, pp. 1166 – 1171, ISBN 1-59593-108-2, Dijon (France), April 2006,
ACM, USA

Forte, M.; Claudino, R. A. T.; Souza, W. L.; Prado, A. F. & Santana, L. H. Z. (2007). A
Component-Based Framework for the Internet Content Adaptation Domain,
Proceedings of the 22nd Annual ACM Symposium on Applied Computing, Vol. 2, pp.
1450-1455, ISBN 1-59593-480-4, Seoul (Korea), March 2007, ACM, USA

Forte, M; Souza, W. L. & Prado, A. F. (2008). Using ontologies and Web services for content
adaptation in Ubiquitous Computing, Journal of Systems and Software, Vol. 81 , No 3,
 March 2008, pp. 368-381, ISSN 0164-1212

Elson, J. & Cerpa, A. (2003). Internet Content Adaptation Protocol (ICAP), Request for
Comments 3507, The Internet Society,

 http://www.icap-forum.org/documents/ specification/rfc3507.txt
Hansmann, U.; Merk, L.; Nicklous, M. S. & Stober, T. (2003). Pervasive Computing. Springer-

Verlag, ISBN 3-540-00218-9, Germany
Horrocks, I. et al (2003). SWRL: A Semantic Web Rule Language Combining OWL and

RuleML, DAML, http://www.daml.org/2003/11/swrl/
IBM (2004). IBM Integrated Ontology Development Toolkit,
 http://www.alphaworks.ibm. com/tech/semanticstk
ICOGNITO Technologies Ltd (2002). Dynamic Filtering of Internet Content: An Overview of

Next Generation Filtering Technology, http://www.icognito.com

Content Adaptation in Ubiquitous Computing

93

Lara, R. et al. (2005). D2.4.2 Semantics for Web Service Discovery and Composition,
KnowledgeWeb,

 http://knowledgeweb.semanticweb.org/semanticportal/ deliverables/D2.4.2.pdf
Marques, M. C. & Loureiro, A. F. (2004). Adaptation in Mobile Computing, Proceedings of the

22nd Brazilian Symposium on Computer Networks, pp. 439-452, Gramado-RS (Brazil),
Mai 2004, Brazilian Computer Society, Brazil

Martin, D. et al. (2006). OWL-S: Semantic Markup for Web Services. DAML,
 http://www.ai.sri.com/daml/services/owl-s/1.2/overview/
Mastoli, V.; Desai, V.; Shi, W (2003). SEE: a service execution environment for edge

services, Proceedings of the Third IEEE Workshop on Internet Applications, pp. 61-65,
ISBN 0-7695-1972-5, San Jose-CA (USA), June 2003, IEEE Computer Society,
USA

Network Apliance Inc (2001). Demo ICAP-Server by Network Appliance,
 http://www.icap-forum.org/icap?do=resources&subdo=specification
Ravindran, G.; Jaseemudin, M. & Rayhan, A (2002). A Management Framework for Service

Personalization, In: Management of Multimedia on the Internet, Lecture Notes in
Computer Science (LNCS) 2496, Kelvin C. Almeroth & Masum Hasan (Eds), pp.
276-288, Springer-Verlag, ISBN 3-540-44271-5, Germany

Rideout, V.; Richardson, C. & Resnick, P. (2002). See No Evil: How Internet Filters Affect the
Search for Online Health Information, The Henry J. Kaiser Family Foundation,
http://www.kff.org/entmedia/20021210a-index.cfm

Rousskov, A (2005). Open Pluggable Edge Services (OPES) Callout Protocol (OCP) Core,
Request for Comments 4037, The Internet Society,

 https://tools.ietf.org/html/rfc4037
Smith, J.; Mohan, R. & Li, C. (1998). Content-based Transcoding of Images in the Internet,

Proceedings of the 1998 IEEE International Conference on Image Processing, Vol. 3, pp. 7-
11, ISBN 0-8186-8821-1, Chicago-IL (USA), October 1998, IEEE Computer Society,
USA

SourceForge (2002). Squid Web Proxy as ICAP Client,
 http://icap-server.sourceforge.net/ squid.html
SourceForge (2003). Shweby Proxy Server, http://shweby.sourceforge.net/
Tomlinson, G.; Chen, R. & Hofmann, M. (2001). A Model for Open Pluggable Edge Services,

Internet- Draft, The Internet Society,
 http://tools.ietf.org/html/draft-tomlinson-opes-model-00
UDDI Spec TC (2004). UDDI Version 3.0.2, OASIS,
 http://www.uddi.org/pubs/ uddi_v3.htm
W3C (2004a). Composite Capability/Preference Profiles (CC/PP): Structure and

Vocabularies 1.0,
 http://www.w3.org/TR/CCPP-struct-vocab/
W3C (2004b). RDF/XML Syntax Specification (Revised),
 http://www.w3.org/TR/REC-rdf-syntax/
W3C (2004c). OWL Web Ontology Language Overview,
 http://www.w3.org/TR/owl-features/

 Ubiquitous Computing

94

W3C (2007). Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
http://www.w3.org/TR/wsdl20/

5

Caching in Ubiquitous Computing
Environments: Light and Shadow

Mianxiong Dong, Long Zheng, Kaoru Ota, Jun Ma,
Song Guo, and Minyi Guo

School of Computer Science and Engineering, University of Aizu
Japan

1. Introduction
The word ubiquitous [1] means an interface, an environment, and a technology that can
provide all benefits anywhere and anytime without you are aware of what it is, and the
ubiquitous computing is the term which is a concept to let computer exist everywhere in the
real world [2]. In recent years, ubiquitous devices such as RFID, sensors, cameras, T-engine,
and wearable computer have progressed rapidly and have begun to play important roles at
everywhere and at any time in our daily life [3-5]. Although there are potential ubiquitous
applications in nearly every aspect of our world, it is not so easy to build such an
application over infrastructure-less networks.
As our earlier research, we proposed a ubiquitous computing scenario which consists of
many heterogeneous processing nodes, named Ubiquitous Multi-Processor (UMP).We
introduced a basic framework of multiprocessor simulator system based on a multi-way
cluster for the research of heterogeneous multiprocessor system with both high scalability
and high performance [6]. The objective of [6] is to organize a basic simulator system
framework. Furthermore, as the next step, we proposed and implemented a double-buffered
communication model to improve communication speed keeping independence from each
processor model on the system. The proposed model showed over 50% system performance
improvement rate compared with the basic framework integrated with the single-buffered
model [7]. As the further stage of the hardware simulation, we implemented a ubiquitous
multi-processor network based pipeline processing framework to support the development
of high performance pervasive application [8]. In [8], we also developed a distributed JPEG
encoding application successfully based on the proposed framework. Based on these
previous researches, the next work would be improving the performance of the UMP
system. In the research of the evaluation of the network transmission speed [13-14], we
focused on the performance of the network communication part of the UMP system.
Through our experiment, we have found the best way to decide the packet size of the UMP
network.
Continuously to [13-15] in this article we evaluated four algorithms of the UMP system
which the purpose is to find an optimal solution considering the loading balance of the
Resource Router, total execution time, execution efficiency and task waiting time (delay).

 Ubiquitous Computing

94

W3C (2007). Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
http://www.w3.org/TR/wsdl20/

5

Caching in Ubiquitous Computing
Environments: Light and Shadow

Mianxiong Dong, Long Zheng, Kaoru Ota, Jun Ma,
Song Guo, and Minyi Guo

School of Computer Science and Engineering, University of Aizu
Japan

1. Introduction
The word ubiquitous [1] means an interface, an environment, and a technology that can
provide all benefits anywhere and anytime without you are aware of what it is, and the
ubiquitous computing is the term which is a concept to let computer exist everywhere in the
real world [2]. In recent years, ubiquitous devices such as RFID, sensors, cameras, T-engine,
and wearable computer have progressed rapidly and have begun to play important roles at
everywhere and at any time in our daily life [3-5]. Although there are potential ubiquitous
applications in nearly every aspect of our world, it is not so easy to build such an
application over infrastructure-less networks.
As our earlier research, we proposed a ubiquitous computing scenario which consists of
many heterogeneous processing nodes, named Ubiquitous Multi-Processor (UMP).We
introduced a basic framework of multiprocessor simulator system based on a multi-way
cluster for the research of heterogeneous multiprocessor system with both high scalability
and high performance [6]. The objective of [6] is to organize a basic simulator system
framework. Furthermore, as the next step, we proposed and implemented a double-buffered
communication model to improve communication speed keeping independence from each
processor model on the system. The proposed model showed over 50% system performance
improvement rate compared with the basic framework integrated with the single-buffered
model [7]. As the further stage of the hardware simulation, we implemented a ubiquitous
multi-processor network based pipeline processing framework to support the development
of high performance pervasive application [8]. In [8], we also developed a distributed JPEG
encoding application successfully based on the proposed framework. Based on these
previous researches, the next work would be improving the performance of the UMP
system. In the research of the evaluation of the network transmission speed [13-14], we
focused on the performance of the network communication part of the UMP system.
Through our experiment, we have found the best way to decide the packet size of the UMP
network.
Continuously to [13-15] in this article we evaluated four algorithms of the UMP system
which the purpose is to find an optimal solution considering the loading balance of the
Resource Router, total execution time, execution efficiency and task waiting time (delay).

 Ubiquitous Computing

96

2. An overview of the ubiquitous multi-processor system
The final goal of the UMP project is to provide a network framework for the coming
ubiquitous society. In the ubiquitous society, services could be likened the air, i.e., they will
exist everywhere and anytime to meet each user's request. In order to fill such requests,
computing resources are necessarily provided under two conflicting conditions: higher
performance and lower power consumption. To this end, we have proposed the UMP
system which is introduced in detail in this section.

2.1 Software architecture of UMP system

Fig. 1. UMP system overview

Fig. 1 is an overview of the UMP system. In our system, there are three kinds of nodes. One
is the Client Node which works instead of the mobile users. This node requests tasks
through mobile terminals on a wireless network. The other is the Resource Router (RR)
which is a gateway of the system. There exists only one node of RR in one subnet. This node
received task requests from the Client Nodes. Then, the node manages a list of tasks and
determines which tasks should be executed currently on the subnet. The last one is the
Calculation Node which actually executes tasks requested from the Client Nodes. Every task
is allocated by the RR on the subnet. When a task is executed, several Calculation Nodes are
connected to each other like a chain. For example, to encode a bitmap file into JPEG file, the
whole steps are six. So it means the chain has six Calculation Nodes. Combination of the
Calculation Nodes is always unique so that actions of tasks can be changed flexibly by the
demands of the Client Nodes. We call the Calculation Nodes as Processing Elements (PEs)
afterwards.

Caching in Ubiquitous Computing Environments: Light and Shadow

97

2.2 Motivation of our work
As a case study of the UMP system, we implemented a prototype application of the JPEG
encoding [8]. The application is developed to convert bitmap format image to JPEG format
image. At that stage, the implementation was simple and the algorithm of the processing
schedule was not considered enough. The scale of the prototype system was small; it
couldn’t server a large request of tasks. In the real world, many users will request the
service/task at simultaneously to the UMP system. So, it is obviously optimizing the time
efficiency, loading balance of the RR, reducing the delay of task execution, total execution
time of the whole task are pressing needs. Of course, there is a trade off between these
factors. How to design the UMP system to meet the providing of the real service is a
challenge thing. Generally speaking, processing speed would be quite faster than network
speed in usual. One of benchmarks of network performance is the network overhead [9]. In
[13-14], we compared processing time of using stand-alone application to processing time of
using UMP system. The result shows the difference between processing time of the former
and later is network overhead time. So, increasing the usage of each PE is one way to
generate the good performance. In other words, assign tasks as much as possible under the
limitation of the processing ability and reducing the communication cost.

3. Resource allocation algorithms for the resource router
In this section, we introduce two resource allocation algorithms for the RR to find single PE
whose state is idle. Resource allocating should be optimized since time consumption for that
is not trivial over total execution time. We propose an optimized algorithm and evaluate it
by probability analysis. Resource allocation algorithms with multi PEs are also introduced in
the following section 4.

3.1 Basic algorithm for the RR to search idle PEs
The RR has a role to look for a PE necessary to execute a task as the following steps.

1. The RR searches an idle PE randomly and sends a PE a message to check its state.
2. The PE sends the RR an answer of idle/busy.
3. After the RR gets the answer of idle, it finishes the search. If the answer is busy, back to

(1) and continue.

Firstly, the RR randomly searches a PE in a state of the idle by sending a message to ask a PE
whether the PE is in an idle state or a busy state. The PE replies to the RR with its current
state when it receives the message. When a response from PE is an idle state, the RR sends
the PE a message to request execution of the task. Otherwise, the RR looks for other
available PE. It keeps retrieving idle PEs until the execution of all tasks ends.
We can consider two possible scenarios for the RR to search an idle PE: the best case and the
worst case. The best case means the RR successfully finds an idle PE at the first search, i.e.,
the first retrieved PE is in the idle state so that the RR no longer looks for other PE. In
contrast, the worst case means the RR finds an idle PE after searching every PE on the
subnet, i.e., it retrieves the idle PE at last although the all other PEs are busy.
In the basic algorithm, the RR looks for an available PE at random. Therefore, the best case
can be not always expected and the worst case cannot be avoided. One reason for the worst

 Ubiquitous Computing

96

2. An overview of the ubiquitous multi-processor system
The final goal of the UMP project is to provide a network framework for the coming
ubiquitous society. In the ubiquitous society, services could be likened the air, i.e., they will
exist everywhere and anytime to meet each user's request. In order to fill such requests,
computing resources are necessarily provided under two conflicting conditions: higher
performance and lower power consumption. To this end, we have proposed the UMP
system which is introduced in detail in this section.

2.1 Software architecture of UMP system

Fig. 1. UMP system overview

Fig. 1 is an overview of the UMP system. In our system, there are three kinds of nodes. One
is the Client Node which works instead of the mobile users. This node requests tasks
through mobile terminals on a wireless network. The other is the Resource Router (RR)
which is a gateway of the system. There exists only one node of RR in one subnet. This node
received task requests from the Client Nodes. Then, the node manages a list of tasks and
determines which tasks should be executed currently on the subnet. The last one is the
Calculation Node which actually executes tasks requested from the Client Nodes. Every task
is allocated by the RR on the subnet. When a task is executed, several Calculation Nodes are
connected to each other like a chain. For example, to encode a bitmap file into JPEG file, the
whole steps are six. So it means the chain has six Calculation Nodes. Combination of the
Calculation Nodes is always unique so that actions of tasks can be changed flexibly by the
demands of the Client Nodes. We call the Calculation Nodes as Processing Elements (PEs)
afterwards.

Caching in Ubiquitous Computing Environments: Light and Shadow

97

2.2 Motivation of our work
As a case study of the UMP system, we implemented a prototype application of the JPEG
encoding [8]. The application is developed to convert bitmap format image to JPEG format
image. At that stage, the implementation was simple and the algorithm of the processing
schedule was not considered enough. The scale of the prototype system was small; it
couldn’t server a large request of tasks. In the real world, many users will request the
service/task at simultaneously to the UMP system. So, it is obviously optimizing the time
efficiency, loading balance of the RR, reducing the delay of task execution, total execution
time of the whole task are pressing needs. Of course, there is a trade off between these
factors. How to design the UMP system to meet the providing of the real service is a
challenge thing. Generally speaking, processing speed would be quite faster than network
speed in usual. One of benchmarks of network performance is the network overhead [9]. In
[13-14], we compared processing time of using stand-alone application to processing time of
using UMP system. The result shows the difference between processing time of the former
and later is network overhead time. So, increasing the usage of each PE is one way to
generate the good performance. In other words, assign tasks as much as possible under the
limitation of the processing ability and reducing the communication cost.

3. Resource allocation algorithms for the resource router
In this section, we introduce two resource allocation algorithms for the RR to find single PE
whose state is idle. Resource allocating should be optimized since time consumption for that
is not trivial over total execution time. We propose an optimized algorithm and evaluate it
by probability analysis. Resource allocation algorithms with multi PEs are also introduced in
the following section 4.

3.1 Basic algorithm for the RR to search idle PEs
The RR has a role to look for a PE necessary to execute a task as the following steps.

1. The RR searches an idle PE randomly and sends a PE a message to check its state.
2. The PE sends the RR an answer of idle/busy.
3. After the RR gets the answer of idle, it finishes the search. If the answer is busy, back to

(1) and continue.

Firstly, the RR randomly searches a PE in a state of the idle by sending a message to ask a PE
whether the PE is in an idle state or a busy state. The PE replies to the RR with its current
state when it receives the message. When a response from PE is an idle state, the RR sends
the PE a message to request execution of the task. Otherwise, the RR looks for other
available PE. It keeps retrieving idle PEs until the execution of all tasks ends.
We can consider two possible scenarios for the RR to search an idle PE: the best case and the
worst case. The best case means the RR successfully finds an idle PE at the first search, i.e.,
the first retrieved PE is in the idle state so that the RR no longer looks for other PE. In
contrast, the worst case means the RR finds an idle PE after searching every PE on the
subnet, i.e., it retrieves the idle PE at last although the all other PEs are busy.
In the basic algorithm, the RR looks for an available PE at random. Therefore, the best case
can be not always expected and the worst case cannot be avoided. One reason for the worst

 Ubiquitous Computing

98

case is there exist PEs being often in the busy state. A long delay can be generated if the RR
keeps retrieving such a busy PE instead of other idle ones.
We consider that if the RR omits such PEs to retrieve, it can find an idle PE quickly and
efficiently. The basic idea can be described as follows: 1) firstly making a group of PEs being
often in a busy state, and 2) the RR does not retrieve any PE from the group. A concrete
method is needed for finding such busy PEs and presented in the following subsection.

3.2 Optimized algorithm
In the optimized algorithm, firstly the RR searches an idle PE randomly and checks each
PE's state. After the RR repeats this procedure many times, it makes a group of busy PEs
based on a history of each PE's state the RR checked. In the next search, the RR tries to find
an idle PE excluding from the group. If the RR cannot find any idle PE, it searches an idle PE
from inside and outside of the group. This algorithm is based on an assumption that there
exists at least one idle PE of all. Details of the algorithm are described as the following steps.

1. The RR secures a storage region of each PE to save its degree of idle state, which starts from 0.
2. The RR searches an idle PE randomly and sends a PE a message to check its state.
3. The PE sends the RR an answer of idle/busy.
4. If the RR gets the answer of idle from the PE, it finishes the search and the PE's degree

of busy state is decremented by 1. If the answer is busy, the PE's degree is incremented
by 1 and the RR searches the next PE.

5. If repeating from Step 2 to Step4 s times, the RR looks into each PE's storage. If a PE's
degree of busy state is more than a threshold, the PE is regarded as ``PE with high
probability of busy''

6. After the end of looking into storages, the RR makes a group of PEs with high
probability of busy.

7. The RR searches an idle PE again expect for PEs belonging to the group t times. If the
RR cannot find any idle PE, it begins to search for an idle PE including inside of the
group.

8. Step5-7 are repeated until the entire search ends.

In the optimized algorithm, we can also consider the best case and the worst case for the RR
to spend time for searching an idle PE. The best case can occur when the RR finds an idle PE
at the first search like the best case of the basic algorithm. On the other hand, the worst case
is the RR firstly searches an idle PE from outside of the group but all PEs are in the busy
state. Hence, the RR starts to look for an idle PE from the group and then it finally finds an
idle PE after the all other PEs in the group are queried by the RR.

3.2 Probability analyses and discussion
As the first stage, we evaluate the optimized algorithm with probability analyses using
probabilities of finding an idle PE in the best case and the worst case with the basic
algorithm and the optimized algorithm respectively. Both probabilities depend on
probabilities of a PE in an idle state and a busy state respectively.
We use the queuing theory \cite{11} to obtain the probabilities of a PE in an idle state and a
busy state. The queuing theory is used to stochastically analyze congestion phenomena of
queues and allows us to measure several performances such as the probability of

Caching in Ubiquitous Computing Environments: Light and Shadow

99

encountering the system in certain states like idle and busy. Here, we consider one PE as on
one system and then its queuing model can be described as M/M/1(1) by Kendall's
notation. That means each PE receives a message from the RR randomly and deals with only
one task at once. Hence, when a PE processes a task and at same time a message comes from
the RR, the message is not accepted by the PE because of the busy state.

P0 Probability that a PE is in an idle state where $0 \leq P_0 \leq 1$.
P1 Probability that a PE is in a busy state where $P_1=1-P_0$.
n The total number of PEs in a subset.

m Number of PEs in the group (regarded as a PE with high
probability of busy).

P’1 Probability that a PE in the group is busy.
λ Average arrival rate of a message from the RR to a PE.
μ Average task execution rate of a PE.
ρ Congestion condition.

'ρ Congestion condition of the group

Table 1. The notations used in equations

Before the analysis, some notations are defined in Table 1. Equation (1) and (2) show the
probabilities of finding an idle PE from one subnet in the best case and the worst case
respectively when the basic algorithm is used.
In the best case of the probability of finding an idle PE:

 P = P0 (1)

In the worst case of the probability of finding an idle PE:

(1)
1

nP P −= (2)

On the other hand, Equation (3) and (4) show the probabilities of the best case and the worst
case respectively when the optimized algorithm is used. Here, we have new notations as
follows.
In the best case of the probability of finding an idle PE:

 P = P0 (3)

In the worst case of the probability of finding an idle PE:

() (1)
1 1*n m mP P P− −= (4)

The best case is just the same as the one using the basic algorithm since the RR finds an idle
PE at the first search in the both algorithms. Therefore, we consider only the worst cases to
comparing the optimized algorithm with the basic algorithm.
The range of m in the worst case, since PEs in the group is a part of all PEs in the subnet, can
be 0 m n≤ ≤ . In the case of m=0 or m=n, it is just the same as the worst case using the basic

 Ubiquitous Computing

98

case is there exist PEs being often in the busy state. A long delay can be generated if the RR
keeps retrieving such a busy PE instead of other idle ones.
We consider that if the RR omits such PEs to retrieve, it can find an idle PE quickly and
efficiently. The basic idea can be described as follows: 1) firstly making a group of PEs being
often in a busy state, and 2) the RR does not retrieve any PE from the group. A concrete
method is needed for finding such busy PEs and presented in the following subsection.

3.2 Optimized algorithm
In the optimized algorithm, firstly the RR searches an idle PE randomly and checks each
PE's state. After the RR repeats this procedure many times, it makes a group of busy PEs
based on a history of each PE's state the RR checked. In the next search, the RR tries to find
an idle PE excluding from the group. If the RR cannot find any idle PE, it searches an idle PE
from inside and outside of the group. This algorithm is based on an assumption that there
exists at least one idle PE of all. Details of the algorithm are described as the following steps.

1. The RR secures a storage region of each PE to save its degree of idle state, which starts from 0.
2. The RR searches an idle PE randomly and sends a PE a message to check its state.
3. The PE sends the RR an answer of idle/busy.
4. If the RR gets the answer of idle from the PE, it finishes the search and the PE's degree

of busy state is decremented by 1. If the answer is busy, the PE's degree is incremented
by 1 and the RR searches the next PE.

5. If repeating from Step 2 to Step4 s times, the RR looks into each PE's storage. If a PE's
degree of busy state is more than a threshold, the PE is regarded as ``PE with high
probability of busy''

6. After the end of looking into storages, the RR makes a group of PEs with high
probability of busy.

7. The RR searches an idle PE again expect for PEs belonging to the group t times. If the
RR cannot find any idle PE, it begins to search for an idle PE including inside of the
group.

8. Step5-7 are repeated until the entire search ends.

In the optimized algorithm, we can also consider the best case and the worst case for the RR
to spend time for searching an idle PE. The best case can occur when the RR finds an idle PE
at the first search like the best case of the basic algorithm. On the other hand, the worst case
is the RR firstly searches an idle PE from outside of the group but all PEs are in the busy
state. Hence, the RR starts to look for an idle PE from the group and then it finally finds an
idle PE after the all other PEs in the group are queried by the RR.

3.2 Probability analyses and discussion
As the first stage, we evaluate the optimized algorithm with probability analyses using
probabilities of finding an idle PE in the best case and the worst case with the basic
algorithm and the optimized algorithm respectively. Both probabilities depend on
probabilities of a PE in an idle state and a busy state respectively.
We use the queuing theory \cite{11} to obtain the probabilities of a PE in an idle state and a
busy state. The queuing theory is used to stochastically analyze congestion phenomena of
queues and allows us to measure several performances such as the probability of

Caching in Ubiquitous Computing Environments: Light and Shadow

99

encountering the system in certain states like idle and busy. Here, we consider one PE as on
one system and then its queuing model can be described as M/M/1(1) by Kendall's
notation. That means each PE receives a message from the RR randomly and deals with only
one task at once. Hence, when a PE processes a task and at same time a message comes from
the RR, the message is not accepted by the PE because of the busy state.

P0 Probability that a PE is in an idle state where $0 \leq P_0 \leq 1$.
P1 Probability that a PE is in a busy state where $P_1=1-P_0$.
n The total number of PEs in a subset.

m Number of PEs in the group (regarded as a PE with high
probability of busy).

P’1 Probability that a PE in the group is busy.
λ Average arrival rate of a message from the RR to a PE.
μ Average task execution rate of a PE.
ρ Congestion condition.

'ρ Congestion condition of the group

Table 1. The notations used in equations

Before the analysis, some notations are defined in Table 1. Equation (1) and (2) show the
probabilities of finding an idle PE from one subnet in the best case and the worst case
respectively when the basic algorithm is used.
In the best case of the probability of finding an idle PE:

 P = P0 (1)

In the worst case of the probability of finding an idle PE:

(1)
1

nP P −= (2)

On the other hand, Equation (3) and (4) show the probabilities of the best case and the worst
case respectively when the optimized algorithm is used. Here, we have new notations as
follows.
In the best case of the probability of finding an idle PE:

 P = P0 (3)

In the worst case of the probability of finding an idle PE:

() (1)
1 1*n m mP P P− −= (4)

The best case is just the same as the one using the basic algorithm since the RR finds an idle
PE at the first search in the both algorithms. Therefore, we consider only the worst cases to
comparing the optimized algorithm with the basic algorithm.
The range of m in the worst case, since PEs in the group is a part of all PEs in the subnet, can
be 0 m n≤ ≤ . In the case of m=0 or m=n, it is just the same as the worst case using the basic

 Ubiquitous Computing

100

algorithm. Moreover, we assume 1 1'P P< since PEs in the group are regarded as PEs with
high probability of busy and should encounter a busy state more than else PEs in the subnet.
From the queuing theory,

 1 (1)P ρ ρ= − (5)

 '
1 '(1 ')P ρ ρ= − (6)

A notation ρ can be calculated as

 /ρ λ μ= (7)

And 'ρ in Equation (6) shows the congestion condition of a PE in the group. We also
assume 'ρ ρ< from the condition 1 1'P P< as mentioned before.
Here we can consider ρ as each PE's degree of busy state, since the RR classifies PEs based
on the degree by comparing with a threshold decided beforehand. Therefore, 'ρ of all PEs
in the group should be more than or equal to the threshold, so that thresholdρ < for other
PEs. To always keep these conditions, we assume ' thresholdρ = and simply fixed the
relation between 'ρ and ρ as follows.

 ' 0.1ρ ρ= + (8)

where 0.1 0.9ρ< < and 0.2 ' 1.0ρ< < with considering possible values of threshold in a
practical use.
Based on the assumption, we obtain the probabilities of the worst case in the basic algorithm
and the optimized algorithm using the Equation (2) and the Equation (4) respectively. Fig. 2
shows the probabilities with changing n, the total number of PEs in a subnet, from 10 to 100.
In each case of n, we also change m, the number of PEs in the group, from 0% to 50% of n.
When m is 0% of n, i.e., m=0 in Fig. 2, that means the basic algorithm is applied since there is
no PE in the group. For example, Fig. 2(a) shows the probabilities of the worst case for each
m from 0 to 5 with n=10.
In Fig. 2, we focus on the three parameters which are ρ , n, and m for discussion of the
results. Firstly, when 0.4 0.8ρ< < , the probabilities where m>0 become lower than one
where m=0 in most cases, so that the threshold of ρ should be set to more than 0.5 and less
than 0.9 to avoid the worst case using the optimized algorithm.
Secondly, the more the total number of PEs n, the bigger difference of the probabilities
between the basic algorithm (m=0) and the optimized algorithm (m>0) as shown in Fig. 2.
Therefore, we can conclude the optimized algorithm has less risk of the worst case than the
basic algorithm as the total number of PEs is larger.
Finally, the number of PEs in the group m gives less impact on results comparing to other
two parameters. However, in Fig. 2, we can see slightly less probabilities of the worst case as
m is larger.
As a result, using the optimized algorithm encounters the worst case less than using the
basic algorithm if the following conditions are met; (1) the threshold to make a busy group
by checking of each PE ranges from 0.6 to 0.8, and (2) the total number of PEs in a subnet is
relatively large. Considering these two conditions in implementation, effective performance
using the optimized algorithm can be expected.

Caching in Ubiquitous Computing Environments: Light and Shadow

101

 (a) When the total number of PEs n is 10 (b) When the total number of PEs n is 50

(c) When the total number of PEs n is 100

Fig. 2. The probabilities of the worst case with diverse values of m

4. Resource allocation algorithms with chained PEs
In practical use, multiple PEs are used to complete one task at most of time. In this section, we
introduce four resource allocation algorithms to find multiple PEs all who are in idle state.
In this chapter, we use JPEG encoding as an archetypal example to test the proposed
algorithms. There are six stages to encode a bitmap file into JPEG image. They are reading
bitmap file, RGB to YCbCr, down sampling translator, processing Discrete Cosine
Transform, Huffman Encoding, and JPEG image writer. When a user requests a task of JPEG
encoding, the RR will first reserve six PE as a chain for the whole processing. After the user
connected to the first PE, the chain processing will be started. When the last PE finished its
sub-task, the user can get the result and the RR change the entire PEs chain to a standby
status. Due to the user side is assumed as a mobile client, the battery life-time is a very
important factor in the system design. To reduce the energy consumption of user side, we
fix the first PE and the last PE to provide the frequently access from user to search the last
PE. Thus, all the optimization process is effect to the middle PEs in the whole process chain.
Therefore, the algorithm can be described as follows.

4.1 Current Algorithm (CA)
When task comes, RR will reserve the whole PEs which will be needed to process the task
until the task is finished. During the processing time, even some PEs are free, they cannot be
used by other tasks.

 Ubiquitous Computing

100

algorithm. Moreover, we assume 1 1'P P< since PEs in the group are regarded as PEs with
high probability of busy and should encounter a busy state more than else PEs in the subnet.
From the queuing theory,

 1 (1)P ρ ρ= − (5)

 '
1 '(1 ')P ρ ρ= − (6)

A notation ρ can be calculated as

 /ρ λ μ= (7)

And 'ρ in Equation (6) shows the congestion condition of a PE in the group. We also
assume 'ρ ρ< from the condition 1 1'P P< as mentioned before.
Here we can consider ρ as each PE's degree of busy state, since the RR classifies PEs based
on the degree by comparing with a threshold decided beforehand. Therefore, 'ρ of all PEs
in the group should be more than or equal to the threshold, so that thresholdρ < for other
PEs. To always keep these conditions, we assume ' thresholdρ = and simply fixed the
relation between 'ρ and ρ as follows.

 ' 0.1ρ ρ= + (8)

where 0.1 0.9ρ< < and 0.2 ' 1.0ρ< < with considering possible values of threshold in a
practical use.
Based on the assumption, we obtain the probabilities of the worst case in the basic algorithm
and the optimized algorithm using the Equation (2) and the Equation (4) respectively. Fig. 2
shows the probabilities with changing n, the total number of PEs in a subnet, from 10 to 100.
In each case of n, we also change m, the number of PEs in the group, from 0% to 50% of n.
When m is 0% of n, i.e., m=0 in Fig. 2, that means the basic algorithm is applied since there is
no PE in the group. For example, Fig. 2(a) shows the probabilities of the worst case for each
m from 0 to 5 with n=10.
In Fig. 2, we focus on the three parameters which are ρ , n, and m for discussion of the
results. Firstly, when 0.4 0.8ρ< < , the probabilities where m>0 become lower than one
where m=0 in most cases, so that the threshold of ρ should be set to more than 0.5 and less
than 0.9 to avoid the worst case using the optimized algorithm.
Secondly, the more the total number of PEs n, the bigger difference of the probabilities
between the basic algorithm (m=0) and the optimized algorithm (m>0) as shown in Fig. 2.
Therefore, we can conclude the optimized algorithm has less risk of the worst case than the
basic algorithm as the total number of PEs is larger.
Finally, the number of PEs in the group m gives less impact on results comparing to other
two parameters. However, in Fig. 2, we can see slightly less probabilities of the worst case as
m is larger.
As a result, using the optimized algorithm encounters the worst case less than using the
basic algorithm if the following conditions are met; (1) the threshold to make a busy group
by checking of each PE ranges from 0.6 to 0.8, and (2) the total number of PEs in a subnet is
relatively large. Considering these two conditions in implementation, effective performance
using the optimized algorithm can be expected.

Caching in Ubiquitous Computing Environments: Light and Shadow

101

 (a) When the total number of PEs n is 10 (b) When the total number of PEs n is 50

(c) When the total number of PEs n is 100

Fig. 2. The probabilities of the worst case with diverse values of m

4. Resource allocation algorithms with chained PEs
In practical use, multiple PEs are used to complete one task at most of time. In this section, we
introduce four resource allocation algorithms to find multiple PEs all who are in idle state.
In this chapter, we use JPEG encoding as an archetypal example to test the proposed
algorithms. There are six stages to encode a bitmap file into JPEG image. They are reading
bitmap file, RGB to YCbCr, down sampling translator, processing Discrete Cosine
Transform, Huffman Encoding, and JPEG image writer. When a user requests a task of JPEG
encoding, the RR will first reserve six PE as a chain for the whole processing. After the user
connected to the first PE, the chain processing will be started. When the last PE finished its
sub-task, the user can get the result and the RR change the entire PEs chain to a standby
status. Due to the user side is assumed as a mobile client, the battery life-time is a very
important factor in the system design. To reduce the energy consumption of user side, we
fix the first PE and the last PE to provide the frequently access from user to search the last
PE. Thus, all the optimization process is effect to the middle PEs in the whole process chain.
Therefore, the algorithm can be described as follows.

4.1 Current Algorithm (CA)
When task comes, RR will reserve the whole PEs which will be needed to process the task
until the task is finished. During the processing time, even some PEs are free, they cannot be
used by other tasks.

 Ubiquitous Computing

102

The characteristic of the current resource allocation algorithm can be analyzed into two
parts:
i. Mean delay:

/

1

1 (1) (/) /
n m

i
d m i t n n m m n m t

n

⎢ ⎥⎣ ⎦

=

⎛ ⎞
⎜ ⎟= ⋅ − + − ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠

∑ (9)

where m is the number of tasks RR can handle at one time, t is the time to handle m tasks.
So the first m tasks wait 0 time, the second m tasks wait t time, the i-th m tasks should
wait (i-1)t time.
We can also get task execution efficiency as follows:

ii. Task Execution Efficiency:

1

, 1
1 1 1

n n n

i i i i
i i i

f e e c
−

+
= = =

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ (10)

Where ei (1 ≤ i ≤ n) is the execution time in i-th PE, , 1j jc + is the communication time

between j-th PE and (j+1)-th (1 ≤ j ≤ n) PE.
In our simulation, we assume the communication time between any two PEs is the same, i.e.

, 1 , , , ,j j m nc c c i j m n N+ = = ∀ ∈ , N is the natural number set. Hence,

1 1

(1)
n n

i i
i i

f e e n c
= =

⎛ ⎞
= + − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ (11)

Abstract of the CA is described as follows.

1. Router retrieves a new task from the task queue. If there is no task in the task queue,

then ends.
2. Router generates a PE chain which is used to process a task. Set the PEs in the PE chain

as busy, which means these PE can not do any other task until they are released.
3. Router sends the PE chain information and task to PE1.
4. PE1 finishes its work and follows the PE chain information to transfer the task to PE2.
5. PE2 finishes its work and follows the PE chain information to transfer the task to PE3.
6. PE4 finishes its work and follows the PE chain information to transfer the task to PE5.
7. PE5 finishes its work and follows the PE chain information to transfer the task to PE6.
8. PE6 finishes its work and sends the processed task back to router.
9. Router sets all PEs in the PE chain as idle.
10. Remove the task from the task queue. If there is no task left in the task queue, then

terminates. Otherwise go to Step (1).

4.2 Randomly Allocating Algorithm (RAA)
The biggest limitation of the current policy is that if the RR allocates the PEs to the users
once, the all PEs are reserved until the whole task will be finished. This is obviously a big
useless of the computational resource. To regard as this point, we apply a randomly
distribute algorithm to the UMP system. The concept of RAA is after the PE finished the

Caching in Ubiquitous Computing Environments: Light and Shadow

103

execution of the process, the PE will ask the RR for the next phase of PE. The usage rate of
PE is quite high, but the load balance is heavy for the RR. We can get task execution
efficiency as follows:
i. Task execution efficiency:

1

1,
1 1 1 2

n n n n

i i i i i
i i i i

f e e cr c
−

−
= = = =

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ (12)

where niei ≤≤1 , is the execution time, nic ii ≤≤− 2,1 is the communication time between i-th
PE and RR, nicri ≤≤1 is the communication time between (i-1)-th PE and i-th PE.
Abstract of the RAA is described as follows.

1. Router retrieves a new task from the task queue. If there is no task in the task queue,

then ends.
2. Router finds an idle PE1 and any PE6 and then transfers the task to this PE1.
3. After getting the task from router, this PE1 sends a busy status message to router.
4. After processing the task, this PE1 send an idle status message to router and meantime

ask the router for the next PE.
5. Router finds an idle PE2, and then tells the PE1.
6. PE2 sends the status busy to router; PE1 transfers the task to PE2, and sends idle status

message to router.
7. PE2, PE3, PE4 act the same.
8. After PE5’s processing the task, PE5 transfers the task the PE6 which is decided by

router at Step 2.
9. After PE6’s processing the task, transfer the processed task back to router.
10. Remove the task from the task queue. If there is no task left in the task queue, then

terminates. Otherwise go to Step (1).

4.3 Randomly Allocating Algorithm with Cache technology (RAA-C).
To improve the RAA, we introduce a cache concept of the resource allocating algorithm. For
every PE, we assign a cache for them to memorize the next stage’s PE. When they finished
their sub-task, they will search the next phase of PE in their cache. If the all PEs in the cache
are at the busy status, it will ask RR to assign one free PE as the next phase PE.
We can get task execution efficiency as follows:
i. The best case of task execution efficiency:

 1,
1 1 2

(3)
n n n

i i i i
i i i

f e e c −
= = =

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ (13)

where niei ≤≤1 is the execution time, nic ii ≤≤− 2,1 is the communication time between (i-1)-th
PE and i-th PE. The best case means each (i-1)-th PE can access each i-th PE memorized in
their cache because i-th PE is not busy. (i-1)-th PE is supposed to have communication with
i-th PE three times in total. As the first communication, (i-1)-th PE asks i-th PE whether or
not it is busy currently. Then, i-th PE replays to (i-1)-th PE in the second communication.
Since this is the best case so that i-th PE’s answer must be “available”, (i-1)-th PE starts to
send data to i-th PE in the third communication.

 Ubiquitous Computing

102

The characteristic of the current resource allocation algorithm can be analyzed into two
parts:
i. Mean delay:

/

1

1 (1) (/) /
n m

i
d m i t n n m m n m t

n

⎢ ⎥⎣ ⎦

=

⎛ ⎞
⎜ ⎟= ⋅ − + − ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎜ ⎟
⎝ ⎠

∑ (9)

where m is the number of tasks RR can handle at one time, t is the time to handle m tasks.
So the first m tasks wait 0 time, the second m tasks wait t time, the i-th m tasks should
wait (i-1)t time.
We can also get task execution efficiency as follows:

ii. Task Execution Efficiency:

1

, 1
1 1 1

n n n

i i i i
i i i

f e e c
−

+
= = =

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ (10)

Where ei (1 ≤ i ≤ n) is the execution time in i-th PE, , 1j jc + is the communication time

between j-th PE and (j+1)-th (1 ≤ j ≤ n) PE.
In our simulation, we assume the communication time between any two PEs is the same, i.e.

, 1 , , , ,j j m nc c c i j m n N+ = = ∀ ∈ , N is the natural number set. Hence,

1 1

(1)
n n

i i
i i

f e e n c
= =

⎛ ⎞
= + − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ (11)

Abstract of the CA is described as follows.

1. Router retrieves a new task from the task queue. If there is no task in the task queue,

then ends.
2. Router generates a PE chain which is used to process a task. Set the PEs in the PE chain

as busy, which means these PE can not do any other task until they are released.
3. Router sends the PE chain information and task to PE1.
4. PE1 finishes its work and follows the PE chain information to transfer the task to PE2.
5. PE2 finishes its work and follows the PE chain information to transfer the task to PE3.
6. PE4 finishes its work and follows the PE chain information to transfer the task to PE5.
7. PE5 finishes its work and follows the PE chain information to transfer the task to PE6.
8. PE6 finishes its work and sends the processed task back to router.
9. Router sets all PEs in the PE chain as idle.
10. Remove the task from the task queue. If there is no task left in the task queue, then

terminates. Otherwise go to Step (1).

4.2 Randomly Allocating Algorithm (RAA)
The biggest limitation of the current policy is that if the RR allocates the PEs to the users
once, the all PEs are reserved until the whole task will be finished. This is obviously a big
useless of the computational resource. To regard as this point, we apply a randomly
distribute algorithm to the UMP system. The concept of RAA is after the PE finished the

Caching in Ubiquitous Computing Environments: Light and Shadow

103

execution of the process, the PE will ask the RR for the next phase of PE. The usage rate of
PE is quite high, but the load balance is heavy for the RR. We can get task execution
efficiency as follows:
i. Task execution efficiency:

1

1,
1 1 1 2

n n n n

i i i i i
i i i i

f e e cr c
−

−
= = = =

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ (12)

where niei ≤≤1 , is the execution time, nic ii ≤≤− 2,1 is the communication time between i-th
PE and RR, nicri ≤≤1 is the communication time between (i-1)-th PE and i-th PE.
Abstract of the RAA is described as follows.

1. Router retrieves a new task from the task queue. If there is no task in the task queue,

then ends.
2. Router finds an idle PE1 and any PE6 and then transfers the task to this PE1.
3. After getting the task from router, this PE1 sends a busy status message to router.
4. After processing the task, this PE1 send an idle status message to router and meantime

ask the router for the next PE.
5. Router finds an idle PE2, and then tells the PE1.
6. PE2 sends the status busy to router; PE1 transfers the task to PE2, and sends idle status

message to router.
7. PE2, PE3, PE4 act the same.
8. After PE5’s processing the task, PE5 transfers the task the PE6 which is decided by

router at Step 2.
9. After PE6’s processing the task, transfer the processed task back to router.
10. Remove the task from the task queue. If there is no task left in the task queue, then

terminates. Otherwise go to Step (1).

4.3 Randomly Allocating Algorithm with Cache technology (RAA-C).
To improve the RAA, we introduce a cache concept of the resource allocating algorithm. For
every PE, we assign a cache for them to memorize the next stage’s PE. When they finished
their sub-task, they will search the next phase of PE in their cache. If the all PEs in the cache
are at the busy status, it will ask RR to assign one free PE as the next phase PE.
We can get task execution efficiency as follows:
i. The best case of task execution efficiency:

 1,
1 1 2

(3)
n n n

i i i i
i i i

f e e c −
= = =

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ (13)

where niei ≤≤1 is the execution time, nic ii ≤≤− 2,1 is the communication time between (i-1)-th
PE and i-th PE. The best case means each (i-1)-th PE can access each i-th PE memorized in
their cache because i-th PE is not busy. (i-1)-th PE is supposed to have communication with
i-th PE three times in total. As the first communication, (i-1)-th PE asks i-th PE whether or
not it is busy currently. Then, i-th PE replays to (i-1)-th PE in the second communication.
Since this is the best case so that i-th PE’s answer must be “available”, (i-1)-th PE starts to
send data to i-th PE in the third communication.

 Ubiquitous Computing

104

ii. The worst case of task execution efficiency:

1

1,
1 1 2 1

(3)
n n n n

i i i i i
i i i i

f e e c cr
−

−
= = = =

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ (14)

where niei ≤≤1 is the execution time, 11 −≤≤ nicri is the communication time between i-th
PE and RR, nic ii ≤≤− 2,1 is the communication time between (i-1)-th PE and i-th PE. The worst
case means each (i-1)-th PE cannot access each i-th PE memorized in their cache because i-th
PE is busy. Therefore, each (i-1)-th PE has to ask RR for a free PE.
Abstract of the RAA-C is described as follows.

1. Router retrieves a new task from the task queue. If there is no task in the task queue,

then ends.
2. Router finds an idle PE1 and any PE6 and then transfers the task to this PE1.
3. After getting the task from router, this PE1 sends a busy status message to router.
4. After processing the task, this PE1 sends an idle status message to router.
5. Find the idle PE from its cache.
6. If the PE1 finds an idle PE2, then send a request message to verify whether the PE2 is

truly idle or not.
7. If the response from PE2 is yes, then go to step 10; or send a request message to router,

by which router will look for an idle PE2 without restriction of PE1’s cache.
8. If router finds one, then tell PE1, otherwise, repeat steps from Step (5).
9. Router finds an idle PE2, and then tells the PE1.
10. PE2 send the busy status message to router; PE1 transfers the task to PE2, and then

sends the idle status message to router.
11. PE2, PE3, PE4 act the same, besides updates the information of cache of PE1, PE2, PE3,

respectively.
12. After PE5’s processing the task, PE5 updates the information of cache of PE4; and then

transfers the task the PE6 which is decided by router at Step 2.
13. After PE6’s processing the task, transfer the processed task back to router.
14. Remove the task from the task queue. If there is no task left in the task queue, then

terminates. Otherwise go to Step (1).

4.4 Randomly Allocating Algorithm with Grouping method (RAA-G).
The RAA-G is slightly different from RAA-C. We use a grouping method to group the PEs.
The difference between the RAA-G and RAA-C is the restriction of jumping to the PEs
which is out of the cache that current PE has. That means when a certain PE finished its sub-
task and the whole PEs in the cache (group) are busy, the PE will not ask RR to assign a free
PE out of the cache. For example, assume every cache at each phase has four PEs. When a
certain PE at one stage finished the sub-task, it can search the next phase PE in the same
cache. If the next phase PE is all busy status, it has to wait. This is the biggest difference
between RAA-C and RAA-G. And the Efficiency of RAA-G in the best case is the same to
RAA-C. Here, the best case means each (i-1)-th PE succeeds to find the next phase PE in only
one access without asking all PE members in the cache.

Caching in Ubiquitous Computing Environments: Light and Shadow

105

i. The worst case of task execution efficiency:

 1, 1,
1 1 2 1

2
n n n l

i i i j i i
i i i j

f e e c c− −
= = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + +

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ (15)

where 1ie i n≤ ≤ is the execution time, 1, 2i ic i n− ≤ ≤ is the communication time between (i-1)-
th PE and i-th PE, 1, 2 ,1i ijc i n j l− ≤ ≤ ≤ ≤ where l is the number of PEs in one group, is also the
communication time between (i-1)-th PE and i-th PEs in the group. The worst case means each
(i-1)-th PE asks all next phase PEs in a group at every stage. It is because (i-1)-th PE checks
whether or not PE in the group is busy one by one in order to seek one available PE.
Abstract of the RAA-G is described as follows.

1. Router retrieves a new task from the task queue. If there is no task in the task queue,

then ends.
2. Router finds an idle PE1 and any PE6 and then transfers the task to this PE1.
3. After getting the task from router, this PE1 sends a busy status message to router.
4. After processing the task, this PE1 sends an idle status message to router.
5. Find the idle PE from its cache.
6. If the PE1 finds an idle PE2, then send a request message to verify whether the PE2 is

truly idle or not.
7. If the response from PE2 is yes, then go to step 10; or waits a particular time, then go to

step 5.
8. PE1 transfers the task to PE2.
9. PE2, PE3, PE4 act the same, besides updates the information of cache of PE1, PE2, PE3,

respectively.
10. After PE5’s processing the task, PE5 updates the information of cache of PE4; and then

transfers the task the PE6 which is decided by router at Step (2).
11. After PE6’s processing the task, transfer the processed task back to router.
12. Remove the task from the task queue. If there is no task left in the task queue, then

terminates. Otherwise go to Step (1).

4.5 Performance evaluation and discussion
We built a simulation system to evaluate the 4 algorithms. We used the Poisson Distribution
to generate the tasks because the Poisson Distribution arises in connection with Poisson
processes. It applies to various phenomena of discrete nature (that is, those that may happen
0, 1, 2, 3, ... times during a given period of time or in a given area) whenever the probability
of the phenomenon happening is constant in time or space.
After run the generator, we got 291 tasks for the evaluation. And we set 240 PEs. Each
processing needs 6 PEs, therefore the total chains of PEs are 40. We also set the network
delay as 100. Table 2 shows the environment of the simulation.
Fig. 3 shows the loading balance of RR from the simulation result. We can see the sum
loading balance of CA and RAA-G perform a good result because the algorithms their self
restrict the communication with RR. And it is naturally the RAA had worst result, because
almost every time the PE should ask RR to know the next phase PE which should be
connected to.

 Ubiquitous Computing

104

ii. The worst case of task execution efficiency:

1

1,
1 1 2 1

(3)
n n n n

i i i i i
i i i i

f e e c cr
−

−
= = = =

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ (14)

where niei ≤≤1 is the execution time, 11 −≤≤ nicri is the communication time between i-th
PE and RR, nic ii ≤≤− 2,1 is the communication time between (i-1)-th PE and i-th PE. The worst
case means each (i-1)-th PE cannot access each i-th PE memorized in their cache because i-th
PE is busy. Therefore, each (i-1)-th PE has to ask RR for a free PE.
Abstract of the RAA-C is described as follows.

1. Router retrieves a new task from the task queue. If there is no task in the task queue,

then ends.
2. Router finds an idle PE1 and any PE6 and then transfers the task to this PE1.
3. After getting the task from router, this PE1 sends a busy status message to router.
4. After processing the task, this PE1 sends an idle status message to router.
5. Find the idle PE from its cache.
6. If the PE1 finds an idle PE2, then send a request message to verify whether the PE2 is

truly idle or not.
7. If the response from PE2 is yes, then go to step 10; or send a request message to router,

by which router will look for an idle PE2 without restriction of PE1’s cache.
8. If router finds one, then tell PE1, otherwise, repeat steps from Step (5).
9. Router finds an idle PE2, and then tells the PE1.
10. PE2 send the busy status message to router; PE1 transfers the task to PE2, and then

sends the idle status message to router.
11. PE2, PE3, PE4 act the same, besides updates the information of cache of PE1, PE2, PE3,

respectively.
12. After PE5’s processing the task, PE5 updates the information of cache of PE4; and then

transfers the task the PE6 which is decided by router at Step 2.
13. After PE6’s processing the task, transfer the processed task back to router.
14. Remove the task from the task queue. If there is no task left in the task queue, then

terminates. Otherwise go to Step (1).

4.4 Randomly Allocating Algorithm with Grouping method (RAA-G).
The RAA-G is slightly different from RAA-C. We use a grouping method to group the PEs.
The difference between the RAA-G and RAA-C is the restriction of jumping to the PEs
which is out of the cache that current PE has. That means when a certain PE finished its sub-
task and the whole PEs in the cache (group) are busy, the PE will not ask RR to assign a free
PE out of the cache. For example, assume every cache at each phase has four PEs. When a
certain PE at one stage finished the sub-task, it can search the next phase PE in the same
cache. If the next phase PE is all busy status, it has to wait. This is the biggest difference
between RAA-C and RAA-G. And the Efficiency of RAA-G in the best case is the same to
RAA-C. Here, the best case means each (i-1)-th PE succeeds to find the next phase PE in only
one access without asking all PE members in the cache.

Caching in Ubiquitous Computing Environments: Light and Shadow

105

i. The worst case of task execution efficiency:

 1, 1,
1 1 2 1

2
n n n l

i i i j i i
i i i j

f e e c c− −
= = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + +

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ (15)

where 1ie i n≤ ≤ is the execution time, 1, 2i ic i n− ≤ ≤ is the communication time between (i-1)-
th PE and i-th PE, 1, 2 ,1i ijc i n j l− ≤ ≤ ≤ ≤ where l is the number of PEs in one group, is also the
communication time between (i-1)-th PE and i-th PEs in the group. The worst case means each
(i-1)-th PE asks all next phase PEs in a group at every stage. It is because (i-1)-th PE checks
whether or not PE in the group is busy one by one in order to seek one available PE.
Abstract of the RAA-G is described as follows.

1. Router retrieves a new task from the task queue. If there is no task in the task queue,

then ends.
2. Router finds an idle PE1 and any PE6 and then transfers the task to this PE1.
3. After getting the task from router, this PE1 sends a busy status message to router.
4. After processing the task, this PE1 sends an idle status message to router.
5. Find the idle PE from its cache.
6. If the PE1 finds an idle PE2, then send a request message to verify whether the PE2 is

truly idle or not.
7. If the response from PE2 is yes, then go to step 10; or waits a particular time, then go to

step 5.
8. PE1 transfers the task to PE2.
9. PE2, PE3, PE4 act the same, besides updates the information of cache of PE1, PE2, PE3,

respectively.
10. After PE5’s processing the task, PE5 updates the information of cache of PE4; and then

transfers the task the PE6 which is decided by router at Step (2).
11. After PE6’s processing the task, transfer the processed task back to router.
12. Remove the task from the task queue. If there is no task left in the task queue, then

terminates. Otherwise go to Step (1).

4.5 Performance evaluation and discussion
We built a simulation system to evaluate the 4 algorithms. We used the Poisson Distribution
to generate the tasks because the Poisson Distribution arises in connection with Poisson
processes. It applies to various phenomena of discrete nature (that is, those that may happen
0, 1, 2, 3, ... times during a given period of time or in a given area) whenever the probability
of the phenomenon happening is constant in time or space.
After run the generator, we got 291 tasks for the evaluation. And we set 240 PEs. Each
processing needs 6 PEs, therefore the total chains of PEs are 40. We also set the network
delay as 100. Table 2 shows the environment of the simulation.
Fig. 3 shows the loading balance of RR from the simulation result. We can see the sum
loading balance of CA and RAA-G perform a good result because the algorithms their self
restrict the communication with RR. And it is naturally the RAA had worst result, because
almost every time the PE should ask RR to know the next phase PE which should be
connected to.

 Ubiquitous Computing

106

OS Windows Vista Business (32-bit)
CPU AMD Athlon64 3200+
Memory DDR SDRAM 2GB
Language JAVA 1.5
Network Localhost

Table 2. The experiment environment

Fig. 3. The loading balance of RR of four algorithms

Caching in Ubiquitous Computing Environments: Light and Shadow

107

Fig. 4. The efficiency of tasks

Fig. 4 is a distribution view of efficiency of tasks. Because the efficiency is highly related
with the communication cost, CA shows a best result as well as it doesn’t have much
communication with RR and the other PEs. The average efficiency of RAA-C and RAA-G
are almost the same, it is perfect matching the mathematic model we have described above.
RAA also has a better result than RAA-C and RAA-G. But consider the loading balance of
RR it is still not acceptable.

 Ubiquitous Computing

106

OS Windows Vista Business (32-bit)
CPU AMD Athlon64 3200+
Memory DDR SDRAM 2GB
Language JAVA 1.5
Network Localhost

Table 2. The experiment environment

Fig. 3. The loading balance of RR of four algorithms

Caching in Ubiquitous Computing Environments: Light and Shadow

107

Fig. 4. The efficiency of tasks

Fig. 4 is a distribution view of efficiency of tasks. Because the efficiency is highly related
with the communication cost, CA shows a best result as well as it doesn’t have much
communication with RR and the other PEs. The average efficiency of RAA-C and RAA-G
are almost the same, it is perfect matching the mathematic model we have described above.
RAA also has a better result than RAA-C and RAA-G. But consider the loading balance of
RR it is still not acceptable.

 Ubiquitous Computing

108

From the left part of Fig. 5, we can see the proposed algorithms have a significant
improvement compared with the current implementation. Also, from the right part of Fig. 5,
we can see the RAA-G and RAA-C are slightly performing a good result than RAA.

Fig. 5. The total processing time of the tasks

5. Conclusion
In this chapter, we propose an optimized algorithm for resource allocation to a processing
node, which can improve the overall performance of the UMP system. Using the optimized
algorithm, the RR can effectively find a single PE in an idle state, which actually can process
an assigned task. As a result, the RR saves the time to search for an idle node so that total
performance of resource allocation can be improved. Finally, we evaluated the optimized
algorithm with probability analyses and figured out conditions for the optimized algorithm
to be better than the basic algorithm.
Also, as the further step our previous works, we evaluated the performance with four
different resource (PE) allocating algorithm for multiple PEs and analyzed these algorithms
from three points of view. Though these huge experiments, we have successfully proofed
our proposed algorithms are meaning while. Considering those three key factors (the time
efficiency, loading balance of the RR, and total processing time of the whole task), each
algorithm has its merit and demerit. There is always a trade off between these factors.
Taking into account the balanced point of all factors, we found the RAA-G is the best
algorithm to allocating resources (PEs) when the condition is the system has many users and
many task to process. The next better algorithm is RAA-C, following by RAA. For other
cases, it is difficult to say which algorithm is the best, because it is truly case by case. One
more things we have realized through the experiments are we can set the allocating policy
flexibly answering to the user’s request. Maybe that is the best solution to design the UMP
system. In the future, we will focus on the above layer of the UMP system - the service layer,
to deal with the context information from users, resources and environments.

Caching in Ubiquitous Computing Environments: Light and Shadow

109

4. Acknowledgment
This work is supported in part by Japan Society for the Promotion of Science (JSPS) Research
Fellowships for Young Scientists Program, JSPS Excellent Young Researcher Overseas Visit
Program, National Natural Science Foundation of China (NSFC) Distinguished Young
Scholars Program (No. 60725208) and NSCF Grant No. 60811130528.

5. References
[1] M. Weiser, “The Computer for the 21st Century,” Scientific Am., pp. 94-104, September,

1991.; reprinted in IEEE Pervasive Computing, pp. 19-25, January-March 2002.
[2] Wikipedia, the free encyclopedia, http://ja.wikipedia.org/wiki/
[3] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges”, IEEE Personal

Communication, pp. 10-17, August 2001.
[4] S. R. Ponnekanti, et.al, "Icrafter: A service framework for ubiquitous computing

environments", In Proc. of Ubicomp 2001, pp. 56–75, Atlanta, Georgia, October
2001.

[5] V. Stanford, “Using Pervasive Computing to Deliver Elder Care”, IEEE Pervasive
Computing, pp. 10-13, January-March, 2002.

[6] A. Shinozaki, M. Shima, M. Guo, and M. Kubo, "A High Performance Simulator System
for a Multiprocessor System Based on a Multi-way Cluster", Advances in Computer
Systems Architecture, Lecture Notes in Computer Science vol. 4186, pages 231-243,
Springer Berlin/Heidelberg, September, 2006.

[7] A. Shinozaki, M. Shima, M. Guo, and M. Kubo, “Multiprocessor Simulator System Based
on Multi-way Cluster Using Double-buffered Model”, Proceeding of AINA 2007,
Niagara Falls, Canada, May 2007, pp. 893-900.

[8] M. Kubo, B. Ye, A. Shinozaki, T. Nakatomi and M. Guo, “UMP-PerComp: A Ubiquitous
Multiprocessor Network-Based Pipeline Processing Framework for Pervasive
Computing Environments”, Proceeding of AINA 2007, Niagara Falls, Canada, May
2007, pp. 611-618.

[9] Wikipedia, the free encyclopedia, ”Computational overhead”, Available:
 http://en.wikipedia.org/wiki/Computational overhead.
[10] Wikipedia, the free encyclopedia, ”Maximum transmission unit”,
 http://en.wikipedia.org/wiki/Maximumtransmissionunit.
[11] Microsoft, ”Default MTU Size for Dierent Network Topology”, Knowledge Base Article,

ID.140375.
[12] Lawrence S. Husch and University of Tennessee, Knoxville, Mathematics Department,

”Horizontal Asymptotes”,
 http://archives.math.utk.edu/visual.calculus/1/horizontal.5/.
[13] M. Dong, S. Guo, M. Guo and S. Watanabe, “Design of the Ubiquitous Multi-Processor

System Focusing on Transmission Data Size”, In Proc. of HPSRN, pp. 158-166,
Sendai, Japan, March 2008

[14] M. Dong, S. Watanabe, and M. Guo, “Performance Evaluation to Optimize the UMP
System Focusing on Network Transmission Speed”, In Proc. of FCST, pp. 7-12,
Wuhan, China, November 2007

 Ubiquitous Computing

108

From the left part of Fig. 5, we can see the proposed algorithms have a significant
improvement compared with the current implementation. Also, from the right part of Fig. 5,
we can see the RAA-G and RAA-C are slightly performing a good result than RAA.

Fig. 5. The total processing time of the tasks

5. Conclusion
In this chapter, we propose an optimized algorithm for resource allocation to a processing
node, which can improve the overall performance of the UMP system. Using the optimized
algorithm, the RR can effectively find a single PE in an idle state, which actually can process
an assigned task. As a result, the RR saves the time to search for an idle node so that total
performance of resource allocation can be improved. Finally, we evaluated the optimized
algorithm with probability analyses and figured out conditions for the optimized algorithm
to be better than the basic algorithm.
Also, as the further step our previous works, we evaluated the performance with four
different resource (PE) allocating algorithm for multiple PEs and analyzed these algorithms
from three points of view. Though these huge experiments, we have successfully proofed
our proposed algorithms are meaning while. Considering those three key factors (the time
efficiency, loading balance of the RR, and total processing time of the whole task), each
algorithm has its merit and demerit. There is always a trade off between these factors.
Taking into account the balanced point of all factors, we found the RAA-G is the best
algorithm to allocating resources (PEs) when the condition is the system has many users and
many task to process. The next better algorithm is RAA-C, following by RAA. For other
cases, it is difficult to say which algorithm is the best, because it is truly case by case. One
more things we have realized through the experiments are we can set the allocating policy
flexibly answering to the user’s request. Maybe that is the best solution to design the UMP
system. In the future, we will focus on the above layer of the UMP system - the service layer,
to deal with the context information from users, resources and environments.

Caching in Ubiquitous Computing Environments: Light and Shadow

109

4. Acknowledgment
This work is supported in part by Japan Society for the Promotion of Science (JSPS) Research
Fellowships for Young Scientists Program, JSPS Excellent Young Researcher Overseas Visit
Program, National Natural Science Foundation of China (NSFC) Distinguished Young
Scholars Program (No. 60725208) and NSCF Grant No. 60811130528.

5. References
[1] M. Weiser, “The Computer for the 21st Century,” Scientific Am., pp. 94-104, September,

1991.; reprinted in IEEE Pervasive Computing, pp. 19-25, January-March 2002.
[2] Wikipedia, the free encyclopedia, http://ja.wikipedia.org/wiki/
[3] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges”, IEEE Personal

Communication, pp. 10-17, August 2001.
[4] S. R. Ponnekanti, et.al, "Icrafter: A service framework for ubiquitous computing

environments", In Proc. of Ubicomp 2001, pp. 56–75, Atlanta, Georgia, October
2001.

[5] V. Stanford, “Using Pervasive Computing to Deliver Elder Care”, IEEE Pervasive
Computing, pp. 10-13, January-March, 2002.

[6] A. Shinozaki, M. Shima, M. Guo, and M. Kubo, "A High Performance Simulator System
for a Multiprocessor System Based on a Multi-way Cluster", Advances in Computer
Systems Architecture, Lecture Notes in Computer Science vol. 4186, pages 231-243,
Springer Berlin/Heidelberg, September, 2006.

[7] A. Shinozaki, M. Shima, M. Guo, and M. Kubo, “Multiprocessor Simulator System Based
on Multi-way Cluster Using Double-buffered Model”, Proceeding of AINA 2007,
Niagara Falls, Canada, May 2007, pp. 893-900.

[8] M. Kubo, B. Ye, A. Shinozaki, T. Nakatomi and M. Guo, “UMP-PerComp: A Ubiquitous
Multiprocessor Network-Based Pipeline Processing Framework for Pervasive
Computing Environments”, Proceeding of AINA 2007, Niagara Falls, Canada, May
2007, pp. 611-618.

[9] Wikipedia, the free encyclopedia, ”Computational overhead”, Available:
 http://en.wikipedia.org/wiki/Computational overhead.
[10] Wikipedia, the free encyclopedia, ”Maximum transmission unit”,
 http://en.wikipedia.org/wiki/Maximumtransmissionunit.
[11] Microsoft, ”Default MTU Size for Dierent Network Topology”, Knowledge Base Article,

ID.140375.
[12] Lawrence S. Husch and University of Tennessee, Knoxville, Mathematics Department,

”Horizontal Asymptotes”,
 http://archives.math.utk.edu/visual.calculus/1/horizontal.5/.
[13] M. Dong, S. Guo, M. Guo and S. Watanabe, “Design of the Ubiquitous Multi-Processor

System Focusing on Transmission Data Size”, In Proc. of HPSRN, pp. 158-166,
Sendai, Japan, March 2008

[14] M. Dong, S. Watanabe, and M. Guo, “Performance Evaluation to Optimize the UMP
System Focusing on Network Transmission Speed”, In Proc. of FCST, pp. 7-12,
Wuhan, China, November 2007

 Ubiquitous Computing

110

[15] M. Dong, M. Guo, L. Zheng, S. Guo, “Performance Analysis of Resource Allocation
Algorithms Using Cache Technology for Pervasive Computing System”, in
Proceedings of ICYCS 2008, pp. 671-676, November 2008

Part 2

Privacy and Security

 Ubiquitous Computing

110

[15] M. Dong, M. Guo, L. Zheng, S. Guo, “Performance Analysis of Resource Allocation
Algorithms Using Cache Technology for Pervasive Computing System”, in
Proceedings of ICYCS 2008, pp. 671-676, November 2008

Part 2

Privacy and Security

0

Security Analysis of the RFID Authentication
Protocol using Model Checking

Hyun-Seok Kim, Jin-Young Choi, and Sin-Jae Lee
Korea University
Republic of Korea

1. Introduction

In RFID security(Gildas), few mechanisms focus on data protection of the tags, message
interception over the air channel, and eavesdropping within the interrogation zone of the
RFID reader(Sarma et al.a)(Weis et al.). Among these issues, we will discuss two aspects on
the risks posed to the passive party by RFID , which have so far been dominated by the topics
of data protection associated with data privacy and identity authentication between tag and
reader.
Firstly, the data privacy problem states that storing person-specific data in an RFID system
can threaten the privacy of the passive party. This party might be, for example, a customer or
an employee of the operator. The passive party uses tags or items that have been identified as
tags, but the party has no control over the data stored on the tags.
Secondly, the authentication will be carried out when the identity of a person or a program is
checked. Then, on that basis, authorization takes place, i.e. rights, such as the right of access
to data are granted. In the case of RFID systems, it is particularly important for tags to be
authenticated by the reader and vice-versa. In addition, readers must authenticate themselves
to the backend, however in this case there are no RFID-specific security problems.
There have been some approaches focusing on the RFID privacy and authentication issues,
including killing tags at the checkout, renaming the identifier of the tag, physical tag
password, hash encryption, random access hash and hash based ID variation. The last
three approaches of these will be discussed in detail in this chapter. We will not discuss
the remaining approaches in this chapter as they are physical solving approaches. The
last three approaches are security protocols(Ryan & Schneider) that play the essential role
of minimizing the burden of privacy and authentication problems. As with any protocol,
the security protocol comprises a prescribed sequence of interactions between entities, and
is designed to achieve a certain end. Security protocols are, in fact, excellent candidates for
rigorous analysis techniques: they are critical components of distributed security architecture,
very easy to express, however, extremely difficult to evaluate by hand.
Formal methods play a very critical role in examining whether a security protocol is
ambiguous, incorrect, inconsistent or incomplete. Hence, the importance of applying formal
methods, particularly for safety critical systems, cannot be overemphasized. There are two
main approaches in formal methods, logic based methodology (Gong et al.), and tool based
methodology (Hoare)(Lowe)(FDR). In this chapter, we specify hash based RFID security
protocols(Sarma et al.a) as the previous work that employs hash functions to secure the RFID

6

0

Security Analysis of the RFID Authentication
Protocol using Model Checking

Hyun-Seok Kim, Jin-Young Choi, and Sin-Jae Lee
Korea University
Republic of Korea

1. Introduction

In RFID security(Gildas), few mechanisms focus on data protection of the tags, message
interception over the air channel, and eavesdropping within the interrogation zone of the
RFID reader(Sarma et al.a)(Weis et al.). Among these issues, we will discuss two aspects on
the risks posed to the passive party by RFID , which have so far been dominated by the topics
of data protection associated with data privacy and identity authentication between tag and
reader.
Firstly, the data privacy problem states that storing person-specific data in an RFID system
can threaten the privacy of the passive party. This party might be, for example, a customer or
an employee of the operator. The passive party uses tags or items that have been identified as
tags, but the party has no control over the data stored on the tags.
Secondly, the authentication will be carried out when the identity of a person or a program is
checked. Then, on that basis, authorization takes place, i.e. rights, such as the right of access
to data are granted. In the case of RFID systems, it is particularly important for tags to be
authenticated by the reader and vice-versa. In addition, readers must authenticate themselves
to the backend, however in this case there are no RFID-specific security problems.
There have been some approaches focusing on the RFID privacy and authentication issues,
including killing tags at the checkout, renaming the identifier of the tag, physical tag
password, hash encryption, random access hash and hash based ID variation. The last
three approaches of these will be discussed in detail in this chapter. We will not discuss
the remaining approaches in this chapter as they are physical solving approaches. The
last three approaches are security protocols(Ryan & Schneider) that play the essential role
of minimizing the burden of privacy and authentication problems. As with any protocol,
the security protocol comprises a prescribed sequence of interactions between entities, and
is designed to achieve a certain end. Security protocols are, in fact, excellent candidates for
rigorous analysis techniques: they are critical components of distributed security architecture,
very easy to express, however, extremely difficult to evaluate by hand.
Formal methods play a very critical role in examining whether a security protocol is
ambiguous, incorrect, inconsistent or incomplete. Hence, the importance of applying formal
methods, particularly for safety critical systems, cannot be overemphasized. There are two
main approaches in formal methods, logic based methodology (Gong et al.), and tool based
methodology (Hoare)(Lowe)(FDR). In this chapter, we specify hash based RFID security
protocols(Sarma et al.a) as the previous work that employs hash functions to secure the RFID

6

communication using Casper (A Compiler for Security Protocol Analyzer)(Lowe) specifying
tool. Then we verify whether or not it satisfies security properties such as secrecy and
authentication using the FDR (Failure Divergence Refinement) model checking tool(FDR).
After running the FDR tool, we reconfirm the existence of known security flaws in this
protocol and propose the schemes of two security protocols for secure RFID communication.
The contribution of this chapter is in analyzing the secure authentication protocols and
designing new security protocols that could be widely researched in RFID systems. Therefore
we provide a way for all methods, specifically Casper and FDR, which have been developed
over the last decade by the theoretical community for the analysis of cryptographic protocols
to be able to analyze RFID privacy and authentication problems. This especially applies to the
new security protocols proposed in this chapter, which require read access control. If a reader
requests a tag’s ID, then the tag has to firstly identify that the reader is authenticated. In the
process of authentication, the tag sends out a random number. The reader then responds to
the tag with a function value of the random number and its own ID. The reader’s output
for each query changes, meaning that even if the output is eavesdropped, the adversary can
not pass the authentication in the next query. The random number based authentication can
prevent spoofing and man-in-the-middle attacks.
This chapter is organized as follows. In brief, Section 2 describes related work on RFID
privacy and authentication schemes. Section 3 describes how RFID security protocols can be
modeled in CSP (Communication Sequential Processes)(Hoare), generated by using Casper.
Our analyzed results of the protocols will be described in Section 4. The proposed hash
based and challenge response based security protocols are presented in Section 5. Finally,
the conclusion and future work are addressed in the last section.

2. Background

2.1 The components of RFID system
RFID systems(Sarma et al.a)(Weis et al.) are made up of three main components, that we
briefly describe as follows:

1. Transponder or RFID Tag In an RFID system, each object will be labeled with a tag. Each
tag contains a microchip with some computation and storage capabilities, and a coupling
element, such as an antenna coil for communication. Tags can be classified according
to two main criteria: - The type of memory: read-only, write-once read-many, or fully
rewritable. - The source of power: active, semi-passive, and passive.

2. Transceiver or RFID Reader RFID readers are generally composed of an RF module, a
control unit, and a coupling element to interrogate electronic tags via RF communication.
Readers may have better internal storage and processing capabilities, and frequently
connect to back-end databases. Complex computations, such as a variety of cryptographic
operations, may be carried out by RFID readers, as they usually do not suffer from the
same limitations as those found in modern handheld devices or PDAs.

3. Back-end Database or Host The information provided by tags is usually an index to a
back-end database (pointers, randomized IDs, etc.). This limits the information stored in
tags to only a few bits, typically 96, which is a sensible choice, due to severe tag limitations
in processing and storing. It is generally assumed that the connection between readers
and back-end databases is secure, because processing and storing constraints are not as
constrained in readers, and therefore common solutions such as SSL/TLS can be used.

114 Ubiquitous Computing

2.2 Related work with security problem in RFID
There have been many papers in the literature that attempt to address the security concerns
raised by the use of RFID tags in RFID system. The last three approaches outlined below are
discussed in details in this chapter. We will not discuss the remaining approaches since they
are physical solving approaches.

2.2.1 Kill tag
The Auto-ID Center explicitly designed the EPC(Electronic Product Code)
(EPCGLOBAL INC.) kill command as a pro-privacy technology. The designers realized
that EPC tags might be irretrievably embedded in consumer devices and consumers might
not want to be tracked. They viewed killing EPC tags at the point-of-sale as an easy way out
of the apparent privacy dilemma. The underlying principle is that “dead tags don’t talk”.
As an alternative to killing EPC tags, tags can also be attached to a product’s price tag and
discarded at the point-of-sale.

2.2.2 Renaming approach
Even if the identifier emitted by an RFID tag has no intrinsic meaning, it can still enable
tracking. For this reason, merely encrypting a tag identifier does not solve the problem of
security. An encrypted identifier is itself just a meta-identifier. It is static and, therefore, like
any other serial number, is subject to tracking. To prevent RFID-tag tracking, it is necessary
that tag identifiers be suppressed, or that they change over time.

2.2.3 Tag password
Basic EPC(EPCGLOBAL INC.) RFID tags have sufficient resources to verify PINs or
passwords. At first glance, this appears to be a possible vehicle for privacy protection: A
tag could emit important information only if it receives the right password. The paradox here
is that a reader doesn’t know which password to transmit to a tag unless it knows the tag’s
identity. Passwords might still prove useful in certain environments. For example, retail stores
could program tags at checkouts to respond to a particular password permitted by the RFID
network in a consumer’s home. This would protect consumersąŕ privacy between a store and
their homes. If consumers want to use RFID tags in multiple environments, however, they
would face a challenging password management problem.

2.2.4 The hash lock scheme
A reader defines a “Lock” value by computing lock = hash(key)(Sarma et al.a) where the key
is a random value. This lock value is sent to a tag and the tag will store this value into its
reserved memory location (i.e. a metaID value), then the tag will automatically enter into the
locked state. To unlock the tag, the reader needs to send the original key value to the tag, and
the tag will perform a hash function on that key to obtain the metaID value. The tag then has
to compare the metaID with its current metaID value. If both of them match, the tag unlocks
itself. Once the tag is in unlocked state, it can respond with its identification number such
as the EPC(EPCGLOBAL INC.) to readers’ queries in the forthcoming cycles. This approach
makes it simple and straightforward to achieve data protection, i.e. the EPC code stored in the
tag is being protected. Only an authorized reader is able to unlock the tag and read it, then
lock the tag again after reading the code. This scheme will be analyzed in this chapter in detail
in Section 4.1.

115Security Analysis of the RFID Authentication Protocol using Model Checking

communication using Casper (A Compiler for Security Protocol Analyzer)(Lowe) specifying
tool. Then we verify whether or not it satisfies security properties such as secrecy and
authentication using the FDR (Failure Divergence Refinement) model checking tool(FDR).
After running the FDR tool, we reconfirm the existence of known security flaws in this
protocol and propose the schemes of two security protocols for secure RFID communication.
The contribution of this chapter is in analyzing the secure authentication protocols and
designing new security protocols that could be widely researched in RFID systems. Therefore
we provide a way for all methods, specifically Casper and FDR, which have been developed
over the last decade by the theoretical community for the analysis of cryptographic protocols
to be able to analyze RFID privacy and authentication problems. This especially applies to the
new security protocols proposed in this chapter, which require read access control. If a reader
requests a tag’s ID, then the tag has to firstly identify that the reader is authenticated. In the
process of authentication, the tag sends out a random number. The reader then responds to
the tag with a function value of the random number and its own ID. The reader’s output
for each query changes, meaning that even if the output is eavesdropped, the adversary can
not pass the authentication in the next query. The random number based authentication can
prevent spoofing and man-in-the-middle attacks.
This chapter is organized as follows. In brief, Section 2 describes related work on RFID
privacy and authentication schemes. Section 3 describes how RFID security protocols can be
modeled in CSP (Communication Sequential Processes)(Hoare), generated by using Casper.
Our analyzed results of the protocols will be described in Section 4. The proposed hash
based and challenge response based security protocols are presented in Section 5. Finally,
the conclusion and future work are addressed in the last section.

2. Background

2.1 The components of RFID system
RFID systems(Sarma et al.a)(Weis et al.) are made up of three main components, that we
briefly describe as follows:

1. Transponder or RFID Tag In an RFID system, each object will be labeled with a tag. Each
tag contains a microchip with some computation and storage capabilities, and a coupling
element, such as an antenna coil for communication. Tags can be classified according
to two main criteria: - The type of memory: read-only, write-once read-many, or fully
rewritable. - The source of power: active, semi-passive, and passive.

2. Transceiver or RFID Reader RFID readers are generally composed of an RF module, a
control unit, and a coupling element to interrogate electronic tags via RF communication.
Readers may have better internal storage and processing capabilities, and frequently
connect to back-end databases. Complex computations, such as a variety of cryptographic
operations, may be carried out by RFID readers, as they usually do not suffer from the
same limitations as those found in modern handheld devices or PDAs.

3. Back-end Database or Host The information provided by tags is usually an index to a
back-end database (pointers, randomized IDs, etc.). This limits the information stored in
tags to only a few bits, typically 96, which is a sensible choice, due to severe tag limitations
in processing and storing. It is generally assumed that the connection between readers
and back-end databases is secure, because processing and storing constraints are not as
constrained in readers, and therefore common solutions such as SSL/TLS can be used.

114 Ubiquitous Computing

2.2 Related work with security problem in RFID
There have been many papers in the literature that attempt to address the security concerns
raised by the use of RFID tags in RFID system. The last three approaches outlined below are
discussed in details in this chapter. We will not discuss the remaining approaches since they
are physical solving approaches.

2.2.1 Kill tag
The Auto-ID Center explicitly designed the EPC(Electronic Product Code)
(EPCGLOBAL INC.) kill command as a pro-privacy technology. The designers realized
that EPC tags might be irretrievably embedded in consumer devices and consumers might
not want to be tracked. They viewed killing EPC tags at the point-of-sale as an easy way out
of the apparent privacy dilemma. The underlying principle is that “dead tags don’t talk”.
As an alternative to killing EPC tags, tags can also be attached to a product’s price tag and
discarded at the point-of-sale.

2.2.2 Renaming approach
Even if the identifier emitted by an RFID tag has no intrinsic meaning, it can still enable
tracking. For this reason, merely encrypting a tag identifier does not solve the problem of
security. An encrypted identifier is itself just a meta-identifier. It is static and, therefore, like
any other serial number, is subject to tracking. To prevent RFID-tag tracking, it is necessary
that tag identifiers be suppressed, or that they change over time.

2.2.3 Tag password
Basic EPC(EPCGLOBAL INC.) RFID tags have sufficient resources to verify PINs or
passwords. At first glance, this appears to be a possible vehicle for privacy protection: A
tag could emit important information only if it receives the right password. The paradox here
is that a reader doesn’t know which password to transmit to a tag unless it knows the tag’s
identity. Passwords might still prove useful in certain environments. For example, retail stores
could program tags at checkouts to respond to a particular password permitted by the RFID
network in a consumer’s home. This would protect consumersąŕ privacy between a store and
their homes. If consumers want to use RFID tags in multiple environments, however, they
would face a challenging password management problem.

2.2.4 The hash lock scheme
A reader defines a “Lock” value by computing lock = hash(key)(Sarma et al.a) where the key
is a random value. This lock value is sent to a tag and the tag will store this value into its
reserved memory location (i.e. a metaID value), then the tag will automatically enter into the
locked state. To unlock the tag, the reader needs to send the original key value to the tag, and
the tag will perform a hash function on that key to obtain the metaID value. The tag then has
to compare the metaID with its current metaID value. If both of them match, the tag unlocks
itself. Once the tag is in unlocked state, it can respond with its identification number such
as the EPC(EPCGLOBAL INC.) to readers’ queries in the forthcoming cycles. This approach
makes it simple and straightforward to achieve data protection, i.e. the EPC code stored in the
tag is being protected. Only an authorized reader is able to unlock the tag and read it, then
lock the tag again after reading the code. This scheme will be analyzed in this chapter in detail
in Section 4.1.

115Security Analysis of the RFID Authentication Protocol using Model Checking

2.2.5 The randomized hash lock scheme
This is an extension(Weis et al.) of the hash lock(Sarma et al.b3) scheme based on Pseudo
Random Functions (PRFs). An additional pseudo-random number generator is required to
embed into tags for this approach. Presently, tags respond to reader queries by a pair of
values (r, hash(IDk � r)) where r is the random number generated by a tag, IDk is the ID of
the k-th tag among a number of tags in ID1, ID2, . . ., IDk, . . ., IDn. For reader queries, the
tag returns two values. One is the random number. The other is a computed hash value based
on the concatenation(�) on its own IDk and r. Once the reader gets two values, it retrieves
the current N number of ID (i.e. ID1, ID2, . . ., IDn) from the backend database. The reader
performs the above hash function on each ID from 1 to n with r until it finds a match. When
the reader finds a match, the reader is able to identify that tag k is on its tag’s ID list (i.e.
tag authentication). The reader will then send the IDk value to the tag for unlocking it. This
scheme also will be analyzed in detail in Section 4.2.

2.2.6 The hash based ID variation scheme
Henrici-Müller(Henrici & Muller) propose a 4-round protocol for low-cost RFID systems
based on a one way hash function and a random number generator. The protocol begins as
the reader queries the tag, and the tag responds with its hashed identification and current
transaction number. The response is forwarded by the reader to the back-end server for
validation. To identify the tag, the server checks the validity of the identifying information
of the tag. The server then concludes by sending a random number to the tag so that the tag’s
identification is refreshed and synchronized. This scheme also will be analyzed in detail in
Section 4.3.

3. Modeling RFID security protocols in CSP

In this section we describe how the security protocol of the RFID system is modeled using
CSP(Communication Sequential Processes)(Hoare) and how this model allows us to reason
about it. We denote R as Reader, T as Tag and m as Message, for figuring out the RFID system.

3.1 The message datatype
The datatype Message represents the messages exchanged between the different agents. It
is based on a set of atoms called Atom where the set of Key (contains session keys used in
RFID), Nonce and Text(for Authenticating between Reader and Tag) are defined as subsets of
the atom set (Key ⊆ Atom, Text ⊆ Atom and Nonce⊆Atom). In addition, we define HashFn to
be the set that contains all the available cryptographic hash functions. The datatype Message
is composed of encrypting, hashing, sequencing and the atomic value in the Atom and is
defined by:
Message ::= Encrypt.Key.Message | Hash.HashFn.Message | Sq.Message* | Atom.Atom
In this chapter we use the Casper notation of writing {m}k for Encrypt.k.m. We use H(|m|)
for Hash.H.m and abbreviate Sq.<m1,. . . ,mn> to <m1,. . . ,mn>. For example, we denote
the construct Encrypt.k.(Sq.<a,na>) by {a,na}k.

3.2 Trustworthy agents
Every agent taking part in the protocol is modeled as a CSP process. (An agent can also be
internalized in the intruder deduction set (Broadfoot & Roscoe), but for now we assume that
all honest agents are implemented as CSP processes). We define the process PR, denoting
agent R, using the following events:

116 Ubiquitous Computing

• send.R.T.M - symbolizes agent R sending message M to agent T.

• receive.T.R.M - symbolizes agent T receiving message M apparently from R.

In addition, we define the following events for delineating specifications for the protocol
we want to analyze. (See (Lowe) for more details, on how these events are used to express
properties of security protocols)

• claimSecret.R.T.M symbolizes that R thinks that message M is a secret shared only with
agent T.

• running.R.T.M1,. . . ,Mn symbolizes that R thinks he started a new run of the protocol with
T where M1,. . . ,Mn represent some details of this run.

• �nish.R.T.M 1,. . . ,Mn symbolizes that R thinks he has just finished a run of the protocol
with T where M1,. . . ,Mn represent some details of this run.

For more information regarding the translation of a protocol description to a CSP
representation see (Ryan & Schneider).

3.3 Modeling the intruder and putting the network together
Based on the Dolev-Yao model (Dolev & Yao), we allow the intruder to have the following
abilities when attacking a set S of trusted agents: (i) overhearing all messages flowing through
the network, (ii) intercepting messages, (iii) faking messages based on what he knows limited
only by cryptography, and (iv) behaving as would any agent outside of S. We first define the
rules that allow the intruder to construct new messages. The definition is based on the relation
�, which characterizes deduction rules by which the intruder can deduce new messages. We
say that B � M if message M can be deduced from the set of messages B.

member B ∈ M ⇒ B � M
sequencing B � {M1, . . . ,Mn} ⇒ {M1, . . . ,Mn}
splitting B � <. . . ,M, . . .> ⇒ B � M
encrypting B � M ∧ B � Atom K ∧ K ∈ Key ⇒ B � {M}K
decrypting B � {M}K ∧ B � Atom K−1 ⇒ B � M
hashing B � M ∧ H ⊆ HashFn ⇒ B � H(|M|)

Informally, the intruder can conduct encryption when he knows the message and the key.
He can decipher an encryption for which he knows the inverse of the key, create a reference
to a key that he knows, hash every message he knows and can both break up and form
sequences. Since by using the Dolev-Yao model, the intruder should be able to overhear,
intercept and block each message, the intruder process also models the communication
medium. The process representing the intruder is parameterized by X, which ranges over
subsets of Message, and represents all the facts the intruder has learned. In this model the
intruder gets every message sent by the honest agents or by the server via the send channel.
He then can pass it to the agents via the appropriate receive channel unless he decides to block
it or fake a new message instead.

Intruder(X) =̂ � M∈Messagesend?R?T!M! → Intruder(X ∪ {M})
� M∈Message, X � M receive?R?T!M! → Intruder(X)
� M∈Message, X � M leak.M → Intruder(X)

117Security Analysis of the RFID Authentication Protocol using Model Checking

2.2.5 The randomized hash lock scheme
This is an extension(Weis et al.) of the hash lock(Sarma et al.b3) scheme based on Pseudo
Random Functions (PRFs). An additional pseudo-random number generator is required to
embed into tags for this approach. Presently, tags respond to reader queries by a pair of
values (r, hash(IDk � r)) where r is the random number generated by a tag, IDk is the ID of
the k-th tag among a number of tags in ID1, ID2, . . ., IDk, . . ., IDn. For reader queries, the
tag returns two values. One is the random number. The other is a computed hash value based
on the concatenation(�) on its own IDk and r. Once the reader gets two values, it retrieves
the current N number of ID (i.e. ID1, ID2, . . ., IDn) from the backend database. The reader
performs the above hash function on each ID from 1 to n with r until it finds a match. When
the reader finds a match, the reader is able to identify that tag k is on its tag’s ID list (i.e.
tag authentication). The reader will then send the IDk value to the tag for unlocking it. This
scheme also will be analyzed in detail in Section 4.2.

2.2.6 The hash based ID variation scheme
Henrici-Müller(Henrici & Muller) propose a 4-round protocol for low-cost RFID systems
based on a one way hash function and a random number generator. The protocol begins as
the reader queries the tag, and the tag responds with its hashed identification and current
transaction number. The response is forwarded by the reader to the back-end server for
validation. To identify the tag, the server checks the validity of the identifying information
of the tag. The server then concludes by sending a random number to the tag so that the tag’s
identification is refreshed and synchronized. This scheme also will be analyzed in detail in
Section 4.3.

3. Modeling RFID security protocols in CSP

In this section we describe how the security protocol of the RFID system is modeled using
CSP(Communication Sequential Processes)(Hoare) and how this model allows us to reason
about it. We denote R as Reader, T as Tag and m as Message, for figuring out the RFID system.

3.1 The message datatype
The datatype Message represents the messages exchanged between the different agents. It
is based on a set of atoms called Atom where the set of Key (contains session keys used in
RFID), Nonce and Text(for Authenticating between Reader and Tag) are defined as subsets of
the atom set (Key ⊆ Atom, Text ⊆ Atom and Nonce⊆Atom). In addition, we define HashFn to
be the set that contains all the available cryptographic hash functions. The datatype Message
is composed of encrypting, hashing, sequencing and the atomic value in the Atom and is
defined by:
Message ::= Encrypt.Key.Message | Hash.HashFn.Message | Sq.Message* | Atom.Atom
In this chapter we use the Casper notation of writing {m}k for Encrypt.k.m. We use H(|m|)
for Hash.H.m and abbreviate Sq.<m1,. . . ,mn> to <m1,. . . ,mn>. For example, we denote
the construct Encrypt.k.(Sq.<a,na>) by {a,na}k.

3.2 Trustworthy agents
Every agent taking part in the protocol is modeled as a CSP process. (An agent can also be
internalized in the intruder deduction set (Broadfoot & Roscoe), but for now we assume that
all honest agents are implemented as CSP processes). We define the process PR, denoting
agent R, using the following events:

116 Ubiquitous Computing

• send.R.T.M - symbolizes agent R sending message M to agent T.

• receive.T.R.M - symbolizes agent T receiving message M apparently from R.

In addition, we define the following events for delineating specifications for the protocol
we want to analyze. (See (Lowe) for more details, on how these events are used to express
properties of security protocols)

• claimSecret.R.T.M symbolizes that R thinks that message M is a secret shared only with
agent T.

• running.R.T.M1,. . . ,Mn symbolizes that R thinks he started a new run of the protocol with
T where M1,. . . ,Mn represent some details of this run.

• �nish.R.T.M 1,. . . ,Mn symbolizes that R thinks he has just finished a run of the protocol
with T where M1,. . . ,Mn represent some details of this run.

For more information regarding the translation of a protocol description to a CSP
representation see (Ryan & Schneider).

3.3 Modeling the intruder and putting the network together
Based on the Dolev-Yao model (Dolev & Yao), we allow the intruder to have the following
abilities when attacking a set S of trusted agents: (i) overhearing all messages flowing through
the network, (ii) intercepting messages, (iii) faking messages based on what he knows limited
only by cryptography, and (iv) behaving as would any agent outside of S. We first define the
rules that allow the intruder to construct new messages. The definition is based on the relation
�, which characterizes deduction rules by which the intruder can deduce new messages. We
say that B � M if message M can be deduced from the set of messages B.

member B ∈ M ⇒ B � M
sequencing B � {M1, . . . ,Mn} ⇒ {M1, . . . ,Mn}
splitting B � <. . . ,M, . . .> ⇒ B � M
encrypting B � M ∧ B � Atom K ∧ K ∈ Key ⇒ B � {M}K
decrypting B � {M}K ∧ B � Atom K−1 ⇒ B � M
hashing B � M ∧ H ⊆ HashFn ⇒ B � H(|M|)

Informally, the intruder can conduct encryption when he knows the message and the key.
He can decipher an encryption for which he knows the inverse of the key, create a reference
to a key that he knows, hash every message he knows and can both break up and form
sequences. Since by using the Dolev-Yao model, the intruder should be able to overhear,
intercept and block each message, the intruder process also models the communication
medium. The process representing the intruder is parameterized by X, which ranges over
subsets of Message, and represents all the facts the intruder has learned. In this model the
intruder gets every message sent by the honest agents or by the server via the send channel.
He then can pass it to the agents via the appropriate receive channel unless he decides to block
it or fake a new message instead.

Intruder(X) =̂ � M∈Messagesend?R?T!M! → Intruder(X ∪ {M})
� M∈Message, X � M receive?R?T!M! → Intruder(X)
� M∈Message, X � M leak.M → Intruder(X)

117Security Analysis of the RFID Authentication Protocol using Model Checking

The initial state of the intruder is IIK(Intruder Initial Knowledge). The complete system is
then:1

SYSTEM =̂ (|||A∈HonestPA) || INTRUDER(IIK)

3.4 Specifying protocol requirements
The requirements of the protocols are encapsulated by trace speci�cations.
Secrecy As mentioned in Section 3.2, secrecy is when agent R performs the event
claimSecret.R.T.Secs, and that we believe, at this point in the protocol run, that the values in the
set Secs are secret and shared only with agent T. It expresses the expectation that the intruder
cannot be in possession of values from Secs, i.e. the intruder should not be able to perform
leak.M where M ∈ Secs.
Authentication We first introduce the �nish and running events (See (Ryan & Schneider) for
more details)2. The �nish event is performed by the honest agents when they complete a
protocol run and the running event should be performed before the last send event. We will
use the following definition which is one of the more common forms of authentication:

If Reader thinks he has completed a run of the protocol with Tag, then Tag has
previously been running the protocol, with Reader, both agents agreed on the roles they
took, both agreed on the values of the variables v1, . . . , vn, and there is a one-to-one
relationship between the runs of Tag and the runs of Reader.

The following specification corresponds to this definition3:

AgreementAgreementSet(tr) =̂
∀ R ∈ Agent;T ∈ Honest;Ms ∈ AgreementSet • tr ↓ �nished.R.T.Ms ≤ tr ↓ running.T.R.Ms

4. Analyzing hash based protocols

In this section we specify hash based protocols introduced briefly in Section 2 using Casper
and describe the result of verification. In particular, we obtained each CSP model of hash
based protocol through the process of code generation from Casper.
Message Datatype, Trustworthy Agents and Intruder Model specified in Section 3 are applied
in hash based protocols as identical models in this section and Protocol Requirements are
applied in analyzing the verification of each of the protocols.

• The message datatype in hash based protocols The metaID(in Fig.1) datatype represents
the metaID messages that are sent and received by the agents. Similar to the Message
datatype, metaID will be based on the Atom set, where Key ⊆ Atom, and on HashFn, the
set that contains all cryptographic hash functions. In addition, we define % notation as
metaID. The % notation is used so that the metaID can be forwarded to other participants.
This is why a reader can not construct the metaID, since the other reader does not know
the value of the hash function, where m is a message and v is a variable, denoting that the
recipient of the message should not attempt to decrypt the message m, but should instead
store it in the variable v. Similarly, v % m is written to indicate that the sender should send
the message stored in the variable v, and the recipient should expect a message of the form

1 For clarity this model is abstracted. In the model generated by Casper each fact is modeled as a process
paralleled with the entire fact space. This technique reduced dramatically the state space that FDR
needs to explore (see (Ryan & Schneider) for more details).

2 notice that (Ryan & Schneider) refers to these events as Running and Commit
3 The binary operator ↓(tr ↓ e) represents the number of occurrences of event e in a trace tr.

118 Ubiquitous Computing

given by m. Therefore, metaID could not be known the result value of the hash function
for tag by first receiver.

• Trustworthy Agents In hash based protocols, every agent taking a part in the protocol
sends and receives in the communication channel as described in Section 3.2

• The Intruder The Intruder’s definitions in the hash based protocol models are the same as
the one in the RFID model in Section 3.3 and is still based on the basic six deduction rules
presented in Section 3.3.

T RF tag’s identity
R RF reader’s identity

DB Back-end server’s identity that has a database
Xkey Session Key generated randomly from X

metaID Key generated from reader using hash function
ID Information value of tag
Xn A random nonce generated by X
H Hash function

Table 1. The Hash Lock Scheme Notation

4.1 Hash unlocking protocol

Message 1. R − > T : Query
Message 2. T − > R : (H(Rkey)) % metaID
Message 3. R − > DB : metaID % (H(Rkey))
Message 4. DB − > R : RKey, ID
Message 5. R − > T : RKey
Message 6. T − > R : ID

Fig. 1. The hash unclocking protocol

The general overview of the above protocol(Fig.1) was already described in Section
2.2.4(Sarma et al.a).
To unlock the tag, in the first line, the reader needs to send a query to the tag and the tag sends
the metaID to authenticate with the reader (Message 1,2). The reader forwards this metaID
to DataBase to confirm his identity (Message 3). The DataBase compares the metaID with its
current metaID value and ,if both of them match, it lets the reader know the key and ID of
the tag (Message 4). The reader authenticates his identity with the tag sending key received
from the database (Message 5). As a result, if both of them match, the tag unlocks itself. Once
the tag is in an unlocked state, it can respond with its identification number(ID) to queries of
readers in the forthcoming cycles (Message 6).

4.1.1 Protocol requirements and verification results
We describe the properties, i.e Secret property associated with data privacy and Agreement
property associated with authentication between tag and reader, then show verification results
of the safety specifications of the hash unlocking protocol in the hash lock scheme, using traces
refinement provided in the FDR tool. In particular, we focus on the Session key(Rkey), ID for
tag and communicating messages to verify the requirements.
After running the FDR model checking tool, this protocol does not satisfy the Secret and
Agreement requirements and the testing result of the protocol can be described in CSP as below.

119Security Analysis of the RFID Authentication Protocol using Model Checking

The initial state of the intruder is IIK(Intruder Initial Knowledge). The complete system is
then:1

SYSTEM =̂ (|||A∈HonestPA) || INTRUDER(IIK)

3.4 Specifying protocol requirements
The requirements of the protocols are encapsulated by trace speci�cations.
Secrecy As mentioned in Section 3.2, secrecy is when agent R performs the event
claimSecret.R.T.Secs, and that we believe, at this point in the protocol run, that the values in the
set Secs are secret and shared only with agent T. It expresses the expectation that the intruder
cannot be in possession of values from Secs, i.e. the intruder should not be able to perform
leak.M where M ∈ Secs.
Authentication We first introduce the �nish and running events (See (Ryan & Schneider) for
more details)2. The �nish event is performed by the honest agents when they complete a
protocol run and the running event should be performed before the last send event. We will
use the following definition which is one of the more common forms of authentication:

If Reader thinks he has completed a run of the protocol with Tag, then Tag has
previously been running the protocol, with Reader, both agents agreed on the roles they
took, both agreed on the values of the variables v1, . . . , vn, and there is a one-to-one
relationship between the runs of Tag and the runs of Reader.

The following specification corresponds to this definition3:

AgreementAgreementSet(tr) =̂
∀ R ∈ Agent;T ∈ Honest;Ms ∈ AgreementSet • tr ↓ �nished.R.T.Ms ≤ tr ↓ running.T.R.Ms

4. Analyzing hash based protocols

In this section we specify hash based protocols introduced briefly in Section 2 using Casper
and describe the result of verification. In particular, we obtained each CSP model of hash
based protocol through the process of code generation from Casper.
Message Datatype, Trustworthy Agents and Intruder Model specified in Section 3 are applied
in hash based protocols as identical models in this section and Protocol Requirements are
applied in analyzing the verification of each of the protocols.

• The message datatype in hash based protocols The metaID(in Fig.1) datatype represents
the metaID messages that are sent and received by the agents. Similar to the Message
datatype, metaID will be based on the Atom set, where Key ⊆ Atom, and on HashFn, the
set that contains all cryptographic hash functions. In addition, we define % notation as
metaID. The % notation is used so that the metaID can be forwarded to other participants.
This is why a reader can not construct the metaID, since the other reader does not know
the value of the hash function, where m is a message and v is a variable, denoting that the
recipient of the message should not attempt to decrypt the message m, but should instead
store it in the variable v. Similarly, v % m is written to indicate that the sender should send
the message stored in the variable v, and the recipient should expect a message of the form

1 For clarity this model is abstracted. In the model generated by Casper each fact is modeled as a process
paralleled with the entire fact space. This technique reduced dramatically the state space that FDR
needs to explore (see (Ryan & Schneider) for more details).

2 notice that (Ryan & Schneider) refers to these events as Running and Commit
3 The binary operator ↓(tr ↓ e) represents the number of occurrences of event e in a trace tr.

118 Ubiquitous Computing

given by m. Therefore, metaID could not be known the result value of the hash function
for tag by first receiver.

• Trustworthy Agents In hash based protocols, every agent taking a part in the protocol
sends and receives in the communication channel as described in Section 3.2

• The Intruder The Intruder’s definitions in the hash based protocol models are the same as
the one in the RFID model in Section 3.3 and is still based on the basic six deduction rules
presented in Section 3.3.

T RF tag’s identity
R RF reader’s identity

DB Back-end server’s identity that has a database
Xkey Session Key generated randomly from X

metaID Key generated from reader using hash function
ID Information value of tag
Xn A random nonce generated by X
H Hash function

Table 1. The Hash Lock Scheme Notation

4.1 Hash unlocking protocol

Message 1. R − > T : Query
Message 2. T − > R : (H(Rkey)) % metaID
Message 3. R − > DB : metaID % (H(Rkey))
Message 4. DB − > R : RKey, ID
Message 5. R − > T : RKey
Message 6. T − > R : ID

Fig. 1. The hash unclocking protocol

The general overview of the above protocol(Fig.1) was already described in Section
2.2.4(Sarma et al.a).
To unlock the tag, in the first line, the reader needs to send a query to the tag and the tag sends
the metaID to authenticate with the reader (Message 1,2). The reader forwards this metaID
to DataBase to confirm his identity (Message 3). The DataBase compares the metaID with its
current metaID value and ,if both of them match, it lets the reader know the key and ID of
the tag (Message 4). The reader authenticates his identity with the tag sending key received
from the database (Message 5). As a result, if both of them match, the tag unlocks itself. Once
the tag is in an unlocked state, it can respond with its identification number(ID) to queries of
readers in the forthcoming cycles (Message 6).

4.1.1 Protocol requirements and verification results
We describe the properties, i.e Secret property associated with data privacy and Agreement
property associated with authentication between tag and reader, then show verification results
of the safety specifications of the hash unlocking protocol in the hash lock scheme, using traces
refinement provided in the FDR tool. In particular, we focus on the Session key(Rkey), ID for
tag and communicating messages to verify the requirements.
After running the FDR model checking tool, this protocol does not satisfy the Secret and
Agreement requirements and the testing result of the protocol can be described in CSP as below.

119Security Analysis of the RFID Authentication Protocol using Model Checking

1. SecretR,T(tr) = ∀ m • signal.Claim_Secret.R.T.m in tr ∧ R ∈ Honest ∧ T ∈ Honest ⇒
(leak.Rkey in tr)
For all message m, through trace specification(tr), the message Rkey was leaked by an
intruder. Therefore, T cannot ensure the key(Rkey). That is, in message 2, the confidentiality
of the Rkey cannot be ensured due to the sniffed metaID(H(Rkey)) value. This makes a
replay and man-in-the-middle attack possible.

2. SecretR,T(tr) = ∀ m • signal.Claim_Secret.R.T.m in tr ∧ R ∈ Honest ∧ T ∈ Honest ⇒ (leak.ID
in tr)
For all message m, through trace specification(tr), T’s data(ID) was leaked by an intruder. It
is possible to be sniffed a identity easily by an intruder in message 4. The privacy problem
of the user will be brought out.

3. AgreementAgreementSet(tr) =̂ R ∈ Honest ⇒ signal.Running_Initiator.T.R.ID.Rkey precedes
signal.Commit_Responder.R.T.ID.Rkey
If agreement is required on some or all of this information, then the signal event at the
end of the responder’s run should be signal.Commit_Responder.R.T.ID.Rkey and it should
follow an event signal.Running_Initiator.T.R.ID.Rkey in the initiator’s run. It means that the
responder is not even in possession of all information until receipt of the last message, so
the only possible for the commit message is right at the end of the protocol. Similarly, if
the initiator is not in possession of all the information until just before its final message, the
Running signal should either precede or follow that message. However, in this protocol,
we cannot guarantee that the corresponding Running signal has occurred, provided we
assume that the responder is honest: that R ∈ Honest. The intruder can capture messages
and modify them. This may result in a failed key agreement between two agents.

Through debugging the counter-example trace events, we confirm that the hash unlocking
protocol may be susceptible to a sniff and spoof attacks by an intruder due to the unsecured
communication channel between reader and tag. A general attack scenario that could be
found in this protocol is described below; I _ Agent means an intruder who can sniff messages
and spoof his identity.

1. Tag -> I_Reader : H(RKey)
2. I_Mallory -> DataBase : H(RKey)
3. DataBase -> I_Mallory : RKey, ID

An intruder may obtain the current metaID value(H(RKey)) by querying a tag. The intruder
replays the obtained metaID value and broadcasts it to any readers nearby, to get the specific
random key for this metaID value if any reader responds to his replay. Therefore, the intruder
may have a chance to get the key to unlock the tag and obtain its data.

4.2 The randomized hash unlocking protocol
This is an extension of the hash unlocking protocol. In the randomized hash unlocking
protocol (Sarma et al.a), the tag makes a random number, and then sends it to the reader as a
response on every session. For reader queries, the tag returns two values. One is the random
number (Rn). The other is a computed hash value based on the concatenation(�) of its own
IDk and Rn. Once the reader gets two values, it retrieves the current N number of ID (i.e. ID1,
ID2, . . ., IDn) from the backend database. The reader will perform the above hash function on
each ID from 1 to n with Rn until it finds a match. When the reader finds a match, the reader
is able to identify that tag k is on its tag’s ID list (i.e. tag authentication). The reader will then

120 Ubiquitous Computing

send the IDk value to the tag for unlocking it. Fig. 2 shows the process of the randomized
hash unlocking protocol.

Message 1. R − > T : Query
Message 2. DB − > R : ID1, ID2, ..., IDk , ..., IDn
Message 3. T − > R : Rn, H(IDk � Rn)
Message 4. R − > T : IDk

Fig. 2. The randomized hash unlocking protocol

4.2.1 Protocol requirements and verification results
After running the FDR model checking tool, this protocol satisfies the first Secret requirement
regarding the RKey in Section 4.1.1 because this protocol does not use the session key in the
communication channel. However this protocol does not satisfy the other two requirements,
as follows;

1. SecretR,T(tr) = ∀ m • signal.Claim_Secret.R.T.m in tr ∧ R ∈ Honest ∧ T ∈ Honest ⇒ (leak.IDk
in tr)
For all message m, through trace specification(tr), the message IDk was leaked by an
intruder. That is, IDk is sent to the tag through the insecure channel. Therefore, the tag
can be tracked. In addition, the protocol is vulnerable to a replay attack since the attacker
can masquerade as the right tag when the attacker overhears the tag’s response(Rn, H(IDk
� Rn)) then sends it to the reader.

2. AgreementAgreementSet(tr) =̂ R ∈ Honest ⇒ signal.Running_Initiator.T.R.Rn.H(IDk � Rn)
precedes signal.Commit_Responder.R.T.Rn.H(IDk � Rn)
However, in this protocol, we cannot guarantee that the corresponding Running signal has
occurred with Rn and H(IDk � Rn), provided we assume that the responder is honest: that
R ∈ Honest. The intruder can capture messages and modify them. This may result in a
failed key agreement between two agents.

4.3 The hash based ID variation protocol
The hash-based ID variation protocol (Henrici & Muller) exchanges the ID as a tag’s
identification information on every session like the hash-chain protocol(Ohkubo et al.). This
protocol is secure against replay attacker since the tag’s ID is renewed by random number
R and LT and LST are updated. LT means the last transaction number and LST means the
last successful transaction number. Fig. 3 shows the process of the hash-based ID variation
protocol. In message 2 and 3, these messages are the same as the hash unlocking protocol and
R means the public identity of the Reader in the channel. Message 4 and 5 can be described in
the same ways as message 2 and 3.

Message 1. R − > T : Query
Message 2. T − > R : (H(ID), H(LT (+) Id))%metaID, � LT
Message 3. R − > DB : metaID%(H(ID), H(LT (+) ID)), � LT
Message 4. DB − > R : R, (H(R (+) LT (+) ID))%metaID2
Message 5. R − > T : R, metaID2%(H(R (+) LT (+) ID))

Fig. 3. The Hash based ID Variation protocol

121Security Analysis of the RFID Authentication Protocol using Model Checking

1. SecretR,T(tr) = ∀ m • signal.Claim_Secret.R.T.m in tr ∧ R ∈ Honest ∧ T ∈ Honest ⇒
(leak.Rkey in tr)
For all message m, through trace specification(tr), the message Rkey was leaked by an
intruder. Therefore, T cannot ensure the key(Rkey). That is, in message 2, the confidentiality
of the Rkey cannot be ensured due to the sniffed metaID(H(Rkey)) value. This makes a
replay and man-in-the-middle attack possible.

2. SecretR,T(tr) = ∀ m • signal.Claim_Secret.R.T.m in tr ∧ R ∈ Honest ∧ T ∈ Honest ⇒ (leak.ID
in tr)
For all message m, through trace specification(tr), T’s data(ID) was leaked by an intruder. It
is possible to be sniffed a identity easily by an intruder in message 4. The privacy problem
of the user will be brought out.

3. AgreementAgreementSet(tr) =̂ R ∈ Honest ⇒ signal.Running_Initiator.T.R.ID.Rkey precedes
signal.Commit_Responder.R.T.ID.Rkey
If agreement is required on some or all of this information, then the signal event at the
end of the responder’s run should be signal.Commit_Responder.R.T.ID.Rkey and it should
follow an event signal.Running_Initiator.T.R.ID.Rkey in the initiator’s run. It means that the
responder is not even in possession of all information until receipt of the last message, so
the only possible for the commit message is right at the end of the protocol. Similarly, if
the initiator is not in possession of all the information until just before its final message, the
Running signal should either precede or follow that message. However, in this protocol,
we cannot guarantee that the corresponding Running signal has occurred, provided we
assume that the responder is honest: that R ∈ Honest. The intruder can capture messages
and modify them. This may result in a failed key agreement between two agents.

Through debugging the counter-example trace events, we confirm that the hash unlocking
protocol may be susceptible to a sniff and spoof attacks by an intruder due to the unsecured
communication channel between reader and tag. A general attack scenario that could be
found in this protocol is described below; I _ Agent means an intruder who can sniff messages
and spoof his identity.

1. Tag -> I_Reader : H(RKey)
2. I_Mallory -> DataBase : H(RKey)
3. DataBase -> I_Mallory : RKey, ID

An intruder may obtain the current metaID value(H(RKey)) by querying a tag. The intruder
replays the obtained metaID value and broadcasts it to any readers nearby, to get the specific
random key for this metaID value if any reader responds to his replay. Therefore, the intruder
may have a chance to get the key to unlock the tag and obtain its data.

4.2 The randomized hash unlocking protocol
This is an extension of the hash unlocking protocol. In the randomized hash unlocking
protocol (Sarma et al.a), the tag makes a random number, and then sends it to the reader as a
response on every session. For reader queries, the tag returns two values. One is the random
number (Rn). The other is a computed hash value based on the concatenation(�) of its own
IDk and Rn. Once the reader gets two values, it retrieves the current N number of ID (i.e. ID1,
ID2, . . ., IDn) from the backend database. The reader will perform the above hash function on
each ID from 1 to n with Rn until it finds a match. When the reader finds a match, the reader
is able to identify that tag k is on its tag’s ID list (i.e. tag authentication). The reader will then

120 Ubiquitous Computing

send the IDk value to the tag for unlocking it. Fig. 2 shows the process of the randomized
hash unlocking protocol.

Message 1. R − > T : Query
Message 2. DB − > R : ID1, ID2, ..., IDk , ..., IDn
Message 3. T − > R : Rn, H(IDk � Rn)
Message 4. R − > T : IDk

Fig. 2. The randomized hash unlocking protocol

4.2.1 Protocol requirements and verification results
After running the FDR model checking tool, this protocol satisfies the first Secret requirement
regarding the RKey in Section 4.1.1 because this protocol does not use the session key in the
communication channel. However this protocol does not satisfy the other two requirements,
as follows;

1. SecretR,T(tr) = ∀ m • signal.Claim_Secret.R.T.m in tr ∧ R ∈ Honest ∧ T ∈ Honest ⇒ (leak.IDk
in tr)
For all message m, through trace specification(tr), the message IDk was leaked by an
intruder. That is, IDk is sent to the tag through the insecure channel. Therefore, the tag
can be tracked. In addition, the protocol is vulnerable to a replay attack since the attacker
can masquerade as the right tag when the attacker overhears the tag’s response(Rn, H(IDk
� Rn)) then sends it to the reader.

2. AgreementAgreementSet(tr) =̂ R ∈ Honest ⇒ signal.Running_Initiator.T.R.Rn.H(IDk � Rn)
precedes signal.Commit_Responder.R.T.Rn.H(IDk � Rn)
However, in this protocol, we cannot guarantee that the corresponding Running signal has
occurred with Rn and H(IDk � Rn), provided we assume that the responder is honest: that
R ∈ Honest. The intruder can capture messages and modify them. This may result in a
failed key agreement between two agents.

4.3 The hash based ID variation protocol
The hash-based ID variation protocol (Henrici & Muller) exchanges the ID as a tag’s
identification information on every session like the hash-chain protocol(Ohkubo et al.). This
protocol is secure against replay attacker since the tag’s ID is renewed by random number
R and LT and LST are updated. LT means the last transaction number and LST means the
last successful transaction number. Fig. 3 shows the process of the hash-based ID variation
protocol. In message 2 and 3, these messages are the same as the hash unlocking protocol and
R means the public identity of the Reader in the channel. Message 4 and 5 can be described in
the same ways as message 2 and 3.

Message 1. R − > T : Query
Message 2. T − > R : (H(ID), H(LT (+) Id))%metaID, � LT
Message 3. R − > DB : metaID%(H(ID), H(LT (+) ID)), � LT
Message 4. DB − > R : R, (H(R (+) LT (+) ID))%metaID2
Message 5. R − > T : R, metaID2%(H(R (+) LT (+) ID))

Fig. 3. The Hash based ID Variation protocol

121Security Analysis of the RFID Authentication Protocol using Model Checking

4.3.1 Protocol requirements and verification results
After running the FDR model checking tool, this protocol satisfies the first and second Secret
requirement in Section 4.1.1 because it also does not use any key in the communication
channel and the ID can be updated using �LT (LT = LST - LT). However this protocol does
not satisfy the third requirements as below;

1. AgreementAgreementSet(tr) =̂ R ∈ Honest ⇒ signal.Running_Initiator.T.R.LT precedes
signal.Commit_Responder.R.T.LT
The attackers can be authenticated when the attacker disguises the reader and receives
H(ID),H(LT (+) ID),� LT from the tag then sends them to the reader as a response before
the tag performs the next authentication session. In this time, if the attackers don’t transmit
the information described in message 5 in Fig. 3, the tag classifies that the information
as lost and the tag doesn’t update its ID. Therefore the attackers can track the location
of the tag since H(ID) is fixed, before the tag performs the next authentication session
and updates its H(ID). The IDs of the back-end database and tag are updated on every
session. Therefore this protocol isn’t suitable for a ubiquitous computing environment
with distributed databases.

4.4 Summary of possible attacks
We can summarize the verification results of the above protocols using model checking. We
find that the previous protocols are vulnerable to the spoofing attack and replay attack and
can be tracked by an attacker. The attacker performs the following attack.

1. Security against the spoofing attack : The attacker masquerades as the reader, then sends
Query to the tag. The attacker gets the tag’s response value due to not ensuring the
response value of the hash function from this attack.

2. Security against the replay attack : After the reader transmits Query to the tag, the attacker
eavesdrops on the response value from the tag.

3. Security against traffic analysis and tracking: To receive responses, the attacker
masquerades as the reader then transmits a fixed Query and reads the tag or eavesdrops
on the information sent between the reader and the tag. The attacker can therefore analyze
the response from the tag.

5. The proposed security protocols for RFID system

The most threatening attacks are spoofing, replay attack, tracking and eavesdropping attacks,
as these attacks affect all participants. To protect from these attacks, this section proposes two
effective countermeasures.

5.1 Modified hash based protocol
Firstly, modified hash based protocol is the extended version of hash unlocking protocol using
hash and exclusive-or algorithm, and can be used in the environment that requires lower
burden of communication load with hand-held device reader.
We propose a modified protocol(Kim et al.a) (Fig.4) to ensure secure channel between DB and
Reader, and Reader and Tag, using agent’s nonce and exclusive-or technique in Casper, as
follows;
In this protocol, we assume that the communication channel between Reader and DataBase is
secure and the description of the protocol is as follows;

122 Ubiquitous Computing

Message 1. T − > R : Tn, H(Rkey(+)Tn) % metaID
Message 2. R − > DB : Tn, metaID % H(Rkey(+)Tn)
Message 3. DB − > R : DBn, H(Rkey(+)DBn) % auth
Message 4. R − > T : DBn, auth % H(Rkey(+)DBn)
Message 5. T − > R : ID, H(ID)

Fig. 4. The modified hash based protocol for secure RFID systems

In message 1, we add Tn to metaID and use the exclusive-or(+)technique with Rkey, where it
is originally stored in the hash-lock protocol and would be sent with nonce(Tn) to the Reader.
In message 2, the Reader will forward metaID to DB with Tn to let the DB know who sent
this message and to compare it with Tn in metaID. In message 3, DB sends another value
auth to Reader including Rkey and DBn, using exclusive-or and hash function with DBn. This
message is forwarded from Reader to Tag in message 4. Finally, the Tag unlocks itself after
checking the Rkey when the Tag receives message 4 and sends the ID to the Reader.

5.1.1 Protocol analysis and verification result
In this chapter, the main ideas of our modified protocol to correct the problems in previous
protocols are as follows;

1. To ensure the data privacy and freshness of tag’s behavior over a number of requests from
the reader and authentication between Tag and Reader, we introduce the Tag’s nonce(Tn)
and DataBase’s nonce(DBn).For this, a tag needs to have a Random Nonce Generator(PRN).
Although there is literature indicating that a PRN needs greater computation capability,
it is mandatory that there exists at most one PRN, to protect against replay and tracking
attacks.

2. To ensure the confidentiality of data between agents, we add the exclusive-or(+)technique
into this protocol.

3. To establish a secure channel between the reader and the tag, we introduce an Auth value,
which consists of Rkey and DBn similar to metaID. This makes it possible for the protocol
to be protected against spoofing attack.

After running the FDR tool, we confirm that our modified protocol overcomes the security
weaknesses in hash-lock protocols and this protocol satisfies the Secret and Agreement
requirements in whole Casper script and the testing result of the protocol can be described
in FDR as below(Fig.5). The “

√
” marks in ahead of each statements show the satisfaction

of the properties(i.e. two Secrets and Auth1 : each statement means secrecy property and
authentication property in Casper script) if the properties do not satisfy then the “X” mark
would be shown.

5.2 Challenge response based protocol
Secondly, this protocol is based on the security algorithm employed in Yahalom protocol
(Gong et al.) and can be used in the environment that user uses a more sophisticated secret
to calculate the response to a challenge issued by the network requiring higher complex
capability like fixed reader for warehousing and out of a ware-house of inventory systems.
The proposed protocol(Kim et al.b)(Fig.6) must guarantee the secrecy of the session key: in
message 4 and 5, the value of the session key (Skey) must be known only by the participants
playing the roles of Tag and Reader. Reader and Tag must be also properly authenticated to
the DB. In this protocol, we use the Server Key and Tag’s Nonce(Tn) to minimize the burden of

123Security Analysis of the RFID Authentication Protocol using Model Checking

4.3.1 Protocol requirements and verification results
After running the FDR model checking tool, this protocol satisfies the first and second Secret
requirement in Section 4.1.1 because it also does not use any key in the communication
channel and the ID can be updated using �LT (LT = LST - LT). However this protocol does
not satisfy the third requirements as below;

1. AgreementAgreementSet(tr) =̂ R ∈ Honest ⇒ signal.Running_Initiator.T.R.LT precedes
signal.Commit_Responder.R.T.LT
The attackers can be authenticated when the attacker disguises the reader and receives
H(ID),H(LT (+) ID),� LT from the tag then sends them to the reader as a response before
the tag performs the next authentication session. In this time, if the attackers don’t transmit
the information described in message 5 in Fig. 3, the tag classifies that the information
as lost and the tag doesn’t update its ID. Therefore the attackers can track the location
of the tag since H(ID) is fixed, before the tag performs the next authentication session
and updates its H(ID). The IDs of the back-end database and tag are updated on every
session. Therefore this protocol isn’t suitable for a ubiquitous computing environment
with distributed databases.

4.4 Summary of possible attacks
We can summarize the verification results of the above protocols using model checking. We
find that the previous protocols are vulnerable to the spoofing attack and replay attack and
can be tracked by an attacker. The attacker performs the following attack.

1. Security against the spoofing attack : The attacker masquerades as the reader, then sends
Query to the tag. The attacker gets the tag’s response value due to not ensuring the
response value of the hash function from this attack.

2. Security against the replay attack : After the reader transmits Query to the tag, the attacker
eavesdrops on the response value from the tag.

3. Security against traffic analysis and tracking: To receive responses, the attacker
masquerades as the reader then transmits a fixed Query and reads the tag or eavesdrops
on the information sent between the reader and the tag. The attacker can therefore analyze
the response from the tag.

5. The proposed security protocols for RFID system

The most threatening attacks are spoofing, replay attack, tracking and eavesdropping attacks,
as these attacks affect all participants. To protect from these attacks, this section proposes two
effective countermeasures.

5.1 Modified hash based protocol
Firstly, modified hash based protocol is the extended version of hash unlocking protocol using
hash and exclusive-or algorithm, and can be used in the environment that requires lower
burden of communication load with hand-held device reader.
We propose a modified protocol(Kim et al.a) (Fig.4) to ensure secure channel between DB and
Reader, and Reader and Tag, using agent’s nonce and exclusive-or technique in Casper, as
follows;
In this protocol, we assume that the communication channel between Reader and DataBase is
secure and the description of the protocol is as follows;

122 Ubiquitous Computing

Message 1. T − > R : Tn, H(Rkey(+)Tn) % metaID
Message 2. R − > DB : Tn, metaID % H(Rkey(+)Tn)
Message 3. DB − > R : DBn, H(Rkey(+)DBn) % auth
Message 4. R − > T : DBn, auth % H(Rkey(+)DBn)
Message 5. T − > R : ID, H(ID)

Fig. 4. The modified hash based protocol for secure RFID systems

In message 1, we add Tn to metaID and use the exclusive-or(+)technique with Rkey, where it
is originally stored in the hash-lock protocol and would be sent with nonce(Tn) to the Reader.
In message 2, the Reader will forward metaID to DB with Tn to let the DB know who sent
this message and to compare it with Tn in metaID. In message 3, DB sends another value
auth to Reader including Rkey and DBn, using exclusive-or and hash function with DBn. This
message is forwarded from Reader to Tag in message 4. Finally, the Tag unlocks itself after
checking the Rkey when the Tag receives message 4 and sends the ID to the Reader.

5.1.1 Protocol analysis and verification result
In this chapter, the main ideas of our modified protocol to correct the problems in previous
protocols are as follows;

1. To ensure the data privacy and freshness of tag’s behavior over a number of requests from
the reader and authentication between Tag and Reader, we introduce the Tag’s nonce(Tn)
and DataBase’s nonce(DBn).For this, a tag needs to have a Random Nonce Generator(PRN).
Although there is literature indicating that a PRN needs greater computation capability,
it is mandatory that there exists at most one PRN, to protect against replay and tracking
attacks.

2. To ensure the confidentiality of data between agents, we add the exclusive-or(+)technique
into this protocol.

3. To establish a secure channel between the reader and the tag, we introduce an Auth value,
which consists of Rkey and DBn similar to metaID. This makes it possible for the protocol
to be protected against spoofing attack.

After running the FDR tool, we confirm that our modified protocol overcomes the security
weaknesses in hash-lock protocols and this protocol satisfies the Secret and Agreement
requirements in whole Casper script and the testing result of the protocol can be described
in FDR as below(Fig.5). The “

√
” marks in ahead of each statements show the satisfaction

of the properties(i.e. two Secrets and Auth1 : each statement means secrecy property and
authentication property in Casper script) if the properties do not satisfy then the “X” mark
would be shown.

5.2 Challenge response based protocol
Secondly, this protocol is based on the security algorithm employed in Yahalom protocol
(Gong et al.) and can be used in the environment that user uses a more sophisticated secret
to calculate the response to a challenge issued by the network requiring higher complex
capability like fixed reader for warehousing and out of a ware-house of inventory systems.
The proposed protocol(Kim et al.b)(Fig.6) must guarantee the secrecy of the session key: in
message 4 and 5, the value of the session key (Skey) must be known only by the participants
playing the roles of Tag and Reader. Reader and Tag must be also properly authenticated to
the DB. In this protocol, we use the Server Key and Tag’s Nonce(Tn) to minimize the burden of

123Security Analysis of the RFID Authentication Protocol using Model Checking

Fig. 5. The verification result of modified hash based protocol using FDR

Message 1. T − > R : Tn
Message 2. R − > DB : {T, Tn, Rn}{ServerKey(R)}
Message 3. DB − > R : ({R, Tn,Rn, ID, Skey}{ServerKey(T)})%metaID
Message 4. R − > T : metaID%({R, Tn, Rn, ID, Skey}{ServerKey(T)})
Message 5. DB − > R : {Skey}{ServerKey(R)}
Message 6. T − > R : {ID}{Skey}

Fig. 6. The challenge response based protocol for secure RFID systems

the Tag and to ensure authentication between Tag and Reader. The functions can be defined
to take in an input parameter and return an output. It resembles a functional programming
language in this aspect. The definition of a function called ServerKey, which takes in the name
of an Agent and returns a ServerKey, could be given as shared : Agent→ ServerKey. In message
1, we design that Tag makes random nonce Tn and sends it to the Reader. This makes simple
challenge-response easy. Therefore, in message 2, through T, Tn, Reader’s Nonce(Rn), and Server
Key, Reader can ensured authentication from DataBase. In message 3 and 4, DB encrypts all of
the R (Reader’s identity), Tn, Rn, ID and Skey(Session key) received from Reader and sends these
to Reader. Then Reader forwards this metaID to the Tag for letting the Reader authenticate
securely using a session key in message 6. In message 5, the DB also sends Skey to Reader for
him to decrypt Tag’s ID in message 6. In message 6, Tag can send his ID securely using Skey
received in Message 4.

5.2.1 Protocol analysis and verification result
We describe the main ideas of our challenge-response protocol to correct the problems in
previous protocols as follows;

1. Shifting all data except the ID to the backend : This is also recommended for data
management. (i.e. the ID for the Tag existing at the backend database will be shifted
to protect spoofing and eavesdropping attacks securely on the Tag through the database
when the Reader sends a request. This means that the Tag originally does not have the an
ID value).

2. Encoding data transfer : We support encryption of the data transmission to ensure
authorized access to the data of concern and to protect against replay attack and tracking.

3. When a tag receives a “get challenge(query)” command from a Reader, it generates a
random number Tn and sends it to the Reader. The Reader in turn generates a random
number Rn and generates an encrypted data block that includes Tag’s identity and Tn on

124 Ubiquitous Computing

the basis of an encryption algorithm with Serverkey(R). The data block is then returned
to the database to authenticate the reader. Both Reader and Tag use the same encryption
algorithm and since the server key is stored on the Tag, the Tag is capable of decrypting
the Serverkey(T). If the original random number Tn and the random number Tn in message
4, which has now been decrypted, are identical, then the authenticity of the Tag is ensured.
Vis-a-vis the Reader has also been proved.

In addition, we verify the proposed authentication protocol based on a challenge-response
authentication mechanism, which establishes a secure channel between Tag and Reader and
confirms that our protocol satisfies the Secret and Agreement requirements in whole Casper
script and the testing result of the protocol can be described in FDR as below(Fig.7).

Fig. 7. The verification result of challenge-response protocol using FDR

6. Conclusions

Mobile and ubiquitous computing based on the RFID tag is defined as environments where
users can receive network services for anytime and anywhere access through any device, with
the tag connected via a wired and wireless network, to information appliances, including
the PC. In this environment, there are many security threats that violate user privacy and
interfere with services. It would be ideal if we could overcome RFID system’s privacy and
authentication threats by making minor modifications to the technology itself. Technical
solutions have great appeal, implementation and testing costs are fixed and up-front, and once
developed, the solutions can be directly integrated into the product. Further these solutions
generally require little user education or regulatory enforcement.
Therefore, as an approach to solve the security problems using security protocol at the design
level before implementation, we focus on safety analysis of the protocols and propose security
protocols that can be widely researched in RFID systems using Casper and FDR. In verifying
our protocols with the FDR tool, we were able to confirm that our protocols protect against
some of the known security vulnerabilities that are likely to occur in RFID systems.

7. References

[Sarma et al.a] Sarma, S.; Weis, S. & Engels, D. (2003). RFID systems and security and
privacy implications.Proceedings of Workshop on Cryptographic Hardware and Embedded
Systems(CHES 2002), pp. 454-469, LNCS No. 2523.

[EPCGLOBAL INC.] http://www.epcglobalinc.org.

125Security Analysis of the RFID Authentication Protocol using Model Checking

Fig. 5. The verification result of modified hash based protocol using FDR

Message 1. T − > R : Tn
Message 2. R − > DB : {T, Tn, Rn}{ServerKey(R)}
Message 3. DB − > R : ({R, Tn,Rn, ID, Skey}{ServerKey(T)})%metaID
Message 4. R − > T : metaID%({R, Tn, Rn, ID, Skey}{ServerKey(T)})
Message 5. DB − > R : {Skey}{ServerKey(R)}
Message 6. T − > R : {ID}{Skey}

Fig. 6. The challenge response based protocol for secure RFID systems

the Tag and to ensure authentication between Tag and Reader. The functions can be defined
to take in an input parameter and return an output. It resembles a functional programming
language in this aspect. The definition of a function called ServerKey, which takes in the name
of an Agent and returns a ServerKey, could be given as shared : Agent→ ServerKey. In message
1, we design that Tag makes random nonce Tn and sends it to the Reader. This makes simple
challenge-response easy. Therefore, in message 2, through T, Tn, Reader’s Nonce(Rn), and Server
Key, Reader can ensured authentication from DataBase. In message 3 and 4, DB encrypts all of
the R (Reader’s identity), Tn, Rn, ID and Skey(Session key) received from Reader and sends these
to Reader. Then Reader forwards this metaID to the Tag for letting the Reader authenticate
securely using a session key in message 6. In message 5, the DB also sends Skey to Reader for
him to decrypt Tag’s ID in message 6. In message 6, Tag can send his ID securely using Skey
received in Message 4.

5.2.1 Protocol analysis and verification result
We describe the main ideas of our challenge-response protocol to correct the problems in
previous protocols as follows;

1. Shifting all data except the ID to the backend : This is also recommended for data
management. (i.e. the ID for the Tag existing at the backend database will be shifted
to protect spoofing and eavesdropping attacks securely on the Tag through the database
when the Reader sends a request. This means that the Tag originally does not have the an
ID value).

2. Encoding data transfer : We support encryption of the data transmission to ensure
authorized access to the data of concern and to protect against replay attack and tracking.

3. When a tag receives a “get challenge(query)” command from a Reader, it generates a
random number Tn and sends it to the Reader. The Reader in turn generates a random
number Rn and generates an encrypted data block that includes Tag’s identity and Tn on

124 Ubiquitous Computing

the basis of an encryption algorithm with Serverkey(R). The data block is then returned
to the database to authenticate the reader. Both Reader and Tag use the same encryption
algorithm and since the server key is stored on the Tag, the Tag is capable of decrypting
the Serverkey(T). If the original random number Tn and the random number Tn in message
4, which has now been decrypted, are identical, then the authenticity of the Tag is ensured.
Vis-a-vis the Reader has also been proved.

In addition, we verify the proposed authentication protocol based on a challenge-response
authentication mechanism, which establishes a secure channel between Tag and Reader and
confirms that our protocol satisfies the Secret and Agreement requirements in whole Casper
script and the testing result of the protocol can be described in FDR as below(Fig.7).

Fig. 7. The verification result of challenge-response protocol using FDR

6. Conclusions

Mobile and ubiquitous computing based on the RFID tag is defined as environments where
users can receive network services for anytime and anywhere access through any device, with
the tag connected via a wired and wireless network, to information appliances, including
the PC. In this environment, there are many security threats that violate user privacy and
interfere with services. It would be ideal if we could overcome RFID system’s privacy and
authentication threats by making minor modifications to the technology itself. Technical
solutions have great appeal, implementation and testing costs are fixed and up-front, and once
developed, the solutions can be directly integrated into the product. Further these solutions
generally require little user education or regulatory enforcement.
Therefore, as an approach to solve the security problems using security protocol at the design
level before implementation, we focus on safety analysis of the protocols and propose security
protocols that can be widely researched in RFID systems using Casper and FDR. In verifying
our protocols with the FDR tool, we were able to confirm that our protocols protect against
some of the known security vulnerabilities that are likely to occur in RFID systems.

7. References

[Sarma et al.a] Sarma, S.; Weis, S. & Engels, D. (2003). RFID systems and security and
privacy implications.Proceedings of Workshop on Cryptographic Hardware and Embedded
Systems(CHES 2002), pp. 454-469, LNCS No. 2523.

[EPCGLOBAL INC.] http://www.epcglobalinc.org.

125Security Analysis of the RFID Authentication Protocol using Model Checking

[Gong et al.] Gong, L.; Needham, R. & Yahalom, R. (1990). Reasoning about Belief in
Cryptographic Protocols. Proceedings of the 1990 IEEE Symposium on Security and Privacy,
pp. 18-36.

[Sarma et al.b3] Sarma, S. E.; Weis, S. A. & Engels, D. W.(2003).
Radio-frequency-identification security risks and challenges. Security Bytes, Vol.
6(1).

[Henrici & Muller] Henrici, D. & Muller, P. (2004). Hash based Enhancement of Location
Privacy for Radio-Frequency Identification Devices using Varying Identifiers.
Proceedings of PerSec �aŕ04 at IEEE PerCom, pp. 149-153.

[Juels] Juels, A. (2004). Minimalist cryptography for low-cost RFID tags, Proceedings of the
Fourth International Conf. on Security in Communication Networks, LNCS, Springer-Verlag,
September.

[Gildas] Gildas, A.(2005). Adversarial model for radio frequency identification.
[Weis et al.] Weis, S.; Sarma, S.; Rivest, R. & Engels, D. (2003). Security and Privacy Aspects

of Low-Cost Radio Frequency Identification Systems, Proceedings of the 1st Intern.
Conference on Security in Pervasive Computing(SPC).

[Hoare] Hoare, C.A.R.(1985). Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs. NJ.

[Broadfoot & Roscoe] Broadfoot, P.J & Roscoe, A.W. (2002). Internalising Agents in CSP
Protocol Models, Proceedings of Workshop in Issues in the Theory of Security(WITS ’02),
Protland Oregon, USA.

[Dolev & Yao] Dolev, D and Yao, A.C. (1983). On the Security of Public-key Protocols.
Communications of the ACM, 29(8), pp. 198-208

[Lowe] Lowe, G. (1997). Casper: A compiler for the analysis of security protocols. Proceeding
of the 1997 IEEE Computer Security Foundations Workshop X, IEEE Computer Society.
Silver Spring. MD, pp. 18-30.

[FDR] Formal Systems Ltd. FDR2 User Manual. Aug, 1993.
[Ryan & Schneider] Ryan, P. Y. A.; Schneider, S. A. (2001). Modelling and Analysis of Security

Protocols: the CSP Approach. Addison-Wesley.
[Ohkubo et al.] Ohkubo, M.; Suzuki, K. & Kinoshita, S. (2004). Hash-Chain Based

Forward-Secure Privacy Protection Scheme for Low-Cost RFID. Proceedings of the SCIS
2004. pp. 719-724.

[Kim et al.a] Kim, H.S.; Oh, J.H. & Choi, J.Y. (2006). Analysis of the RFID Security Protocol
for Secure Smart Home Network, Proceedings of the International Conference on Hybrid
Information Technology, pp. 356-363.

[Kim et al.b] Kim, H.S.; Oh, J.H. & Choi, J.Y. (2006). Security Analysis of RFID Authentication
for Pervasive Systems using Model Checking, Proceedings of the thirtieth Annual
International COMPSAC, pp. 195-202.

126 Ubiquitous Computing

0

On Modeling of Ubiquitous Computing
Environments featuring Privacy

Vivian C. Kalempa, Rodrigo Campiolo, Lucas Guardalben,
Urian K. Bardemaker, João Bosco M. Sobral

Federal University of Santa Catarina - UFSC
Computer Science Program - PPGCC

Distributed Mobile Computing and Network Security Research Group - DMC & NS
Brazil

1. Introduction

This chapter discusses a metamodel suitable for ubiquitous computing environments Weiser
et al. (1999), Weiser (1993). It includes a way to pervasive computing and includes the
aspects of mobility for resources and people. The pervasive computing explores the increasing
integration of computing devices in our physical world, while mobility is studied in the
context of mobile computing, which exploits the connectivity of the devices which move
within the world of people.
However, there are still technical challenges that prevent ubiquitous computing be
consolidated in people’s lives. Currently, research has been done by focusing on technical
matters, such as the connection of devices and the building of applications for these
environments. Issues such as security and privacy are still poorly treated. In this article,
the challenges to ensuring privacy in ubiquitous computing environments are explored. A
metamodel that aims to several aspects of ubiquitous computing is extended to the aspects of
privacy. For instance, the degree of anonymity provided by an environment may be achieved.
The chapter approaches on privacy. This one is a right of every person and many nations
have laws in their constitutions that guarantee to the citizen the right to possess it. However,
privacy can not be guaranteed only by laws, especially when it comes to digital data. This
problem has been tackled in conventional computing for some time and the solution that has
been used is cryptography. This solution has been satisfactory for the current paradigm, the
personal computing. The ubiquitous computing is a new paradigm where the environments
have sensors and computing devices capable of computing and communication. The user
can communicates with such environments through their personal devices and vice versa. In
ubiquitous computing, privacy has achieved new dimensions, which were often idealized by
books and movies, but in modern times are becoming reality.
This chapter presents and discusses the dimensions of privacy in the context of ubiquitous
computing, the issues being addressed by the scientific community and provides a model
for addressing some of these issues in environments closed. This model is then simulated
through a simulator and a metric Diaz et al. (2002) is used to measure the degree of anonymity
achieved.
In the follow, section 2 presents foudations and the methods. The section 3 describes

7

[Gong et al.] Gong, L.; Needham, R. & Yahalom, R. (1990). Reasoning about Belief in
Cryptographic Protocols. Proceedings of the 1990 IEEE Symposium on Security and Privacy,
pp. 18-36.

[Sarma et al.b3] Sarma, S. E.; Weis, S. A. & Engels, D. W.(2003).
Radio-frequency-identification security risks and challenges. Security Bytes, Vol.
6(1).

[Henrici & Muller] Henrici, D. & Muller, P. (2004). Hash based Enhancement of Location
Privacy for Radio-Frequency Identification Devices using Varying Identifiers.
Proceedings of PerSec �aŕ04 at IEEE PerCom, pp. 149-153.

[Juels] Juels, A. (2004). Minimalist cryptography for low-cost RFID tags, Proceedings of the
Fourth International Conf. on Security in Communication Networks, LNCS, Springer-Verlag,
September.

[Gildas] Gildas, A.(2005). Adversarial model for radio frequency identification.
[Weis et al.] Weis, S.; Sarma, S.; Rivest, R. & Engels, D. (2003). Security and Privacy Aspects

of Low-Cost Radio Frequency Identification Systems, Proceedings of the 1st Intern.
Conference on Security in Pervasive Computing(SPC).

[Hoare] Hoare, C.A.R.(1985). Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs. NJ.

[Broadfoot & Roscoe] Broadfoot, P.J & Roscoe, A.W. (2002). Internalising Agents in CSP
Protocol Models, Proceedings of Workshop in Issues in the Theory of Security(WITS ’02),
Protland Oregon, USA.

[Dolev & Yao] Dolev, D and Yao, A.C. (1983). On the Security of Public-key Protocols.
Communications of the ACM, 29(8), pp. 198-208

[Lowe] Lowe, G. (1997). Casper: A compiler for the analysis of security protocols. Proceeding
of the 1997 IEEE Computer Security Foundations Workshop X, IEEE Computer Society.
Silver Spring. MD, pp. 18-30.

[FDR] Formal Systems Ltd. FDR2 User Manual. Aug, 1993.
[Ryan & Schneider] Ryan, P. Y. A.; Schneider, S. A. (2001). Modelling and Analysis of Security

Protocols: the CSP Approach. Addison-Wesley.
[Ohkubo et al.] Ohkubo, M.; Suzuki, K. & Kinoshita, S. (2004). Hash-Chain Based

Forward-Secure Privacy Protection Scheme for Low-Cost RFID. Proceedings of the SCIS
2004. pp. 719-724.

[Kim et al.a] Kim, H.S.; Oh, J.H. & Choi, J.Y. (2006). Analysis of the RFID Security Protocol
for Secure Smart Home Network, Proceedings of the International Conference on Hybrid
Information Technology, pp. 356-363.

[Kim et al.b] Kim, H.S.; Oh, J.H. & Choi, J.Y. (2006). Security Analysis of RFID Authentication
for Pervasive Systems using Model Checking, Proceedings of the thirtieth Annual
International COMPSAC, pp. 195-202.

126 Ubiquitous Computing

0

On Modeling of Ubiquitous Computing
Environments featuring Privacy

Vivian C. Kalempa, Rodrigo Campiolo, Lucas Guardalben,
Urian K. Bardemaker, João Bosco M. Sobral

Federal University of Santa Catarina - UFSC
Computer Science Program - PPGCC

Distributed Mobile Computing and Network Security Research Group - DMC & NS
Brazil

1. Introduction

This chapter discusses a metamodel suitable for ubiquitous computing environments Weiser
et al. (1999), Weiser (1993). It includes a way to pervasive computing and includes the
aspects of mobility for resources and people. The pervasive computing explores the increasing
integration of computing devices in our physical world, while mobility is studied in the
context of mobile computing, which exploits the connectivity of the devices which move
within the world of people.
However, there are still technical challenges that prevent ubiquitous computing be
consolidated in people’s lives. Currently, research has been done by focusing on technical
matters, such as the connection of devices and the building of applications for these
environments. Issues such as security and privacy are still poorly treated. In this article,
the challenges to ensuring privacy in ubiquitous computing environments are explored. A
metamodel that aims to several aspects of ubiquitous computing is extended to the aspects of
privacy. For instance, the degree of anonymity provided by an environment may be achieved.
The chapter approaches on privacy. This one is a right of every person and many nations
have laws in their constitutions that guarantee to the citizen the right to possess it. However,
privacy can not be guaranteed only by laws, especially when it comes to digital data. This
problem has been tackled in conventional computing for some time and the solution that has
been used is cryptography. This solution has been satisfactory for the current paradigm, the
personal computing. The ubiquitous computing is a new paradigm where the environments
have sensors and computing devices capable of computing and communication. The user
can communicates with such environments through their personal devices and vice versa. In
ubiquitous computing, privacy has achieved new dimensions, which were often idealized by
books and movies, but in modern times are becoming reality.
This chapter presents and discusses the dimensions of privacy in the context of ubiquitous
computing, the issues being addressed by the scientific community and provides a model
for addressing some of these issues in environments closed. This model is then simulated
through a simulator and a metric Diaz et al. (2002) is used to measure the degree of anonymity
achieved.
In the follow, section 2 presents foudations and the methods. The section 3 describes

7

a metamodel for ubiquitous computing environments. The main issues surrounding the
privacy (services and restrictions) in ubiquitous environments are describes in section 4.
Section 5 presents an extension to the metamodel developed by Campiolo (2005) to describe
ubiquitous environments, with features to ensure privacy in such environments. In section
6 is presented a case-study, which was developed using the metamodel proposed and which
was simulated. Section 7 contains important conclusions of this the work.

2. Foundation and methods

In this section the base concepts and the methods used for developing the specification are
shown. It describes the entities, requirements and features of the environments and the formal
language used at the specification process as in Campiolo (2005).

2.1 Entities
Entity refers to all of the instances that somehow collaborate for the formation and
definition of a ubiquitous computing environment. In the current context, entities are
people, devices, softwares and communication medias. People engage to the environments
through the relation with other entities and behaviors. Devices with communication and/or
computing capacity are the foundation for the existence and the growing ascension of
pervasive computing. Softwares provide mechanisms for programming and to control
devices. Finally, the communication medias, in special, wireless communication, are
responsible for establishing connectivity among all entities that compose ubiquitous
computing environments.

2.2 Features
Features define properties and important requirements for composition of the environments
and must be respected by elements and in the modeling process. The most important are:

• Invisibility: it is the disappearance of user perception on the technology used;

• Intelligent environments: presence of saturated environments with electronic devices and
defined frontiers, with capacity of computing and communicating to itself and other
devices that present to them;

• Context awareness: awareness of location of the devices in pervasive world to use
information on managing and communications in the environment;

• Security and privacy: to assure security of information and of the physical devices and to
assure privacy in an environment with constant interactivity and connectivity.

3. The elements of a metamodel

In this section the model got though formal specification of the elements and features of
ubiquitous computing environments is shortly presented as in Campiolo (2005) and Campiolo
et al. (2007). Modeling aspects are presented, detailed and discussed informally, through
explaining sentences, and formally, through the model in Object-Z Spivey (1989) and Duke
et al. (1991).

3.1 Common features
In Figure 1 several properties of the physical elements that compose the scenarios of a
ubiquitous computing environment are common. By using the concept of inheritance, the

128 Ubiquitous Computing

common features were extracted and aggregated within a single class. A ModelBase class
defines common properties of four elements of the model: people, objects, entities and spaces.
An identification property exists to represent uniquely a physical object whereas the class and
description properties allow to specify object details. A position property defines the absolute
spatial location of a physical entity in the scenario. Every element that has this feature can be
located through coordinates. The emittedSignal property has the function to aggregate and
represent the set of signals that an element can transmit.

ModelBase
ClassType : {Person, Object, Entity, Space}

identification : N

class : ClassType
description : TEXT
position : N × N × N

...
emittedSignal : FSignal

Fig. 1. Features of the Model Base Class

3.2 People
The whole essence of the representation of a person can be modeled for who is in a
ubiquitous environment. A POSITIONAL type defines people positions in the environment
and the characteristics that relate to position, such as velocity, direction and orientation. A
PHYSICAL type represents physical characteristics, such as gender, age, size, among other.
A PSYCHOLOGICAL type type represents abstract characteristics like emotions, interests,
temper, at last, characteristics related to psychological.

3.3 Objects
Objects are all elements that do not have computing and communication, unless they are
aggregated or embedded to them.
An initialState property is a set of state variables and defines the object initial state. The
possibleState property is a set of state variables and defines all possible and valid values for
composition of any object state. The changeState property is an association function among
the events that change the object states with the transition relationship between the current
values and the new values of the state variables changed by the event. Finally, the associations
property allows the association of elements to objects.

3.4 Entities
An entity is the basis for the specifications of sensors, actuators and devices. These ones have
common features and need a structure to restrict access to determined properties. The result
is the creation of an abstract structure named Entity.
An enabled property defines if the entity is active or inactive. The connections,
communication and channel properties specify with which entities the connections, protocols
and physical communication channels are maintained.

129On Modeling of Ubiquitous Computing Environments featuring Privacy

a metamodel for ubiquitous computing environments. The main issues surrounding the
privacy (services and restrictions) in ubiquitous environments are describes in section 4.
Section 5 presents an extension to the metamodel developed by Campiolo (2005) to describe
ubiquitous environments, with features to ensure privacy in such environments. In section
6 is presented a case-study, which was developed using the metamodel proposed and which
was simulated. Section 7 contains important conclusions of this the work.

2. Foundation and methods

In this section the base concepts and the methods used for developing the specification are
shown. It describes the entities, requirements and features of the environments and the formal
language used at the specification process as in Campiolo (2005).

2.1 Entities
Entity refers to all of the instances that somehow collaborate for the formation and
definition of a ubiquitous computing environment. In the current context, entities are
people, devices, softwares and communication medias. People engage to the environments
through the relation with other entities and behaviors. Devices with communication and/or
computing capacity are the foundation for the existence and the growing ascension of
pervasive computing. Softwares provide mechanisms for programming and to control
devices. Finally, the communication medias, in special, wireless communication, are
responsible for establishing connectivity among all entities that compose ubiquitous
computing environments.

2.2 Features
Features define properties and important requirements for composition of the environments
and must be respected by elements and in the modeling process. The most important are:

• Invisibility: it is the disappearance of user perception on the technology used;

• Intelligent environments: presence of saturated environments with electronic devices and
defined frontiers, with capacity of computing and communicating to itself and other
devices that present to them;

• Context awareness: awareness of location of the devices in pervasive world to use
information on managing and communications in the environment;

• Security and privacy: to assure security of information and of the physical devices and to
assure privacy in an environment with constant interactivity and connectivity.

3. The elements of a metamodel

In this section the model got though formal specification of the elements and features of
ubiquitous computing environments is shortly presented as in Campiolo (2005) and Campiolo
et al. (2007). Modeling aspects are presented, detailed and discussed informally, through
explaining sentences, and formally, through the model in Object-Z Spivey (1989) and Duke
et al. (1991).

3.1 Common features
In Figure 1 several properties of the physical elements that compose the scenarios of a
ubiquitous computing environment are common. By using the concept of inheritance, the

128 Ubiquitous Computing

common features were extracted and aggregated within a single class. A ModelBase class
defines common properties of four elements of the model: people, objects, entities and spaces.
An identification property exists to represent uniquely a physical object whereas the class and
description properties allow to specify object details. A position property defines the absolute
spatial location of a physical entity in the scenario. Every element that has this feature can be
located through coordinates. The emittedSignal property has the function to aggregate and
represent the set of signals that an element can transmit.

ModelBase
ClassType : {Person, Object, Entity, Space}

identification : N

class : ClassType
description : TEXT
position : N × N × N

...
emittedSignal : FSignal

Fig. 1. Features of the Model Base Class

3.2 People
The whole essence of the representation of a person can be modeled for who is in a
ubiquitous environment. A POSITIONAL type defines people positions in the environment
and the characteristics that relate to position, such as velocity, direction and orientation. A
PHYSICAL type represents physical characteristics, such as gender, age, size, among other.
A PSYCHOLOGICAL type type represents abstract characteristics like emotions, interests,
temper, at last, characteristics related to psychological.

3.3 Objects
Objects are all elements that do not have computing and communication, unless they are
aggregated or embedded to them.
An initialState property is a set of state variables and defines the object initial state. The
possibleState property is a set of state variables and defines all possible and valid values for
composition of any object state. The changeState property is an association function among
the events that change the object states with the transition relationship between the current
values and the new values of the state variables changed by the event. Finally, the associations
property allows the association of elements to objects.

3.4 Entities
An entity is the basis for the specifications of sensors, actuators and devices. These ones have
common features and need a structure to restrict access to determined properties. The result
is the creation of an abstract structure named Entity.
An enabled property defines if the entity is active or inactive. The connections,
communication and channel properties specify with which entities the connections, protocols
and physical communication channels are maintained.

129On Modeling of Ubiquitous Computing Environments featuring Privacy

3.5 Communication
Connectivity in ubiquitous computing environments is essential. Connectivity is provided
by an Entity class which can be described. It defines for an entity the relation among the
physical environment, protocol and connection. The physical mean is specified through a
CommunicationChannel class, the protocol by the PROTOCOL basic type and the connection
by a pointer to an entity. Despite an Entity and CommunicationChannel classes specify
properties to represent and control communications, they are not enough to represent active
communications and to a possible simulation management. To help on these issues, must
exists a class named CommunicationController.

3.6 Events and signalings
Events and signalings in the model are represented by three classes: Signal, Event and
Command. These classes represent respectively signals, events and commands. In this case,
signals are information emitted by any element of the pervasive world; events are notifications
issued by entities, in special, devices; and commands are orders and parameters to change
object states. The common features of these classes are represented by Trigger base class.
Common properties like event identification and content representation are provided by this
class.

3.7 Location
Through the location information of people, objects and entities, environments manage
resources and interactions among the elements present in the spaces. For the model, location
information must support the features defined for real environments and even, provide
practical mechanisms to manage this information. Absolute location of all elements is defined
by the ModelBase class. The SymbolicLocation and RelativeLocation classes specify symbolic and
relative location, respectively. They are aggregated by the Location class. As it is complex
to maintain the location of the entities using location symbolic or relative, every element that
uses that location type it should be registered in the location controller. To manage the location
of all objects there is the LocationController class.

3.8 Situations
Occurrences or events generated in real world, or even in a simulation, are not all
time-dependent. Some of them have relationship with time just by running in a random
instant. Besides the existence of random events, there is a subset dependent on a collection
of states of given elements. The term used in this paper for these events is situation-based
events. Formally, they are event triggered when a finite event set is reached or activated and
originate a determined situation. The SituationController class is a structure that aggregates
the states of interest of a determined situation, associates and triggers events when states are
activated.

4. On Ubiquitous environments

In ubiquitous computing, the technology is very close to people and lives in various scenarios
that might be considered real. According to this paradigm, the computing elements should
be invisible or to induce the minimum of distraction to the user. Based on this idea, is not
acceptable that users are often interrupted with alerts and options to configure, accept or
reject any type of intrusive action. In this section, we present services that can be intrusive in

130 Ubiquitous Computing

ubiquitous computing environments, the issues to be considered and the restrictions that may
be imposed on these services.

4.1 Services
Most services in ubiquitous computing are not yet widespread or applied in real environments
Aoyama (2008). Below are described some of these services and their implications for privacy:

• Service of product identification: Through this service it is possible count and track a
product that a consumer is buying. The implications are the lack of control of the types
and use of information being collected and the possibility of an external entity track the
contents of the purchase outside the shop;

• Service of warning proximity: This service informs when a known and registered person
with your device is close to its physical location or in a common environment. The problem
is that people do not always want to be located in certain situations or times;

• Advertising service: This service sends advertisements of products to user devices when
they are close to their shops. In this case, there are some issues to be considered: (a) How
to define policies to restrict the advertising? (b) How to avoid the stressful protocols to
obtain this informations? (c) How to map the interests of a client? (d) How to define the
limits to achieve this mapping?

4.2 Restrictions
The services introduced to ubiquitous computing aims to facilitate the implementation of
tasks of the user. However, the services must comply with certain restrictions that do not
become intrusive.
A classification for these restrictions is presented below Myles et al. (2003):

• Temporal: it determines the time periods in which the service is available or disabled. For
example, a user does not like to be located in the time for lunch;

• Localization: this restricts access to informations or to the device based on the user’s
location. For example, in a restaurant the user can allow a service to obtain its name for a
personalized treatment;

• Organization: it defines who and when a person can be located. For example, an employee
of a company want to be found only when he is in the physical limits of the company;

• Service: this defines what services a client device can access. For example, when entering
an environment with ad services, you can restrict what is allowed to access;

• Order: it defines what informations may be disclosed for a given service. For example,
to complete a registration the client defines what data are relevant to be transmitted from
your device to the register;

• Situation: this defines the situations in which policies defined for a service may be
overlapping. This type of service requires a level of intelligence for the device. For
example, a user does not want to access any service, while he is in the room with your
boss;

• Group: it defines a common group that can access a set of user information. This restriction
applies to devices from other users. For example, a user wants to share work information
with all in their sector;

131On Modeling of Ubiquitous Computing Environments featuring Privacy

3.5 Communication
Connectivity in ubiquitous computing environments is essential. Connectivity is provided
by an Entity class which can be described. It defines for an entity the relation among the
physical environment, protocol and connection. The physical mean is specified through a
CommunicationChannel class, the protocol by the PROTOCOL basic type and the connection
by a pointer to an entity. Despite an Entity and CommunicationChannel classes specify
properties to represent and control communications, they are not enough to represent active
communications and to a possible simulation management. To help on these issues, must
exists a class named CommunicationController.

3.6 Events and signalings
Events and signalings in the model are represented by three classes: Signal, Event and
Command. These classes represent respectively signals, events and commands. In this case,
signals are information emitted by any element of the pervasive world; events are notifications
issued by entities, in special, devices; and commands are orders and parameters to change
object states. The common features of these classes are represented by Trigger base class.
Common properties like event identification and content representation are provided by this
class.

3.7 Location
Through the location information of people, objects and entities, environments manage
resources and interactions among the elements present in the spaces. For the model, location
information must support the features defined for real environments and even, provide
practical mechanisms to manage this information. Absolute location of all elements is defined
by the ModelBase class. The SymbolicLocation and RelativeLocation classes specify symbolic and
relative location, respectively. They are aggregated by the Location class. As it is complex
to maintain the location of the entities using location symbolic or relative, every element that
uses that location type it should be registered in the location controller. To manage the location
of all objects there is the LocationController class.

3.8 Situations
Occurrences or events generated in real world, or even in a simulation, are not all
time-dependent. Some of them have relationship with time just by running in a random
instant. Besides the existence of random events, there is a subset dependent on a collection
of states of given elements. The term used in this paper for these events is situation-based
events. Formally, they are event triggered when a finite event set is reached or activated and
originate a determined situation. The SituationController class is a structure that aggregates
the states of interest of a determined situation, associates and triggers events when states are
activated.

4. On Ubiquitous environments

In ubiquitous computing, the technology is very close to people and lives in various scenarios
that might be considered real. According to this paradigm, the computing elements should
be invisible or to induce the minimum of distraction to the user. Based on this idea, is not
acceptable that users are often interrupted with alerts and options to configure, accept or
reject any type of intrusive action. In this section, we present services that can be intrusive in

130 Ubiquitous Computing

ubiquitous computing environments, the issues to be considered and the restrictions that may
be imposed on these services.

4.1 Services
Most services in ubiquitous computing are not yet widespread or applied in real environments
Aoyama (2008). Below are described some of these services and their implications for privacy:

• Service of product identification: Through this service it is possible count and track a
product that a consumer is buying. The implications are the lack of control of the types
and use of information being collected and the possibility of an external entity track the
contents of the purchase outside the shop;

• Service of warning proximity: This service informs when a known and registered person
with your device is close to its physical location or in a common environment. The problem
is that people do not always want to be located in certain situations or times;

• Advertising service: This service sends advertisements of products to user devices when
they are close to their shops. In this case, there are some issues to be considered: (a) How
to define policies to restrict the advertising? (b) How to avoid the stressful protocols to
obtain this informations? (c) How to map the interests of a client? (d) How to define the
limits to achieve this mapping?

4.2 Restrictions
The services introduced to ubiquitous computing aims to facilitate the implementation of
tasks of the user. However, the services must comply with certain restrictions that do not
become intrusive.
A classification for these restrictions is presented below Myles et al. (2003):

• Temporal: it determines the time periods in which the service is available or disabled. For
example, a user does not like to be located in the time for lunch;

• Localization: this restricts access to informations or to the device based on the user’s
location. For example, in a restaurant the user can allow a service to obtain its name for a
personalized treatment;

• Organization: it defines who and when a person can be located. For example, an employee
of a company want to be found only when he is in the physical limits of the company;

• Service: this defines what services a client device can access. For example, when entering
an environment with ad services, you can restrict what is allowed to access;

• Order: it defines what informations may be disclosed for a given service. For example,
to complete a registration the client defines what data are relevant to be transmitted from
your device to the register;

• Situation: this defines the situations in which policies defined for a service may be
overlapping. This type of service requires a level of intelligence for the device. For
example, a user does not want to access any service, while he is in the room with your
boss;

• Group: it defines a common group that can access a set of user information. This restriction
applies to devices from other users. For example, a user wants to share work information
with all in their sector;

131On Modeling of Ubiquitous Computing Environments featuring Privacy

• Interest: this determines whether services or information transmitted to the device are of
interest to the user. For instance, a user may wish to receive results of football matches,
then he can set as interest this type of information.

5. Privacy model

This section presents an extension of the metamodel for ubiquitous environments created in
Campiolo (2005) by presenting the aspects related to privacy Langheinrich (2001), Jiang &
Landay (2002), Cheng et al. (2005), Bhaskar & Ahamed (2007). These aspects are presented
and discussed informally, through explanatory sentences, and formally, through the model in
Object-Z. In addition, the mathematical notations such as those that can be used in Object-Z
are usually adopted, therefore accurately describe the properties of a computational system
Duke et al. (1991).
In closed ubiquitous computing environments1 the issue of privacy can be ensured internally
by a local system. Thus, privacy violations and the problems caused by the communication
must be protected in the environment.
Based on this assumption, in this research are considered the issues involving the environment
and the individuals within the limits of that environment. Therefore, the interaction between
devices of different individuals in the environment is not addressed.
One of the initial problems is about the user’s device communication with devices of the
environment. Additionally, all communication between devices consumes energy. Therefore
it is necessary to avoid stressful protocols and repeated attempts at communication.
The metamodel presented in Campiolo (2005) does not allow specifying the problems relating
to privacy on ubiquitous environments. The Figure 2 shows all classes built in Campiolo
(2005) and within the red rectangle are created three classes that are appropriate and based
on the concepts of (1) anonymity Pfitzmann & Köhntopp (2001), (2) the use of pseudonyms
Beresford & Stajano (2004), (3) the user’s preference profile Lederer et al. (2002) and (4) the
creation of mixing zones Beresford (2005), if necessary the existence of these in the ubiquitous
environment.
The Service class represents the services in ubiquitous environment and are detailed in
Figure 3. These services are provided by devices and sensors and, as discussed in section
4.1. They can be intrusive and annoying that may pose serious threats to privacy of such
environments.
The property identification uniquely identifies a service on the environment. The property
description can provide some information sufficient enough to describe the features of the
service. Finally, the property created has the record of the date and time of creation of the
service.
What can threaten the privacy of individuals in ubiquitous environments are abusive services,
e.g. the sending of ads and ads that are not user interest, user location monitoring, collection
of information without permission and unauthorized identification.
To prevent any service has access to personal information of people of a particular
environment ubiquitous, class PrivacyPolicy (Figure 4) for which an individual can specify
which services may have or not have access to your information.
The property identification of class PrivacyPolicy allows to specify only one privacy policy in
the model. To inform about which service is the privacy policy, can be created the property

1 Closed ubiquitous computing environments are that are physically delimited and where the
communication and computing are restricted to those limits

132 Ubiquitous Computing

Fig. 2. Main components of the specification

Service

ServiceState
identification : N

description : TEXT
created : TimeStamp

∀ x, y : identification • x �= y

CreateService
Δ(identification, description, created)
identification? : N

description? : TEXT
created? : TimeStamp

identification� = identification?
description� = description?
created� = created?

Fig. 3. Characteristics of the class Service

service. The serviceProvider property allows us to enter a partial set of service providers. For
the execution of the service provided by these providers, the defaultMode property should
be consulted about their modes such as: allow, deny or ask. If a provider is not listed,

133On Modeling of Ubiquitous Computing Environments featuring Privacy

• Interest: this determines whether services or information transmitted to the device are of
interest to the user. For instance, a user may wish to receive results of football matches,
then he can set as interest this type of information.

5. Privacy model

This section presents an extension of the metamodel for ubiquitous environments created in
Campiolo (2005) by presenting the aspects related to privacy Langheinrich (2001), Jiang &
Landay (2002), Cheng et al. (2005), Bhaskar & Ahamed (2007). These aspects are presented
and discussed informally, through explanatory sentences, and formally, through the model in
Object-Z. In addition, the mathematical notations such as those that can be used in Object-Z
are usually adopted, therefore accurately describe the properties of a computational system
Duke et al. (1991).
In closed ubiquitous computing environments1 the issue of privacy can be ensured internally
by a local system. Thus, privacy violations and the problems caused by the communication
must be protected in the environment.
Based on this assumption, in this research are considered the issues involving the environment
and the individuals within the limits of that environment. Therefore, the interaction between
devices of different individuals in the environment is not addressed.
One of the initial problems is about the user’s device communication with devices of the
environment. Additionally, all communication between devices consumes energy. Therefore
it is necessary to avoid stressful protocols and repeated attempts at communication.
The metamodel presented in Campiolo (2005) does not allow specifying the problems relating
to privacy on ubiquitous environments. The Figure 2 shows all classes built in Campiolo
(2005) and within the red rectangle are created three classes that are appropriate and based
on the concepts of (1) anonymity Pfitzmann & Köhntopp (2001), (2) the use of pseudonyms
Beresford & Stajano (2004), (3) the user’s preference profile Lederer et al. (2002) and (4) the
creation of mixing zones Beresford (2005), if necessary the existence of these in the ubiquitous
environment.
The Service class represents the services in ubiquitous environment and are detailed in
Figure 3. These services are provided by devices and sensors and, as discussed in section
4.1. They can be intrusive and annoying that may pose serious threats to privacy of such
environments.
The property identification uniquely identifies a service on the environment. The property
description can provide some information sufficient enough to describe the features of the
service. Finally, the property created has the record of the date and time of creation of the
service.
What can threaten the privacy of individuals in ubiquitous environments are abusive services,
e.g. the sending of ads and ads that are not user interest, user location monitoring, collection
of information without permission and unauthorized identification.
To prevent any service has access to personal information of people of a particular
environment ubiquitous, class PrivacyPolicy (Figure 4) for which an individual can specify
which services may have or not have access to your information.
The property identification of class PrivacyPolicy allows to specify only one privacy policy in
the model. To inform about which service is the privacy policy, can be created the property

1 Closed ubiquitous computing environments are that are physically delimited and where the
communication and computing are restricted to those limits

132 Ubiquitous Computing

Fig. 2. Main components of the specification

Service

ServiceState
identification : N

description : TEXT
created : TimeStamp

∀ x, y : identification • x �= y

CreateService
Δ(identification, description, created)
identification? : N

description? : TEXT
created? : TimeStamp

identification� = identification?
description� = description?
created� = created?

Fig. 3. Characteristics of the class Service

service. The serviceProvider property allows us to enter a partial set of service providers. For
the execution of the service provided by these providers, the defaultMode property should
be consulted about their modes such as: allow, deny or ask. If a provider is not listed,

133On Modeling of Ubiquitous Computing Environments featuring Privacy

PrivacyPolicy

MODE ::= allow | deny | ask

PolicyState
identification : N

service : Service
serviceProvider : P ↓Entity
defaultMode : MODE
unknownMode : MODE
temporalConstraint : seq(TIME × TIME)

Fig. 4. Characteristics of the class PrivacyPolicy

the model allows to specify which default mode of execution of the service through the
property unknownMode. If the mode is allow all unknown services have access to personal
information, if it is deny all unknown services will not have access and, finally, if "ask",
the user will have to be consulted about the new service provider and so can determine
whether or not to share your information. Finally, based on the section 4.2, it is created the
property temporalConstraint, which determines which periods of time in which the service will
be available or not.
So that the model has a more complete specification of the personal information of users and
their preferences, the class Profile, Figure 5 has been prepared.

Profile

ProfileState
identification : N

pseudonym : TEXT
personalProperties : P(TEXT × F TEXT)
servicePolicies : P PrivacyPolicy
mixingRate : N

∀ x, y : pseudonym • x �= y

Fig. 5. Caracteristicas of the class Profile

In the class Profile, the property identification uniquely identifies a user’s profile. Using the
concept of mixing Beresford (2005), the property pseudonym stores the pseudonym used to
identify the user’s device and allow the mixing. The property personalProperties allows to
specify personal preferences such as, for instance, in the category of sports, for instance:
soccer, volleyball, basketball; and in the category of movies, for example: action, comedy,
romance. The property servicePolicies relates the User Profile to their privacy policies, that is,
the set of services that may or may not access the information in your personal profile. Finally,
mixingRate defines a minimal rate of individuals which must be present to occur a mixing. If
the rate is zero, this means the user does not want to participate in the mixing. Moreover, to
integrate aspects of privacy to the modeling in Campiolo (2005) has been created the property

134 Ubiquitous Computing

profile in the class Person which allows to assign the class Profile to a person; likewise the
property offeredServices in the class Entity, which allows inform which services are provided
by a particular entity.

6. The simulation of an environment

This section presents the application of the metamodel presented in section 5 for the scenery
of a shopping center. The choice for this application is due to the fact that a shopping center
is a sufficiently complex scenery, because it is composed of several other open and closed
sceneries (for instance shops, exhibition areas, salons, escalators) and these are well defined
from the physical structure shopping.
The goal is to highlight the importance and applicability of metamodel drafted, as well as
discuss the various problems leading in this scenario, in the sense to propose some viable
solutions. Only the main classes are presented in this section. In addition, in the end of the
section is presented a scenery of the shopping center modeled and analyzed in a simulation
tool.

6.1 The scenario
As previously presented in Campiolo (2005), the shopping center (Figure 6) corresponds to a
scenario consisting of a large amount of people with their devices and several closed and open
spaces, clearly delimited physically by the structure of shopping center. There are sensors and
distributed devices, monitoring and providing services to individuals within the limits of the
internal environment. The services are intended to conquer and provide convenience to users.
These services must not be intrusive, i.e. not transgress, the environment because it has an
infrastructure to protect the privacy of its users.

Fig. 6. Illustration of the shopping scene. Source: Campiolo (2005).

The devices and sensors can be located in the stores. They can communicate internally in the
store, that is, a client device is detected within the limits of the store, or to communicate a
certain distance outside the store. The same principle is valid for the sensors. In addition,
sensors and devices can be property of the shopping and can be distributed in other points,
being shared by several stores.

6.2 Specific problem
The following scenario illustrates a specific privacy problem in the environment studied. Alice
has a profile that is composed of two parts: a set of propositions provided by Alice (profile

135On Modeling of Ubiquitous Computing Environments featuring Privacy

PrivacyPolicy

MODE ::= allow | deny | ask

PolicyState
identification : N

service : Service
serviceProvider : P ↓Entity
defaultMode : MODE
unknownMode : MODE
temporalConstraint : seq(TIME × TIME)

Fig. 4. Characteristics of the class PrivacyPolicy

the model allows to specify which default mode of execution of the service through the
property unknownMode. If the mode is allow all unknown services have access to personal
information, if it is deny all unknown services will not have access and, finally, if "ask",
the user will have to be consulted about the new service provider and so can determine
whether or not to share your information. Finally, based on the section 4.2, it is created the
property temporalConstraint, which determines which periods of time in which the service will
be available or not.
So that the model has a more complete specification of the personal information of users and
their preferences, the class Profile, Figure 5 has been prepared.

Profile

ProfileState
identification : N

pseudonym : TEXT
personalProperties : P(TEXT × F TEXT)
servicePolicies : P PrivacyPolicy
mixingRate : N

∀ x, y : pseudonym • x �= y

Fig. 5. Caracteristicas of the class Profile

In the class Profile, the property identification uniquely identifies a user’s profile. Using the
concept of mixing Beresford (2005), the property pseudonym stores the pseudonym used to
identify the user’s device and allow the mixing. The property personalProperties allows to
specify personal preferences such as, for instance, in the category of sports, for instance:
soccer, volleyball, basketball; and in the category of movies, for example: action, comedy,
romance. The property servicePolicies relates the User Profile to their privacy policies, that is,
the set of services that may or may not access the information in your personal profile. Finally,
mixingRate defines a minimal rate of individuals which must be present to occur a mixing. If
the rate is zero, this means the user does not want to participate in the mixing. Moreover, to
integrate aspects of privacy to the modeling in Campiolo (2005) has been created the property

134 Ubiquitous Computing

profile in the class Person which allows to assign the class Profile to a person; likewise the
property offeredServices in the class Entity, which allows inform which services are provided
by a particular entity.

6. The simulation of an environment

This section presents the application of the metamodel presented in section 5 for the scenery
of a shopping center. The choice for this application is due to the fact that a shopping center
is a sufficiently complex scenery, because it is composed of several other open and closed
sceneries (for instance shops, exhibition areas, salons, escalators) and these are well defined
from the physical structure shopping.
The goal is to highlight the importance and applicability of metamodel drafted, as well as
discuss the various problems leading in this scenario, in the sense to propose some viable
solutions. Only the main classes are presented in this section. In addition, in the end of the
section is presented a scenery of the shopping center modeled and analyzed in a simulation
tool.

6.1 The scenario
As previously presented in Campiolo (2005), the shopping center (Figure 6) corresponds to a
scenario consisting of a large amount of people with their devices and several closed and open
spaces, clearly delimited physically by the structure of shopping center. There are sensors and
distributed devices, monitoring and providing services to individuals within the limits of the
internal environment. The services are intended to conquer and provide convenience to users.
These services must not be intrusive, i.e. not transgress, the environment because it has an
infrastructure to protect the privacy of its users.

Fig. 6. Illustration of the shopping scene. Source: Campiolo (2005).

The devices and sensors can be located in the stores. They can communicate internally in the
store, that is, a client device is detected within the limits of the store, or to communicate a
certain distance outside the store. The same principle is valid for the sensors. In addition,
sensors and devices can be property of the shopping and can be distributed in other points,
being shared by several stores.

6.2 Specific problem
The following scenario illustrates a specific privacy problem in the environment studied. Alice
has a profile that is composed of two parts: a set of propositions provided by Alice (profile

135On Modeling of Ubiquitous Computing Environments featuring Privacy

A) and a set of propositions inferred by the system or by other entities (Profile B). Alice
can determine how to the profile A can be used by the system, in whole or for a particular
purpose. On the profile B, his control is very limited, because Alice can not know of its
existence. For example, consider that Alice prepares the profile indicating that likes of action
movies, gymnastics and self-help books, as shown in Figure 7. The structure named alice is
the specification of the class Person that instantiates Alice in the environment. In this case,
the identification alice was used as the value of the property pseudonym, because Alice had
opted out of mixing (property mixingRate is zero), i.e., she does not want to maintain your
anonymity. This issue will be again discussed in the section 6.5.

Profile : profile A

identification = 14
pseudonym = alice
personalProperties = {sports, {gymnastics}},
{films, {action movies}}, {books, {self help}}
servicePolicies = marketing policy
mixingRate = 0

Fig. 7. Profile A provided by Alice

The Figure 8 presents the privacy policy of Alice, where she determines that your informations
are used by advertising service (marketing service), should not be passed to third parties,
only to the L and M libraries. In addition, through the property temporalConstraint, Alice has
defined a temporal restriction alleging that want to be addressed by these services only in
time from 8h to 18h.

PrivacyPolicy : marketing policy

identification = 16
service = marketing service
serviceProvider = sen bookstore L, sen bookstore M
defaultMode = allow
unknownMode = deny
temporalConstraint : (8h00m00s, 18h00m00s)

Fig. 8. Privacy policy for the advertising service

Now, suppose that Alice perform some purchases of books about travel in the bookstore L,
one or more times per month for a period of six months. It can be assumed that these books
are for herself, it is difficult to be present (unless Alice knows several friends who like to travel
and make birthday in this period). Thus, this bookstore is able to create a second profile for
Alice, the profile of Figure 9, which is a copy of the profile provided by her, with an additional
value in the property personalProperties, saying that she likes travel books, fact which she did
not reveal personally.
It is important to consider that this information is produced without the knowledge of Alice,
it does not fit in the constraint, it will not be provided to third parties and it is a profile more
accurate than the profile provided by herself.

136 Ubiquitous Computing

Profile : profile B

identification = 15
pseudonym = alice
personalProperties = {sports, {gymnastics}},
{films, {action movies}}, {books, {self help, traveling}}
servicePolicies = marketing policy
mixingRate = 0

Fig. 9. Profile B inferred by system

Now, suppose Alice goes shopping porting a handheld with your unambiguous identification
and your profile A stored. At the entrance, Alice is identified, the profile A is read and profile
B is rescued by the system. Passing next to the bookstore M, Alice receives a message from
some promotion of travel books. This can be approached from various points of view. Alice
did not put the information that she likes of travel books in the profile A, because personally
prefer to search when she has a specific need. Suppose she travels a lot for work, but can not
determine her destination previously. In this case, it is not useful to receive promotion notices.
Alice knows that the information placed on your profile A are used for different companies
can make customized offers. On the other hand, these offers may be interesting to Alice, they
may be more in line with their interests, and provide a good economy in some cases. In any
case, the goal of the companies is to sell, which does not necessarily satisfy completely Alice,
neither respect your wishes.

6.3 Model and architecture of the environment
The physical structure of the environment remains the same as shown in Figure 6. In this case,
are added only new sensors and devices in some areas of the environment. In the inputs and
outputs of the environment, are the sensors responsible for collecting the privacy policies of
the user. These sensors are called I/O sensors. Only the I/O sensors collect privacy policies.
Therefore, it is required an entity to store these policies. The entity responsible for storing
security policies is the central server. This server receives from the I/O sensors the information
gathered from the user’s device. The sensors and local devices access the privacy policies of a
client through a connection with the central server.
Thus, the communication protocols with the devices become less stressful and saves the
battery from the client device. The same effect is achieved with the collection of the
privacy policy file at the entrance. The collection is performed by wireless communication
(radio). The distance between the collecting device and client device is small. Therefore, the
energy expended and packet loss are much smaller. The I/O sensors must be isolated and
have a range of extension, i.e. they must not allow an external sensor retrieve or disrupt
privacy policies collection and should ensure that the client device to remain in the range
of transmission until the end of the protocol. The last architecture element added are the
mixing zones, where none of the users can be located by services. In the environment studied,
mixing zones are in the central region and in the exposure environments of the shopping
center because, in this places, there is a constant movement of people.

137On Modeling of Ubiquitous Computing Environments featuring Privacy

A) and a set of propositions inferred by the system or by other entities (Profile B). Alice
can determine how to the profile A can be used by the system, in whole or for a particular
purpose. On the profile B, his control is very limited, because Alice can not know of its
existence. For example, consider that Alice prepares the profile indicating that likes of action
movies, gymnastics and self-help books, as shown in Figure 7. The structure named alice is
the specification of the class Person that instantiates Alice in the environment. In this case,
the identification alice was used as the value of the property pseudonym, because Alice had
opted out of mixing (property mixingRate is zero), i.e., she does not want to maintain your
anonymity. This issue will be again discussed in the section 6.5.

Profile : profile A

identification = 14
pseudonym = alice
personalProperties = {sports, {gymnastics}},
{films, {action movies}}, {books, {self help}}
servicePolicies = marketing policy
mixingRate = 0

Fig. 7. Profile A provided by Alice

The Figure 8 presents the privacy policy of Alice, where she determines that your informations
are used by advertising service (marketing service), should not be passed to third parties,
only to the L and M libraries. In addition, through the property temporalConstraint, Alice has
defined a temporal restriction alleging that want to be addressed by these services only in
time from 8h to 18h.

PrivacyPolicy : marketing policy

identification = 16
service = marketing service
serviceProvider = sen bookstore L, sen bookstore M
defaultMode = allow
unknownMode = deny
temporalConstraint : (8h00m00s, 18h00m00s)

Fig. 8. Privacy policy for the advertising service

Now, suppose that Alice perform some purchases of books about travel in the bookstore L,
one or more times per month for a period of six months. It can be assumed that these books
are for herself, it is difficult to be present (unless Alice knows several friends who like to travel
and make birthday in this period). Thus, this bookstore is able to create a second profile for
Alice, the profile of Figure 9, which is a copy of the profile provided by her, with an additional
value in the property personalProperties, saying that she likes travel books, fact which she did
not reveal personally.
It is important to consider that this information is produced without the knowledge of Alice,
it does not fit in the constraint, it will not be provided to third parties and it is a profile more
accurate than the profile provided by herself.

136 Ubiquitous Computing

Profile : profile B

identification = 15
pseudonym = alice
personalProperties = {sports, {gymnastics}},
{films, {action movies}}, {books, {self help, traveling}}
servicePolicies = marketing policy
mixingRate = 0

Fig. 9. Profile B inferred by system

Now, suppose Alice goes shopping porting a handheld with your unambiguous identification
and your profile A stored. At the entrance, Alice is identified, the profile A is read and profile
B is rescued by the system. Passing next to the bookstore M, Alice receives a message from
some promotion of travel books. This can be approached from various points of view. Alice
did not put the information that she likes of travel books in the profile A, because personally
prefer to search when she has a specific need. Suppose she travels a lot for work, but can not
determine her destination previously. In this case, it is not useful to receive promotion notices.
Alice knows that the information placed on your profile A are used for different companies
can make customized offers. On the other hand, these offers may be interesting to Alice, they
may be more in line with their interests, and provide a good economy in some cases. In any
case, the goal of the companies is to sell, which does not necessarily satisfy completely Alice,
neither respect your wishes.

6.3 Model and architecture of the environment
The physical structure of the environment remains the same as shown in Figure 6. In this case,
are added only new sensors and devices in some areas of the environment. In the inputs and
outputs of the environment, are the sensors responsible for collecting the privacy policies of
the user. These sensors are called I/O sensors. Only the I/O sensors collect privacy policies.
Therefore, it is required an entity to store these policies. The entity responsible for storing
security policies is the central server. This server receives from the I/O sensors the information
gathered from the user’s device. The sensors and local devices access the privacy policies of a
client through a connection with the central server.
Thus, the communication protocols with the devices become less stressful and saves the
battery from the client device. The same effect is achieved with the collection of the
privacy policy file at the entrance. The collection is performed by wireless communication
(radio). The distance between the collecting device and client device is small. Therefore, the
energy expended and packet loss are much smaller. The I/O sensors must be isolated and
have a range of extension, i.e. they must not allow an external sensor retrieve or disrupt
privacy policies collection and should ensure that the client device to remain in the range
of transmission until the end of the protocol. The last architecture element added are the
mixing zones, where none of the users can be located by services. In the environment studied,
mixing zones are in the central region and in the exposure environments of the shopping
center because, in this places, there is a constant movement of people.

137On Modeling of Ubiquitous Computing Environments featuring Privacy

6.4 Understanding the protocols
To facilitate comprehension, the implications and operation of the protocols, these are
described based on possible situations that a client is entering into an closed environment
of ubiquitous computing.

6.4.1 Entry of a client/user
A client, upon entering the environment carrying his ubiquitous computing device initiates
communication with the I/O sensors. The privacy policy file and the client identification
are transmitted. The server generates a pseudonym for client registration, which serves as a
key to recovery policies. The client device receives this unique identifier and stores it in the
corresponding field. The communication is closed.

6.4.2 Detection of a client by a sensor
Upon detecting the presence of a device, the sensors of the environment or establishment,
through a simple protocol, gets its pseudonym. After this, consult the central server to
determine the privacy policies of user’s device. If it is registered the interest of an user for
any service provided, a protocol starts to assist him.

6.4.3 Client terminates the communication with a device
A customer, when leaving an establishment or range of a sensor or device, ends links and a
mixing mark is redefined. Therefore, while trasiting through a mixing zone, this device will
receive a new pseudonym and its mark of mixing again will be redefined.

6.5 Applying the model to a problem
In this section, the problem of Alice (section 6.2) is resumed and the situations described in
the problem are applied to the proposed model. The generation of profile B, where is recorded
the interest of Alice by travel books, it is inevitable, once that to purchase, Alice is identified,
either through credit or otherwise, as the memory of seller or even facial recognition systems
used in security cameras in the store.
Given the inevitability of the generation of a profile B, the solution to maintain the privacy of
Alice is dissociate her from your profile B. This can be done by assigning a pseudonym to Alice
that will be used to identify her. Thus, when passing by the sensors of the store, Alice will not
be identified and, therefore, not linked to your profile B. Starting from the idea that Alice
wants to have anonymity, the new profile A of Alice with his new pseudonym automatically
generated by the central server is shown in Figure 10.

Profile : profile A

identification = 14
pseudonym = 4fasd452
personalProperties = {sports, {gymnastics}},
{films, {action movies}}, {books, {self help}}
servicePolicies = marketing policy
mixingRate = 1

Fig. 10. Profile A provided by Alice

138 Ubiquitous Computing

However, there are situations in which Alice should be identified, for example, to make a
payment by credit card. At this moment, the systems can locate Alice, because she is related
to the alias pseudonym. The solution is to change your pseudonym again. Forcing a user to
leave and re-enter the environment to change the pseudonym is not something plausible. To
do this, mixing zones exist, in which Alice can literally mix the crowd, emerging from this zone
with a new pseudonym untraceable by commercial establishments. Thus, even in cases where
Alice’s identity can be inferred by their habits (habits like visiting specific shops in a certain
order in a given time), just that Alice passes through a mixing zone to stay anonymous. In the
case of shopping center, mixing zones are central points that the user always pass, whether to
change level, or to see other stores. Thus, the chances of identification and tracking become
very low, except in circumstances where mixing rates are too low.

6.6 The OPNET network simulator
The OPNET (Optimized Network Engineering Tool) Modeler2 allows to design and study
communication networks, devices, protocols and applications. The models in OPNET are
hierarchical. At the lowest level, the behavior of an algorithm or protocol is encoded by a
finite-state diagram with embedded code based on C/C++ language. At the intermediate
level, discrete functions such as processing, transmission and reception of data packets are
executed by separate objects, which behave as defined in a process model. These objects,
called modules, are connected to form the network model that, in the hierarchy, is the highest
level model. This model, finally, is what defines the scope of a simulation.

6.7 The environment represented in OPNET
For the simulation was considered a simplified environment of the shopping center described
in section 6.1. In the simulated environment there are two bookstores, represented by the
sensors Bookstore L Sensor and Bookstore M Sensor; 3 sceneries: the first with 50 users, the
second with 100 users and third with 300 users which are represented by their mobile devices;
the central server or Server; a mixing zone represented by Mix Sensor and a I/O sensor that
is IO Sensor. This elements are presented in the OPNET network model, in the Figure 11 .

Fig. 11. Shopping center scenario in Opnet.

2 www.opnet.com

139On Modeling of Ubiquitous Computing Environments featuring Privacy

6.4 Understanding the protocols
To facilitate comprehension, the implications and operation of the protocols, these are
described based on possible situations that a client is entering into an closed environment
of ubiquitous computing.

6.4.1 Entry of a client/user
A client, upon entering the environment carrying his ubiquitous computing device initiates
communication with the I/O sensors. The privacy policy file and the client identification
are transmitted. The server generates a pseudonym for client registration, which serves as a
key to recovery policies. The client device receives this unique identifier and stores it in the
corresponding field. The communication is closed.

6.4.2 Detection of a client by a sensor
Upon detecting the presence of a device, the sensors of the environment or establishment,
through a simple protocol, gets its pseudonym. After this, consult the central server to
determine the privacy policies of user’s device. If it is registered the interest of an user for
any service provided, a protocol starts to assist him.

6.4.3 Client terminates the communication with a device
A customer, when leaving an establishment or range of a sensor or device, ends links and a
mixing mark is redefined. Therefore, while trasiting through a mixing zone, this device will
receive a new pseudonym and its mark of mixing again will be redefined.

6.5 Applying the model to a problem
In this section, the problem of Alice (section 6.2) is resumed and the situations described in
the problem are applied to the proposed model. The generation of profile B, where is recorded
the interest of Alice by travel books, it is inevitable, once that to purchase, Alice is identified,
either through credit or otherwise, as the memory of seller or even facial recognition systems
used in security cameras in the store.
Given the inevitability of the generation of a profile B, the solution to maintain the privacy of
Alice is dissociate her from your profile B. This can be done by assigning a pseudonym to Alice
that will be used to identify her. Thus, when passing by the sensors of the store, Alice will not
be identified and, therefore, not linked to your profile B. Starting from the idea that Alice
wants to have anonymity, the new profile A of Alice with his new pseudonym automatically
generated by the central server is shown in Figure 10.

Profile : profile A

identification = 14
pseudonym = 4fasd452
personalProperties = {sports, {gymnastics}},
{films, {action movies}}, {books, {self help}}
servicePolicies = marketing policy
mixingRate = 1

Fig. 10. Profile A provided by Alice

138 Ubiquitous Computing

However, there are situations in which Alice should be identified, for example, to make a
payment by credit card. At this moment, the systems can locate Alice, because she is related
to the alias pseudonym. The solution is to change your pseudonym again. Forcing a user to
leave and re-enter the environment to change the pseudonym is not something plausible. To
do this, mixing zones exist, in which Alice can literally mix the crowd, emerging from this zone
with a new pseudonym untraceable by commercial establishments. Thus, even in cases where
Alice’s identity can be inferred by their habits (habits like visiting specific shops in a certain
order in a given time), just that Alice passes through a mixing zone to stay anonymous. In the
case of shopping center, mixing zones are central points that the user always pass, whether to
change level, or to see other stores. Thus, the chances of identification and tracking become
very low, except in circumstances where mixing rates are too low.

6.6 The OPNET network simulator
The OPNET (Optimized Network Engineering Tool) Modeler2 allows to design and study
communication networks, devices, protocols and applications. The models in OPNET are
hierarchical. At the lowest level, the behavior of an algorithm or protocol is encoded by a
finite-state diagram with embedded code based on C/C++ language. At the intermediate
level, discrete functions such as processing, transmission and reception of data packets are
executed by separate objects, which behave as defined in a process model. These objects,
called modules, are connected to form the network model that, in the hierarchy, is the highest
level model. This model, finally, is what defines the scope of a simulation.

6.7 The environment represented in OPNET
For the simulation was considered a simplified environment of the shopping center described
in section 6.1. In the simulated environment there are two bookstores, represented by the
sensors Bookstore L Sensor and Bookstore M Sensor; 3 sceneries: the first with 50 users, the
second with 100 users and third with 300 users which are represented by their mobile devices;
the central server or Server; a mixing zone represented by Mix Sensor and a I/O sensor that
is IO Sensor. This elements are presented in the OPNET network model, in the Figure 11 .

Fig. 11. Shopping center scenario in Opnet.

2 www.opnet.com

139On Modeling of Ubiquitous Computing Environments featuring Privacy

The following describes the exchange of messages as well the element modules of the
shopping center.

6.8 Packages for exchange of messages
For the exchange of messages between the elements of the shopping center were developed
the following packages:

• shopping sensor requests pck or request package;

• shopping profile pck or profile package;

• shopping pseudonym pck or pseudonym package;

• shopping new pseudonym pck or new pseudonym package, created by mixing sensor
and useful only for users who wish to participate in the mixing;

• shopping service policies of user pck or service policies of user package;

• shopping mixing pck or mixing package;

• shopping marketing pck or marketing package.

6.9 Model of I/O sensor node
Each network node represented in OPNET consists of a node-model and a process-model. The
model of the I/O sensor node is shown in Figure 12. It is possible perceive that there are two
input flows (stream 0 and stream 1) and one output flow.

Fig. 12. Model of I/O sensor-node

The sensor-node is responsible for capturing user information and forward it to the
server, and vice-versa. The sensor-node periodically sends request packets or shopping
sensor requests pck of type Profile to the new shopping users to start exchanging messages.
If a user responds to these requests, it is by the flow 0 that the sensor will receive the packets
of type shopping profile pck from the user and will send by the output flow to the server.
The server then generates a pseudonym for this user and send it to the I/O sensor. It is by
flow 1 that the sensor will receive the packages of type shopping pseudonym pck from the
server and it sends by the output flow to the user.

140 Ubiquitous Computing

The Figure 13 presents the process-model of the I/O sensor. There are four states: start,
send, wait e end. The state start loads a structure variable called Address, with IP values
informed in the node interface. The I/O sensor node, as all other environmental sensors,
works with two BSS: 0 and 1. The BSS 1 is for communication with the user and the BSS 0 is
for communication between the sensors and the server.

Fig. 13. Process model of I/O sensor.

The state send is what sends request packets to new users of the shopping, which are packages
shopping sensor requests pck of type Profile. After send this request, the state machine
assumes the State wait. In this state the sensor waits packages from the user (flow 0) or from
the server (flow 1). This state can also return to the state send to send new requests (transition
LOOP MSG) or go to the final state end with the transition model.
The user-node model is the most important, because it represents the key element of this work,
which is the user and how to maintain your privacy. As shown in Figure 14, the user’s device
has six input flows (stream 0, stream 1, stream 2, stream 3, stream 4 e stream 5) and a output
flow.
By the flows 0, 1 and 4, the user receives request packets, which are packets of type shopping
sensor requests pck of the I/O sensor, bookstore sensor and mixing sensor, respectively.
After receiving request packets from the I/O sensor, the user sends the packet with your
profile shopping profile pck to the sensor, so that the user can receive a pseudonym. As
explained in section 6.9, the sensor sends this packet to the server, which generates a
pseudonym for the user, and that is sent by the I/O sensor. The pseudonym is received
by user through the flow 2. Upon receiving the pseudonym the user’s device writes in its
internal memory the value that can be used in other communications during their stay at the
shopping.
After receive the pseudonym, the user is able to answer the requests of the bookstores sensors,
which are the requests made by flow 1. Then, the bookstore sensor will query the server to
check the permissions to send advertisements to the user and to find out the user preferences.
If it is possible to send out advertisements, the user will receive by the flow 3, and if there is
any promotion that is of interest, certainly, he will go to the bookstore.
If the user walks near an mixing zone, they receive, by flow 4, a request about your mixing rate
for the mixing zone sensor determine if the user wants or not join the mixing. Your mixing rate
value is sent in the shopping mixing pck packet. If the value of mix rate is 1, the sensor will
request the server a new pseudonym that is sent to user. This new pseudonym is received
by flow 5 in the packet shopping new pseudonym pck. This causes any parallel profile
generated by the stores is lost and only the user-generated profile is respected, maintaining so

141On Modeling of Ubiquitous Computing Environments featuring Privacy

The following describes the exchange of messages as well the element modules of the
shopping center.

6.8 Packages for exchange of messages
For the exchange of messages between the elements of the shopping center were developed
the following packages:

• shopping sensor requests pck or request package;

• shopping profile pck or profile package;

• shopping pseudonym pck or pseudonym package;

• shopping new pseudonym pck or new pseudonym package, created by mixing sensor
and useful only for users who wish to participate in the mixing;

• shopping service policies of user pck or service policies of user package;

• shopping mixing pck or mixing package;

• shopping marketing pck or marketing package.

6.9 Model of I/O sensor node
Each network node represented in OPNET consists of a node-model and a process-model. The
model of the I/O sensor node is shown in Figure 12. It is possible perceive that there are two
input flows (stream 0 and stream 1) and one output flow.

Fig. 12. Model of I/O sensor-node

The sensor-node is responsible for capturing user information and forward it to the
server, and vice-versa. The sensor-node periodically sends request packets or shopping
sensor requests pck of type Profile to the new shopping users to start exchanging messages.
If a user responds to these requests, it is by the flow 0 that the sensor will receive the packets
of type shopping profile pck from the user and will send by the output flow to the server.
The server then generates a pseudonym for this user and send it to the I/O sensor. It is by
flow 1 that the sensor will receive the packages of type shopping pseudonym pck from the
server and it sends by the output flow to the user.

140 Ubiquitous Computing

The Figure 13 presents the process-model of the I/O sensor. There are four states: start,
send, wait e end. The state start loads a structure variable called Address, with IP values
informed in the node interface. The I/O sensor node, as all other environmental sensors,
works with two BSS: 0 and 1. The BSS 1 is for communication with the user and the BSS 0 is
for communication between the sensors and the server.

Fig. 13. Process model of I/O sensor.

The state send is what sends request packets to new users of the shopping, which are packages
shopping sensor requests pck of type Profile. After send this request, the state machine
assumes the State wait. In this state the sensor waits packages from the user (flow 0) or from
the server (flow 1). This state can also return to the state send to send new requests (transition
LOOP MSG) or go to the final state end with the transition model.
The user-node model is the most important, because it represents the key element of this work,
which is the user and how to maintain your privacy. As shown in Figure 14, the user’s device
has six input flows (stream 0, stream 1, stream 2, stream 3, stream 4 e stream 5) and a output
flow.
By the flows 0, 1 and 4, the user receives request packets, which are packets of type shopping
sensor requests pck of the I/O sensor, bookstore sensor and mixing sensor, respectively.
After receiving request packets from the I/O sensor, the user sends the packet with your
profile shopping profile pck to the sensor, so that the user can receive a pseudonym. As
explained in section 6.9, the sensor sends this packet to the server, which generates a
pseudonym for the user, and that is sent by the I/O sensor. The pseudonym is received
by user through the flow 2. Upon receiving the pseudonym the user’s device writes in its
internal memory the value that can be used in other communications during their stay at the
shopping.
After receive the pseudonym, the user is able to answer the requests of the bookstores sensors,
which are the requests made by flow 1. Then, the bookstore sensor will query the server to
check the permissions to send advertisements to the user and to find out the user preferences.
If it is possible to send out advertisements, the user will receive by the flow 3, and if there is
any promotion that is of interest, certainly, he will go to the bookstore.
If the user walks near an mixing zone, they receive, by flow 4, a request about your mixing rate
for the mixing zone sensor determine if the user wants or not join the mixing. Your mixing rate
value is sent in the shopping mixing pck packet. If the value of mix rate is 1, the sensor will
request the server a new pseudonym that is sent to user. This new pseudonym is received
by flow 5 in the packet shopping new pseudonym pck. This causes any parallel profile
generated by the stores is lost and only the user-generated profile is respected, maintaining so

141On Modeling of Ubiquitous Computing Environments featuring Privacy

Fig. 14. Users node model.

your privacy.
In addition to the user-node model, there is also a process-model, shown in Figure 15 . There
are two states: start e wait. The state start loads internally the user’s IP adress and the state
wait is responsible for waiting the communications in all flows described above.

Fig. 15. User node model.

6.10 Server-node model
The server-node model is responsible for storing the user’s profile and generate a pseudonym
for this user, as soon as he enters in the shopping. The server-node model has three input
flows and a output flow.

142 Ubiquitous Computing

By flow 0, the server receives the user’s profile from the I/O sensor through the packets
shopping profile pck and it stores in your user list. After store the user, the server
generates a pseudonym, store it in the user registration and sends it to the user by the
I/O sensor in the packet shopping pseudonym pck. The flow 1 is for communications
between the sensors of bookstores with the central server. The bookstore sensor sends to
the server the pseudonym of the user, to locate your personal preferences, privacy policies
are used and checked if the sensor has permission to send an ads to the user. If it has
permission, the server sends the personal preferences and user privacy policies in the packet
shopping service policies of user pck. The flow 2 is for the server receive requests from
mixing sensor to generate new pseudonyms for the shopping clients who wish to participate
in the mixing. In this case, the incoming packet is the shopping sensor requests pck of
type New Pseudonym, and the server sends the new pseudonym to mixing sensor in packet
shopping new pseudonym pck.
As in the user-process, the server process has two states: start and wait. In start state, the
server’s IP variable is loaded and int the state wait, the server waits for packets to establish a
communication with the sensors.

6.11 Sensor-node model of bookstores
The bookstore sensor-node is interested in obtaining the user’s personal information to send
advertising services. Its sensor-node model has two input flows and one output flow.
The sensor-node periodically sends pseudonym request messages, which are the shopping
sensor requests pck packets, to the users who are nearby. The response to this request is
received in the flow 0, in the packet shopping pseudonym pck. This pseudonym is sent to
the server to the sensor obtain the preferences and service policies provided by the user. So this
informations are received by the flow 1, in the packet shopping service policies of user pck.
At receive this packet, the sensor verifies the advertisements that can interest the user and
sends in the packet shopping marketing pck.
The process-model of the bookstore sensor-node is similar to I/O sensor and has four states:
start, send, wait and end. The state start loads the sensor’s IP adress internally. The state
send sends request packet of the type shopping sensor requests pck, and wait the response
of this requests in the state wait. Finally, the end state finishes the processing.

6.12 Mixing zone
The mixing zone is represented in the environment by the mixing sensor. It checks which users
are interested in change his pseudonym, avoiding that he is associated with any secondary
profile created by stores, as explained in section 6.5.
The mixing sensor periodically sends shopping sensor requests pck packets of type Mix to
the near users, to response with its mixing rate. The packet shopping mixing pck is received
by the input flow and processed. If the mixing rate is 1, the mixing sensor sends the user
pseudonym to the server, to create a new pseudonym. This request is made sending the
packet shopping sensor requests pck of type New Pseudonym to the server. After receive
the new pseudonym generated by the server in flow 1, the sensor in packet shopping new
pseudonym pck, sends to the user, who wants to join the mix.

6.13 Anonymity measures
Anonymity is the state of being not identifiable within a set of subjects, that is: the anonymity
setPfitzmann & Köhntopp (2001). For the shopping example, the definition given by

143On Modeling of Ubiquitous Computing Environments featuring Privacy

Fig. 14. Users node model.

your privacy.
In addition to the user-node model, there is also a process-model, shown in Figure 15 . There
are two states: start e wait. The state start loads internally the user’s IP adress and the state
wait is responsible for waiting the communications in all flows described above.

Fig. 15. User node model.

6.10 Server-node model
The server-node model is responsible for storing the user’s profile and generate a pseudonym
for this user, as soon as he enters in the shopping. The server-node model has three input
flows and a output flow.

142 Ubiquitous Computing

By flow 0, the server receives the user’s profile from the I/O sensor through the packets
shopping profile pck and it stores in your user list. After store the user, the server
generates a pseudonym, store it in the user registration and sends it to the user by the
I/O sensor in the packet shopping pseudonym pck. The flow 1 is for communications
between the sensors of bookstores with the central server. The bookstore sensor sends to
the server the pseudonym of the user, to locate your personal preferences, privacy policies
are used and checked if the sensor has permission to send an ads to the user. If it has
permission, the server sends the personal preferences and user privacy policies in the packet
shopping service policies of user pck. The flow 2 is for the server receive requests from
mixing sensor to generate new pseudonyms for the shopping clients who wish to participate
in the mixing. In this case, the incoming packet is the shopping sensor requests pck of
type New Pseudonym, and the server sends the new pseudonym to mixing sensor in packet
shopping new pseudonym pck.
As in the user-process, the server process has two states: start and wait. In start state, the
server’s IP variable is loaded and int the state wait, the server waits for packets to establish a
communication with the sensors.

6.11 Sensor-node model of bookstores
The bookstore sensor-node is interested in obtaining the user’s personal information to send
advertising services. Its sensor-node model has two input flows and one output flow.
The sensor-node periodically sends pseudonym request messages, which are the shopping
sensor requests pck packets, to the users who are nearby. The response to this request is
received in the flow 0, in the packet shopping pseudonym pck. This pseudonym is sent to
the server to the sensor obtain the preferences and service policies provided by the user. So this
informations are received by the flow 1, in the packet shopping service policies of user pck.
At receive this packet, the sensor verifies the advertisements that can interest the user and
sends in the packet shopping marketing pck.
The process-model of the bookstore sensor-node is similar to I/O sensor and has four states:
start, send, wait and end. The state start loads the sensor’s IP adress internally. The state
send sends request packet of the type shopping sensor requests pck, and wait the response
of this requests in the state wait. Finally, the end state finishes the processing.

6.12 Mixing zone
The mixing zone is represented in the environment by the mixing sensor. It checks which users
are interested in change his pseudonym, avoiding that he is associated with any secondary
profile created by stores, as explained in section 6.5.
The mixing sensor periodically sends shopping sensor requests pck packets of type Mix to
the near users, to response with its mixing rate. The packet shopping mixing pck is received
by the input flow and processed. If the mixing rate is 1, the mixing sensor sends the user
pseudonym to the server, to create a new pseudonym. This request is made sending the
packet shopping sensor requests pck of type New Pseudonym to the server. After receive
the new pseudonym generated by the server in flow 1, the sensor in packet shopping new
pseudonym pck, sends to the user, who wants to join the mix.

6.13 Anonymity measures
Anonymity is the state of being not identifiable within a set of subjects, that is: the anonymity
setPfitzmann & Köhntopp (2001). For the shopping example, the definition given by

143On Modeling of Ubiquitous Computing Environments featuring Privacy

Nussbaumer (2007) clarifies what is the set of anonymity: the group of people visiting a
mixing zone during the same period. The higher the number, the greater the degree of
anonymity offered. When the anonymity set is reduced to one element, the user is fully
exposed and loses all its anonymity. However, the user can deny the information of his
location to an application until the mixing zone offers a minimum level to anonymity. This
procedure was not implemented in the shopping scenario. According to Toth et al. (2004), the
first studies were aimed to quantify the anonymity level provided, as the size of anonymity
set Berthold et al. (2000). However, this is not a good measure of anonymity, by considering
that the probabilities might not be uniformly distributed.
With the need to measure the degree of anonymity, Serjantov and Danezis Serjantov & Danezis
(2002) introduced the entropy degree as a measure of anonymity. The following model was
presented by them:
Definition 1: Given an attack-model and a finite set of all users Ψ, be r ∈ R a function for an
user (R = sender, address) with respect to a message M. Let U the probability of the user u ∈
Ψ being attacked having a function r with respect to M. With this definition, the measure of
anonymity of the sender and of the receiver can be defined as:
Definition 2: The size S of a probability distribution U of the anonymity r is equal to the
entropy of the distribution. In other words:

S = - ∑Ψ
u=1 pu log2 pu (1)

where pu = U(u, r).
This type of entropy is known as simple entropy Toth et al. (2004). In Diaz et al. (2002) was
followed a different approach, where only the anonymity of the sender is considered. A
represents the set of anonymity of a certain message M, i.e. A = { u | (u ∈ Ψ) ∧ (pu > 0)
}. In addition, let N the anonymity set size, i.e. N = |A |.
Definition 3: The anonymity degree provided by the system is defined by:

d = H(X)
HM

(2)

Where H(X) = S e HM = log2N. For a particular case with one user, d is assumed to be zero.
This measure is known as normalized entropy. In both cases, zero means no anonymity, ie,
the attacker knows 100% the sender of the message.
In the simple case of entropy, the maximum anonymity is achieved when S = log2N and in
normalized when d = 1 Toth et al. (2004). In this chapter will be used the normalized entropy
metric, since the major interest is in the anonymity of the sender, i.e. of the shopping user and
not the other elements.

6.14 Scenarios for simulation
To obtain the maximum degree of anonymity of the shopping were considered 3 scenarios:
one with 50 clients, one with 100 customers and, finally, a scenario with 300 customers. This
represents the number of users that may be present in the mixing zone, but not necessarily
want to join the mix. For each scenario, some situations were simulated, by varying the
number of users who wish to join the mix, as shown in Table 1.
The attack-model for these scenarios is similar to that presented by Diaz et al. (2002), for the
Onion Routing case. In this model, N is the size of the anonymity set, and the maximum
entropy for this N users is:

144 Ubiquitous Computing

Users in mix zone Users participating in the mix

1
2

50 10
25
40
50
1
2

100 20
50
80

100
1
2

300 60
150
240
300

Table 1. Situations for simulation.

HM = log2N (3)

In the case of shopping, N is the number of users that are in the mixing zone of shopping, not
even having the desire to participate in the mixing zone. In this case, the attack is characterized
as a sensor of the stores trying to associate the identity of a client with a secondary profile for
this. The set that contains only users interested in participating in the mix is called set A,
where 1 ≤ A ≤ N. In this case, the probability distributions for the users A are uniform:

pi = 1
A , 1 ≤ i ≤ A; pi = 0, A + 1 ≤ i ≤ N (4)

So that, the entropy and the degree of anonymity are defined as:

H(X) = log2A, d = H(X)
HM

= log2A
log2N (5)

To apply this attack-model to the presented scenarios, we are considering various sizes for the
set A, as previously shown in Table 1. The degree of anonymity obtained for each scenario is
presented in Table 2.
The results obtained with the simulations of the three scenarios were summarized and
compared in Figure 16. In all situations where there is only one client, there is no guaranteed
anonymity for the client. Even with two users, the degree of anonymity achieved is very low.
In Diaz et al. (2002) is suggested an intuitive value to the minimum degree of anonymity for a
system to provide adequate anonymity. This value is d ≥ 0,8. The situations for the samples
of sets A being approached, which gives a degree of anonymity ≥ 0,8 are the situations where
A ≥ 25, for the scenario where N = 50 users, A ≥ 25, for N = 100 users and A ≥ 150, where
there are 300 users. In addition, the maximum degree of anonymity is obtained when N = A.

145On Modeling of Ubiquitous Computing Environments featuring Privacy

Nussbaumer (2007) clarifies what is the set of anonymity: the group of people visiting a
mixing zone during the same period. The higher the number, the greater the degree of
anonymity offered. When the anonymity set is reduced to one element, the user is fully
exposed and loses all its anonymity. However, the user can deny the information of his
location to an application until the mixing zone offers a minimum level to anonymity. This
procedure was not implemented in the shopping scenario. According to Toth et al. (2004), the
first studies were aimed to quantify the anonymity level provided, as the size of anonymity
set Berthold et al. (2000). However, this is not a good measure of anonymity, by considering
that the probabilities might not be uniformly distributed.
With the need to measure the degree of anonymity, Serjantov and Danezis Serjantov & Danezis
(2002) introduced the entropy degree as a measure of anonymity. The following model was
presented by them:
Definition 1: Given an attack-model and a finite set of all users Ψ, be r ∈ R a function for an
user (R = sender, address) with respect to a message M. Let U the probability of the user u ∈
Ψ being attacked having a function r with respect to M. With this definition, the measure of
anonymity of the sender and of the receiver can be defined as:
Definition 2: The size S of a probability distribution U of the anonymity r is equal to the
entropy of the distribution. In other words:

S = - ∑Ψ
u=1 pu log2 pu (1)

where pu = U(u, r).
This type of entropy is known as simple entropy Toth et al. (2004). In Diaz et al. (2002) was
followed a different approach, where only the anonymity of the sender is considered. A
represents the set of anonymity of a certain message M, i.e. A = { u | (u ∈ Ψ) ∧ (pu > 0)
}. In addition, let N the anonymity set size, i.e. N = |A |.
Definition 3: The anonymity degree provided by the system is defined by:

d = H(X)
HM

(2)

Where H(X) = S e HM = log2N. For a particular case with one user, d is assumed to be zero.
This measure is known as normalized entropy. In both cases, zero means no anonymity, ie,
the attacker knows 100% the sender of the message.
In the simple case of entropy, the maximum anonymity is achieved when S = log2N and in
normalized when d = 1 Toth et al. (2004). In this chapter will be used the normalized entropy
metric, since the major interest is in the anonymity of the sender, i.e. of the shopping user and
not the other elements.

6.14 Scenarios for simulation
To obtain the maximum degree of anonymity of the shopping were considered 3 scenarios:
one with 50 clients, one with 100 customers and, finally, a scenario with 300 customers. This
represents the number of users that may be present in the mixing zone, but not necessarily
want to join the mix. For each scenario, some situations were simulated, by varying the
number of users who wish to join the mix, as shown in Table 1.
The attack-model for these scenarios is similar to that presented by Diaz et al. (2002), for the
Onion Routing case. In this model, N is the size of the anonymity set, and the maximum
entropy for this N users is:

144 Ubiquitous Computing

Users in mix zone Users participating in the mix

1
2

50 10
25
40
50
1
2

100 20
50
80

100
1
2

300 60
150
240
300

Table 1. Situations for simulation.

HM = log2N (3)

In the case of shopping, N is the number of users that are in the mixing zone of shopping, not
even having the desire to participate in the mixing zone. In this case, the attack is characterized
as a sensor of the stores trying to associate the identity of a client with a secondary profile for
this. The set that contains only users interested in participating in the mix is called set A,
where 1 ≤ A ≤ N. In this case, the probability distributions for the users A are uniform:

pi = 1
A , 1 ≤ i ≤ A; pi = 0, A + 1 ≤ i ≤ N (4)

So that, the entropy and the degree of anonymity are defined as:

H(X) = log2A, d = H(X)
HM

= log2A
log2N (5)

To apply this attack-model to the presented scenarios, we are considering various sizes for the
set A, as previously shown in Table 1. The degree of anonymity obtained for each scenario is
presented in Table 2.
The results obtained with the simulations of the three scenarios were summarized and
compared in Figure 16. In all situations where there is only one client, there is no guaranteed
anonymity for the client. Even with two users, the degree of anonymity achieved is very low.
In Diaz et al. (2002) is suggested an intuitive value to the minimum degree of anonymity for a
system to provide adequate anonymity. This value is d ≥ 0,8. The situations for the samples
of sets A being approached, which gives a degree of anonymity ≥ 0,8 are the situations where
A ≥ 25, for the scenario where N = 50 users, A ≥ 25, for N = 100 users and A ≥ 150, where
there are 300 users. In addition, the maximum degree of anonymity is obtained when N = A.

145On Modeling of Ubiquitous Computing Environments featuring Privacy

Set N Set A pi log2N log2A d

1 1,0000 5,6439 0,0000 0,0000
2 0,5000 5,6439 1,0000 0,1772

50 10 0,1000 5,6439 3,3219 0,5886
25 0,0400 5,6439 4,6439 0,8228
40 0,0250 5,6439 5,3219 0,9430
50 0,0200 5,6439 5,6439 1,0000
1 1,0000 6,6439 0,0000 0,0000
2 0,5000 6,6439 1,0000 0,1505

100 20 0,0500 6,6439 4,3219 0,6505
50 0,0200 6,6439 5,6439 0,8495
80 0,0125 6,6439 6,3219 0,9515

100 0,0100 6,6439 6,6439 1,0000
1 1,0000 8,2288 0,0000 0,0000
2 0,5000 8,2288 1,0000 0,1215

300 60 0,0167 8,2288 5,9069 0,7178
150 0,0067 8,2288 7,2288 0,8785
240 0,0042 8,2288 7,9069 0,9609
300 0,0033 8,2288 8,2288 1,0000

Table 2. Degree of anonymity obtained for the scenarios

Based on the results presented in Figure 16 , can say that the degree of anonymity of an
environment increases as the number of elements in the set A increases. That is, the more
users want to participate in the mix, harder for an attacker to discover the identity of a user.

Fig. 16. Comparison between the 3 scenarios.

A problem found in metric of calculation of the degree of anonymity is that, when considering
an environment where N = 2 and A = 2, there is d = 1. That means that we obtained the
maximum degree of anonymity for that environment, considering pi = 0, 5. However, in
practice, it is known that N = 2 does not guarantee the anonymity of these two users, even
with A = 2. For this reason, it is important always consider higher values for N and A.
An alternative could be to set a minimum value for the size of A, and the user only accept
participate of the mix when the minimum number of users for the set A is reached.

7. Conclusion

The model developed for dealing with privacy issues in closed ubiquitous computing
environments presents a solution, based on service constraints through user-defined privacy

146 Ubiquitous Computing

policies. This is satisfactory to solve the problems of privacy invasion caused by services
offered in such environments.
The model of architecture and data developed satisfies the requirements, avoiding
unnecessary packet traffic and wasting battery of client devices.
The discussion of privacy issues led to a reflection on which future concerns and precautions
that users and applications should consider for the use of devices and ubiquitous computing
environments.

8. References

Aoyama, T. (2008). A new generation network - beyond ngn, Innovations in NGN: Future
Network and Services. First ITU-T Kaleidoscope Academic Conference pp. 3–10.

Beresford, A. R. (2005). Location privacy in ubiquitous computing, Technical Report
UCAM-CL-TR-612, University of Cambridge, Computer Laboratory.

Beresford, A. R. & Stajano, F. (2004). Mix zones: User privacy in location-aware services,
Pervasive Computing and Communications Workshops, IEEE International Conference on
0: 127–131.

Berthold, O., Federrath, H. & Kpsell, S. (2000). Web mixes: A system for anonymous
and unobservable internet access, Designing Privacy Enhancing Technologies,
Springer-Verlag, pp. 115–129.

Bhaskar, P. & Ahamed, S. I. (2007). Privacy in pervasive computing and open issues, ARES
’07: Proceedings of the The Second International Conference on Availability, Reliability and
Security, IEEE Computer Society, Washington, DC, USA, pp. 147–154.

Campiolo, R. (2005). Aspectos de modelagem de ambientes de computação ubíqua, Master’s thesis,
Universidade Federal de Santa Catarina.

Campiolo, R., Cremer, V. & Sobral, J. B. M. (2007). On modelling for pervasive computing
environments, in Proceedings of 10th International Symposium on Modelling, Analyses
and Simulation of Wireless and Mobile Systems - MSWiM 2007 pp. 3–10.

Cheng, H. S., Zhang, D. & Tan, J. G. (2005). Protection of privacy in pervasive computing
environments, ITCC ’05: Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC’05), Vol. 2, IEEE Computer Society,
Washington, DC, USA, pp. 242–247.

Diaz, C., Seys, S., Claessens, J. & Preneel, B. (2002). Towards measuring anonymity, in
R. Dingledine & P. Syverson (eds), Proceedings of Privacy Enhancing Technologies
Workshop (PET 2002), Springer-Verlag, LNCS 2482, pp. 54–68.

Duke, R., King, P., Rose, G. & Smith, G. (1991). The object-z specification language: Verson 1,
Technical Report 91-1, University of Queensland.

Jiang, X. & Landay, J. A. (2002). Modeling privacy control in context-aware systems, IEEE
Pervasive Computing 1(3): 59–63.

Langheinrich, M. (2001). Privacy by design — principles of privacy-aware ubiquitous systems,
j-LECT-NOTES-COMP-SCI 2201: 273–??

Lederer, S., Dey, A. K. & Mankoff, J. (2002). A conceptual model and a metaphor of everyday
privacy in ubiquitous computing environments, Technical Report UCB/CSD-02-1188,
EECS Department, University of California, Berkeley.
URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2002/5464.html

Myles, G., Friday, A. & Davies, N. (2003). Preserving Privacy in Environments with
Location-Based Applications, IEEE Pervasive Computing 2(1): 56–64.

147On Modeling of Ubiquitous Computing Environments featuring Privacy

Set N Set A pi log2N log2A d

1 1,0000 5,6439 0,0000 0,0000
2 0,5000 5,6439 1,0000 0,1772

50 10 0,1000 5,6439 3,3219 0,5886
25 0,0400 5,6439 4,6439 0,8228
40 0,0250 5,6439 5,3219 0,9430
50 0,0200 5,6439 5,6439 1,0000
1 1,0000 6,6439 0,0000 0,0000
2 0,5000 6,6439 1,0000 0,1505

100 20 0,0500 6,6439 4,3219 0,6505
50 0,0200 6,6439 5,6439 0,8495
80 0,0125 6,6439 6,3219 0,9515

100 0,0100 6,6439 6,6439 1,0000
1 1,0000 8,2288 0,0000 0,0000
2 0,5000 8,2288 1,0000 0,1215

300 60 0,0167 8,2288 5,9069 0,7178
150 0,0067 8,2288 7,2288 0,8785
240 0,0042 8,2288 7,9069 0,9609
300 0,0033 8,2288 8,2288 1,0000

Table 2. Degree of anonymity obtained for the scenarios

Based on the results presented in Figure 16 , can say that the degree of anonymity of an
environment increases as the number of elements in the set A increases. That is, the more
users want to participate in the mix, harder for an attacker to discover the identity of a user.

Fig. 16. Comparison between the 3 scenarios.

A problem found in metric of calculation of the degree of anonymity is that, when considering
an environment where N = 2 and A = 2, there is d = 1. That means that we obtained the
maximum degree of anonymity for that environment, considering pi = 0, 5. However, in
practice, it is known that N = 2 does not guarantee the anonymity of these two users, even
with A = 2. For this reason, it is important always consider higher values for N and A.
An alternative could be to set a minimum value for the size of A, and the user only accept
participate of the mix when the minimum number of users for the set A is reached.

7. Conclusion

The model developed for dealing with privacy issues in closed ubiquitous computing
environments presents a solution, based on service constraints through user-defined privacy

146 Ubiquitous Computing

policies. This is satisfactory to solve the problems of privacy invasion caused by services
offered in such environments.
The model of architecture and data developed satisfies the requirements, avoiding
unnecessary packet traffic and wasting battery of client devices.
The discussion of privacy issues led to a reflection on which future concerns and precautions
that users and applications should consider for the use of devices and ubiquitous computing
environments.

8. References

Aoyama, T. (2008). A new generation network - beyond ngn, Innovations in NGN: Future
Network and Services. First ITU-T Kaleidoscope Academic Conference pp. 3–10.

Beresford, A. R. (2005). Location privacy in ubiquitous computing, Technical Report
UCAM-CL-TR-612, University of Cambridge, Computer Laboratory.

Beresford, A. R. & Stajano, F. (2004). Mix zones: User privacy in location-aware services,
Pervasive Computing and Communications Workshops, IEEE International Conference on
0: 127–131.

Berthold, O., Federrath, H. & Kpsell, S. (2000). Web mixes: A system for anonymous
and unobservable internet access, Designing Privacy Enhancing Technologies,
Springer-Verlag, pp. 115–129.

Bhaskar, P. & Ahamed, S. I. (2007). Privacy in pervasive computing and open issues, ARES
’07: Proceedings of the The Second International Conference on Availability, Reliability and
Security, IEEE Computer Society, Washington, DC, USA, pp. 147–154.

Campiolo, R. (2005). Aspectos de modelagem de ambientes de computação ubíqua, Master’s thesis,
Universidade Federal de Santa Catarina.

Campiolo, R., Cremer, V. & Sobral, J. B. M. (2007). On modelling for pervasive computing
environments, in Proceedings of 10th International Symposium on Modelling, Analyses
and Simulation of Wireless and Mobile Systems - MSWiM 2007 pp. 3–10.

Cheng, H. S., Zhang, D. & Tan, J. G. (2005). Protection of privacy in pervasive computing
environments, ITCC ’05: Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC’05), Vol. 2, IEEE Computer Society,
Washington, DC, USA, pp. 242–247.

Diaz, C., Seys, S., Claessens, J. & Preneel, B. (2002). Towards measuring anonymity, in
R. Dingledine & P. Syverson (eds), Proceedings of Privacy Enhancing Technologies
Workshop (PET 2002), Springer-Verlag, LNCS 2482, pp. 54–68.

Duke, R., King, P., Rose, G. & Smith, G. (1991). The object-z specification language: Verson 1,
Technical Report 91-1, University of Queensland.

Jiang, X. & Landay, J. A. (2002). Modeling privacy control in context-aware systems, IEEE
Pervasive Computing 1(3): 59–63.

Langheinrich, M. (2001). Privacy by design — principles of privacy-aware ubiquitous systems,
j-LECT-NOTES-COMP-SCI 2201: 273–??

Lederer, S., Dey, A. K. & Mankoff, J. (2002). A conceptual model and a metaphor of everyday
privacy in ubiquitous computing environments, Technical Report UCB/CSD-02-1188,
EECS Department, University of California, Berkeley.
URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2002/5464.html

Myles, G., Friday, A. & Davies, N. (2003). Preserving Privacy in Environments with
Location-Based Applications, IEEE Pervasive Computing 2(1): 56–64.

147On Modeling of Ubiquitous Computing Environments featuring Privacy

Nussbaumer, M. (2007). Location privacy.
URL: www.sec.informatik.tu-darmstadt.de/pages/lehre/SS07/sem misc/papers/nussbaumer.pdf

Pfitzmann, A. & Köhntopp, M. (2001). Anonymity, unobservability, and pseudonymity - a
proposal for terminology, Designing Privacy Enhancing Technologies, Springer-Verlag,
pp. 1–9.
URL: http://dx.doi.org/10.1007/3-540-44702-4 1

Serjantov, A. & Danezis, G. (2002). Towards an information theoretic metric for anonymity,
Proceedings of Privacy Enhancing Technologies (PET2002), Springer-Verlag, pp. 41–53.

Spivey, J. M. (1989). The Z Notation : A Reference Manual, Prentice Hall.
Toth, G., Hornak, Z. & Vajda, F. (2004). Measuring anonymity revisited, in S. Liimatainen &

T. Virtanen (eds), Proceedings of the Ninth Nordic Workshop on Secure IT Systems, Espoo,
Finland, pp. 85–90.

Weiser, M. (1993). Some computer science issues in ubiquitous computing, Communications of
the ACM 36(7): 75–84.

Weiser, M., Gold, R. & Brown, J. S. (1999). The origins of ubiquitous computing research at
parc in the late 1980s, IBM Systems Journal 38(4): 693–696.

148 Ubiquitous Computing

Part 3

Integration Middleware

Nussbaumer, M. (2007). Location privacy.
URL: www.sec.informatik.tu-darmstadt.de/pages/lehre/SS07/sem misc/papers/nussbaumer.pdf

Pfitzmann, A. & Köhntopp, M. (2001). Anonymity, unobservability, and pseudonymity - a
proposal for terminology, Designing Privacy Enhancing Technologies, Springer-Verlag,
pp. 1–9.
URL: http://dx.doi.org/10.1007/3-540-44702-4 1

Serjantov, A. & Danezis, G. (2002). Towards an information theoretic metric for anonymity,
Proceedings of Privacy Enhancing Technologies (PET2002), Springer-Verlag, pp. 41–53.

Spivey, J. M. (1989). The Z Notation : A Reference Manual, Prentice Hall.
Toth, G., Hornak, Z. & Vajda, F. (2004). Measuring anonymity revisited, in S. Liimatainen &

T. Virtanen (eds), Proceedings of the Ninth Nordic Workshop on Secure IT Systems, Espoo,
Finland, pp. 85–90.

Weiser, M. (1993). Some computer science issues in ubiquitous computing, Communications of
the ACM 36(7): 75–84.

Weiser, M., Gold, R. & Brown, J. S. (1999). The origins of ubiquitous computing research at
parc in the late 1980s, IBM Systems Journal 38(4): 693–696.

148 Ubiquitous Computing

Part 3

Integration Middleware

0

WComp, a Middleware for Ubiquitous Computing

Nicolas Ferry*, Vincent Hourdin, Stéphane Lavirotte, Gaëtan Rey, Michel
Riveill and Jean-Yves Tigli

I3S/Université de Nice-Sophia-Antipolis
France

1. Introduction

Ubiquitous computing relies on computers present everywhere, at any times and in any
things. Indeed with recent years advance in mobile communication technologies and the
miniaturization of computer hardware, processing units are becoming invisible and a part of
the environment. Middlewares for ubiquitous computing have to manage three main features
specific to their environment: devices’ mobility, devices’ heterogeneity and environment’s
dynamicity. The devices’ mobility, due to motion of users and their associated devices, forbids
to assume that entities are known and will always be available. The second concept, entity’s
heterogeneity, outlines the diversity between devices’ capabilities and functionalities provided
by new smart objects. Finally, the environment high dynamicity illustrates the ubiquitous
world entropy with the appearance and disappearance of devices. Devices used to create
applications are thus unknown before discovering them. Then, ubiquitous computing must
deal with such a dynamic software environment (called software infrastructure afterwards).
As a result, future ubiquitous computing architectures must take into account those three
constraints to solve ubiquitous computing challenges.
Our model of middleware WComp is based on three parts: a software infrastructure, a service
composition architecture, and a compositional adaptation mechanism.
To manage the dynamicity and heterogeneity of entities in the software infrastructure, we
highlight the use of Web Service Oriented Architecture for Device (WSOAD). This will be
discussed in section 2. Ubiquitous applications are then based on a set of Web services for
devices that must interact with each other. Consumers can not edit these services. Therefore,
in order to add new functionalities to the system, an application has to be a composition of
services for devices. Such an application, and thus such a composition, must be modifiable at
runtime.
The second part of the WComp middleware enables us to make such applications by
dynamically composing services from the software infrastructure. To allow reusability of newly
created functionalities, and for scalability purposes, such composition can be encapsulated as
a composite service. This part of the system will be presented in Section 3. Moreover, the
infrastructure of ubiquitous computing applications evolves dynamically led by appearances
and disappearances of objects or devices. The variation of this infrastructure is dynamic due
to arbitrary node mobility, failures or energy constraints. The service composition must be
as relevant as possible according to the underlying software infrastructure. Managing these

*also supported by CSTB (Centre Scientifique et Technique du Bâtiment)

8

0

WComp, a Middleware for Ubiquitous Computing

Nicolas Ferry*, Vincent Hourdin, Stéphane Lavirotte, Gaëtan Rey, Michel
Riveill and Jean-Yves Tigli

I3S/Université de Nice-Sophia-Antipolis
France

1. Introduction

Ubiquitous computing relies on computers present everywhere, at any times and in any
things. Indeed with recent years advance in mobile communication technologies and the
miniaturization of computer hardware, processing units are becoming invisible and a part of
the environment. Middlewares for ubiquitous computing have to manage three main features
specific to their environment: devices’ mobility, devices’ heterogeneity and environment’s
dynamicity. The devices’ mobility, due to motion of users and their associated devices, forbids
to assume that entities are known and will always be available. The second concept, entity’s
heterogeneity, outlines the diversity between devices’ capabilities and functionalities provided
by new smart objects. Finally, the environment high dynamicity illustrates the ubiquitous
world entropy with the appearance and disappearance of devices. Devices used to create
applications are thus unknown before discovering them. Then, ubiquitous computing must
deal with such a dynamic software environment (called software infrastructure afterwards).
As a result, future ubiquitous computing architectures must take into account those three
constraints to solve ubiquitous computing challenges.
Our model of middleware WComp is based on three parts: a software infrastructure, a service
composition architecture, and a compositional adaptation mechanism.
To manage the dynamicity and heterogeneity of entities in the software infrastructure, we
highlight the use of Web Service Oriented Architecture for Device (WSOAD). This will be
discussed in section 2. Ubiquitous applications are then based on a set of Web services for
devices that must interact with each other. Consumers can not edit these services. Therefore,
in order to add new functionalities to the system, an application has to be a composition of
services for devices. Such an application, and thus such a composition, must be modifiable at
runtime.
The second part of the WComp middleware enables us to make such applications by
dynamically composing services from the software infrastructure. To allow reusability of newly
created functionalities, and for scalability purposes, such composition can be encapsulated as
a composite service. This part of the system will be presented in Section 3. Moreover, the
infrastructure of ubiquitous computing applications evolves dynamically led by appearances
and disappearances of objects or devices. The variation of this infrastructure is dynamic due
to arbitrary node mobility, failures or energy constraints. The service composition must be
as relevant as possible according to the underlying software infrastructure. Managing these

*also supported by CSTB (Centre Scientifique et Technique du Bâtiment)

8

compositions musn’t lead to an administrative overhead but must be self-adapted at runtime,
in a transparent way.
The third part of the WComp middleware proposes to address this issue using Aspect of
Assembly (AA). AA is an approach for composition adaptation particularly well-suited to
tune a set of composite services in reaction to a particular variation of the infrastructure or
changing preferences of the users. AA will be introduced in Section 4. Finally in the last
section of the chapter we will present some experimental results about performances of our
composition and adaptation mechanisms.

2. Web services for device infrastructure

According to (MacKenzie et al. (2006)) “Service Oriented Architecture (SOA) is a paradigm
for organizing and utilizing distributed capabilities that may be under the control of different
ownership domains. It provides a uniform means to offer, discover, interact with and
use capabilities to produce desired effects consistent with measurable preconditions and
expectations.”. They were originally used to design distributed applications and to deploy
them easily. SOA allows to build dynamic applications using a set of basic entities called
services. A service is defined as the way to connect consumers and providers capabilities.
SOA are a way to manage a set of independent software applications and to handle the
infrastructure of a set of interrelated services. Each of them being accessible through
standardized interfaces and protocols. They define an interaction between software
entities as an exchange of messages between service consumers (clients) and service
providers (Papazoglou (2003)).
A third entity exists: the registry. Thanks to the registry the system is able to discover available
services providers and consumers (FIG. 2) (Champion et al. (2002)). Generally, it stores the
service description, and not only a reference to the provider.

Fig. 1. Service oriented architecture

Here are services main features (Breivold & Larsson (2007); MacKenzie et al. (2006)) and
commonalities with ubiquitous computing devices that lead us to the use of SOA as software
infrastructure for ubiquitous applications:

• Encapsulation : any functionality can be encapsulated in a service and thus be part of
available services creating applications. All entities of the system represented by a similar
standard of service will be accessible through the same infrastructure. SOA thus provides a
logical consistency. Devices also provide a set of functionalities; it is possible to encapsulate
them in services at the functional level.

• Loose coupling and autonomy : services have no direct dependencies between them. The
absence of a service does not prevent others from fulfilling their functions. Services are
independent and control their internal logic without any external intervention. This is also
a property of devices, for instance a light does not require shutters to operate.

152 Ubiquitous Computing

• Contracts and abstraction : services describe the functionalities they offer using contracts.
Services must comply with these contracts. It is the only way for consumers to
obtain information about their functionality, as well as their non-functional concerns and
meta-data. Services are black boxes, only their contract is known. The way they are
implemented is unknown and cannot be edited. This is also true for devices. Reuse
of services is facilitated by the fact that service providers are not designed for a specific
consumer. At launch time, service providers publish their contracts into the registry to
become an available entity of the system.

• Dynamic discovery : services are discovered according to some criteria and can be replaced
during runtime. Service consumers send a request to the registry to find providers in line
with their criteria. They get the provider’s contract, and a reference to contact it, generally
an URL.

• Composability : services can be coordinated and composed to create new composite
applications or services. Such a composition is not involved in services, but is organized
by an external entity. The content of the composite service may be changed at runtime and
the black box abstraction is not fulfilled anymore. Composite services can be seen as gray
boxes.

All these properties, common to services and devices, and their adoption in other
works (Bottaro et al. (2007); Chakraborty et al. (2005); Vallée et al. (2005)), lead us to consider
the use of SOA as infrastructure for ubiquitous computing. In such a case, devices and
information systems are represented by services. Applications are compositions of these
services. They are continuously observing changes of the infrastructure (appearance or
disappearance of services) and react to them if needed FIG. 2.

Fig. 2. Using SOA to represent the software infrastructure in ubiquitous computing

To validate the use of services as an infrastructure for ubiquitous computing, we will
now investigate if they allow to consider the properties described in the introduction:
heterogeneity, reactivity and frequent disconnections due to mobility. Since their creation,
SOA have evolved in several directions: Web, information systems, mobile and ubiquitous
computing. Despite these different directions, a new type of services oriented architecture,
including all these evolutions is born: Web Services Oriented Architecture for Devices
(WSOAD).

153WComp, a Middleware for Ubiquitous Computing

compositions musn’t lead to an administrative overhead but must be self-adapted at runtime,
in a transparent way.
The third part of the WComp middleware proposes to address this issue using Aspect of
Assembly (AA). AA is an approach for composition adaptation particularly well-suited to
tune a set of composite services in reaction to a particular variation of the infrastructure or
changing preferences of the users. AA will be introduced in Section 4. Finally in the last
section of the chapter we will present some experimental results about performances of our
composition and adaptation mechanisms.

2. Web services for device infrastructure

According to (MacKenzie et al. (2006)) “Service Oriented Architecture (SOA) is a paradigm
for organizing and utilizing distributed capabilities that may be under the control of different
ownership domains. It provides a uniform means to offer, discover, interact with and
use capabilities to produce desired effects consistent with measurable preconditions and
expectations.”. They were originally used to design distributed applications and to deploy
them easily. SOA allows to build dynamic applications using a set of basic entities called
services. A service is defined as the way to connect consumers and providers capabilities.
SOA are a way to manage a set of independent software applications and to handle the
infrastructure of a set of interrelated services. Each of them being accessible through
standardized interfaces and protocols. They define an interaction between software
entities as an exchange of messages between service consumers (clients) and service
providers (Papazoglou (2003)).
A third entity exists: the registry. Thanks to the registry the system is able to discover available
services providers and consumers (FIG. 2) (Champion et al. (2002)). Generally, it stores the
service description, and not only a reference to the provider.

Fig. 1. Service oriented architecture

Here are services main features (Breivold & Larsson (2007); MacKenzie et al. (2006)) and
commonalities with ubiquitous computing devices that lead us to the use of SOA as software
infrastructure for ubiquitous applications:

• Encapsulation : any functionality can be encapsulated in a service and thus be part of
available services creating applications. All entities of the system represented by a similar
standard of service will be accessible through the same infrastructure. SOA thus provides a
logical consistency. Devices also provide a set of functionalities; it is possible to encapsulate
them in services at the functional level.

• Loose coupling and autonomy : services have no direct dependencies between them. The
absence of a service does not prevent others from fulfilling their functions. Services are
independent and control their internal logic without any external intervention. This is also
a property of devices, for instance a light does not require shutters to operate.

152 Ubiquitous Computing

• Contracts and abstraction : services describe the functionalities they offer using contracts.
Services must comply with these contracts. It is the only way for consumers to
obtain information about their functionality, as well as their non-functional concerns and
meta-data. Services are black boxes, only their contract is known. The way they are
implemented is unknown and cannot be edited. This is also true for devices. Reuse
of services is facilitated by the fact that service providers are not designed for a specific
consumer. At launch time, service providers publish their contracts into the registry to
become an available entity of the system.

• Dynamic discovery: services are discovered according to some criteria and can be replaced
during runtime. Service consumers send a request to the registry to find providers in line
with their criteria. They get the provider’s contract, and a reference to contact it, generally
an URL.

• Composability : services can be coordinated and composed to create new composite
applications or services. Such a composition is not involved in services, but is organized
by an external entity. The content of the composite service may be changed at runtime and
the black box abstraction is not fulfilled anymore. Composite services can be seen as gray
boxes.

All these properties, common to services and devices, and their adoption in other
works (Bottaro et al. (2007); Chakraborty et al. (2005); Vallée et al. (2005)), lead us to consider
the use of SOA as infrastructure for ubiquitous computing. In such a case, devices and
information systems are represented by services. Applications are compositions of these
services. They are continuously observing changes of the infrastructure (appearance or
disappearance of services) and react to them if needed FIG. 2.

Fig. 2. Using SOA to represent the software infrastructure in ubiquitous computing

To validate the use of services as an infrastructure for ubiquitous computing, we will
now investigate if they allow to consider the properties described in the introduction:
heterogeneity, reactivity and frequent disconnections due to mobility. Since their creation,
SOA have evolved in several directions: Web, information systems, mobile and ubiquitous
computing. Despite these different directions, a new type of services oriented architecture,
including all these evolutions is born: Web Services Oriented Architecture for Devices
(WSOAD).

153WComp, a Middleware for Ubiquitous Computing

2.1 Interoperability
In classical SOA, the choice of a programming language, a data representation, or a
communication protocol should be done by designers of consumers and producers jointly
in order to be compatible. To partially resolve the problem, distributed applications were
usually designed by a same working group. But two kinds of interoperability must be
guaranteed. First, the interoperability of platforms, in which all entities that want to provide
a service must be based on a virtual machine. This is the case of JINI (Arnold et al. (1999))
which is Java-based. The second type of interoperability is at the level of communication
protocols. This is proposed by CORBA (Vinoski & Inc (1997)) or Web services. Using Web
services (Champion et al. (2002)), designers of providers do not know how their service will
be used. They will probably use some hardware platforms and languages that are different
from those of future consumers.

Fig. 3. Web services oriented architecture

From the perspective of the use for devices infrastructures, Web services standards provide
a great benefit to handle their heterogeneity. Then, interoperability, as provided by Web
services, is an essential feature for ubiquitous computing.
Web technologies have brought to SOA interoperability at several levels. WSOA allows to create
applications based on services executing with heterogeneous programming languages, and on various
hardware architectures. This evolution of services was required in order to use SOA as infrastructure
for ubiquitous computing, because of the heterogeneity of involved devices or applications.

2.2 Evented communications
Mobile computing applications are reactive. Frequent disconnections must be addressed
promptly. Indeed, because of battery limitations, programs have to be effective and use
eventing rather than polling. Moreover, human-machine interactions must be as fast as
possible. Processing capabilities of mobile devices are reduced, in terms of processing
time, memory and duration of use, because of the battery power. Processes should be as
effective and relevant as possible. Using systems based on queue or complex mechanism of
publish/subscribe is hardly suitable.
Services for devices (Hourdin et al. (2006)), which are SOAD providers, are lightweight services
using evented communications. Evented communications enable applications based on
devices an effective use of hardware interruptions. Moreover, they provide loose coupling
between services. As an example, considering a smart switch, when activated, a hardware
interruption is raised. Thanks to events, a notification will be immediately sent to consumers.
The dynamics and efficiency of the application are then maximal. Without the use of events,
the switch should keep a state variable up to date, until consumers request its value. Since

154 Ubiquitous Computing

these calls are done periodically, there is a risk of missing a change of state if many occur
before the end of the period.
Evented communications add to classical services the dynamicity required for interactions between
devices that may be involved into some ubiquitous systems.

2.3 Appearance and disappearance
As we have seen previously, in the field of ubiquitous computing, the infrastructure of
an application is highly variable due to node mobility. Users’ mobility, and then devices’
mobility, must lead to frequent disconnections and network changes. The topology of such
infrastructures cannot be known a priori. Moreover, in a mobile network, we cannot know in
advance the address of service registries, or even assume that one exists. To build applications
based on these entities, a middleware must know the entities that are in this infrastructure.
SOAD proposes to address this issue.
When a service provider enters or leaves a network, it broadcasts a notification across the
network. Those appearances or disappearances by announces are asynchronous, and provide
the property of dynamicity to the software infrastructure. If a provider is disconnected
abruptly, or undergo a programming error, the announcement of their disappearance will
not be sent. To overcome these problems, providers use a lease mechanism which involves
periodic notifications of their presence.
Thanks to these mechanisms of announcements, network entities are then able to know the entities in
their network dynamically and to see them appear and disappear. This mechanism makes sense when
coupled with a decentralized dynamic mechanism of discovery.

2.4 Decentralized discovery
Another evolution of SOA provided by SOAD impacts the discovery mechanism. This
evolution aims to enable considering network, consumers and providers unknown in
advance. The entities that will be present to create an application are not known and must
be discovered dynamically.
When a registry is used, consumers send a request based on some criteria (a service type, a
name or some more complex expressions (Hourdin et al. (2006))). Some architectures provide
a second type of interaction between registries and consumers. Consumers can subscribe to an
entry on the registry in order to be notified when a relevant provider (according to the entry) is
registred (Bustamante et al. (2002)). When consumers get a reference to the provider, generally
a URL, they perform a query to get the service contract. Then, they will be able to interact
with the service at a functional level. This contract describes the technical characteristics of
the service. Thanks to the interpretation of this contract the service can be discovered.
Then, mechanisms of decentralized search emerged in industry standards (SLP (Guttman
(1999)), Jini (Arnold et al. (1999)), Bluetooth SDP 1, Salutation 2, Bonjour 3) and in many
research projects (Chen et al. (2000); Huang et al. (2002); Preuß (2003); Sedov et al. (2003);
Ververidis & Polyzos (2008); Zhu et al. (2005)). They allow consumers to find providers
without using a centralized registry. In fact, the search mechanism is introduced into
providers and consumers so that they communicate directly with each other. Then, the
discovery phase uses the mechanisms of appearance / disappearance previously described.

1 Bluetooth Service Discovery Protocol, in Specification of the Bluetooth System. Core, version 1.1. 2001.
2 the Salutation Consortium no longer exists.
3 Bonjour is used in Mac OS X to discover printers and to share data.

155WComp, a Middleware for Ubiquitous Computing

2.1 Interoperability
In classical SOA, the choice of a programming language, a data representation, or a
communication protocol should be done by designers of consumers and producers jointly
in order to be compatible. To partially resolve the problem, distributed applications were
usually designed by a same working group. But two kinds of interoperability must be
guaranteed. First, the interoperability of platforms, in which all entities that want to provide
a service must be based on a virtual machine. This is the case of JINI (Arnold et al. (1999))
which is Java-based. The second type of interoperability is at the level of communication
protocols. This is proposed by CORBA (Vinoski & Inc (1997)) or Web services. Using Web
services (Champion et al. (2002)), designers of providers do not know how their service will
be used. They will probably use some hardware platforms and languages that are different
from those of future consumers.

Fig. 3. Web services oriented architecture

From the perspective of the use for devices infrastructures, Web services standards provide
a great benefit to handle their heterogeneity. Then, interoperability, as provided by Web
services, is an essential feature for ubiquitous computing.
Web technologies have brought to SOA interoperability at several levels. WSOA allows to create
applications based on services executing with heterogeneous programming languages, and on various
hardware architectures. This evolution of services was required in order to use SOA as infrastructure
for ubiquitous computing, because of the heterogeneity of involved devices or applications.

2.2 Evented communications
Mobile computing applications are reactive. Frequent disconnections must be addressed
promptly. Indeed, because of battery limitations, programs have to be effective and use
eventing rather than polling. Moreover, human-machine interactions must be as fast as
possible. Processing capabilities of mobile devices are reduced, in terms of processing
time, memory and duration of use, because of the battery power. Processes should be as
effective and relevant as possible. Using systems based on queue or complex mechanism of
publish/subscribe is hardly suitable.
Services for devices (Hourdin et al. (2006)), which are SOAD providers, are lightweight services
using evented communications. Evented communications enable applications based on
devices an effective use of hardware interruptions. Moreover, they provide loose coupling
between services. As an example, considering a smart switch, when activated, a hardware
interruption is raised. Thanks to events, a notification will be immediately sent to consumers.
The dynamics and efficiency of the application are then maximal. Without the use of events,
the switch should keep a state variable up to date, until consumers request its value. Since

154 Ubiquitous Computing

these calls are done periodically, there is a risk of missing a change of state if many occur
before the end of the period.
Evented communications add to classical services the dynamicity required for interactions between
devices that may be involved into some ubiquitous systems.

2.3 Appearance and disappearance
As we have seen previously, in the field of ubiquitous computing, the infrastructure of
an application is highly variable due to node mobility. Users’ mobility, and then devices’
mobility, must lead to frequent disconnections and network changes. The topology of such
infrastructures cannot be known a priori. Moreover, in a mobile network, we cannot know in
advance the address of service registries, or even assume that one exists. To build applications
based on these entities, a middleware must know the entities that are in this infrastructure.
SOAD proposes to address this issue.
When a service provider enters or leaves a network, it broadcasts a notification across the
network. Those appearances or disappearances by announces are asynchronous, and provide
the property of dynamicity to the software infrastructure. If a provider is disconnected
abruptly, or undergo a programming error, the announcement of their disappearance will
not be sent. To overcome these problems, providers use a lease mechanism which involves
periodic notifications of their presence.
Thanks to these mechanisms of announcements, network entities are then able to know the entities in
their network dynamically and to see them appear and disappear. This mechanism makes sense when
coupled with a decentralized dynamic mechanism of discovery.

2.4 Decentralized discovery
Another evolution of SOA provided by SOAD impacts the discovery mechanism. This
evolution aims to enable considering network, consumers and providers unknown in
advance. The entities that will be present to create an application are not known and must
be discovered dynamically.
When a registry is used, consumers send a request based on some criteria (a service type, a
name or some more complex expressions (Hourdin et al. (2006))). Some architectures provide
a second type of interaction between registries and consumers. Consumers can subscribe to an
entry on the registry in order to be notified when a relevant provider (according to the entry) is
registred (Bustamante et al. (2002)). When consumers get a reference to the provider, generally
a URL, they perform a query to get the service contract. Then, they will be able to interact
with the service at a functional level. This contract describes the technical characteristics of
the service. Thanks to the interpretation of this contract the service can be discovered.
Then, mechanisms of decentralized search emerged in industry standards (SLP (Guttman
(1999)), Jini (Arnold et al. (1999)), Bluetooth SDP 1, Salutation 2, Bonjour 3) and in many
research projects (Chen et al. (2000); Huang et al. (2002); Preuß (2003); Sedov et al. (2003);
Ververidis & Polyzos (2008); Zhu et al. (2005)). They allow consumers to find providers
without using a centralized registry. In fact, the search mechanism is introduced into
providers and consumers so that they communicate directly with each other. Then, the
discovery phase uses the mechanisms of appearance / disappearance previously described.

1 Bluetooth Service Discovery Protocol, in Specification of the Bluetooth System. Core, version 1.1. 2001.
2 the Salutation Consortium no longer exists.
3 Bonjour is used in Mac OS X to discover printers and to share data.

155WComp, a Middleware for Ubiquitous Computing

This mode is centered on consumers. As in architectures using services registries, consumers
can process a search request, but the request is broadcasted across the network.
In the figure (FIG. 4), the dotted lines represent communications by broadcasting, while those
in solid lines are point to point ones.

Fig. 4. Dynamic decentralized discovery : discovery and search protocols

However, for some efficiency or safety issues, various protocols (SLP, Jini) use some
broadcasting mechanism to discover a service registry. In mobile environments, wireless
communications are often expensive in term of energy consumption. A registry allows
consumers to consider a single contact and then send point to point request. They are
considered as mandatory to scale to large networks (Ververidis & Polyzos (2008)). Such
a registry built its database from announces of appearance and disappearance of service
providers.
Discovery is the first step in creating applications from a service infrastructure. In ubiquitous
computing, it is especially the case because the environments in which they are created are not known a
priori. Dynamic discovery coupled with decentralized mechanisms of appearance/disappearance allows
to discover services without knowing them a priori and without relying on a static entity.

2.5 Web services for devices oriented architecture (WSOAD)
We have seen the major evolutions of classical SOA:
• Web Service Oriented Architecture: the use of web technologies addresses the issue of

interoperability between services (2.1).
• Service Oriented Architecture for Device: decentralized discovery (2.4) and

appearance/disappearance (2.3) mechanisms allow to discover services in mobile
environment that are not known a priori. Evented communications (2.2) introduce some
dynamic interactions between consumers and providers. Moreover, it adds a loose
coupling between services.

WSOAD (Web Service Oriented Architecture for Device) is born of the combination of these
evolutions. They benefit from all the advantages of SOAD, on which is added interoperability
from WSOA. Currently there are two implementations of WSOAD: UPnP4 and DPWS 5.

4 Universal Plug and Play
5 Devices Profile for Web Services

156 Ubiquitous Computing

WSOAD provides the properties needed for software infrastructures of ubiquitous systems.
Since the code of these entities is not editable, to create some new ubiquitous applications
we must enable interactions between services. We must compose them together. There are
two majors types of service composition: orchestration and choreography (Singh & Huhns
(2005)). Orchestration is based on a centralized entity. This entity performs all the methods
calls on the various services of the application by relaying their messages. On the other hand,
choreography consists in a decentralized approach. Indeed, the choreography implies that
services are able to organize themselves independently to communicate with each other. It is
more complex to implement. In fact it implies that each service knows each other. Moreover,
any adaptation mechanisms must then be embedded in each service.
Thus orchestration seems more suited to ubiquitous computing, since the frequent changes in
the infrastructure would be complex to manage in each services (Cardoso & Issarny (2007)).
The orchestration of services is usually described by defining workflows or abstract processes,
such as BPEL (Business Process Execution Language). In the next section, we will present
more in detail how to achieve such compositions in the field of ubiquitous computing.

3. Dynamic service composition

Ubiquitous applications are based on a set of Web services for devices that interact with
each other. These services are non-editable software entities. Therefore, an application
is a composition of services for devices that has to be adapted at runtime because of
the dynamicity of the software infrastructure. If services propose to address the issue of
interoperability, components offer high dynamicity and reusability. As explained in (Brønsted
et al. (2007)): ‘’The ability to seamless compose services from various devices in a more or less
ad-hoc manner is a frequently emphasized feature of ubiquitous computing.‘’.
They are created thanks to some components factories into containers. Containers provide
non-functional properties to components. Components factories define the type of component
to be instantiated. They can be instantiated and manipulated easily by a developer.
Conversely, services on devices are fixed and sustained. However, services could be
deployed on nodes of a controlled network, but they would not provide the same benefits of
dynamicity. This is due to interface connections and because services are stateless and cannot
be instantiated by the developer. Therefore, we base ourselves on services to communicate
with various entities in the environment, devices included, and on components for their
adaptation capability.
To address this issue of dynamicity, the proposed architecture is based on two paradigms:

• Events: they are taking place in the model as well as at the services level, with Web
services for devices for example, than in lightweight assemblies of components. Their
advantages are twofold: they promote reactivity of systems, increase the loose coupling
between entities, and thus dynamicity of applications.

• Lightweight components assemblies : composite Web services are created from a dynamic
assembly of black box components, executing in a local container, which doesn’t provide
mandatory non-functional services. Dynamicity of applications is then provided, and
reusability is increased.

LCA (Lightweight Component Architecture) (Tigli et al. (2009a)) thus defines a compositional
architecture model based on events, to design lightweight components assemblies, and
increment the cooperation graph of services and applications. The environment consists of
mobile users interacting with the world or other users with wearable or mobile devices.

157WComp, a Middleware for Ubiquitous Computing

This mode is centered on consumers. As in architectures using services registries, consumers
can process a search request, but the request is broadcasted across the network.
In the figure (FIG. 4), the dotted lines represent communications by broadcasting, while those
in solid lines are point to point ones.

Fig. 4. Dynamic decentralized discovery : discovery and search protocols

However, for some efficiency or safety issues, various protocols (SLP, Jini) use some
broadcasting mechanism to discover a service registry. In mobile environments, wireless
communications are often expensive in term of energy consumption. A registry allows
consumers to consider a single contact and then send point to point request. They are
considered as mandatory to scale to large networks (Ververidis & Polyzos (2008)). Such
a registry built its database from announces of appearance and disappearance of service
providers.
Discovery is the first step in creating applications from a service infrastructure. In ubiquitous
computing, it is especially the case because the environments in which they are created are not known a
priori. Dynamic discovery coupled with decentralized mechanisms of appearance/disappearance allows
to discover services without knowing them a priori and without relying on a static entity.

2.5 Web services for devices oriented architecture (WSOAD)
We have seen the major evolutions of classical SOA:
• Web Service Oriented Architecture: the use of web technologies addresses the issue of

interoperability between services (2.1).
• Service Oriented Architecture for Device: decentralized discovery (2.4) and

appearance/disappearance (2.3) mechanisms allow to discover services in mobile
environment that are not known a priori. Evented communications (2.2) introduce some
dynamic interactions between consumers and providers. Moreover, it adds a loose
coupling between services.

WSOAD (Web Service Oriented Architecture for Device) is born of the combination of these
evolutions. They benefit from all the advantages of SOAD, on which is added interoperability
from WSOA. Currently there are two implementations of WSOAD: UPnP4 and DPWS 5.

4 Universal Plug and Play
5 Devices Profile for Web Services

156 Ubiquitous Computing

WSOAD provides the properties needed for software infrastructures of ubiquitous systems.
Since the code of these entities is not editable, to create some new ubiquitous applications
we must enable interactions between services. We must compose them together. There are
two majors types of service composition: orchestration and choreography (Singh & Huhns
(2005)). Orchestration is based on a centralized entity. This entity performs all the methods
calls on the various services of the application by relaying their messages. On the other hand,
choreography consists in a decentralized approach. Indeed, the choreography implies that
services are able to organize themselves independently to communicate with each other. It is
more complex to implement. In fact it implies that each service knows each other. Moreover,
any adaptation mechanisms must then be embedded in each service.
Thus orchestration seems more suited to ubiquitous computing, since the frequent changes in
the infrastructure would be complex to manage in each services (Cardoso & Issarny (2007)).
The orchestration of services is usually described by defining workflows or abstract processes,
such as BPEL (Business Process Execution Language). In the next section, we will present
more in detail how to achieve such compositions in the field of ubiquitous computing.

3. Dynamic service composition

Ubiquitous applications are based on a set of Web services for devices that interact with
each other. These services are non-editable software entities. Therefore, an application
is a composition of services for devices that has to be adapted at runtime because of
the dynamicity of the software infrastructure. If services propose to address the issue of
interoperability, components offer high dynamicity and reusability. As explained in (Brønsted
et al. (2007)): ‘’The ability to seamless compose services from various devices in a more or less
ad-hoc manner is a frequently emphasized feature of ubiquitous computing.‘’.
They are created thanks to some components factories into containers. Containers provide
non-functional properties to components. Components factories define the type of component
to be instantiated. They can be instantiated and manipulated easily by a developer.
Conversely, services on devices are fixed and sustained. However, services could be
deployed on nodes of a controlled network, but they would not provide the same benefits of
dynamicity. This is due to interface connections and because services are stateless and cannot
be instantiated by the developer. Therefore, we base ourselves on services to communicate
with various entities in the environment, devices included, and on components for their
adaptation capability.
To address this issue of dynamicity, the proposed architecture is based on two paradigms:

• Events: they are taking place in the model as well as at the services level, with Web
services for devices for example, than in lightweight assemblies of components. Their
advantages are twofold: they promote reactivity of systems, increase the loose coupling
between entities, and thus dynamicity of applications.

• Lightweight components assemblies : composite Web services are created from a dynamic
assembly of black box components, executing in a local container, which doesn’t provide
mandatory non-functional services. Dynamicity of applications is then provided, and
reusability is increased.

LCA (Lightweight Component Architecture) (Tigli et al. (2009a)) thus defines a compositional
architecture model based on events, to design lightweight components assemblies, and
increment the cooperation graph of services and applications. The environment consists of
mobile users interacting with the world or other users with wearable or mobile devices.

157WComp, a Middleware for Ubiquitous Computing

We see them as some services momentarily available in the infrastructure. Components
assemblies are a suitable way to orchestrate them.

3.1 Web service for device composition : LCA
The component model LCA is a model derived from Beans (Englander (1997)), adapted to
other programming languages, with concepts of input, output ports and properties.
These components are called ‘’light‘’ for several reasons. The first is that they execute
in the same memory addressing space, and in the same process (Clarke et al. (2001)), so
their interactions are reduced to the simplest and the more efficient, the function call. The
second reason, which stems from the first, is that they don’t embed non-functional code
for middleware or other non-mandatory technical service in this local environment. Their
memory footprint is then reduced and they can be instantiated and destroyed quickly (Tigli
et al. (2009b)). A container is not limited to one type of components but may contain all
components of an application. To finish, they don’t contain any reference between them at
design-time, and respect black box and late-binding concepts. The dynamicity of the model
is thus maximal, since they use events to communicate between them, components are fully
decoupled, and highly reactive.

Fig. 5. Composing Web services for devices using lightweight components assemblies based
on evented communications

The only non-functional code present in the components event management and properties
accessing. Higher level programming languages define these operations; component code is
then a simple object, like JavaBeans or .NET components, not overloaded with code injection
for any purpose. The container does not provide technical services easing the programmer
work, but consequently allows the creation of components with various requirements, like
components needing to access hardware and thus low-level functions. Adding non-functional
properties, like security, journaling, or persistence of messages can be made by adding
components in the assembly, guaranteeing scalability of the model.
As described in the LCA model (Fig. 3), components have an interface, defined by the
component’s type. This interface is a set of input ports (methods), and output ports (events),
each one being typed by its parameters, and having a unique identifier. Interactions between
components are bindings. They link an output port of a component to one or more input port
of components. Ports being explicit, no code has to be generated, nor studied by introspection
to know what to modify in components to change the target of a binding at run-time. When an
event is emitted, the control flow is passed to recipients in an undefined order, but this can be

158 Ubiquitous Computing

fixed adding sequence components. When limiting to unique bindings, and using sequence
components, the control flow managing the application is fully deterministic. Not having
indirections, due to technical services of the framework, gives a full control on control flow,
and eases their debugging.

package WComp LCA[]

Container

ComponentInterface

+metaData

ComponentInstance

+instanceId
+properties
-privateEnv

ComponentFactory

+name

+createInstance()
+deleteInstance()
+getInstances()
+getInterface()
+methodImpl()

Container

Repository

+loadType()
+unloadType()

+Path

Input/Method

Output/Event

Parameter

+name : String
+type : type

LinkFactory

+createLink()
+deleteLink()
+getLinks()

Link

+name : String

port

+name

links 0..*0..*

repository

0..*

1..*

componentTypes 0..*0..*

describes
0..*1

linkImplementation

0..*2..*

outputPorts

0..*

0..*

interface

1

1

repositories

1..*

0..*

parameters

0..*

1..*

inputPort

1

0..*

Fig. 6. LCA meta-model: lightweight components

When a service is discovered, a specific component, called proxy component, is generated
from the description (contract) of the services. Then, the component type will be loaded and
instantiated in order to be a part of the component assembly. Proxy components will enable
communication with services of the environment.

Composing Web services for devices using LCA, the lightweight components model, allows to
dynamically create new applications from services that are available in a software infrastructure.
However, newly created functionalities are only available locally creating a specific application. It
is then necessary to add reusability to the model, and to export the new functionalities created by a
component assembly as a new service for device in the infrastructure.

3.2 Distributed composition: SLCA
Multi-paradigms systems have emerged, like new SOA 2.0, which use services and events, or
SCA (Service Component Architecture) (Chappell (2007)), dedicated to service composition
or iPOJO (Escoffier & Hall (2007)).
SCA defines a component and service architecture, using components to manipulate services
orchestrations, and create composite services.
SLCA (Service Lightweight Component Architecture) (Hourdin et al. (2008)), is a model of
architecture for service composition based on an assembly of lightweight components,
inspired by SCA. The SLCA model relies on a software and hardware execution environment
evolving dynamically. We define this environment as a set of resources, which are all
software/hardware entities that undergo appearing or vanishing from the infrastructure.
It’s not the application that drives this process. SLCA is based on a Web service for
device infrastructure using events, and dynamically discoverable in a distributed way. They

159WComp, a Middleware for Ubiquitous Computing

We see them as some services momentarily available in the infrastructure. Components
assemblies are a suitable way to orchestrate them.

3.1 Web service for device composition : LCA
The component model LCA is a model derived from Beans (Englander (1997)), adapted to
other programming languages, with concepts of input, output ports and properties.
These components are called ‘’light‘’ for several reasons. The first is that they execute
in the same memory addressing space, and in the same process (Clarke et al. (2001)), so
their interactions are reduced to the simplest and the more efficient, the function call. The
second reason, which stems from the first, is that they don’t embed non-functional code
for middleware or other non-mandatory technical service in this local environment. Their
memory footprint is then reduced and they can be instantiated and destroyed quickly (Tigli
et al. (2009b)). A container is not limited to one type of components but may contain all
components of an application. To finish, they don’t contain any reference between them at
design-time, and respect black box and late-binding concepts. The dynamicity of the model
is thus maximal, since they use events to communicate between them, components are fully
decoupled, and highly reactive.

Fig. 5. Composing Web services for devices using lightweight components assemblies based
on evented communications

The only non-functional code present in the components event management and properties
accessing. Higher level programming languages define these operations; component code is
then a simple object, like JavaBeans or .NET components, not overloaded with code injection
for any purpose. The container does not provide technical services easing the programmer
work, but consequently allows the creation of components with various requirements, like
components needing to access hardware and thus low-level functions. Adding non-functional
properties, like security, journaling, or persistence of messages can be made by adding
components in the assembly, guaranteeing scalability of the model.
As described in the LCA model (Fig. 3), components have an interface, defined by the
component’s type. This interface is a set of input ports (methods), and output ports (events),
each one being typed by its parameters, and having a unique identifier. Interactions between
components are bindings. They link an output port of a component to one or more input port
of components. Ports being explicit, no code has to be generated, nor studied by introspection
to know what to modify in components to change the target of a binding at run-time. When an
event is emitted, the control flow is passed to recipients in an undefined order, but this can be

158 Ubiquitous Computing

fixed adding sequence components. When limiting to unique bindings, and using sequence
components, the control flow managing the application is fully deterministic. Not having
indirections, due to technical services of the framework, gives a full control on control flow,
and eases their debugging.

package WComp LCA[]

Container

ComponentInterface

+metaData

ComponentInstance

+instanceId
+properties
-privateEnv

ComponentFactory

+name

+createInstance()
+deleteInstance()
+getInstances()
+getInterface()
+methodImpl()

Container

Repository

+loadType()
+unloadType()

+Path

Input/Method

Output/Event

Parameter

+name : String
+type : type

LinkFactory

+createLink()
+deleteLink()
+getLinks()

Link

+name : String

port

+name

links 0..*0..*

repository

0..*

1..*

componentTypes 0..*0..*

describes
0..*1

linkImplementation

0..*2..*

outputPorts

0..*

0..*

interface

1

1

repositories

1..*

0..*

parameters

0..*

1..*

inputPort

1

0..*

Fig. 6. LCA meta-model: lightweight components

When a service is discovered, a specific component, called proxy component, is generated
from the description (contract) of the services. Then, the component type will be loaded and
instantiated in order to be a part of the component assembly. Proxy components will enable
communication with services of the environment.

Composing Web services for devices using LCA, the lightweight components model, allows to
dynamically create new applications from services that are available in a software infrastructure.
However, newly created functionalities are only available locally creating a specific application. It
is then necessary to add reusability to the model, and to export the new functionalities created by a
component assembly as a new service for device in the infrastructure.

3.2 Distributed composition: SLCA
Multi-paradigms systems have emerged, like new SOA 2.0, which use services and events, or
SCA (Service Component Architecture) (Chappell (2007)), dedicated to service composition
or iPOJO (Escoffier & Hall (2007)).
SCA defines a component and service architecture, using components to manipulate services
orchestrations, and create composite services.
SLCA (Service Lightweight Component Architecture) (Hourdin et al. (2008)), is a model of
architecture for service composition based on an assembly of lightweight components,
inspired by SCA. The SLCA model relies on a software and hardware execution environment
evolving dynamically. We define this environment as a set of resources, which are all
software/hardware entities that undergo appearing or vanishing from the infrastructure.
It’s not the application that drives this process. SLCA is based on a Web service for
device infrastructure using events, and dynamically discoverable in a distributed way. They

159WComp, a Middleware for Ubiquitous Computing

Fig. 7. Composite web service with evented communications

represent devices used in ambient computing applications, as well as composite services
created by SLCA.
Applications are designed by service composition mashup, assembling components. A
composite service then contains an LCA assembly of components, in a container encapsulated
into a service for device. Proxy components to other Web services are thus instantiated in
the container of a composite service, and create applications from services available in the
environment. Composite service can then create an application communicating with another
composite service. It can be seen as a gray box, since it is possible to alter the assembly and
access to some functionalities of the components assembly.
A composite service provides two service interfaces (FIG. 7). The first one, the dynamic
functional interface, allows publishing and accessing functionalities provided by the
composite Web service; the second one, the control interface, allows dynamic modifications of
the internal component assembly which provides these new functionalities.
The functional interface allows to export events and methods of the internal component
assembly to the service infrastructure. Then composite services will be part of the graph
of the software infrastructure (FIG. 8). The interface is dynamic and exports events and
methods of the internal component assembly using probe components. Adding or removing
a probe component dynamically modifies the functional interface and its description in the
corresponding composite service. Adaptation to environment variations can be made by
modifying the interface of a composite service, without stopping its execution.
Two types of probe components exist (FIG. 9): sink, which adds a method to the composite
service interface, and which, in the internal component assembly, has only an output port.
The invocation of the method from the service interface thus emits an event in the component
assembly. The second type of probe is the source, which adds an event to the composite service
interface, and has only an input port. The invocation of the method from the component
interface thus emits a Web service event.
The control interface addresses dynamic modifications of the internal component assembly. It
provides methods for adding or removing component instances, types, or bindings, and also
to get information about the assembly. Therefore, another client, which can be a composite
service using a proxy component for this service, can act on the structure of a composite
service. The structural adaptation of composite services and applications is thus possible in
the model, by its own entities.
This interface also provides events in order to notify subscribers when structural changes
occur into the composite service. Thanks to this mechanism we can adapt composite services

160 Ubiquitous Computing

Fig. 8. Graph of Web services with evented communications

Compositepackage WComp[]

Composite Service

ControlInterface

+loadType()
+unloadType()
+addBean()
+removeBean()
+addLink()
+removeLink()
+getADL()
+setBeanProperty()

ComponentAssembly

SLCA Container

StandardComponent

FunctionalInterface

ProbeComponentProxyComponent

Source

+name

Sink

+name

ComponentInstance

+instanceId
+properties
-privateEnv

Link

+name : String

links

0..*

1

functionnal 11control1 1

sources

0..*

1

sinks

0..*

1

components

0..*

1

assembly

1

1

linkImplementation

0..*

2..*

Fig. 9. SLCA Metamodel : composite services interfaces

in a reactive way. Then, we can imagine many sorts of mechanisms of adaptations, and tools
to create applications. They are called designers. Designers are service consumers for which
the control interface of composite services is a required interface. They enable the viewing or
modification of a component assembly of composite services using various formalisms and
representations. Among these designers, we can mention three that are most often used in the
design of ubiquitous computing applications: a designer to visualize an assembly, a designer
to dynamically generate proxy components for Web services for devices of the infrastructure,
and the Aspect of Assembly designer.
The Aspect of Assembly designer aims to adapt a composite service. It is based on the
composite service’s control interface to manage a set of adaptation rules. They are triggered
when a change occurs in the assembly of the composite service. We will study this mechanism
in the next section.

161WComp, a Middleware for Ubiquitous Computing

Fig. 7. Composite web service with evented communications

represent devices used in ambient computing applications, as well as composite services
created by SLCA.
Applications are designed by service composition mashup, assembling components. A
composite service then contains an LCA assembly of components, in a container encapsulated
into a service for device. Proxy components to other Web services are thus instantiated in
the container of a composite service, and create applications from services available in the
environment. Composite service can then create an application communicating with another
composite service. It can be seen as a gray box, since it is possible to alter the assembly and
access to some functionalities of the components assembly.
A composite service provides two service interfaces (FIG. 7). The first one, the dynamic
functional interface, allows publishing and accessing functionalities provided by the
composite Web service; the second one, the control interface, allows dynamic modifications of
the internal component assembly which provides these new functionalities.
The functional interface allows to export events and methods of the internal component
assembly to the service infrastructure. Then composite services will be part of the graph
of the software infrastructure (FIG. 8). The interface is dynamic and exports events and
methods of the internal component assembly using probe components. Adding or removing
a probe component dynamically modifies the functional interface and its description in the
corresponding composite service. Adaptation to environment variations can be made by
modifying the interface of a composite service, without stopping its execution.
Two types of probe components exist (FIG. 9): sink, which adds a method to the composite
service interface, and which, in the internal component assembly, has only an output port.
The invocation of the method from the service interface thus emits an event in the component
assembly. The second type of probe is the source, which adds an event to the composite service
interface, and has only an input port. The invocation of the method from the component
interface thus emits a Web service event.
The control interface addresses dynamic modifications of the internal component assembly. It
provides methods for adding or removing component instances, types, or bindings, and also
to get information about the assembly. Therefore, another client, which can be a composite
service using a proxy component for this service, can act on the structure of a composite
service. The structural adaptation of composite services and applications is thus possible in
the model, by its own entities.
This interface also provides events in order to notify subscribers when structural changes
occur into the composite service. Thanks to this mechanism we can adapt composite services

160 Ubiquitous Computing

Fig. 8. Graph of Web services with evented communications

Compositepackage WComp[]

Composite Service

ControlInterface

+loadType()
+unloadType()
+addBean()
+removeBean()
+addLink()
+removeLink()
+getADL()
+setBeanProperty()

ComponentAssembly

SLCA Container

StandardComponent

FunctionalInterface

ProbeComponentProxyComponent

Source

+name

Sink

+name

ComponentInstance

+instanceId
+properties
-privateEnv

Link

+name : String

links

0..*

1

functionnal 11control1 1

sources

0..*

1

sinks

0..*

1

components

0..*

1

assembly

1

1

linkImplementation

0..*

2..*

Fig. 9. SLCA Metamodel : composite services interfaces

in a reactive way. Then, we can imagine many sorts of mechanisms of adaptations, and tools
to create applications. They are called designers. Designers are service consumers for which
the control interface of composite services is a required interface. They enable the viewing or
modification of a component assembly of composite services using various formalisms and
representations. Among these designers, we can mention three that are most often used in the
design of ubiquitous computing applications: a designer to visualize an assembly, a designer
to dynamically generate proxy components for Web services for devices of the infrastructure,
and the Aspect of Assembly designer.
The Aspect of Assembly designer aims to adapt a composite service. It is based on the
composite service’s control interface to manage a set of adaptation rules. They are triggered
when a change occurs in the assembly of the composite service. We will study this mechanism
in the next section.

161WComp, a Middleware for Ubiquitous Computing

3.3 Synthesis
SLCA composite services are a mean to create fully dynamic applications from a services
infrastructure, particularly web services for devices based on communication events.
This dynamicity of the model is available in both (1) setting up applications thanks to
functionalities exported in the software infrastructure and (2) the control of composite
services. Various tools exist or can be created to consider various concerns of application
adaption, such as availability of infrastructure entities, or users’ needs.

4. Dynamic application adaptation to the infrastructure evolution

We have seen that ubiquitous systems must be able to consider changes occurring in their
environment. And since these changes occur continuously, this must be done at runtime.
Reflection is a mechanism that offers such a possibility. Reflection is itself based on two
mechanisms: (1) intercession which is the ability for a system to modify itself and (2)
introspection which is the ability for a system to observe itself.
Thus reflection through the use of object-oriented programming allows to change the code
of objects in their interpretation. It introduces some modularity through the representation
of data and their relationships (inheritance ...). At runtime, objects are reified into editable
meta-objects (a representation of the said object) and meta-object protocols (MOP) (Kiczales
et al. (1999)) ensure the consistency between object and meta-object. The possibilities of
intercession and introspection offered by this approach are maximal. But MOPs use languages
that are too generic for ubiquitous systems.
Aspect-Oriented Programming (AOP) is a way to provide some specific abstractions for
some crosscutting concerns. Dynamic aspects allow to adapt an application at runtime
while encapsulating the adaptation into aspects(Zambrano et al. (2004)). Thanks to this
encapsulation, adaptation mechanisms can be more easily reused. Aspects applied over
components can be seen in two ways: (1) aspects can be used to adapt components code,
(2) aspect can be used to adapt structurally components assemblies. Because Web services
for device from the software infrastructure cannot be modified by the system as a consumer;
components have to be seen as blackboxes.

4.1 Aspect oriented programming principles
AOP has been proposed by Kiczales et al in 1997 (Kiczales et al. (1997)). It allows to define
software abstractions that will be woven (applied) on a base application. Originally, AOP
appeared to tackle the following problem: despite all efforts to achieve it, there is still a strong
coupling between functional concerns and crosscutting concerns (security, monitoring . . .). The idea
of AOP is to separate, into aspects, the representation of crosscutting concerns. Then, the code
described in an aspect is injected in the base application thanks to the aspect weaver.
Aspects are composed of pointcuts and advices. Pointcuts point out “where” to inject the code
to adapt the application while advices describe the code to be injected, “what” functionality
will be added.
Pointcut genericity allows an aspect to be woven in many parts of the application. AOP
allows to minimize code dispersion, grouping it into reusable entities. Joinpoints represent all
hooks of applications where advices can be woven. Classically, the aspect language provides
mechanisms for adding behavior to pointcuts thanks to operators after, before and around. Thus
an advice whose pointcut specifies the before keyword will be executed before the execution
of the jointpoint matching the pointcut; and inversely with after advices. An advice around
allows to replace or to execute some code before and after the pointcut. The genericity offered

162 Ubiquitous Computing

by pointcuts provides an abstraction that reduces the complexity of use of reflection, allowing
a high reusability of aspects and a good separation of concerns. According to the paradigm
on which is based AOP, the nature of joinpoints can change (objects, components, code . . .)
but AOP still offers a good separation of crosscutting concerns (Charfi & Mezini (2004)).

publ ic aspect Aspect_Name {
pointcut Method_Name () : // code

//// Advice
before () : Method_Name () {

// code
} }

Fig. 10. Aspect model in AspectJ

The weaver is the mechanism that takes as input a set of aspects and an application in order
to produce an augmented application. Initially, weavers were static and were involved at
compile-time as in AspectJ (Kiczales et al. (2001)). The code described into advices is woven
into the application code to generate a new source file (eg .java or bytecode with AspectJ).
So that, the separation of concerns introduced by aspects is no longer relevant at runtime.
Aspects are not always independent of each other, some interactions may occur between them.
In classical approaches, there is no support offered to resolve these interactions, this must be
done by developers. Therefore, weavers have evolved in order to adress these issues. As an
example EAOP (Event-based AOP) (Douence & Sudholt (2002)) proposes a dynamic weaving
triggered according to some events related to the execution of the base application. Moreover,
these works propose mechanisms to resolve interactions between aspects. One approach is to
explicitly compose advices relying on a same joinpoint. The second approach is to encapsulate
aspects into aspects. In the latter, the weaver intends to evaluate events and, according to this
evaluation, execute the corresponding advice.
Finally some works were interested in the implementation of aspects on components, such as
SAFRAN (David & Ledoux (2006)), CAM/DAOP (Pinto et al. (2005)) or on services such as
AO4BPEL (Charfi & Mezini (2004)). These approaches provide the required modularity for
adaptation of applications based on components, with respect to the component’s blackbox
property.
SAFRAN introduces a new type of triggering mechanism of aspects. Aspects can be triggered
on the occurrence of endogenous events (events from the system) or on the occurance of
exogenous events (events from outside); adaptation composition is external. CAM/DAOP
proposes some mechanisms for concurrency checking of aspects, their composition is external.
In CAM/DAOP aspects are components; to improve aspects reusability their pointcuts are
separated from advices. AO4BPEL proposes to use aspects to extend BPEL (Business Process
Execution Language) in order to increase its modularity and to enable its dynamic adaptation.
Accordingly, this approach does not consider changes occurring in the software infrastructure
of the application.
In the following sections we will present an example of persistent structural adaptation
mechanism based on aspects triggered on changes occurring in the software infrastructure
of the application. Those aspects will be merged in case of aspects interactions. This approach
allows, in a modular and declarative way, system self-adaption as well as creating applications
from scratches.

163WComp, a Middleware for Ubiquitous Computing

3.3 Synthesis
SLCA composite services are a mean to create fully dynamic applications from a services
infrastructure, particularly web services for devices based on communication events.
This dynamicity of the model is available in both (1) setting up applications thanks to
functionalities exported in the software infrastructure and (2) the control of composite
services. Various tools exist or can be created to consider various concerns of application
adaption, such as availability of infrastructure entities, or users’ needs.

4. Dynamic application adaptation to the infrastructure evolution

We have seen that ubiquitous systems must be able to consider changes occurring in their
environment. And since these changes occur continuously, this must be done at runtime.
Reflection is a mechanism that offers such a possibility. Reflection is itself based on two
mechanisms: (1) intercession which is the ability for a system to modify itself and (2)
introspection which is the ability for a system to observe itself.
Thus reflection through the use of object-oriented programming allows to change the code
of objects in their interpretation. It introduces some modularity through the representation
of data and their relationships (inheritance ...). At runtime, objects are reified into editable
meta-objects (a representation of the said object) and meta-object protocols (MOP) (Kiczales
et al. (1999)) ensure the consistency between object and meta-object. The possibilities of
intercession and introspection offered by this approach are maximal. But MOPs use languages
that are too generic for ubiquitous systems.
Aspect-Oriented Programming (AOP) is a way to provide some specific abstractions for
some crosscutting concerns. Dynamic aspects allow to adapt an application at runtime
while encapsulating the adaptation into aspects(Zambrano et al. (2004)). Thanks to this
encapsulation, adaptation mechanisms can be more easily reused. Aspects applied over
components can be seen in two ways: (1) aspects can be used to adapt components code,
(2) aspect can be used to adapt structurally components assemblies. Because Web services
for device from the software infrastructure cannot be modified by the system as a consumer;
components have to be seen as blackboxes.

4.1 Aspect oriented programming principles
AOP has been proposed by Kiczales et al in 1997 (Kiczales et al. (1997)). It allows to define
software abstractions that will be woven (applied) on a base application. Originally, AOP
appeared to tackle the following problem: despite all efforts to achieve it, there is still a strong
coupling between functional concerns and crosscutting concerns (security, monitoring . . .). The idea
of AOP is to separate, into aspects, the representation of crosscutting concerns. Then, the code
described in an aspect is injected in the base application thanks to the aspect weaver.
Aspects are composed of pointcuts and advices. Pointcuts point out “where” to inject the code
to adapt the application while advices describe the code to be injected, “what” functionality
will be added.
Pointcut genericity allows an aspect to be woven in many parts of the application. AOP
allows to minimize code dispersion, grouping it into reusable entities. Joinpoints represent all
hooks of applications where advices can be woven. Classically, the aspect language provides
mechanisms for adding behavior to pointcuts thanks to operators after, before and around. Thus
an advice whose pointcut specifies the before keyword will be executed before the execution
of the jointpoint matching the pointcut; and inversely with after advices. An advice around
allows to replace or to execute some code before and after the pointcut. The genericity offered

162 Ubiquitous Computing

by pointcuts provides an abstraction that reduces the complexity of use of reflection, allowing
a high reusability of aspects and a good separation of concerns. According to the paradigm
on which is based AOP, the nature of joinpoints can change (objects, components, code . . .)
but AOP still offers a good separation of crosscutting concerns (Charfi & Mezini (2004)).

publ ic aspect Aspect_Name {
pointcut Method_Name () : // code

//// Advice
before () : Method_Name () {

// code
} }

Fig. 10. Aspect model in AspectJ

The weaver is the mechanism that takes as input a set of aspects and an application in order
to produce an augmented application. Initially, weavers were static and were involved at
compile-time as in AspectJ (Kiczales et al. (2001)). The code described into advices is woven
into the application code to generate a new source file (eg .java or bytecode with AspectJ).
So that, the separation of concerns introduced by aspects is no longer relevant at runtime.
Aspects are not always independent of each other, some interactions may occur between them.
In classical approaches, there is no support offered to resolve these interactions, this must be
done by developers. Therefore, weavers have evolved in order to adress these issues. As an
example EAOP (Event-based AOP) (Douence & Sudholt (2002)) proposes a dynamic weaving
triggered according to some events related to the execution of the base application. Moreover,
these works propose mechanisms to resolve interactions between aspects. One approach is to
explicitly compose advices relying on a same joinpoint. The second approach is to encapsulate
aspects into aspects. In the latter, the weaver intends to evaluate events and, according to this
evaluation, execute the corresponding advice.
Finally some works were interested in the implementation of aspects on components, such as
SAFRAN (David & Ledoux (2006)), CAM/DAOP (Pinto et al. (2005)) or on services such as
AO4BPEL (Charfi & Mezini (2004)). These approaches provide the required modularity for
adaptation of applications based on components, with respect to the component’s blackbox
property.
SAFRAN introduces a new type of triggering mechanism of aspects. Aspects can be triggered
on the occurrence of endogenous events (events from the system) or on the occurance of
exogenous events (events from outside); adaptation composition is external. CAM/DAOP
proposes some mechanisms for concurrency checking of aspects, their composition is external.
In CAM/DAOP aspects are components; to improve aspects reusability their pointcuts are
separated from advices. AO4BPEL proposes to use aspects to extend BPEL (Business Process
Execution Language) in order to increase its modularity and to enable its dynamic adaptation.
Accordingly, this approach does not consider changes occurring in the software infrastructure
of the application.
In the following sections we will present an example of persistent structural adaptation
mechanism based on aspects triggered on changes occurring in the software infrastructure
of the application. Those aspects will be merged in case of aspects interactions. This approach
allows, in a modular and declarative way, system self-adaption as well as creating applications
from scratches.

163WComp, a Middleware for Ubiquitous Computing

Fig. 11. Aspect of Assembly meta-model

4.2 Crosscutting adaptation
Aspects of Assembly (AA) are an original concept, based on aspect oriented programming.
They define some structural reconfigurations of an application that are triggered in response
to events from the software infrastructure. Events inform of the appearance / disappearance
of devices in the software infrastructure. These rules are woven and composed according
to a well-defined logic in case of conflict. They are applied on components assemblies
which are not necessarily known a priori. Various languages and composition rules can be
defined according to the type of applications on which they will be applied. So, Aspect of
Assembly can be used to adapt applications based on a component model using evented
communications (Cheung-Foo-Wo (2009)). AA are based on a non-invasive model and respect
the blackbox property of components.
In the following section we will present the main concepts of Aspects of Assembly as
modelized in Figure 11: the joinpoint model(4.2.1), the pointcut model (4.2.2), the advice
model (4.2.3), and the weaver (4.2.4).

4.2.1 Joinpoint
Joinpoints are all entities of the assembly that structurally represent the application, on which
changes will take place: components and their ports. This allows to consider messages related
to ports.

164 Ubiquitous Computing

4.2.2 Pointcut
Pointcuts are defined as a set of filters on joinpoints. In fact, they are filters on joinpoint’s
meta-datas (port name, types ...). Those filters produce some combination of instantiated
joinpoints (FIG. 12). AA may use various strategies to perform the pointcut matching, the
most common one is based on a pattern matching language. Instead of identifying elements
of code, since AA describe structural changes, they identify components and ports thanks
to their meta-datas like their name. Pointcuts allow to introduce into an application some
crosscutting concerns described in their associated advice without knowing the assembly on
which they will be applied. At runtime, they interface a real assembly with some abstract
advices to produce some real configurations to be incorporated in the application. These
configurations are called instances of advice. An advice produces many instances of advice
when many combinations of instantiated joinpoint are matched by pointcuts.

Fig. 12. Example of pointcut matching process

Some others mechanisms for pointcut matching than pattern matching can be studied. For
instance, if an AA defines an adaptation related to a switch, rather than processing a pattern
matching as switch*, a semantic matching would be more appropriated. Indeed, one of
the ideas that we stand for in ubiquitous computing is the separation of features offered by
devices into more basic features. As an example a phone is designed to make call or send
messages, but could act as a display, a switch, etc... The French national project Continuum6

is working on such an extension of AA.
Pointcut are evaluated when an AA is selected or when a change occurs in the software
infrastructure (appearance/ disappearance of devices) of the application to be adapted
(FIG. 18). When at least one joinpoint is satifying each pointcut rule, some combinations of
joinpoints are generated and the AA is now in the state : applicable. Then, it can be woven on
the application assembly.
Therefore, pointcuts define the prerequisites to weave AA; even if they are selected by users
to adapt an application, AA cannot be woven unless the application assembly is in a state
compatible with its poincut (i.e. it contains the entities and ports required for adaptation).

4.2.3 Advice
Because AA modify the structure of components assemblies, adaptations consist in a set of
basic structural changes: adding a component or a connection between ports to the base
assembly. The removal of components or interactions is performed too if an AA is withdrawn.

6 ANR CONTINUUM — ANR-08-VERS-005. http://continuum.unice.fr/

165WComp, a Middleware for Ubiquitous Computing

Fig. 11. Aspect of Assembly meta-model

4.2 Crosscutting adaptation
Aspects of Assembly (AA) are an original concept, based on aspect oriented programming.
They define some structural reconfigurations of an application that are triggered in response
to events from the software infrastructure. Events inform of the appearance / disappearance
of devices in the software infrastructure. These rules are woven and composed according
to a well-defined logic in case of conflict. They are applied on components assemblies
which are not necessarily known a priori. Various languages and composition rules can be
defined according to the type of applications on which they will be applied. So, Aspect of
Assembly can be used to adapt applications based on a component model using evented
communications (Cheung-Foo-Wo (2009)). AA are based on a non-invasive model and respect
the blackbox property of components.
In the following section we will present the main concepts of Aspects of Assembly as
modelized in Figure 11: the joinpoint model(4.2.1), the pointcut model (4.2.2), the advice
model (4.2.3), and the weaver (4.2.4).

4.2.1 Joinpoint
Joinpoints are all entities of the assembly that structurally represent the application, on which
changes will take place: components and their ports. This allows to consider messages related
to ports.

164 Ubiquitous Computing

4.2.2 Pointcut
Pointcuts are defined as a set of filters on joinpoints. In fact, they are filters on joinpoint’s
meta-datas (port name, types ...). Those filters produce some combination of instantiated
joinpoints (FIG. 12). AA may use various strategies to perform the pointcut matching, the
most common one is based on a pattern matching language. Instead of identifying elements
of code, since AA describe structural changes, they identify components and ports thanks
to their meta-datas like their name. Pointcuts allow to introduce into an application some
crosscutting concerns described in their associated advice without knowing the assembly on
which they will be applied. At runtime, they interface a real assembly with some abstract
advices to produce some real configurations to be incorporated in the application. These
configurations are called instances of advice. An advice produces many instances of advice
when many combinations of instantiated joinpoint are matched by pointcuts.

Fig. 12. Example of pointcut matching process

Some others mechanisms for pointcut matching than pattern matching can be studied. For
instance, if an AA defines an adaptation related to a switch, rather than processing a pattern
matching as switch*, a semantic matching would be more appropriated. Indeed, one of
the ideas that we stand for in ubiquitous computing is the separation of features offered by
devices into more basic features. As an example a phone is designed to make call or send
messages, but could act as a display, a switch, etc... The French national project Continuum6

is working on such an extension of AA.
Pointcut are evaluated when an AA is selected or when a change occurs in the software
infrastructure (appearance/ disappearance of devices) of the application to be adapted
(FIG. 18). When at least one joinpoint is satifying each pointcut rule, some combinations of
joinpoints are generated and the AA is now in the state : applicable. Then, it can be woven on
the application assembly.
Therefore, pointcuts define the prerequisites to weave AA; even if they are selected by users
to adapt an application, AA cannot be woven unless the application assembly is in a state
compatible with its poincut (i.e. it contains the entities and ports required for adaptation).

4.2.3 Advice
Because AA modify the structure of components assemblies, adaptations consist in a set of
basic structural changes: adding a component or a connection between ports to the base
assembly. The removal of components or interactions is performed too if an AA is withdrawn.

6 ANR CONTINUUM — ANR-08-VERS-005. http://continuum.unice.fr/

165WComp, a Middleware for Ubiquitous Computing

Links additions are usually done by rewriting the existing ones, for adaptations that fit with
an existing application, rather than redefining the application. Any change can be seen as a
transformation from an assembly to a new assembly (FIG. 16).
A specific language is also used to express advices. In traditional aspects, advices are often
code written in the same language as the language of the targeted application. In AA, entities
are added and their code is not dependent of the advice’s expression; an advice must describe
the integration of these new entities in the existing assembly. The specific language of AA’s
advices is not fixed by the model and designers can define their own language according to
the type of adaptation expected.
The various keywords, or operators of a language allow a designer to define how will be
composed advices. In the following section we will study the ISL4WComp language, that
is used in our works in the field of ubiquitous computing. Thanks to this language, we can
describe advices based on events streams.

4.2.3.1 Components used in advices

As explained previously, advices describe changes that must be done in a component
assembly. Those changes consist in adding components or bindings between components.
The added entities must be defined and available in the system to manage the component
assembly during AA weaving.
Among components that can be instantiated by AA, we can distinguish two types of
components: blackbox components and greybox components.
Blackbox components encapsulate functionalities that are only accessible through their
ports (Szyperski et al. (1999)). Only the way they interact can be managed. The entities
explicitly added to provide a new functionality in the adaptation described by an advice are
blackbox components. When several advices involving blackbox components are composed,
we talk of external weaving. As a consequence the weaver cannot process some internal
merging between those components since only their interface is known. Entities explicitly
added by advices are also called local entities. They are represented as LocalEntity in the
AA meta-model presented in (FIG. 11).

Fig. 13. Blackbox components

As an example, considering and adaptation whose aims to filters one of two messages between
two components. This adaptation will add a component to do this. Such a component
is a blackbox, only its interface is known by the weaver. It will be added in place of the
former interaction. Two new interactions will be created to link the input port of the primary
interaction.
Greybox components, conversely, partially explain their semantics, either using an interface
description or reflectivity, either it is at least partly known by the weaver. From this
knowledge, it is possible to work on a way to compose them manually or automatically. Such

166 Ubiquitous Computing

a process is called composition or merging process (Cheung-Foo-Wo (2009)) of greybox advices.
Then, thanks to this mechanism the system is able to manage interactions between various
instances of advice from various AA. Greybox components are instanciated by the weaver
when some advice language operators are used or when the weaver has to manage some
interactions between instances of advice.

Fig. 14. Greybox components

As an example, an advice rule can specify that when two interactions from a same component
are created from various instances of advice, a sequence type greybox component will be
introduced to establish a priority between those two interactions.

4.2.3.2 ISL4WComp : A language for advices

ISL4WComp is based on the ISL Interaction Specification Language that describes
interactions patterns between independent objects (Berger (2001)). ISL4WComp adapts these
specifications to consider interactions based on messages or events between components.
This language is composable: multiple instances of advice can be composed and merged
into a single assembly combining their respective behavior. The merging mechanism,
embedded into the weaver, ensures the property of symmetry (associativity, commutativity
and idempotency) (Cheung-Foo-Wo, Blay-Fornarino, Tigli, Lavirotte & Riveill (2006)) in the
weaving operation of various AA. This means that, the order in which aspects are woven is
not important. It implies that the result of a weaving cycle will not be the base assembly given
as input to the next cycle (Ferry et al. (2009)). Hence, there is no history of AA appliance.
This property is ensured for AA’s weaving operation because the operators of the language
are symmetrical. This means that the order in which rules are merged is not important. This
property is a major point since the application assembly changes dynamically, lead by devices
appearance or disappearance. Because of the unpredictability of these changes, the order in
which adaptations must be woven cannot be known. So the order in which AA are woven
must not be important.
Advices written using ISL4WComp are based on three types of rules: (1) the addition of
blackbox components, (2) rewriting links between components of the assembly and (3) the
creation of new links. Rewriting involves components ports, it consists in : forwarding an
input port or redirecting a message (output port). These rules are identified thanks to two key
words, ‘:’ for blackbox components instanciation and ‘→’ for rewriting and creating links.
An advice describes a set of adaptation rules to be applied on variable components defined in
pointcut. Some specific language operators as call and delegate allow to control how the
composition of instances of advice will be done. These keywords, associated to sequence and
parallelism operators are similar to classical AOP keywords : before, around and after.

167WComp, a Middleware for Ubiquitous Computing

Links additions are usually done by rewriting the existing ones, for adaptations that fit with
an existing application, rather than redefining the application. Any change can be seen as a
transformation from an assembly to a new assembly (FIG. 16).
A specific language is also used to express advices. In traditional aspects, advices are often
code written in the same language as the language of the targeted application. In AA, entities
are added and their code is not dependent of the advice’s expression; an advice must describe
the integration of these new entities in the existing assembly. The specific language of AA’s
advices is not fixed by the model and designers can define their own language according to
the type of adaptation expected.
The various keywords, or operators of a language allow a designer to define how will be
composed advices. In the following section we will study the ISL4WComp language, that
is used in our works in the field of ubiquitous computing. Thanks to this language, we can
describe advices based on events streams.

4.2.3.1 Components used in advices

As explained previously, advices describe changes that must be done in a component
assembly. Those changes consist in adding components or bindings between components.
The added entities must be defined and available in the system to manage the component
assembly during AA weaving.
Among components that can be instantiated by AA, we can distinguish two types of
components: blackbox components and greybox components.
Blackbox components encapsulate functionalities that are only accessible through their
ports (Szyperski et al. (1999)). Only the way they interact can be managed. The entities
explicitly added to provide a new functionality in the adaptation described by an advice are
blackbox components. When several advices involving blackbox components are composed,
we talk of external weaving. As a consequence the weaver cannot process some internal
merging between those components since only their interface is known. Entities explicitly
added by advices are also called local entities. They are represented as LocalEntity in the
AA meta-model presented in (FIG. 11).

Fig. 13. Blackbox components

As an example, considering and adaptation whose aims to filters one of two messages between
two components. This adaptation will add a component to do this. Such a component
is a blackbox, only its interface is known by the weaver. It will be added in place of the
former interaction. Two new interactions will be created to link the input port of the primary
interaction.
Greybox components, conversely, partially explain their semantics, either using an interface
description or reflectivity, either it is at least partly known by the weaver. From this
knowledge, it is possible to work on a way to compose them manually or automatically. Such

166 Ubiquitous Computing

a process is called composition or merging process (Cheung-Foo-Wo (2009)) of greybox advices.
Then, thanks to this mechanism the system is able to manage interactions between various
instances of advice from various AA. Greybox components are instanciated by the weaver
when some advice language operators are used or when the weaver has to manage some
interactions between instances of advice.

Fig. 14. Greybox components

As an example, an advice rule can specify that when two interactions from a same component
are created from various instances of advice, a sequence type greybox component will be
introduced to establish a priority between those two interactions.

4.2.3.2 ISL4WComp : A language for advices

ISL4WComp is based on the ISL Interaction Specification Language that describes
interactions patterns between independent objects (Berger (2001)). ISL4WComp adapts these
specifications to consider interactions based on messages or events between components.
This language is composable: multiple instances of advice can be composed and merged
into a single assembly combining their respective behavior. The merging mechanism,
embedded into the weaver, ensures the property of symmetry (associativity, commutativity
and idempotency) (Cheung-Foo-Wo, Blay-Fornarino, Tigli, Lavirotte & Riveill (2006)) in the
weaving operation of various AA. This means that, the order in which aspects are woven is
not important. It implies that the result of a weaving cycle will not be the base assembly given
as input to the next cycle (Ferry et al. (2009)). Hence, there is no history of AA appliance.
This property is ensured for AA’s weaving operation because the operators of the language
are symmetrical. This means that the order in which rules are merged is not important. This
property is a major point since the application assembly changes dynamically, lead by devices
appearance or disappearance. Because of the unpredictability of these changes, the order in
which adaptations must be woven cannot be known. So the order in which AA are woven
must not be important.
Advices written using ISL4WComp are based on three types of rules: (1) the addition of
blackbox components, (2) rewriting links between components of the assembly and (3) the
creation of new links. Rewriting involves components ports, it consists in : forwarding an
input port or redirecting a message (output port). These rules are identified thanks to two key
words, ‘:’ for blackbox components instanciation and ‘→’ for rewriting and creating links.
An advice describes a set of adaptation rules to be applied on variable components defined in
pointcut. Some specific language operators as call and delegate allow to control how the
composition of instances of advice will be done. These keywords, associated to sequence and
parallelism operators are similar to classical AOP keywords : before, around and after.

167WComp, a Middleware for Ubiquitous Computing

Keywords / Operators Description

port types
comp.port

‘.’ is to separate the name of
an instance of component from the
name of a port. It describes a
provided port.

comp.ˆ port ‘ˆ ’ at the beginning of a port name
describes a required port.

Rules for
structural
adaptations

comp : type To create a blackbox component
comp : type (prop =
val, . . .)

To create a blackbox component and
to initialize properties

provided_port →
(required_port)

To create a link between two ports.
The keyword → separate the right
part of the rule from its left part

provided_port →
(provided_port)

To rewrite an existing link by
changing the destination port

Operators
(symmetry
property,
conflicts
resolution)

. . . ; . . . Describe the sequence

. . . || . . . To describe that there is no order
(parallelism)

if (condition) {. . . }
else {. . .}

condition is evaluated by a
blackbox component

nop Nothing to do

call
Allow to reuse the left part of a rule
in a rewriting rule

delegate
Allow to specify that an interaction
is unique in case of conflict

Table 1. ISL4WComp operators and keywords

4.2.3.3 A sample of ISL4WComp based advice

To illustrate the concepts previously presented, we will now study an example of advice based
on ISL4WComp. First we define an independent adaptation schema for a domotic application.
It aims to link a switch to any kind of light in order to control the light using the switch.
Both light and switch proxy components are generated into the components assembly. The
advice presented below proposes to adapt this behavior by adding an energy saving concern.
To be applied, it takes into account a brightness sensor, therefore allowing to switch on the
light when the brightness is under a defined threshold. Moreover, the new assembly sends a
message to give a feedback to the user when it tries to switch on the light while the brightness
is too high.
The advice is called brightness_light. The three variables light, brightness and
switch, defined at the first line, describe the joinpoints (eg components) identified by the
pointcut matching that will be used in the advice. They will be replaced by the instantiated
joinpoint identified at weaving time. This AA highlights the three types of rules previously
presented. At line 3,4 and 5, some blackbox components are added. The threshold component
is instantiated with the property threshold up to 10. A property is a public variable from a
component accessible through its interface. Line 7 defines a rewriting rule for input ports. All
links connected to the input port (method) ‘SetState’ will be rewritten. Line 10 and 12 describe
a creation rule for interactions from output ports (event).

168 Ubiquitous Computing

1 advice b r i g h t n e s s _ l i g h t (l i g h t , br ightness , switch) :
2
3 Emitter : ’ BasicBeans . Primit iveValueEmit ter ’
4 threshold : ’ BasicBeans . Threshold ’ (threshold = 10)
5 t1 , t2 : ’ System . Windows . Forms . TextBox ’
6
7 l i g h t . S e t S t a t e −> (
8 i f (threshold . IsReached) { Emit ter . FireValueEvent }
9 e l s e { c a l l })
10 Emit ter .^ EmitStringValue −> (
11 t 1 . s e t _ T e x t)
12 b r i g h t n e s s .^ Value_Evented_NewValue −> (
13 threshold . set_Value ; t2 . s e t _ T e x t)

Fig. 15. Sample of ISL4WComp advice

Among all the operators found in this example, the more complex is call (line 9). The
if block describes that if the brightness threshold is reached the system must sent an error
message. Otherwise, the call operator is replaced with the left part of the rule, by the original
method call that is being rewritten. This means that when this adaptation is woven into the
base application, if a link to the input port lumiere.SetState was previously defined, the
interaction already defined will still be implemented.
ISL4WComp is well-defined to describe reactive adaptations to create ubiquitous applications. Its
operators can define more complex behavior than a structural reconfiguration. Moreover, it guarantees
that the result of the weaving of several behaviors is idempotent, associative and commutative.

4.2.4 The weaver
The weaver is the program responsible for aspects weaving. It builds a unique component
assembly from a base assembly and a set of Aspect of Assembly. The base assembly of
an application is the assembly without any AA applied. The weaver manages all the
processes that are required to weave some adaptations (FIG. 16). The weaving process can
be decomposed into three steps. First, the pointcut matching is a function that has a set
of components, from the base assembly, and pointcuts, from a set of selected AA, as input.
Its goal is to find the joinpoints on which advices will be woven. The second step is called
the advice factory. It then generates instances of advices, replacing variable components in
advices of selected aspects by joinpoints obtained during the first step. Instances of advices
describe modifications to be woven in the actual base assembly of components. Finally, the
composition engine merges all instances of advices with the initial assembly. It generates a
single instance of advice that will be woven as the final assembly. In the next section, we will
present more in details those processes.

4.2.4.1 Pointcut matching and advice factory

The weaver has a list of aspects of assembly that have been selected by users for the
adaptation of an application. Their weaving in the target assembly depends on the evaluation
of pointcuts. When a joinpoint is identified for each pointcut rules of an AA, it becomes
relevant. (FIG. 18). Then the advice factory generates instances of advices, replacing variable
components in advices of selected aspects by joinpoints obtained during the weaving. Several
strategies are possible when several joinpoints are identified for a same rules (FIG. 12). An
example can help to understand the different options: let us consider an application composed
of a pair of switch and a pair of lights. A first strategy would create two combinations: the

169WComp, a Middleware for Ubiquitous Computing

Keywords / Operators Description

port types
comp.port

‘.’ is to separate the name of
an instance of component from the
name of a port. It describes a
provided port.

comp.ˆ port ‘ˆ ’ at the beginning of a port name
describes a required port.

Rules for
structural
adaptations

comp : type To create a blackbox component
comp : type (prop =
val, . . .)

To create a blackbox component and
to initialize properties

provided_port →
(required_port)

To create a link between two ports.
The keyword → separate the right
part of the rule from its left part

provided_port →
(provided_port)

To rewrite an existing link by
changing the destination port

Operators
(symmetry
property,
conflicts
resolution)

. . . ; . . . Describe the sequence

. . . || . . . To describe that there is no order
(parallelism)

if (condition) {. . . }
else {. . .}

condition is evaluated by a
blackbox component

nop Nothing to do

call
Allow to reuse the left part of a rule
in a rewriting rule

delegate
Allow to specify that an interaction
is unique in case of conflict

Table 1. ISL4WComp operators and keywords

4.2.3.3 A sample of ISL4WComp based advice

To illustrate the concepts previously presented, we will now study an example of advice based
on ISL4WComp. First we define an independent adaptation schema for a domotic application.
It aims to link a switch to any kind of light in order to control the light using the switch.
Both light and switch proxy components are generated into the components assembly. The
advice presented below proposes to adapt this behavior by adding an energy saving concern.
To be applied, it takes into account a brightness sensor, therefore allowing to switch on the
light when the brightness is under a defined threshold. Moreover, the new assembly sends a
message to give a feedback to the user when it tries to switch on the light while the brightness
is too high.
The advice is called brightness_light. The three variables light, brightness and
switch, defined at the first line, describe the joinpoints (eg components) identified by the
pointcut matching that will be used in the advice. They will be replaced by the instantiated
joinpoint identified at weaving time. This AA highlights the three types of rules previously
presented. At line 3,4 and 5, some blackbox components are added. The threshold component
is instantiated with the property threshold up to 10. A property is a public variable from a
component accessible through its interface. Line 7 defines a rewriting rule for input ports. All
links connected to the input port (method) ‘SetState’ will be rewritten. Line 10 and 12 describe
a creation rule for interactions from output ports (event).

168 Ubiquitous Computing

1 advice b r i g h t n e s s _ l i g h t (l i g h t , br ightness , switch) :
2
3 Emitter : ’ BasicBeans . Primit iveValueEmit ter ’
4 threshold : ’ BasicBeans . Threshold ’ (threshold = 10)
5 t1 , t2 : ’ System . Windows . Forms . TextBox ’
6
7 l i g h t . S e t S t a t e −> (
8 i f (threshold . IsReached) { Emit ter . FireValueEvent }
9 e l s e { c a l l })
10 Emit ter .^ EmitStringValue −> (
11 t 1 . s e t _ T e x t)
12 b r i g h t n e s s .^ Value_Evented_NewValue −> (
13 threshold . set_Value ; t2 . s e t _ T e x t)

Fig. 15. Sample of ISL4WComp advice

Among all the operators found in this example, the more complex is call (line 9). The
if block describes that if the brightness threshold is reached the system must sent an error
message. Otherwise, the call operator is replaced with the left part of the rule, by the original
method call that is being rewritten. This means that when this adaptation is woven into the
base application, if a link to the input port lumiere.SetState was previously defined, the
interaction already defined will still be implemented.
ISL4WComp is well-defined to describe reactive adaptations to create ubiquitous applications. Its
operators can define more complex behavior than a structural reconfiguration. Moreover, it guarantees
that the result of the weaving of several behaviors is idempotent, associative and commutative.

4.2.4 The weaver
The weaver is the program responsible for aspects weaving. It builds a unique component
assembly from a base assembly and a set of Aspect of Assembly. The base assembly of
an application is the assembly without any AA applied. The weaver manages all the
processes that are required to weave some adaptations (FIG. 16). The weaving process can
be decomposed into three steps. First, the pointcut matching is a function that has a set
of components, from the base assembly, and pointcuts, from a set of selected AA, as input.
Its goal is to find the joinpoints on which advices will be woven. The second step is called
the advice factory. It then generates instances of advices, replacing variable components in
advices of selected aspects by joinpoints obtained during the first step. Instances of advices
describe modifications to be woven in the actual base assembly of components. Finally, the
composition engine merges all instances of advices with the initial assembly. It generates a
single instance of advice that will be woven as the final assembly. In the next section, we will
present more in details those processes.

4.2.4.1 Pointcut matching and advice factory

The weaver has a list of aspects of assembly that have been selected by users for the
adaptation of an application. Their weaving in the target assembly depends on the evaluation
of pointcuts. When a joinpoint is identified for each pointcut rules of an AA, it becomes
relevant. (FIG. 18). Then the advice factory generates instances of advices, replacing variable
components in advices of selected aspects by joinpoints obtained during the weaving. Several
strategies are possible when several joinpoints are identified for a same rules (FIG. 12). An
example can help to understand the different options: let us consider an application composed
of a pair of switch and a pair of lights. A first strategy would create two combinations: the

169WComp, a Middleware for Ubiquitous Computing

Fig. 16. The weaving process

first containing the first switch and the first lamp, and the second consisting of the second
switch and the second lamp. An ‘’all combination” strategy would create the combinations of
all pairs of switches and lights. The choice of a strategy is up to the designer.

4.2.4.2 Conflict identification

Two instances of advice are conflicting (interacting) when they have at least one joinpoint in
common. So, when several instances of advice and the base assembly are composed, some
conflicts may occur. They have to be detected and considered by the weaver. Some operators
in the advice language can define how conflicts should be managed. As an example, using
ISL4WComp, the call and delegate operators are replaced by conflicting rules, but do not
define any order when there are more than two rules conflicting.

4.2.4.3 Instances of advice composition

As we have seen, several AA can be applied on the same application. In the ISL4WComp
language (4.2.3.2), operators are based on a set of logical rules that ensure the property
of symmetry to the instance of advice composition. This property is composed of three
subproperties: associativity, commutativity and idempotency. These logical rules are grouped
in a matrix of composition operators ensuring the three subproperties. AA composition is
an implementation of formal works on the composition of logical rules (Cheung-Foo-Wo,
Blay-Fornarino, Tigli, Déry, Emsellem & Riveill (2006)). According to those logical rules, the
weaver is able to resolve AA’s rules conflicts while ensuring the symmetry property of the
weaving operation. So that the order in which rules are merged is not important and neither
is the order in which instances of AA are woven.

4.2.4.4 Adaptations Triggering

In the manner of automatons cycles, consisting of a phase of acquisition (storage of inputs),
then processing and finally writing outputs, we’re talking about weaving cycle (Figure 3).
Inputs are AA and an assembly, processing is the weaving process and output is a new
assembly, a new application. In order to be reactive, the weaver can be triggered in two ways:

User-driven by changing the set of AAs given as input to the weaver. This can be done by
selecting/deselecting or adding/removing aspects of assembly at runtime. When the set
of AA is modified, the weaver is triggered, leading to adaptation if an added AA can be
applied or if an AA has been removed.

170 Ubiquitous Computing

Infrastructure-driven when a new device appears or disappears in the environment, a new
component communicating with the device, is dynamically instantiated in or removed
from the assembly. The adaptation process is triggered and only AAs that can be woven
according to newly available components are applied. AA over SLCA benefits from the
dynamicity of such an architecture. They can be triggered when a proxy appears into a
container since it sends a notification trough its structural interface when a new component
is instantiated.

Fig. 17. Triggering mechanisms

An important point for the reactivity of such a mechanism is that the system doesn’t require
any information about the state of the software infrastructure. With a dynamic of its own,
the infrastructure imposes its pace. However, during a weaving cycle, the system does not
tolerate other disruptions (FIG 17).
Therefore, the life-cycle of an AA passes through various states (FIG 18). Originally an AA
is in an unselected state. This means that the user does not want to apply it. In such a case,
its pointcuts are not even evaluated. When an AA is selected, its pointcuts are evaluated.
They will be evaluated for each modification of the assembly on which will be applied the
AA. If some joinpoints are satisfying all the pointcut rules of an AA, it becomes relevant before
being woven. AA that were not relevant may become, unless a new component appears in
the application assembly. Similarly, those that have been woven can become disapplicated
and still selected if an entity identified by their pointcut disappear.

Fig. 18. AA life cycle

4.3 Synthesis
Aspect of Assembly are a model of compositional adaptation mechanism triggered by events
from the software infrastructure. The model is generic enough to allow its use in various fields
and for various concerns. According to the language used to express AA, various adaptations
policies and composition policies can be defined. The ISL4WComp language helps building
safe adaptations thanks to the property of symmetry and the respect of components blackbox
properties.

171WComp, a Middleware for Ubiquitous Computing

Fig. 16. The weaving process

first containing the first switch and the first lamp, and the second consisting of the second
switch and the second lamp. An ‘’all combination” strategy would create the combinations of
all pairs of switches and lights. The choice of a strategy is up to the designer.

4.2.4.2 Conflict identification

Two instances of advice are conflicting (interacting) when they have at least one joinpoint in
common. So, when several instances of advice and the base assembly are composed, some
conflicts may occur. They have to be detected and considered by the weaver. Some operators
in the advice language can define how conflicts should be managed. As an example, using
ISL4WComp, the call and delegate operators are replaced by conflicting rules, but do not
define any order when there are more than two rules conflicting.

4.2.4.3 Instances of advice composition

As we have seen, several AA can be applied on the same application. In the ISL4WComp
language (4.2.3.2), operators are based on a set of logical rules that ensure the property
of symmetry to the instance of advice composition. This property is composed of three
subproperties: associativity, commutativity and idempotency. These logical rules are grouped
in a matrix of composition operators ensuring the three subproperties. AA composition is
an implementation of formal works on the composition of logical rules (Cheung-Foo-Wo,
Blay-Fornarino, Tigli, Déry, Emsellem & Riveill (2006)). According to those logical rules, the
weaver is able to resolve AA’s rules conflicts while ensuring the symmetry property of the
weaving operation. So that the order in which rules are merged is not important and neither
is the order in which instances of AA are woven.

4.2.4.4 Adaptations Triggering

In the manner of automatons cycles, consisting of a phase of acquisition (storage of inputs),
then processing and finally writing outputs, we’re talking about weaving cycle (Figure 3).
Inputs are AA and an assembly, processing is the weaving process and output is a new
assembly, a new application. In order to be reactive, the weaver can be triggered in two ways:

User-driven by changing the set of AAs given as input to the weaver. This can be done by
selecting/deselecting or adding/removing aspects of assembly at runtime. When the set
of AA is modified, the weaver is triggered, leading to adaptation if an added AA can be
applied or if an AA has been removed.

170 Ubiquitous Computing

Infrastructure-driven when a new device appears or disappears in the environment, a new
component communicating with the device, is dynamically instantiated in or removed
from the assembly. The adaptation process is triggered and only AAs that can be woven
according to newly available components are applied. AA over SLCA benefits from the
dynamicity of such an architecture. They can be triggered when a proxy appears into a
container since it sends a notification trough its structural interface when a new component
is instantiated.

Fig. 17. Triggering mechanisms

An important point for the reactivity of such a mechanism is that the system doesn’t require
any information about the state of the software infrastructure. With a dynamic of its own,
the infrastructure imposes its pace. However, during a weaving cycle, the system does not
tolerate other disruptions (FIG 17).
Therefore, the life-cycle of an AA passes through various states (FIG 18). Originally an AA
is in an unselected state. This means that the user does not want to apply it. In such a case,
its pointcuts are not even evaluated. When an AA is selected, its pointcuts are evaluated.
They will be evaluated for each modification of the assembly on which will be applied the
AA. If some joinpoints are satisfying all the pointcut rules of an AA, it becomes relevant before
being woven. AA that were not relevant may become, unless a new component appears in
the application assembly. Similarly, those that have been woven can become disapplicated
and still selected if an entity identified by their pointcut disappear.

Fig. 18. AA life cycle

4.3 Synthesis
Aspect of Assembly are a model of compositional adaptation mechanism triggered by events
from the software infrastructure. The model is generic enough to allow its use in various fields
and for various concerns. According to the language used to express AA, various adaptations
policies and composition policies can be defined. The ISL4WComp language helps building
safe adaptations thanks to the property of symmetry and the respect of components blackbox
properties.

171WComp, a Middleware for Ubiquitous Computing

5. Experiments

To validate our works in term of performances some experiments on service composition and
adaptations have been made. First, we will present some results on the creation time of basic
components in a composite service. Second, we will describe some results on the major step
of the adaptation process and for the overall process.

5.1 Experiments on service composition
The SLCA model has been projected into an implementation called SharpWComp 2.0, which
was deposed as copyrighted software in France, used and developed in three programs of the
French National Research Agency (ANR). Service composition in pervasive computing needs
to be reactive to take into account changes of the infrastructure quickly and to adapt to users’
needs. We measured time of creation and destruction of components in a composite service in
SharpWComp 2.0 (FIG. 21).

Fig. 19. Component creation and destruction time measures.

The creation time of basic components, as well as proxy components, is constant, around 3ms.
Therefore, to create n components, 3 × n ms are needed. The removal of such components
couldn’t have been measured, because we are in a managed memory environment. This is
equivalent to dereference the instance of the component, and remove it from the container’s
list, which was too fast to be measured. Link creation and destruction time are also too
simple operations and could not be measured. These measures correspond to the Lightweight
Component Architecture (LCA). For probe components, that rely, in SharpWComp 2.0, on
Intel’s C# UPnP stack, the creation and destruction time are more important. This is due to the
fact that when changing the service interface of a composite service, service advertisements
are sent to inform that the previous interface is no longer valid, and then they are reissued
with the new interface. With UPnP, an advertisement has to be made for each existing service,
so if we consider that a probe component creates a service, every new probe will correspond
to sending one more message each time. This is why adding the fortieth probe will take nearly
one second
The generation time for proxy component is an important factor in our model. We measured it
for a standard light device, containing ten methods divided into two services and two evented
variables: the average value is 140.6ms. Thus, the time elapsed from the appearance of a
service on the infrastructure to the adaptation of a composite service can be calculated. It will

172 Ubiquitous Computing

be a sum of the proxy component generation time (140.6ms), the component instantiation
time (3ms), the adaptation of the composite service time, depending on how many new
components are created, especially probe components and their number in the former
assembly.

5.2 Experiments on assembly adaptation
We validate our approach in term of reactivity with some experiments on components
assemblies randomly generated. Weaving cycles can be divided into three categories, each
with its own cost in time.

1. Selection of AAs and pointcut matching

2. The advice factory

3. Composition and potentially merging of advice instances.

Those experiments were conducted on a standard personal computer (Athlon x2 1,8GHz
processor). For this purpose various types of components have been instantiated randomly.
The advice factory step is a low cost process in term of duration. Experiments have shown
that for an assembly including about 300 joinpoints and 2 AA, the duration of the process is
between 2 or 3 ms.
Some experiments have been made on pointcut matching duration. They have involved
a pointcut consisting of three rules, and a set of joinpoints ranging from 0-300. Several
experiments have been made, the curve presented in Figure 20 is an average of these series
and the standard derivation between the values obtained. We can conclude that the pointcut
matching process is not time consuming.
The curve presented in Figure 20 shows the experimental results of the merging mechanism
with a conflict probability about 0.5 for the red curve and about 0.33 for the blue curve. These
evaluations highlight the high cost of the merging mechanism which is about 85 percents of
the total cost of the weaving process. Then the probability of conflict between several instances
of advice also plays a major role in the duration of the conflict resolution mechanism.

Fig. 20. Pointcut matching and merging time measures.

Figure 21 presents the duration of a weaving cycle according to the number of joinpoints in
the base assembly. We consider that all these joinpoints are satisfying the pointcut matching
and all combinations between all those joinpoints are generated.
In the field of human computer interactions, it is considered that the user latency at most is
about 100ms. Then, Bérard in (Crowley et al. (2000)) propose that the latency for highly tied
interactive systems must be twice lower than user latency : 50ms. Under this bound, we are
able to compose about 30 components together. On the other hand, ubiquitous computing

173WComp, a Middleware for Ubiquitous Computing

5. Experiments

To validate our works in term of performances some experiments on service composition and
adaptations have been made. First, we will present some results on the creation time of basic
components in a composite service. Second, we will describe some results on the major step
of the adaptation process and for the overall process.

5.1 Experiments on service composition
The SLCA model has been projected into an implementation called SharpWComp 2.0, which
was deposed as copyrighted software in France, used and developed in three programs of the
French National Research Agency (ANR). Service composition in pervasive computing needs
to be reactive to take into account changes of the infrastructure quickly and to adapt to users’
needs. We measured time of creation and destruction of components in a composite service in
SharpWComp 2.0 (FIG. 21).

Fig. 19. Component creation and destruction time measures.

The creation time of basic components, as well as proxy components, is constant, around 3ms.
Therefore, to create n components, 3 × n ms are needed. The removal of such components
couldn’t have been measured, because we are in a managed memory environment. This is
equivalent to dereference the instance of the component, and remove it from the container’s
list, which was too fast to be measured. Link creation and destruction time are also too
simple operations and could not be measured. These measures correspond to the Lightweight
Component Architecture (LCA). For probe components, that rely, in SharpWComp 2.0, on
Intel’s C# UPnP stack, the creation and destruction time are more important. This is due to the
fact that when changing the service interface of a composite service, service advertisements
are sent to inform that the previous interface is no longer valid, and then they are reissued
with the new interface. With UPnP, an advertisement has to be made for each existing service,
so if we consider that a probe component creates a service, every new probe will correspond
to sending one more message each time. This is why adding the fortieth probe will take nearly
one second
The generation time for proxy component is an important factor in our model. We measured it
for a standard light device, containing ten methods divided into two services and two evented
variables: the average value is 140.6ms. Thus, the time elapsed from the appearance of a
service on the infrastructure to the adaptation of a composite service can be calculated. It will

172 Ubiquitous Computing

be a sum of the proxy component generation time (140.6ms), the component instantiation
time (3ms), the adaptation of the composite service time, depending on how many new
components are created, especially probe components and their number in the former
assembly.

5.2 Experiments on assembly adaptation
We validate our approach in term of reactivity with some experiments on components
assemblies randomly generated. Weaving cycles can be divided into three categories, each
with its own cost in time.

1. Selection of AAs and pointcut matching

2. The advice factory

3. Composition and potentially merging of advice instances.

Those experiments were conducted on a standard personal computer (Athlon x2 1,8GHz
processor). For this purpose various types of components have been instantiated randomly.
The advice factory step is a low cost process in term of duration. Experiments have shown
that for an assembly including about 300 joinpoints and 2 AA, the duration of the process is
between 2 or 3 ms.
Some experiments have been made on pointcut matching duration. They have involved
a pointcut consisting of three rules, and a set of joinpoints ranging from 0-300. Several
experiments have been made, the curve presented in Figure 20 is an average of these series
and the standard derivation between the values obtained. We can conclude that the pointcut
matching process is not time consuming.
The curve presented in Figure 20 shows the experimental results of the merging mechanism
with a conflict probability about 0.5 for the red curve and about 0.33 for the blue curve. These
evaluations highlight the high cost of the merging mechanism which is about 85 percents of
the total cost of the weaving process. Then the probability of conflict between several instances
of advice also plays a major role in the duration of the conflict resolution mechanism.

Fig. 20. Pointcut matching and merging time measures.

Figure 21 presents the duration of a weaving cycle according to the number of joinpoints in
the base assembly. We consider that all these joinpoints are satisfying the pointcut matching
and all combinations between all those joinpoints are generated.
In the field of human computer interactions, it is considered that the user latency at most is
about 100ms. Then, Bérard in (Crowley et al. (2000)) propose that the latency for highly tied
interactive systems must be twice lower than user latency : 50ms. Under this bound, we are
able to compose about 30 components together. On the other hand, ubiquitous computing

173WComp, a Middleware for Ubiquitous Computing

Fig. 21. Weaving time measures.

does not necessarily require such a response time. In the field of domotics, a bearable latency
is about 1 second. Under this bound we are able to compose about 100 joinpoints.

6. References

Arnold, K., Scheifler, R., Waldo, J., O’Sullivan, B. & Wollrath, A. (1999). Jini Specification,
Addison-Wesley Longman Publishing Co., Inc.

Berger, L. (2001). Mise en Œuvre des Interactions en Environnements Distribués, Compilés et
Fortement Typés : le Modèle MICADO, Thèse de doctorat, Université de Nice-Sophia
Antipolis - Faculté des sciences et techniques, École doctorale STIC - Informatique.

Bottaro, A., Gérodolle, A. & Lalanda, P. (2007). Pervasive service composition in the
home network, Advanced Information Networking and Applications, 2007. AINA’07. 21st
International Conference on, pp. 596–603.

Breivold, H. & Larsson, M. (2007). Component-Based and Service-Oriented Software
Engineering: Key Concepts and Principles, Software Engineering and Advanced
Applications, 2007. 33rd EUROMICRO Conference on, pp. 13–20.

Brønsted, J., Hansen, K. & Ingstrup, M. (2007). A survey of service composition mechanisms
in ubiquitous computing, Second Workshop on Requirements and Solutions for Pervasive
Software Infrastructures (RSPSI) at Ubicomp.

Bustamante, F., Widener, P. & Schwan, K. (2002). Scalable directory services using proactivity,
Proceedings of Supercomputing 2002.

Cardoso, R. S. & Issarny, V. (2007). Architecting Pervasive Computing Systems for Privacy: A
Survey, Proceedings of the Sixth Working IEEE/IFIP Conference on Software Architecture,
IEEE Computer Society, p. 26.

Chakraborty, D., Joshi, A., Finin, T. & Yesha, Y. (2005). Service Composition for Mobile
Environments, Mobile Networks and Applications 10(4): 435–451.

Champion, M., Ferris, C., Newcomer, E. & Orchard, D. (2002). Web services architecture, W3C
working draft .

Chappell, D. (2007). Introducing SCA, David Chappell and Associates .
Charfi, A. & Mezini, M. (2004). Aspect-oriented web service composition with AO4BPEL,

Lecture Notes in Computer Science pp. 168–182.
Chen, H., Chakraborty, D., Xu, L., Joshi, A. & Finin, T. (2000). Service discovery in the future

electronic market, Proc. Workshop on Knowledge Based Electronic Markets, AAAI2000,
Austin.

174 Ubiquitous Computing

Cheung-Foo-Wo, D. (2009). Adaptation Dynamique par Tissage d’Aspects d’Assemblage, PhD
thesis, Université de Nice - Sophia Antipolis.

Cheung-Foo-Wo, D., Blay-Fornarino, M., Tigli, J., Lavirotte, S. & Riveill, M. (2006). Adaptation
dynamique d’assemblages de dispositifs dirigée par des modèles, 2ème journées sur
l’Ingénieurie Dirigée par les Modèles (IDM).

Cheung-Foo-Wo, D., Blay-Fornarino, M., Tigli, J.-Y., Déry, A.-M., Emsellem, D. & Riveill, M.
(2006). Langage d’aspect pour la composition dynamique de composants embarqués,
RTSI - L’Objet 12(2-3): 89–111.

Clarke, M., Blair, G., Coulson, G. & Parlavantzas, N. (2001). An efficient component model
for the construction of adaptive middleware, Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, Springer-Verlag, pp. 160–178.

Crowley, J., Coutaz, J. & Bérard, F. (2000). Perceptual user interfaces: things that see,
Communications of the ACM 43(3).

David, P. & Ledoux, T. (2006). An aspect-oriented approach for developing self-adaptive
fractal components, Lecture Notes in Computer Science 4089: 82.

Douence, R. & Sudholt, M. (2002). A model and a tool for Event-based Aspect-Oriented
Programming (EAOP), LMO’03 .

Englander, R. (1997). Developing Java Beans, O’Reilly & Associates, Inc.
Escoffier, C. & Hall, R. (2007). Dynamically adaptable applications with iPOJO service

components, Lecture Notes in Computer Science 4829: 113.
Ferry, N., Lavirotte, S., Tigli, J.-Y., Rey, G. & Riveill, M. (2009). Context Adaptative Systems

based on Horizontal Architecture for Ubiquitous Computing, International Conference
on Mobile Technology, Applications and Systems (Mobility).

Guttman, E. (1999). Service Location Protocol: Automatic Discovery of IP Network Services,
IEEE Internet Computing 3: 71–80.

Hourdin, V., Lavirotte, S. & Tigli, J.-Y. (2006). Comparaison des systèmes de services pour
dispositifs, Technical Report I3S/RR-2006-25-FR, Laboratoire I3S, Sophia Antipolis,
France.

Hourdin, V., Tigli, J.-Y., Lavirotte, S., Rey, G. & Riveill, M. (2008). SLCA, composite services
for ubiquitous computing, Proceedings of the 5th International Conference on Mobile
Technology, Applications and Systems(Mobility), p. 8.

Huang, P., Lenders, V., Minnig, P. & Widmer, M. (2002). Mini: A minimal platform comparable
to Jini for ubiquitous computing, International Symposium on Distributed Objects and
Applications (DOA), Irvine.

Kiczales, G., Bobrow, D. & des Rivieres, J. (1999). The art of the metaobject protocol, MIT press.
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. & Griswold, W. (2001). An

overview of AspectJ, ECOOP 2001 - Object-Oriented Programming pp. 327–354.
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. & Irwin, J.

(1997). Aspect-oriented programming, ECOOP, SpringerVerlag.
MacKenzie, M., Laskey, K., McCabe, F., Brown, P. & Metz, R. (2006). Reference model for

service oriented architecture 1.0, Technical Report wd-soa-rm-cd1, OASIS.
URL: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

Papazoglou, M. (2003). Service-oriented computing: Concepts, characteristics and directions,
Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, pp. 3–12.

Pinto, M., Fuentes, L. & Troya, J. (2005). A dynamic component and aspect-oriented platform,
The Computer Journal 48(4): 401.

175WComp, a Middleware for Ubiquitous Computing

Fig. 21. Weaving time measures.

does not necessarily require such a response time. In the field of domotics, a bearable latency
is about 1 second. Under this bound we are able to compose about 100 joinpoints.

6. References

Arnold, K., Scheifler, R., Waldo, J., O’Sullivan, B. & Wollrath, A. (1999). Jini Specification,
Addison-Wesley Longman Publishing Co., Inc.

Berger, L. (2001). Mise en Œuvre des Interactions en Environnements Distribués, Compilés et
Fortement Typés : le Modèle MICADO, Thèse de doctorat, Université de Nice-Sophia
Antipolis - Faculté des sciences et techniques, École doctorale STIC - Informatique.

Bottaro, A., Gérodolle, A. & Lalanda, P. (2007). Pervasive service composition in the
home network, Advanced Information Networking and Applications, 2007. AINA’07. 21st
International Conference on, pp. 596–603.

Breivold, H. & Larsson, M. (2007). Component-Based and Service-Oriented Software
Engineering: Key Concepts and Principles, Software Engineering and Advanced
Applications, 2007. 33rd EUROMICRO Conference on, pp. 13–20.

Brønsted, J., Hansen, K. & Ingstrup, M. (2007). A survey of service composition mechanisms
in ubiquitous computing, Second Workshop on Requirements and Solutions for Pervasive
Software Infrastructures (RSPSI) at Ubicomp.

Bustamante, F., Widener, P. & Schwan, K. (2002). Scalable directory services using proactivity,
Proceedings of Supercomputing 2002.

Cardoso, R. S. & Issarny, V. (2007). Architecting Pervasive Computing Systems for Privacy: A
Survey, Proceedings of the Sixth Working IEEE/IFIP Conference on Software Architecture,
IEEE Computer Society, p. 26.

Chakraborty, D., Joshi, A., Finin, T. & Yesha, Y. (2005). Service Composition for Mobile
Environments, Mobile Networks and Applications 10(4): 435–451.

Champion, M., Ferris, C., Newcomer, E. & Orchard, D. (2002). Web services architecture, W3C
working draft .

Chappell, D. (2007). Introducing SCA, David Chappell and Associates .
Charfi, A. & Mezini, M. (2004). Aspect-oriented web service composition with AO4BPEL,

Lecture Notes in Computer Science pp. 168–182.
Chen, H., Chakraborty, D., Xu, L., Joshi, A. & Finin, T. (2000). Service discovery in the future

electronic market, Proc. Workshop on Knowledge Based Electronic Markets, AAAI2000,
Austin.

174 Ubiquitous Computing

Cheung-Foo-Wo, D. (2009). Adaptation Dynamique par Tissage d’Aspects d’Assemblage, PhD
thesis, Université de Nice - Sophia Antipolis.

Cheung-Foo-Wo, D., Blay-Fornarino, M., Tigli, J., Lavirotte, S. & Riveill, M. (2006). Adaptation
dynamique d’assemblages de dispositifs dirigée par des modèles, 2ème journées sur
l’Ingénieurie Dirigée par les Modèles (IDM).

Cheung-Foo-Wo, D., Blay-Fornarino, M., Tigli, J.-Y., Déry, A.-M., Emsellem, D. & Riveill, M.
(2006). Langage d’aspect pour la composition dynamique de composants embarqués,
RTSI - L’Objet 12(2-3): 89–111.

Clarke, M., Blair, G., Coulson, G. & Parlavantzas, N. (2001). An efficient component model
for the construction of adaptive middleware, Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, Springer-Verlag, pp. 160–178.

Crowley, J., Coutaz, J. & Bérard, F. (2000). Perceptual user interfaces: things that see,
Communications of the ACM 43(3).

David, P. & Ledoux, T. (2006). An aspect-oriented approach for developing self-adaptive
fractal components, Lecture Notes in Computer Science 4089: 82.

Douence, R. & Sudholt, M. (2002). A model and a tool for Event-based Aspect-Oriented
Programming (EAOP), LMO’03 .

Englander, R. (1997). Developing Java Beans, O’Reilly & Associates, Inc.
Escoffier, C. & Hall, R. (2007). Dynamically adaptable applications with iPOJO service

components, Lecture Notes in Computer Science 4829: 113.
Ferry, N., Lavirotte, S., Tigli, J.-Y., Rey, G. & Riveill, M. (2009). Context Adaptative Systems

based on Horizontal Architecture for Ubiquitous Computing, International Conference
on Mobile Technology, Applications and Systems (Mobility).

Guttman, E. (1999). Service Location Protocol: Automatic Discovery of IP Network Services,
IEEE Internet Computing 3: 71–80.

Hourdin, V., Lavirotte, S. & Tigli, J.-Y. (2006). Comparaison des systèmes de services pour
dispositifs, Technical Report I3S/RR-2006-25-FR, Laboratoire I3S, Sophia Antipolis,
France.

Hourdin, V., Tigli, J.-Y., Lavirotte, S., Rey, G. & Riveill, M. (2008). SLCA, composite services
for ubiquitous computing, Proceedings of the 5th International Conference on Mobile
Technology, Applications and Systems(Mobility), p. 8.

Huang, P., Lenders, V., Minnig, P. & Widmer, M. (2002). Mini: A minimal platform comparable
to Jini for ubiquitous computing, International Symposium on Distributed Objects and
Applications (DOA), Irvine.

Kiczales, G., Bobrow, D. & des Rivieres, J. (1999). The art of the metaobject protocol, MIT press.
Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. & Griswold, W. (2001). An

overview of AspectJ, ECOOP 2001 - Object-Oriented Programming pp. 327–354.
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. & Irwin, J.

(1997). Aspect-oriented programming, ECOOP, SpringerVerlag.
MacKenzie, M., Laskey, K., McCabe, F., Brown, P. & Metz, R. (2006). Reference model for

service oriented architecture 1.0, Technical Report wd-soa-rm-cd1, OASIS.
URL: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

Papazoglou, M. (2003). Service-oriented computing: Concepts, characteristics and directions,
Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on, pp. 3–12.

Pinto, M., Fuentes, L. & Troya, J. (2005). A dynamic component and aspect-oriented platform,
The Computer Journal 48(4): 401.

175WComp, a Middleware for Ubiquitous Computing

Preuß, S. (2003). JESA Service Discovery Protocol: Efficient Service discovery in ad-hoc
networks, Lecture notes in computer science pp. 1196–1201.

Sedov, I., Preuss, S., Cap, C., Haase, M. & Timmermann, D. (2003). Time and energy
efficient service discovery in Bluetooth, Vehicular Technology Conference, 2003. VTC
2003-Spring. The 57th IEEE Semiannual, Vol. 1.

Singh, M. & Huhns, M. (2005). Service-oriented computing: semantics, processes, agents, John
Wiley & Sons Inc.

Szyperski, C., Bosch, J. & Weck, W. (1999). Component Oriented Programming, Lecture Notes
in Computer Science 1743: 184–184.

Tigli, J.-Y., Lavirotte, S., Rey, G., Hourdin, V. & Riveill, M. (2009a). Lightweight Service
Oriented Architecture for Pervasive Computing, International Journal of Computer
Science Issues (IJCSI) 4: 1–9.

Tigli, J.-Y., Lavirotte, S., Rey, G., Hourdin, V. & Riveill, M. (2009b). Lightweight Service
Oriented Architecture for Pervasive Computing, International Journal of Computer
Science Issues (IJCSI) 4.

Vallée, M., Ramparany, F. & Vercouter, L. (2005). Flexible composition of smart device services,
The 2005 International Conference on Pervasive Systems and Computing(PSC-05).

Ververidis, C. & Polyzos, G. (2008). Service Discovery for Mobile Ad Hoc Networks: A Survey
of Issues and Techniques, IEEE Communications Surveys and Tutorials .

Vinoski, S. & Inc, I. (1997). CORBA: integrating diverse applications within distributed
heterogeneous environments, IEEE Communications Magazine 35(2): 46–55.

Zambrano, A., Gordillo, S. & Jaureguiberry, I. (2004). Aspect-based adaptation for ubiquitous
software, Mobile and Ubiquitous Information Access pp. 136–140.

Zhu, F., Mutka, M. & Ni, L. (2005). Service discovery in pervasive computing environments,
IEEE Pervasive Computing 4(4): 81–90.

176 Ubiquitous Computing

9

Semantically Enriched Integration Framework
for Ubiquitous Computing Environment

Habib Abdulrab, Eduard Babkin and Oleg Kozyrev
1LITIS laboratory, INSA de Rouen

2State University — Higher School of Economics
1France
2Russia

1. Introduction
Miniaturization, reduced costs of electronic components, and advanced information
technologies now open practical possibilities to design, develop and deploy thousands of
the coin-sized sensors and mechanical devices at multiple locations. This kind of software-
hardware systems, pervasively available to the user in everyday activities, is named
Ubiquitous Computing Environment (UCE) (Abowd & Mynatt, 2000; Niemelä & Latvakoski
2004), or even - Ubiquitous Smart Space (Jeng, 2004 ; Kawahara et al., 2004). Establishing ad
hoc communication via wireless media numerous elements of the UCE provide the user with
real-time global sensing, context-aware informational retrieval, and enhanced visualization
capabilities. In effect, they give extremely new abilities to look at and interact with our
habitat. Many researches made a contribution to developing of Sensors and Actuators
Networks (SANET), which became a foundation of UCE. There are tiny hardware devices
available in practice for building SANET, embedded operating systems, wireless network
protocols, and algorithms of effective energy management (Misc.Tinyos, 2010; Feng et al.,
2002; Tilak et al., 2002; Crossbow, 2010). Now researchers’ community demonstrates
growing interest to resolving the next important problem that will be faced by the
developers and the users of UCE since a short time. That is the problem of semantic
interoperability in the joint context of SANET, existing IT-infrastructure and people society.
Resent results (Branch et al., 2005 ; Curino et al., 2005 ; Tsetsos et al., 2005; Ahamed et al.,
2004; Tokunaga et al., 2004 ; Chan et al., 2005) show applicability of the middleware
paradigm for the solution of that problem, and provide for approaches facilitating
integration of SANET on the application level of enterprise systems.
However in the case of actual wide-area UCE, multiple SANETs spread across
administrative borders, enterprises, and even social cultures. Deep involving of tiny
computing devices in our everyday activities requires closer coincidence of computer
interfaces with people’s way of perception and mental world models. As activities and
social experience are different, the mental world models also differ. So, interfacing with the
same sensors can be absolutely dissimilar in respect with the style, modality and
informational contents. The same raw data collected by sensors can be interpreted
differently and can be applied in absolutely divergent contexts. This simple fact breaks a
“closed world” assumption, and requires shedding light of researcher’s attention on such

Preuß, S. (2003). JESA Service Discovery Protocol: Efficient Service discovery in ad-hoc
networks, Lecture notes in computer science pp. 1196–1201.

Sedov, I., Preuss, S., Cap, C., Haase, M. & Timmermann, D. (2003). Time and energy
efficient service discovery in Bluetooth, Vehicular Technology Conference, 2003. VTC
2003-Spring. The 57th IEEE Semiannual, Vol. 1.

Singh, M. & Huhns, M. (2005). Service-oriented computing: semantics, processes, agents, John
Wiley & Sons Inc.

Szyperski, C., Bosch, J. & Weck, W. (1999). Component Oriented Programming, Lecture Notes
in Computer Science 1743: 184–184.

Tigli, J.-Y., Lavirotte, S., Rey, G., Hourdin, V. & Riveill, M. (2009a). Lightweight Service
Oriented Architecture for Pervasive Computing, International Journal of Computer
Science Issues (IJCSI) 4: 1–9.

Tigli, J.-Y., Lavirotte, S., Rey, G., Hourdin, V. & Riveill, M. (2009b). Lightweight Service
Oriented Architecture for Pervasive Computing, International Journal of Computer
Science Issues (IJCSI) 4.

Vallée, M., Ramparany, F. & Vercouter, L. (2005). Flexible composition of smart device services,
The 2005 International Conference on Pervasive Systems and Computing(PSC-05).

Ververidis, C. & Polyzos, G. (2008). Service Discovery for Mobile Ad Hoc Networks: A Survey
of Issues and Techniques, IEEE Communications Surveys and Tutorials .

Vinoski, S. & Inc, I. (1997). CORBA: integrating diverse applications within distributed
heterogeneous environments, IEEE Communications Magazine 35(2): 46–55.

Zambrano, A., Gordillo, S. & Jaureguiberry, I. (2004). Aspect-based adaptation for ubiquitous
software, Mobile and Ubiquitous Information Access pp. 136–140.

Zhu, F., Mutka, M. & Ni, L. (2005). Service discovery in pervasive computing environments,
IEEE Pervasive Computing 4(4): 81–90.

176 Ubiquitous Computing

9

Semantically Enriched Integration Framework
for Ubiquitous Computing Environment

Habib Abdulrab, Eduard Babkin and Oleg Kozyrev
1LITIS laboratory, INSA de Rouen

2State University — Higher School of Economics
1France
2Russia

1. Introduction
Miniaturization, reduced costs of electronic components, and advanced information
technologies now open practical possibilities to design, develop and deploy thousands of
the coin-sized sensors and mechanical devices at multiple locations. This kind of software-
hardware systems, pervasively available to the user in everyday activities, is named
Ubiquitous Computing Environment (UCE) (Abowd & Mynatt, 2000; Niemelä & Latvakoski
2004), or even - Ubiquitous Smart Space (Jeng, 2004 ; Kawahara et al., 2004). Establishing ad
hoc communication via wireless media numerous elements of the UCE provide the user with
real-time global sensing, context-aware informational retrieval, and enhanced visualization
capabilities. In effect, they give extremely new abilities to look at and interact with our
habitat. Many researches made a contribution to developing of Sensors and Actuators
Networks (SANET), which became a foundation of UCE. There are tiny hardware devices
available in practice for building SANET, embedded operating systems, wireless network
protocols, and algorithms of effective energy management (Misc.Tinyos, 2010; Feng et al.,
2002; Tilak et al., 2002; Crossbow, 2010). Now researchers’ community demonstrates
growing interest to resolving the next important problem that will be faced by the
developers and the users of UCE since a short time. That is the problem of semantic
interoperability in the joint context of SANET, existing IT-infrastructure and people society.
Resent results (Branch et al., 2005 ; Curino et al., 2005 ; Tsetsos et al., 2005; Ahamed et al.,
2004; Tokunaga et al., 2004 ; Chan et al., 2005) show applicability of the middleware
paradigm for the solution of that problem, and provide for approaches facilitating
integration of SANET on the application level of enterprise systems.
However in the case of actual wide-area UCE, multiple SANETs spread across
administrative borders, enterprises, and even social cultures. Deep involving of tiny
computing devices in our everyday activities requires closer coincidence of computer
interfaces with people’s way of perception and mental world models. As activities and
social experience are different, the mental world models also differ. So, interfacing with the
same sensors can be absolutely dissimilar in respect with the style, modality and
informational contents. The same raw data collected by sensors can be interpreted
differently and can be applied in absolutely divergent contexts. This simple fact breaks a
“closed world” assumption, and requires shedding light of researcher’s attention on such

 Ubiquitous Computing

178

issues as explicit meta-data representation, and formal modelling of system properties and
interfaces to achieve semantic interoperability.
In our research we explore ways to extend existing partial middleware solutions in UCE
with a consistent model-driven methodology for semi-automated design and development
of semantic integration components called “Ontology Mediators”. The main purpose of
Ontology Mediator is communication with SANETs, data integration and seamless fusion of
diverging real-world concepts and relationships in accordance with information needs of
certain single user or a small user’s group. Depending on specific conditions and
requirements, implementation of Ontology Mediator varies from specialized middleware
components to reconfigurable hardware devices. Tailored for local ad hoc requirements
Ontology Mediator provides strong support for the claim (Herring, 2000) “…that computer
products now eventually progress from large, general-purpose, impersonal static forms to
portable, personal, flexible, market-targeted forms. Personalization, flexibility, and quick
time to market dictates a ‘quick turn‘ design approach.”
During domain modelling, design, and development of Ontology Mediators different end-
user tools, component libraries and algorithms should be used. No doubt, the best results
can be achieved when all these elements are combined into the vertical framework
supporting all stages of the methodology. We have designed architecture of such semantic
interoperability framework suitable for loosely coupled distributed systems like SANETs,
and developed a number of software and hardware prototypes to evaluate benefits and
afford proof of Ontology Mediator and the design methodology. This framework supports
semi-automated design and development of Ontology Mediators, as well as it allows for
designing and establishing coherent information flow between different components on the
basis of coordinated ontology transformation activities. In the course of the prototype
implementation we applied RDF-model transformations in order to provide semantic
interoperability and semantic validation, and explored different kinds of software
technologies (the JavaSpace, JMS Messaging, and CORBA). Altogether, these contributions
are used for rapid development of highly customized Ontology Mediators in UCE.
In this work we describe most important characteristics of the proposed framework as
follows. In Section 3 our motivation is explained using a specific use case of semantic
integration. Section 3 gives a short description of foundations and relevant topics to our
research. Section 4 contains explanation of major steps in our methodology of Ontology
Mediator’s design. The general architecture of the supporting framework is presented in
Section 5. Sections 6 and 7 give a detailed view on the most important components of the
framework: the Transformation Engine (T-Engine) and the extensible hardware platform.
We summarize obtained results and compare them with other known approaches in the
conclusion (Section 8).

2. Motivation
In order to support necessity of a specific methodology for design and development of
Ontology Mediators we propose to concern a case study of their application in the context of
wide-area UCE. In this case study modern seaports were chosen for consideration due to
significant role of sea transportation in economics and its great impact on environmental
safety and security.
Since last thirty years seaport infrastructure became an extremely complex system where
multiple physical objects with interfering properties, abstract logical concepts and

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

179

normative procedures are tightly coupled to support 24-hour cargo operations,
transportation logistics, custom and security checking. Although a usual seaport provides
for different services like containers import-export, oil terminals and passengers
transportation, the former kind of services plays a major role. Different authors estimate
amount of container operations from 80 to 90 percent of total world cargo throughput. And
most of these operations are concentrated at a relatively small number of huge ports. For
example, in 2003 the total European container throughput was 50 million TEUs (Twenty-
foot Equivalent Units, standard container volume measure); more than half of containers
were processed on the Hamburg-Le Havre range ports (25.4 million TEU). It is expected that
over the next 20 years, demands on seaport capacity will double. However, most major
seaports cannot grow larger, so increase in capacity and port productivity can be achieved
mostly in result of elaborate business process reengineering and broad application of
advanced IT-solutions which obviously include UCE.
To show applicability of UCE and needs for continuously evolving mediation of ontologies
we concern a typical port with berths at the dock facility, a container terminal with gantries,
a container yard with cranes and forklifts, an oil terminal, an extensive land transportation
network including railroads and truck routes and gates. In such complex heterogeneous
environment IT-infrastructure of the seaport should support continuous operations of
different own and third party employees, effective supply chain management, logistic and
highest level of security within maritime and ground port areas as well as surrounding
territories. Apart from internal client-server or service-oriented information systems IT-
infrastructure also includes external information sources and three different kinds of
SANETs spreading across the seaport territory and nearest regions. The sensors of the first
SANET (SANET#1) monitor such environmental conditions as temperature, humidity,
biological and chemical contamination levels. The sensors of the second network
(SANET#2) precisely track container and other objects movement with the help of RFID and
GPS technologies within the seaport. The third network (SANET#3) supports surveillance,
personal identification and access control. At last the wide-area sensors network (SANET#4)
gathers information about traffic conditions for the main regional routes.
Among multiple participants of seaport business-processes we select only three groups of
individuals with specific informational interests for further analysis and assign to them
certain roles: the truck driver (TD-User), the security officer (SO-User), and the manager of
the long-distance goods delivery service (DM-User). Table 1 contains the key issues each
user usually faces in the context of business activities.
Except differences in the world models the users also employ different software application
models. DM-USER has a stable location and primarily uses a desktop application with
service-oriented architecture. SO-USER and TD-USER are equipped with mobile special
terminals; we can say that they are “immersed” into the UCE and should directly interact
with the sensor networks.
Although the world concepts are seemed to be absolutely different for three concerned
users, construction of these concepts requires access to the same sensors measurements at
the lowest level of abstraction.
For example, the world model of TD-USER consists of such high-level concepts as distances,
container dimensions, speed limits, map directions, goods damage risks. For such the model
raw RFID and GPS data acquired by SANET#2 should be transformed, analytically
processed and integrated with traffic and weather condition information of SANET#1 and
SANET#4. While TD-USER remains inside the sea port the sensors of SANET#3 provide for

 Ubiquitous Computing

178

issues as explicit meta-data representation, and formal modelling of system properties and
interfaces to achieve semantic interoperability.
In our research we explore ways to extend existing partial middleware solutions in UCE
with a consistent model-driven methodology for semi-automated design and development
of semantic integration components called “Ontology Mediators”. The main purpose of
Ontology Mediator is communication with SANETs, data integration and seamless fusion of
diverging real-world concepts and relationships in accordance with information needs of
certain single user or a small user’s group. Depending on specific conditions and
requirements, implementation of Ontology Mediator varies from specialized middleware
components to reconfigurable hardware devices. Tailored for local ad hoc requirements
Ontology Mediator provides strong support for the claim (Herring, 2000) “…that computer
products now eventually progress from large, general-purpose, impersonal static forms to
portable, personal, flexible, market-targeted forms. Personalization, flexibility, and quick
time to market dictates a ‘quick turn‘ design approach.”
During domain modelling, design, and development of Ontology Mediators different end-
user tools, component libraries and algorithms should be used. No doubt, the best results
can be achieved when all these elements are combined into the vertical framework
supporting all stages of the methodology. We have designed architecture of such semantic
interoperability framework suitable for loosely coupled distributed systems like SANETs,
and developed a number of software and hardware prototypes to evaluate benefits and
afford proof of Ontology Mediator and the design methodology. This framework supports
semi-automated design and development of Ontology Mediators, as well as it allows for
designing and establishing coherent information flow between different components on the
basis of coordinated ontology transformation activities. In the course of the prototype
implementation we applied RDF-model transformations in order to provide semantic
interoperability and semantic validation, and explored different kinds of software
technologies (the JavaSpace, JMS Messaging, and CORBA). Altogether, these contributions
are used for rapid development of highly customized Ontology Mediators in UCE.
In this work we describe most important characteristics of the proposed framework as
follows. In Section 3 our motivation is explained using a specific use case of semantic
integration. Section 3 gives a short description of foundations and relevant topics to our
research. Section 4 contains explanation of major steps in our methodology of Ontology
Mediator’s design. The general architecture of the supporting framework is presented in
Section 5. Sections 6 and 7 give a detailed view on the most important components of the
framework: the Transformation Engine (T-Engine) and the extensible hardware platform.
We summarize obtained results and compare them with other known approaches in the
conclusion (Section 8).

2. Motivation
In order to support necessity of a specific methodology for design and development of
Ontology Mediators we propose to concern a case study of their application in the context of
wide-area UCE. In this case study modern seaports were chosen for consideration due to
significant role of sea transportation in economics and its great impact on environmental
safety and security.
Since last thirty years seaport infrastructure became an extremely complex system where
multiple physical objects with interfering properties, abstract logical concepts and

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

179

normative procedures are tightly coupled to support 24-hour cargo operations,
transportation logistics, custom and security checking. Although a usual seaport provides
for different services like containers import-export, oil terminals and passengers
transportation, the former kind of services plays a major role. Different authors estimate
amount of container operations from 80 to 90 percent of total world cargo throughput. And
most of these operations are concentrated at a relatively small number of huge ports. For
example, in 2003 the total European container throughput was 50 million TEUs (Twenty-
foot Equivalent Units, standard container volume measure); more than half of containers
were processed on the Hamburg-Le Havre range ports (25.4 million TEU). It is expected that
over the next 20 years, demands on seaport capacity will double. However, most major
seaports cannot grow larger, so increase in capacity and port productivity can be achieved
mostly in result of elaborate business process reengineering and broad application of
advanced IT-solutions which obviously include UCE.
To show applicability of UCE and needs for continuously evolving mediation of ontologies
we concern a typical port with berths at the dock facility, a container terminal with gantries,
a container yard with cranes and forklifts, an oil terminal, an extensive land transportation
network including railroads and truck routes and gates. In such complex heterogeneous
environment IT-infrastructure of the seaport should support continuous operations of
different own and third party employees, effective supply chain management, logistic and
highest level of security within maritime and ground port areas as well as surrounding
territories. Apart from internal client-server or service-oriented information systems IT-
infrastructure also includes external information sources and three different kinds of
SANETs spreading across the seaport territory and nearest regions. The sensors of the first
SANET (SANET#1) monitor such environmental conditions as temperature, humidity,
biological and chemical contamination levels. The sensors of the second network
(SANET#2) precisely track container and other objects movement with the help of RFID and
GPS technologies within the seaport. The third network (SANET#3) supports surveillance,
personal identification and access control. At last the wide-area sensors network (SANET#4)
gathers information about traffic conditions for the main regional routes.
Among multiple participants of seaport business-processes we select only three groups of
individuals with specific informational interests for further analysis and assign to them
certain roles: the truck driver (TD-User), the security officer (SO-User), and the manager of
the long-distance goods delivery service (DM-User). Table 1 contains the key issues each
user usually faces in the context of business activities.
Except differences in the world models the users also employ different software application
models. DM-USER has a stable location and primarily uses a desktop application with
service-oriented architecture. SO-USER and TD-USER are equipped with mobile special
terminals; we can say that they are “immersed” into the UCE and should directly interact
with the sensor networks.
Although the world concepts are seemed to be absolutely different for three concerned
users, construction of these concepts requires access to the same sensors measurements at
the lowest level of abstraction.
For example, the world model of TD-USER consists of such high-level concepts as distances,
container dimensions, speed limits, map directions, goods damage risks. For such the model
raw RFID and GPS data acquired by SANET#2 should be transformed, analytically
processed and integrated with traffic and weather condition information of SANET#1 and
SANET#4. While TD-USER remains inside the sea port the sensors of SANET#3 provide for

 Ubiquitous Computing

180

TD-USER

The shortest and safe route to the uploading position and estimated queuing
time. Average speed of transportation with respect to road conditions, traffic
level and specifics of the goods to be transported. Import-export declaration
for transported goods.

SO-USER

Access privileges for a particular area in the port and privileges assignment
policies. Destination and intermediate checkpoints of vulnerable goods.
Location of the next container for security inspection and the list of necessary
screening and inspections procedures. Possible threats and security risks
with respect to global security alerts, the current situation in the port and
weather conditions. Where in some proximity to a given location specific
goods can be found. Impact of certain kinds of cargo on nearly located
materials and goods. Consequences of port accidents and their influence on
surrounding areas. Risk mitigation routines adapting to the actual situation
and environmental conditions.

DM-USER

Estimated quality of goods in accordance with past and present storage
conditions, duration of travel and other circumstances. The list of the goods
that can be shipped or stored together to reduce costs of operations. Probable
delays in cargo operations due to night-time, weather or other restrictions.
Average time of delivery to the city local storage, demands of remote
customers, estimations of supply levels, schedules of connection between
local carriers and airlines.

Table 1. Subjects of interest for different groups of the users
access control information needed for quickest route determination. For SO-USER following
concepts are necessary: trucks and ships entering the port, results of radiation, chemical,
biological monitoring, oil leakage facts, loading level of oil terminals, number of tankers at
the berths, weather conditions, and permissions violation accidents. For building this model
measurements of SANET#1, SANET#2 and SANET#3 as well as external security
information sources are necessary. Finally DM-USER needs aggregated information in terms
of storage conditions from SANET#1 to predict critical delivery dates. At the same time that
user performs analysis of delivery delays in terms of maximum safe truck speed and cargo
operations limitations (e.g. oil change delays, capacity of oil terminal). These characteristics
can be calculated on the basis of operational data from information systems, local weather
conditions and traffic level measured by SANET#1 and SANET#4.
The described conceptual models and data representation formats are very specific and
sensitive to peculiarities of user’s activities. Proper implementation of these models requires
seamless integration of multiple heterogeneous software and hardware components
operating within different restrictions (e.g. user interfaces and protocols supported, failover
capabilities, battery life, protection class, etc). At the same time continuous and uncorrelated
changes in legal regulations, regional environment, seaport business processes and
underlying infrastructure lead to permanent evolution of integration algorithms, data
structures and communication technologies.
The later condition makes impractical development of a centralized middleware system
responsible for data acquisition and semantic transformation: each time when the user’s
requirements are changed the structure and algorithms of the system are changed
dramatically. Maintenance and integration costs of the centralized approach overcome
practical abilities. Analyzing another extreme of modern distributed information systems,

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

181

the service-oriented architecture, we can point to relatively poor reusability capabilities: for
any new combination of hardware and software platform a considerable amount of efforts is
needed to design and implement an isolated service, even if mapping principles between
different information models are already known on a conceptual level.
In this situation a whole family of semi-automatically generated Ontology Mediators
becomes a more convenient solution. The family of Ontology Mediators includes
middleware components as well as end-user oriented devices located near sources of raw
data. Despite differences in hardware and software design all members of the family of
Ontology Mediators have certain common features: conceptual modelling with the same
modelling tools, reusable hardware and software components, and similar formal
foundations of semantic transformations.
Altogether they play a role of semantic filters that provide only valuable information for the
user or for other information systems in terms of the recipient’s world model. In our seaport
example we can recognize at least four Ontology Mediators supporting users’ activities:
• the software Ontology Mediator that feeds the seaport information system with

information needed for DM-USER;
• the hardware Ontology Mediator combined with the mobile terminal of TD-USER;
• the hardware Ontology Mediator combined with the mobile terminal of SO-USER.
Design, development and continuous maintenance of Ontology Mediators involve many
participants with different skills, roles and administrative responsibilities. We believe that in
order to support the described scenario and facilitate rapid replacement, re-design and
deployment of different kinds of Ontology Mediators an advanced methodology of
automated or semi-automated design should be applied.

3. Formal foundations
From a conceptual point of view our research is related with knowledge engineering and
knowledge integration techniques specialized for pervasive computations (Chen et al., 2004;
Zhou et al., 2005; Hönle et al, 2005). In this area the concept of ontology plays now the
leading role for knowledge representation. It is became a good breeding to refer to the
Gruber’s pioneer definition of ontology as “a specification of a conceptualization” (Gruber,
1995). According to (Sowa, 2000) ontology serves for strong support in detailed study of all
potentially possible entities and their interrelations in some domain of discourse shared by
multiple communities; ontology also enables conceptualization and forming categories of
the entities committed by those communities. This direct connection of the ontology
technique to integration is pointed out by Y. Kalfoglou: “An ontology is an explicit
representation of a shared understanding of the important concepts in some domain of
interest. (Kalgoglou, 2001)” In (Dragan et al., 2006) one can see a good collection of more
recent cross-references, all of them underline ontology support for achieving
interoperability: “Ontology … can be seen as the study of the organization and the nature of
the world independently of the form of our knowledge about it.”
To build the formal foundations for our methodology of Ontology Mediator’s design we
apply a well-defined and elegant mathematical theory of ontology developed at the
University of Karlsruhe (Ehrig, 2007). That theory defines a core ontology (the intentional
aspect of the domain of discourse) as a mathematical structure S = 〈C, ≤C, R, σ, ≤R 〉, where
C – is a set of concept identifiers (concepts for short).
R – is a set of relations identifiers (relations for short).

 Ubiquitous Computing

180

TD-USER

The shortest and safe route to the uploading position and estimated queuing
time. Average speed of transportation with respect to road conditions, traffic
level and specifics of the goods to be transported. Import-export declaration
for transported goods.

SO-USER

Access privileges for a particular area in the port and privileges assignment
policies. Destination and intermediate checkpoints of vulnerable goods.
Location of the next container for security inspection and the list of necessary
screening and inspections procedures. Possible threats and security risks
with respect to global security alerts, the current situation in the port and
weather conditions. Where in some proximity to a given location specific
goods can be found. Impact of certain kinds of cargo on nearly located
materials and goods. Consequences of port accidents and their influence on
surrounding areas. Risk mitigation routines adapting to the actual situation
and environmental conditions.

DM-USER

Estimated quality of goods in accordance with past and present storage
conditions, duration of travel and other circumstances. The list of the goods
that can be shipped or stored together to reduce costs of operations. Probable
delays in cargo operations due to night-time, weather or other restrictions.
Average time of delivery to the city local storage, demands of remote
customers, estimations of supply levels, schedules of connection between
local carriers and airlines.

Table 1. Subjects of interest for different groups of the users
access control information needed for quickest route determination. For SO-USER following
concepts are necessary: trucks and ships entering the port, results of radiation, chemical,
biological monitoring, oil leakage facts, loading level of oil terminals, number of tankers at
the berths, weather conditions, and permissions violation accidents. For building this model
measurements of SANET#1, SANET#2 and SANET#3 as well as external security
information sources are necessary. Finally DM-USER needs aggregated information in terms
of storage conditions from SANET#1 to predict critical delivery dates. At the same time that
user performs analysis of delivery delays in terms of maximum safe truck speed and cargo
operations limitations (e.g. oil change delays, capacity of oil terminal). These characteristics
can be calculated on the basis of operational data from information systems, local weather
conditions and traffic level measured by SANET#1 and SANET#4.
The described conceptual models and data representation formats are very specific and
sensitive to peculiarities of user’s activities. Proper implementation of these models requires
seamless integration of multiple heterogeneous software and hardware components
operating within different restrictions (e.g. user interfaces and protocols supported, failover
capabilities, battery life, protection class, etc). At the same time continuous and uncorrelated
changes in legal regulations, regional environment, seaport business processes and
underlying infrastructure lead to permanent evolution of integration algorithms, data
structures and communication technologies.
The later condition makes impractical development of a centralized middleware system
responsible for data acquisition and semantic transformation: each time when the user’s
requirements are changed the structure and algorithms of the system are changed
dramatically. Maintenance and integration costs of the centralized approach overcome
practical abilities. Analyzing another extreme of modern distributed information systems,

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

181

the service-oriented architecture, we can point to relatively poor reusability capabilities: for
any new combination of hardware and software platform a considerable amount of efforts is
needed to design and implement an isolated service, even if mapping principles between
different information models are already known on a conceptual level.
In this situation a whole family of semi-automatically generated Ontology Mediators
becomes a more convenient solution. The family of Ontology Mediators includes
middleware components as well as end-user oriented devices located near sources of raw
data. Despite differences in hardware and software design all members of the family of
Ontology Mediators have certain common features: conceptual modelling with the same
modelling tools, reusable hardware and software components, and similar formal
foundations of semantic transformations.
Altogether they play a role of semantic filters that provide only valuable information for the
user or for other information systems in terms of the recipient’s world model. In our seaport
example we can recognize at least four Ontology Mediators supporting users’ activities:
• the software Ontology Mediator that feeds the seaport information system with

information needed for DM-USER;
• the hardware Ontology Mediator combined with the mobile terminal of TD-USER;
• the hardware Ontology Mediator combined with the mobile terminal of SO-USER.
Design, development and continuous maintenance of Ontology Mediators involve many
participants with different skills, roles and administrative responsibilities. We believe that in
order to support the described scenario and facilitate rapid replacement, re-design and
deployment of different kinds of Ontology Mediators an advanced methodology of
automated or semi-automated design should be applied.

3. Formal foundations
From a conceptual point of view our research is related with knowledge engineering and
knowledge integration techniques specialized for pervasive computations (Chen et al., 2004;
Zhou et al., 2005; Hönle et al, 2005). In this area the concept of ontology plays now the
leading role for knowledge representation. It is became a good breeding to refer to the
Gruber’s pioneer definition of ontology as “a specification of a conceptualization” (Gruber,
1995). According to (Sowa, 2000) ontology serves for strong support in detailed study of all
potentially possible entities and their interrelations in some domain of discourse shared by
multiple communities; ontology also enables conceptualization and forming categories of
the entities committed by those communities. This direct connection of the ontology
technique to integration is pointed out by Y. Kalfoglou: “An ontology is an explicit
representation of a shared understanding of the important concepts in some domain of
interest. (Kalgoglou, 2001)” In (Dragan et al., 2006) one can see a good collection of more
recent cross-references, all of them underline ontology support for achieving
interoperability: “Ontology … can be seen as the study of the organization and the nature of
the world independently of the form of our knowledge about it.”
To build the formal foundations for our methodology of Ontology Mediator’s design we
apply a well-defined and elegant mathematical theory of ontology developed at the
University of Karlsruhe (Ehrig, 2007). That theory defines a core ontology (the intentional
aspect of the domain of discourse) as a mathematical structure S = 〈C, ≤C, R, σ, ≤R 〉, where
C – is a set of concept identifiers (concepts for short).
R – is a set of relations identifiers (relations for short).

 Ubiquitous Computing

182

≤C – is a partial order on C, called concept hierarchy or taxonomy.
σ – a function R C×C called signature, such that σ I= 〈domI, ranI〉, where r ∈ R, domain
domI, range ranI.
≤R – is a partial order on R, called relation hierarchy, such that r1 ≤R r2 if and only if
dom(r1) ≤C dom(r2) and ran(r1) ≤C ran(r2).
Domain-specific dependencies of concepts and relations in S are formulated by a certain
logical language (e.g. first-order predicate calculus) which fits a rather generic definition:
Let L be a logical language. An L-axiom system for a core ontology is a pair A =
<AI, α>,where
AI – is a set of axioms identifiers.
α – is a mapping AI L
The elements of A are called axioms.
Extensional definition of the domain of discourse (assertions or facts about instances and
relations) is given by description of the knowledge base KB. KB is the following structure:
KB = 〈C, R, I, ιC, ιR 〉, where
C – is a set of concepts.
R – is a set of relations.
I – is a set of instance identifiers (instances for short).
ιC – is a function C P(I) called concept instantiation.

ιR – is a function C P(I2) called relation instantiation; it has such properties:

∀ r ∈ R, ιRI ⊆ ιC (domI) ×ιC (ranI).
The theory provides also names for concepts and relations calling them signs, and defines a
lexicon for ontology:
Lex = 〈GC, GR, GI, RefC, RefR, RefI 〉, where
GC – is a set of concepts signs.
GR – is a set of relations signs.
GI – is a set of instances signs.
RefC – is a relation RefC ⊆ GC×C called lexical reference for concepts.

RefR – is a relation RefR ⊆ GR×R called lexical reference for relations.

RefI – is a relation RefI ⊆ GI×I called lexical reference for instances.
In summary, a complete ontology O is defined through the following structure:
O = 〈S, A, KB, Lex 〉, where
S – is a core ontology.
A – is the L-axiom system.
KB – is a knowledge base.
Lex – is a lexicon.
Such strict mathematical theory of ontology along with other similar approaches formed a
solid foundation for machine-readable representation of ontologies in modern information
systems and facilitated their practical applications. For example, the research line known as
Semantic Web pays great attention to various practical aspects of ontology manipulation for
information heterogeneity resolution in the Internet. Recent examples of XML language
application in coordination frameworks (Niemelä & Latvakoski, 2004 ; Tokunaga et al.,
2004) illustrate that Semantic Web solutions can be successfully adopted and applied in
many different domains. It seems for us that potential usefulness of the Resource

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

183

Description Framework (RDF) and the RDF Scheme (RDFS) standards (Jeng, 2004),
proposed initially for semantic enrichment of WEB contents, is much greater. In order to
achieve semantic interoperability for UCE we suggest applying RDF standards as the basic
technique for the interoperable description of the knowledge base KB. Fusion of the formal
theory of ontology together with RDF allows representing the knowledge base in the single
frame of semi-structured data models. In (Abiteboul, 1995) semi-structured data are defined
as data that is neither raw, nor strictly typed as in conventional database systems. A
convenient approach to represent semi-structured data uses such edge-labeled graph
structures which contain both type definition and actual data elements (fig.1).

Resource A

Resource B

Resource C

Value 1 Value 2

Link 1

Link 2

Link 3Link 4

a)
Resource A1

Resource C1

Value

Link 11

Link 22

b)
Resource of type A

Resource of type C

Value 1 Value 2

Resource of type B

Value 3 Value 4

Resource of type C

c)

Fig. 1. Three different kinds of semi-structured data

Describing this case, P. Buneman says about “blurring the distinction between schema and
instance” and proposes a suitable formalism for modelling and querying such structures
(Buneman et al., 1996; Buneman, 1997). In accordance with the Buneman’s approach a semi-
structured database is represented in a form of a rooted edge-labelled graph, and a schema
is a rooted graph whose edges are labelled with formulas. A database SDB conforms to a
schema SS if there is a correspondence between the edges in SDB and SS, such that
whenever there is an edge labelled a in SDB, there is a corresponding edge labelled with
predicate p in SS such that p(a) holds.
We can naturally set a correspondence between elements of the RDF semi-structured
database SDB and the knowledge base KB: the set of concepts C and the set of instances I
become the nodes of the graph, and the set of relations R maps to the graph’s edges. In this
context the general problem of achieving semantic interoperability can be looked at as the
task of graph-based ontology transformation. The source graph of the semi-structured
database comprises messages from the sensors networks, and corresponds to the ontology
of IT-infrastructure. Another ontology expresses the user’s domain of discourse in terms of
the knowledge base, and defines permitted structure of the destination graph. Applying the
formal approach and visual cues of graph transformations (Rozenberg, 1997; Hoffmann &
Minas, 2000) we may define a transformation workflow process with the aim to produce the
destination graph of semi-structured database expressed in terms of user’s ontology. The
definition of the transformation workflow process consists of two different kinds of
operations: the data transformation and the structure transformation. The data
transformation uses leaf's values of the source graph, namely the literals of the RDF model,
to produce values of the destination graph, namely literals of another RDF model. The data
transformation is described as a sequence of interrelated data processing operations that can
include elementary RDF literals’ transformation functions as well as access operations to

 Ubiquitous Computing

182

≤C – is a partial order on C, called concept hierarchy or taxonomy.
σ – a function R C×C called signature, such that σ I= 〈domI, ranI〉, where r ∈ R, domain
domI, range ranI.
≤R – is a partial order on R, called relation hierarchy, such that r1 ≤R r2 if and only if
dom(r1) ≤C dom(r2) and ran(r1) ≤C ran(r2).
Domain-specific dependencies of concepts and relations in S are formulated by a certain
logical language (e.g. first-order predicate calculus) which fits a rather generic definition:
Let L be a logical language. An L-axiom system for a core ontology is a pair A =
<AI, α>,where
AI – is a set of axioms identifiers.
α – is a mapping AI L
The elements of A are called axioms.
Extensional definition of the domain of discourse (assertions or facts about instances and
relations) is given by description of the knowledge base KB. KB is the following structure:
KB = 〈C, R, I, ιC, ιR 〉, where
C – is a set of concepts.
R – is a set of relations.
I – is a set of instance identifiers (instances for short).
ιC – is a function C P(I) called concept instantiation.

ιR – is a function C P(I2) called relation instantiation; it has such properties:

∀ r ∈ R, ιRI ⊆ ιC (domI) ×ιC (ranI).
The theory provides also names for concepts and relations calling them signs, and defines a
lexicon for ontology:
Lex = 〈GC, GR, GI, RefC, RefR, RefI 〉, where
GC – is a set of concepts signs.
GR – is a set of relations signs.
GI – is a set of instances signs.
RefC – is a relation RefC ⊆ GC×C called lexical reference for concepts.

RefR – is a relation RefR ⊆ GR×R called lexical reference for relations.

RefI – is a relation RefI ⊆ GI×I called lexical reference for instances.
In summary, a complete ontology O is defined through the following structure:
O = 〈S, A, KB, Lex 〉, where
S – is a core ontology.
A – is the L-axiom system.
KB – is a knowledge base.
Lex – is a lexicon.
Such strict mathematical theory of ontology along with other similar approaches formed a
solid foundation for machine-readable representation of ontologies in modern information
systems and facilitated their practical applications. For example, the research line known as
Semantic Web pays great attention to various practical aspects of ontology manipulation for
information heterogeneity resolution in the Internet. Recent examples of XML language
application in coordination frameworks (Niemelä & Latvakoski, 2004 ; Tokunaga et al.,
2004) illustrate that Semantic Web solutions can be successfully adopted and applied in
many different domains. It seems for us that potential usefulness of the Resource

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

183

Description Framework (RDF) and the RDF Scheme (RDFS) standards (Jeng, 2004),
proposed initially for semantic enrichment of WEB contents, is much greater. In order to
achieve semantic interoperability for UCE we suggest applying RDF standards as the basic
technique for the interoperable description of the knowledge base KB. Fusion of the formal
theory of ontology together with RDF allows representing the knowledge base in the single
frame of semi-structured data models. In (Abiteboul, 1995) semi-structured data are defined
as data that is neither raw, nor strictly typed as in conventional database systems. A
convenient approach to represent semi-structured data uses such edge-labeled graph
structures which contain both type definition and actual data elements (fig.1).

Resource A

Resource B

Resource C

Value 1 Value 2

Link 1

Link 2

Link 3Link 4

a)
Resource A1

Resource C1

Value

Link 11

Link 22

b)
Resource of type A

Resource of type C

Value 1 Value 2

Resource of type B

Value 3 Value 4

Resource of type C

c)

Fig. 1. Three different kinds of semi-structured data

Describing this case, P. Buneman says about “blurring the distinction between schema and
instance” and proposes a suitable formalism for modelling and querying such structures
(Buneman et al., 1996; Buneman, 1997). In accordance with the Buneman’s approach a semi-
structured database is represented in a form of a rooted edge-labelled graph, and a schema
is a rooted graph whose edges are labelled with formulas. A database SDB conforms to a
schema SS if there is a correspondence between the edges in SDB and SS, such that
whenever there is an edge labelled a in SDB, there is a corresponding edge labelled with
predicate p in SS such that p(a) holds.
We can naturally set a correspondence between elements of the RDF semi-structured
database SDB and the knowledge base KB: the set of concepts C and the set of instances I
become the nodes of the graph, and the set of relations R maps to the graph’s edges. In this
context the general problem of achieving semantic interoperability can be looked at as the
task of graph-based ontology transformation. The source graph of the semi-structured
database comprises messages from the sensors networks, and corresponds to the ontology
of IT-infrastructure. Another ontology expresses the user’s domain of discourse in terms of
the knowledge base, and defines permitted structure of the destination graph. Applying the
formal approach and visual cues of graph transformations (Rozenberg, 1997; Hoffmann &
Minas, 2000) we may define a transformation workflow process with the aim to produce the
destination graph of semi-structured database expressed in terms of user’s ontology. The
definition of the transformation workflow process consists of two different kinds of
operations: the data transformation and the structure transformation. The data
transformation uses leaf's values of the source graph, namely the literals of the RDF model,
to produce values of the destination graph, namely literals of another RDF model. The data
transformation is described as a sequence of interrelated data processing operations that can
include elementary RDF literals’ transformation functions as well as access operations to

 Ubiquitous Computing

184

external databases and Commercial Out-of-Shelf Software. The structure transformation
uses location information of different subparts of the source graph to build the
corresponding subparts of the destination graph.

4. Description of methodology
Concerning implementation and design issues we share the opinion (Oliver, 2005; Volgyesi
& Ledeczi, 2002), which says that software engineering knowledge representation, its
transformation and automation of systems design can be achieved by application of formal
model-driven approaches examining hierarchies of UML-based meta-models, models and
ontologies. In our approach to consistent design and development of the Ontology
Mediators’ family, we apply a few foundation principles for unification of work activities
and formal methods. First of all, the consistent three-level UML modelling paradigm is used
to create all information models and ontologies. At the top level ‘M3’ UML Meta-Object
Facility provides for a single consistent meta-meta-model; at the middle level ‘M2’ UML
profiles play a role of meta-models and specify domain languages for various aspects
descriptions; at the level ‘M1’ a collection of UML models represents formal description of
IT-infrastructure, business view and architecture concepts of Ontology Mediator. The
second distinctive feature of our methodology is coupled consideration of classes together
with instances during modelling of IT-infrastructure and Enterprise business aspects. It
allows for application of formal methods of heterogeneous models and ontologies mapping
based on Information Flow theory (Barwise & Seligman, 1997). At the same time
simultaneous working with classes and instances facilitates natural application of semi-
structured data models. Representation of domain concepts and actual data in the context of
the same semi-structured data model gives as an opportunity to employ a powerful
technique of graph-oriented transformations in order to define rules of ontology
transformation and methods of mapping between different models.
Fig.2. illustrates general principles of the proposed design methodology, in which three
main tracks of modelling and design activities can be recognized. All three tracks begin
from conceptualization of correspondent domains of discourse. Conceptualization activities
of the first track produce UML models with architecture concepts of Ontology Mediator.
The architecture models describe reusable software and hardware components and define
extensibility interfaces for future use. The second track includes analysis of Enterprise
business aspects and producing whole enterprise ontology. Based on Ontology UML
profiles, that ontology describes structure and behaviour of the appropriate knowledge
domain, expressed in form of appropriate UML concepts (classes and logic constraints). The
third track starts from conceptualization of underlying IT-infrastructure in terms of
specialized UML models.
Following our methodology the designer should perform Core Activities (conceptualization
of IT-infrastructure, Enterprise business aspects and architecture of Ontology Mediator)
only for the first time of methodology’s application in new domain. But specification of
UML-based user’s domain ontology is the repetitive activity and it precedes development of
any new Ontology Mediator device. In terms of the produced ontology shared instances are
classified and matching between enterprise ontology and user’s ontology is performed. In
the result the developers can select necessary elements of IT-infrastructure to communicate
with, and they can design a correspondent source semi-structured data model in terms of
IT-infrastructure models. By a similar way, the destination semi-structured data model is

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

185

developed in terms of the user’s ontology. Once the source and destination models are
produced all three tracks are joined, and mutual design of a semantic transformation model
is performed. In terms of specialized UML profiles this model describes a workflow
transforming the source model to the destination model. In fig.3 a fragment of the
correspondent transformation profile is represented.

Conceptualization
of global IT-
Infrastructure

Conceptualization
of Enterprise

Business aspects

Conceptualization
of user’s domain

Matching
Enterprise &

user’s concepts

Classification of
shared instances

Design of a
destination semi-
structured model

Design of a
source semi-

structured model

Selection of IT
components for
communication

Conceptualization
of OM

acrhitecture

Design of OM
platform-specific

models

Semi-automated
generation of

artifacts

Coding,
assembling,
deployment

UML Meta-Object Facility

Ontology UML
profile

OM arch.
profileMapping profile Business-

process profile
Technology-

specific profiles

Infrastructure
models

Enterprise
Ontology

User’s
Ontology

Architecture
models

Mapping
models

Design of a semantic transformation model

Matching IT & Enterprise concepts

Classification of shared instances

Core Activities

Fig. 2. Proposed methodology of Ontology Mediator’s design and implementation. Dotted
filling denotes initial core activities; dark colour defines repeatable activities during design
of specific Ontology Mediator. UML models of the level ‘M1’ are the results of activities of
the correspondent track

 Ubiquitous Computing

184

external databases and Commercial Out-of-Shelf Software. The structure transformation
uses location information of different subparts of the source graph to build the
corresponding subparts of the destination graph.

4. Description of methodology
Concerning implementation and design issues we share the opinion (Oliver, 2005; Volgyesi
& Ledeczi, 2002), which says that software engineering knowledge representation, its
transformation and automation of systems design can be achieved by application of formal
model-driven approaches examining hierarchies of UML-based meta-models, models and
ontologies. In our approach to consistent design and development of the Ontology
Mediators’ family, we apply a few foundation principles for unification of work activities
and formal methods. First of all, the consistent three-level UML modelling paradigm is used
to create all information models and ontologies. At the top level ‘M3’ UML Meta-Object
Facility provides for a single consistent meta-meta-model; at the middle level ‘M2’ UML
profiles play a role of meta-models and specify domain languages for various aspects
descriptions; at the level ‘M1’ a collection of UML models represents formal description of
IT-infrastructure, business view and architecture concepts of Ontology Mediator. The
second distinctive feature of our methodology is coupled consideration of classes together
with instances during modelling of IT-infrastructure and Enterprise business aspects. It
allows for application of formal methods of heterogeneous models and ontologies mapping
based on Information Flow theory (Barwise & Seligman, 1997). At the same time
simultaneous working with classes and instances facilitates natural application of semi-
structured data models. Representation of domain concepts and actual data in the context of
the same semi-structured data model gives as an opportunity to employ a powerful
technique of graph-oriented transformations in order to define rules of ontology
transformation and methods of mapping between different models.
Fig.2. illustrates general principles of the proposed design methodology, in which three
main tracks of modelling and design activities can be recognized. All three tracks begin
from conceptualization of correspondent domains of discourse. Conceptualization activities
of the first track produce UML models with architecture concepts of Ontology Mediator.
The architecture models describe reusable software and hardware components and define
extensibility interfaces for future use. The second track includes analysis of Enterprise
business aspects and producing whole enterprise ontology. Based on Ontology UML
profiles, that ontology describes structure and behaviour of the appropriate knowledge
domain, expressed in form of appropriate UML concepts (classes and logic constraints). The
third track starts from conceptualization of underlying IT-infrastructure in terms of
specialized UML models.
Following our methodology the designer should perform Core Activities (conceptualization
of IT-infrastructure, Enterprise business aspects and architecture of Ontology Mediator)
only for the first time of methodology’s application in new domain. But specification of
UML-based user’s domain ontology is the repetitive activity and it precedes development of
any new Ontology Mediator device. In terms of the produced ontology shared instances are
classified and matching between enterprise ontology and user’s ontology is performed. In
the result the developers can select necessary elements of IT-infrastructure to communicate
with, and they can design a correspondent source semi-structured data model in terms of
IT-infrastructure models. By a similar way, the destination semi-structured data model is

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

185

developed in terms of the user’s ontology. Once the source and destination models are
produced all three tracks are joined, and mutual design of a semantic transformation model
is performed. In terms of specialized UML profiles this model describes a workflow
transforming the source model to the destination model. In fig.3 a fragment of the
correspondent transformation profile is represented.

Conceptualization
of global IT-
Infrastructure

Conceptualization
of Enterprise

Business aspects

Conceptualization
of user’s domain

Matching
Enterprise &

user’s concepts

Classification of
shared instances

Design of a
destination semi-
structured model

Design of a
source semi-

structured model

Selection of IT
components for
communication

Conceptualization
of OM

acrhitecture

Design of OM
platform-specific

models

Semi-automated
generation of

artifacts

Coding,
assembling,
deployment

UML Meta-Object Facility

Ontology UML
profile

OM arch.
profileMapping profile Business-

process profile
Technology-

specific profiles

Infrastructure
models

Enterprise
Ontology

User’s
Ontology

Architecture
models

Mapping
models

Design of a semantic transformation model

Matching IT & Enterprise concepts

Classification of shared instances

Core Activities

Fig. 2. Proposed methodology of Ontology Mediator’s design and implementation. Dotted
filling denotes initial core activities; dark colour defines repeatable activities during design
of specific Ontology Mediator. UML models of the level ‘M1’ are the results of activities of
the correspondent track

 Ubiquitous Computing

186

«OMTransform»
Transformation

«OMTransform»
GenericAtom

1 *

Atoms

«OMTransform»
StructuralAtom

«OMTransform»
Association

«OMTransform»
URIAssociation

«OMTransform»
Constant

«OMTransform»
Copy

«OMTransform»
ExtractLexical

«OMTransform»
CompositionLexical

«OMTransform»
Numeric

«OMTransform»
Logical

«OMTransform»
Function

«OMTransform»
RuntimeConst

«OMTransform»
EnvConst

«OMTransform»
AggregateCompositionLexical

«OMTransform»
AggregateNumeric

«OMTransform»
ComparatorLogical

«OMTransform»
GeneralFunc

«OMTransform»
GatewayFunc

1
*

1
*

InputOutput

Fig. 3. The Transformation UML Profile
As soon as the users approve the content of the semantic transformation model it becomes a
basis for design of platform specific models describing a concrete instantiation of Ontology
Mediator. The platform-specific models determine which reusable hardware and software
components will be combined together and which extension interfaces should be
implemented during manual coding. Once the platform-dependent models have been
produced the platform designers apply generation algorithms, which produce a skeleton of
source code, as well as a list of additional hardware components and recommendations for
selection of suitable base hardware modules. During final assembly of Ontology Mediator
the programmers write small portions of glue code extending the generated skeleton, and
the hardware engineers equip base hardware modules with additional components. This
stage finishes process of Ontology Mediator development and the ready end-user product is
shipped to the customer or is deployed in to the existing IT-infrastructure.

5. Framework architecture
According to the proposed methodology we developed a consistent ontology-based
framework supporting design and development of Ontology Mediators. The framework has
client-server architecture, and consists of front-end and back-end components promoting
team work (fig.4).
The graphical front-end supports design of ontologies and UML-models for semantic
transformations. Based on the Rational Software Architect platform by IBM and Eclipse
Modelling Framework, the front-end adds several plugins, which implement a new visual
modelling principle called Semantic Transformation Lasso (SETRAL), and provide
interfaces to the framework back-end. SETRAL is extremely useful when modern Tablet PC
and Visual Interactive Desks can be used during conceptualization and matching different
ontology’s concepts. For the user SETRAL offers a special smart graphical tool - Semantic
Lasso (SL). That is a closed shape with arbitrary smooth boundaries. The user can draw a
free-hand fragment of the SL boundary (the path) on top of the source UML class model to
select certain classes to be matched. SETRAL automatically closes the path has been drawn

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

187

Rational Software Architect

Workspace and Runtime

Workbench

 Server
Connection

Plugin

SETRAL
Plugin

 Analyzer
Server

Platform
Generator

Server
OM Platform

hardware modules

Reusable
Transformation

Engine

S
ta

nd
ar

d
In

te
rfa

ce

The front-end The back-end
Fig. 4. Ontology-based framework for design and development of Ontology Mediators
and makes it smooth as necessary. Additionally SETRAL analyzes the source model and the
meta-model to detect other entities (classes) that are semantically closely related to the
entities inside the SL, but were not manually selected by the user. SETRAL proposes to
include related entities with automatic extension of the SL’s shape as needed. As soon as the
source content of the SL was defined, SETRAL performs semantic mapping of the source
entities inside the SL to the correspondent entities of the destination model. The result is
displayed inside the SL as a fragment of the destination UML model. The level of
transparency inside the SL can be adjusted interactively, so the user sees either two models
or only one of them. Inside the SL the user can select entities of the destination model and
switch to another editors to see the complete result of the matching. She/he has a possibility
to easily return to the original editor with the active SL. SL tool can be used also for
comprehensive analysis of the class instances. In this case after definition of the classes
inside the SL, the user can run special SETRAL algorithms that will automatically generate
instances with populated attributes.
The framework back-end contains the Analyzer Server and the Platform generator Server.
The former server is closely related with the mapping design GUI. That component
implements mathematical models of ontologies matching and models transformations as
well as provides interfaces for loading core meta-models, domain models, domain-specific
constraints in terms of OCL, as well as specifications of target software and the hardware
platform. In accordance with loaded models the Analyzer Server automatically finds
correspondent classes and attributes, returning results to the design GUI for further analysis
by experts. The Platform Generator Server adopts basic principles of Model-Driven
Architecture and automatically generates software artefacts for the selected target
transformation platform. Each kind of the supported target platform uses the same library
of software components (T-Engine). T-Engine contains algorithms for runtime semi-
structured data transformation and business process enactment. Components of T-Engine
can be deployed into the application server, the multi-agent system, or into the embedded
platforms. In the later case our own specialized hardware platform is used.

6. T-Engine: architecture and implementation concepts
T-Engine is parted into four architectural layers, providing for different aspects of semantic
interoperability: the External Communication Media layer, the RDF-mediation layer, the
Internal Communication Media layer, and the Semantic Transformation layer (fig.5).

 Ubiquitous Computing

186

«OMTransform»
Transformation

«OMTransform»
GenericAtom

1 *

Atoms

«OMTransform»
StructuralAtom

«OMTransform»
Association

«OMTransform»
URIAssociation

«OMTransform»
Constant

«OMTransform»
Copy

«OMTransform»
ExtractLexical

«OMTransform»
CompositionLexical

«OMTransform»
Numeric

«OMTransform»
Logical

«OMTransform»
Function

«OMTransform»
RuntimeConst

«OMTransform»
EnvConst

«OMTransform»
AggregateCompositionLexical

«OMTransform»
AggregateNumeric

«OMTransform»
ComparatorLogical

«OMTransform»
GeneralFunc

«OMTransform»
GatewayFunc

1
*

1
*

InputOutput

Fig. 3. The Transformation UML Profile
As soon as the users approve the content of the semantic transformation model it becomes a
basis for design of platform specific models describing a concrete instantiation of Ontology
Mediator. The platform-specific models determine which reusable hardware and software
components will be combined together and which extension interfaces should be
implemented during manual coding. Once the platform-dependent models have been
produced the platform designers apply generation algorithms, which produce a skeleton of
source code, as well as a list of additional hardware components and recommendations for
selection of suitable base hardware modules. During final assembly of Ontology Mediator
the programmers write small portions of glue code extending the generated skeleton, and
the hardware engineers equip base hardware modules with additional components. This
stage finishes process of Ontology Mediator development and the ready end-user product is
shipped to the customer or is deployed in to the existing IT-infrastructure.

5. Framework architecture
According to the proposed methodology we developed a consistent ontology-based
framework supporting design and development of Ontology Mediators. The framework has
client-server architecture, and consists of front-end and back-end components promoting
team work (fig.4).
The graphical front-end supports design of ontologies and UML-models for semantic
transformations. Based on the Rational Software Architect platform by IBM and Eclipse
Modelling Framework, the front-end adds several plugins, which implement a new visual
modelling principle called Semantic Transformation Lasso (SETRAL), and provide
interfaces to the framework back-end. SETRAL is extremely useful when modern Tablet PC
and Visual Interactive Desks can be used during conceptualization and matching different
ontology’s concepts. For the user SETRAL offers a special smart graphical tool - Semantic
Lasso (SL). That is a closed shape with arbitrary smooth boundaries. The user can draw a
free-hand fragment of the SL boundary (the path) on top of the source UML class model to
select certain classes to be matched. SETRAL automatically closes the path has been drawn

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

187

Rational Software Architect

Workspace and Runtime

Workbench

 Server
Connection

Plugin

SETRAL
Plugin

 Analyzer
Server

Platform
Generator

Server
OM Platform

hardware modules

Reusable
Transformation

Engine

S
ta

nd
ar

d
In

te
rfa

ce

The front-end The back-end
Fig. 4. Ontology-based framework for design and development of Ontology Mediators
and makes it smooth as necessary. Additionally SETRAL analyzes the source model and the
meta-model to detect other entities (classes) that are semantically closely related to the
entities inside the SL, but were not manually selected by the user. SETRAL proposes to
include related entities with automatic extension of the SL’s shape as needed. As soon as the
source content of the SL was defined, SETRAL performs semantic mapping of the source
entities inside the SL to the correspondent entities of the destination model. The result is
displayed inside the SL as a fragment of the destination UML model. The level of
transparency inside the SL can be adjusted interactively, so the user sees either two models
or only one of them. Inside the SL the user can select entities of the destination model and
switch to another editors to see the complete result of the matching. She/he has a possibility
to easily return to the original editor with the active SL. SL tool can be used also for
comprehensive analysis of the class instances. In this case after definition of the classes
inside the SL, the user can run special SETRAL algorithms that will automatically generate
instances with populated attributes.
The framework back-end contains the Analyzer Server and the Platform generator Server.
The former server is closely related with the mapping design GUI. That component
implements mathematical models of ontologies matching and models transformations as
well as provides interfaces for loading core meta-models, domain models, domain-specific
constraints in terms of OCL, as well as specifications of target software and the hardware
platform. In accordance with loaded models the Analyzer Server automatically finds
correspondent classes and attributes, returning results to the design GUI for further analysis
by experts. The Platform Generator Server adopts basic principles of Model-Driven
Architecture and automatically generates software artefacts for the selected target
transformation platform. Each kind of the supported target platform uses the same library
of software components (T-Engine). T-Engine contains algorithms for runtime semi-
structured data transformation and business process enactment. Components of T-Engine
can be deployed into the application server, the multi-agent system, or into the embedded
platforms. In the later case our own specialized hardware platform is used.

6. T-Engine: architecture and implementation concepts
T-Engine is parted into four architectural layers, providing for different aspects of semantic
interoperability: the External Communication Media layer, the RDF-mediation layer, the
Internal Communication Media layer, and the Semantic Transformation layer (fig.5).

 Ubiquitous Computing

188

Adapters

R
D

F-
M

ed
ia

tio
n

In
te

rn
al

 C
om

m
.

M
ed

ia
Se

m
an

tic
Tr

an
sf

or
m

at
io

n

Proxies

Event
Interfaces

Data
Interfaces

Semantic Transformation Management

Data
Brokers

Containers
(RDF, beans)

STE

Java
Space

JMS JDBC

WEB-
Service

CORBA EJB JDBC ODBC

Communication Management

Ex
te

rn
al

 C
om

m
.

M
ed

ia

Web-
Service

OSS -
Service

Managing
Agents

CORBA
Service

MOM-
Interface

OO-
Interface

DBMS-
Interface

JMS Java
Space

C
on

tro
l I

nt
er

fa
ce

Fig. 5. Detailed architecture of T- Engine

The External Communication Media layer gives the implementation-neutral interface to
outer distributed components of UCE. This layer comprises three unified operational
interfaces to deal with major classes of modern distributed technologies (namely, Message-
Oriented Middleware, remote calls of object’s methods, Database Management Systems), as
well as so-called adapters. Each adapter implements certain operational interface by means
of concrete libraries and vendor-specific tools. A separate part implements control and
management interface of T-Engine.
The RDF-Mediation layer provides for encapsulation of heterogeneous data structures and
communication algorithms in accordance with a single message-oriented paradigm.
Following this paradigm the correspondence is set between every communication act with
an external component and a message of the certain type. Interacting with external
components the RDF-Mediation Layer creates one or many message instances, and passes
them to the Internal Communication media Layer for further use. Similar to the adapters, at
the RDF-Mediation Layer a special component called Proxy takes responsibility of
messages’ production for a certain technology.
The produced message consists of actual data embodied in the form of RDF, and internal
meta-information (e.g. type qualification, message’s timestamp or a message’s producer).
The type of the message poses restrictions on its possible data structure. These restrictions

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

189

are expressed in the form of the RDF schemata and define allowable atomic fields and sub-
structures for any valid message instance of this type. Thus the message type can be
concerned likely a micro-ontology, and it can be created and modified in the framework
front-end during designing the source semi-structured model. Generalization of information
interchange in the form of message’s flows promotes uniform representation of UCE
component’s behaviour and data inside the underlying layers: components play roles of
message consumers or producers and their interaction can be represented as modification,
creation or transformation of message’s instances.
The Internal Communication Media layer supports asynchronous message-based
communication between the layers and provides for transaction management. Interacting
with the Communication Management module, different modules of T-Engine subscribe to
messages of particular type. Being notified of occurrence of new messages, the modules-
subscribers fetch the messages from the internal queue, transform them, and put newly
produced messages back for shared use.
To improve performance and reduce the message-processing costs the Communication
Management module also promotes separation of event and data flows as much as possible
avoiding passing large RDF models inside the message body at the intermediate stages of the
message processing. Once submitted to the Communication Management module, the
message is analyzed and rearranged to store either the original RDF model or only short
pragmatic instructions. In later case the module of Data Interfaces uses pragmatic instructions
for the “lazy” information retrieval from external data sources in order to reconstruct the
complete RDF model. In the module of Event Interfaces all intermediate message processing
tasks such as routing, filtering, collecting are performed on the basis of the internal meta-
information without touching upon the correspondent RDF model. Hence the creating of the
content of the huge RDF model can be postponed up to the moment of its actual use, but in the
case of the small RDF model its content is completely stored inside the message.
The Semantic Transformation layer plays the central role in the successful fulfilment of
Ontology Mediator’s activities. In particular, on this layer the Semantic Transformation
Management module collects instances of input messages and fuses them into the united
RDF model, which is in direct correspondence with the source semi-structured model
produced as the result of our design methodology. Relating message’s instances with each
other, the Semantic Transformation module exploits the message’s meta-information and
capabilities of RDF framework to link different resources via universal resource identifiers
(URI). Once all needed instances have been collected and the source RDF model has been
completely composed in accordance with the specification, the Semantic Transformation
Management module places the model into the container for further processing by means of
so-called Semantic Transformation Entities (STE).
Each STE serves as an independent workflow process reacting on completed model’s
appearance in the particular container. T-Engine allows dynamic independent deployment
of different STEs and later manages their concurrent execution. STEs can be organized into
chains of linked semantic transformations establishing complex information processing
inside Ontology Mediator. Through the interface of DataBrokers a single STE gains access to
the elements of the united RDF model, and performs transformation of this model to the
destination RDF model in accordance with the semantic transformation UML model. When
the STE successfully finishes building of the destination RDF model, algorithms of the
Semantic Transformation Management module split this model into separate RDF sub-
models corresponding to distinct messages. Carrying on the information in terms of the

 Ubiquitous Computing

188

Adapters

R
D

F-
M

ed
ia

tio
n

In
te

rn
al

 C
om

m
.

M
ed

ia
Se

m
an

tic
Tr

an
sf

or
m

at
io

n

Proxies

Event
Interfaces

Data
Interfaces

Semantic Transformation Management

Data
Brokers

Containers
(RDF, beans)

STE

Java
Space

JMS JDBC

WEB-
Service

CORBA EJB JDBC ODBC

Communication Management

Ex
te

rn
al

 C
om

m
.

M
ed

ia

Web-
Service

OSS -
Service

Managing
Agents

CORBA
Service

MOM-
Interface

OO-
Interface

DBMS-
Interface

JMS Java
Space

C
on

tro
l I

nt
er

fa
ce

Fig. 5. Detailed architecture of T- Engine

The External Communication Media layer gives the implementation-neutral interface to
outer distributed components of UCE. This layer comprises three unified operational
interfaces to deal with major classes of modern distributed technologies (namely, Message-
Oriented Middleware, remote calls of object’s methods, Database Management Systems), as
well as so-called adapters. Each adapter implements certain operational interface by means
of concrete libraries and vendor-specific tools. A separate part implements control and
management interface of T-Engine.
The RDF-Mediation layer provides for encapsulation of heterogeneous data structures and
communication algorithms in accordance with a single message-oriented paradigm.
Following this paradigm the correspondence is set between every communication act with
an external component and a message of the certain type. Interacting with external
components the RDF-Mediation Layer creates one or many message instances, and passes
them to the Internal Communication media Layer for further use. Similar to the adapters, at
the RDF-Mediation Layer a special component called Proxy takes responsibility of
messages’ production for a certain technology.
The produced message consists of actual data embodied in the form of RDF, and internal
meta-information (e.g. type qualification, message’s timestamp or a message’s producer).
The type of the message poses restrictions on its possible data structure. These restrictions

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

189

are expressed in the form of the RDF schemata and define allowable atomic fields and sub-
structures for any valid message instance of this type. Thus the message type can be
concerned likely a micro-ontology, and it can be created and modified in the framework
front-end during designing the source semi-structured model. Generalization of information
interchange in the form of message’s flows promotes uniform representation of UCE
component’s behaviour and data inside the underlying layers: components play roles of
message consumers or producers and their interaction can be represented as modification,
creation or transformation of message’s instances.
The Internal Communication Media layer supports asynchronous message-based
communication between the layers and provides for transaction management. Interacting
with the Communication Management module, different modules of T-Engine subscribe to
messages of particular type. Being notified of occurrence of new messages, the modules-
subscribers fetch the messages from the internal queue, transform them, and put newly
produced messages back for shared use.
To improve performance and reduce the message-processing costs the Communication
Management module also promotes separation of event and data flows as much as possible
avoiding passing large RDF models inside the message body at the intermediate stages of the
message processing. Once submitted to the Communication Management module, the
message is analyzed and rearranged to store either the original RDF model or only short
pragmatic instructions. In later case the module of Data Interfaces uses pragmatic instructions
for the “lazy” information retrieval from external data sources in order to reconstruct the
complete RDF model. In the module of Event Interfaces all intermediate message processing
tasks such as routing, filtering, collecting are performed on the basis of the internal meta-
information without touching upon the correspondent RDF model. Hence the creating of the
content of the huge RDF model can be postponed up to the moment of its actual use, but in the
case of the small RDF model its content is completely stored inside the message.
The Semantic Transformation layer plays the central role in the successful fulfilment of
Ontology Mediator’s activities. In particular, on this layer the Semantic Transformation
Management module collects instances of input messages and fuses them into the united
RDF model, which is in direct correspondence with the source semi-structured model
produced as the result of our design methodology. Relating message’s instances with each
other, the Semantic Transformation module exploits the message’s meta-information and
capabilities of RDF framework to link different resources via universal resource identifiers
(URI). Once all needed instances have been collected and the source RDF model has been
completely composed in accordance with the specification, the Semantic Transformation
Management module places the model into the container for further processing by means of
so-called Semantic Transformation Entities (STE).
Each STE serves as an independent workflow process reacting on completed model’s
appearance in the particular container. T-Engine allows dynamic independent deployment
of different STEs and later manages their concurrent execution. STEs can be organized into
chains of linked semantic transformations establishing complex information processing
inside Ontology Mediator. Through the interface of DataBrokers a single STE gains access to
the elements of the united RDF model, and performs transformation of this model to the
destination RDF model in accordance with the semantic transformation UML model. When
the STE successfully finishes building of the destination RDF model, algorithms of the
Semantic Transformation Management module split this model into separate RDF sub-
models corresponding to distinct messages. Carrying on the information in terms of the

 Ubiquitous Computing

190

user’s ontology, messages proceed to the External Communication Media layer.
Alternatively, the messages can take part in construction another source RDF model.
The architecture of T-Engine, as it has been described in previous paragraphs, is almost
technology independent. Indeed, different modern distributed technologies such as CORBA,
EJB, JMS and JINI can be used for practical implementation. In the course of various
software prototypes design we have found that although CORBA and EJB are more widely
used, the JINI-based implementation gives many attractive features. We have found that
JINI technology is the most suitable for implementation of proxies on the RDF-Mediation
layer. In this case JINI Smart Proxies can be installed quickly for preparation of the RDF-
model. Smart JINI proxies expose a unified interface to Event Interfaces, Control Interfaces
and Data Interfaces. These proxies are available via JINI lookup service (reggie). CORBA
and JMS implementations of Event Interfaces were also performed but they are not
described here.

7. The extensible hardware platform for ontology mediator
Our investigations of several use cases determined major guidelines for hardware
architecture of Ontology Mediators. It should have nearly the same customer properties as
sensor network devices: reasonably low prices, friendly interface for installation and
maintenance. These properties allow for preserving unique features of sensors networks and
deploy Ontology Mediators in different locations following changing and diverse needs of
the end-users. At the same time Ontology Mediator should provide for a wide range of
different mediation scenarios, and, in our vision, its hardware should be principally able to
support communication via any of the most popular wireless protocols as well as wired
ones (Ethernet, RS232/435, CAN). Later requirement leads to broad variations in internal
hardware and software architecture.
Fitting the proposed model-driven design methodology the extensible hardware platform
comprises two specially designed hardware modules:
• Processing Unit – an unmodified part of Ontology Mediator, where the central

processor and basic communication interfaces are installed.
• Extension Board – a customizable interface board that can be easily extended by

different hardware and embedded software components (plug-ins) on demand of
specific requirements.

A number of design solutions were studied and prototypes were developed in order to find
the most suitable decomposition of functions and balanced costs. Our latest experimental
implementation of Ontology Mediator’s Processing Unit has following features (Fig.6-a):
• MCU: LPC2294 16/32 bit ARM7TDMI-S™t with 256K Bytes Program Flash, 16K Bytes

RAM, 4x 10 bit ADC, 2x UARTs, 4x CAN, I2C, SPI, up to 60MHz operation.
• 4MB SRAM 4x K6X8008T2B-F/Q SAMSUNG.
• 4MB TE28F320C3BD90 C3 INTEL FLASH.
• 10Mb TP Ethernet (CS8900A).
• OS: RTOS ECOS 2.0.
• Connectors: Power supply, RJ45, HDR26F (for connection to the extension board).
For the developed Processing Unit a reduced version of the Ontology Transformation
Engine was developed. In that version transformation algorithms, internal control and
interfacing functions were programmed in C and C++ programming languages. Now we
are at the final stage of porting Wonka Java virtual machine (Wonka, 2010) to Processing

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

191

Unit hardware platform that will allow enriching application capabilities and provide full-
fledged implementation of the Engine.

(a) (b)

Fig. 6. Hardware components of the extensible platform: a- Processing Unit in the case of
stand-alone usage without Extension Board; b – an experimental sensor

Fig. 7. Specialization of Ontology Mediator for telecommunication domains

During experiments with Ontology Mediators we paid attention to semantic transformation
algorithms, and used multiple wired sensors to reduce implementation costs. So, now
Extension Board has support of both wired and wireless protocols: I2C, two CAN, 8x30
sensors (Fig.6-b), SPI-to-UART MAX3000 transceiver for connection to wireless SANET via
radio transceiver. We place to our nearest plans generalization of the board architecture and
its redesigning in the framework of evolvable hardware paradigm. The final version of
Extension Board will include FPGA-based evolvable hardware part and a set of free slots for
drivers and transceivers.
Most of the experiments with ontology mediation algorithms employed two wired SANETs,
directly connected to Ontology Mediator via RS485 interface. The first test-bed SANET with
ring topology consists of 70 sensors and actuators deployed to a rail road model. Ontology

 Ubiquitous Computing

190

user’s ontology, messages proceed to the External Communication Media layer.
Alternatively, the messages can take part in construction another source RDF model.
The architecture of T-Engine, as it has been described in previous paragraphs, is almost
technology independent. Indeed, different modern distributed technologies such as CORBA,
EJB, JMS and JINI can be used for practical implementation. In the course of various
software prototypes design we have found that although CORBA and EJB are more widely
used, the JINI-based implementation gives many attractive features. We have found that
JINI technology is the most suitable for implementation of proxies on the RDF-Mediation
layer. In this case JINI Smart Proxies can be installed quickly for preparation of the RDF-
model. Smart JINI proxies expose a unified interface to Event Interfaces, Control Interfaces
and Data Interfaces. These proxies are available via JINI lookup service (reggie). CORBA
and JMS implementations of Event Interfaces were also performed but they are not
described here.

7. The extensible hardware platform for ontology mediator
Our investigations of several use cases determined major guidelines for hardware
architecture of Ontology Mediators. It should have nearly the same customer properties as
sensor network devices: reasonably low prices, friendly interface for installation and
maintenance. These properties allow for preserving unique features of sensors networks and
deploy Ontology Mediators in different locations following changing and diverse needs of
the end-users. At the same time Ontology Mediator should provide for a wide range of
different mediation scenarios, and, in our vision, its hardware should be principally able to
support communication via any of the most popular wireless protocols as well as wired
ones (Ethernet, RS232/435, CAN). Later requirement leads to broad variations in internal
hardware and software architecture.
Fitting the proposed model-driven design methodology the extensible hardware platform
comprises two specially designed hardware modules:
• Processing Unit – an unmodified part of Ontology Mediator, where the central

processor and basic communication interfaces are installed.
• Extension Board – a customizable interface board that can be easily extended by

different hardware and embedded software components (plug-ins) on demand of
specific requirements.

A number of design solutions were studied and prototypes were developed in order to find
the most suitable decomposition of functions and balanced costs. Our latest experimental
implementation of Ontology Mediator’s Processing Unit has following features (Fig.6-a):
• MCU: LPC2294 16/32 bit ARM7TDMI-S™t with 256K Bytes Program Flash, 16K Bytes

RAM, 4x 10 bit ADC, 2x UARTs, 4x CAN, I2C, SPI, up to 60MHz operation.
• 4MB SRAM 4x K6X8008T2B-F/Q SAMSUNG.
• 4MB TE28F320C3BD90 C3 INTEL FLASH.
• 10Mb TP Ethernet (CS8900A).
• OS: RTOS ECOS 2.0.
• Connectors: Power supply, RJ45, HDR26F (for connection to the extension board).
For the developed Processing Unit a reduced version of the Ontology Transformation
Engine was developed. In that version transformation algorithms, internal control and
interfacing functions were programmed in C and C++ programming languages. Now we
are at the final stage of porting Wonka Java virtual machine (Wonka, 2010) to Processing

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

191

Unit hardware platform that will allow enriching application capabilities and provide full-
fledged implementation of the Engine.

(a) (b)

Fig. 6. Hardware components of the extensible platform: a- Processing Unit in the case of
stand-alone usage without Extension Board; b – an experimental sensor

Fig. 7. Specialization of Ontology Mediator for telecommunication domains

During experiments with Ontology Mediators we paid attention to semantic transformation
algorithms, and used multiple wired sensors to reduce implementation costs. So, now
Extension Board has support of both wired and wireless protocols: I2C, two CAN, 8x30
sensors (Fig.6-b), SPI-to-UART MAX3000 transceiver for connection to wireless SANET via
radio transceiver. We place to our nearest plans generalization of the board architecture and
its redesigning in the framework of evolvable hardware paradigm. The final version of
Extension Board will include FPGA-based evolvable hardware part and a set of free slots for
drivers and transceivers.
Most of the experiments with ontology mediation algorithms employed two wired SANETs,
directly connected to Ontology Mediator via RS485 interface. The first test-bed SANET with
ring topology consists of 70 sensors and actuators deployed to a rail road model. Ontology

 Ubiquitous Computing

192

Mediator presents dynamic state of the rail road in terms of an operator and allows
performing basic actions by friendly Web-based interface (Java applets). The second SANET
has star topology with eight rays. Each ray is capable of supporting up to thirty sensors.
This network was installed on a real test site to monitor environmental conditions. In that
case, Ontology Mediator (Fig.7) provides operators with real-time information about
operational conditions, as well as equipment performance degradation forecasts. For these
specific purposes, specialization of Ontology Mediator includes equipping Extension Board
with LCD monitor and controls buttons, developing models and ontology mapping
between low-level measurements of temperature, humidity and gas contamination to high-
level abstractions of equipment operators to integrate SANET with external information
systems.

8. Conclusion
In this work we attracted attention to achieving semantic interoperability in the context of
wide-area Ubiquitous Computing Environment. The concept of “Ontology Mediator” was
offered to designate a specialized device or a software component, which goal is fusion of
sensors data, their smart transformation and expression in various forms of real-world
concepts by application of ontologies manipulation. The developed design methodology
and supporting framework provide foundations for model-driven development of Ontology
Mediators. The basis of our approach is the ontology transformation process with locally
defined conditions for joining separate input messages into the united RDF model and
explicitly defined rules of its transformation into the set of output RDF models.
Implementation of that process was done in the library of reusable software components (T-
Engine). The T-Engine’s components implement original message-oriented algorithms for
semantic consistency testing, consolidation and transformation. During software
implementation of T-Engine different distributed technologies were exploited and the tuple
space based communication paradigm based on JavaSpaces technology showed the best
performance and was the most attractive one from the architecture point of view. To study
effects and benefits of embedded T-Engine’s implementations we developed an extensible
specialized hardware platform.
In comparison with known middleware architecture approaches for sensors networks [6, 13]
our solution operates on a level of meta-data and allows bridging a gap between different
information object-oriented models. In fact, having interfaces to different communication
protocols, Ontology Mediator can be applied for orchestrating heterogeneous middleware
services when the environment consists of different sensors networks and enterprise-wide
applications. Increased reusability is seemed to be another attractive feature of our
approach. During the Ontology Mediator’s design, the platform designer accumulates
knowledge about certain application domains and patterns of behaviour for different
customers and needs. It allows continuous extending library of available models; moreover
third party developers and teams can share such library. At the same time application of the
single meta-model for development of different models allows simplify models
transformation and integration.
 Despite of using the same general ontology paradigm for meta data representation
proposed in (Chen et al., 2004), we contribute original design methodology and the
software-hardware framework that allow implementing solutions of various scales,
performing ontology transformation simulations and testing.

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

193

The generic layered approach to design allows easy adaptation of the framework for
different distributed systems. Regardless of components structure’s modification and
evolutionary variations in semantics, the developed solution allows for maintaining the
permanent information consistence among multiple components. For example in a case of
modification of the underlying database schema or the interface definition it is necessary
only to modify the definition of semantic transformation for some STE without touching
upon the implementation of external components.
Solutions like TSpaces (IBM), MARS-X (Cabri et al., 2001) and XMIDDLE (Mascolo et al.,
2001) properly illustrate trends in application of modern Internet technologies such as XML
and RDF in coordination frameworks. In our opinion MARS-X has some common points of
interest and can be compared with our framework. Both approaches use tuple based
coordination paradigm based on JavaSpaces software implementation. In MARS-X tuples
are used for the XML document storing and different software agents can extract relevant
information using complex search patterns defined programmatically. In our approach
tuples are used to notify about the message instance presence and components define
conditions for joining messages on the basis of its properties by a declarative way. As for
semantic interoperability the important restriction of MARS-X is necessity to use the same
structure of XML document (share the same DTD) for all components of a distributed
system. Modification of DTD will require redesign of software components that is not
always possible in the loosely coupled system. In our case the declarative description of
joining conditions and delegating messages collecting and transformation activities into the
separate middleware service allows to separate design of component algorithms from
management of semantic interoperability.
Considering implementation issues of our framework it can be mentioned that the designed
software architecture allows for rapid inclusion of new software technologies on different
levels without significant changes of the core. Splitting the process of the message
processing from the process of huge RDF models retrieving makes Ontology Mediator more
robust.

9. References
Abiteboul, S.; Hull, R. & Vianu, V. (1995). Foundations of databases, Addison Wesley Publ. Co.,

Reading, ISBN 0-201-53771-0, Massachussetts
Abowd, G.D.; Mynatt, E.D. (2000). Charting Past, Present, and Future Research in

Ubiquitous Computing,. ACM Transaction on Computer-Human Interaction, Vol. 7,
No. 1, pp. 29-58, ISSN 1073-0516

Ahamed, S.I.; Vyas, A. & Zulkernine, M. (2004). Towards Developing Sensor Networks
Monitoring as a Middleware Service, Proceedings of the International Conference on
Parallel Processing Workshops (ICPPW ’04), pp. 465-471, ISSN 1530-2016, Montréal,
Québec, Canada, August 15-18, 2004

Barwise, J.; Seligman, J. (1997). Information Flow, Cambridge University Press, ISBN 0-521-
58386-1, Cambridge

Branch, J.W. ; Davis, J. ; Sow, D. & Bisdikian, C. (2005) Sentire: A Framework for Building
Middleware for Sensor and Actuator Networks, Proceedings of the 1st IEEE
International Workshop on Sensor Networks and Systems for Pervasive Computing
(PerSeNS'05), pp. 396-400, Kauai Island, Hawaii, March 8-12, 2005

 Ubiquitous Computing

192

Mediator presents dynamic state of the rail road in terms of an operator and allows
performing basic actions by friendly Web-based interface (Java applets). The second SANET
has star topology with eight rays. Each ray is capable of supporting up to thirty sensors.
This network was installed on a real test site to monitor environmental conditions. In that
case, Ontology Mediator (Fig.7) provides operators with real-time information about
operational conditions, as well as equipment performance degradation forecasts. For these
specific purposes, specialization of Ontology Mediator includes equipping Extension Board
with LCD monitor and controls buttons, developing models and ontology mapping
between low-level measurements of temperature, humidity and gas contamination to high-
level abstractions of equipment operators to integrate SANET with external information
systems.

8. Conclusion
In this work we attracted attention to achieving semantic interoperability in the context of
wide-area Ubiquitous Computing Environment. The concept of “Ontology Mediator” was
offered to designate a specialized device or a software component, which goal is fusion of
sensors data, their smart transformation and expression in various forms of real-world
concepts by application of ontologies manipulation. The developed design methodology
and supporting framework provide foundations for model-driven development of Ontology
Mediators. The basis of our approach is the ontology transformation process with locally
defined conditions for joining separate input messages into the united RDF model and
explicitly defined rules of its transformation into the set of output RDF models.
Implementation of that process was done in the library of reusable software components (T-
Engine). The T-Engine’s components implement original message-oriented algorithms for
semantic consistency testing, consolidation and transformation. During software
implementation of T-Engine different distributed technologies were exploited and the tuple
space based communication paradigm based on JavaSpaces technology showed the best
performance and was the most attractive one from the architecture point of view. To study
effects and benefits of embedded T-Engine’s implementations we developed an extensible
specialized hardware platform.
In comparison with known middleware architecture approaches for sensors networks [6, 13]
our solution operates on a level of meta-data and allows bridging a gap between different
information object-oriented models. In fact, having interfaces to different communication
protocols, Ontology Mediator can be applied for orchestrating heterogeneous middleware
services when the environment consists of different sensors networks and enterprise-wide
applications. Increased reusability is seemed to be another attractive feature of our
approach. During the Ontology Mediator’s design, the platform designer accumulates
knowledge about certain application domains and patterns of behaviour for different
customers and needs. It allows continuous extending library of available models; moreover
third party developers and teams can share such library. At the same time application of the
single meta-model for development of different models allows simplify models
transformation and integration.
 Despite of using the same general ontology paradigm for meta data representation
proposed in (Chen et al., 2004), we contribute original design methodology and the
software-hardware framework that allow implementing solutions of various scales,
performing ontology transformation simulations and testing.

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

193

The generic layered approach to design allows easy adaptation of the framework for
different distributed systems. Regardless of components structure’s modification and
evolutionary variations in semantics, the developed solution allows for maintaining the
permanent information consistence among multiple components. For example in a case of
modification of the underlying database schema or the interface definition it is necessary
only to modify the definition of semantic transformation for some STE without touching
upon the implementation of external components.
Solutions like TSpaces (IBM), MARS-X (Cabri et al., 2001) and XMIDDLE (Mascolo et al.,
2001) properly illustrate trends in application of modern Internet technologies such as XML
and RDF in coordination frameworks. In our opinion MARS-X has some common points of
interest and can be compared with our framework. Both approaches use tuple based
coordination paradigm based on JavaSpaces software implementation. In MARS-X tuples
are used for the XML document storing and different software agents can extract relevant
information using complex search patterns defined programmatically. In our approach
tuples are used to notify about the message instance presence and components define
conditions for joining messages on the basis of its properties by a declarative way. As for
semantic interoperability the important restriction of MARS-X is necessity to use the same
structure of XML document (share the same DTD) for all components of a distributed
system. Modification of DTD will require redesign of software components that is not
always possible in the loosely coupled system. In our case the declarative description of
joining conditions and delegating messages collecting and transformation activities into the
separate middleware service allows to separate design of component algorithms from
management of semantic interoperability.
Considering implementation issues of our framework it can be mentioned that the designed
software architecture allows for rapid inclusion of new software technologies on different
levels without significant changes of the core. Splitting the process of the message
processing from the process of huge RDF models retrieving makes Ontology Mediator more
robust.

9. References
Abiteboul, S.; Hull, R. & Vianu, V. (1995). Foundations of databases, Addison Wesley Publ. Co.,

Reading, ISBN 0-201-53771-0, Massachussetts
Abowd, G.D.; Mynatt, E.D. (2000). Charting Past, Present, and Future Research in

Ubiquitous Computing,. ACM Transaction on Computer-Human Interaction, Vol. 7,
No. 1, pp. 29-58, ISSN 1073-0516

Ahamed, S.I.; Vyas, A. & Zulkernine, M. (2004). Towards Developing Sensor Networks
Monitoring as a Middleware Service, Proceedings of the International Conference on
Parallel Processing Workshops (ICPPW ’04), pp. 465-471, ISSN 1530-2016, Montréal,
Québec, Canada, August 15-18, 2004

Barwise, J.; Seligman, J. (1997). Information Flow, Cambridge University Press, ISBN 0-521-
58386-1, Cambridge

Branch, J.W. ; Davis, J. ; Sow, D. & Bisdikian, C. (2005) Sentire: A Framework for Building
Middleware for Sensor and Actuator Networks, Proceedings of the 1st IEEE
International Workshop on Sensor Networks and Systems for Pervasive Computing
(PerSeNS'05), pp. 396-400, Kauai Island, Hawaii, March 8-12, 2005

 Ubiquitous Computing

194

Buneman, P. (1997). Semistructured data, Proceedings of the ACM Symposium on Principles of
Database Systems, pp.117-121 , ISBN 0-89791-910-6, Tucson, Arizona, United States,
1997, ACM, Tucson

Buneman, P.; Davidson, S. ; Fernandez, M. & Suciu, D. (1996). Adding structure to
unstructured data, Technical Report MS-CIS-96-21, University of Pennsylvania,
Computer and Information Science Department

Cabri, G. ; Leonardi, L. & Zambonelli, F. (2000). XML dataspaces for mobile agent
coordination.”, Proceedings of the 2000 ACM symposium on Applied computing, pp.
181-188, ISBN 1-58113-240-9, 2000

Chan, E., Bresler, J. ; Al-Muhtadi, J. & Campbell, R. (2005). Gaia Microserver:An Extendable
Mobile Middleware Platform, Proceedings of the 3rd IEEE International Conference on
Pervasive Computing and Communications (PerCom 2005), pp. 309-313, Kauai Island,
Hawaii, March 8-12, 2005

Chen, H.; Perich, F.; Finin, T. & Joshi, A. (2004). SOUPA: Standard Ontology
for Ubiquitous and Pervasive Applications, Proceedings of the 1st Annual
International Conference on Mobile and Ubiquitous Systems:Networking and Services
(MobiQuitous ’04) , pp. 258-267, ISSN 0-7695-2208-4, Boston, Massachusetts,
August 22-25, 2004

Crossbow Technology,Inc., In http://www.xbow.com.
Curino, C.; Giani, M. ; Giorgetta, M. ; Giusti, A.; Murphy, A.L. & Picco, G.P. (2005). Tiny

LIME :Bridging Mobile and Sensor Networks through Middleware, Proceedings of
the 3rd IEEE International Conference on Pervasive Computing and Communications
(PerCom 2005), pp. 61-72, Kauai Island, Hawaii, March 8-12, 2005

Dragan, G.; Dragan, D. & Vladan D. (2006). Model Driven Architecture and Ontology
Development, Springer-Verlag, ISBN: 978-3-540-32180-4

Ehrig, M. (2007). Ontology Alignment : Bridging the Semantic Gap. Series: Semantic Web and
Beyond, Vol. 4. Springer-Verlag, ISBN 978-0-387-32805-8)

Feng, J.; Koushanfar, F. & Potkonjak, M. (2002). System-Architectures for Sensor Networks
Issues, Alternatives, and Directions, Proceedings of the IEEE International Conference
on Computer Design: VLSI in Computers and Processors (ICCD’02), pp. 226, ISSN 1063-
6404, Rio de Janeiro, Brazil, September 16-18, 2002

Gruber, T.R. (1995). Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human-Computer Studies, No. 43(5/6), 1995, 907-928,
ISSN 1071-5819

Herring, С. (2000). Microprocessors, Microcontrollers, and Systems in the New Millennium,
IEEE Micro, Vol. 20, No. 6, Nov/Dec, 2000, 45-51, ISSN 0272-1732.

Hoffmann, B. & M. Minas, M. (2000). Towards Generic Rule-Based Visual Programming,
Proceedings of the 2000 IEEE International Symposium on Visual Languages (VL'00), pp.
65-67, ISBN 0-7695-0840-5, Seattle, Washington, 2000

Hönle, N.; Käppeler, U.-P.; Nicklas, D.; Schwarz, T. & Grossmann, M. (2005). Benefits of
Integrating Meta Data into a Context Model, Proceedings of the 3rd IEEE International
Conference on Pervasive Computing and Communications (PerCom 2005), pp. 25-29,
Kauai Island, Hawaii, March 8-12, 2005

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

195

Jeng, T. (2004). Designing a Ubiquitous Smart Space of the Future: The Principle of
Mapping, Proceedings of International Conference of Cognition and Computation (DCC
’04), ISBN 978-1-4020-2392-7, MIT, Cambridge, 19-21 July, 2004

Kalfoglou, Y. (2001) Exploring ontologies, In : Handbook of Software Engineering and Knowledge
Engineering, Vol. 1, Fundamentals, S.K. Chang (Ed.), 863–887, World Scientific, ISBN
978-9810249731, Singapore

Kawahara, Y. ; Minami, M.; Saruwatari, S.; Morikawa, H. & Aoyama, T. (2004). Challenges
and Lessons Learned in Building a Practical Smart Space, Proceedings of the 1st
Annual International Conference on Mobile and Ubiquitous Systems:Networking and
Services (MobiQuitous ’04), pp. 213-222, ISBN 0-7695-2208-4, Boston, Massachusetts,
August 22-25, 2004

Mascolo C. ; Capra, L. & Emmerich, W. (2001) An XML-based Middleware for Peer-to-Peer
computing, Proceedings of the the First Int. Conf. on Peer-to-Peer Computing (P2P'01),
pp. 69-74, ISBN 0-7695-1503-7, Lingkoping, Sweden, 2001

Misc.Tinyos: A component-based os for the networked sensor regime. In
 http://webs.cs.berkeley.edu/tos/
Niemelä, E. ; Latvakoski, J. (2004). Survey of requirements and solutions for ubiquitous

software, Proceedings of the 3rd international conference on Mobile and ubiquitous
multimedia, pp. 71-78, ISBN 1-58113-981-0, College Park, Maryland, 2004

Oliver, I. (2005) Applying UML and MDA to Real Systems Design, Proceedings of the
conference on Design, Automation and Test in Europe (DATE'05), Vol.1, pp.70-71, ISSN
0-7695-2288-2, Munich, Germany, 7-11 March, 2005

Rozenberg, G. (ed.) (1997). Handbook of Graph Grammars and Computing by Graph
Transformations”, Volume 1: Foundations. World Scientic, ISBN 981-02-2884

Sowa, J.F. (2000). Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole, ISBN 0-534-94965-7, Pacific Grove, CA

Tilak, S.; Abu-Ghazaleh, N. & Heinzelman W. (2002). A Taxonomy of Wireless Micro-Sensor
Network Models, ACM Mobile Computing and Communications Review, Vol. 6, No. 2,
2002, 28-36, ISSN 0146-4833

Tokunaga, E.; Zee, A. van der; Kurahashi, M.; Nemoto, M.& Nakajima, T. (2004). A
Middleware Infrastracture for Building Mixed Reality Applications in Ubiquitous
Computing Environments, Proceedings of the 1st Annual International Conference on
Mobile and Ubiquitous Systems:Networking and Services (MobiQuitous ’04), pp. 382-391,
ISSN 0-7695-2208-4, Boston, Massachusetts, August 22-25, 2004

Tsetsos, V.; Alyfantis, G. ; Hasiotis, T. ; Sekkas, O. & Hadjiefthymiades S. (2005).
Commercial Wireless Sensor Networks: Technical and Business Issues,
Proceedings of the Second Annual Conference on Wireless On-demand Network Systems
and Services (WONS’05), pp. 166-173, ISSN 0045-7906, St. Moritz, Switzerland,
January 2005

Volgyesi, P.; Ledeczi, A. (2002). Component-Based Development of Networked Embedded
Applications, Proceedings of the 28th Euromicro Conference (EUROMICRO’02), pp. 68,
ISSN, Dortmund, Germany, 4-6 September, 2002

Wonka Java VM Project. In http://en.wikipedia.org/wiki/Wonka_VM. 2010

 Ubiquitous Computing

194

Buneman, P. (1997). Semistructured data, Proceedings of the ACM Symposium on Principles of
Database Systems, pp.117-121 , ISBN 0-89791-910-6, Tucson, Arizona, United States,
1997, ACM, Tucson

Buneman, P.; Davidson, S. ; Fernandez, M. & Suciu, D. (1996). Adding structure to
unstructured data, Technical Report MS-CIS-96-21, University of Pennsylvania,
Computer and Information Science Department

Cabri, G. ; Leonardi, L. & Zambonelli, F. (2000). XML dataspaces for mobile agent
coordination.”, Proceedings of the 2000 ACM symposium on Applied computing, pp.
181-188, ISBN 1-58113-240-9, 2000

Chan, E., Bresler, J. ; Al-Muhtadi, J. & Campbell, R. (2005). Gaia Microserver:An Extendable
Mobile Middleware Platform, Proceedings of the 3rd IEEE International Conference on
Pervasive Computing and Communications (PerCom 2005), pp. 309-313, Kauai Island,
Hawaii, March 8-12, 2005

Chen, H.; Perich, F.; Finin, T. & Joshi, A. (2004). SOUPA: Standard Ontology
for Ubiquitous and Pervasive Applications, Proceedings of the 1st Annual
International Conference on Mobile and Ubiquitous Systems:Networking and Services
(MobiQuitous ’04) , pp. 258-267, ISSN 0-7695-2208-4, Boston, Massachusetts,
August 22-25, 2004

Crossbow Technology,Inc., In http://www.xbow.com.
Curino, C.; Giani, M. ; Giorgetta, M. ; Giusti, A.; Murphy, A.L. & Picco, G.P. (2005). Tiny

LIME :Bridging Mobile and Sensor Networks through Middleware, Proceedings of
the 3rd IEEE International Conference on Pervasive Computing and Communications
(PerCom 2005), pp. 61-72, Kauai Island, Hawaii, March 8-12, 2005

Dragan, G.; Dragan, D. & Vladan D. (2006). Model Driven Architecture and Ontology
Development, Springer-Verlag, ISBN: 978-3-540-32180-4

Ehrig, M. (2007). Ontology Alignment : Bridging the Semantic Gap. Series: Semantic Web and
Beyond, Vol. 4. Springer-Verlag, ISBN 978-0-387-32805-8)

Feng, J.; Koushanfar, F. & Potkonjak, M. (2002). System-Architectures for Sensor Networks
Issues, Alternatives, and Directions, Proceedings of the IEEE International Conference
on Computer Design: VLSI in Computers and Processors (ICCD’02), pp. 226, ISSN 1063-
6404, Rio de Janeiro, Brazil, September 16-18, 2002

Gruber, T.R. (1995). Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human-Computer Studies, No. 43(5/6), 1995, 907-928,
ISSN 1071-5819

Herring, С. (2000). Microprocessors, Microcontrollers, and Systems in the New Millennium,
IEEE Micro, Vol. 20, No. 6, Nov/Dec, 2000, 45-51, ISSN 0272-1732.

Hoffmann, B. & M. Minas, M. (2000). Towards Generic Rule-Based Visual Programming,
Proceedings of the 2000 IEEE International Symposium on Visual Languages (VL'00), pp.
65-67, ISBN 0-7695-0840-5, Seattle, Washington, 2000

Hönle, N.; Käppeler, U.-P.; Nicklas, D.; Schwarz, T. & Grossmann, M. (2005). Benefits of
Integrating Meta Data into a Context Model, Proceedings of the 3rd IEEE International
Conference on Pervasive Computing and Communications (PerCom 2005), pp. 25-29,
Kauai Island, Hawaii, March 8-12, 2005

Semantically Enriched Integration Framework for Ubiquitous Computing Environment

195

Jeng, T. (2004). Designing a Ubiquitous Smart Space of the Future: The Principle of
Mapping, Proceedings of International Conference of Cognition and Computation (DCC
’04), ISBN 978-1-4020-2392-7, MIT, Cambridge, 19-21 July, 2004

Kalfoglou, Y. (2001) Exploring ontologies, In : Handbook of Software Engineering and Knowledge
Engineering, Vol. 1, Fundamentals, S.K. Chang (Ed.), 863–887, World Scientific, ISBN
978-9810249731, Singapore

Kawahara, Y. ; Minami, M.; Saruwatari, S.; Morikawa, H. & Aoyama, T. (2004). Challenges
and Lessons Learned in Building a Practical Smart Space, Proceedings of the 1st
Annual International Conference on Mobile and Ubiquitous Systems:Networking and
Services (MobiQuitous ’04), pp. 213-222, ISBN 0-7695-2208-4, Boston, Massachusetts,
August 22-25, 2004

Mascolo C. ; Capra, L. & Emmerich, W. (2001) An XML-based Middleware for Peer-to-Peer
computing, Proceedings of the the First Int. Conf. on Peer-to-Peer Computing (P2P'01),
pp. 69-74, ISBN 0-7695-1503-7, Lingkoping, Sweden, 2001

Misc.Tinyos: A component-based os for the networked sensor regime. In
 http://webs.cs.berkeley.edu/tos/
Niemelä, E. ; Latvakoski, J. (2004). Survey of requirements and solutions for ubiquitous

software, Proceedings of the 3rd international conference on Mobile and ubiquitous
multimedia, pp. 71-78, ISBN 1-58113-981-0, College Park, Maryland, 2004

Oliver, I. (2005) Applying UML and MDA to Real Systems Design, Proceedings of the
conference on Design, Automation and Test in Europe (DATE'05), Vol.1, pp.70-71, ISSN
0-7695-2288-2, Munich, Germany, 7-11 March, 2005

Rozenberg, G. (ed.) (1997). Handbook of Graph Grammars and Computing by Graph
Transformations”, Volume 1: Foundations. World Scientic, ISBN 981-02-2884

Sowa, J.F. (2000). Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole, ISBN 0-534-94965-7, Pacific Grove, CA

Tilak, S.; Abu-Ghazaleh, N. & Heinzelman W. (2002). A Taxonomy of Wireless Micro-Sensor
Network Models, ACM Mobile Computing and Communications Review, Vol. 6, No. 2,
2002, 28-36, ISSN 0146-4833

Tokunaga, E.; Zee, A. van der; Kurahashi, M.; Nemoto, M.& Nakajima, T. (2004). A
Middleware Infrastracture for Building Mixed Reality Applications in Ubiquitous
Computing Environments, Proceedings of the 1st Annual International Conference on
Mobile and Ubiquitous Systems:Networking and Services (MobiQuitous ’04), pp. 382-391,
ISSN 0-7695-2208-4, Boston, Massachusetts, August 22-25, 2004

Tsetsos, V.; Alyfantis, G. ; Hasiotis, T. ; Sekkas, O. & Hadjiefthymiades S. (2005).
Commercial Wireless Sensor Networks: Technical and Business Issues,
Proceedings of the Second Annual Conference on Wireless On-demand Network Systems
and Services (WONS’05), pp. 166-173, ISSN 0045-7906, St. Moritz, Switzerland,
January 2005

Volgyesi, P.; Ledeczi, A. (2002). Component-Based Development of Networked Embedded
Applications, Proceedings of the 28th Euromicro Conference (EUROMICRO’02), pp. 68,
ISSN, Dortmund, Germany, 4-6 September, 2002

Wonka Java VM Project. In http://en.wikipedia.org/wiki/Wonka_VM. 2010

 Ubiquitous Computing

196

Zhou, Y. ; Zhao, Q. & Perry M. (2005). Reasoning over Ontologies of On Demand Service,
Proceedings of the IEEE International Conference on e-Technology, e-Commerce and e-
Service (EEE'05), pp. 381-384, ISSN 0-7695-2274-2, Hong Kong, 29 March-1 April,
2005

Part 4

Practical Applications

 Ubiquitous Computing

196

Zhou, Y. ; Zhao, Q. & Perry M. (2005). Reasoning over Ontologies of On Demand Service,
Proceedings of the IEEE International Conference on e-Technology, e-Commerce and e-
Service (EEE'05), pp. 381-384, ISSN 0-7695-2274-2, Hong Kong, 29 March-1 April,
2005

Part 4

Practical Applications

10

Current Challenges for Mobile Location-Based
Pervasive Content Sharing Applications

R. Francese, I. Passero and Genoveffa Tortora
Dipartimento di Matematica e Informatica (University of Salerno)

 Italy

1. Introduction
Web 2.0 and social software are changing the way millions of users communicate: digital
citizens are not only content receptors but also contributors to content creation,
collaborating in social networks or communities.
Pervasive computing can increase this process taking our contents from everyday life,
providing them in the places where there is the sharing need and often in the place where
they are originated.
Until a few years ago, the ability to use technology to locate people and provide them the
capability of sharing formal or informal content related to their location was limited. As an
example, Prante et al. proposed the “cooperative building” metaphor, describing very
expensive digital furniture, such as tabletop (InteracTable), vertical displays (DynaWall),
and chairs (CommChairs) with built-in displays to support collaboration (Prante et al.,
2004). However, localization technologies are nowadays more common, along with mobile
devices that support them, making possible the combination of computer-mediated
communication and location related data.
Top-of-the-range mobile devices allow us to adopt Augmented Reality (AR) based
technologies to involve users in a mixed reality, made up of real world, observed towards
the device camera, and of overlapped informative contents. In particular, the usage of AR is
facilitated because of the innovative characteristics of the last device generation (on-board
camera, accelerometers, compass, GPS etc.), instantly combine the preview made by the
video camera with the AR information.
Several prototypes and commercial systems proposed location-based services, some of them
associate textual notes to specific location, others provide awareness on places and friends
for increasing informal interactions (Jones and Grandhi , 2004). Some of these systems have
been successfully used, although the opportunities to innovate offered by new mobile
technologies have still to be investigated in depth. The new devices, in fact, give the
possibility of facing with the challenges in this field, such as creating innovative interfaces
for mobile systems and implementing place-based recommender algorithms that
intelligently connect people to places (Jones el al., 2004; Gartner, 2010).
Location-based pervasive applications are of growing interest for the scientific and
industrial communities. Indeed, according to Gartner (Gartner, 2010b), one of the ICT
enterprise world leader, Location-Based Services will be in the first ten required mobile
devices applications in 2012. Moreover, the request of these services will strongly increase in

10

Current Challenges for Mobile Location-Based
Pervasive Content Sharing Applications

R. Francese, I. Passero and Genoveffa Tortora
Dipartimento di Matematica e Informatica (University of Salerno)

 Italy

1. Introduction
Web 2.0 and social software are changing the way millions of users communicate: digital
citizens are not only content receptors but also contributors to content creation,
collaborating in social networks or communities.
Pervasive computing can increase this process taking our contents from everyday life,
providing them in the places where there is the sharing need and often in the place where
they are originated.
Until a few years ago, the ability to use technology to locate people and provide them the
capability of sharing formal or informal content related to their location was limited. As an
example, Prante et al. proposed the “cooperative building” metaphor, describing very
expensive digital furniture, such as tabletop (InteracTable), vertical displays (DynaWall),
and chairs (CommChairs) with built-in displays to support collaboration (Prante et al.,
2004). However, localization technologies are nowadays more common, along with mobile
devices that support them, making possible the combination of computer-mediated
communication and location related data.
Top-of-the-range mobile devices allow us to adopt Augmented Reality (AR) based
technologies to involve users in a mixed reality, made up of real world, observed towards
the device camera, and of overlapped informative contents. In particular, the usage of AR is
facilitated because of the innovative characteristics of the last device generation (on-board
camera, accelerometers, compass, GPS etc.), instantly combine the preview made by the
video camera with the AR information.
Several prototypes and commercial systems proposed location-based services, some of them
associate textual notes to specific location, others provide awareness on places and friends
for increasing informal interactions (Jones and Grandhi , 2004). Some of these systems have
been successfully used, although the opportunities to innovate offered by new mobile
technologies have still to be investigated in depth. The new devices, in fact, give the
possibility of facing with the challenges in this field, such as creating innovative interfaces
for mobile systems and implementing place-based recommender algorithms that
intelligently connect people to places (Jones el al., 2004; Gartner, 2010).
Location-based pervasive applications are of growing interest for the scientific and
industrial communities. Indeed, according to Gartner (Gartner, 2010b), one of the ICT
enterprise world leader, Location-Based Services will be in the first ten required mobile
devices applications in 2012. Moreover, the request of these services will strongly increase in

 Ubiquitous Computing

200

the next years. Gartner predicts that Location-Based users will increase from 96 millions in
2009 to 526 millions in 2012. This kind of services is second in the top ten list for the high
value that they have for users. In fact, they answer to several user needs, from productivity
to social network and entertainment.
New challenges concern the development of AR applications for mobile phones supporting
web 2.0 features, such as the sharing of location-based multimedia annotations in outdoor
and indoor environments. Exploiting these features, the real world can be labelled using the
“magic lens” interface offered by mobile devices.
The application of this technology is very wide and not limited to:
• collaborative work: information concerning collaboration is directly acquired and

submitted in the working place, aiming at favouring formal and informal collaboration;
• tourism and cultural heritage: tourists uploads media and label places, monuments or

pictures they are visiting;
• learning: teachers and students share a learning experience by uploading multimedia

content in the places where they learn;
• infomobility: location-based information concerning transport or services to the citizen

can be uploaded/downloaded in the place where there is the need;
• commerce: customer reviews of products shown in the store, find a store item pointing

on a map, advertising in augmented reality with some form of interaction.

Fig. 1. Research Areas related to Location-Based Pervasive Content Applications

This chapter is organized as follows: Section 2 collects the innovative trends in the research
areas related to the development of innovative mobile location-based pervasive content
sharing applications, Section 3 describes some examples of this kind of applications, while
Section 4 discusses how these technologies can be adopted in different application areas.
Section 5, finally, concludes.

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

201

2. Research areas related to Location-Based Pervasive Content Applications
This kind of applications is very complex and has an interdisciplinary nature. Thus, this
paper focuses on several research areas, as resumed in Fig. 1, all related to Location-Based
Pervasive Content Sharing Applications.
In the following of this section we better detail the advanced results reached in the most
relevant fields for these technologies.

2.1 Mobile AR interfaces
An important direction for the Mobile Spatial Interaction research is to investigate how
spatial information should be displayed on a mobile device (Frohlich et al., 2009). To this
aim new enabling technologies on mobile devices, including spatial sensors, high-end 3D
graphics or augmented reality need to be considered.
Augmented Reality (AR) is a technology enabling to combine virtual information with the
real world. The virtual content is superimposed to real images, and it is interactive in real
time (Azuma, 1997). Mobile AR systems initially adopted a head mounted display to show
virtual graphics over the real world. Innovative techniques were designed to interact with
the mixed world.
As smartphones become smarter, AR degree of adoption on mobile device increases.
Indeed, according to (Fitzmaurice, 93) a mobile device can be seen as a window onto a
located 3D information space, enabling “to browse, interact, and manipulate electronic
information within the context and situation in which the information originated and where
it holds strong meaning”.
Using this approach, a user acts on two information layers: the “transparent” device screen,
showing georeferenced objects, and the physical surface. This interaction technique is
named “magic lens” (Bier et al., 1993), “see-through interface” (Bier et al. 1994), or
“magnifying glass” (Rekimoto, 95). Originally this kind of interfaces was based on GUI
widgets. Actually, a magic lens interface can be used to augment the reality with 3D virtual
objects and landscapes.
The first examples of AR applications for mobile phones were Mosquito Hunt and Invisible
Train. In the former virtual mosquitoes are overlaid on the camera image and simple motion
of the phone enables the user to fire the Mosquitoes. The Invisible Train (Wagner et al., 2005)
adopts a "magic lens metaphor” as user interface. It is a mobile, collaborative multi-user AR
game, enabling players to control virtual trains on a real wooden miniature railroad track.
The virtual trains are shown to the players in AR modality.
Marked cards are used by (ARToolKit, 2010) together with computer vision techniques to
determine the real camera position and orientation relatively to a card. In this way it is
possible to overlay, in the correct perspective manner, virtual objects onto these cards. To this
aim, the live video image is converted into a black and white one. Next, ARToolKit finds all
the squares in the binary image, many of which are not the tracking markers. If there is a
match with a marker, ARToolKit uses the known square size and pattern orientation to
calculate the position of the real video camera relative to the physical marker. Starting from the
real camera position, the virtual camera position is set with the same coordinates. The virtual
object is then displayed by overlaying the real marker, using the OpenGL API.
Following this direction, (Popcode, 2010) combines the Popcode logo with a unique
identifier. In this way, on one side the user is informed that augmented content is available,
and, on the other side, the marker provides a way to access the information hosted on the

 Ubiquitous Computing

200

the next years. Gartner predicts that Location-Based users will increase from 96 millions in
2009 to 526 millions in 2012. This kind of services is second in the top ten list for the high
value that they have for users. In fact, they answer to several user needs, from productivity
to social network and entertainment.
New challenges concern the development of AR applications for mobile phones supporting
web 2.0 features, such as the sharing of location-based multimedia annotations in outdoor
and indoor environments. Exploiting these features, the real world can be labelled using the
“magic lens” interface offered by mobile devices.
The application of this technology is very wide and not limited to:
• collaborative work: information concerning collaboration is directly acquired and

submitted in the working place, aiming at favouring formal and informal collaboration;
• tourism and cultural heritage: tourists uploads media and label places, monuments or

pictures they are visiting;
• learning: teachers and students share a learning experience by uploading multimedia

content in the places where they learn;
• infomobility: location-based information concerning transport or services to the citizen

can be uploaded/downloaded in the place where there is the need;
• commerce: customer reviews of products shown in the store, find a store item pointing

on a map, advertising in augmented reality with some form of interaction.

Fig. 1. Research Areas related to Location-Based Pervasive Content Applications

This chapter is organized as follows: Section 2 collects the innovative trends in the research
areas related to the development of innovative mobile location-based pervasive content
sharing applications, Section 3 describes some examples of this kind of applications, while
Section 4 discusses how these technologies can be adopted in different application areas.
Section 5, finally, concludes.

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

201

2. Research areas related to Location-Based Pervasive Content Applications
This kind of applications is very complex and has an interdisciplinary nature. Thus, this
paper focuses on several research areas, as resumed in Fig. 1, all related to Location-Based
Pervasive Content Sharing Applications.
In the following of this section we better detail the advanced results reached in the most
relevant fields for these technologies.

2.1 Mobile AR interfaces
An important direction for the Mobile Spatial Interaction research is to investigate how
spatial information should be displayed on a mobile device (Frohlich et al., 2009). To this
aim new enabling technologies on mobile devices, including spatial sensors, high-end 3D
graphics or augmented reality need to be considered.
Augmented Reality (AR) is a technology enabling to combine virtual information with the
real world. The virtual content is superimposed to real images, and it is interactive in real
time (Azuma, 1997). Mobile AR systems initially adopted a head mounted display to show
virtual graphics over the real world. Innovative techniques were designed to interact with
the mixed world.
As smartphones become smarter, AR degree of adoption on mobile device increases.
Indeed, according to (Fitzmaurice, 93) a mobile device can be seen as a window onto a
located 3D information space, enabling “to browse, interact, and manipulate electronic
information within the context and situation in which the information originated and where
it holds strong meaning”.
Using this approach, a user acts on two information layers: the “transparent” device screen,
showing georeferenced objects, and the physical surface. This interaction technique is
named “magic lens” (Bier et al., 1993), “see-through interface” (Bier et al. 1994), or
“magnifying glass” (Rekimoto, 95). Originally this kind of interfaces was based on GUI
widgets. Actually, a magic lens interface can be used to augment the reality with 3D virtual
objects and landscapes.
The first examples of AR applications for mobile phones were Mosquito Hunt and Invisible
Train. In the former virtual mosquitoes are overlaid on the camera image and simple motion
of the phone enables the user to fire the Mosquitoes. The Invisible Train (Wagner et al., 2005)
adopts a "magic lens metaphor” as user interface. It is a mobile, collaborative multi-user AR
game, enabling players to control virtual trains on a real wooden miniature railroad track.
The virtual trains are shown to the players in AR modality.
Marked cards are used by (ARToolKit, 2010) together with computer vision techniques to
determine the real camera position and orientation relatively to a card. In this way it is
possible to overlay, in the correct perspective manner, virtual objects onto these cards. To this
aim, the live video image is converted into a black and white one. Next, ARToolKit finds all
the squares in the binary image, many of which are not the tracking markers. If there is a
match with a marker, ARToolKit uses the known square size and pattern orientation to
calculate the position of the real video camera relative to the physical marker. Starting from the
real camera position, the virtual camera position is set with the same coordinates. The virtual
object is then displayed by overlaying the real marker, using the OpenGL API.
Following this direction, (Popcode, 2010) combines the Popcode logo with a unique
identifier. In this way, on one side the user is informed that augmented content is available,
and, on the other side, the marker provides a way to access the information hosted on the

 Ubiquitous Computing

202

Popcode platform. A free XML language is available to developers for authoring. 3D objects,
audio, and interactivity are supported.
A new research direction concerns the combination of AR with the physical manipulation of
Tangible User Interfaces. In Fig. 2 (a) the user touches a virtual button to select a menu
option. The camera tracks hand gestures and the device camera preview is augmented with
overlaid 3D objects to provide visual feedbacks.

 (a) (b) (c)

Fig. 2. Three Augmented Reality interaction approaches
(Billinghurst et al., 2009) describe the differences between interaction techniques based on
the phone movement (Figure 2 (b)) and on the movement of a real object. In Figure 2 (c) the
user moves the object for interacting with the application.

2.2 Methodologies for user tracking
Tracking user's position and movement in the right way is a critical aspect, especially when
the content has to be displayed or created and attached considering a specific location.
Indeed, the presence of an error could visualize information in a wrong place, or, if the user
searches for the information, he might not find it where he expects. Thus, to take advantage
of the mobility features of the new devices, wide area pose tracking systems need to be
developed (Wagner and Schmalstieg, 2009).
These systems have to be capable of locating the user in a large environment, such as a
building or a city. Generally, tracking is based on a model of the surrounding environment,
but a big model cannot be stored in the memory of the mobile device. Thus, the model is
generally maintained on a server system which has in charge the providing of localization
services to the mobile devices.
Several strategies for tracking the user have been proposed in literature and they can be
classified depending on if they are targeted for indoor, outdoor environments or both.
Improvements in this research area can be carried out through the usage of the sensors
available on the newest devices (i.e. accelerometer, compass, camera) to provide innovative
solutions and the usage of pervasive tagging (Kindberg et al., 2010).

2.2.1 Outdoor
Outdoor positioning systems are generally based on the Global Positioning System (GPS),
which, recently has gained an accuracy of 10 to 20 meters.

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

203

The main advantages of this technology are that it is available everywhere outdoor and it
works without a model of the world.
All the new mobile devices mount, together with the GPS, a digital compass, which
provides orientation information that are useful for many mobile applications, and an
accelerometer, which is a sensor measuring the acceleration applied to the mobile device.
Recently, several commercial applications such as (Wikitude, 2010), NearestTube (Acrossair,
2010) and Layar (Layar, 2010) have adopted a magic lens interface to show labels selected
considering the user location, determined through GPS, accelerometers and digital compass.
These applications only show labels and don't enable the user to create new labels in a web
2.0 way.
In particular, Wikitude localizes the user position using GPS and compass data and overlays
Wiki information on the real camera view of the smartphone.
Layar is a free application for the Android Operating System, and is now also available for
iPhone, that makes sets of data viewable on top of the device camera as the user pans
around a city and points at buildings (Layar, 2010). The recent 3.0 version enables also to
augment reality with 3D objects.
Layar can be seen as a new type of browser, able to provide an augmented view of the
world combining virtual content and reality.
When the Layar application starts, the location of the user is automatically detected using
GPS and the compass detects the orientation of the phone display. Layers are the equivalent
of web-pages in normal browsers, superimposed to the reality. Real estate, banking,
restaurants and other companies have already created layers of information available on the
platform. Each organization identifies a set of location coordinates with relevant
information, constituting a digital layer. The user easily switches between layers by tapping
the side of the screen.
NearestTube allows the user to see the next tube station by tilting the phone upwards. It
shows the direction in which the stations are in relation to the user location. Information
concerns their distance and the tube lines they are on. If one continues to tilt the phone
upwards, the application will show stacked icons representing the stations further away.
(White et al., 2009) propose SiteLens, a hand-held mobile AR system for urban design and
urban planning site visits. SiteLens presents on the device screen "situated visualizations"
related to the environment and displayed in situ. As an example, the environmental
situation concerning smoke is mapped to density. Denser smoke represents higher ppm
values. The user location and the orientation of the device camera are determined by
combining ARTag fiducials, GPS, and IC3 orientation sensor. Optical markers are only used
to address urban areas with limited GPS satellite visibility.

2.2.2 Indoor
In indoors environments, the GPS signal cannot be used because the signal power is too
reduced to enter in buildings. An open research problem is to design an indoor location
sensor providing accurate spatial information that is also not expensive, scalable, and
robust. Recent indoor location sensing systems range from RFID, requiring explicit
installation, to standard wireless networking hardware, or Bluetooth tags, suffering of
several problems, such as long time for device discovering and passing through walls
(Savadis et al., 2008).
Location sensing systems relying on standard wireless networking hardware measure signal
intensity and attenuation to determine user location.

 Ubiquitous Computing

202

Popcode platform. A free XML language is available to developers for authoring. 3D objects,
audio, and interactivity are supported.
A new research direction concerns the combination of AR with the physical manipulation of
Tangible User Interfaces. In Fig. 2 (a) the user touches a virtual button to select a menu
option. The camera tracks hand gestures and the device camera preview is augmented with
overlaid 3D objects to provide visual feedbacks.

 (a) (b) (c)

Fig. 2. Three Augmented Reality interaction approaches
(Billinghurst et al., 2009) describe the differences between interaction techniques based on
the phone movement (Figure 2 (b)) and on the movement of a real object. In Figure 2 (c) the
user moves the object for interacting with the application.

2.2 Methodologies for user tracking
Tracking user's position and movement in the right way is a critical aspect, especially when
the content has to be displayed or created and attached considering a specific location.
Indeed, the presence of an error could visualize information in a wrong place, or, if the user
searches for the information, he might not find it where he expects. Thus, to take advantage
of the mobility features of the new devices, wide area pose tracking systems need to be
developed (Wagner and Schmalstieg, 2009).
These systems have to be capable of locating the user in a large environment, such as a
building or a city. Generally, tracking is based on a model of the surrounding environment,
but a big model cannot be stored in the memory of the mobile device. Thus, the model is
generally maintained on a server system which has in charge the providing of localization
services to the mobile devices.
Several strategies for tracking the user have been proposed in literature and they can be
classified depending on if they are targeted for indoor, outdoor environments or both.
Improvements in this research area can be carried out through the usage of the sensors
available on the newest devices (i.e. accelerometer, compass, camera) to provide innovative
solutions and the usage of pervasive tagging (Kindberg et al., 2010).

2.2.1 Outdoor
Outdoor positioning systems are generally based on the Global Positioning System (GPS),
which, recently has gained an accuracy of 10 to 20 meters.

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

203

The main advantages of this technology are that it is available everywhere outdoor and it
works without a model of the world.
All the new mobile devices mount, together with the GPS, a digital compass, which
provides orientation information that are useful for many mobile applications, and an
accelerometer, which is a sensor measuring the acceleration applied to the mobile device.
Recently, several commercial applications such as (Wikitude, 2010), NearestTube (Acrossair,
2010) and Layar (Layar, 2010) have adopted a magic lens interface to show labels selected
considering the user location, determined through GPS, accelerometers and digital compass.
These applications only show labels and don't enable the user to create new labels in a web
2.0 way.
In particular, Wikitude localizes the user position using GPS and compass data and overlays
Wiki information on the real camera view of the smartphone.
Layar is a free application for the Android Operating System, and is now also available for
iPhone, that makes sets of data viewable on top of the device camera as the user pans
around a city and points at buildings (Layar, 2010). The recent 3.0 version enables also to
augment reality with 3D objects.
Layar can be seen as a new type of browser, able to provide an augmented view of the
world combining virtual content and reality.
When the Layar application starts, the location of the user is automatically detected using
GPS and the compass detects the orientation of the phone display. Layers are the equivalent
of web-pages in normal browsers, superimposed to the reality. Real estate, banking,
restaurants and other companies have already created layers of information available on the
platform. Each organization identifies a set of location coordinates with relevant
information, constituting a digital layer. The user easily switches between layers by tapping
the side of the screen.
NearestTube allows the user to see the next tube station by tilting the phone upwards. It
shows the direction in which the stations are in relation to the user location. Information
concerns their distance and the tube lines they are on. If one continues to tilt the phone
upwards, the application will show stacked icons representing the stations further away.
(White et al., 2009) propose SiteLens, a hand-held mobile AR system for urban design and
urban planning site visits. SiteLens presents on the device screen "situated visualizations"
related to the environment and displayed in situ. As an example, the environmental
situation concerning smoke is mapped to density. Denser smoke represents higher ppm
values. The user location and the orientation of the device camera are determined by
combining ARTag fiducials, GPS, and IC3 orientation sensor. Optical markers are only used
to address urban areas with limited GPS satellite visibility.

2.2.2 Indoor
In indoors environments, the GPS signal cannot be used because the signal power is too
reduced to enter in buildings. An open research problem is to design an indoor location
sensor providing accurate spatial information that is also not expensive, scalable, and
robust. Recent indoor location sensing systems range from RFID, requiring explicit
installation, to standard wireless networking hardware, or Bluetooth tags, suffering of
several problems, such as long time for device discovering and passing through walls
(Savadis et al., 2008).
Location sensing systems relying on standard wireless networking hardware measure signal
intensity and attenuation to determine user location.

 Ubiquitous Computing

204

Wi-Fi location exploits existing Wi-Fi equipment on personal computers, PDAs and mobile
phones. Modulated Wi-Fi transmission signals detect the devices that are visible to the
network. The position of the device is then calculated by triangulating the signals received
from the other access points. Wi-Fi accuracy is about 3 m – 5 m.
Another approach consists in localizing a device in its environment by analyzing in real
time the video provided by the device camera to recognize objects. To this aim, a model of
the world has to be created and then matched against the video stream.
As an example, the VSLAM system (Karlsson et al., 2005) concurrently builds a map and
detects the location of the image on that map.
Another example is the system proposed by (Hile et al., 2008). It takes as inputs a floor plan,
a rough location estimate, and an image provided by the camera phone. The image is sent to
the server together with the information concerning the Wi-Fi signal strength and the floor
number. The server extracts the relevant features in the image, determines the search area in
the floor plan using the location estimation, searches where the image can be located on the
floor considering the image features, determines the camera pose, and returns the content to
be overlaid on the camera flow of the client device.

2.2.3 Hybrid
The blending of physical and virtual reality can be reached through new ways of labeling the
world. Labels have a great potentiality because they can not be anymore a static label, but they
can be considered as an index of an online presence (Davies, 2010). The evolution of Bar codes
are two dimensional codes, such as (Quick Reference) QR codes (http://www.denso-
wave.com/qrcode/qrfeature-e.html). Thanks to the second dimension, these codes can contain
a large amount of data in a fixed amount of space. They carry meaningful information in the
vertical direction as well as in the horizontal one. By carrying information in both directions
the image is more compact than a 1D bar code. Indeed, they require about 10 percent of the
space necessary for representing the same information with a 1D bar code (Ebling and Cáceres,
2010). Markers with QR code stamps may encode location coordinates and elevation value.
Thus, they are useful to locate the user both in an outdoor and indoor settings.
All the recent mobile devices offer applications to easily capture and decode the code using
the built-in camera.
Markers encoding positions can be placed on the walls. They can be used to support
Infomobility, at the bus stop, for advertising in a shop or on a manifest, or in places as
museum, public offices and everywhere.
Ten years ago QR codes became an ISO international standard, named ISO/IEC 18004. They
have been largely adopted in Asia, seldom in Europe.
Esquire magazine proposed in the December 2009 an issue where six AR experiences
triggered by a 2D code were printed on the cover and on several articles. To start the
experience it was needed to download custom software.
Not only newspaper, but also people can be labelled. As an example, Facebook creates an
application that enables a user to make a t-shirt with a custom QR code. Thus, it is possible
to add a friend by shooting his/her QR code with the phone camera. Fig. 3 shows an “add-
to-Friends” t-shirt.
Also Google adopts QR codes for business advertising. The service, named "Favorite Places
on Google", provides the business with a windows decal showing a QR code. When scanned
by the phone camera, the marker enables the user to access information on the business,

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

205

including customer reviews and also enables to write a personal review. The application
does not adopt an AR interaction modality.

Fig. 3. QR code for labelling not only the world, but also people.

2.3 Usability for mobile systems in AR
New interaction approaches should be considered to effectively use augmented reality
mobile applications. Indeed, it is necessary to consider that mobile device interfaces are
characterized by the following aspects:
• small screen,
• limited input options (no mouse/keyboard),
• need to hold phone away from the body,
• reduced processing power (even if top-of-the range devices have this problem in

reduced form).
Thus, researchers have to face the challenge of designing usable interfaces for device screens
with limited dimensions and invent new interaction modalities.
To evaluate the usability of a mobile location-based AR system it is important to consider
that AR representations combine rendered graphics with the real world environment and
require a specific type of interaction among virtual artefacts and the real world. In
particular, several factors affect the user perception of an AR system (Haniff & Baber, 2003),
such as the perceived graphical resolution and rendering qualities. Image disparity is also a
critical factor in augmented reality interfaces. Indeed, if the AR content reproduced on the
camera is offset from the real world view, the user can be disoriented. The system lag can
affect the perceived system quality and impact on the manoeuvrability.
The Magic Lens interaction pattern has several drawbacks: it requires the user focuses the
information with the exclusive use of at least one hand; he/she has to move himself/herself
while looking inside the phone. Thus, the user can have some problem in crowds, small
spaces, or in areas with fast-moving objects or people (Lamantia, 2009).
A possible solution is to use the motion of the phone to interact with the virtual objects
(Billinghurst et al., 2009). In this way it is possible to overcome the problem to interact with
the application while the device is handheld (De Lucia et al., 2010b).
New research directions are studying the adoption of tangible interaction techniques.

 Ubiquitous Computing

204

Wi-Fi location exploits existing Wi-Fi equipment on personal computers, PDAs and mobile
phones. Modulated Wi-Fi transmission signals detect the devices that are visible to the
network. The position of the device is then calculated by triangulating the signals received
from the other access points. Wi-Fi accuracy is about 3 m – 5 m.
Another approach consists in localizing a device in its environment by analyzing in real
time the video provided by the device camera to recognize objects. To this aim, a model of
the world has to be created and then matched against the video stream.
As an example, the VSLAM system (Karlsson et al., 2005) concurrently builds a map and
detects the location of the image on that map.
Another example is the system proposed by (Hile et al., 2008). It takes as inputs a floor plan,
a rough location estimate, and an image provided by the camera phone. The image is sent to
the server together with the information concerning the Wi-Fi signal strength and the floor
number. The server extracts the relevant features in the image, determines the search area in
the floor plan using the location estimation, searches where the image can be located on the
floor considering the image features, determines the camera pose, and returns the content to
be overlaid on the camera flow of the client device.

2.2.3 Hybrid
The blending of physical and virtual reality can be reached through new ways of labeling the
world. Labels have a great potentiality because they can not be anymore a static label, but they
can be considered as an index of an online presence (Davies, 2010). The evolution of Bar codes
are two dimensional codes, such as (Quick Reference) QR codes (http://www.denso-
wave.com/qrcode/qrfeature-e.html). Thanks to the second dimension, these codes can contain
a large amount of data in a fixed amount of space. They carry meaningful information in the
vertical direction as well as in the horizontal one. By carrying information in both directions
the image is more compact than a 1D bar code. Indeed, they require about 10 percent of the
space necessary for representing the same information with a 1D bar code (Ebling and Cáceres,
2010). Markers with QR code stamps may encode location coordinates and elevation value.
Thus, they are useful to locate the user both in an outdoor and indoor settings.
All the recent mobile devices offer applications to easily capture and decode the code using
the built-in camera.
Markers encoding positions can be placed on the walls. They can be used to support
Infomobility, at the bus stop, for advertising in a shop or on a manifest, or in places as
museum, public offices and everywhere.
Ten years ago QR codes became an ISO international standard, named ISO/IEC 18004. They
have been largely adopted in Asia, seldom in Europe.
Esquire magazine proposed in the December 2009 an issue where six AR experiences
triggered by a 2D code were printed on the cover and on several articles. To start the
experience it was needed to download custom software.
Not only newspaper, but also people can be labelled. As an example, Facebook creates an
application that enables a user to make a t-shirt with a custom QR code. Thus, it is possible
to add a friend by shooting his/her QR code with the phone camera. Fig. 3 shows an “add-
to-Friends” t-shirt.
Also Google adopts QR codes for business advertising. The service, named "Favorite Places
on Google", provides the business with a windows decal showing a QR code. When scanned
by the phone camera, the marker enables the user to access information on the business,

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

205

including customer reviews and also enables to write a personal review. The application
does not adopt an AR interaction modality.

Fig. 3. QR code for labelling not only the world, but also people.

2.3 Usability for mobile systems in AR
New interaction approaches should be considered to effectively use augmented reality
mobile applications. Indeed, it is necessary to consider that mobile device interfaces are
characterized by the following aspects:
• small screen,
• limited input options (no mouse/keyboard),
• need to hold phone away from the body,
• reduced processing power (even if top-of-the range devices have this problem in

reduced form).
Thus, researchers have to face the challenge of designing usable interfaces for device screens
with limited dimensions and invent new interaction modalities.
To evaluate the usability of a mobile location-based AR system it is important to consider
that AR representations combine rendered graphics with the real world environment and
require a specific type of interaction among virtual artefacts and the real world. In
particular, several factors affect the user perception of an AR system (Haniff & Baber, 2003),
such as the perceived graphical resolution and rendering qualities. Image disparity is also a
critical factor in augmented reality interfaces. Indeed, if the AR content reproduced on the
camera is offset from the real world view, the user can be disoriented. The system lag can
affect the perceived system quality and impact on the manoeuvrability.
The Magic Lens interaction pattern has several drawbacks: it requires the user focuses the
information with the exclusive use of at least one hand; he/she has to move himself/herself
while looking inside the phone. Thus, the user can have some problem in crowds, small
spaces, or in areas with fast-moving objects or people (Lamantia, 2009).
A possible solution is to use the motion of the phone to interact with the virtual objects
(Billinghurst et al., 2009). In this way it is possible to overcome the problem to interact with
the application while the device is handheld (De Lucia et al., 2010b).
New research directions are studying the adoption of tangible interaction techniques.

 Ubiquitous Computing

206

2.4 Place-based recommender and social matching algorithms
A large amount of research work has been devoted to improve the usability of mobile
applications, proposing display approaches to better present a lot of information in a very
little space with too few resources. Another interesting direction is towards the research of
the way to reduce the amount of information to be displayed. Recommendation systems are
devoted to deal with information overload and offer personalized recommendations,
content, and services to the users.
During the past and recent years, recommendation systems were developed for a series of
different purposes. Recently, the rise of a large number of Web2.0 applications (blog,
community forums, Web Albums, Blog and Taggings, etc.) indicates that users have the
very pressing requirements of direct, rapid, useful and personalized information
recommendation and sharing services (Yang and Wang., 2009).
Recommender systems start from the user preferences and item properties to discover items
users are likely to take pleasure in.
According to (Gartner, 2010a), the future brands have to adopt location or profile-based
information for both acquiring and retaining customers and to remain competitive in the
growing mobile commerce space.
In case of location-based recommender systems, user profile analysis and context network
analysis are integrated with intelligent information searching and context semantic
enrichment to suggest to the user places and activities, combining his/her explicit and
implicit preferences with place information.
The user preferences on places and activities can be inferred from use or openly declared.
As an example, if a user frequents a specific restaurant type (i.e. Chinese), the system could
deduce that the user prefers Chinese food and recommends to him/her this type of restaurants
when he/she is searching for a restaurant. Social networks are useful to find similar user
profiles and to recommend restaurants and shops where other users with similar preferences
are used to go. To this aim, also user ratings and comments are largely used.
The main recommendation models proposed in literature include the collaborative model,
the content-based model, and the hybrid model based on both the previous ones (Yeh &
Wu, 2010). In particular:
• collaborative recommendation models adopt data mining algorithms to group user interests

collected mainly form session history;
• content-based recommendation models are based on semantic content classification;
• the hybrid model combines collaborative and content-based models. It provides a better

performance because this model take care both user session history and content
semantic analysis.

In many commercial situations the user judgements are implicitly collected, without explicit
user input. As an example, sales transactions or pageviews can be automatically collected
and considered as implicit ratings and exploited by collaborative filtering systems.
Collaborative filtering can also be based on human judgements, such as ratings and
comments. These user opinions are useful to determine the proximity of users’ tastes. See
the suggestions provided by Amazon, such as “Users who bought the item a, also bought
items b and c.”
(Zanker and Jessenitschnig, 2009) propose a collaborative algorithm for determining similar
users and making recommendations, based on a hybrid recommendation approach that
utilizes a diverse range of input data, such as clickstream data, sales transactions and
explicit user requirements.

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

207

An example of location-based recommender system based on social network is GeoLife 2.0
(Zheng et al., 2009). It exploits GPS technology to allow people to share their life experiences
referring to the place they frequent. The system measures the user similarity, and makes
personalized recommendation on friendship.

3. Augmented reality web 2.0 applications
Geotagging is an example of web 2.0 applications enabling to add location metadata to
photo, videos, etc. World-mapping is done by powerful tools such as Google Street View.
Thus, thanks to the innovative features of the new mobile devices, Geotagging is a very
common practice for both uploads and downloads.
As discussed in Section 2.1, the most part of the AR location-based application does not
support web 2.0 features, but they are limited to show location based content. This kind of
features requires that the users are able to choose a 3D location, and their devices should
allow them to opportunely view and add content.
(Baillot et al., 2001) proposed one of the first works on this topic, where an in-situ authoring
system enabled to add virtual objects to a real scene. It also supported triangulation from
different views. Augmentable Reality (Rekimoto et al., 1998) allows users to annotate an
environment exposing barcode markers associated to contextual information. More recently,
to obtain a better label placement considering the depth, (Wither et al., 2008) adopted a laser
range finder to compute the depth information from given position and orientation.
The Sekai Camera application for iPhone is a social augmented reality application (Sekai
Camera, 2010). It adopts a form of labelling that supports user communication by attaching
digital contents to the real world. It is a handheld application that allows to associate media
to a general location, and not to specific objects.
Recently, (Langlotz et al., 2010) present an approach for creating and exploring annotations
in place using mobile phones. They adopt vision-based orientation tracking to accurately
register objects overtaking the limited accuracy of the compass. Vision tracking requires an
image database or a three-dimensional reconstruction, predetermined or constructed on the
fly. To surmount these problems, author adopts a natural-feature mapping and tracking
approach for mobile phones, allowing tracking with three degrees of freedom. It assumes
the user makes pure rotational movements. The system generates a panoramic map from the
live video and simultaneously uses it for tracking.
To create annotation, users move into a position where they want to create it. The
application generates a panoramic image of the current environment. The user touches the
display at the desired position and enters a textual description or a voice annotation. The
system creates 48x48 pixel sub-image centered on the chosen point in the panorama image.
This sub-image is later used for template matching. Besides the annotation itself, for finding
the annotation anchor point again the system uses only the sub-image information.
In 2010 (De Lucia et al., 2010a) proposed SmartBuilding, aiming at augmenting a physical
building with spatially localized areas in which users can share formal and informal
multimedia documents and messages.
In particular, in SmartBuilding the screen of the mobile phone is transformed into a virtual
multimedia board, where real information are overlapped with virtual information. Fig. 4
shows a screenshot of a “real” board enhanced by using a mobile phone and its camera with
information concerning the course the teacher is taking in that room.

 Ubiquitous Computing

206

2.4 Place-based recommender and social matching algorithms
A large amount of research work has been devoted to improve the usability of mobile
applications, proposing display approaches to better present a lot of information in a very
little space with too few resources. Another interesting direction is towards the research of
the way to reduce the amount of information to be displayed. Recommendation systems are
devoted to deal with information overload and offer personalized recommendations,
content, and services to the users.
During the past and recent years, recommendation systems were developed for a series of
different purposes. Recently, the rise of a large number of Web2.0 applications (blog,
community forums, Web Albums, Blog and Taggings, etc.) indicates that users have the
very pressing requirements of direct, rapid, useful and personalized information
recommendation and sharing services (Yang and Wang., 2009).
Recommender systems start from the user preferences and item properties to discover items
users are likely to take pleasure in.
According to (Gartner, 2010a), the future brands have to adopt location or profile-based
information for both acquiring and retaining customers and to remain competitive in the
growing mobile commerce space.
In case of location-based recommender systems, user profile analysis and context network
analysis are integrated with intelligent information searching and context semantic
enrichment to suggest to the user places and activities, combining his/her explicit and
implicit preferences with place information.
The user preferences on places and activities can be inferred from use or openly declared.
As an example, if a user frequents a specific restaurant type (i.e. Chinese), the system could
deduce that the user prefers Chinese food and recommends to him/her this type of restaurants
when he/she is searching for a restaurant. Social networks are useful to find similar user
profiles and to recommend restaurants and shops where other users with similar preferences
are used to go. To this aim, also user ratings and comments are largely used.
The main recommendation models proposed in literature include the collaborative model,
the content-based model, and the hybrid model based on both the previous ones (Yeh &
Wu, 2010). In particular:
• collaborative recommendation models adopt data mining algorithms to group user interests

collected mainly form session history;
• content-based recommendation models are based on semantic content classification;
• the hybrid model combines collaborative and content-based models. It provides a better

performance because this model take care both user session history and content
semantic analysis.

In many commercial situations the user judgements are implicitly collected, without explicit
user input. As an example, sales transactions or pageviews can be automatically collected
and considered as implicit ratings and exploited by collaborative filtering systems.
Collaborative filtering can also be based on human judgements, such as ratings and
comments. These user opinions are useful to determine the proximity of users’ tastes. See
the suggestions provided by Amazon, such as “Users who bought the item a, also bought
items b and c.”
(Zanker and Jessenitschnig, 2009) propose a collaborative algorithm for determining similar
users and making recommendations, based on a hybrid recommendation approach that
utilizes a diverse range of input data, such as clickstream data, sales transactions and
explicit user requirements.

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

207

An example of location-based recommender system based on social network is GeoLife 2.0
(Zheng et al., 2009). It exploits GPS technology to allow people to share their life experiences
referring to the place they frequent. The system measures the user similarity, and makes
personalized recommendation on friendship.

3. Augmented reality web 2.0 applications
Geotagging is an example of web 2.0 applications enabling to add location metadata to
photo, videos, etc. World-mapping is done by powerful tools such as Google Street View.
Thus, thanks to the innovative features of the new mobile devices, Geotagging is a very
common practice for both uploads and downloads.
As discussed in Section 2.1, the most part of the AR location-based application does not
support web 2.0 features, but they are limited to show location based content. This kind of
features requires that the users are able to choose a 3D location, and their devices should
allow them to opportunely view and add content.
(Baillot et al., 2001) proposed one of the first works on this topic, where an in-situ authoring
system enabled to add virtual objects to a real scene. It also supported triangulation from
different views. Augmentable Reality (Rekimoto et al., 1998) allows users to annotate an
environment exposing barcode markers associated to contextual information. More recently,
to obtain a better label placement considering the depth, (Wither et al., 2008) adopted a laser
range finder to compute the depth information from given position and orientation.
The Sekai Camera application for iPhone is a social augmented reality application (Sekai
Camera, 2010). It adopts a form of labelling that supports user communication by attaching
digital contents to the real world. It is a handheld application that allows to associate media
to a general location, and not to specific objects.
Recently, (Langlotz et al., 2010) present an approach for creating and exploring annotations
in place using mobile phones. They adopt vision-based orientation tracking to accurately
register objects overtaking the limited accuracy of the compass. Vision tracking requires an
image database or a three-dimensional reconstruction, predetermined or constructed on the
fly. To surmount these problems, author adopts a natural-feature mapping and tracking
approach for mobile phones, allowing tracking with three degrees of freedom. It assumes
the user makes pure rotational movements. The system generates a panoramic map from the
live video and simultaneously uses it for tracking.
To create annotation, users move into a position where they want to create it. The
application generates a panoramic image of the current environment. The user touches the
display at the desired position and enters a textual description or a voice annotation. The
system creates 48x48 pixel sub-image centered on the chosen point in the panorama image.
This sub-image is later used for template matching. Besides the annotation itself, for finding
the annotation anchor point again the system uses only the sub-image information.
In 2010 (De Lucia et al., 2010a) proposed SmartBuilding, aiming at augmenting a physical
building with spatially localized areas in which users can share formal and informal
multimedia documents and messages.
In particular, in SmartBuilding the screen of the mobile phone is transformed into a virtual
multimedia board, where real information are overlapped with virtual information. Fig. 4
shows a screenshot of a “real” board enhanced by using a mobile phone and its camera with
information concerning the course the teacher is taking in that room.

 Ubiquitous Computing

208

Fig. 4. An example of an Augmented Reality interface for a mobile location-based pervasive
content sharing application

The user localization is performed using both QR codes and the device sensors. When a user
enters into a room, he/she has to direct the camera towards the QR code by pointing a
viewfinder visualized on his/her camera preview. The obtained resolution of the room
marker enables us to deduct the shooting user-QR distance. In addition, the shooting angle,
obtainable by comparing the shut QR side dimensions, allows us to determine more
precisely the initial user position in the room. The user orientering coordinate system adopts
radial orientation in the environment as main dimension and is tracked reading the
Azimuth sensor, while the Roll orientation sensor is adopted, combined with the
accelerometer, to detect how the camera is orientated in the space vertical dimension. The
devices also communicate the current state of the Wi-Fi signals arriving from the various
access points to the central server. Thus, it is possible to deduce each position variation by
integrating the detected acceleration and extrapolating the new position considering the
new Wi-Fi signal (Savidis et al., 2008), i.e. the strength of each access point carrier, of a user
with his/her previous configurations and with those of the others. A first usability
evaluation conducted in (De Lucia et a., 2010a) provides satisfying results and, in particular,
verifies that system supports strong degrees of realism, thanks to the fluidity of the AR
superimposed content. An innovative pagination interface enables to scroll-up and down
the contribution list, using only the devices sensors.

4. Innovative trends in specific application areas
This section reports innovative trends in specific application areas of the enabling
technologies.

4.1 Supporting collaboration
A research area of great interest for mobile phone based on AR interfaces is to provide
support for collaborative applications. Mobile phones are already designed to support local
and remote communication and thus they are a natural platform for collaboration.
According to (Szalavari et al., 1998), a collaborative AR environment provides the following
features:

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

209

• virtuality, not existent objects are shown in the environment,
• augmentation, real objects are augmented with virtual information displayed

considering the location,
• cooperation, the environment has to normally support the users interaction,
• independence, each user can manage an independent point of view,
• individuality, data can be shared but it can also be differently presented to different

users.
A first form of collaboration has been provided by Invisible Train (Wagner et al., 2005). The
user collaboration is performed as follows: users move around in the real world to view a
virtual train set and then touches the screen with a stylus to change the position of tracks on
the train set.
One of the first examples of collaboration in VR using mobile devices is the AR-Tennis game
(Henrysson et. al., 2005). The application is based on ARToolkit, ported to Symbian. This
game adopts the mobile phone both as an interaction tool, simulating a tennis racket, and as
a display. As a consequence, the players cannot easily examine their view of the virtual
world and concurrently move the device.
(Mulloni et. Al., 2008) propose a team-based competitive AR game. Players walk around the
real environment to reach the goal of the game and communicate face-to-face among them.
A more recent game, Art of Defense (Nguyen Ta Huynh et al., 2010), is a strategy-based
“Tower Defense” style game. Two players collaborate to defend their central tower from
waves of attacking enemies. The game adopts both handheld devices and physical game
pieces, creating a mixed physical/virtual game on the tabletop. The user interacts with the
game trough the tangible elements. To support the control of the game, the system exploits
several computer vision techniques, such as marker-based tracking and colour recognition.
For high interaction task, i.e. working together on complex independent problems, face-to-
face meetings are the better way to communicate. Small group settings are generally
equipped with display information technology, such as projectors, electronic whiteboards,
or large monitors. Augmented Reality, location-awareness and mobile devices can be
combined to share and display information for co-located collaboration.
(De Lucia et al., 2010b) proposed SmartMeeting, a component of SmartBuilding aiming at
supporting group collaboration.
Each work group has assigned a Group Augmented Area, where information relevant for
the group is shared. This area is permanent and represents the group reference area for
formal and informal communication.

4.2 Virtual campus and collaborative learning
The rapid evolution of mobile technology enables users to communicate in very different
ways. These transformations pervasively affect the way students learn: in 2005, Downes
(Downes, 2005) proposed for the first time the term elearning 2.0. This new version of
elearning principally denotes the democratization of content authoring: users are the
authors and information is no longer exclusively produced by experts, structured into
courses and delivered. Indeed, the students themselves produce and use content in a
bottom-up fashion, with the consequent and implicit creation of learning communities.
Indeed, the students of a course in Multimedia Technology provided the user requirements
for mobile learning applications (Garaj, 2010). This study, among others, puts in evidence
the importance of learning across contexts (i.e., to take pictures on location when students

 Ubiquitous Computing

208

Fig. 4. An example of an Augmented Reality interface for a mobile location-based pervasive
content sharing application

The user localization is performed using both QR codes and the device sensors. When a user
enters into a room, he/she has to direct the camera towards the QR code by pointing a
viewfinder visualized on his/her camera preview. The obtained resolution of the room
marker enables us to deduct the shooting user-QR distance. In addition, the shooting angle,
obtainable by comparing the shut QR side dimensions, allows us to determine more
precisely the initial user position in the room. The user orientering coordinate system adopts
radial orientation in the environment as main dimension and is tracked reading the
Azimuth sensor, while the Roll orientation sensor is adopted, combined with the
accelerometer, to detect how the camera is orientated in the space vertical dimension. The
devices also communicate the current state of the Wi-Fi signals arriving from the various
access points to the central server. Thus, it is possible to deduce each position variation by
integrating the detected acceleration and extrapolating the new position considering the
new Wi-Fi signal (Savidis et al., 2008), i.e. the strength of each access point carrier, of a user
with his/her previous configurations and with those of the others. A first usability
evaluation conducted in (De Lucia et a., 2010a) provides satisfying results and, in particular,
verifies that system supports strong degrees of realism, thanks to the fluidity of the AR
superimposed content. An innovative pagination interface enables to scroll-up and down
the contribution list, using only the devices sensors.

4. Innovative trends in specific application areas
This section reports innovative trends in specific application areas of the enabling
technologies.

4.1 Supporting collaboration
A research area of great interest for mobile phone based on AR interfaces is to provide
support for collaborative applications. Mobile phones are already designed to support local
and remote communication and thus they are a natural platform for collaboration.
According to (Szalavari et al., 1998), a collaborative AR environment provides the following
features:

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

209

• virtuality, not existent objects are shown in the environment,
• augmentation, real objects are augmented with virtual information displayed

considering the location,
• cooperation, the environment has to normally support the users interaction,
• independence, each user can manage an independent point of view,
• individuality, data can be shared but it can also be differently presented to different

users.
A first form of collaboration has been provided by Invisible Train (Wagner et al., 2005). The
user collaboration is performed as follows: users move around in the real world to view a
virtual train set and then touches the screen with a stylus to change the position of tracks on
the train set.
One of the first examples of collaboration in VR using mobile devices is the AR-Tennis game
(Henrysson et. al., 2005). The application is based on ARToolkit, ported to Symbian. This
game adopts the mobile phone both as an interaction tool, simulating a tennis racket, and as
a display. As a consequence, the players cannot easily examine their view of the virtual
world and concurrently move the device.
(Mulloni et. Al., 2008) propose a team-based competitive AR game. Players walk around the
real environment to reach the goal of the game and communicate face-to-face among them.
A more recent game, Art of Defense (Nguyen Ta Huynh et al., 2010), is a strategy-based
“Tower Defense” style game. Two players collaborate to defend their central tower from
waves of attacking enemies. The game adopts both handheld devices and physical game
pieces, creating a mixed physical/virtual game on the tabletop. The user interacts with the
game trough the tangible elements. To support the control of the game, the system exploits
several computer vision techniques, such as marker-based tracking and colour recognition.
For high interaction task, i.e. working together on complex independent problems, face-to-
face meetings are the better way to communicate. Small group settings are generally
equipped with display information technology, such as projectors, electronic whiteboards,
or large monitors. Augmented Reality, location-awareness and mobile devices can be
combined to share and display information for co-located collaboration.
(De Lucia et al., 2010b) proposed SmartMeeting, a component of SmartBuilding aiming at
supporting group collaboration.
Each work group has assigned a Group Augmented Area, where information relevant for
the group is shared. This area is permanent and represents the group reference area for
formal and informal communication.

4.2 Virtual campus and collaborative learning
The rapid evolution of mobile technology enables users to communicate in very different
ways. These transformations pervasively affect the way students learn: in 2005, Downes
(Downes, 2005) proposed for the first time the term elearning 2.0. This new version of
elearning principally denotes the democratization of content authoring: users are the
authors and information is no longer exclusively produced by experts, structured into
courses and delivered. Indeed, the students themselves produce and use content in a
bottom-up fashion, with the consequent and implicit creation of learning communities.
Indeed, the students of a course in Multimedia Technology provided the user requirements
for mobile learning applications (Garaj, 2010). This study, among others, puts in evidence
the importance of learning across contexts (i.e., to take pictures on location when students

 Ubiquitous Computing

210

perform a visual design activity), of uploading several content types and of combining
individual and group use in a way similar to Youtube, Flickr or blogs.
Several examples of the location-based virtual campuses exists in literature, but few of them
adopt mobile augmented reality interaction.
In (Liu et al., 2010) authors presented a system aiming at supporting English learning
integrating the usage of 2D barcodes and Augmented Reality as follows: when approaching
a zone, a student used the PDA phone to decrypt a 2D code and then obtained context-
aware contents from server. The students then practiced conversation with a virtual learning
partner.
 (De Lucia et al., 2010c) proposed ACCAMPUS, a “collaborative campus” based on
SmartBuilding, originated in the physical architectural space, exposing and downloading
learning contents and social information structured as augmented virtual areas, see Fig. 3 as
an example of this areas. This approach supports the creation of a virtual campus trough the
definition of several types of augmented areas, such as:
• administration areas, representing the official bulletin board (locked), where contents are

provided by the university staff, such as time tables, or teacher news on specific
courses;

• student areas, enabling the students to communicate by uploading and commenting
contents. They correspond to bulletin boards open to the student community and
adopted for not strictly didactic announcements;

• group areas, specific for group learning approaches. During a project activity, the teacher
can create an area for each group.

A collaborative learning approach exploiting the features offered by this system has also
been proposed.

4.3 Tourism and cultural heritage
Location-based pervasive content sharing applications can be a powerful support for
touristic promotion. It will address the users to discover Cultural Heritage in a collaborative,
simple and funny way, thought the adoption of mobile technologies based on AR.
Several location-based social networks, such as MyTown, FourSquare or Gowalla, enable
the user to label the places he/she is visiting and to download or retrieve virtual content,
without augmenting the reality.
A first example of mobile AR application for this area is LibreGeoSocial (Zoellner et al.,
2010). It provides a Cultural Heritage Layers, that uses X3D for visualizing historic
multimedia content superimposed on the camera view in the right place. They use
markerless tracking technologies for outdoor environments. In particular, starting from few
reference images of the spot, the system analyses the images from the camera and
determines if the current view is from a given spot or not. If a spot has been detected, the
position of the considered object is precisely recovered and tracked, then the additional
content can be appropriately superimposed to the camera view.

4.4 Face recognition based applications
Face-recognition on mobile phones is a very appealing AR location-based service. Indeed, it
can be very useful when we are seeing someone but we do not remember who he is. Or, we
need to get information on a person we meet for the first time. An application of this kind
can access to an image database of a social network, identify the person we are shooting

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

211

with the camera and report us all his public social network links. Polar Rose
(http://www.polarrose.com/) proposes a facial recognition algorithm that has been
adopted by several mobile applications.
Face Recognition on mobile device is a particular form of visual search. Indeed,
(http://www.slideshare.net/rudydw/mobile-trends-2020 slide 55 Atanu Tanaka) it can be
considered as a near future improvement of the classical web search. Searching for people is
probably the first step toward an era when the users, pointing the mobile cameras in the
direction of a generic object, will obtain the related information.

5. Conclusion
To better understand Mobile Location-Based Augmented Reality applications supporting
content sharing, we surveyed the literature in this area. We discussed current approaches in
the research areas related to the development of this kind of applications, listed some
examples of this kind of applications, and described how these technologies can be adopted
in different application areas.
We found that the researches on the related topics, such as usability, user tracking,
collaborative filtering, collaboration and face-recognition, are still at the early stages and the
interest toward this kind of applications will strongly increase.

6. References
Acrossair web page (2010)
http://www.acrossair.com/acrossair_app_augmented_reality_nearesttube_london_for_iPh

one_3GS.htm.
ATToolkit (2010)
 http://www.hitl.washington.edu/artoolkit/documentation/userintro.htm
Azuma, R. (1997) A Survey of Augmented Reality. Presence: Teleoperators and Virtual

Environments, Vol. 6, No. 4, pp: 6(4), 355–385.
Baillot, Y.; Brown, D.; Julier, S. (2001) Authoring of physical models using mobile

computers, Proceedings of ISWC 2001, pages 39–46, 2001.
Bier, E., A.; Stone, M., C.; Fishkin, K.; Buxton, W.; Baudel, T. (1994) A taxonomy of see-

through tools. In CHI ’94: Proceedings of the SIGCHI conference on Human factors in
computing systems, pp. 358–364. ACM Press.

Bier, E., A.; Stone, M., C.; Pier, K.; Buxton, W.; DeRose, T., D. (1993) Toolglass and magic
lenses: the see-through interface. In SIGGRAPH ’93: Proceedings of the 20th annual
conference on Computer graphics and interactive techniques, pp: 73–80. ACM Press.

Billinghurst, M.; Kato, H; Myojin, S. (2009) Advanced Interaction
Techniques for Augmented Reality Applications, Proceedings of the 3rd International
Conference on Virtual and Mixed Reality: Held as Part of HCI International 2009, pp. 13-
22.

de-las-Heras-Quiros, P; Roman-Lopez, R.; Calvo-Palomino, R.; Gato, J.; Gato, J. (2010)
Mobile Augmented Reality browsers should allow labeling objects. A Position
Paper for the Augmented Reality on the Web W3C Workshop.
http://www.w3.org/2010/06/w3car/mar_browsers_should_allow_labeling)object
s.pdf

 Ubiquitous Computing

210

perform a visual design activity), of uploading several content types and of combining
individual and group use in a way similar to Youtube, Flickr or blogs.
Several examples of the location-based virtual campuses exists in literature, but few of them
adopt mobile augmented reality interaction.
In (Liu et al., 2010) authors presented a system aiming at supporting English learning
integrating the usage of 2D barcodes and Augmented Reality as follows: when approaching
a zone, a student used the PDA phone to decrypt a 2D code and then obtained context-
aware contents from server. The students then practiced conversation with a virtual learning
partner.
 (De Lucia et al., 2010c) proposed ACCAMPUS, a “collaborative campus” based on
SmartBuilding, originated in the physical architectural space, exposing and downloading
learning contents and social information structured as augmented virtual areas, see Fig. 3 as
an example of this areas. This approach supports the creation of a virtual campus trough the
definition of several types of augmented areas, such as:
• administration areas, representing the official bulletin board (locked), where contents are

provided by the university staff, such as time tables, or teacher news on specific
courses;

• student areas, enabling the students to communicate by uploading and commenting
contents. They correspond to bulletin boards open to the student community and
adopted for not strictly didactic announcements;

• group areas, specific for group learning approaches. During a project activity, the teacher
can create an area for each group.

A collaborative learning approach exploiting the features offered by this system has also
been proposed.

4.3 Tourism and cultural heritage
Location-based pervasive content sharing applications can be a powerful support for
touristic promotion. It will address the users to discover Cultural Heritage in a collaborative,
simple and funny way, thought the adoption of mobile technologies based on AR.
Several location-based social networks, such as MyTown, FourSquare or Gowalla, enable
the user to label the places he/she is visiting and to download or retrieve virtual content,
without augmenting the reality.
A first example of mobile AR application for this area is LibreGeoSocial (Zoellner et al.,
2010). It provides a Cultural Heritage Layers, that uses X3D for visualizing historic
multimedia content superimposed on the camera view in the right place. They use
markerless tracking technologies for outdoor environments. In particular, starting from few
reference images of the spot, the system analyses the images from the camera and
determines if the current view is from a given spot or not. If a spot has been detected, the
position of the considered object is precisely recovered and tracked, then the additional
content can be appropriately superimposed to the camera view.

4.4 Face recognition based applications
Face-recognition on mobile phones is a very appealing AR location-based service. Indeed, it
can be very useful when we are seeing someone but we do not remember who he is. Or, we
need to get information on a person we meet for the first time. An application of this kind
can access to an image database of a social network, identify the person we are shooting

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

211

with the camera and report us all his public social network links. Polar Rose
(http://www.polarrose.com/) proposes a facial recognition algorithm that has been
adopted by several mobile applications.
Face Recognition on mobile device is a particular form of visual search. Indeed,
(http://www.slideshare.net/rudydw/mobile-trends-2020 slide 55 Atanu Tanaka) it can be
considered as a near future improvement of the classical web search. Searching for people is
probably the first step toward an era when the users, pointing the mobile cameras in the
direction of a generic object, will obtain the related information.

5. Conclusion
To better understand Mobile Location-Based Augmented Reality applications supporting
content sharing, we surveyed the literature in this area. We discussed current approaches in
the research areas related to the development of this kind of applications, listed some
examples of this kind of applications, and described how these technologies can be adopted
in different application areas.
We found that the researches on the related topics, such as usability, user tracking,
collaborative filtering, collaboration and face-recognition, are still at the early stages and the
interest toward this kind of applications will strongly increase.

6. References
Acrossair web page (2010)
http://www.acrossair.com/acrossair_app_augmented_reality_nearesttube_london_for_iPh

one_3GS.htm.
ATToolkit (2010)
 http://www.hitl.washington.edu/artoolkit/documentation/userintro.htm
Azuma, R. (1997) A Survey of Augmented Reality. Presence: Teleoperators and Virtual

Environments, Vol. 6, No. 4, pp: 6(4), 355–385.
Baillot, Y.; Brown, D.; Julier, S. (2001) Authoring of physical models using mobile

computers, Proceedings of ISWC 2001, pages 39–46, 2001.
Bier, E., A.; Stone, M., C.; Fishkin, K.; Buxton, W.; Baudel, T. (1994) A taxonomy of see-

through tools. In CHI ’94: Proceedings of the SIGCHI conference on Human factors in
computing systems, pp. 358–364. ACM Press.

Bier, E., A.; Stone, M., C.; Pier, K.; Buxton, W.; DeRose, T., D. (1993) Toolglass and magic
lenses: the see-through interface. In SIGGRAPH ’93: Proceedings of the 20th annual
conference on Computer graphics and interactive techniques, pp: 73–80. ACM Press.

Billinghurst, M.; Kato, H; Myojin, S. (2009) Advanced Interaction
Techniques for Augmented Reality Applications, Proceedings of the 3rd International
Conference on Virtual and Mixed Reality: Held as Part of HCI International 2009, pp. 13-
22.

de-las-Heras-Quiros, P; Roman-Lopez, R.; Calvo-Palomino, R.; Gato, J.; Gato, J. (2010)
Mobile Augmented Reality browsers should allow labeling objects. A Position
Paper for the Augmented Reality on the Web W3C Workshop.
http://www.w3.org/2010/06/w3car/mar_browsers_should_allow_labeling)object
s.pdf

 Ubiquitous Computing

212

De Lucia, A.; Francese, R; Passero, I.; Tortora, G. (2010a) SmartBuilding: a People-to-People-
to-Geographical-Places mobile system based on Augmented Reality, UBICOMM
2010, to appear.

De Lucia, A.; Francese, R; Passero, I. (2010b) A Mobile Augmented Reality system
supporting co-located Content Sharing and Displaying, in the Proc. of Information
Technology and Innovation Trends in Organizations (ITAIS 2010), to appear.

De Lucia, A.; Francese, R; Passero, I.; Tortora, G. (2010c) A Collaborative Augmented
Campus based on Location-Aware Mobile Technology (submitted)

Ebling, M.; Cáceres, R.. (2010) Bar Codes Everywhere You Look, IEEE on Pervasive
Computing, Vol. 9, No. 2.

Davies, N. (2010) Making the Case, IEEE on Pervasive Computing, Vol. 9, Issue 2.
Downes, S., "E-learning 2.0", (2006) ACM eLearn Magazine,

http://www.elearnmag.org/subpage.cfm?article=29-1§ion=articles.
Fitzmaurice, G. (1993) Situated Information Spaces and Spatially Aware Palmtop

Computers, Communications of the ACM, Vol. 36, No. 7.
Frohlich, P; Simon, R; Baillie, L. (2009) Mobile Spatial Interaction, Pers Ubiquit Comput, No.

13, pp. 251–253.
G. Fitzmaurice, “Situated Information Spaces and Spatially Aware Palmtop Computers”.

Communications of the ACM, Vol. 36, no. 7, July 1993.
Garaj, V. (2010) m-Learning in the Education of Multimedia Technologists and Designers at

the University Level: A User Requirements Study, IEEE Transactions on Learning
Technologies, Vol. 3, No. 1, pp. 24-32.

Gartner (2010a) http://www.mycustomer.com/topic/customer-intelligence/brands-must-
exploit-location-based-information-remain-competitive/113589

Gartner (2010b) Gartner Identifies the Top 10 Consumer Mobile Applications for 2012,
http://www.gartner.com/it/page.jsp?id=1230413

Google Favourite Places (2010)
 http://www.google.com/help/maps/favoriteplaces/gallery/#los-angeles-ca
Haniff, D; Baber, C. (2003) User Evaluation of Augmented Reality Systems, Proc. of the

Seventh International Conference on Information Visualization (IV’03).
Henrysson, A.; Billinghurst, M.; Ollila, M. (2005) Face to Face Collaborative AR on Mobile

Phones, Proceedings of the Fourth IEEE and ACM International Symposium on Mixed
and Augmented Reality, pp. 80 – 89.

Hile, H.; Borriello G. (2008) Positioning and Orientation in Indoor Environments Using
Camera Phones, IEEE Computer Graphics and Applications, Vol. 28 , No. 4 pp. 32-39.

Jones, Q.; Grandhi, S. A. (2005) P3 Systems: Putting the Place Back into Social Networks,
IEEE Internet Computing, 2005, pp. 38-46.

Karlsson, N.; Di Bernardo, E.; Ostrowski, J; Goncalves, L.; Pirjanian, P.; and Munich, M.
(2005) The vSLAM Algorithm for Robust Localization and Mapping Published in
Proc. of Int. Conf. on Robotics and Automation (ICRA).

Kindberg, T.; Pederson, T.; Sukthankar, R. (2010) Guest Editors' Introduction: Labeling the
World, Pervasive Computing, IEEE, Vol. 9, No. 2, pp. 8 – 10.

Lamantia, J. (2009) Inside Out: Interaction Design for Augmented Reality,
http://www.uxmatters.com/mt/archives/2009/08/inside-out-interaction-design-
for-augmented-reality.php

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

213

Langlotz, T.; Wagner, D.; Mulloni, A.; and Schmalstieg, D. (2010) Online Creation of
Panoramic Augmented Reality Annotations on Mobile Phones, IEEE Pervasive
Computing (to appear)

Layar, http://layar.eu/. Retrieved the 20th of September 2010.
T. Liu, T. Tan and Y. Chu, (2010) QR Code and Augmented Reality-Supported Mobile

English Learning System, WMMP 2008, LNCS 5960, pp. 37-52.
Mulloni, A.; Wagner, D.; Schmalstieg, D. (2008) Mobility and social interaction as core

gameplay elements in multiplayer augmented reality. In the Proceedings of the 3rd
international conference on Digital Interactive Media in Entertainment and Arts, ACM,
New York, NY, USA, pp. 472–478.

Nguyen Ta Huynh, D.; Raveendran, K,; Xu, Y; Spreen, K.; MacIntyre, B. (2009) Art of
defense: a collaborative handheld augmented reality board gameProceedings of the
2009 ACM SIGGRAPH Symposium on Video Games, pp. 135-142.

PopCode, http://www.popcode.info/
Prante, T., Streitz, N., Tandler, P. (2004) Roomware: Computers Disappear and Interaction

Evolves. Computer Vol. 37, No. 12, pp. 47-54.
Rekimoto, J. (1994) The World Through the Computer: A New Human-Computer

Interaction Style Based on Wearable Computers. Technical Report SCSL-TR-94-013,
Sony Computer Science Laboratories Inc.

J. Rekimoto (1995) The magnifying glass approach to augmented reality systems. In
International Conference on Artificial Reality and Tele-Existence ’95 / Conference on
Virtual Reality Software and Technology (ICAT/VRST ’95), pp. 123–132, 1995.

Savidis, A., Zidianakis, M., Kazepis, N., Dubulakis, S., Gramenos, D., Stephanidis, C. (2008)
An Integrated Platform for the Management of Mobile Location-aware Information
Systems, In Proc. of Pervasive 2008. Sydney, Australia, pp. 128–145.

Sekai Camera (2010) http://support.sekaicamera.com/en/service.
Schilit, B.; Adams, N.; Want, R. (1994) Context-aware computing applications. In Proceedings

of IEEE Workshop on Mobile Computing Systems and Applications, pp. 85-90.
Szalavari, Z.; Schmalstieg, D.; Fuhrmann, A.; Gervautz, M. (1998) Studierstube: An

environment for collaboration in augmented reality. Virtual Reality, Vol. 3, No. 1,
pp. 137–48.

Wagner, D.; Pintaric, T.; Ledermann, F.; Schmalstieg, D. (2005) Towards Massively Multi-
User Augmented Reality on Handheld Devices, Proc. of the Third International
Conference on Pervasive Computing (Pervasive 2005).

Wagner, D.; Schmalstieg, D. (2009) History and Future of Tracking for Mobile Phone
Augmented Reality, International Symposium on Ubiquitous Virtual Reality.

Wang, Z.; Yang, F. (2009) A Multiple-Mode Mobile Location-Based Information Retrieve
System, Fifth International Conference on Wireless and Mobile Communications, ICWMC
'09, pp. 410-415.

White, S.; Feiner, S. (2009) SiteLens: Situated visualization techniques for urban site visits.
Proc. CHI 2009, Boston, MA, April 4-9, pp. 1117-1120

Wither, J.; Coffin, C.; Ventura, J.; and Höllerer, T. (2008) Fast annotation and modeling with
a single-point laser range finder, 7th IEEE/ACM International Symposium on Mixed
and Augmented Reality, pp. 65-68.

 Ubiquitous Computing

212

De Lucia, A.; Francese, R; Passero, I.; Tortora, G. (2010a) SmartBuilding: a People-to-People-
to-Geographical-Places mobile system based on Augmented Reality, UBICOMM
2010, to appear.

De Lucia, A.; Francese, R; Passero, I. (2010b) A Mobile Augmented Reality system
supporting co-located Content Sharing and Displaying, in the Proc. of Information
Technology and Innovation Trends in Organizations (ITAIS 2010), to appear.

De Lucia, A.; Francese, R; Passero, I.; Tortora, G. (2010c) A Collaborative Augmented
Campus based on Location-Aware Mobile Technology (submitted)

Ebling, M.; Cáceres, R.. (2010) Bar Codes Everywhere You Look, IEEE on Pervasive
Computing, Vol. 9, No. 2.

Davies, N. (2010) Making the Case, IEEE on Pervasive Computing, Vol. 9, Issue 2.
Downes, S., "E-learning 2.0", (2006) ACM eLearn Magazine,

http://www.elearnmag.org/subpage.cfm?article=29-1§ion=articles.
Fitzmaurice, G. (1993) Situated Information Spaces and Spatially Aware Palmtop

Computers, Communications of the ACM, Vol. 36, No. 7.
Frohlich, P; Simon, R; Baillie, L. (2009) Mobile Spatial Interaction, Pers Ubiquit Comput, No.

13, pp. 251–253.
G. Fitzmaurice, “Situated Information Spaces and Spatially Aware Palmtop Computers”.

Communications of the ACM, Vol. 36, no. 7, July 1993.
Garaj, V. (2010) m-Learning in the Education of Multimedia Technologists and Designers at

the University Level: A User Requirements Study, IEEE Transactions on Learning
Technologies, Vol. 3, No. 1, pp. 24-32.

Gartner (2010a) http://www.mycustomer.com/topic/customer-intelligence/brands-must-
exploit-location-based-information-remain-competitive/113589

Gartner (2010b) Gartner Identifies the Top 10 Consumer Mobile Applications for 2012,
http://www.gartner.com/it/page.jsp?id=1230413

Google Favourite Places (2010)
 http://www.google.com/help/maps/favoriteplaces/gallery/#los-angeles-ca
Haniff, D; Baber, C. (2003) User Evaluation of Augmented Reality Systems, Proc. of the

Seventh International Conference on Information Visualization (IV’03).
Henrysson, A.; Billinghurst, M.; Ollila, M. (2005) Face to Face Collaborative AR on Mobile

Phones, Proceedings of the Fourth IEEE and ACM International Symposium on Mixed
and Augmented Reality, pp. 80 – 89.

Hile, H.; Borriello G. (2008) Positioning and Orientation in Indoor Environments Using
Camera Phones, IEEE Computer Graphics and Applications, Vol. 28 , No. 4 pp. 32-39.

Jones, Q.; Grandhi, S. A. (2005) P3 Systems: Putting the Place Back into Social Networks,
IEEE Internet Computing, 2005, pp. 38-46.

Karlsson, N.; Di Bernardo, E.; Ostrowski, J; Goncalves, L.; Pirjanian, P.; and Munich, M.
(2005) The vSLAM Algorithm for Robust Localization and Mapping Published in
Proc. of Int. Conf. on Robotics and Automation (ICRA).

Kindberg, T.; Pederson, T.; Sukthankar, R. (2010) Guest Editors' Introduction: Labeling the
World, Pervasive Computing, IEEE, Vol. 9, No. 2, pp. 8 – 10.

Lamantia, J. (2009) Inside Out: Interaction Design for Augmented Reality,
http://www.uxmatters.com/mt/archives/2009/08/inside-out-interaction-design-
for-augmented-reality.php

Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications

213

Langlotz, T.; Wagner, D.; Mulloni, A.; and Schmalstieg, D. (2010) Online Creation of
Panoramic Augmented Reality Annotations on Mobile Phones, IEEE Pervasive
Computing (to appear)

Layar, http://layar.eu/. Retrieved the 20th of September 2010.
T. Liu, T. Tan and Y. Chu, (2010) QR Code and Augmented Reality-Supported Mobile

English Learning System, WMMP 2008, LNCS 5960, pp. 37-52.
Mulloni, A.; Wagner, D.; Schmalstieg, D. (2008) Mobility and social interaction as core

gameplay elements in multiplayer augmented reality. In the Proceedings of the 3rd
international conference on Digital Interactive Media in Entertainment and Arts, ACM,
New York, NY, USA, pp. 472–478.

Nguyen Ta Huynh, D.; Raveendran, K,; Xu, Y; Spreen, K.; MacIntyre, B. (2009) Art of
defense: a collaborative handheld augmented reality board gameProceedings of the
2009 ACM SIGGRAPH Symposium on Video Games, pp. 135-142.

PopCode, http://www.popcode.info/
Prante, T., Streitz, N., Tandler, P. (2004) Roomware: Computers Disappear and Interaction

Evolves. Computer Vol. 37, No. 12, pp. 47-54.
Rekimoto, J. (1994) The World Through the Computer: A New Human-Computer

Interaction Style Based on Wearable Computers. Technical Report SCSL-TR-94-013,
Sony Computer Science Laboratories Inc.

J. Rekimoto (1995) The magnifying glass approach to augmented reality systems. In
International Conference on Artificial Reality and Tele-Existence ’95 / Conference on
Virtual Reality Software and Technology (ICAT/VRST ’95), pp. 123–132, 1995.

Savidis, A., Zidianakis, M., Kazepis, N., Dubulakis, S., Gramenos, D., Stephanidis, C. (2008)
An Integrated Platform for the Management of Mobile Location-aware Information
Systems, In Proc. of Pervasive 2008. Sydney, Australia, pp. 128–145.

Sekai Camera (2010) http://support.sekaicamera.com/en/service.
Schilit, B.; Adams, N.; Want, R. (1994) Context-aware computing applications. In Proceedings

of IEEE Workshop on Mobile Computing Systems and Applications, pp. 85-90.
Szalavari, Z.; Schmalstieg, D.; Fuhrmann, A.; Gervautz, M. (1998) Studierstube: An

environment for collaboration in augmented reality. Virtual Reality, Vol. 3, No. 1,
pp. 137–48.

Wagner, D.; Pintaric, T.; Ledermann, F.; Schmalstieg, D. (2005) Towards Massively Multi-
User Augmented Reality on Handheld Devices, Proc. of the Third International
Conference on Pervasive Computing (Pervasive 2005).

Wagner, D.; Schmalstieg, D. (2009) History and Future of Tracking for Mobile Phone
Augmented Reality, International Symposium on Ubiquitous Virtual Reality.

Wang, Z.; Yang, F. (2009) A Multiple-Mode Mobile Location-Based Information Retrieve
System, Fifth International Conference on Wireless and Mobile Communications, ICWMC
'09, pp. 410-415.

White, S.; Feiner, S. (2009) SiteLens: Situated visualization techniques for urban site visits.
Proc. CHI 2009, Boston, MA, April 4-9, pp. 1117-1120

Wither, J.; Coffin, C.; Ventura, J.; and Höllerer, T. (2008) Fast annotation and modeling with
a single-point laser range finder, 7th IEEE/ACM International Symposium on Mixed
and Augmented Reality, pp. 65-68.

 Ubiquitous Computing

214

Wither, J.; DiVerdi, S.; Höllerer, T. (2006) Using aerial photographs for improved mobile
AR annotation, IEEE/ACM International Symposium on Mixed and Augmented Reality
(ISMAR 2006), pp. 159–162.

Wikitude (2010) http://www.wikitude.org/
Xiaofang, Z.; Jin, L. , Qi, J. (2007) Personalized Information Recommendation Service System

Based on GIS, Proc. Third International Conference on Natural Computation.
Yang, F.; Wang, Z (2009) A Mobile Location-based Information Recommendation System

Based on GPS and WEB2.0 Services, WSEAS Transactions on Computers.
Yeh, J; Wu, M. (2010) Recommendation Based on Latent Topics and Social Network

Analysis, Proc. of Second International Conference on Computer Engineering and
Applications (ICCEA).

Zanker, M. and Jessenitschnig, M. (2009) Collaborative feature-combination recommender
exploiting explicit and implicit user feedback, 11th IEEE Conference on Commerce and
Enterprise Computing (CEC), Vienna, Austria, pp. 49-56.

Zheng, Y.; Chen, Y.; Xie, X.; Ma, W. Y. (2009) GeoLife2.0: A Location-Based Social
Networking Service, Proc. IEEE Tenth International Conference on Mobile Data
Management: Systems, Services and Middleware.

Zoellner, M.; Keil, J.; Drevensek, T.; Wuest, A.; Cultural Heritage Layers: Integrating
Historic Media in Augmented Reality (2009) 2009 15th International Conference on
Virtual Systems and Multimedia, pp. 193-196.

11

Case Study: The Condition of Ubiquitous
Computing Application in Indonesia

Dewi Agushinta R.1, Tb. Maulana Kusuma1,
Bismar Junatas2 and Deni Trihasta2

1Information System Department
2Informatics Department

Gunadarma University
Jl. Margonda Raya No. 100 Pondok Cina, Depok 16424,

West Java - Indonesia

1. Introduction
Generally, people, especially in developing countries, does not realize that they are in third
of computer revolution era. They are in the era of ubiquitous computing, which mean that
they can interact with the computer everywhere and anytime, not just sitting in front of the
PC (one person many computers). Furthermore, the social and political challenges of the
ubiquitous computing era will be characterized by an increasing dependence on technology,
control over the information to which everyday objects are linked, and the protection of
privacy. In this paper, we present the study about the condition of ubiquitous computing
application in Indonesia. We divide the application of ubiquitous computing in Indonesia
into three parts, i.e. ubiquitous mobile application, ubiquitous web application, and
ubiquitous payment system application.
Nowadays, the next generation of computers will be embossed by ubiquitous computing
(Bagci & Petzold, 2003). The computer will disappear behind daily things and people will
not know that they will be faced with the computer in their day-life activities. This will
make the old paradigm, where people only sit in front of the PC if they want to interact with
computer, will be eliminated gradually. Unfortunately, until now it is just happened in
developed countries which the infrastructure and the environment has supported to
implement the ubiquitous computing. How about developing countries? In developing
countries, such as Indonesia, ubiquitous computing applications are still rarely because
there are many problems will be faced if the application of ubiquitous computing is going to
be implemented, start from governmental support, infrastructure, finance, technological,
and the professional worker. Only a few of ubiquitous computing application, which we
will be explained in the next section applied in Indonesia. We will explain a few
explanations about ubiquitous computing in section 2. The science aspects of ubiquitous
supporting development will be introduced in section 3. Next, the application of ubiquitous
computing in Indonesia will be discussed in section 4. The issues in ubiquitous computing
will be presented in section 5. The last section of this paper presents the conclusion and the
challenges of the application of ubiquitous computing in Indonesia.

 Ubiquitous Computing

214

Wither, J.; DiVerdi, S.; Höllerer, T. (2006) Using aerial photographs for improved mobile
AR annotation, IEEE/ACM International Symposium on Mixed and Augmented Reality
(ISMAR 2006), pp. 159–162.

Wikitude (2010) http://www.wikitude.org/
Xiaofang, Z.; Jin, L. , Qi, J. (2007) Personalized Information Recommendation Service System

Based on GIS, Proc. Third International Conference on Natural Computation.
Yang, F.; Wang, Z (2009) A Mobile Location-based Information Recommendation System

Based on GPS and WEB2.0 Services, WSEAS Transactions on Computers.
Yeh, J; Wu, M. (2010) Recommendation Based on Latent Topics and Social Network

Analysis, Proc. of Second International Conference on Computer Engineering and
Applications (ICCEA).

Zanker, M. and Jessenitschnig, M. (2009) Collaborative feature-combination recommender
exploiting explicit and implicit user feedback, 11th IEEE Conference on Commerce and
Enterprise Computing (CEC), Vienna, Austria, pp. 49-56.

Zheng, Y.; Chen, Y.; Xie, X.; Ma, W. Y. (2009) GeoLife2.0: A Location-Based Social
Networking Service, Proc. IEEE Tenth International Conference on Mobile Data
Management: Systems, Services and Middleware.

Zoellner, M.; Keil, J.; Drevensek, T.; Wuest, A.; Cultural Heritage Layers: Integrating
Historic Media in Augmented Reality (2009) 2009 15th International Conference on
Virtual Systems and Multimedia, pp. 193-196.

11

Case Study: The Condition of Ubiquitous
Computing Application in Indonesia

Dewi Agushinta R.1, Tb. Maulana Kusuma1,
Bismar Junatas2 and Deni Trihasta2

1Information System Department
2Informatics Department

Gunadarma University
Jl. Margonda Raya No. 100 Pondok Cina, Depok 16424,

West Java - Indonesia

1. Introduction
Generally, people, especially in developing countries, does not realize that they are in third
of computer revolution era. They are in the era of ubiquitous computing, which mean that
they can interact with the computer everywhere and anytime, not just sitting in front of the
PC (one person many computers). Furthermore, the social and political challenges of the
ubiquitous computing era will be characterized by an increasing dependence on technology,
control over the information to which everyday objects are linked, and the protection of
privacy. In this paper, we present the study about the condition of ubiquitous computing
application in Indonesia. We divide the application of ubiquitous computing in Indonesia
into three parts, i.e. ubiquitous mobile application, ubiquitous web application, and
ubiquitous payment system application.
Nowadays, the next generation of computers will be embossed by ubiquitous computing
(Bagci & Petzold, 2003). The computer will disappear behind daily things and people will
not know that they will be faced with the computer in their day-life activities. This will
make the old paradigm, where people only sit in front of the PC if they want to interact with
computer, will be eliminated gradually. Unfortunately, until now it is just happened in
developed countries which the infrastructure and the environment has supported to
implement the ubiquitous computing. How about developing countries? In developing
countries, such as Indonesia, ubiquitous computing applications are still rarely because
there are many problems will be faced if the application of ubiquitous computing is going to
be implemented, start from governmental support, infrastructure, finance, technological,
and the professional worker. Only a few of ubiquitous computing application, which we
will be explained in the next section applied in Indonesia. We will explain a few
explanations about ubiquitous computing in section 2. The science aspects of ubiquitous
supporting development will be introduced in section 3. Next, the application of ubiquitous
computing in Indonesia will be discussed in section 4. The issues in ubiquitous computing
will be presented in section 5. The last section of this paper presents the conclusion and the
challenges of the application of ubiquitous computing in Indonesia.

 Ubiquitous Computing

216

2. Ubiquitous computing
Ubiquitous computing (ubicomp) is the method of enhancing computer use by making
many computers available throughout the physical environment, but making them
effectively invisible to the user (Weiser, 1993). In its development as a new technology or as
a branch of computer science, Ubicomp cannot be discharged from the other computer
science aspects, such as natural interfaces, context aware computing, and micro-nano
technology. At this time, ubicomp become the inspiration from the development of the new
paradigm of computation (off the desktop), where the interaction between humankind and
the computer was natural and slowly left the paradigm keyboard/ mouse/ display from the
PC generation (Widhiarta, 2007). One of the positive effects from ubicomp is people who do
not have skills use the computer and people with the physical lack (the defect) could
continue to use the computer for all the needs.

Fig. 1. The major trends of ubiquitous computing since introduced by Mark Weiser (1988)
until year 2005 (http://www.ubiq.com/hypertext/weiser/UbiHome.html)

3. Support development aspects
As an applied technology or as a branch of computer science, ubicomp development can not
be separated from other computer science aspects. Important aspects that support
development of ubicomp research as follows.

3.1 Natural interfaces
Natural interface is the common parlance used by designers and developers of computer
interfaces to refer to a user interface that is effectively invisible, or becomes invisible with
successive learned interactions, to its users. The word natural is used because most
computer interfaces use artificial control devices whose operation has to be learned. It relies
on a user being able to quickly transition from novice to expert. While the interface requires
learning, that learning is eased through design which gives the user the feeling that they are
instantly and continuously successful. This can be aided by technology which allows users
to carry out relatively natural motions, movements or gestures that they quickly discover

Case Study: The Condition of Ubiquitous Computing Application in Indonesia

217

control the computer application or manipulate the on-screen content. A common
misunderstanding is that it is somehow mimicry of nature or that some inputs to a
computer are somehow more 'natural' than others. In truth, the goal is to make the user feel
like a natural.
Prior to the concept of ubicomp, we have become witnesses of various researches on natural
interfaces for years, namely the use of natural aspects as a way to manipulate data. For
example, voice recognizer technology or pen computing. Currently, implementation of
various researches on natural inputs along with its tools became the most important aspects
of ubicomp development.
The main difficulty in natural interfaces development is error prone. In natural interfaces,
inputs have a wider area of form, for example the pronunciation of vowel "O" by someone
can be very different from other people though with the same intent. Writing letter "A" with
a pen computing can generate thousands of possible writing style that can cause computer
can not recognize the input as letter "A".
Various research and new technologies in artificial intelligence is very helpful in finding a
breakthrough to reduce error level. Genetic algorithm, neural networks and fuzzy logic
makes into stepping technology to natural interfaces more "clever" in recognizing natural
forms of input.

3.2 Context aware computing
Context aware computing is a branch of computer science who views a computing process
not only focuses attention on one object to be main focus but also on its surrounding aspects.
For example, if conventional computing is designed to identify who person was standing in
a certain coordinate point, computer will look at that person as a single object with various
attributes, such as employee number, height, weight, eye color, and so forth.
On the other hand context aware computing is not only directed its focus on human object,
but also on what he was doing, where he is, what time he arrived at that position, and the
reason why he was in that place.
In the simple examples above, it appears that in carrying out those instructions,
conventional computing focuses only on the aspect of "who". On the other side, context
aware computing is not just focusing on "who" but also "when", "what", "where" and "why".
Context Aware Computing makes a significant contribution to ubicomp. The increasing
ability of a device context, the more input can be processed. This assumed for more data
processed into information provided by the device.
Context aware mobile agents are a best suited host implementing any context aware
applications. Modern integrated voice and data communications equips the hospital staff
with smart phones to communicate vocally with each other, but preferably to look-up the
next task to be executed and to capture the next report to be noted. However, all attempts to
support staff with such approaches are hampered till failure of acceptance with the need to
look-up upon a new event for patient identities, order lists and work schedules. Hence a
well suited solution has to get rid of such manual interaction with a tiny screen and
therefore serves the user with:
• automated identifying actual patient and local environment upon approach,
• automated recording the events with coming to and leaving off the actual patient,
• automated presentation of the orders or service due on the current location and with
• supported documenting the required information keying in a minimum of data into

prepared form entries.

 Ubiquitous Computing

216

2. Ubiquitous computing
Ubiquitous computing (ubicomp) is the method of enhancing computer use by making
many computers available throughout the physical environment, but making them
effectively invisible to the user (Weiser, 1993). In its development as a new technology or as
a branch of computer science, Ubicomp cannot be discharged from the other computer
science aspects, such as natural interfaces, context aware computing, and micro-nano
technology. At this time, ubicomp become the inspiration from the development of the new
paradigm of computation (off the desktop), where the interaction between humankind and
the computer was natural and slowly left the paradigm keyboard/ mouse/ display from the
PC generation (Widhiarta, 2007). One of the positive effects from ubicomp is people who do
not have skills use the computer and people with the physical lack (the defect) could
continue to use the computer for all the needs.

Fig. 1. The major trends of ubiquitous computing since introduced by Mark Weiser (1988)
until year 2005 (http://www.ubiq.com/hypertext/weiser/UbiHome.html)

3. Support development aspects
As an applied technology or as a branch of computer science, ubicomp development can not
be separated from other computer science aspects. Important aspects that support
development of ubicomp research as follows.

3.1 Natural interfaces
Natural interface is the common parlance used by designers and developers of computer
interfaces to refer to a user interface that is effectively invisible, or becomes invisible with
successive learned interactions, to its users. The word natural is used because most
computer interfaces use artificial control devices whose operation has to be learned. It relies
on a user being able to quickly transition from novice to expert. While the interface requires
learning, that learning is eased through design which gives the user the feeling that they are
instantly and continuously successful. This can be aided by technology which allows users
to carry out relatively natural motions, movements or gestures that they quickly discover

Case Study: The Condition of Ubiquitous Computing Application in Indonesia

217

control the computer application or manipulate the on-screen content. A common
misunderstanding is that it is somehow mimicry of nature or that some inputs to a
computer are somehow more 'natural' than others. In truth, the goal is to make the user feel
like a natural.
Prior to the concept of ubicomp, we have become witnesses of various researches on natural
interfaces for years, namely the use of natural aspects as a way to manipulate data. For
example, voice recognizer technology or pen computing. Currently, implementation of
various researches on natural inputs along with its tools became the most important aspects
of ubicomp development.
The main difficulty in natural interfaces development is error prone. In natural interfaces,
inputs have a wider area of form, for example the pronunciation of vowel "O" by someone
can be very different from other people though with the same intent. Writing letter "A" with
a pen computing can generate thousands of possible writing style that can cause computer
can not recognize the input as letter "A".
Various research and new technologies in artificial intelligence is very helpful in finding a
breakthrough to reduce error level. Genetic algorithm, neural networks and fuzzy logic
makes into stepping technology to natural interfaces more "clever" in recognizing natural
forms of input.

3.2 Context aware computing
Context aware computing is a branch of computer science who views a computing process
not only focuses attention on one object to be main focus but also on its surrounding aspects.
For example, if conventional computing is designed to identify who person was standing in
a certain coordinate point, computer will look at that person as a single object with various
attributes, such as employee number, height, weight, eye color, and so forth.
On the other hand context aware computing is not only directed its focus on human object,
but also on what he was doing, where he is, what time he arrived at that position, and the
reason why he was in that place.
In the simple examples above, it appears that in carrying out those instructions,
conventional computing focuses only on the aspect of "who". On the other side, context
aware computing is not just focusing on "who" but also "when", "what", "where" and "why".
Context Aware Computing makes a significant contribution to ubicomp. The increasing
ability of a device context, the more input can be processed. This assumed for more data
processed into information provided by the device.
Context aware mobile agents are a best suited host implementing any context aware
applications. Modern integrated voice and data communications equips the hospital staff
with smart phones to communicate vocally with each other, but preferably to look-up the
next task to be executed and to capture the next report to be noted. However, all attempts to
support staff with such approaches are hampered till failure of acceptance with the need to
look-up upon a new event for patient identities, order lists and work schedules. Hence a
well suited solution has to get rid of such manual interaction with a tiny screen and
therefore serves the user with:
• automated identifying actual patient and local environment upon approach,
• automated recording the events with coming to and leaving off the actual patient,
• automated presentation of the orders or service due on the current location and with
• supported documenting the required information keying in a minimum of data into

prepared form entries.

 Ubiquitous Computing

218

Basically such contextually well formed approach requires scheduled workflows, as all
necessary preparation must refer to given orders and set schedules. Working free hand or ex
tempore does not provide such qualities.
While context-aware computing aims to facilitate a smooth interaction between humans and
technology, few studies of how users perceive context-aware interaction have been
performed (Barkhuus & Dey, 2003). Most research focuses on the development of
technologies for context-awareness as well as the design of context-aware applications.
Example applications are numerous and the level of interactivity within these varies greatly,
ranging from letting the user manually define parameters on how an application should
behave, to automatically providing the user with services and information that the
developer finds relevant.

3.3 Micro-nano technology
The development of micro and nano technology, which led to a smaller size of microchip,
becomes a major driving factor for the development of ubicomp devices now. The smaller a
device will cause the smaller user focus on instrument. This is according to concept “off the
desktop” from ubicomp.
Technology utilizes a variety of microchips in a kind of extremely small size of T-Engine or
Radio Frequency Identification (RFID) applied in everyday life in the form of smart cards or
tags, such super mini microchip illustrated in figure 2. For example someone who has a
subscription bus ticket in the form of card uses this by swiping it through sensor and the
balance will be directly debited according to the distance he traveled.

Fig. 2. Super mini microchip from Toshiba (IEEE Pervasive Computing)

In developed countries such as Japan, the current micro and nano technology has been
applied to everyday life through a variety of sensors. The size of data processing tools are
not seen by humans in public places as shown in figure 3.

4. Case study
How about the development and the application of ubiquitous computing in Indonesia ? As
one of the developing countries, Indonesia is still developing the ICT environment,
including ubiquitous computing.
Our research showed that the application of ubicomp still in the development stage. And
based on our research too, we divide the use of ubiquitous computing application into three
parts and will be explained as follows.

4.1 Ubiquitous mobile application
We restricted our study to the usage of mobile phones technology for Ubiquitous mobile
application. And according to our observation, the amount of user of mobile phones

Case Study: The Condition of Ubiquitous Computing Application in Indonesia

219

Fig. 3. Installed sensors in public places are very helpful for disabilities people and tourists.
(IEEE Pervasive Computing)

technology have reached more than 40 million people, as shown in figure 4
(http://www.pemberdayaan-telematika.info/wartelnet/index.php). Figure 4 shows graph of mobile
phone user according to cellular operator usage that exists in Indonesia).
The number of mobile phone users is still continuing to improve considering that the needs
of this technology are no longer become luxury requirement, but become the mandatory
requirement for the Indonesia people. The new technology which is offered by the
manufacturer of the mobile phone also could make the number of users of the mobile phone
continue to improve.

Fig. 4. Trends of mobile phone user in Indonesia

3G mobile concept has been implemented in Indonesia since 16 Aug 2006 after Singapore
and Malaysia. However, 3G technology does not provide Indonesian users perfectly, because
Indonesia does not have good backbone network architecture to support this technology.
Owned by PT Telekomunikasi Indonesia (Telkom) (65 percent), the largest full-service
telecommunications operator in Indonesia and SingTel (35 percent), one of Asia’s leading
telecommunications service operators, Telkomsel provides GSM cellular services in

 Ubiquitous Computing

218

Basically such contextually well formed approach requires scheduled workflows, as all
necessary preparation must refer to given orders and set schedules. Working free hand or ex
tempore does not provide such qualities.
While context-aware computing aims to facilitate a smooth interaction between humans and
technology, few studies of how users perceive context-aware interaction have been
performed (Barkhuus & Dey, 2003). Most research focuses on the development of
technologies for context-awareness as well as the design of context-aware applications.
Example applications are numerous and the level of interactivity within these varies greatly,
ranging from letting the user manually define parameters on how an application should
behave, to automatically providing the user with services and information that the
developer finds relevant.

3.3 Micro-nano technology
The development of micro and nano technology, which led to a smaller size of microchip,
becomes a major driving factor for the development of ubicomp devices now. The smaller a
device will cause the smaller user focus on instrument. This is according to concept “off the
desktop” from ubicomp.
Technology utilizes a variety of microchips in a kind of extremely small size of T-Engine or
Radio Frequency Identification (RFID) applied in everyday life in the form of smart cards or
tags, such super mini microchip illustrated in figure 2. For example someone who has a
subscription bus ticket in the form of card uses this by swiping it through sensor and the
balance will be directly debited according to the distance he traveled.

Fig. 2. Super mini microchip from Toshiba (IEEE Pervasive Computing)

In developed countries such as Japan, the current micro and nano technology has been
applied to everyday life through a variety of sensors. The size of data processing tools are
not seen by humans in public places as shown in figure 3.

4. Case study
How about the development and the application of ubiquitous computing in Indonesia ? As
one of the developing countries, Indonesia is still developing the ICT environment,
including ubiquitous computing.
Our research showed that the application of ubicomp still in the development stage. And
based on our research too, we divide the use of ubiquitous computing application into three
parts and will be explained as follows.

4.1 Ubiquitous mobile application
We restricted our study to the usage of mobile phones technology for Ubiquitous mobile
application. And according to our observation, the amount of user of mobile phones

Case Study: The Condition of Ubiquitous Computing Application in Indonesia

219

Fig. 3. Installed sensors in public places are very helpful for disabilities people and tourists.
(IEEE Pervasive Computing)

technology have reached more than 40 million people, as shown in figure 4
(http://www.pemberdayaan-telematika.info/wartelnet/index.php). Figure 4 shows graph of mobile
phone user according to cellular operator usage that exists in Indonesia).
The number of mobile phone users is still continuing to improve considering that the needs
of this technology are no longer become luxury requirement, but become the mandatory
requirement for the Indonesia people. The new technology which is offered by the
manufacturer of the mobile phone also could make the number of users of the mobile phone
continue to improve.

Fig. 4. Trends of mobile phone user in Indonesia

3G mobile concept has been implemented in Indonesia since 16 Aug 2006 after Singapore
and Malaysia. However, 3G technology does not provide Indonesian users perfectly, because
Indonesia does not have good backbone network architecture to support this technology.
Owned by PT Telekomunikasi Indonesia (Telkom) (65 percent), the largest full-service
telecommunications operator in Indonesia and SingTel (35 percent), one of Asia’s leading
telecommunications service operators, Telkomsel provides GSM cellular services in

 Ubiquitous Computing

220

Indonesia through its own nationwide dual-band 900/ 1800MHz GSM network, and
internationally through 244 international roaming partners in 148 countries.
The 3G phenomenon in Indonesia, especially W-CDMA-based technology, is quite
interesting to observe. In comparison, its northern neighbors Singapore and Malaysia –
especially since both countries launched 3G services at about the same time–have had seen
starkly different uptakes in these services.

4.2 Ubiquitous web application
Web sites are evolving from repositories of (mainly) passive information to become complex
applications, with operations and, sometimes, transactions available. In addition it is
becoming more and more necessary to develop ”families of applications”, presenting the
same content-services to different categories of users in different contexts.
So, what is a ubiquitous web application? A ubiquitous web application is a Web
application that suffers from the anytime/ anywhere/ any media syndrome. This means
that an ubiquitous web application should be designed from the start taking into account
not only its hypermedia nature, but also the fact that it must run as is on a variety of
platforms, including mobile phones, Personal Digital Assistants (PDAs), full-fledged
desktop computers, and so on.
This implies that a ubiquitous web application must take into account the different capabilities
of devices comprising display size, local storage size, method of input, network capacity, etc.
New opportunities are offered in terms of location-based, time-based, and personalized
services taking into account the needs and preferences of particular users. Consequently, a
ubiquitous web application must be, on the one hand, context-aware i.e., aware of the
environment it is running in, and on the other hand it must support personalization.
According to our study, we find that Indonesia has implemented ubiquitous web
application. And we restrict our study for this ubiquitous application to the usage of
internet application in Indonesia. We present the graphic of internet users in Indonesia
which we have been studied at figure 5.
Figure 5 shows that the development of internet user in Indonesia is developing from year-
to-year. It also shows that the people in Indonesia are aware about the benefit of Internet;
know how to use the internet. Unfortunately, the use of internet at the village are still lowest
than use of internet at the city. These become homework for the governance how to cast the
balance of the use of internet in all area in Indonesia.

Fig. 5. The development of internet users in Indonesia (http://www.pemberdayaan-
telematika.info/wartelnet/index.php)

Case Study: The Condition of Ubiquitous Computing Application in Indonesia

221

4.3 Ubiquitous payment system application
The last part of our study about the application of ubiquitous computing in Indonesia
is the use of Ubicomp for the payment system. M-payment market is in a constantly flux
due to a wide variety of payment solutions, technologies, scenarios, consumer expectations,
and penetration strategies of payment service providers. The systems change and are subject
to a high or low market penetration according to the parties’ requirements: customers,
financial institutes, and merchants alike want a convenient way to perform payments, even
though they have different motivations. For instance, the customer wants a convenient and
trustworthy way to pay; the financial institute needs automatic and economic settlement of
the payment. Based on these considerations, it would be desirable to handle different
payment methods with a standardized architecture.
The customer should be able to choose his preferred device, his mobile phone or PDA, and
choose the appropriate financial service (e.g. financial information or payment). Today,
these services are rendered by mobile payment (m-payment) systems (Gross et. al, 2008).
M-payment can be understood as any access to payments, where at least one participant
uses a mobile device. This is often a mobile phone (Krueger, 2001). Other devices are for
instance personal digital assistants (PDA), or items in which transponders are integrated.
This could be an identity card. The data stored on the transponder is transmitted via radio
communication to a reader and passed through to a financial network.
Frost and Sullivan extracted several application areas for m-payment in a study (Legard,
2002):
• Automated point-of-sale payments (vending machines, parking meters and ticket

machines)
• Attended point-of-sale payments (shop counters, taxis)
• Mobile-accessed Internet payments (merchant WAP sites)
• Mobile-assisted Internet payments (fixed Internet sites using phone instead of credit

card)
• Peer-to-peer payments between individuals.
The technology of ubicomp which available in Indonesia for the payment system are RFID
technology and Barcode technology. We will explain the use of both technologies in
separately.
(a) Barcode Application
Barcode is an optical machine-readable representation of data. Originally, bar codes
represented data in the widths (lines) and the spacing of parallel lines and may be referred
to as linear or 1D (1 dimensional) barcodes or symbologies. But they also come in patterns of
squares, dots, hexagons and other geometric patterns within images termed 2D (2
dimensional) matrix codes or symbologies. In spite of there being no bars, 2D systems are
generally referred to as barcodes as well.
Based on our study about application of barcode, the use of this technology has been used
for long time. The application of this technology could be seen at supermarket, university,
library, office, etc. We can’t explain when the first penetration of barcode come to Indonesia
because we can’t get the resource, but the usage of this technology has been developed
from until now during our observation.
(b) RFID Application
The development of RFID was spurred by the need to enhance tracking and access
applications in the 1980s in manufacturing and other hostile environments. This no contact

 Ubiquitous Computing

220

Indonesia through its own nationwide dual-band 900/ 1800MHz GSM network, and
internationally through 244 international roaming partners in 148 countries.
The 3G phenomenon in Indonesia, especially W-CDMA-based technology, is quite
interesting to observe. In comparison, its northern neighbors Singapore and Malaysia –
especially since both countries launched 3G services at about the same time–have had seen
starkly different uptakes in these services.

4.2 Ubiquitous web application
Web sites are evolving from repositories of (mainly) passive information to become complex
applications, with operations and, sometimes, transactions available. In addition it is
becoming more and more necessary to develop ”families of applications”, presenting the
same content-services to different categories of users in different contexts.
So, what is a ubiquitous web application? A ubiquitous web application is a Web
application that suffers from the anytime/ anywhere/ any media syndrome. This means
that an ubiquitous web application should be designed from the start taking into account
not only its hypermedia nature, but also the fact that it must run as is on a variety of
platforms, including mobile phones, Personal Digital Assistants (PDAs), full-fledged
desktop computers, and so on.
This implies that a ubiquitous web application must take into account the different capabilities
of devices comprising display size, local storage size, method of input, network capacity, etc.
New opportunities are offered in terms of location-based, time-based, and personalized
services taking into account the needs and preferences of particular users. Consequently, a
ubiquitous web application must be, on the one hand, context-aware i.e., aware of the
environment it is running in, and on the other hand it must support personalization.
According to our study, we find that Indonesia has implemented ubiquitous web
application. And we restrict our study for this ubiquitous application to the usage of
internet application in Indonesia. We present the graphic of internet users in Indonesia
which we have been studied at figure 5.
Figure 5 shows that the development of internet user in Indonesia is developing from year-
to-year. It also shows that the people in Indonesia are aware about the benefit of Internet;
know how to use the internet. Unfortunately, the use of internet at the village are still lowest
than use of internet at the city. These become homework for the governance how to cast the
balance of the use of internet in all area in Indonesia.

Fig. 5. The development of internet users in Indonesia (http://www.pemberdayaan-
telematika.info/wartelnet/index.php)

Case Study: The Condition of Ubiquitous Computing Application in Indonesia

221

4.3 Ubiquitous payment system application
The last part of our study about the application of ubiquitous computing in Indonesia
is the use of Ubicomp for the payment system. M-payment market is in a constantly flux
due to a wide variety of payment solutions, technologies, scenarios, consumer expectations,
and penetration strategies of payment service providers. The systems change and are subject
to a high or low market penetration according to the parties’ requirements: customers,
financial institutes, and merchants alike want a convenient way to perform payments, even
though they have different motivations. For instance, the customer wants a convenient and
trustworthy way to pay; the financial institute needs automatic and economic settlement of
the payment. Based on these considerations, it would be desirable to handle different
payment methods with a standardized architecture.
The customer should be able to choose his preferred device, his mobile phone or PDA, and
choose the appropriate financial service (e.g. financial information or payment). Today,
these services are rendered by mobile payment (m-payment) systems (Gross et. al, 2008).
M-payment can be understood as any access to payments, where at least one participant
uses a mobile device. This is often a mobile phone (Krueger, 2001). Other devices are for
instance personal digital assistants (PDA), or items in which transponders are integrated.
This could be an identity card. The data stored on the transponder is transmitted via radio
communication to a reader and passed through to a financial network.
Frost and Sullivan extracted several application areas for m-payment in a study (Legard,
2002):
• Automated point-of-sale payments (vending machines, parking meters and ticket

machines)
• Attended point-of-sale payments (shop counters, taxis)
• Mobile-accessed Internet payments (merchant WAP sites)
• Mobile-assisted Internet payments (fixed Internet sites using phone instead of credit

card)
• Peer-to-peer payments between individuals.
The technology of ubicomp which available in Indonesia for the payment system are RFID
technology and Barcode technology. We will explain the use of both technologies in
separately.
(a) Barcode Application
Barcode is an optical machine-readable representation of data. Originally, bar codes
represented data in the widths (lines) and the spacing of parallel lines and may be referred
to as linear or 1D (1 dimensional) barcodes or symbologies. But they also come in patterns of
squares, dots, hexagons and other geometric patterns within images termed 2D (2
dimensional) matrix codes or symbologies. In spite of there being no bars, 2D systems are
generally referred to as barcodes as well.
Based on our study about application of barcode, the use of this technology has been used
for long time. The application of this technology could be seen at supermarket, university,
library, office, etc. We can’t explain when the first penetration of barcode come to Indonesia
because we can’t get the resource, but the usage of this technology has been developed
from until now during our observation.
(b) RFID Application
The development of RFID was spurred by the need to enhance tracking and access
applications in the 1980s in manufacturing and other hostile environments. This no contact

 Ubiquitous Computing

222

means of gathering and tracking information proved to be resilient. RFID is now an
established part of specific busi- ness processes in a variety of markets.
RFID has a set of frequencies which are classified by their range which described as follows:
• Low, covering from 100 KHz to 500 KHz, has a short reading range, and Lower system

costs,
• High, covering from 850 MHz to 950 MHz, has a long reading range, and High reading

speeds,
• Ultra High, covering from 2.4 GHz to 2.5 GHz.
Based on our study, the implementation of the RFID technology is improved although the
finance is common problem for this new technology. The implementation does not just in
one place (usually at supermarket), but it has implemented in other places too, such as bus
way station, KAI (Indonesia Railway Company), gas station, offices, etc.
(http://ekowahyudin.wordpress.com/tag/rfid).
Various benefits of RFID we can feel almost in a variety of access control applications. RFID
short-range has been quite widely used in Indonesia. Door access control technology is quite
powerful but still it depends on the design of the security plan. Taking the example of E-toll,
payments automation and highway access toll. We can learn when RFID is implemented, we
do not have to worry about the queues at toll booth because all cars already automatically
"pay" without waiting for officers to give receipts, less returns, money and so forth.
Further, for RFID technology, Indonesia uses RFID ISO-14443, one of RFID technology, with
the frequency 13.56 MHz, in implementation of this ubicomp technology. But it is still illegal
application because there is no regulation from Indonesia government and still being study
by DIRJEN POSTEL Indonesia. But later, this technology will replace barcode technology
because of it has more advantages than barcode technology.

5. Ubicomp issues
5.1 Security
Ubicomp increased risks to security. The use of bearer, infrared, or other wireless
communication media form between input devices and data processing devices opens
opportunities for other parties in hacking data. The hacker can use it for their interests.
Currently, various researches on secure data transmission, including research on new
protocols, became one of main focus of research on ubicomp.

5.2 Privacy
The use of devices in human causes the narrowed space on privacy. By reasons of
employees time efficiency, a supervisor can ask all employees to use their tags so that it can
be monitored their presence in the office. This causes the employee get no longer privacy,
their rights. Their existence can be monitored at any time and accompanying data by
supervisor. He can know how many his employees went to the toilet that day.
In few science fiction films we have seen how government is paranoid attempt to provide
citizen tags in obtaining data of national security.

5.3 Wireless speed
With a variety of ubicomp devices, the demand for speed wireless communications
technology into something is absolute. Today's technology ensures this speed for one person

Case Study: The Condition of Ubiquitous Computing Application in Indonesia

223

or a group. Ubicomp is not just talking about one device for one person. Ubicomp makes
someone can bring some ubicomp devices and also must be used in such a large area. This
technology is not currently able to guarantee the pace for such situations because it can be
ineffective if not supported with wireless technology development that can provide the
required speed.

6. Conclusion
Our study shows that the application of ubiquitous computing are identified in three parts,
first is ubiquitous mobile application, second is ubiquitous web application, and third is
ubiquitous payment system application. For each explanation of that application, we
conclude that the uses of Ubiquitous Computing technology in Indonesia are still in
development stage. Further, the challenges to improve the use of ubiquitous computing in
Indonesia is to provide the infrastructure and the environment of ubiquitous computing so
that many application of ubiquitous computing can be available and identify in Indonesia.
We also hope the research of ubicomp technology in Indonesia will improve for the next
year because it is still rarely to find the paper which discuss about this technology.

7. References
Bagci, W. T. T. U. F. J. and Petzold. (2003). Ubiquitous Mobile Agent System In A P2P-

Network, UbiSys-Workshop at the Fifth Annual Conference on Ubiquitous Computing,
Seattle, USA, October 12-15.

Weiser, M. (1993). Hot topics: Ubiquitous computing, IEEE Computer, October.
P. A. Widhiarta, (2007). Ubiquitous Computing - Era Ketiga Dari Revolusi Komputer,

Ilmu Komputer.com.
http://www.ubiq.com/hypertext/weiser/UbiHome.html.
http://www.pemberdayaan-telematika.info/wartelnet/index.php.
http://ekowahyudin.wordpress.com/tag/rfid.
Mattern, F.(2004). Wireless Future: Ubiquitous Computing, Prceedings of Wireless Congress,

Munich, Germany, November.
Galloway, A. (2004). Playful Mobilities: Ubiquitous Computing In The City, Alternative

Mobility Futures Conference, Lancaster University, January, 9-11.
Sakamura, K. Ubiquitous Computing: Making It a Reality, YRP Ubiquitous Networking

Laboratory, University of Tokyo.
Schmidt, A. (2003). Interacting with the ubiquitous computer, University of Munich,

Germany, Tech. Rep., September, 8-11.
http://www.indocashregister.com.
B. Rahardjo, (1999). Ubiquitous computing. Bandung Institute of Technology, 15 Mei.
Weiser, M. (1993). Some computer science problems in ubiquitous computing,

Communications of the ACM, July.
Roman, M, Al-Muhtadi, J., Ziebart, B, Campbell, R., Mickunas, M. D. System Support for

Rapid Ubiquitous Computing Application Development and Evaluation, DoCoMo
Labs, USA, Department of Computer Science, University of Illinois at Urbana-
Champaign.

 Ubiquitous Computing

222

means of gathering and tracking information proved to be resilient. RFID is now an
established part of specific busi- ness processes in a variety of markets.
RFID has a set of frequencies which are classified by their range which described as follows:
• Low, covering from 100 KHz to 500 KHz, has a short reading range, and Lower system

costs,
• High, covering from 850 MHz to 950 MHz, has a long reading range, and High reading

speeds,
• Ultra High, covering from 2.4 GHz to 2.5 GHz.
Based on our study, the implementation of the RFID technology is improved although the
finance is common problem for this new technology. The implementation does not just in
one place (usually at supermarket), but it has implemented in other places too, such as bus
way station, KAI (Indonesia Railway Company), gas station, offices, etc.
(http://ekowahyudin.wordpress.com/tag/rfid).
Various benefits of RFID we can feel almost in a variety of access control applications. RFID
short-range has been quite widely used in Indonesia. Door access control technology is quite
powerful but still it depends on the design of the security plan. Taking the example of E-toll,
payments automation and highway access toll. We can learn when RFID is implemented, we
do not have to worry about the queues at toll booth because all cars already automatically
"pay" without waiting for officers to give receipts, less returns, money and so forth.
Further, for RFID technology, Indonesia uses RFID ISO-14443, one of RFID technology, with
the frequency 13.56 MHz, in implementation of this ubicomp technology. But it is still illegal
application because there is no regulation from Indonesia government and still being study
by DIRJEN POSTEL Indonesia. But later, this technology will replace barcode technology
because of it has more advantages than barcode technology.

5. Ubicomp issues
5.1 Security
Ubicomp increased risks to security. The use of bearer, infrared, or other wireless
communication media form between input devices and data processing devices opens
opportunities for other parties in hacking data. The hacker can use it for their interests.
Currently, various researches on secure data transmission, including research on new
protocols, became one of main focus of research on ubicomp.

5.2 Privacy
The use of devices in human causes the narrowed space on privacy. By reasons of
employees time efficiency, a supervisor can ask all employees to use their tags so that it can
be monitored their presence in the office. This causes the employee get no longer privacy,
their rights. Their existence can be monitored at any time and accompanying data by
supervisor. He can know how many his employees went to the toilet that day.
In few science fiction films we have seen how government is paranoid attempt to provide
citizen tags in obtaining data of national security.

5.3 Wireless speed
With a variety of ubicomp devices, the demand for speed wireless communications
technology into something is absolute. Today's technology ensures this speed for one person

Case Study: The Condition of Ubiquitous Computing Application in Indonesia

223

or a group. Ubicomp is not just talking about one device for one person. Ubicomp makes
someone can bring some ubicomp devices and also must be used in such a large area. This
technology is not currently able to guarantee the pace for such situations because it can be
ineffective if not supported with wireless technology development that can provide the
required speed.

6. Conclusion
Our study shows that the application of ubiquitous computing are identified in three parts,
first is ubiquitous mobile application, second is ubiquitous web application, and third is
ubiquitous payment system application. For each explanation of that application, we
conclude that the uses of Ubiquitous Computing technology in Indonesia are still in
development stage. Further, the challenges to improve the use of ubiquitous computing in
Indonesia is to provide the infrastructure and the environment of ubiquitous computing so
that many application of ubiquitous computing can be available and identify in Indonesia.
We also hope the research of ubicomp technology in Indonesia will improve for the next
year because it is still rarely to find the paper which discuss about this technology.

7. References
Bagci, W. T. T. U. F. J. and Petzold. (2003). Ubiquitous Mobile Agent System In A P2P-

Network, UbiSys-Workshop at the Fifth Annual Conference on Ubiquitous Computing,
Seattle, USA, October 12-15.

Weiser, M. (1993). Hot topics: Ubiquitous computing, IEEE Computer, October.
P. A. Widhiarta, (2007). Ubiquitous Computing - Era Ketiga Dari Revolusi Komputer,

Ilmu Komputer.com.
http://www.ubiq.com/hypertext/weiser/UbiHome.html.
http://www.pemberdayaan-telematika.info/wartelnet/index.php.
http://ekowahyudin.wordpress.com/tag/rfid.
Mattern, F.(2004). Wireless Future: Ubiquitous Computing, Prceedings of Wireless Congress,

Munich, Germany, November.
Galloway, A. (2004). Playful Mobilities: Ubiquitous Computing In The City, Alternative

Mobility Futures Conference, Lancaster University, January, 9-11.
Sakamura, K. Ubiquitous Computing: Making It a Reality, YRP Ubiquitous Networking

Laboratory, University of Tokyo.
Schmidt, A. (2003). Interacting with the ubiquitous computer, University of Munich,

Germany, Tech. Rep., September, 8-11.
http://www.indocashregister.com.
B. Rahardjo, (1999). Ubiquitous computing. Bandung Institute of Technology, 15 Mei.
Weiser, M. (1993). Some computer science problems in ubiquitous computing,

Communications of the ACM, July.
Roman, M, Al-Muhtadi, J., Ziebart, B, Campbell, R., Mickunas, M. D. System Support for

Rapid Ubiquitous Computing Application Development and Evaluation, DoCoMo
Labs, USA, Department of Computer Science, University of Illinois at Urbana-
Champaign.

 Ubiquitous Computing

224

Prince, K. Adam, B. N. B. A. (2005). Keeping Ubiquitous Computing To Yourself: A Practical
Model For User Control Of Privacy, International Journal of Human-Computer Studies,
vol. 63, pp. 228 – 253, July.

D. I. Hendrawan, Towards the Ambient Intelligence Era: A convergence of ubiquitous
computing, communication and intelligent user interfaces, School of Electrical
Engineering and Informatics, Bandung Institute of Technology.

Gross, S., Fleisch, E., Lampe, M., Müller, René. (2004). Requirements and Technologies for
Ubiquitous Payment, Multikonferenz Wirtschaftsinformatik, Techniques and
Applications for Mobile Commerce. Essen, Germany, March.

0

Using the iDTV as the Center of
an Ubiquitous Environment

Orlewilson B. Maia, Nairon S. Viana and Vicente F. de Lucena Jr
Universidade Federal do Amazonas (UFAM)

Brazil

1. Introduction

The characteristics of the new interactive Digital Television (iDTV) systems are assuming a
very important role in modern life. In fact, these features are being increasingly expanded,
from simple signal decoders to sophisticated devices that allow the execution of interactive
applications related to the content displayed, providing services of all kinds like Internet
access, TV-Banking, TV-Mail, TV-Commerce, TV-Health, Games and so on. Moreover,
recently, the main iDTV features have been used to integrate themselves with other consumer
electronics (CE) devices in intelligent and ubiquitous environments. This new trend improves
the user’s experience with Digital Television and introduces several challenges for integrating
heterogeneous devices, centralizing their services through a common iDTV set.
Nowadays one possible way of expanding the functionalities of a Set-Top Box (STB) is to
connect it with other devices equipped with computational power such as some popular
electronic equipments of a Home Network system. The firsts ideas were related to establishing
a communication link between Digital TV and CE devices through one central processing unit
of the Home Network, also known as Home Gateway (see Figure 1(a)). Another possibility
is to integrate these two devices on a single platform, using the STB as a Home Gateway (see
Figure 1(b)).

(a) Digital TV interacts with an ubiquitous environment
through a Home Gateway

(b) Digital TV interacts with an
ubiquitous environment directly

Fig. 1. Two ways for integrating iDTV in an Ubiquitous Computing Environment

Several scenarios can be provided by the use of Digital TV (DTV) receivers as Home
Gateways. One possible example is the administration of a smart home through the iDTV,
performing common tasks in the ubiquitous environment, such as the control of doors,

12

 Ubiquitous Computing

224

Prince, K. Adam, B. N. B. A. (2005). Keeping Ubiquitous Computing To Yourself: A Practical
Model For User Control Of Privacy, International Journal of Human-Computer Studies,
vol. 63, pp. 228 – 253, July.

D. I. Hendrawan, Towards the Ambient Intelligence Era: A convergence of ubiquitous
computing, communication and intelligent user interfaces, School of Electrical
Engineering and Informatics, Bandung Institute of Technology.

Gross, S., Fleisch, E., Lampe, M., Müller, René. (2004). Requirements and Technologies for
Ubiquitous Payment, Multikonferenz Wirtschaftsinformatik, Techniques and
Applications for Mobile Commerce. Essen, Germany, March.

0

Using the iDTV as the Center of
an Ubiquitous Environment

Orlewilson B. Maia, Nairon S. Viana and Vicente F. de Lucena Jr
Universidade Federal do Amazonas (UFAM)

Brazil

1. Introduction

The characteristics of the new interactive Digital Television (iDTV) systems are assuming a
very important role in modern life. In fact, these features are being increasingly expanded,
from simple signal decoders to sophisticated devices that allow the execution of interactive
applications related to the content displayed, providing services of all kinds like Internet
access, TV-Banking, TV-Mail, TV-Commerce, TV-Health, Games and so on. Moreover,
recently, the main iDTV features have been used to integrate themselves with other consumer
electronics (CE) devices in intelligent and ubiquitous environments. This new trend improves
the user’s experience with Digital Television and introduces several challenges for integrating
heterogeneous devices, centralizing their services through a common iDTV set.
Nowadays one possible way of expanding the functionalities of a Set-Top Box (STB) is to
connect it with other devices equipped with computational power such as some popular
electronic equipments of a Home Network system. The firsts ideas were related to establishing
a communication link between Digital TV and CE devices through one central processing unit
of the Home Network, also known as Home Gateway (see Figure 1(a)). Another possibility
is to integrate these two devices on a single platform, using the STB as a Home Gateway (see
Figure 1(b)).

(a) Digital TV interacts with an ubiquitous environment
through a Home Gateway

(b) Digital TV interacts with an
ubiquitous environment directly

Fig. 1. Two ways for integrating iDTV in an Ubiquitous Computing Environment

Several scenarios can be provided by the use of Digital TV (DTV) receivers as Home
Gateways. One possible example is the administration of a smart home through the iDTV,
performing common tasks in the ubiquitous environment, such as the control of doors,

12

cameras, temperature sensors and security applications. In a more specific scenario the iDTV
multimedia content can be synchronized with the television program. For example, the user
is able to print a document linked to a TV show or to control the environment synchronized
with audio/video transmission while a he/she is watching a movie.
Indeed, based on the tecnology available nowadays, other useful real life scenarios where
the iDTV set is the information center in an ubiquitous environment can be created. For
example, when Maria arrives at home, the TV recognizes her through her mobile phone and
recommends a list of programs that she could watch based on her known profile. After that,
she chooses a movie program. A few minutes later, Maria decides to eat something and moves
to the kitchen carrying her mobile phone. At this moment, she is recognized by a TV set
located in the kitchen that starts automatically to show the movie she was watching in the
living room.
These scenarios bring to the market new possibilities of developing convergent applications,
for instance in Brazil, where most people (over 97.1 %, according to a recent research from
the Brazilian National Agency of Electrical Energy, ELETROBRAS, performed from 2005 to
2007 (ELETROBRAS, 2011)) use the TV quite frequently and are large consumers of services.
Additionally, the iDTV can be used not only for providing conventional services (like TV-Mail
or TV-Commerce), but also for accessing services of devices in a Home Network. This allows
content sharing among iDTV and mobile phones, which is another potential field in the
Brazilian market (ANATEL, 2010).
The goal of this study is to present some research results about the relationship between
Digital TV and electronic devices in ubiquitous environments and to describe a collaboration
model between Home Networks and iDTV Systems based on the Brazilian standard. We
present a platform built over a common software environment for Digital TV and Home
Network applications. With this platform it is possible to create several use cases scenarios,
specially those related to composed services, i.e., those who integrate services from various
devices to improve the user’s experience with the connected ubiquitous home. The platform
considers some issues of software environments for iDTV and Home Network, and tries to
offer to the programmer an appropriate environment for rapid development of applications,
in a level that isolates the main software components of the two environments. This study,
from the overall technologies to the specification of the platform, will be described in the next
sections.

2. Overview of digital TV and home networks

2.1 Digital TV
Ever since the first TV channel (BBC London in 1936), the TV went through several changes.
The first most significant occurred in 1950 with the emergence of the color TV Sets and the
growing of program options to the viewers (Schwalb, 2004). In the 1980s came the first digital
production islands. A consequence of this was the transmission of digital content which were
decoded in devices called Set-Top Boxes (STBs) in order to enable an analog TV to show the
digital content.
According to Morris & Smith-Chaigneau (2005), the Digital TV (DTV) offers many advantages,
such as the delivering of more programs in the same transmission band; the improvement
of audio and video quality; the absence of interference at reception; and the emergence of
interactive services and applications.

226 Ubiquitous Computing

2.1.1 Interactive digital TV
Originally the TV does not provide interactivity to the viewers, i.e., the viewers watch the
content of the programs and there is no interaction between them; the viewers only turn
on/off the TV or switch the channel. Over the years, some television programs started using
telephone lines to ask the viewers their opinion about the content being watched. With the
advent of the DTV, services and interactive applications are created to allow the viewers to
interact with the programs through an application broadcasted with the progams. This kind
of interactivity allowed the emergence of the new interactive Digital TV (iDTV).
According to Schwalb (2004) and Morris & Smith-Chaigneau (2005), the iDTV can be classified
as Enhanced TV with texts, graphic elements and improvement of audio and video quality;
Internet on TV where the Internet can be accessed through the TV; personalized TV where the
TV is adapted according to the viewer’s profile; Personal Video Recorder (PVR) where the TV
content is recorded from a genre, title or schedule; Walled Garden, a portal from which the
user can browse for some desired iDTV application; Games, where the viewers use the TV to
play a game or to connect with other players located connected in network; Electronic Program
Guide (EPG), similar to the Walled Garden, but it has more details about the channels; and
Teletext which shows information (economics, wheater, last news and so on) provided by the
broadcasters in a text format.
Another issue that enables the use of interactivity for viewers is the usage of the return
channel. The return channel is used to send a request from a viewer through an iDTV
application (such as ordering pizza or answering a question from a quiz) to the broadcaster
over the Internet or a phone line, for example. Thus, the viewers can interact with the
broacasters returning a feedbak about their content programs.

2.1.2 Components of an interactive digital TV system
An iDTV System is generaly composed by the following components: the broadcaster, the
receiver, the broadcast network, and the communication link (see Figure 2). These components
or subsystems deal with the digital information as services, audio/video/data elementary
packets that compose a program channel. The services are phisically organized as a Transport
Stream (TS) in which some operations are performed, such as coding and multiplexing defined
by ISO-IEC 13818-x (ISO, 2000).
The broadcaster is represented by a TV channel or another entity able to perform the editing,
formatting and distribution of content throught the broadcast network. This process involves
steps of audio/video encoding (ISO-IEC 13818-1,2), data/application insertion (Digital
Storage Media Command Control standard, ISO-IEC 13818-6) (ISO, 2002) and multiplexing
(ISO-IEC 13818-2). In this stage, the data that will be broadcasted is in TS format (defined
by MPEG-2 Systems). The last stage is the modulation to the broadcast network which will
depend on the iDTV standard assumed. The broadcast could be done by three ways: cable,
terrestrial or satellite.
When the digital signal is received, the STB performs the reverse process on the TS. The signal
received is demodulated, demultiplexed and delivered to the audio/video/data decodificator
which processes and displays the content in a TV screen. An important feature of the STB is
the support for executing interactive applications which may or may not be related to the
audio/video content and allow sending information back to the broadcasters. This feature is
enabled in a iDTV System by the return channel.

227Using the iDTV as the Center of an Ubiquitous Environment

cameras, temperature sensors and security applications. In a more specific scenario the iDTV
multimedia content can be synchronized with the television program. For example, the user
is able to print a document linked to a TV show or to control the environment synchronized
with audio/video transmission while a he/she is watching a movie.
Indeed, based on the tecnology available nowadays, other useful real life scenarios where
the iDTV set is the information center in an ubiquitous environment can be created. For
example, when Maria arrives at home, the TV recognizes her through her mobile phone and
recommends a list of programs that she could watch based on her known profile. After that,
she chooses a movie program. A few minutes later, Maria decides to eat something and moves
to the kitchen carrying her mobile phone. At this moment, she is recognized by a TV set
located in the kitchen that starts automatically to show the movie she was watching in the
living room.
These scenarios bring to the market new possibilities of developing convergent applications,
for instance in Brazil, where most people (over 97.1 %, according to a recent research from
the Brazilian National Agency of Electrical Energy, ELETROBRAS, performed from 2005 to
2007 (ELETROBRAS, 2011)) use the TV quite frequently and are large consumers of services.
Additionally, the iDTV can be used not only for providing conventional services (like TV-Mail
or TV-Commerce), but also for accessing services of devices in a Home Network. This allows
content sharing among iDTV and mobile phones, which is another potential field in the
Brazilian market (ANATEL, 2010).
The goal of this study is to present some research results about the relationship between
Digital TV and electronic devices in ubiquitous environments and to describe a collaboration
model between Home Networks and iDTV Systems based on the Brazilian standard. We
present a platform built over a common software environment for Digital TV and Home
Network applications. With this platform it is possible to create several use cases scenarios,
specially those related to composed services, i.e., those who integrate services from various
devices to improve the user’s experience with the connected ubiquitous home. The platform
considers some issues of software environments for iDTV and Home Network, and tries to
offer to the programmer an appropriate environment for rapid development of applications,
in a level that isolates the main software components of the two environments. This study,
from the overall technologies to the specification of the platform, will be described in the next
sections.

2. Overview of digital TV and home networks

2.1 Digital TV
Ever since the first TV channel (BBC London in 1936), the TV went through several changes.
The first most significant occurred in 1950 with the emergence of the color TV Sets and the
growing of program options to the viewers (Schwalb, 2004). In the 1980s came the first digital
production islands. A consequence of this was the transmission of digital content which were
decoded in devices called Set-Top Boxes (STBs) in order to enable an analog TV to show the
digital content.
According to Morris & Smith-Chaigneau (2005), the Digital TV (DTV) offers many advantages,
such as the delivering of more programs in the same transmission band; the improvement
of audio and video quality; the absence of interference at reception; and the emergence of
interactive services and applications.

226 Ubiquitous Computing

2.1.1 Interactive digital TV
Originally the TV does not provide interactivity to the viewers, i.e., the viewers watch the
content of the programs and there is no interaction between them; the viewers only turn
on/off the TV or switch the channel. Over the years, some television programs started using
telephone lines to ask the viewers their opinion about the content being watched. With the
advent of the DTV, services and interactive applications are created to allow the viewers to
interact with the programs through an application broadcasted with the progams. This kind
of interactivity allowed the emergence of the new interactive Digital TV (iDTV).
According to Schwalb (2004) and Morris & Smith-Chaigneau (2005), the iDTV can be classified
as Enhanced TV with texts, graphic elements and improvement of audio and video quality;
Internet on TV where the Internet can be accessed through the TV; personalized TV where the
TV is adapted according to the viewer’s profile; Personal Video Recorder (PVR) where the TV
content is recorded from a genre, title or schedule; Walled Garden, a portal from which the
user can browse for some desired iDTV application; Games, where the viewers use the TV to
play a game or to connect with other players located connected in network; Electronic Program
Guide (EPG), similar to the Walled Garden, but it has more details about the channels; and
Teletext which shows information (economics, wheater, last news and so on) provided by the
broadcasters in a text format.
Another issue that enables the use of interactivity for viewers is the usage of the return
channel. The return channel is used to send a request from a viewer through an iDTV
application (such as ordering pizza or answering a question from a quiz) to the broadcaster
over the Internet or a phone line, for example. Thus, the viewers can interact with the
broacasters returning a feedbak about their content programs.

2.1.2 Components of an interactive digital TV system
An iDTV System is generaly composed by the following components: the broadcaster, the
receiver, the broadcast network, and the communication link (see Figure 2). These components
or subsystems deal with the digital information as services, audio/video/data elementary
packets that compose a program channel. The services are phisically organized as a Transport
Stream (TS) in which some operations are performed, such as coding and multiplexing defined
by ISO-IEC 13818-x (ISO, 2000).
The broadcaster is represented by a TV channel or another entity able to perform the editing,
formatting and distribution of content throught the broadcast network. This process involves
steps of audio/video encoding (ISO-IEC 13818-1,2), data/application insertion (Digital
Storage Media Command Control standard, ISO-IEC 13818-6) (ISO, 2002) and multiplexing
(ISO-IEC 13818-2). In this stage, the data that will be broadcasted is in TS format (defined
by MPEG-2 Systems). The last stage is the modulation to the broadcast network which will
depend on the iDTV standard assumed. The broadcast could be done by three ways: cable,
terrestrial or satellite.
When the digital signal is received, the STB performs the reverse process on the TS. The signal
received is demodulated, demultiplexed and delivered to the audio/video/data decodificator
which processes and displays the content in a TV screen. An important feature of the STB is
the support for executing interactive applications which may or may not be related to the
audio/video content and allow sending information back to the broadcasters. This feature is
enabled in a iDTV System by the return channel.

227Using the iDTV as the Center of an Ubiquitous Environment

Fig. 2. General iDTV Components

2.1.3 Digital TV systems and middlewares
The main entities involved on iDTV business joined efforts to create specifications or reference
models for iDTV in order to guarantee the interoperability among hardware manufactures,
businesses and iDTV applications developers. Each specification has some particular
caracteristic related to the regions they were developed. The main specification systems for
iDTV are the American Advanced Television Systems Committee (ATSC)(ATSC, 2009), the
European Digital Video Broadcast (DVB)(DVB, 2010), the Japanese Integrated Services Digital
Broadcasting (ISDB)(ISDB, 2011), and more recently the Brazilian International Standard for
Digital TV (ISDTV)(ISDTV, 2011).
In a generic architecture for the receiver, the main interface between the iDTV applications and
the devices themselves is a component named middleware which consists of a set of Application
Programming Interfaces (APIs) that provides a platform-independent execution environemt for
iDTV applications. Thus, the middleware ensures portability between STBs and provides
less effort for developing iDTV applications because the developers do not need to worry
about how to access the low level receiver functionalities. The main existing standards for
middlewares in the world are the European Multimedia Home Platform (MHP) (MHP, 2010);
the American Advanced Common Application Platform (ACAP) (ACAP, 2009); the Japanese
Association of Radio Industries and Businesses (ARIB) (ARIB, 2009); and the Brazilian Ginga
(ITU-T, 2009).
The execution environment used in MHP is based on the Java Virtual Machine. A DVB
application developed in this environment is called DVB–J. Moreover, the MHP 1.1 allows
the usage of a declarative language similar to HTML called DVB–HTML. These types of
applications have the capabilities of downloading and storing iDTV applications (in storage
devices like USB Flash Drive or Hard Disc), access smart cards readers, and control iDTV
applications over the Internet.
Similar to MHP, ACAP enables the usage of declarative languages as XHTML-based or
ECMAScript. However, applications developed to this middleware are not complatible
to MHP. To overcome this problem, a stable subset of API was extracted from MHP and
defined as a standard common API, assuming interoperability among applications built in

228 Ubiquitous Computing

any middleware. This interoperable platform is called Globally Executable MHP (GEM). All the
middleware specifications are supposed to have a GEM-compliance subset.
ARIB is composed by ARIB STD-B24 standard (Data Coding and Transmission Specification
for Digital Broadcasting) which allows the development of declarative iDTV applications
through the Broadcast Markup Language (BML).
Ginga is the middleware of the International Standard for Digital Television (ISDTV), the
Brazilian Digital TV System. The specification is compliant with ITU J.200, J.201 and J.202
recommendations by providing an environment that supports declarative and procedural
content, using an execution machine for Java-based applications (xlets) and a presentation
machine for the treatment of declarative content based mainly on NCL (Nested Context
Language) (Soares et al., 2007). In the Ginga software stack, a core structure (Ginga Common
Core) is responsible for providing services that integrate the two environments. This part of
the stack contains common content decoders that serve both the Ginga-NCL and the Ginga-J
as well as implements a bridge mechanism to enable interaction between Java applications
and NCL documents.
The first specifications released for Ginga-J defined the middleware as a set of 3 API’s
(named Green, Yellow and Blue), each one of them grouped some common functionalities
for iDTV APIs (media management, life cicle control through JavaTV, return channel, and
so on). This specification had a special feature of a device support API integrated to the
middleware, which allowed sharing content among the iDTV and other devices. Currently,
the Ginga-J specification has changed, and some of these APIs were replaced by the JavaDTV
standard (ABNT NBR 15606-4, 2010), especially those related to GEM compliance. In spite of
these modifications in Ginga-J, the basic functionalities of a Java-based iDTV programming
environment were maintained, such as the xlet lifecycle model, media management, and the
inter-xlet communication mechanism.
The Ginga-NCL provides a presentation engine for multimedia content based on scripts. The
logical subsystem of Ginga-NCL handles documents in the pattern of the NCL language.
NCL was designed for presentation and synchronization of multimedia content, based on
NCM (Nested Context Model). Other types of content supported by Ginga-NCL are the
ECMA Script, CSS and XHTML. Ginga-NCL also offers support for treatment of procedural
content, through the implementation of the Lua API (Soares et al., 2007), allowing developers
to construct audiovisual programs and to insert some sort of dynamic programming. The
support for content (such as scripts, Lua, JPEG, PNG, and MPEG) is guaranteed by the
Adapter, a component located on Ginga Common Core. Ginga-NCL also provides a device
support mechanism, mainly related to sharing multimedia content among iDTV and mobile
devices (Soares et al., 2009).
A summary of the procedural/declarative technologies available for the middleware
specifications presented before is depicted in Table 1.

2.2 Home networks
The emergence and growth of the communication technologies enabled the interconnection of
multiple devices located in a residence creating a smart home environment (Dixit & Prasad,
2008). This kind of home environment is characterized by allowing users to control, access
and share information through these devices. Some applications can be cited, as for example,
scheduling an air conditioner to turn on automatically when the environment temperature is
above 25 celsius degrees.

229Using the iDTV as the Center of an Ubiquitous Environment

Fig. 2. General iDTV Components

2.1.3 Digital TV systems and middlewares
The main entities involved on iDTV business joined efforts to create specifications or reference
models for iDTV in order to guarantee the interoperability among hardware manufactures,
businesses and iDTV applications developers. Each specification has some particular
caracteristic related to the regions they were developed. The main specification systems for
iDTV are the American Advanced Television Systems Committee (ATSC)(ATSC, 2009), the
European Digital Video Broadcast (DVB)(DVB, 2010), the Japanese Integrated Services Digital
Broadcasting (ISDB)(ISDB, 2011), and more recently the Brazilian International Standard for
Digital TV (ISDTV)(ISDTV, 2011).
In a generic architecture for the receiver, the main interface between the iDTV applications and
the devices themselves is a component named middleware which consists of a set of Application
Programming Interfaces (APIs) that provides a platform-independent execution environemt for
iDTV applications. Thus, the middleware ensures portability between STBs and provides
less effort for developing iDTV applications because the developers do not need to worry
about how to access the low level receiver functionalities. The main existing standards for
middlewares in the world are the European Multimedia Home Platform (MHP) (MHP, 2010);
the American Advanced Common Application Platform (ACAP) (ACAP, 2009); the Japanese
Association of Radio Industries and Businesses (ARIB) (ARIB, 2009); and the Brazilian Ginga
(ITU-T, 2009).
The execution environment used in MHP is based on the Java Virtual Machine. A DVB
application developed in this environment is called DVB–J. Moreover, the MHP 1.1 allows
the usage of a declarative language similar to HTML called DVB–HTML. These types of
applications have the capabilities of downloading and storing iDTV applications (in storage
devices like USB Flash Drive or Hard Disc), access smart cards readers, and control iDTV
applications over the Internet.
Similar to MHP, ACAP enables the usage of declarative languages as XHTML-based or
ECMAScript. However, applications developed to this middleware are not complatible
to MHP. To overcome this problem, a stable subset of API was extracted from MHP and
defined as a standard common API, assuming interoperability among applications built in

228 Ubiquitous Computing

any middleware. This interoperable platform is called Globally Executable MHP (GEM). All the
middleware specifications are supposed to have a GEM-compliance subset.
ARIB is composed by ARIB STD-B24 standard (Data Coding and Transmission Specification
for Digital Broadcasting) which allows the development of declarative iDTV applications
through the Broadcast Markup Language (BML).
Ginga is the middleware of the International Standard for Digital Television (ISDTV), the
Brazilian Digital TV System. The specification is compliant with ITU J.200, J.201 and J.202
recommendations by providing an environment that supports declarative and procedural
content, using an execution machine for Java-based applications (xlets) and a presentation
machine for the treatment of declarative content based mainly on NCL (Nested Context
Language) (Soares et al., 2007). In the Ginga software stack, a core structure (Ginga Common
Core) is responsible for providing services that integrate the two environments. This part of
the stack contains common content decoders that serve both the Ginga-NCL and the Ginga-J
as well as implements a bridge mechanism to enable interaction between Java applications
and NCL documents.
The first specifications released for Ginga-J defined the middleware as a set of 3 API’s
(named Green, Yellow and Blue), each one of them grouped some common functionalities
for iDTV APIs (media management, life cicle control through JavaTV, return channel, and
so on). This specification had a special feature of a device support API integrated to the
middleware, which allowed sharing content among the iDTV and other devices. Currently,
the Ginga-J specification has changed, and some of these APIs were replaced by the JavaDTV
standard (ABNT NBR 15606-4, 2010), especially those related to GEM compliance. In spite of
these modifications in Ginga-J, the basic functionalities of a Java-based iDTV programming
environment were maintained, such as the xlet lifecycle model, media management, and the
inter-xlet communication mechanism.
The Ginga-NCL provides a presentation engine for multimedia content based on scripts. The
logical subsystem of Ginga-NCL handles documents in the pattern of the NCL language.
NCL was designed for presentation and synchronization of multimedia content, based on
NCM (Nested Context Model). Other types of content supported by Ginga-NCL are the
ECMA Script, CSS and XHTML. Ginga-NCL also offers support for treatment of procedural
content, through the implementation of the Lua API (Soares et al., 2007), allowing developers
to construct audiovisual programs and to insert some sort of dynamic programming. The
support for content (such as scripts, Lua, JPEG, PNG, and MPEG) is guaranteed by the
Adapter, a component located on Ginga Common Core. Ginga-NCL also provides a device
support mechanism, mainly related to sharing multimedia content among iDTV and mobile
devices (Soares et al., 2009).
A summary of the procedural/declarative technologies available for the middleware
specifications presented before is depicted in Table 1.

2.2 Home networks
The emergence and growth of the communication technologies enabled the interconnection of
multiple devices located in a residence creating a smart home environment (Dixit & Prasad,
2008). This kind of home environment is characterized by allowing users to control, access
and share information through these devices. Some applications can be cited, as for example,
scheduling an air conditioner to turn on automatically when the environment temperature is
above 25 celsius degrees.

229Using the iDTV as the Center of an Ubiquitous Environment

Middleware iDTV Declarative Procedural
System Environment Environment

ACAP-X ACAP-J
ACAP ATSC [ATSC A-101 2005] [ATSC A-101 2005]

(American) Languages: XHTML like and Language: Java
ECMAScript
DVB-HTML MHP

MHP DVB [ETSI TS 102 812 v 1.2.2 2006] [ETSI TS 102 812 v 1.2.2 2006]
(European) Languages: XHTML like and Language: Java

ECMAScript
ARIB-BML Optional

ARIB ISDB [ARIB B-24 2004] (GEM [ETSI TS 102 819 v 1.3.1 2005])
(Japonese) Languages: BML(XHTML like) Language: not implemented

and ECMAScript
Ginga-NCL Ginga-J

Ginga ISDTV [ABNT NBR 15606-2 2009] [ABNT NBR 15606-4 2010]
(Brazilian) Languages: NCL and Lua Language: Java

Table 1. Declarative and procedural environments of iDTV middlewares

Furthermore, advanced types of systems may be constructed, in a near future such as those
who have the ability to learn from user’s everyday activities at home and, using artificial
intelligence techniques, create an adaptable environment based on the user profiles. For
example, when someone arrives at home, the environment recognizes his/her profile and
sends a message to the stereo system which selects his/her favorite music track. Another point
that have contributed to the creation of these kind of environment was the popularization of
wireless communication which enabled the interconnection of several devices located in a
home.

2.2.1 Open standards used in a home network
The Universal Plug-and-Play (UPnP) technology provides communication between electronic
devices as well as the sharing of services, without the need of human intervention and
configuration (Miller et al., 2001). The architecture has zero configuration support and
the services discovery is automatic. A Device Control Protocol (DCP) was created for
interconnection of electronic devices. Another important feature is that each manufacturer
can create its own API and describe their services by an Extensible Markup Language (XML)
file.
Jini, for example, is a middleware that offers APIs for the development of services, as well as
network protocols allowing the data sharing among electronic devices with different types
of communication technologies (Gupta et al., 2002). Each device supplies an interface to
access available methods. Thus it ensures standardization and the sharing of services among
them. This interface is represented by a Java object that implements its methods. The Remote
Method Invocation (RMI) is used to access its methods through invoke and lookup commands.
The Home Audio Video Interoperability (HAVi) specification is used for sharing multimedia
content between audio and video devices through FireWire (IEEE 1394) and their managment
is centered on TV. To do so, a set of APIs and a middleware were created to implement
functions, such as detect the devices in a Home Network, install the interfaces, and guarantee
the interoperability between the devices (HAVi, 2001). The HAVi main features are that any

230 Ubiquitous Computing

device can control other device, each device has a Java interface which is available to other
devices, the updates are done via download, and it gives support for legacy systems and
Plug-and-Play (Marshall, 2001).
One of the most known specifications for Home Networking is the Open Services Gateway
initiative (OSGi). The framework supports applications from modular units known as
bundles. In fact it controls the bundles life-cycle (adding, removing and replacing bundles at
run-time) and verifies the dependencies between them (Tavares & Valente, 2008). Each bundle
is represented as a service in the OSGi architecture. The services are registered in the OSGi
Service Registry, which allows the discovery and access of services in an OSGi environment
(Marples & Kriens, 2001).

2.2.2 Communications technologies used in a home network
In a home, there are different types of CE (TV, mobile phone, digital camera, and so on) that
have a communication technology which allows to exchange information among them. This
trend is followed by the growth in the usage of some communication technologies (Bluetooth,
Universal Serial Bus (USB), Firewire etc). Among the most promising communication
technologies commonly used in a Home Network, the two types above deserve a special
attention: Wireless Networks and No New Wires Networks.
Wireless networks, such as IEEE 802.15 (Bluetooth), IEEE 802.15.4 (ZigBee) and IEEE 802.11x
(WiFi), have grown significantly in recent years because of their convenience in easily
connecting with new placed devices, the integration with several types of devices, and
the gradually low cost of these solutions. They provide a transmission rate from 115Kbps
(ZigBee) to 54Mbps (802.11g), measurable Quality of Service (Bluetooth and Zigbee), and a
transmission range from 1m (Bluetooth) to 1.6 km (ZigBee). This kind of network is very
useful in a home environment because of the typical distance between the CE devices, which
is, in general, between 1m and 50m, its ability to communicate with more than one device
at the same time, and, most importantly, because of the lack of cables that facilitates the
replacement of devices.
The No New Wires Networks reuses the existent wired infrastructure of the house, such as
the electrical wiring (HomePlug) and phone line (HomePNA) to establish a communication
mechanism. As a matter of fact, the electrical wiring used is not considered an apropriate
network media for data transmission because of its noise, the presence of interference, and
fading. However, the emergence of new techniques in digital signal processing and code
error control has allowed the increase of data rate transmission through the power lines
and the reduction of noise (Lin et al., 2002). The main features of these networks are data
rate transmission between 10 Mbps (HomePNA) and 14 Mbps (HomePlug), transmission of
multimedia contents and connection of up to 50 devices in the same network. Nevertheless,
there are some technical difficulties in building these networks, such as scalability of the
number of connected devices in the network and security issues in data traffic (Zahariadis
et al., 2002).

3. State of the art

The design of solutions incorporating electronic devices with some communication
technology that promotes the exchange of information among them has been the topic of
research in several recent works. These works diverge on their respective adopted approaches.
Three different aspects of these approaches were analyzed: the way a device communicates

231Using the iDTV as the Center of an Ubiquitous Environment

Middleware iDTV Declarative Procedural
System Environment Environment

ACAP-X ACAP-J
ACAP ATSC [ATSC A-101 2005] [ATSC A-101 2005]

(American) Languages: XHTML like and Language: Java
ECMAScript
DVB-HTML MHP

MHP DVB [ETSI TS 102 812 v 1.2.2 2006] [ETSI TS 102 812 v 1.2.2 2006]
(European) Languages: XHTML like and Language: Java

ECMAScript
ARIB-BML Optional

ARIB ISDB [ARIB B-24 2004] (GEM [ETSI TS 102 819 v 1.3.1 2005])
(Japonese) Languages: BML(XHTML like) Language: not implemented

and ECMAScript
Ginga-NCL Ginga-J

Ginga ISDTV [ABNT NBR 15606-2 2009] [ABNT NBR 15606-4 2010]
(Brazilian) Languages: NCL and Lua Language: Java

Table 1. Declarative and procedural environments of iDTV middlewares

Furthermore, advanced types of systems may be constructed, in a near future such as those
who have the ability to learn from user’s everyday activities at home and, using artificial
intelligence techniques, create an adaptable environment based on the user profiles. For
example, when someone arrives at home, the environment recognizes his/her profile and
sends a message to the stereo system which selects his/her favorite music track. Another point
that have contributed to the creation of these kind of environment was the popularization of
wireless communication which enabled the interconnection of several devices located in a
home.

2.2.1 Open standards used in a home network
The Universal Plug-and-Play (UPnP) technology provides communication between electronic
devices as well as the sharing of services, without the need of human intervention and
configuration (Miller et al., 2001). The architecture has zero configuration support and
the services discovery is automatic. A Device Control Protocol (DCP) was created for
interconnection of electronic devices. Another important feature is that each manufacturer
can create its own API and describe their services by an Extensible Markup Language (XML)
file.
Jini, for example, is a middleware that offers APIs for the development of services, as well as
network protocols allowing the data sharing among electronic devices with different types
of communication technologies (Gupta et al., 2002). Each device supplies an interface to
access available methods. Thus it ensures standardization and the sharing of services among
them. This interface is represented by a Java object that implements its methods. The Remote
Method Invocation (RMI) is used to access its methods through invoke and lookup commands.
The Home Audio Video Interoperability (HAVi) specification is used for sharing multimedia
content between audio and video devices through FireWire (IEEE 1394) and their managment
is centered on TV. To do so, a set of APIs and a middleware were created to implement
functions, such as detect the devices in a Home Network, install the interfaces, and guarantee
the interoperability between the devices (HAVi, 2001). The HAVi main features are that any

230 Ubiquitous Computing

device can control other device, each device has a Java interface which is available to other
devices, the updates are done via download, and it gives support for legacy systems and
Plug-and-Play (Marshall, 2001).
One of the most known specifications for Home Networking is the Open Services Gateway
initiative (OSGi). The framework supports applications from modular units known as
bundles. In fact it controls the bundles life-cycle (adding, removing and replacing bundles at
run-time) and verifies the dependencies between them (Tavares & Valente, 2008). Each bundle
is represented as a service in the OSGi architecture. The services are registered in the OSGi
Service Registry, which allows the discovery and access of services in an OSGi environment
(Marples & Kriens, 2001).

2.2.2 Communications technologies used in a home network
In a home, there are different types of CE (TV, mobile phone, digital camera, and so on) that
have a communication technology which allows to exchange information among them. This
trend is followed by the growth in the usage of some communication technologies (Bluetooth,
Universal Serial Bus (USB), Firewire etc). Among the most promising communication
technologies commonly used in a Home Network, the two types above deserve a special
attention: Wireless Networks and No New Wires Networks.
Wireless networks, such as IEEE 802.15 (Bluetooth), IEEE 802.15.4 (ZigBee) and IEEE 802.11x
(WiFi), have grown significantly in recent years because of their convenience in easily
connecting with new placed devices, the integration with several types of devices, and
the gradually low cost of these solutions. They provide a transmission rate from 115Kbps
(ZigBee) to 54Mbps (802.11g), measurable Quality of Service (Bluetooth and Zigbee), and a
transmission range from 1m (Bluetooth) to 1.6 km (ZigBee). This kind of network is very
useful in a home environment because of the typical distance between the CE devices, which
is, in general, between 1m and 50m, its ability to communicate with more than one device
at the same time, and, most importantly, because of the lack of cables that facilitates the
replacement of devices.
The No New Wires Networks reuses the existent wired infrastructure of the house, such as
the electrical wiring (HomePlug) and phone line (HomePNA) to establish a communication
mechanism. As a matter of fact, the electrical wiring used is not considered an apropriate
network media for data transmission because of its noise, the presence of interference, and
fading. However, the emergence of new techniques in digital signal processing and code
error control has allowed the increase of data rate transmission through the power lines
and the reduction of noise (Lin et al., 2002). The main features of these networks are data
rate transmission between 10 Mbps (HomePNA) and 14 Mbps (HomePlug), transmission of
multimedia contents and connection of up to 50 devices in the same network. Nevertheless,
there are some technical difficulties in building these networks, such as scalability of the
number of connected devices in the network and security issues in data traffic (Zahariadis
et al., 2002).

3. State of the art

The design of solutions incorporating electronic devices with some communication
technology that promotes the exchange of information among them has been the topic of
research in several recent works. These works diverge on their respective adopted approaches.
Three different aspects of these approaches were analyzed: the way a device communicates

231Using the iDTV as the Center of an Ubiquitous Environment

with others, the specification used to manage electronic devices, and the collaborative ways
between iDTV and Home Gateway.
When talking about the diversity communication mechanisms, we may cite Kanma et al.
(2003), which describes a scenario where a cellular phone communicates with electronic
devices, such as an air conditioner and a washing machine, over Bluetooth. To do so, adapters
with integrated Bluetooth technology through device’s serial ports (RS 232) were developed.
Some services were deployed, including the monitoring and remote controlling, updating
of the adapter software, diagnosing of the failures, and getting technical information on the
electronic devices. The need to create new adapters to each new device that joins to the
network is a significant disadvantage.
The work described in Al Mehairi et al. (2007) used Short Message Service (SMS) to request
different kinds of services from a Home Server that controls/monitors electronic devices
through Bluetooth. To do so, in the SMS, the device and command names (turn on/off lamp,
for example) were informed. In this approach, the Home Server receives the command and
sends the information to the appropriate device. As a disadvantage of this work we may cite
the fact that SMS is a payed service.
Considering the specification used for managing electronic devices, the work in Kim et al.
(2007) used OSGi in a Residential Gateway to create a common ground for electronic devices
from a wide range of communication technologies. In this work the electronic devices are
managed remotely through a Web page available by the Residential Gateway. This proposal
was focused on the use of limited resources, such as low data rate transmission and low energy
consumption.
Another possibility may be illustrated by a scenario where UPnP and Jini specifications
communicate with OSGi by offering a large scope to manage electronic devices (Dobrev
et al., 2002). In this context, two components were created, a Jini Driver and an UPnP Base
Driver. These components offer an access interface to registered services in OSGi environment.
Thus, it is possible to create several applications, such as accessing a printer from Jini or a
digital camera from UPnP. This way, when a device (a PC or cellular phone, for example)
requests some service, such as printing a text or getting photos from a digital camera, the
OSGi communicates with Jini requesting the printing of a text, or with UPnP requesting the
content from a digital camera.
Some works related to the possible colaborative mechanims suggest the use of the TV-Sets as
Residential Gateways mainly due to the emergence of the DTV and its potential for integrating
other electronic devices in the Home Network. One of the first ideas was to create a protocol
layer to control multimedia devices (audio and video) through HAVi specification (Marshall,
2001).
In Tkachenko et al. (2005) a framework named DTV-HNF (Digital TV - Home Network
Framework) is described. This framework enables managing access requests from iDTV
applications to available services from electronic devices on the Home Network. However,
only iDTV applications access electronic devices services and there is a possibility of
communication failure between iDTV and the Residential Gateway because of the technical
nature of the communication used (TCP/IP).
To overcome these difficulties, the approaches in Cabrer et al. (2006), Bae et al. (2006),
Yang et al. (2007), Redondo et al. (2007) and Lin et al. (2008; 2009) describe a collaboration
mechanism between iDTV and Residential Gateway in the same environment, i.e., in the
same device are included features from the iDTV and from the Residential Gateway. Other

232 Ubiquitous Computing

characteristic of these works is the bidirectional communication, i.e. an iDTV appl ication can
access a service from an electronic device and vice-versa.
In Cabrer et al. (2006) and Redondo et al. (2007) a new kind of application named XBundLET
was created, which has features of MHP applications (xlet) and OSGi services (bundle).
XBundLET is in compliance with xlets and bundles specifications: it is managed by an
Application Manager and communicates with other xlets through Inter-Xlet Communication
(IXC). At the same time provides services to other bundles and/or invokes services from other
bundles through OSGi Service Registry.
A convergent architecture between data broadcasting and home networking services is
proposed in Bae et al. (2006), based on the ACAP middleware and the UMB (Universal
Middleware Bridge) protocol stack. This model has two sets of software components; a
Service Proxy under the ACAP architecture and a Service Broker on the UMB stack. These
components establish connections through the Simple Service Discovery Protocol (SSDP)
enabling the discovery and use of network services for ACAP-J applications.
The proposal in Yang et al. (2007) implements a collaborative model that modifies as little as
possible the characteristics of the MHP and OSGi native components. The work defines bridge
structures between the two platforms that allow the passing of context parameters from MHP
xlets to OSGi bundles and vice-versa. These structures exploit the Java Class Loader features,
as well as implement a security mechanism to ensure that unauthorized access will not occur.
Although, this model is simpler than the previous ones, its main disadvantages are that the
developers of both xlets and bundles need to know the new components, besides the need
to export bridge-components as Java Virtual Machine (JVM) static libraries outside the MHP
and OSGi environments.
The approach of Lin et al. (2008) used components under the Wrapper and Broker design
patterns, to isolate iDTV and Home Network software components. MHP xlets and OSGi
bundles communicate with specific proxies for each platform, implemented within a Broker
bridge component. This model has the MHP Application Manager as an OSGi service,
through MHPAPPmanager bundle. Inside this bundle are the Broker component and the
proxies. A significant disadvantage is the need to modify the MHP and OSGi components to
support this new model, which just increases its complexity. The work of Lin et al. (2009) is an
extension of the previous one. It presents a general classification of MHP-OSGi architectures,
designing some of them in order to make a qualitative/quantitative comparison, considering
issues of resources consumption, time for loading components, startup time, etc.

4. Integrating digital TV in an ubiquitous environment

The iDTV usage as a part of the ubiquitous environment is a topic of recent research.
The collaboration strategies presented in Section 3 offer software platforms to build new
application scenarios to the home user. One possible trend, analysed by Maia et al. (2009), is to
extend a software platform for iDTV in order to increase the scope of these new applications.
This way, it is possible to create from monitoring/controlling to more ubiquitous related
scenarios, such as personalizing the home configuration to the user preferences.
To deliver ubiquitous services to the Brazilian iDTV, it is desired to create an integration
mechanism between the Ginga middleware and some Residential Gateway specification
(OSGi, Jini or UPnP) that can live together in only one CE device. In the literature, there
is the work of Viana et al. (2009) which shows an introductory idea of such integration.
Moreover, some features from the DTV middleware can be used, such as spatial-temporal
synchronization between media (video, audio, text) and electronic devices.

233Using the iDTV as the Center of an Ubiquitous Environment

with others, the specification used to manage electronic devices, and the collaborative ways
between iDTV and Home Gateway.
When talking about the diversity communication mechanisms, we may cite Kanma et al.
(2003), which describes a scenario where a cellular phone communicates with electronic
devices, such as an air conditioner and a washing machine, over Bluetooth. To do so, adapters
with integrated Bluetooth technology through device’s serial ports (RS 232) were developed.
Some services were deployed, including the monitoring and remote controlling, updating
of the adapter software, diagnosing of the failures, and getting technical information on the
electronic devices. The need to create new adapters to each new device that joins to the
network is a significant disadvantage.
The work described in Al Mehairi et al. (2007) used Short Message Service (SMS) to request
different kinds of services from a Home Server that controls/monitors electronic devices
through Bluetooth. To do so, in the SMS, the device and command names (turn on/off lamp,
for example) were informed. In this approach, the Home Server receives the command and
sends the information to the appropriate device. As a disadvantage of this work we may cite
the fact that SMS is a payed service.
Considering the specification used for managing electronic devices, the work in Kim et al.
(2007) used OSGi in a Residential Gateway to create a common ground for electronic devices
from a wide range of communication technologies. In this work the electronic devices are
managed remotely through a Web page available by the Residential Gateway. This proposal
was focused on the use of limited resources, such as low data rate transmission and low energy
consumption.
Another possibility may be illustrated by a scenario where UPnP and Jini specifications
communicate with OSGi by offering a large scope to manage electronic devices (Dobrev
et al., 2002). In this context, two components were created, a Jini Driver and an UPnP Base
Driver. These components offer an access interface to registered services in OSGi environment.
Thus, it is possible to create several applications, such as accessing a printer from Jini or a
digital camera from UPnP. This way, when a device (a PC or cellular phone, for example)
requests some service, such as printing a text or getting photos from a digital camera, the
OSGi communicates with Jini requesting the printing of a text, or with UPnP requesting the
content from a digital camera.
Some works related to the possible colaborative mechanims suggest the use of the TV-Sets as
Residential Gateways mainly due to the emergence of the DTV and its potential for integrating
other electronic devices in the Home Network. One of the first ideas was to create a protocol
layer to control multimedia devices (audio and video) through HAVi specification (Marshall,
2001).
In Tkachenko et al. (2005) a framework named DTV-HNF (Digital TV - Home Network
Framework) is described. This framework enables managing access requests from iDTV
applications to available services from electronic devices on the Home Network. However,
only iDTV applications access electronic devices services and there is a possibility of
communication failure between iDTV and the Residential Gateway because of the technical
nature of the communication used (TCP/IP).
To overcome these difficulties, the approaches in Cabrer et al. (2006), Bae et al. (2006),
Yang et al. (2007), Redondo et al. (2007) and Lin et al. (2008; 2009) describe a collaboration
mechanism between iDTV and Residential Gateway in the same environment, i.e., in the
same device are included features from the iDTV and from the Residential Gateway. Other

232 Ubiquitous Computing

characteristic of these works is the bidirectional communication, i.e. an iDTV appl ication can
access a service from an electronic device and vice-versa.
In Cabrer et al. (2006) and Redondo et al. (2007) a new kind of application named XBundLET
was created, which has features of MHP applications (xlet) and OSGi services (bundle).
XBundLET is in compliance with xlets and bundles specifications: it is managed by an
Application Manager and communicates with other xlets through Inter-Xlet Communication
(IXC). At the same time provides services to other bundles and/or invokes services from other
bundles through OSGi Service Registry.
A convergent architecture between data broadcasting and home networking services is
proposed in Bae et al. (2006), based on the ACAP middleware and the UMB (Universal
Middleware Bridge) protocol stack. This model has two sets of software components; a
Service Proxy under the ACAP architecture and a Service Broker on the UMB stack. These
components establish connections through the Simple Service Discovery Protocol (SSDP)
enabling the discovery and use of network services for ACAP-J applications.
The proposal in Yang et al. (2007) implements a collaborative model that modifies as little as
possible the characteristics of the MHP and OSGi native components. The work defines bridge
structures between the two platforms that allow the passing of context parameters from MHP
xlets to OSGi bundles and vice-versa. These structures exploit the Java Class Loader features,
as well as implement a security mechanism to ensure that unauthorized access will not occur.
Although, this model is simpler than the previous ones, its main disadvantages are that the
developers of both xlets and bundles need to know the new components, besides the need
to export bridge-components as Java Virtual Machine (JVM) static libraries outside the MHP
and OSGi environments.
The approach of Lin et al. (2008) used components under the Wrapper and Broker design
patterns, to isolate iDTV and Home Network software components. MHP xlets and OSGi
bundles communicate with specific proxies for each platform, implemented within a Broker
bridge component. This model has the MHP Application Manager as an OSGi service,
through MHPAPPmanager bundle. Inside this bundle are the Broker component and the
proxies. A significant disadvantage is the need to modify the MHP and OSGi components to
support this new model, which just increases its complexity. The work of Lin et al. (2009) is an
extension of the previous one. It presents a general classification of MHP-OSGi architectures,
designing some of them in order to make a qualitative/quantitative comparison, considering
issues of resources consumption, time for loading components, startup time, etc.

4. Integrating digital TV in an ubiquitous environment

The iDTV usage as a part of the ubiquitous environment is a topic of recent research.
The collaboration strategies presented in Section 3 offer software platforms to build new
application scenarios to the home user. One possible trend, analysed by Maia et al. (2009), is to
extend a software platform for iDTV in order to increase the scope of these new applications.
This way, it is possible to create from monitoring/controlling to more ubiquitous related
scenarios, such as personalizing the home configuration to the user preferences.
To deliver ubiquitous services to the Brazilian iDTV, it is desired to create an integration
mechanism between the Ginga middleware and some Residential Gateway specification
(OSGi, Jini or UPnP) that can live together in only one CE device. In the literature, there
is the work of Viana et al. (2009) which shows an introductory idea of such integration.
Moreover, some features from the DTV middleware can be used, such as spatial-temporal
synchronization between media (video, audio, text) and electronic devices.

233Using the iDTV as the Center of an Ubiquitous Environment

In this section will be described one constructed component-based model for the Brazilian
DTV middleware Ginga and the OSGi framework. The proposed model explores the features
of the two Ginga environments (Ginga-J and Ginga-NCL) offering software components that
interact with applications (xlets) or declarative content (NCL), exporting its features to the
OSGi domain. The components and the two Ginga-OSGi approaches (GingaJ-OSGi and
GingaNCL-OSGi) will be shown in details. Similarly, it should be possible for Ginga-J and
Ginga-NCL applications accessing OSGi services to have interactive control over devices in
Home Networks.
The general architecture of the model is shown in Figure 3. In this figure are Ginga-J,
Ginga-NCL and OSGi components and the software bridge between them. Some features for
the new Ginga-OSGi platform have been identified to meet the needs of integration between
Home Networks and the Brazilian Digital TV. They are:

• Allowing the registry and the discovery of OSGi services in a Home Network – Services
are the basis of the OSGi model. A service is the interface to operations provided by the
networked devices. The service discovery in a Home Network is a key step for integrating
it with iDTV applications.

• Interoperation between OSGi services and Ginga functionalities – The environment must
allow Ginga to access OSGi services. That is a difficult task because it requires an effort to
integrate these different software platforms. Similarly, this model should enable the access
of Ginga functions by OSGi.

• Providing a useful description of the services to the user – Service description is the key
to success in attracting a user. In addition to the information provided by OSGi services,
such as name, version, and provider, other information should be released, such as device
name and methods description.

Fig. 3. General Ginga-OSGi Architecture.

The developed strategy considers mechanisms for collaboration between Ginga and OSGi.
The two Ginga-OSGi approaches (GingaJ-OSGi and GingaNCL-OSGi) will be described in
the next sections.

234 Ubiquitous Computing

4.1 GingaJ-OSGi model
The procedural approach is in line with the desired requirements previously mentioned, and
follows a model supported by components of the basic modules of Ginga-J and OSGi APIs.
Therefore the model can be extended to other middleware like MHP. Indeed, it is based on the
approaches of Cabrer et al. (2006), Yang et al. (2007), Lin et al. (2008) and Redondo et al. (2007),
providing components that act as interfaces between the two frameworks. However, for this
model, it was tried to change as little as possible both environments so that the xlets/services
programmers do not need to know complex mechanisms of the platform.
The software layer of GingaJ-OSGi presents seven components that enable the flow of service
objects between the two areas following one common pattern. The whole interaction process
is focused in the registering of entities for Ginga-J features (IXCRegistry) and OSGi services
(Service Registry). Once some Ginga-J functionality has been registered in the IXCRegistry,
a component notifies the OSGi side through the registration of a corresponding service.
Similarly, every time a bundle registers its service in OSGi, another entity will pass the service
reference for the Ginga-J side. These entities act as listeners in both environments and the
objects are registered through a generic interface following the Proxy and Decorator design
patterns as described in Gamma et al. (1995). They protect the direct access to methods of
the object, providing new methods for accessing the object with security, using features of the
Java Reflection API. The seven developed components are:

• GingaJ-OSGiRegister – This component exports Ginga-J features as services in the OSGi
domain. It implements a listener to registry events in the IXCRegistry (bind, unbind,
rebind). GingaJ-OSGiRegister gets the Ginga-J and OSGi contexts through ContextBridge.
Thus, it registers the Ginga-J functionality as an OSGi service using a WrappedProxyObject.
This is done by accessing a service provided by the GingaJ-OSGiBundle component.

• GingaJ-OSGiBundle – This component provides a service in the Service Registry through
which it is possible the registering of WrappedProxyObject objects relating to interfaces of
the Ginga-J. This is necessary because since the GingaJ-OSGiRegister component is not a
bundle, it is not authorized to directly register OSGi services.

• OSGi-GingaJRegister – Supports the reverse process, it implements a listener to registry
events in the OSGi Service Registry and accesses the ContextBridge to export the OSGi
service as a WrappedProxyObject related to the functionality to be registered on the Ginga-J
IXCRegistry.

• XletContextExporter – This is an xlet that exports a singleton XletContext object (in
textitjavax.tv.xlet package) to the ContextBridge.

• BundleContextExporter – It is a bundle that exports a singleton BundleContext object (in
textitorg.osgi.framework package) to the ContextBridge.

• ContextBridge – This is a bridge component that allows accessing xlet/bundle
contexts. This component receives context objects from XletContextExporter and
BundleContextExporter, making these context objects available in the environment.

• WrappedProxyObject – That is a generic object that implements an interface
(WrappedProxyInterface) which has methods for protecting the services that are being
registered (into Service Registry or IXCRegistry).

These components, which are the basis of GingaJ-OSGi platform, operate with the aim
of ensuring two interaction mechanisms between the platforms: OSGi services should
be accessed by Ginga-J applications, and OSGi applications should access functionalities
exported by Ginga-J. The two mechanisms are described in the following subsections.

235Using the iDTV as the Center of an Ubiquitous Environment

In this section will be described one constructed component-based model for the Brazilian
DTV middleware Ginga and the OSGi framework. The proposed model explores the features
of the two Ginga environments (Ginga-J and Ginga-NCL) offering software components that
interact with applications (xlets) or declarative content (NCL), exporting its features to the
OSGi domain. The components and the two Ginga-OSGi approaches (GingaJ-OSGi and
GingaNCL-OSGi) will be shown in details. Similarly, it should be possible for Ginga-J and
Ginga-NCL applications accessing OSGi services to have interactive control over devices in
Home Networks.
The general architecture of the model is shown in Figure 3. In this figure are Ginga-J,
Ginga-NCL and OSGi components and the software bridge between them. Some features for
the new Ginga-OSGi platform have been identified to meet the needs of integration between
Home Networks and the Brazilian Digital TV. They are:

• Allowing the registry and the discovery of OSGi services in a Home Network – Services
are the basis of the OSGi model. A service is the interface to operations provided by the
networked devices. The service discovery in a Home Network is a key step for integrating
it with iDTV applications.

• Interoperation between OSGi services and Ginga functionalities – The environment must
allow Ginga to access OSGi services. That is a difficult task because it requires an effort to
integrate these different software platforms. Similarly, this model should enable the access
of Ginga functions by OSGi.

• Providing a useful description of the services to the user – Service description is the key
to success in attracting a user. In addition to the information provided by OSGi services,
such as name, version, and provider, other information should be released, such as device
name and methods description.

Fig. 3. General Ginga-OSGi Architecture.

The developed strategy considers mechanisms for collaboration between Ginga and OSGi.
The two Ginga-OSGi approaches (GingaJ-OSGi and GingaNCL-OSGi) will be described in
the next sections.

234 Ubiquitous Computing

4.1 GingaJ-OSGi model
The procedural approach is in line with the desired requirements previously mentioned, and
follows a model supported by components of the basic modules of Ginga-J and OSGi APIs.
Therefore the model can be extended to other middleware like MHP. Indeed, it is based on the
approaches of Cabrer et al. (2006), Yang et al. (2007), Lin et al. (2008) and Redondo et al. (2007),
providing components that act as interfaces between the two frameworks. However, for this
model, it was tried to change as little as possible both environments so that the xlets/services
programmers do not need to know complex mechanisms of the platform.
The software layer of GingaJ-OSGi presents seven components that enable the flow of service
objects between the two areas following one common pattern. The whole interaction process
is focused in the registering of entities for Ginga-J features (IXCRegistry) and OSGi services
(Service Registry). Once some Ginga-J functionality has been registered in the IXCRegistry,
a component notifies the OSGi side through the registration of a corresponding service.
Similarly, every time a bundle registers its service in OSGi, another entity will pass the service
reference for the Ginga-J side. These entities act as listeners in both environments and the
objects are registered through a generic interface following the Proxy and Decorator design
patterns as described in Gamma et al. (1995). They protect the direct access to methods of
the object, providing new methods for accessing the object with security, using features of the
Java Reflection API. The seven developed components are:

• GingaJ-OSGiRegister – This component exports Ginga-J features as services in the OSGi
domain. It implements a listener to registry events in the IXCRegistry (bind, unbind,
rebind). GingaJ-OSGiRegister gets the Ginga-J and OSGi contexts through ContextBridge.
Thus, it registers the Ginga-J functionality as an OSGi service using a WrappedProxyObject.
This is done by accessing a service provided by the GingaJ-OSGiBundle component.

• GingaJ-OSGiBundle – This component provides a service in the Service Registry through
which it is possible the registering of WrappedProxyObject objects relating to interfaces of
the Ginga-J. This is necessary because since the GingaJ-OSGiRegister component is not a
bundle, it is not authorized to directly register OSGi services.

• OSGi-GingaJRegister – Supports the reverse process, it implements a listener to registry
events in the OSGi Service Registry and accesses the ContextBridge to export the OSGi
service as a WrappedProxyObject related to the functionality to be registered on the Ginga-J
IXCRegistry.

• XletContextExporter – This is an xlet that exports a singleton XletContext object (in
textitjavax.tv.xlet package) to the ContextBridge.

• BundleContextExporter – It is a bundle that exports a singleton BundleContext object (in
textitorg.osgi.framework package) to the ContextBridge.

• ContextBridge – This is a bridge component that allows accessing xlet/bundle
contexts. This component receives context objects from XletContextExporter and
BundleContextExporter, making these context objects available in the environment.

• WrappedProxyObject – That is a generic object that implements an interface
(WrappedProxyInterface) which has methods for protecting the services that are being
registered (into Service Registry or IXCRegistry).

These components, which are the basis of GingaJ-OSGi platform, operate with the aim
of ensuring two interaction mechanisms between the platforms: OSGi services should
be accessed by Ginga-J applications, and OSGi applications should access functionalities
exported by Ginga-J. The two mechanisms are described in the following subsections.

235Using the iDTV as the Center of an Ubiquitous Environment

4.1.1 Accessing OSGi services through Ginga-J applications
As ilustrated in Figure 4, this mechanism is supported by four components:
XletContextExporter, BundleContextExporter, ContextBridge and OSGi-GingaJRegister.
Once the system is launched, the Application Manager defines a mechanism based on Java
class loaders for activating XletContextExporter and BundleContextExporter. When these two
objects are initialized, their contexts are passed to the Singleton object ContextBridge which
remains active until the shutdown of the framework. At this point, the OSGi-GingaJRegister
is waiting for notification of any OSGi service registration, through a ServiceListener
object (in org.osgi.framework package). When a bundle registers its service in the OSGi
(step 1), a reference is retrieved by the OSGi-GingaJRegister (step 2). The reference object
(ServiceReference) provides methods for accessing some properties of the service through
a query language expressed in Lightweight Directory Access Protocol (LDAP) (Howes,
1997). The OSGi-GingaJRegister has a key method that passes the service object to a
WrappedProxyObject instance (step 3), which in turn is passed to IXCRegistry (step 4).
This way, all access to the service object from Ginga-J applications is protected by the
WrappedProxyObject, as outlined before. Thus the xlet, after retrieving the service object from
IXCRegistry (step 5), needs only to know the name, the parameters and the types of the
desired method in the service.

Fig. 4. Exporting OSGi services to Ginga-J domain

4.1.2 Accessing Ginga-J functionalities through OSGi bundles
To register xlet functionalities on the OSGi Service Registry, there are five components:
XletContextExporter, BundleContextExporter and ContextBridge, GingaJ-OSGiRegister, and
GingaJ-OSGiBundle(see Figure 5).
Once XletContextExporter, BundleContextExporter and ContextBridge are initialized, the xlet
must register an interface in IXCRegistry (step 1). At this point a Singleton object,
GingaJ-OSGiRegister is listening to events on the IXCRegistry (BIND, REBIND and UNBIND,
which means that an interface has been registered, updated or removed, respectively) (step 2).
From this point the process is similar to the previous one: the GingaJ-OSGiRegister activates
a WrappedProxyObject to protect the methods of the object registered in IXCRegistry (step 3).
After that, the GingaJOSGiRegister accesses a service from GingaJ-OSGiBundle to register the
WrappedProxyObject as an OSGi service (step 4). A client bundle for this service needs to know

236 Ubiquitous Computing

how to get a ServiceReference for the WrappedProxyObject (step 5). A bundle that needs to
access a method of the interface registered in IXCRegistry must pass the name, types and
parameters to WrappedProxyObject which will automatically invoke the method. In this way,
the bundle is enabled for using a Ginga-J functionality without directly interacting with the
middleware.

Fig. 5. Exporting Ginga-J funcionalities as OSGi services

4.2 GingaNCL-OSGi Model
The software layer created on the GingaNCL-OSGi platform has components that enable
the passing of objects related to services between the OSGi and Ginga-NCL environments.
Two Ginga-NCL Adapters are working as bridge components. An Adapter is a Java-based
component that acts as a container for presenting the media in the interactive audiovisual
NCL document. For each Adapter a specific region on the iDTV screen can be declared, having
its properties defined by the Descriptor, that is associated with a Player component for playing
the media. The six types of components presented in the GingaNCL-OSGi software layer are:

• DeviceBundle – This component represents a device located on the Home Network. The
information contained in its Manifest file is used to describe it, such as the vendor, the
interface name, and the service description. Moreover, a Property file is created to offer a
useful description of its services, such as device name, and a description of the available
methods.

• ListenerServerBundle – That is a component that listens to the registration of DeviceBundle
services in the Service Registry and stores the information contained in the Manifest and
Property files in the XML format.

• Communication Bridge – It is composed of two Java static classes (BundleContextBridge and
GingaNCLContextBridge). These Java classes store a bundle context and a Ginga-NCL
object, respectively, and enable the communication between Ginga-NCL applications and
OSGi bundles.

• ExporterBundle – For a Ginga-NCL application to access some DeviceBundle services, it is
necessary to get its reference on the Service Registry. To do so, this component exports its
bundle context to BundleContextBridge. In this way, the Ginga-NCL application can use the
OSGiAdapter for accessing the OSGi services.

237Using the iDTV as the Center of an Ubiquitous Environment

4.1.1 Accessing OSGi services through Ginga-J applications
As ilustrated in Figure 4, this mechanism is supported by four components:
XletContextExporter, BundleContextExporter, ContextBridge and OSGi-GingaJRegister.
Once the system is launched, the Application Manager defines a mechanism based on Java
class loaders for activating XletContextExporter and BundleContextExporter. When these two
objects are initialized, their contexts are passed to the Singleton object ContextBridge which
remains active until the shutdown of the framework. At this point, the OSGi-GingaJRegister
is waiting for notification of any OSGi service registration, through a ServiceListener
object (in org.osgi.framework package). When a bundle registers its service in the OSGi
(step 1), a reference is retrieved by the OSGi-GingaJRegister (step 2). The reference object
(ServiceReference) provides methods for accessing some properties of the service through
a query language expressed in Lightweight Directory Access Protocol (LDAP) (Howes,
1997). The OSGi-GingaJRegister has a key method that passes the service object to a
WrappedProxyObject instance (step 3), which in turn is passed to IXCRegistry (step 4).
This way, all access to the service object from Ginga-J applications is protected by the
WrappedProxyObject, as outlined before. Thus the xlet, after retrieving the service object from
IXCRegistry (step 5), needs only to know the name, the parameters and the types of the
desired method in the service.

Fig. 4. Exporting OSGi services to Ginga-J domain

4.1.2 Accessing Ginga-J functionalities through OSGi bundles
To register xlet functionalities on the OSGi Service Registry, there are five components:
XletContextExporter, BundleContextExporter and ContextBridge, GingaJ-OSGiRegister, and
GingaJ-OSGiBundle(see Figure 5).
Once XletContextExporter, BundleContextExporter and ContextBridge are initialized, the xlet
must register an interface in IXCRegistry (step 1). At this point a Singleton object,
GingaJ-OSGiRegister is listening to events on the IXCRegistry (BIND, REBIND and UNBIND,
which means that an interface has been registered, updated or removed, respectively) (step 2).
From this point the process is similar to the previous one: the GingaJ-OSGiRegister activates
a WrappedProxyObject to protect the methods of the object registered in IXCRegistry (step 3).
After that, the GingaJOSGiRegister accesses a service from GingaJ-OSGiBundle to register the
WrappedProxyObject as an OSGi service (step 4). A client bundle for this service needs to know

236 Ubiquitous Computing

how to get a ServiceReference for the WrappedProxyObject (step 5). A bundle that needs to
access a method of the interface registered in IXCRegistry must pass the name, types and
parameters to WrappedProxyObject which will automatically invoke the method. In this way,
the bundle is enabled for using a Ginga-J functionality without directly interacting with the
middleware.

Fig. 5. Exporting Ginga-J funcionalities as OSGi services

4.2 GingaNCL-OSGi Model
The software layer created on the GingaNCL-OSGi platform has components that enable
the passing of objects related to services between the OSGi and Ginga-NCL environments.
Two Ginga-NCL Adapters are working as bridge components. An Adapter is a Java-based
component that acts as a container for presenting the media in the interactive audiovisual
NCL document. For each Adapter a specific region on the iDTV screen can be declared, having
its properties defined by the Descriptor, that is associated with a Player component for playing
the media. The six types of components presented in the GingaNCL-OSGi software layer are:

• DeviceBundle – This component represents a device located on the Home Network. The
information contained in its Manifest file is used to describe it, such as the vendor, the
interface name, and the service description. Moreover, a Property file is created to offer a
useful description of its services, such as device name, and a description of the available
methods.

• ListenerServerBundle – That is a component that listens to the registration of DeviceBundle
services in the Service Registry and stores the information contained in the Manifest and
Property files in the XML format.

• Communication Bridge – It is composed of two Java static classes (BundleContextBridge and
GingaNCLContextBridge). These Java classes store a bundle context and a Ginga-NCL
object, respectively, and enable the communication between Ginga-NCL applications and
OSGi bundles.

• ExporterBundle – For a Ginga-NCL application to access some DeviceBundle services, it is
necessary to get its reference on the Service Registry. To do so, this component exports its
bundle context to BundleContextBridge. In this way, the Ginga-NCL application can use the
OSGiAdapter for accessing the OSGi services.

237Using the iDTV as the Center of an Ubiquitous Environment

• GingaNCLBundle – This bundle component registers a Ginga-NCL application as a service
after getting the Ginga-NCL object stored in the GingaNCLContextBridge. After that, any
DeviceBundle can access the Ginga-NCL services by retrieving its references on the Service
Registry.

• Extended Adapters and Players – Two new Adapters were created, the OSGiAdapter and
the GingaNCLAdapter. The first one is responsible for getting a bundle context stored
in the BundleContextBridge and accessing the registered services by requesting to the
ListenerServerBundle. After that, the OSGiAdapter accesses a DeviceBundle and uses its
services. The last one exports a Ginga-NCL object to the GingaNCLContextBridge enabling
the GingaNCLBundle to register it as a service on the Service Registry. Thus, a DeviceBundle
can access this service to communicate with a Ginga-NCL application.

By using these components, the Ginga-NCL and OSGi characteristics were not modified, i.e.
Ginga-NCL applications are accessed by OSGi bundles through a service that represents it in
the OSGi environment and OSGi services are accessed by Ginga-NCL applications through
their discovery in the Service Registry. The following subsections describe the proposed
communication mechanism between Ginga-NCL applications and OSGi.

4.2.1 Accessing OSGi services by Ginga-NCL applications
In Figure 6 is shown how Ginga-NCL applications access OSGi services. The
following components are presented: ListenerServerBundle, DeviceBundle, ExporterBundle,
BundleContextBridge, and OSGiAdapter.

Fig. 6. Mechanism of exporting OSGi services to the Ginga-NCL domain.

When the system is launched, ListenerServerBundle registers its services in Service Registry
(step 1). One of its functions is to provide a list of available services in the Service Registry
in an XML format. To do this, it awaits the registration of new services on the Service
Registry through a Listener. When a DeviceBundle registers its service, ListenerServerBundle
gets some information contained on its Manifest and Properties files (step 2). Thus, this more
detailed information helps the choosing of services by the users. To ensure that the services
described in XML format by ListenerServerBundle are viewed by Ginga-NCL applications,
another bundle named ExporterBundle is used, which exports its context to a bridge-structure
named BundleContextBridge (step 3). With this, the OSGiAdapter gets a bundle context stored

238 Ubiquitous Computing

on the BundleContextBridge (step 4). After that, OSGiAdapter uses this context to get the desired
service from ListenerServerBundle by searching In the Service Registry (step 5) and displaying
on the TV screen the available services (step 6). Finally, the OSGiAdapter informs to the
ListenerServerBundle to invoke the service chosen by the viewer (step 7).

4.2.2 Accessing Ginga-NCL applications by OSGi bundles
Figure 7 shows how the OSGi bundles access Ginga-NCL applications. The following
components are involved: GingaNCLAdapter, GingaNCLBundle, DeviceBundle and
GingaNCLContextBridge.

Fig. 7. Mechanism of exporting OSGi services to the Ginga-NCL domain.

When a GingaNCLAdapter Player executes a media object, GingaNCLAdapter exports a
GingaNCL object to GingaNCLContextBridge (step 1). In this bridge-structure another Java
static class named GingaNCLContextBridge is created, which stores the GingaNCL object. After
that, GingaNCLBundle gets this object (step 2) and registers it in the Service Registry as a
service (step 3). Finally, when a DeviceBundle needs to use this service, it is invoked after being
searched in the Service Registry (step 4). In this way, the DeviceBundle sends an information to
a specific region described on the NCL document through a correspondent GingaNCL object
(step 5).

5. Implementation and experiments

The prototype was implemented in a PC platform with Intel Pentium 1.3GHz, 512MB RAM,
80GB HD, with WiFi, Serial RS-232 and USB interfaces. The operating systems was Windows
XP SP2, with the Java 2 Platform Standard Edition 1.4.2_17 and 1.6.0_07. The PC simulates a
single STB-HG (Set-Top Box Home Gateway) platform. The procedural part of the model used
components of the XleTView 0.3.6 platform (XleTView, 2011), in which two main features
were created: support for Inter-Xlet Communication through Java CDC Personal Profile RI
(Personal Profile, 2006), and a model for IXC event listeners. The Ginga-NCL Emulator 1.1.1
(Ginga-NCL, 2011), a Java-based environment for creating interactive audiovisual documents
based on NCL scripts, was chosen as a declarative middleware. The Knopflerfish 1.3.4 OSGi
framework (Knopflerfish, 2011) was adopted for managing OSGi services. In order to test

239Using the iDTV as the Center of an Ubiquitous Environment

• GingaNCLBundle – This bundle component registers a Ginga-NCL application as a service
after getting the Ginga-NCL object stored in the GingaNCLContextBridge. After that, any
DeviceBundle can access the Ginga-NCL services by retrieving its references on the Service
Registry.

• Extended Adapters and Players – Two new Adapters were created, the OSGiAdapter and
the GingaNCLAdapter. The first one is responsible for getting a bundle context stored
in the BundleContextBridge and accessing the registered services by requesting to the
ListenerServerBundle. After that, the OSGiAdapter accesses a DeviceBundle and uses its
services. The last one exports a Ginga-NCL object to the GingaNCLContextBridge enabling
the GingaNCLBundle to register it as a service on the Service Registry. Thus, a DeviceBundle
can access this service to communicate with a Ginga-NCL application.

By using these components, the Ginga-NCL and OSGi characteristics were not modified, i.e.
Ginga-NCL applications are accessed by OSGi bundles through a service that represents it in
the OSGi environment and OSGi services are accessed by Ginga-NCL applications through
their discovery in the Service Registry. The following subsections describe the proposed
communication mechanism between Ginga-NCL applications and OSGi.

4.2.1 Accessing OSGi services by Ginga-NCL applications
In Figure 6 is shown how Ginga-NCL applications access OSGi services. The
following components are presented: ListenerServerBundle, DeviceBundle, ExporterBundle,
BundleContextBridge, and OSGiAdapter.

Fig. 6. Mechanism of exporting OSGi services to the Ginga-NCL domain.

When the system is launched, ListenerServerBundle registers its services in Service Registry
(step 1). One of its functions is to provide a list of available services in the Service Registry
in an XML format. To do this, it awaits the registration of new services on the Service
Registry through a Listener. When a DeviceBundle registers its service, ListenerServerBundle
gets some information contained on its Manifest and Properties files (step 2). Thus, this more
detailed information helps the choosing of services by the users. To ensure that the services
described in XML format by ListenerServerBundle are viewed by Ginga-NCL applications,
another bundle named ExporterBundle is used, which exports its context to a bridge-structure
named BundleContextBridge (step 3). With this, the OSGiAdapter gets a bundle context stored

238 Ubiquitous Computing

on the BundleContextBridge (step 4). After that, OSGiAdapter uses this context to get the desired
service from ListenerServerBundle by searching In the Service Registry (step 5) and displaying
on the TV screen the available services (step 6). Finally, the OSGiAdapter informs to the
ListenerServerBundle to invoke the service chosen by the viewer (step 7).

4.2.2 Accessing Ginga-NCL applications by OSGi bundles
Figure 7 shows how the OSGi bundles access Ginga-NCL applications. The following
components are involved: GingaNCLAdapter, GingaNCLBundle, DeviceBundle and
GingaNCLContextBridge.

Fig. 7. Mechanism of exporting OSGi services to the Ginga-NCL domain.

When a GingaNCLAdapter Player executes a media object, GingaNCLAdapter exports a
GingaNCL object to GingaNCLContextBridge (step 1). In this bridge-structure another Java
static class named GingaNCLContextBridge is created, which stores the GingaNCL object. After
that, GingaNCLBundle gets this object (step 2) and registers it in the Service Registry as a
service (step 3). Finally, when a DeviceBundle needs to use this service, it is invoked after being
searched in the Service Registry (step 4). In this way, the DeviceBundle sends an information to
a specific region described on the NCL document through a correspondent GingaNCL object
(step 5).

5. Implementation and experiments

The prototype was implemented in a PC platform with Intel Pentium 1.3GHz, 512MB RAM,
80GB HD, with WiFi, Serial RS-232 and USB interfaces. The operating systems was Windows
XP SP2, with the Java 2 Platform Standard Edition 1.4.2_17 and 1.6.0_07. The PC simulates a
single STB-HG (Set-Top Box Home Gateway) platform. The procedural part of the model used
components of the XleTView 0.3.6 platform (XleTView, 2011), in which two main features
were created: support for Inter-Xlet Communication through Java CDC Personal Profile RI
(Personal Profile, 2006), and a model for IXC event listeners. The Ginga-NCL Emulator 1.1.1
(Ginga-NCL, 2011), a Java-based environment for creating interactive audiovisual documents
based on NCL scripts, was chosen as a declarative middleware. The Knopflerfish 1.3.4 OSGi
framework (Knopflerfish, 2011) was adopted for managing OSGi services. In order to test

239Using the iDTV as the Center of an Ubiquitous Environment

the proposed platform, some case studies were built under the new Ginga-OSGi platform for
procedural and declarative environments.

5.1 Building the procedural environment
Once registered in the OSGi, the services must be exported to the Ginga-J as xlet remote
objects, (using the platform components in the br.ufam.tvdihn.* package). In the Ginga-J
environment, the Application Manager uses system API’s (havi, javatv, cdc personal profile,
nanoxml) to control the xlet execution (using xjavax.microedition.xlet.* components), which
can register java.rmi.Remote objects in the IXCRegistry (using com.sun.xlet.ixc.IXCRegistry
package). A listening mechanism ensures the exporting of ICXRegistry objects to the OSGi.
It is important to say that the API’s for graphical interface such as HAVi and DAVIC (Digital
Audio Video Council) are not present in the Ginga-J middleware but they were used on this
project because of the MHP nature of the Java iDTV emulated environment (XleTView). In
spite of that, as they are graphical components, they do not interfere in the GingaJ-OSGi
components.
Inside the br.ufam.tvdihn.* package there is the bridge entity ContextBridge. This is a Singleton
object, which means there is only one instance of ContextBridge in the entire system. Once the
system is started, ContextBridge, XletContextExporter and BundleContextExporter are activated.
XletContextExporter is an xlet which exists in the Ginga-J only while performing its function
of exporting an xlet context and BundleContextExporter is a bundle installed in the OSGi.
The ContextBridge initialization is done in the startXlet of XletContextExporter and start of
BundleContextExporter.
The central components of the model, WrappedProxyObject and WrappedInterface are in the
br.edu.ufam.tvdihn.wrapped package. The former stores information about a service object
(an object to be exported between the domains), and the later is an interface that contais
the operations that can be done on the service object. WrappedProxyObject protects direct
access to the service objects it represents (an OSGi service or a Ginga-J remote object).
Thus, WrappedProxyObject is an implementation of the Wrapped and Proxy design patterns,
described in Gamma et al. (1995).
The WrappedProxyObject uses three additional components to store service object information:
java.lang.Object object (related to the service object), java.reflect.Method method (an object that
represents a method to be invoked in the service object) and java.lang.object.Object methodObject
(the result of the invocation of method). These components work together in order to guarantee
the protection of the service object.
The last group of common components is in the br.ufam.tvdihn.listeners package, which
presents classes for creating a listening mechanism for events in the IXC. This is an important
mechanism because it allows registering Ginga-J remote objects from the IXCRegistry to the
OSGi Service Registry. The main classes of this group are: IXCEvent, which represents three
types of events: BIND (when an xlet registers a remote object), UNBIND (when an xlet
unregisters a remote object) and REBIND (when the remote object is updated); IXCListener,
which in fact is a listener to IXC events; and IXCListeners, responsible for storing all existing
IXCListener objects.
In the proccess of exporting OSGi services to the Ginga-J domain, there is the
OSGiGingaJ-Register component which is represented by the entity OSGiGingaJRegister in the
br.edu.ufam.tvdihn package.
To implement its function, the OSGiGingaJRegister has a listening mechanism for service
events on Service Registry, using the org.osgi.framework.ServiceListener component. Once is

240 Ubiquitous Computing

detected a service registration, the related object is passed to Ginga-J through ContextBridge
and WrappedProxyObject, following the WrappedProxyObject mechanism, described earlier.
The OSGiGingaJRegister has three main functions: catch OSGi service objects, register these
objects in the Ginga-J IXC and remove the objects from the IXC. The first function is carried
out using a standard OSGi element, the ServiceEvent, which represent three types of service
events in the Service Registry: ServiceEvent.REGISTERED (a service has been registered),
ServiceEvent.UNREGISTERING (a service has been removed) and ServiceEvent.MODIFIED
(the service properties were changed).
When the service object is retrieved, the OSGiGingaJRegister checks the following service
properties through a LDAP query: SERVICE_ALIAS = "HOME_NETWORK_ALIAS" and
SERVICE_TYPE = "HOME_NETWORK_SERVICE". If it do not match, the service is invalid
and it will not be exported to the IXC Registry; otherwise, the OSGiGingaJRegister will
execute the second function: to register the object in the IXC. To do so, the service object is
initialized (using a bundle context from ContextBridge), passed to WrappedProxyObject, and
then the IXCRegistry is invocated (using an xlet context from ContextBridge) through the
IXCRegistry.bind operation. An alias for identifying the object is retrieved from the OSGi
service, using the SERVICE_IXC_ALIAS property. This process is illustrated in Figure 8.

Fig. 8. OSGiGingaJRegister: code for registering an OSGi service as a Ginga-J remote object.

The last function of OSGiGingaJRegister is the reverse proccess: removing the IXC remote
object from IXC Registry, when a service is uninstalled from the Service Registry. This is done
by verifying the ServiceEvent.UNREGISTERING event, using the service properties to search
for the corresponding object in IXC and then performing an IXCRegistry.unbind operation.
Regarding the process of registering remote objects from the IXCRegistry (in the
WrappedProxyObject format) to the OSGi Service Registry, there are two components;
GingaJ-OSGiRegister and GingaJ-OSGiBundle, both configured in a single bundle,
BundleGingaJOSGiRegister, in the br.edu.ufam.tvdihn package.
The component GingaJOSGiRegisterActivator activates the BundleGingaJOSGiRegister. It
implements a listener for events on the IXC Registry (through the IXCListener object in
br.ufam.tvdihn.listeners). The main functions of GingaJOSGiRegisterActivator are: capturing
the IXC remote object, registering and removing this object from the Service Registry. The
registering/unregistering of service objects is preformed by the GingaJOSGiRegisterActivator
in a different way of the OSGiGingaJRegister: in the OSGi domain there is only one service,
GingaJOSGiService, which maintains an object repository, related to all IXC remote objects from

241Using the iDTV as the Center of an Ubiquitous Environment

the proposed platform, some case studies were built under the new Ginga-OSGi platform for
procedural and declarative environments.

5.1 Building the procedural environment
Once registered in the OSGi, the services must be exported to the Ginga-J as xlet remote
objects, (using the platform components in the br.ufam.tvdihn.* package). In the Ginga-J
environment, the Application Manager uses system API’s (havi, javatv, cdc personal profile,
nanoxml) to control the xlet execution (using xjavax.microedition.xlet.* components), which
can register java.rmi.Remote objects in the IXCRegistry (using com.sun.xlet.ixc.IXCRegistry
package). A listening mechanism ensures the exporting of ICXRegistry objects to the OSGi.
It is important to say that the API’s for graphical interface such as HAVi and DAVIC (Digital
Audio Video Council) are not present in the Ginga-J middleware but they were used on this
project because of the MHP nature of the Java iDTV emulated environment (XleTView). In
spite of that, as they are graphical components, they do not interfere in the GingaJ-OSGi
components.
Inside the br.ufam.tvdihn.* package there is the bridge entity ContextBridge. This is a Singleton
object, which means there is only one instance of ContextBridge in the entire system. Once the
system is started, ContextBridge, XletContextExporter and BundleContextExporter are activated.
XletContextExporter is an xlet which exists in the Ginga-J only while performing its function
of exporting an xlet context and BundleContextExporter is a bundle installed in the OSGi.
The ContextBridge initialization is done in the startXlet of XletContextExporter and start of
BundleContextExporter.
The central components of the model, WrappedProxyObject and WrappedInterface are in the
br.edu.ufam.tvdihn.wrapped package. The former stores information about a service object
(an object to be exported between the domains), and the later is an interface that contais
the operations that can be done on the service object. WrappedProxyObject protects direct
access to the service objects it represents (an OSGi service or a Ginga-J remote object).
Thus, WrappedProxyObject is an implementation of the Wrapped and Proxy design patterns,
described in Gamma et al. (1995).
The WrappedProxyObject uses three additional components to store service object information:
java.lang.Object object (related to the service object), java.reflect.Method method (an object that
represents a method to be invoked in the service object) and java.lang.object.Object methodObject
(the result of the invocation of method). These components work together in order to guarantee
the protection of the service object.
The last group of common components is in the br.ufam.tvdihn.listeners package, which
presents classes for creating a listening mechanism for events in the IXC. This is an important
mechanism because it allows registering Ginga-J remote objects from the IXCRegistry to the
OSGi Service Registry. The main classes of this group are: IXCEvent, which represents three
types of events: BIND (when an xlet registers a remote object), UNBIND (when an xlet
unregisters a remote object) and REBIND (when the remote object is updated); IXCListener,
which in fact is a listener to IXC events; and IXCListeners, responsible for storing all existing
IXCListener objects.
In the proccess of exporting OSGi services to the Ginga-J domain, there is the
OSGiGingaJ-Register component which is represented by the entity OSGiGingaJRegister in the
br.edu.ufam.tvdihn package.
To implement its function, the OSGiGingaJRegister has a listening mechanism for service
events on Service Registry, using the org.osgi.framework.ServiceListener component. Once is

240 Ubiquitous Computing

detected a service registration, the related object is passed to Ginga-J through ContextBridge
and WrappedProxyObject, following the WrappedProxyObject mechanism, described earlier.
The OSGiGingaJRegister has three main functions: catch OSGi service objects, register these
objects in the Ginga-J IXC and remove the objects from the IXC. The first function is carried
out using a standard OSGi element, the ServiceEvent, which represent three types of service
events in the Service Registry: ServiceEvent.REGISTERED (a service has been registered),
ServiceEvent.UNREGISTERING (a service has been removed) and ServiceEvent.MODIFIED
(the service properties were changed).
When the service object is retrieved, the OSGiGingaJRegister checks the following service
properties through a LDAP query: SERVICE_ALIAS = "HOME_NETWORK_ALIAS" and
SERVICE_TYPE = "HOME_NETWORK_SERVICE". If it do not match, the service is invalid
and it will not be exported to the IXC Registry; otherwise, the OSGiGingaJRegister will
execute the second function: to register the object in the IXC. To do so, the service object is
initialized (using a bundle context from ContextBridge), passed to WrappedProxyObject, and
then the IXCRegistry is invocated (using an xlet context from ContextBridge) through the
IXCRegistry.bind operation. An alias for identifying the object is retrieved from the OSGi
service, using the SERVICE_IXC_ALIAS property. This process is illustrated in Figure 8.

Fig. 8. OSGiGingaJRegister: code for registering an OSGi service as a Ginga-J remote object.

The last function of OSGiGingaJRegister is the reverse proccess: removing the IXC remote
object from IXC Registry, when a service is uninstalled from the Service Registry. This is done
by verifying the ServiceEvent.UNREGISTERING event, using the service properties to search
for the corresponding object in IXC and then performing an IXCRegistry.unbind operation.
Regarding the process of registering remote objects from the IXCRegistry (in the
WrappedProxyObject format) to the OSGi Service Registry, there are two components;
GingaJ-OSGiRegister and GingaJ-OSGiBundle, both configured in a single bundle,
BundleGingaJOSGiRegister, in the br.edu.ufam.tvdihn package.
The component GingaJOSGiRegisterActivator activates the BundleGingaJOSGiRegister. It
implements a listener for events on the IXC Registry (through the IXCListener object in
br.ufam.tvdihn.listeners). The main functions of GingaJOSGiRegisterActivator are: capturing
the IXC remote object, registering and removing this object from the Service Registry. The
registering/unregistering of service objects is preformed by the GingaJOSGiRegisterActivator
in a different way of the OSGiGingaJRegister: in the OSGi domain there is only one service,
GingaJOSGiService, which maintains an object repository, related to all IXC remote objects from

241Using the iDTV as the Center of an Ubiquitous Environment

Ginga-J. The GingaJOSGiService can be accessed by bundles that need to use some functions of
an IXC remote object. For each IXC remote object there is a corresponding WrappedProxyObject
stored in the GingaJOSGiService repository.

5.2 Building the declarative environment
Similar to the procedural environment, the instances of Ginga-NCL and OSGi reference
implementations were configured in a single JVM. The Ginga-NCL emulator source code was
modified to define a specific ClassLoader for loading Ginga-NCL and Knopflerfish classes. In
this way, the Ginga NCL Adapters can use OSGi code to access OSGi services. The same way,
OSGi bundles can use functionalities of Ginga-NCL Adapters.
The two Ginga-OSGi adapters are Java classes built on Ginga-NCL middleware. As
mentioned before, an Adapter is associated with media type and a Player object for this media.
For each Adapter defined at br.ginga.core.adapters.bridge package, a corresponding Player which
extends a DefaultPlayerImplementation object that represents IPlayer interface was created. The
new Adapter must also extend a standard abstract class (DefaultFormatterPlayerAdapter) that
has methods for managing the media presentation. The relationship between Adapter and
Player objects is managed by PlayerAdapterManager object that works with two property-based
standard files in the emulator: controldefs.ini and mimedefs.ini, both in gingaNclConfigs.players
package. In the first file an alias for each Adapter class and its full name is defined. The second
file defines the type of media for the Adapter, which can be played in Ginga-NCL Emulator.
To show the media in the emulator, the node of the region and the corresponding media are
configured in NCL file.
Figure 9 shows the description of the GingaNCLAdapter and the OSGiAdapter in the files
mentioned above. In order to run an application the developer needs to create one region
for each Adapter and define their presentation moment in the NCL file.

Fig. 9. Defining new Adapters in Ginga configuration files

242 Ubiquitous Computing

5.3 Experiments
In order to clarify how the system works, two categories of examples are going to be
explainded. The first contains one experiment based on procedural model (GingaJ-OSGi) and
the second contains other experiment based on declarative model (GingaNCL-OSGi).
The first experiment allows bundles to use xlets functionalities, as described in Section 4.
In this scenario we used an embedded microcontroller device (with WiFi interface) and a
Webcam. When a user interacts with the device’s keypad, it sends a request to a bundle server
through the WiFi connection. The server bundle uses a Webcam service and takes a snapshot
of the user attending to the request. The snapshot is passed to an iDTV area controlled by the
xlet that exported its functionalities for the OSGi side as a service. At this moment, the iDTV
user can use the remote control to send a reply message to the device. This situation simulates
a home access control managed by the Digital TV. Figure 10 illustrates the final interface of the
procedural application for the access control scenario.

Fig. 10. The Procedural Access Control Scenario

In the declarative experiment, a BluetoothServerBundle application was developed which
provides a Bluetooth service in the OSGi network. It provides a Bluetooth connection server
for mobile phones by means of Java Bluetooth API. It registers an interface in OSGi Service
Registry that provides methods to send a simple text message from a mobile phone to an
iDTV with Bluetooth interface. When a region on the TV screen is created to allow the
GingaNCLAdapter to receive messages, the GingaNCLAdapter exports a GingaNCL object to the
GingaNCLContextBridge. After that, the GingaNCLBundle gets a GingaNCL object and registers
it as a service in the Service Registry. From now on, when a cellular phone sends a message to
the iDTV screen, the BluetoothServerBundle will get the Ginga-NCL service and communicate
with the GingaNCLAdapter sending the message information. After that, the message is shown
on the TV screen. This scenario is illustrated in Figure 11.
For the last one the TempSensorBundle was created. It manages an interface with a temperature
device (MSP430-based platform) through a RS-232 interface by means of a Java-based API,
through which the master device can monitor some others installed in a WiFi sensors
network. In this bundle, there are the Manifest and Property files that have some information
about its services, such as description of methods, device name, version and so on. The
TempSensorBundle is started and registers its services on the Service Registry.

243Using the iDTV as the Center of an Ubiquitous Environment

Ginga-J. The GingaJOSGiService can be accessed by bundles that need to use some functions of
an IXC remote object. For each IXC remote object there is a corresponding WrappedProxyObject
stored in the GingaJOSGiService repository.

5.2 Building the declarative environment
Similar to the procedural environment, the instances of Ginga-NCL and OSGi reference
implementations were configured in a single JVM. The Ginga-NCL emulator source code was
modified to define a specific ClassLoader for loading Ginga-NCL and Knopflerfish classes. In
this way, the Ginga NCL Adapters can use OSGi code to access OSGi services. The same way,
OSGi bundles can use functionalities of Ginga-NCL Adapters.
The two Ginga-OSGi adapters are Java classes built on Ginga-NCL middleware. As
mentioned before, an Adapter is associated with media type and a Player object for this media.
For each Adapter defined at br.ginga.core.adapters.bridge package, a corresponding Player which
extends a DefaultPlayerImplementation object that represents IPlayer interface was created. The
new Adapter must also extend a standard abstract class (DefaultFormatterPlayerAdapter) that
has methods for managing the media presentation. The relationship between Adapter and
Player objects is managed by PlayerAdapterManager object that works with two property-based
standard files in the emulator: controldefs.ini and mimedefs.ini, both in gingaNclConfigs.players
package. In the first file an alias for each Adapter class and its full name is defined. The second
file defines the type of media for the Adapter, which can be played in Ginga-NCL Emulator.
To show the media in the emulator, the node of the region and the corresponding media are
configured in NCL file.
Figure 9 shows the description of the GingaNCLAdapter and the OSGiAdapter in the files
mentioned above. In order to run an application the developer needs to create one region
for each Adapter and define their presentation moment in the NCL file.

Fig. 9. Defining new Adapters in Ginga configuration files

242 Ubiquitous Computing

5.3 Experiments
In order to clarify how the system works, two categories of examples are going to be
explainded. The first contains one experiment based on procedural model (GingaJ-OSGi) and
the second contains other experiment based on declarative model (GingaNCL-OSGi).
The first experiment allows bundles to use xlets functionalities, as described in Section 4.
In this scenario we used an embedded microcontroller device (with WiFi interface) and a
Webcam. When a user interacts with the device’s keypad, it sends a request to a bundle server
through the WiFi connection. The server bundle uses a Webcam service and takes a snapshot
of the user attending to the request. The snapshot is passed to an iDTV area controlled by the
xlet that exported its functionalities for the OSGi side as a service. At this moment, the iDTV
user can use the remote control to send a reply message to the device. This situation simulates
a home access control managed by the Digital TV. Figure 10 illustrates the final interface of the
procedural application for the access control scenario.

Fig. 10. The Procedural Access Control Scenario

In the declarative experiment, a BluetoothServerBundle application was developed which
provides a Bluetooth service in the OSGi network. It provides a Bluetooth connection server
for mobile phones by means of Java Bluetooth API. It registers an interface in OSGi Service
Registry that provides methods to send a simple text message from a mobile phone to an
iDTV with Bluetooth interface. When a region on the TV screen is created to allow the
GingaNCLAdapter to receive messages, the GingaNCLAdapter exports a GingaNCL object to the
GingaNCLContextBridge. After that, the GingaNCLBundle gets a GingaNCL object and registers
it as a service in the Service Registry. From now on, when a cellular phone sends a message to
the iDTV screen, the BluetoothServerBundle will get the Ginga-NCL service and communicate
with the GingaNCLAdapter sending the message information. After that, the message is shown
on the TV screen. This scenario is illustrated in Figure 11.
For the last one the TempSensorBundle was created. It manages an interface with a temperature
device (MSP430-based platform) through a RS-232 interface by means of a Java-based API,
through which the master device can monitor some others installed in a WiFi sensors
network. In this bundle, there are the Manifest and Property files that have some information
about its services, such as description of methods, device name, version and so on. The
TempSensorBundle is started and registers its services on the Service Registry.

243Using the iDTV as the Center of an Ubiquitous Environment

Fig. 11. The Declarative Mobile Scenario

After its registration, the ListenerServerBundle gets the information contained in Manifest and
Property files of this bundle and saves into an XML format. After that, the ExporterBundle is
activated. It exports its bundle context into the BundleContextBridge. In the user TV screen,
the possible devices located in the house are shown. One of them is the Temperature Sensor.
When the user selects this device, the OSGiAdapter is started and gets the bundle context
located in BundleContextBridge to access the ListenerServerBundle. After that, the OSGiAdapter
requests the service to ListenerServerBundle by searching the service on an XML document.
After the desired service is found, ListenerServerBundle sends the method name to get the
temperature sensor from TempSensorBundle. After a few seconds, is shown on the user TV
screen the description and the methods available by TempSensorBundle. Finally, the user selects
the desired service (Get Temp. Sensor Value, for example) and a few seconds later it is shown
on the TV screen (see Figure 12).

Fig. 12. The Declarative Temperature Monitoring Scenario

244 Ubiquitous Computing

6. Conclusion and future scenarios

The expansion of the iDTV features and its recent use as a Home Gateway, makes the iDTV
a key element for providing several kinds of services in the home networked environment
buildind useful ubiquitous systems. Thus, this chapter aims to contribute to consolidate
an iDTV-HN collaboration model, allowing the emergence of useful Home Automation
applications and improving the user’s experience and quality of life. The existing iDTV-HN
convergence models were analyzed and a model that explores new features of the Brazilian
iDTV middleware was proposed. This model can be easily exported to other iDTV standards.
The main features obtained from this research are summarized in the key points described in
the following:

• The fact of using two software platforms in a single environment allows the direct
communication between the iDTV Ginga middleware and OSGi framework components.
This is a useful advantage over some related proposals that use TCP/IP network.

• The xlet/bundle programmer does not need to know the new components: he/she can
work with standard Ginga/OSGi components. In the case of the NCL programmer, he/she
only needs to know the name of Adapters created for each service.

• The bridge-mechanism does not modify the Ginga/OSGi core components.

• In both models there is a difficulty in exporting iDTV functionalities (both for Ginga-J xlets
and Ginga-NCL Adapters). It was necessary to use additional bundles to make this work
(GingaJ-OSGiBundle, for example).

• In the case of the Ginga-NCL based model, the fact of managing the presentation of OSGi
services just configuring some properties in a XML-based file, without any procedural
code, is a useful advantage.

• In the case of Ginga-J-based model the components are less complex than the XBundLET
of Cabrer et al. (2006); Redondo et al. (2007) and it is not necessary to allocate bridge
components outside the GingaJ-OSGi environment, as Yang et al. (2007). In addition the
Ginga-J Application Manager remains in its domain: it is not exported to OSGi, as in Lin
et al. (2008).

In addition to the model based on the procedural specification (using Ginga-J middleware),
the novelty of the work is in using declarative middleware features (through Ginga-NCL) to
provide integration between script-based content and OSGi services. It considerably extends
the scope of home automation applications that can be constructed using this new model.
In the future the platform will be extended to support more kinds of ubiquitous scenarios,
inserting components that have some intelligence to provide a dynamic adaptation of the
application to the user’s context. This model will allow to build user centered scenarios, such
as those related to context aware systems and ambient intelligence.

7. Acknowledgements

The authors would like to thank the following funding institutions: CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico) which provided support for the implementation
of the work described in this chapter.

245Using the iDTV as the Center of an Ubiquitous Environment

Fig. 11. The Declarative Mobile Scenario

After its registration, the ListenerServerBundle gets the information contained in Manifest and
Property files of this bundle and saves into an XML format. After that, the ExporterBundle is
activated. It exports its bundle context into the BundleContextBridge. In the user TV screen,
the possible devices located in the house are shown. One of them is the Temperature Sensor.
When the user selects this device, the OSGiAdapter is started and gets the bundle context
located in BundleContextBridge to access the ListenerServerBundle. After that, the OSGiAdapter
requests the service to ListenerServerBundle by searching the service on an XML document.
After the desired service is found, ListenerServerBundle sends the method name to get the
temperature sensor from TempSensorBundle. After a few seconds, is shown on the user TV
screen the description and the methods available by TempSensorBundle. Finally, the user selects
the desired service (Get Temp. Sensor Value, for example) and a few seconds later it is shown
on the TV screen (see Figure 12).

Fig. 12. The Declarative Temperature Monitoring Scenario

244 Ubiquitous Computing

6. Conclusion and future scenarios

The expansion of the iDTV features and its recent use as a Home Gateway, makes the iDTV
a key element for providing several kinds of services in the home networked environment
buildind useful ubiquitous systems. Thus, this chapter aims to contribute to consolidate
an iDTV-HN collaboration model, allowing the emergence of useful Home Automation
applications and improving the user’s experience and quality of life. The existing iDTV-HN
convergence models were analyzed and a model that explores new features of the Brazilian
iDTV middleware was proposed. This model can be easily exported to other iDTV standards.
The main features obtained from this research are summarized in the key points described in
the following:

• The fact of using two software platforms in a single environment allows the direct
communication between the iDTV Ginga middleware and OSGi framework components.
This is a useful advantage over some related proposals that use TCP/IP network.

• The xlet/bundle programmer does not need to know the new components: he/she can
work with standard Ginga/OSGi components. In the case of the NCL programmer, he/she
only needs to know the name of Adapters created for each service.

• The bridge-mechanism does not modify the Ginga/OSGi core components.

• In both models there is a difficulty in exporting iDTV functionalities (both for Ginga-J xlets
and Ginga-NCL Adapters). It was necessary to use additional bundles to make this work
(GingaJ-OSGiBundle, for example).

• In the case of the Ginga-NCL based model, the fact of managing the presentation of OSGi
services just configuring some properties in a XML-based file, without any procedural
code, is a useful advantage.

• In the case of Ginga-J-based model the components are less complex than the XBundLET
of Cabrer et al. (2006); Redondo et al. (2007) and it is not necessary to allocate bridge
components outside the GingaJ-OSGi environment, as Yang et al. (2007). In addition the
Ginga-J Application Manager remains in its domain: it is not exported to OSGi, as in Lin
et al. (2008).

In addition to the model based on the procedural specification (using Ginga-J middleware),
the novelty of the work is in using declarative middleware features (through Ginga-NCL) to
provide integration between script-based content and OSGi services. It considerably extends
the scope of home automation applications that can be constructed using this new model.
In the future the platform will be extended to support more kinds of ubiquitous scenarios,
inserting components that have some intelligence to provide a dynamic adaptation of the
application to the user’s context. This model will allow to build user centered scenarios, such
as those related to context aware systems and ambient intelligence.

7. Acknowledgements

The authors would like to thank the following funding institutions: CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico) which provided support for the implementation
of the work described in this chapter.

245Using the iDTV as the Center of an Ubiquitous Environment

8. References

ABNT NBR 15606-4 (2010). Digital terrestrial television – Data coding and transmission
specification for digital broadcasting Part 4: Ginga-J – The environment for the
execution of procedural applications, Document ABNT NBR 15606-4, 2010.

ACAP (2009). ATSC Standard: Advanced Common Application Platform (ACAP), Document
A/101A, 12 February 2009.

Al Mehairi, S., Barada, H. & Al Qutayri, M. (2007). Integration of Technologies for Smart
Home Application, Computer Systems and Applications, 2007. AICCSA ’07. IEEE/ACS
International Conference on, pp. 241 –246.

ANATEL (2010). Brazilian National Agency of Telecommunications. Mobile users exceed 185
million subscribers in June 2010. Report on Personal Mobile Services, Available at
http://www.anatel.gov.br/Portal/exibirPortalNoticias.do?acao
= carregaNoticia&codigo=20824. Accessed on January 10, 2011.

ARIB B-24 (2009). ARIB Standard B-24 Data Coding and Transmission Specification for Digital
Broadcasting, version 5.2-E1, 2009.

ATSC (2009). Digital Television Standard: Part 1 - Digital Television System, Document A/53
Part 1:2009, 2009.

Bae, Y.-S., Oh, B.-J., Moon, K.-D. & Kim, S.-W. (2006). Architecture for Interoperability
of Services between an ACAP Receiver and Home Networked Devices, Consumer
Electronics, IEEE Transactions on 52(1): 123–128.

Cabrer, M., Diaz Redondo, R., Vilas, A. & Pazos Arias, J. (2006). Controlling the smart
home from TV, Consumer Electronics, 2006. ICCE ’06. 2006 Digest of Technical Papers.
International Conference on, pp. 255–256.

Dixit, S. & Prasad, R. (2008). Technologies For Home Networking, Wiley-Interscience, New Jersey.
Dobrev, P., Famolari, D., Kurzke, C. & Miller, B. (2002). Device and service discovery in home

networks with OSGi, Communications Magazine, IEEE 40(8): 86–92.
DVB (2010). Multimedia Home Platform (MHP) Specification 1.2.2, ETSI Doc. No. TS 102 727

V1.1.1, 2010.
ELETROBRAS (2011). PROCEL. Brazilian Center for Information on Energy Efficiency.

Research on Appliances Own and Energy Consuption Habbits. Summary from
2005-2007, Available at http://www.eletrobras.com/pci/main.asp?View=05070313-120A-
45FD-964D-5641D6083F80. Accessed on January 10, 2011.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns: elements of reusable
object-oriented software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

ITU-T (2009). Consented Recommendation H.761. Nested Context Language (NCL) and
Ginga-NCL for IPTV Services, 2009.

Ginga-NCL (2011). Ginga-NCL tools. Ginga-NCL Emulator, in Ginga-NCL (ed.), Available at
http://www.gingancl.org.br/ferramentas.html. Accessed on January 10, 2011.

Gupta, R., Talwar, S. & Agrawal, D. (2002). Jini home networking: a step toward pervasive
computing, Computer 35(8): 34 – 40.

HAVi (2001). The HAVi Specification: Specification of the Home Audio/Video Interoperability
(HAVi) Architecture, version 1.1, 2001.

Howes, T. (1997). The String Representation of LDAP Search Filters, Document RFC 2254,
December 1997.

ISDB (2011). Integrated Services Digital Broadcasting, Available at http://www.dibeg.org.
Accessed on January 10, 2011.

246 Ubiquitous Computing

ISDTV (2011). International Standard for Digital Television. Brazilian Digital TV System
Forum (SBTVD), Available at http://www.forumsbtvd.org.br. Accessed on January 10, 2011.

ISO (2000). ISO/IEC 13818-1:2000. Information Technology - Generic Coding of Moving
Pictures and Associated Audio Information.

ISO (2002). ISO/IEC 13818-6:1998/Cor2:2002. Information Technology - Generic Coding of
Moving Pictures and Associated Audio Information: Part VI: Extensions for DSMCC.

Kanma, H., Wakabayashi, N., Kanazawa, R. & Ito, H. (2003). Home appliance control system
over Bluetooth with a cellular phone, Consumer Electronics, IEEE Transactions on
49(4): 1049 – 1053.

Kim, K.-S., Park, C., Seo, K.-S., Chung, I.-Y. & Lee, J. (2007). ZigBee and The UPnP
Expansion for Home Network Electrical Appliance Control on the Internet, Advanced
Communication Technology, The 9th International Conference on, Vol. 3, pp. 1857 –1860.

Knopflerfish (2011). Open Source OSGi Service Platform, in Knopflerfish (ed.), Available at
http://www.knopflerfish.org. Accessed on January 10, 2011.

Lin, C.-L., Wang, P.-C. & Hou, T.-W. (2008). A wrapper and broker model for collaboration
between a set-top box and home service gateway, Consumer Electronics, IEEE
Transactions on 54(3): 1123–1129.

Lin, C.-L., Wang, P.-C. & Hou, T.-W. (2009). Classification and Evaluation of Middleware
Collaboration Architectures for Converging MHP and OSGi in a Smart Home,
Information Science and Engineering, Journal on 25(1): 1337–1356.

Lin, Y.-J., Latchman, H., Lee, M. & Katar, S. (2002). A power line communication network
infrastructure for the smart home, Wireless Communications, IEEE 9(6): 104 – 111.

Maia, O., Viana, N. & de Lucena, V. (2009). Using the iDTV for Managing Services in the
Ubiquitous Computing Environment, Ubiquitous, Autonomic and Trusted Computing,
2009. UIC-ATC ’09. Symposia and Workshops on, pp. 143 –148.

Marples, D. & Kriens, P. (2001). The Open Services Gateway Initiative: an introductory
overview, Communications Magazine, IEEE 39(12): 110 –114.

Marshall, P. (2001). Home networking: a TV perspective, Electronics Communication
Engineering Journal 13(5): 209 –212.

MHP (2010). Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP)
Specification 1.2.2, ETSI Doc. No. TS 102 727 V1.1.1, 2010.

Miller, B., Nixon, T., Tai, C. & Wood, M. (2001). Home networking with Universal Plug and
Play, Communications Magazine, IEEE 39(12): 104 –109.

Morris, S. & Smith-Chaigneau, A. (2005). Interactive TV Standards: A Guide to MHP, OCAP and
JavaTV, Focal Press, Burlington.

Personal Profile, R. I. (2006). JSR-000216 Personal Profile 1.1 (Final Release). Java Community
Process, 2006.

Redondo, R. P. D., Vilas, A. F., Cabrer, M. R. & Arias, J. J. P. (2007). Exploiting OSGi capabilities
from MHP applications, Journal of Virtual Reality and Broadcasting 4(16).

Schwalb, E. M. (2004). iTV Handbook: Technologies and Standards, Pearson Education, New
Jersey.

Soares, L. F. G., Costa, R. M., Moreno, M. F. & Moreno, M. F. (2009). Multiple exhibition devices
in DTV systems, MM ’09: Proceedings of the seventeen ACM international conference on
Multimedia, ACM, New York, NY, USA, pp. 281–290.

Soares, L. F. G., Rodrigues, E. F. & Moreno, M. F. (2007). Ginga-NCL: The Declarative
Environment of the Brazilian Digital TV System, in B. C. Society (ed.), Journal of the
Brazilian Computer Society, Vol. 13, Brazilian Computer Society, pp. 37–46.

247Using the iDTV as the Center of an Ubiquitous Environment

8. References

ABNT NBR 15606-4 (2010). Digital terrestrial television – Data coding and transmission
specification for digital broadcasting Part 4: Ginga-J – The environment for the
execution of procedural applications, Document ABNT NBR 15606-4, 2010.

ACAP (2009). ATSC Standard: Advanced Common Application Platform (ACAP), Document
A/101A, 12 February 2009.

Al Mehairi, S., Barada, H. & Al Qutayri, M. (2007). Integration of Technologies for Smart
Home Application, Computer Systems and Applications, 2007. AICCSA ’07. IEEE/ACS
International Conference on, pp. 241 –246.

ANATEL (2010). Brazilian National Agency of Telecommunications. Mobile users exceed 185
million subscribers in June 2010. Report on Personal Mobile Services, Available at
http://www.anatel.gov.br/Portal/exibirPortalNoticias.do?acao
= carregaNoticia&codigo=20824. Accessed on January 10, 2011.

ARIB B-24 (2009). ARIB Standard B-24 Data Coding and Transmission Specification for Digital
Broadcasting, version 5.2-E1, 2009.

ATSC (2009). Digital Television Standard: Part 1 - Digital Television System, Document A/53
Part 1:2009, 2009.

Bae, Y.-S., Oh, B.-J., Moon, K.-D. & Kim, S.-W. (2006). Architecture for Interoperability
of Services between an ACAP Receiver and Home Networked Devices, Consumer
Electronics, IEEE Transactions on 52(1): 123–128.

Cabrer, M., Diaz Redondo, R., Vilas, A. & Pazos Arias, J. (2006). Controlling the smart
home from TV, Consumer Electronics, 2006. ICCE ’06. 2006 Digest of Technical Papers.
International Conference on, pp. 255–256.

Dixit, S. & Prasad, R. (2008). Technologies For Home Networking, Wiley-Interscience, New Jersey.
Dobrev, P., Famolari, D., Kurzke, C. & Miller, B. (2002). Device and service discovery in home

networks with OSGi, Communications Magazine, IEEE 40(8): 86–92.
DVB (2010). Multimedia Home Platform (MHP) Specification 1.2.2, ETSI Doc. No. TS 102 727

V1.1.1, 2010.
ELETROBRAS (2011). PROCEL. Brazilian Center for Information on Energy Efficiency.

Research on Appliances Own and Energy Consuption Habbits. Summary from
2005-2007, Available at http://www.eletrobras.com/pci/main.asp?View=05070313-120A-
45FD-964D-5641D6083F80. Accessed on January 10, 2011.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns: elements of reusable
object-oriented software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

ITU-T (2009). Consented Recommendation H.761. Nested Context Language (NCL) and
Ginga-NCL for IPTV Services, 2009.

Ginga-NCL (2011). Ginga-NCL tools. Ginga-NCL Emulator, in Ginga-NCL (ed.), Available at
http://www.gingancl.org.br/ferramentas.html. Accessed on January 10, 2011.

Gupta, R., Talwar, S. & Agrawal, D. (2002). Jini home networking: a step toward pervasive
computing, Computer 35(8): 34 – 40.

HAVi (2001). The HAVi Specification: Specification of the Home Audio/Video Interoperability
(HAVi) Architecture, version 1.1, 2001.

Howes, T. (1997). The String Representation of LDAP Search Filters, Document RFC 2254,
December 1997.

ISDB (2011). Integrated Services Digital Broadcasting, Available at http://www.dibeg.org.
Accessed on January 10, 2011.

246 Ubiquitous Computing

ISDTV (2011). International Standard for Digital Television. Brazilian Digital TV System
Forum (SBTVD), Available at http://www.forumsbtvd.org.br. Accessed on January 10, 2011.

ISO (2000). ISO/IEC 13818-1:2000. Information Technology - Generic Coding of Moving
Pictures and Associated Audio Information.

ISO (2002). ISO/IEC 13818-6:1998/Cor2:2002. Information Technology - Generic Coding of
Moving Pictures and Associated Audio Information: Part VI: Extensions for DSMCC.

Kanma, H., Wakabayashi, N., Kanazawa, R. & Ito, H. (2003). Home appliance control system
over Bluetooth with a cellular phone, Consumer Electronics, IEEE Transactions on
49(4): 1049 – 1053.

Kim, K.-S., Park, C., Seo, K.-S., Chung, I.-Y. & Lee, J. (2007). ZigBee and The UPnP
Expansion for Home Network Electrical Appliance Control on the Internet, Advanced
Communication Technology, The 9th International Conference on, Vol. 3, pp. 1857 –1860.

Knopflerfish (2011). Open Source OSGi Service Platform, in Knopflerfish (ed.), Available at
http://www.knopflerfish.org. Accessed on January 10, 2011.

Lin, C.-L., Wang, P.-C. & Hou, T.-W. (2008). A wrapper and broker model for collaboration
between a set-top box and home service gateway, Consumer Electronics, IEEE
Transactions on 54(3): 1123–1129.

Lin, C.-L., Wang, P.-C. & Hou, T.-W. (2009). Classification and Evaluation of Middleware
Collaboration Architectures for Converging MHP and OSGi in a Smart Home,
Information Science and Engineering, Journal on 25(1): 1337–1356.

Lin, Y.-J., Latchman, H., Lee, M. & Katar, S. (2002). A power line communication network
infrastructure for the smart home, Wireless Communications, IEEE 9(6): 104 – 111.

Maia, O., Viana, N. & de Lucena, V. (2009). Using the iDTV for Managing Services in the
Ubiquitous Computing Environment, Ubiquitous, Autonomic and Trusted Computing,
2009. UIC-ATC ’09. Symposia and Workshops on, pp. 143 –148.

Marples, D. & Kriens, P. (2001). The Open Services Gateway Initiative: an introductory
overview, Communications Magazine, IEEE 39(12): 110 –114.

Marshall, P. (2001). Home networking: a TV perspective, Electronics Communication
Engineering Journal 13(5): 209 –212.

MHP (2010). Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP)
Specification 1.2.2, ETSI Doc. No. TS 102 727 V1.1.1, 2010.

Miller, B., Nixon, T., Tai, C. & Wood, M. (2001). Home networking with Universal Plug and
Play, Communications Magazine, IEEE 39(12): 104 –109.

Morris, S. & Smith-Chaigneau, A. (2005). Interactive TV Standards: A Guide to MHP, OCAP and
JavaTV, Focal Press, Burlington.

Personal Profile, R. I. (2006). JSR-000216 Personal Profile 1.1 (Final Release). Java Community
Process, 2006.

Redondo, R. P. D., Vilas, A. F., Cabrer, M. R. & Arias, J. J. P. (2007). Exploiting OSGi capabilities
from MHP applications, Journal of Virtual Reality and Broadcasting 4(16).

Schwalb, E. M. (2004). iTV Handbook: Technologies and Standards, Pearson Education, New
Jersey.

Soares, L. F. G., Costa, R. M., Moreno, M. F. & Moreno, M. F. (2009). Multiple exhibition devices
in DTV systems, MM ’09: Proceedings of the seventeen ACM international conference on
Multimedia, ACM, New York, NY, USA, pp. 281–290.

Soares, L. F. G., Rodrigues, E. F. & Moreno, M. F. (2007). Ginga-NCL: The Declarative
Environment of the Brazilian Digital TV System, in B. C. Society (ed.), Journal of the
Brazilian Computer Society, Vol. 13, Brazilian Computer Society, pp. 37–46.

247Using the iDTV as the Center of an Ubiquitous Environment

Tavares, A. L. & Valente, M. T. (2008). A gentle introduction to OSGi, SIGSOFT Softw. Eng.
Notes 33(5): 1–5.

Tkachenko, D., Kornet, N., Dodson, A., Li, L. & Khandelwal, R. (2005). A framework
supporting interaction of iDTV applications and CE devices in home network,
Consumer Communications and Networking Conference, 2005. CCNC. 2005 Second IEEE,
pp. 605 – 607.

Viana, N., Maia, O., de Lucena, V. & Pinto, L. (2009). A Convergence Proposal between
the Brazilian Middleware for iDTV and Home Network Platforms, Consumer
Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE, pp. 1 –5.

XleTView (2011). MHP Emulator for viewing xlets on PC, in M. Svenden (ed.), Available at
http://www.xletview.org/. Accessed on January 10, 2011.

Yang, M.-C., Sheng, N., Huang, B. & Tu, J. (2007). Collaboration of Set-Top Box and Residential
Gateway Platforms, Consumer Electronics, IEEE Transactions on 53(3): 905–910.

Zahariadis, T., Pramataris, K. & Zervos, N. (2002). A comparison of competing broadband
in-home technologies, Electronics Communication Engineering Journal 14(4): 133 – 142.

248 Ubiquitous Computing

Tavares, A. L. & Valente, M. T. (2008). A gentle introduction to OSGi, SIGSOFT Softw. Eng.
Notes 33(5): 1–5.

Tkachenko, D., Kornet, N., Dodson, A., Li, L. & Khandelwal, R. (2005). A framework
supporting interaction of iDTV applications and CE devices in home network,
Consumer Communications and Networking Conference, 2005. CCNC. 2005 Second IEEE,
pp. 605 – 607.

Viana, N., Maia, O., de Lucena, V. & Pinto, L. (2009). A Convergence Proposal between
the Brazilian Middleware for iDTV and Home Network Platforms, Consumer
Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE, pp. 1 –5.

XleTView (2011). MHP Emulator for viewing xlets on PC, in M. Svenden (ed.), Available at
http://www.xletview.org/. Accessed on January 10, 2011.

Yang, M.-C., Sheng, N., Huang, B. & Tu, J. (2007). Collaboration of Set-Top Box and Residential
Gateway Platforms, Consumer Electronics, IEEE Transactions on 53(3): 905–910.

Zahariadis, T., Pramataris, K. & Zervos, N. (2002). A comparison of competing broadband
in-home technologies, Electronics Communication Engineering Journal 14(4): 133 – 142.

248 Ubiquitous Computing

Ubiquitous Computing
Edited by Eduard Babkin

Edited by Eduard Babkin

Photo by ktsimage / iStock

The aim of this book is to give a treatment of the actively developed domain of
Ubiquitous computing. Originally proposed by Mark D. Weiser, the concept of

Ubiquitous computing enables a real-time global sensing, context-aware informational
retrieval, multi-modal interaction with the user and enhanced visualization

capabilities. In effect, Ubiquitous computing environments give extremely new
and futuristic abilities to look at and interact with our habitat at any time and from

anywhere. In that domain, researchers are confronted with many foundational,
technological and engineering issues which were not known before. Detailed cross-
disciplinary coverage of these issues is really needed today for further progress and

widening of application range. This book collects twelve original works of researchers
from eleven countries, which are clustered into four sections: Foundations, Security

and Privacy, Integration and Middleware, Practical Applications.

ISBN 978-953-307-409-2

U
biquitous C

om
puting

ISBN 978-953-51-5523-2

	Ubiquitous Computing
	Contents
	Preface
	Part 1
Foundations
	Chapter 1
Machine Biological Clock: Exploring the Time Dimension in an Organic-Based Operating System
	Chapter 2
Anywhere/Anytime Software and Information Access via Collaborative Assistance
	Chapter 3
Uncertainty and Error Handling in Pervasive Computing: A User’s Perspective
	Chapter 4
Content Adaptation in Ubiquitous Computing
	Chapter 5
Caching in Ubiquitous Computing Environments: Light and Shadow

	Part 2
Privacy and Security
	Chapter 6
Security Analysis of the RFID Authentication Protocol using Model Checking
	Chapter 7
On Modeling of Ubiquitous Computing Environments featuring Privacy

	Part 3
Integration Middleware
	Chapter 8
WComp, a Middleware for Ubiquitous Computing
	Chapter 9
Semantically Enriched Integration Framework for Ubiquitous Computing Environment

	Part 4
Practical Applications
	Chapter 10
Current Challenges for Mobile Location-Based Pervasive Content Sharing Applications
	Chapter 11
Case Study: The Condition of Ubiquitous Computing Application in Indonesia
	Chapter 12
Using the iDTV as the Center of an Ubiquitous Environment

