142 research outputs found

    Energy saving Techniques in Mobile Crowd Sensing:Current State and Future Opportunities

    Get PDF
    With the prevalence of sensor-rich smartphones, MCS has become an emerging paradigm to perform urban sensing tasks in recent years. In MCS systems, it is important to minimize the energy consumption on devices of mobile users, as high energy consumption severely reduces their participation willingness. In this article, we provide a comprehensive review of energy saving techniques in MCS and identify future research opportunities. Specifically, we analyze the main causes of energy consumption in MCS and present a general energy saving framework named ESCrowd that we use to describe the different detailed MCS energy saving techniques. We further present how the various energy saving techniques are utilized and adopted within MCS applications and point out their existing limitations, which inform and guide future research directions

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    VIVO: a Secure, Privacy-Preserving, and Real-Time Crowd-Sensing Framework for the Internet of Things

    Get PDF
    Smartphones are a key enabling technology in the Internet of Things (IoT) for gathering crowd-sensed data. However, collecting crowd-sensed data for research is not simple. Issues related to device heterogeneity, security, and privacy have prevented the rise of crowd-sensing platforms for scientific data collection. For this reason, we implemented VIVO, an open framework for gathering crowd-sensed Big Data for IoT services, where security and privacy are managed within the framework. VIVO introduces the enrolled crowd-sensing model, which allows the deployment of multiple simultaneous experiments on the mobile phones of volunteers. The collected data can be accessed both at the end of the experiment, as in traditional testbeds, as well as in real-time, as required by many Big Data applications. We present here the VIVO architecture, highlighting its advantages over existing solutions, and four relevant real-world applications running on top of VIVO

    HyTasker:Hybrid Task Allocation in Mobile Crowd Sensing

    Get PDF
    Task allocation is a major challenge in Mobile Crowd Sensing (MCS). While previous task allocation approaches follow either the opportunistic or participatory mode, this paper proposes to integrate these two complementary modes in a two-phased hybrid framework called HyTasker. In the offline phase, a group of workers (called opportunistic workers ) are selected, and they complete MCS tasks during their daily routines (i.e., opportunistic mode). In the online phase, we assign another set of workers (called participatory workers ) and require them to move specifically to perform tasks that are not completed by the opportunistic workers (i.e., participatory mode). Instead of considering these two phases separately, HyTasker jointly optimizes them with a total incentive budget constraint. In particular, when selecting opportunistic workers in the offline phase of HyTasker, we propose a novel algorithm that simultaneously considers the predicted task assignment for the participatory workers, in which the density and mobility of participatory workers are taken into account. Experiments on two real-world mobility datasets demonstrate that HyTasker outperforms other methods with more completed tasks under the same budget constraint

    A privacy-aware crowd management system for smart cities and smart buildings

    Get PDF
    Cities are growing at a dizzying pace and they require improved methods to manage crowded areas. Crowd management stands for the decisions and actions taken to supervise and control densely populated spaces and it involves multiple challenges, from recognition and assessment to application of actions tailored to the current situation. To that end, Wi-Fi-based monitoring systems have emerged as a cost-effective solution for the former one. The key challenge that they impose is the requirement to handle large datasets and provide results in near real-time basis. However, traditional big data and event processing approaches have important shortcomings while dealing with crowd management information. In this paper, we describe a novel system architecture for real-time crowd recognition for smart cities and smart buildings that can be easily replicated. The described system proposes a privacy-aware platform that enables the application of artificial intelligence mechanisms to assess crowds' behavior in buildings employing sensed Wi-Fi traces. Furthermore, the present paper shows the implementation of the system in two buildings, an airport and a market, as well as the results of applying a set of classification algorithms to provide crowd management information.This work was supported in part by the Spanish Government (MINECO) by means of the Project Future Internet Enabled Resilient CitiEs (FIERCE) under Grant RTI2018-093475-A-I00, and in part by the European Union’s Horizon 2020 Programme through the European project Federated CPS Digital Innovation Hubs for the Smart Anything Everywhere Initiative (FED4SAE) under Grant 761708

    On Enabling Mobile Crowd Sensing for Data Collection in Smart Agriculture

    Get PDF
    Smart agriculture enables the efficiency and intelligence of production in physical farm management. Though promising, due to the limitation of the existing data collection methods, it still encounters few challenges that are required to be considered. Mobile Crowd Sensing (MCS) embeds three beneficial characteristics: a) cost-effectiveness, b) scalability, and c) mobility and robustness. With the Internet of Things (IoT) becoming a reality, the smart phones are widely becoming available even in remote areas. Hence, both the MCSs characteristics and the plug and play widely available infrastructure provides huge opportunities for the MCS-enabled smart agriculture.opening up several new opportunities at the application level. In this paper, we extensively evaluate the Agriculture Mobile Crowd Sensing (AMCS) and provide insights for agricultural data collection schemes. In addition, we provide a comparative study with the existing agriculture data collection solutions and conclude that AMCS has significant benefits in terms of flexibility, collecting implicit data, and low cost requirements. However, we note that AMCSs may still posses limitations in regard to data integrity and quality to be considered as a future work. To this end, we perform a detailed analysis of the challenges and opportunities that concerns the MCS-enabled agriculture by putting forward six potential applications of AMCS-enabled agriculture. Finally, we propose future research and focus on agricultural characteristics, e.g., seasonality and regionality
    corecore