57 research outputs found

    Multi-Objective Differential Evolution for Automatic Clustering with Application to Micro-Array Data Analysis

    Get PDF
    This paper applies the Differential Evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective Optimization (MO) framework. It compares the performances of two multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for DE. The performances of the multi-objective DE-variants have also been contrasted to that of two most well-known schemes of MO clustering, namely the Non Dominated Sorting Genetic Algorithm (NSGA II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). Experimental results using six artificial and four real life datasets of varying range of complexities indicate that DE holds immense promise as a candidate algorithm for devising MO clustering schemes

    Charge Scheduling of an Energy Storage System under Time-of-use Pricing and a Demand Charge

    Get PDF
    A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS, and by 8% compared to a scheduling algorithm based on net power.Comment: 13 pages, 2 figures, 5 table

    A theoretical and empirical study on unbiased boundary-extended crossover for real-valued representation

    Get PDF
    Copyright © 2012 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences Vol. 183 Issue 1 (2012), DOI: 10.1016/j.ins.2011.07.013We present a new crossover operator for real-coded genetic algorithms employing a novel methodology to remove the inherent bias of pre-existing crossover operators. This is done by transforming the topology of the hyper-rectangular real space by gluing opposite boundaries and designing a boundary extension method for making the fitness function smooth at the glued boundary. We show the advantages of the proposed crossover by comparing its performance with those of existing ones on test functions that are commonly used in the literature, and a nonlinear regression on a real-world dataset

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms

    Get PDF

    An Evolutionary Variable Neighborhood Search for Selecting Combinational Gene Signatures in Predicting Chemo-Response of Osteosarcoma

    Get PDF
    In genomic studies of cancers, identification of genetic biomarkers from analyzing microarray chip that interrogate thousands of genes is important for diagnosis and therapeutics. However, the commonly used statistical significance analysis can only provide information of each single gene, thus neglecting the intrinsic interactions among genes. Therefore, methods aiming at combinational gene signatures are highly valuable. Supervised classification is an effective way to assess the function of a gene combination in differentiating various groups of samples. In this paper, an evolutionary variable neighborhood search (EVNS) that integrated the approaches of evolutionary algorithm and variable neighborhood search (VNS) is introduced.It consists of a population of solutions that evolution is performed by a variable neighborhood search operator, instead of the more usual reproduction operators, crossover and mutation used in evolutionary algorithms. It is an efficient search algorithm especially suitable for tremendous solution space. The proposed EVNS can simultaneously optimize the feature subset and the classifier through a common solution coding mechanism. This method was applied in searching the combinational gene signatures for predicting histologic response of chemotherapy on osteosarcoma patients, which is the most common malignant bone tumor in children. Cross-validation results show that EVNS outperforms the other existing approaches in classifying initial biopsy samples

    A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems

    Get PDF
    Copyright @ 2011 Taylor & Francis.Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant no. 70931001, the Funds for Creative Research Groups of China under Grant no. 71021061, the National Natural Science Foundation (NNSF) of China under Grant 71001018, Grant no. 61004121 and Grant no. 70801012 and the Fundamental Research Funds for the Central Universities Grant no. N090404020, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant no. EP/E060722/01 and Grant EP/E060722/02, and the Hong Kong Polytechnic University under Grant G-YH60

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system
    corecore