169 research outputs found

    Concept for a large master/slave-controlled robotic hand

    Get PDF
    A strategy is presented for the design and construction of a large master/slave-controlled, five-finger robotic hand. Each of the five fingers will possess four independent axes each driven by a brushless DC servomotor and, thus, four degrees-of-freedom. It is proposed that commercially available components be utilized as much as possible to fabricate a working laboratory model of the device with an anticipated overall length of two-to-four feet (0.6 to 1.2 m). The fingers are to be designed so that proximity, tactile, or force/torque sensors can be imbedded in their structure. In order to provide for the simultaneous control of the twenty independent hand joints, a multilevel master/slave control strategy is proposed in which the operator wears a specially instrumented glove which produces control signals corresponding to the finger configurations and which is capable of conveying sensor feedback signals to the operator. Two dexterous hand master devices are currently commercially available for this application with both undergoing continuing development. A third approach to be investigated for the master control mode is the use of real-time image processing of a specially patterned master glove to provide the respective control signals for positioning the multiple finger joints

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti, we designed a functional, robust, and and low cost electrically powered prosthetic hand that communicates with unilateral, transradial, urban Indian amputees through a biointerface. The device uses compliant tendon actuation, a small linear servo, and a wearable garment outfitted with flex sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The prosthesis was developed such that future groups can design for manufacturing and distribution in India

    Data-driven Mechanical Design and Control Method of Dexterous Upper-Limb Prosthesis

    Get PDF
    With an increasing number of people, 320,000 per year, suffering from impaired upper limb function due to various medical conditions like stroke and blunt trauma, the demand for highly functional upper limb prostheses is increasing; however, the rates of rejection of prostheses are high due to factors such as lack of functionality, high cost, weight, and lack of sensory feedback. Modern robotics has led to the development of more affordable and dexterous upper limb prostheses with mostly anthropomorphic designs. However, due to the highly sophisticated ergonomics of anthropomorphic hands, most are economically prohibitive and suffer from control complexity due to increased cognitive load on the user. Thus, this thesis work aims to design a prosthesis that relies on the emulation of the kinematics and contact forces involved in grasping tasks with healthy human hands rather than on biomimicry for reduction of mechanical complexity and utilization of technologically advanced engineering components. This is accomplished by 1) experimentally characterizing human grasp kinematics and kinetics as a basis for data-driven prosthesis design. Using the grasp data, steps are taken to 2) develop a data-driven design and control method of an upper limb prosthesis that shares the kinematics and kinetics required for healthy human grasps without taking the anthropomorphic design. This thesis demonstrates an approach to decrease the gap between the functionality of the human hand and robotic upper limb prostheses by introducing a method to optimize the design and control method of an upper limb prosthesis. This is accomplished by first, collecting grasp data from human subjects with a motion and force capture glove. The collected data are used to minimize control complexity by reducing the dimensionality of the device while fulfilling the kinematic and kinetic requirements of daily grasping tasks. Using these techniques, a task-oriented upper limb prosthesis is prototyped and tested in simulation and physical environment.Ph.D

    Articulation estimation and real-time tracking of human hand motions

    Get PDF
    Schröder M. Articulation estimation and real-time tracking of human hand motions. Bielefeld: Universität Bielefeld; 2015.This thesis deals with the problem of estimating and tracking the full articulation of human hands. Algorithmically recovering hand articulations is a challenging problem due to the hand’s high number of degrees of freedom and the complexity of its motions. Besides the accuracy and efficiency of the hand posture estimation, hand tracking methods are faced with issues such as invasiveness, ease of deployment and sensor artifacts. In this thesis several different hand tracking approaches are examined, including marker-based optical motion capture, data-driven discriminative visual tracking and generative tracking based on articulated registration, and various contributions to these areas are presented. The problem of optimally placing reduced marker sets on a performer’s hand for optical hand motion capture is explored. A method is proposed that automatically generates functional reduced marker layouts by optimizing for their numerical stability and geometric feasibility. A data-driven discriminative tracking approach based on matching the hand’s appearance in the sensor data with an image database is investigated. In addition to an efficient nearest neighbor search for images, a combination of discriminative initialization and generative refinement is employed. The method’s applicability is demonstrated in interactive robot teleoperation. Various real human hand motions are captured and statistically analyzed to derive low-dimensional representations of hand articulations. An adaptive hand posture subspace concept is developed and integrated into a generative real-time hand tracking approach that aligns a virtual hand model with sensor point clouds based on constrained inverse kinematics. Generative hand tracking is formulated as a regularized articulated registration process, in which geometrical model fitting is combined with statistical, kinematic and temporal regularization priors. A registration concept that combines 2D and 3D alignment and explicitly accounts for occlusions and visibility constraints is devised. High-quality, non-invasive, real-time hand tracking is achieved based on this regularized articulated registration formulation

    Exploitation of environmental constraints in human and robotic grasping

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We investigate the premise that robust grasping performance is enabled by exploiting constraints present in the environment. These constraints, leveraged through motion in contact, counteract uncertainty in state variables relevant to grasp success. Given this premise, grasping becomes a process of successive exploitation of environmental constraints, until a successful grasp has been established. We present support for this view found through the analysis of human grasp behavior and by showing robust robotic grasping based on constraint-exploiting grasp strategies. Furthermore, we show that it is possible to design robotic hands with inherent capabilities for the exploitation of environmental constraints

    Grasp plannind under task-specific contact constraints

    Get PDF
    Several aspects have to be addressed before realizing the dream of a robotic hand-arm system with human-like capabilities, ranging from the consolidation of a proper mechatronic design, to the development of precise, lightweight sensors and actuators, to the efficient planning and control of the articular forces and motions required for interaction with the environment. This thesis provides solution algorithms for a main problem within the latter aspect, known as the {\em grasp planning} problem: Given a robotic system formed by a multifinger hand attached to an arm, and an object to be grasped, both with a known geometry and location in 3-space, determine how the hand-arm system should be moved without colliding with itself or with the environment, in order to firmly grasp the object in a suitable way. Central to our algorithms is the explicit consideration of a given set of hand-object contact constraints to be satisfied in the final grasp configuration, imposed by the particular manipulation task to be performed with the object. This is a distinguishing feature from other grasp planning algorithms given in the literature, where a means of ensuring precise hand-object contact locations in the resulting grasp is usually not provided. These conventional algorithms are fast, and nicely suited for planning grasps for pick-an-place operations with the object, but not for planning grasps required for a specific manipulation of the object, like those necessary for holding a pen, a pair of scissors, or a jeweler's screwdriver, for instance, when writing, cutting a paper, or turning a screw, respectively. To be able to generate such highly-selective grasps, we assume that a number of surface regions on the hand are to be placed in contact with a number of corresponding regions on the object, and enforce the fulfilment of such constraints on the obtained solutions from the very beginning, in addition to the usual constraints of grasp restrainability, manipulability and collision avoidance. The proposed algorithms can be applied to robotic hands of arbitrary structure, possibly considering compliance in the joints and the contacts if desired, and they can accommodate general patch-patch contact constraints, instead of more restrictive contact types occasionally considered in the literature. It is worth noting, also, that while common force-closure or manipulability indices are used to asses the quality of grasps, no particular assumption is made on the mathematical properties of the quality index to be used, so that any quality criterion can be accommodated in principle. The algorithms have been tested and validated on numerous situations involving real mechanical hands and typical objects, and find applications in classical or emerging contexts like service robotics, telemedicine, space exploration, prosthetics, manipulation in hazardous environments, or human-robot interaction in general
    corecore