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Abstract Recently, there has been an increasing concern from the evolutionary
computation community on dynamic optimization problems since many real-world
optimization problems are dynamic. This paper investigates a particle swarm opti-
mization (PSO) based memetic algorithm that hybridizes PSO with a local search
technique for dynamic environments. Within the framework of the proposed algo-
rithm, a local version of PSO with a ring-shape topology structure is used as the
global search operator and a fuzzy cognition local search method is proposed as the
local search technique. In addition, a self-organized random immigrants scheme is
extended into our proposed algorithm in order to further enhance its exploration
capacity for new peaks in the search space. Experimental study over the moving
peaks benchmark problem shows that the proposed PSO-based memetic algorithm
is robust and adaptable in dynamic environments.

1 Introduction

In recent years, dynamic optimization problems (DOPs) have attracted a grow-
ing interest from the evolutionary computation community since many real-world
problems are time-varying. In dynamic environments, the optimization goal, prob-
lem instance, and/or some constraints may change over time due to such factors
as stochastic arrival of new jobs, machine faults and degradation, and so on. In
such cases, the goal of an optimization algorithm is no longer to find a satisfactory
solution to a fixed problem, but to track the moving optimum in the search space
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as closely as possible. This poses great challenges to traditional evolutionary algo-
rithms (EAs) because they cannot adapt well to the changing environment once
converged. Over the past decade, a number of approaches [3,5,7,30,32–34,36,37,
39,40] have been developed into EAs for DOPs and readers are referred to [15,38]
for a comprehensive overview.

Memetic algorithms (MAs) are a recent growing area of research in evolutionary
computation. MAs combine EAs with local search (LS) methods and hence are also
referred to as genetic local search [18,26]. In the framework of MAs, EA operators
are used for globally rough search and LS operators are used for local improvement,
which can maintain an efficient balance between exploration and exploitation of an
algorithm. MAs have been applied widely on many complex optimization problems,
such as scheduling problems [14,21,23], combinatorial optimization problems [9,27,
28], multi-objective problems [11,13,20], and so on. However, it is noticeable that
the problems for which MAs have been applied are mainly stationary problems.
MAs are rarely applied in dynamic environments.

Particle swarm optimization (PSO), which simulates the social behaviour of a
group of fishes or birds for solving problems, has become another rapidly growing
active topic over the last decade. PSO has been applied for many optimization
problems with promising results. In the recent years, PSO has been applied to
address dynamic environments [2,24]. Based on the different learning approaches of
particles, PSO comes with two versions, the global version and the local version. In
the global PSO, each particle learns from the best particle in the whole swarm while
in the local version each particle learns from the best particle in its neighborhood.
Of these two versions, the local PSO has a slower convergence speed and hence may
adapt to a changing environment more easily.

In this paper, a new PSO-based MA, which hybridizes a local version of PSO and
a fuzzy cognition local search method, is proposed to address DOPs. In addition, a
self-organized random immigrants scheme is also integrated into the proposed algo-
rithm in order to further improve its performance in dynamic environments. Based
on the moving peaks benchmark (MPB) problem [?], a set of extensive experiments
are carried out to examine the major features of the proposed PSO-based MA and to
compare its performance with some peer algorithms from the literature in dynamic
environments.

The rest of this paper is outlined as follows. The next section reviews the basic
principles of PSOs and existing related work on PSOs for DOPs. Section 3 describes
the proposed PSO-based MA in details. Section 4 evaluates empirically the proposed
algorithm on the moving peaks benchmark in comparison with several alternative
approaches from the literature and some experimental analyses on parameter set-
tings are also presented. The final section concludes this paper with discussions on
future work.

2 Related Work

2.1 Principles of Particle Swarm Optimization

Similar to EAs, PSO is a population-based, iterative technique. The main difference
lies in that in PSO potential solutions (particles) move, rather than evolve, through
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the search space. The rules, which govern this movement, are inspired by the social
interaction among a school of fishes or flock of birds in nature. In a PSO model,
a particle can be represented by its position and velocity. At every iteration, each
particle in a population (swarm) can accomplish its updating based on its current
velocity and position, the best position found so far by itself, and the best position
found so far by any of its “neighbors”, which can be described as follows:

vi(t+ 1) = ωvi(t) + c1ξ(pi(t)− xi(t)) + c2η(pgi(t)− xi(t)) (1)

xi(t+ 1) = xi(t) + vi(t+ 1), (2)

where vi(t) and xi(t) represent the current velocity and position of particle i at
iteration t, respectively, pi(t) is the position of the best solution (pbest) found so
far by particle i, pgi(t) is the position of the best solution (gbest) found so far by the
“neighbors” of particle i, ω is the inertia weight that controls the degree a particle’s
previous velocity will be kept, c1 and c2 denote cognitive and social learning factors
respectively, and ξ and η are uniform random numbers in the range [0, 1].

Based on the approach of choosing gbest, PSO can be classified into two versions,
global and local. In the global version of PSO algorithms, each particle can be
influenced by the best fitness particle in the whole population which causes that all
particles move and converge quickly into one optimum point in the search space. On
the contrast, the local version of PSO only allows each particle to be influenced by
the best fitness particle chosen from its neighborhood which makes the algorithm
exhibit a good exploration capacity due to its slow convergence. Considering that a
slowly converging population can adapt to a changing environment more easily, it
becomes an interesting research issue to examine the performance of the local variant
of PSO, which is hybrized with suitable LS techniques, in dynamic environments.

2.2 PSO in Dynamic Environments

The work on PSO for addressing DOPs was first reported by Eberhart and Shi in
[8], where a conventional PSO was investigated to track a single peak that varies
spatially. Their experimental results show that the simple PSO can not deal with
a variety of changes. Hu and Eberhart [12] introduced an adaptive PSO, which
automatically tracks various changes in a dynamic system. They tested different
environmental detection and re-randomization strategies, which effectively respond
to a wide variety of changes, and reported and analyzed the experimental results on
the parabolic function and Rosenbrock’s benchmark function with various severities
of environmental changes. A method of adapting PSO for dynamic environments was
present by Carlisle and Dozier [6]. In their PSO, each particle can reset the record
of its best position and avoid making the direction and velocity change decisions
based on outdated information when the environment has changed. Two resetting
methods were examined and the experimental results show that both were able to
improve the performance of PSO in both static and dynamic environments.

Recently, some special diversity schemes have been developed for PSO in dy-
namic environments. Blackwell and Bentley [1] introduced a charged PSO, where
a nucleus of neutral particles is surrounded by some charged particles. The charge
imposes a repulsion force between particles and thus hinders the swarm to converge.



4 H. Wang, S. Yang, W. H. Ip, and D. Wang

In [22], a composite PSO was proposed to address dynamic environments, where
composite particles are constructed as a novel type of particles in the search space
and their motions are integrated into the swarm. A special reflection scheme is also
introduced the compound PSO in order to explore the search space more compre-
hensively and hence enhances the performance of PSO in dynamic environments.

The multi-swarm scheme is also a common strategy for PSO in dynamic environ-
ments. Blackwell and Branke [2] used a set of interacting swarms to track multiple
optima simultaneously. Two special operators, exclusion and anti-convergence, can
prevent multiple swarms from converging to the same peak and keep the exploration
capacity for a new peak in the search space respectively. In addition, the charged
particles or quantum particles are used to encourage the diversity in each sub-
swarm. On the MPB problem with ten optima, multi-quantum swarm outperforms
charged particle and standard PSO. Another multi-swarm approach was recently
proposed by Parott and Li [24], where the number and size of swarms are adjusted
dynamically by a speciation mechanism, which was originally proposed for finding
multiple optima in multi-modal landscapes. The experimental results indicate that
the species-based PSO is very effective in dealing with multi-modal optimization
functions in both stationary and dynamic environments. Janson and Middendorf
[16] proposed a partitioned hierarchical PSO, which can maintain a hierarchy of
particles that are partitioned into several sub-swarms for a limited number of gen-
erations after a change of the environment occurs.

2.3 PSO Based MAs

The algorithms investigated in this paper are a class of PSO-based MAs, which
hybridize PSO algorithms with LS techniques. The general PSO-based MA for a
maximization problem can be expressed by the pseudo-code in Fig. 1, where s size
denotes the population size. Within this MA, a population of s size particles are
first initialized with random positions and velocities and evaluated via a fitness
function f(·). The pbest of each particle is set equal to itself at the initial step.
Then, some particles, selected from the current population using a certain choice
strategy, are improved by a meme or LS method, and finally the gbest of each
particle is updated. At each subsequent iteration, particles can accomplish their
update of velocities and positions according to Eqs. (1) and (2) respectively. If one
particle can achieve a better solution than its pbest, its pbest will be replaced by
the newly achieved solution. Finally, some particles are selected to execute local
improvement before the gbest of each particle is updated.

Obviously, how to select suitable particles from the current population for local
improvement and how to execute an effective LS for the selected particles must be
addressed when we design a PSO-based MA. Moreover, the convergence problem
should also be considered when it is applied for DOPs. Many diversity keeping ap-
proaches have proved to be good choices for EAs to address this problem. However,
how to balance between LS and diversity keeping schemes under the framework of
a PSO-based MA in dynamic environments becomes a very interesting work since
both the two schemes cost a number of extra evaluations.
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Procedure General PSO-based MA:
begin

for i := 0 to s size− 1 do

initialize particle i with random position xi and velocity vi;
evaluate f(xi);
pi := xi;

endfor

if LS is applied then

select particles from the current population for local refinement;
apply LS upon each of selected particles;

endif

for i := 0 to s size− 1 do

update pgi;
endfor

repeat

for i := 0 to s size− 1 do

update vi and xi according to Eqs.(1) and (2) respectively;
evaluate f(xi);
if f(pi) < f(xi) then pi := xi; endif

endfor

if LS is applied then

select particles from the current population for local refinement;
apply LS upon each of selected particles;

endif

for i := 0 to s size− 1 do

update pgi;
endfor

until a stop condition is met
end

Fig. 1 Pseudo-code for a general PSO-based MA.

In the next section, some approaches will be proposed and discussed in detail
to address the aforementioned problems, which result in the proposed PSO-based
MAs for DOPs.

3 Proposed PSO Based MAs

3.1 The PSO Topology Structure

As discussed in the above section, a local version of PSO can reduce, at least tem-
porarily, the pressure of convergence of the population and thus enable the algorithm
maintain a sufficient exploration capacity for a longer time. This is necessary for
adapting the PSO well to a changing environment. Here, the first question to ask for
this kind of PSO algorithms is which topology structure should be used, i.e., how to
choose the neighbors of a particle. The approaches to design the local neighborhood
of a particle can be grouped into two categories as follows.



6 H. Wang, S. Yang, W. H. Ip, and D. Wang

The local neighborhood of the first category is defined according to the actual
distance between the particles in the search space, which is translated into the
Euclidean distance for genotype with a real-coded representation, or the Hamming
distance for genotype using a binary representation. Parrot and Li [24] proposed
the notion of a species, which was designed to be a group of particles that fall
within a certain distance from a species seed, i.e., the particles with the best fitness
in a species. The whole population can be divided into some different species and
particles within the same species choose the species seed as their neighborhood
best gbest. The disadvantage of approaches in this category is that when choosing
a particle’s neighbors, the distance between the particle and other particles need
always to be re-calculated.

In the second category, the neighboring particles are identified using their indices
rather than their genotype distance. The particles are often lied on a ring-shaped
topology, i.e., the particle x0 is the immediate neighbor of the particle xs size−1. If
rn is the neighborhood’s radius, particle i is neighbored by the particles with indices
from ((i− rn)%s size) to ((i+ rn)%s size). Similarly, Janson and Middendorf [16]
introduced a hierarchical PSO algorithm where each particle is arranged in a node
of a rooted tree and only neighbored to the particle that is in its parent node. A
local variant of PSO with a grid-like neighborhood structure is also tested by Li
and Dam [19].

Here, the ring topology structure of PSO is adopted in our investigated algorithm
and the radius of neighborhood rn is set to 1, which means each particle only
communicates with two neighbors whose indices are closest to it. It is obvious that
the smaller the value of rn is, the more slowly the population converges. We choose
rn = 1 because it is always helpful to maintain the population diversity with a great
degree in dynamic environments.

3.2 Local Search

Within MAs, LS operators are employed to improve the individuals’ quality effi-
ciently in a local area. In the context of PSO-based MAs, a LS improvement proce-
dure can often be regarded as the particle executing one iterative biased or random
moving, while the moving from the current solution to a candidate solution would
be accepted if the candidate has a better fitness at each iterative step. The general
LS operator in PSO-based MAs can be illustrated by the pseudo-code in Fig. 2.

From Fig. 2, it can be seen that the primary factor that affects the behavior
of the LS operator is the choice of the velocity (v′) generating method. Petalas et
al. [25] employed a stochastic iterative LS technique in their MA, called random

walk with direction exploitation (RWDE), where a sequence of approximations of
the optimizer are generated by assuming a random vector as a search velocity.
Liu et al. [20] presented a synchronous particle local search (SPLS) method where
a velocity vector is generated through the conventional particle velocity formula
except for that gbest is replaced with a fuzzy vector. Inspired by these works, a
fuzzy cognition local search (FCLS), which utilizes a special cognition-only model of
PSO to generate a velocity vector, is proposed in this paper.

Kennedy [17] introduced two special models of PSO, which are defined by omit-
ting or restricting components in the velocity formula. Dropping the social compo-
nent results in the cognition-only model, whereas dropping the cognitive component
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Procedure General LS Operator:
begin

x′ := x;
for j := 1 to ls size do

generate a velocity vector v′;
x′ := x+ v′;
if f(x′) > f(x) then x := x′; endif
if f(x′) > f(p) then p := x′; endif

endfor

end;
Denotations:

x: the selected particle for local improvement
ls size: the step size of the LS operator
v′: the velocity of each step the LS moves
p: pbest of a selected particle x

Fig. 2 Pseudo-code for the general LS operator in PSO-based MAs.

defines the social-only model. It is clear that the cognition-only model can help en-
hance the exploitation capacity of a particle to its own best pbest, which is the main
motivation of designing the FCLS operator based on the cognition-only PSO model.

In order to improve the quality of a particle as much as possible, a fuzzy

cognition-only model is proposed here, which is formulated as follows.

p′(t) = N(p(t), σ) (3)

v(t+ 1) = ωv(t) + c1ξ(p
′(t)− x(t)), (4)

where p′(t) denotes a fuzzy position of pbest (p(t)) of particle x at time t, which is
characterized by a normal distribution vector N(p(t), σ) with σ being a predefined
parameter to control the distribution range.

Based on the fuzzy cognition-only model, the FCLS procedure can be expressed
by the pseudo-code shown in Fig. 3. From the pseudo-code, it can be seen that σ
is an important parameter that affects the FCLS operator because the move of a
particle is directed by the fuzzy position of pbest. The smaller the value of σ is,
the closer the position of the generated fuzzy pbest approaches its original position.
This means that the particle can execute one biased move towards a smaller area
around pbest. When σ = 0, the particle’s move is decided by its pbest absolutely
as a result that the fuzzy cognition-only model returns to the cognition-only model.
Moreover, the initialization of v′ (see Fig. 3) is also confined within a small range
(v′ is initialized within the range of [0, 5]n in this paper) in order to reduce the
influence of the random factor.

The next problem to be addressed is how to select suitable particles from the
current population for local improvement (see Fig. 1). In many researches, LS is
performed on each of newly generated individuals, which seems to be too costly
and infeasible for a MA for DOPs considering that the total cost per iteration in
terms of function evaluations is limited. Hence, it seems a good choice that only
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Procedure Algorithm of FCLS operator:
begin

x′ := x;
initialize v′ within a small range;
for j := 1 to ls size do

generate p′ according to Eq. (3);
generate v′ according to Eq. (4);
x′ := x+ v′;
if f(x′) > f(x) then x := x′; endif
if f(x′) > f(p) then p := x′; endif

endfor

end;
The denotations are the same as in Fig. 2

Fig. 3 Pseudo-code for the FCLS operator.

Procedure Algorithm of selecting particles for LS:
begin

S := Ø;
count := 0;
P ′ := P ;
while (count <= max ls count) do

get the best fitness particle x ∈ P ′;
S := S ∪ {x};
count := count + 1;
remove x from P ′;
for each y ∈ P ′ do

if d(x,y) < rs then remove y from P ′; endif
endfor

if P ′ = Ø then break; endif
endwhile

end;
Denotations:

S: a list of all selected particles to be improved by LS
P : the current population
max ls count: the maximal allowable value of |S| per iteration
d(x,y): the Euclidean distance between two particles x and y

rs: a constant that controls the crowded degree in S

Fig. 4 Pseudo-code for the choice algorithm that selects particles for LS.

the best fitness individual being selected for local improvement [35], if there exists
a single optimum in the search space. However, if the dynamic multi-modal func-
tion is considered, this scheme may become unsuitable. Here, a selection algorithm,
which can ensure multiple high-quality, non-crowded particles to be refined by LS
simultaneously, is illustrated in Fig. 4.
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The algorithm (as shown in Fig. 4) of selecting particles for LS is performed at
each iteration. The set S of particles for LS is initially set to null and all particles
in the current population P are copied into a temporary choice pool P ′. The best
fitness particle x is firstly selected from P ′ into S and then the remainders in P ′ are
checked in turn against x. If a particle falls within the radius rs of x, it is removed
away from P ′. This choice course will be iterated until P ′ becomes a null set or the
maximal allowable number of LS operations is met. It is easy to understand that
this algorithm aims to pick out multiple high-quality particles in different regions of
the search space. The parameter rs can control the crowded degree of S and ensure
LS exploit different peaks in the search space. In addition, at each iteration, the LS
step size ls size for each particle in S needs to be re-calculated because the size of
S, i.e., |S|, may be different at different iteration steps. In the experiments reported
later in this paper, ls size = ⌈total ls size/|S|⌉, where total ls size denotes the
total LS step size for S per iteration.

3.3 Increasing Population Diversity

Although a local version of PSO can maintain a certain degree of diversity, it can
loose the capacity of exploring new regions of the search space along with its slow
convergence. This situation must be avoided since the fitness landscape may change
over time and new peaks may also appear in the search space over time in dynamic
environments.

Some diversity-increasing approaches have been developed for EAs to address
this problem. For example, the random immigrants approach is a very simple and
natural way to increase the diversity level of the population. In a random immigrants
genetic algorithm (RIGA) [10], a fraction of the current population is replaced
by randomly generated individuals in each generation of the run. A replacement
strategy, like replacing random or worst individuals of the population, defines which
individuals are replaced by the immigrants. However, this simple scheme can not
often improve the performance of algorithms in dynamic environments because the
newly generated immigrants hardly survive during the selection process into the
next generation due to their very low fitness.

Recently, a variant of RIGA, called self-organized random immigrants genetic

algorithm (SORIGA), was proposed in [29]. In SORIGA, the worst fitness individual
and some of its neighbors are replaced by random individuals and preserved into a
sub-population. This sub-population is allowed to evolve independently. That is, it is
subjected to selection, crossover, and mutation among individuals that belong to the
sub-population. The individuals in the current population that do not belong to the
sub-population are not allowed to compete with (and hence replace) the individuals
of the sub-population. The sub-population may expand or shrink dynamically and
may become extincted when the worst fitness individual does not fall within it.

Here the mechanism of self-organized random immigrants (SORI) in [29] is ex-
tended into the proposed PSO-based MA for DOPs. In this extension, a set of sep-
arate particles (the size is denoted as rr), which form a sub-population, are selected
randomly to be re-initialized and partitioned from the ring structure of the popula-
tion every fixed number (t ri) of iterations. The partitioned sub-population always
keeps searching for the optimum independently until when a new sub-population
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Procedure Proposed PSO-Based MA:
begin

for i := 0 to s size− 1 do

initialize particle i with random xi and vi;
evaluate f(xi);
pi := xi;

endfor

if the FCLS operator is used then

select a set |S| of particles for local refinements;
apply the FCLS operator upon each particle in S;

endif

for i := 0 to s size− 1 do

update pgi;
endfor

repeat

for i := 0 to s size− 1 do

update vi and xi according to Eqs.(1) and (2) respectively;
evaluate f(xi);
if f(pi) < f(xi) then pi := xi;

endfor

if the SORI scheme is used and t%t ri == 0 then

set the status of each particle in the population as non-preserved;
k := rand(0, s size− 1);
re-initialize the particles with indices from k to k + rr − 1

randomly and set their status as preserved;
endif

if the FCLS operator is applied then

apply the FCLS operator upon the best fitness preserved particle;
select a set |S| of non-preserved particles for local refinements;
apply the FCLS operator upon each particle in S;

for i := 0 to s size− 1 do

update pgi;
endfor

until a termination condition is met
end

Fig. 5 Pseudo-code for the proposed PSO-based MA.

is generated, it is rejoined into the main population. Moreover, the sub-population
accomplishes its update in a global version and its best fitness particle can be im-
proved by a LS operator in each iteration of running the algorithm in order to ensure
that it converges into a promising area in the search space quickly. Re-initialization
of a particle also involves resetting its pbest besides randomly initializing its position
and velocity.

Based on the above description, our proposed MA that hybridizes both the FCLS
operator and the SORI scheme with a local version of PSO in a ring-shape topology
can be summarized by the pseudo-code shown in Fig. 5. Within the proposed algo-
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rithm, after an initial population is generated randomly, a set of particles, selected
from the population by the choice algorithm in Fig. 4, are improved by the FCLS
operator and then the gbest of each particle would be updated by the best parti-
cle among its neighbors. At each subsequent iterative step, each particle is firstly
updated according to the update formula (Eqs. (1) and (2)), and then a portion
of separate particles, selected randomly and partitioned from the population, are
re-initialized and set as preserved to search for the new optima independently if the
condition of SORI scheme is reached (t%t ri == 0). Finally, the best preserved par-
ticle and a set of non-preserved particles are selected to execute local improvement
before the gbest of each particle is updated.

4 Experimental Study

4.1 Algorithm Test Environments

In this paper, a series of dynamic test environments are generated based on the MPB
problem [4] that consists of a number of peaks, of changing heights, widths, and
locations in a random direction. The base landscape of the MPB function consists
of m peaks defined in an n-dimensional real space as follows:

F (x, t) = max
i=1,...,m

Hi(t)

1 +Wi(t)
∑n

j=1
(xj(t)−Xij(t))2

, (5)

where Wi(t) and Hi(t) are the height and width of peak i at time t respectively,
and Xij(t) is the j-th element of the location of peak i at time t. Each peak can
independently change its height and width and move its location around in the
search space.

The parameter settings of the MPB problem used in this paper correspond to
Scenario 1 as specified on the benchmark website [4]. The test function has 5 peaks
defined on a 5-dimensional real space. Every τ iterations, the height and width of
each peak are changed by adding a random Gaussian variable and the location of
each peak is moved by a shift vector vi of a fixed length ρ. More formally, a change
of a single peak can be described as follows:















δ ∈ N(0, 1)
Hi(t) = Hi(t− 1) + 7 · δ

Wi(t) = Wi(t− 1) + 0.01 · δ
Xi(t) = Xi(t− 1) + vi(t),

(6)

vi(t) =
ρ

|r+ vi(t− 1)|
((1 − λ)r+ λvi(t− 1)), (7)

where the shift vector vi(t) is a linear combination of a random vector r and the
previous shift vector vi(t−1) and is normalized to length ρ. The random vector r is
created by drawing random numbers for each dimension and normalizing its length
to ρ. Hence, the parameter τ may be used to control the speed of changes and ρ
may be used to control the severity of changes. The parameter λ allows controlling
whether changes exhibit a trend (λ is always set to 0 in our experiments).
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Table 1 The index table for dynamic parameter settings

τ Environmental Dynamics Index

50 1 2 3 4
100 5 6 7 8
200 9 10 11 12

ρ → 0.1 1.0 2.0 5.0

To test the performance of algorithms in different dynamic environments, a series
of DOPs are constructed using the MPB problem. The change severity parameter
ρ is set to 0.1, 1.0, 2.0, and 5.0 respectively in order to examine the performance
of algorithms in dynamic environments with different severities: from slight change
(ρ = 0.1) to moderate variation (ρ = 1.0 or 2.0) to intense change (ρ = 5.0). The
change speed parameter τ is set to 50, 100, and 200 respectively, which means that
the environment changes fast, in the moderate speed, and very slowly, respectively.
In total, a series of 12 different DOPs are constructed and summarized in Table 1.

4.2 Experimental Design

In this section, experiments are carried out in order to study the major features
of our proposed PSO-based MAs and to compare their performance with several
existing peer algorithms. The following abbreviations represent the algorithms con-
sidered in this paper.

– LPSO: a simple local version of PSO, which utilizes a ring topology with the
neighbor radius set to 1 (see Section 3.1);

– GPSO: a standard global version of PSO;
– LPSO-FCMA: LPSO-based MA with the FCLS operator;
– LPSO-RWMA: LPSO-based MA with the RWDE operator [25];
– GPSO-FCMA: GPSO-based MA with the FCLS operator;
– multiCPSO: a multi-swarm PSO proposed by Blackwell and Branke in [2]. In

multiCPSO, the population is split into a set of sub-swarms, which interact with
each other locally by an exclusion parameter and globally through a new anti-
convergence operator. In addition, each sub-swarm has some charged particles,
whose update is affected by the inter-particle repulsions.

– multiMPSO: a multi-swarm PSO that is similar to multiCPSO except that each
sub-swarm is now equipped with the FCLS operator, rather than charged par-
ticles. In each iteration of running multiMPSO, it is firstly checked whether all
sub-swarms have converged using an anti-convergence operator and if so, the
worst sub-swarm will be re-initialized. Then, all pairs of sub-swarms are also
tested to see whether they are too close using an exclusion parameter and if
so, the inferior sub-swarm is re-initialized. Finally, all particles are simply up-
dated and the best fitness particle in each sub-swarm is improved by the FCLS
operator.

The total number of evaluations per iteration is always fixed to 100 for all
algorithms in order to make an impartial comparison among them. For all PSO
models, the cognitive and social learning factors c1 and c2 are both set to 1.4962
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and the inertia weight ω is set to 0.72984 as suggested by den Bergh [31]. The
velocity of a particle is always confined within the range [−VMAX , +VMAX ], i.e.,
between the lower and upper bounds of the range of variables (here VMAX = 100).
The special parameters in our proposed MAs are set as follows: rs = 1.0, rr = 5,
and t ri = 25. The setting of other relevant parameters will be given and discussed
in the experiments later on.

For each experiment of an algorithm on a test problem, 30 independent runs
were executed with the same set of random seeds. For each run of an algorithm on
a DOP, 10 environmental changes were allowed and the best fitness of any particle
in the population is recorded. Given that the optimum fitness is always known for
the test problem used in this paper, the overall offline performance of an algorithm
is defined as the mean error averaged across the number of total runs and then
averaged over the data gathering period, as formulated below:

EBG =
1

G

G
∑

i=1

(
1

N

N
∑

j=1

(F ∗

ij − FBGij
)), (8)

where G is the number of generations (i.e., G = 10 ∗ τ), N = 30 is the total number
of runs, F ∗

ij and FBGij
are the fitness of global optimum and the best particle in

the population of iteration i of run j respectively.

4.3 Experimental Study on the Effect of LS Operators

In the experimental study on the effect of LS operators, we first study the influence
of different settings of σ in FCLS in order to determine a robust setting for this
parameter. In particular, we have implemented three LPSO-FCMAs, where σ is set
to 0.05, 0.5, and 5.0 respectively, just on the stationary period of the MPB problem.
The population size s size is set to 90 for all algorithms and the FCLS operator
within them is always applied ls size = 10 steps upon the best particle in the
current population at each iteration. For each run of an algorithm, the maximum
allowable number of iterations was set to 100. The experimental results are shown
in Fig. 6, where the data were averaged over 30 runs.

From Fig. 6, it can be seen that LPSO-FCMA with σ = 5.0 performs the best
at the early searching stage, while is beaten by LPSO-FCMA with σ = 0.5 quickly.
When the value of σ is very small (σ = 0.05), LPSO-FCMA does not perform well
until the late iteration stage of the algorithm running. Hence, σ is always set to 0.5
in the following experiments since a moderate value of σ always shows an adaptive
capacity at the different search stages on this test problem.

Similar experiments are carried out to investigate the performance of PSO-based
MAs with different LS operators, with the aim of examining the effect of the FCLS
operator proposed in Sec. 2. In particular, five different algorithms, including GPSO-
FCMA, LPSO-FCMA, LPSO-RWMA, LPSO, and GPSO, are tested also on the
stationary period of the MPB problem. The population size s size is set to 100
for LPSO and GPSO, but 90 for all MAs because the LS operator within them is
always applied ls size = 10 steps upon the best particle in the current population
at each iteration. The experimental results are shown in Fig. 7, where the data were
also averaged over 30 runs.
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Fig. 6 Experimental results of LPSO-FCMA with different settings of σ on the stationary
MPB problem.
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Fig. 7 Experimental results of LPSO-based MAs with different LS operators on the sta-
tionary test problem
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From Fig. 7, the following results can be obtained. First, the LS operator does
improve the performance of an algorithm on the stationary problem significantly.
This can be seen from the results that both LPSO-FCMA and LPSO-RWMA out-
perform LPSO and GPSO-FCMA outperforms GPSO with a high degree. In ad-
dition, it is also shown that hybridizing LPSO with LS is very necessary from the
experimental results that GPSO performs much better than LPSO, which means
that the exploitation capacity of LPSO is very weak, that is, LPSO cannot achieve
the optima with a higher accuracy quickly, though it can exhibit the good exploita-
tion capacity due to its slow convergence. Second, within the two LPSO-based MAs,
the FCLS operator can help them make more efficient local refinements than the
RWDE operator does. The RWDE operator always executes random moves, while
the FCLS operator combines the features of both random moves and biased moves,
which can make the particle approach the optimum more easily. Obviously, the re-
sult that LPSO-FCMA outperforms LPSO-RWMA in this experiment validates our
expectation of the proposed FCLS operator.

Another feature of the FCLS operator is how to select suitable particles from
the current population for local improvement. In Sec. 3.2, we introduced a choice
algorithm (see Fig. 4) that aims to select multiple high-quality, non-crowded par-
ticles simultaneously. In the following experiment, we test the effect of this choice
algorithm through comparing with other two strategies: one is to improve the best
fitness particle only and the other is to select a certain number of particles randomly
for local refinement. For the sake of conveniently describing this experiment, LPSO-
FCMA1, LPSO-FCMA2, and LPSO-FCMA3 are used to denote LPSO-FCMA with
the choice algorithm in Sec. 3.2, LPSO-FCMA with choosing the best fitness particle
scheme, and LPSO-FCMA with the random choice scheme respectively.

We run the above three LPSO-FCMAs on the DOPs constructed in Table 1. The
population size s size is set to 90 for LPSO-FCMA2 and 70 for LPSO-FCMA1 and
LPSO-FCMA3 considering that ls size = 10 in FCMA2, the number of selected
particles is set to 5 and ls size is set to 6 in LPSO-FCMA3 and the maximum
allowable number (max ls count) of particles selected for LS is set to 5 and the
total step size of LS per iteration is set to 30 in LPSO-FCMA1. The experimental
results with respect to the overall offline performance are presented in Table 2 and
plotted in Fig. 8. The corresponding statistical results of comparing algorithms by
the one-tailed t-test with 58 degrees of freedom at a 0.05 level of significance are
given in Table 3. In Table 3, the t-test result regarding Alg. 1 - Alg. 2 is shown as
“s+”, “s−”, “+”, or “−” when Alg. 1 is significantly better than, significantly worse
than, insignificantly better than, or insignificantly worse than Alg. 2 respectively.

From Table 2, Table 3 and Fig. 8, several results can be observed. In general,
LPSO-FCMA1 always performs the best on most dynamic problems, which shows
the validity of our proposed choice algorithm in improving the performance of LPSO-
based MAs in dynamic environments. The reason is that LPSO-FCMA1 can exploit
multiple particles that are distributed in different peaks of the fitness landscape
synchronously using the FCLS operator, which is very helpful in a changing multi-
modal environment.

LPSO-FCMA2 performs better than LPSO-FCMA3, even outperforms LPSO-
FCMA1 on several dynamic problems when the change severity parameter ρ is
small. This is because a new optimum can be close to the previous one when ρ
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Table 2 Experimental results with respect to overall offline performance of LPSO-FCMAs
on dynamic test problems

Dynamics Algorithms

τ ρ LPSO-FCMA1 LPSO-FCMA2 LPSO-FCMA3

50 0.1 1.97±0.90 2.30±1.83 3.24±1.47
50 1.0 2.63±1.06 2.85±1.14 3.59±1.32
50 2.0 3.42±1.04 3.94±1.88 5.17±1.49
50 5.0 5.52±1.04 6.27±1.42 9.26±1.87

100 0.1 1.04±0.91 1.00±0.26 1.56±0.66
100 1.0 1.38±0.68 1.27±0.58 2.01±0.95
100 2.0 2.13±1.47 2.46±1.61 2.79±1.03
100 5.0 3.37±0.50 4.01±1.24 5.24±0.78

200 0.1 0.46±0.25 0.53±0.51 0.87±0.67
200 1.0 0.77±0.61 0.82±0.62 1.03±0.51
200 2.0 1.12±0.62 1.36±0.76 1.51±0.51
200 5.0 1.88±0.43 2.78±1.15 3.04±0.87
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Fig. 8 Experimental results with respect to the overall offline performance of LPSO-
FCMAs on the dynamic test problems.

is very small. For such instances, executing sufficient FCLS operations only for
the best fitness particle may be more beneficial. However, once the environment is
subject to significant changes, the choice algorithm in LPSO-FCMA2 can mislead
the FCLS operator. This is why LPSO-FCMA2 performs significantly worse than
LPSO-FCMA1 on all dynamic problems when ρ = 5.0, see the relevant t-test re-
sults regarding LPSO-FCMA1−LPSO-FCMA2 in Table 3. LPSO-FCMA3 always
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Table 3 The t-test results of comparing LPSO-FCMAs regarding the overall offline per-
formance on the dynamic test problems

t-test Result MPB Problem

τ = 50, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-FCMA1 − LPSO-FCMA2 + + + s+
LPSO-FCMA1 − LPSO-FCMA3 s+ s+ s+ s+
LPSO-FCMA2 − LPSO-FCMA3 s+ s+ s+ s+

τ = 100, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-FCMA1 − LPSO-FCMA2 − − + s+
LPSO-FCMA1 − LPSO-FCMA3 s+ s+ s+ s+
LPSO-FCMA2 − LPSO-FCMA3 s+ s+ + s+

τ = 200, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-FCMA1 − LPSO-FCMA2 + + + s+
LPSO-FCMA1 − LPSO-FCMA3 s+ + s+ s+
LPSO-FCMA2 − LPSO-FCMA3 s+ + + +

performs the worst in dynamic environments, which indicates that the random
choice scheme is disappointing. Hence, the choice algorithm in LPSO-FCMA2 will
always be adopted in the following experiments.

4.4 Experimental Study on the Effect of Diversity Schemes

The main problem for the above investigated PSO-based MAs in dynamic envi-
ronments lies in that they can loose the exploration capacity for new peaks in the
search space due to the convergence of the population. In Sec. 3.3, a SORI approach
is extended into PSO for addressing this problem. In this section, we investigate the
effect of this SORI scheme on the performance of LPSO-FCMA in dynamic envi-
ronments via comparing it with another effective diversity scheme, the multi-swarm
method, which has been widely used in the literature. In particular, LPSO-FCMA,
LPSO-FCMA with the SORI scheme (denoted as LPSO-SOFCMA), multiMPSO
with the swarm number set to 5 (denoted as multiMPSO1), and multiMPSO with
ten swarms (denoted as multiMPSO2) are applied for DOPs constructed in Table 1.

The population size s size is set to 70 and the maximal allowable LS size is set
to 30 for LPSO-FCMA and LPSO-SOFCMA. For LPSO-SOFCMA, the LS size for
the best preserved particle per iteration is always fixed to 5. The population size
and the LS size of each sub-swarm are set to 15 and 5 in multiMPSO1, while 5 and
5 in multiMPSO2 respectively. It is easy to understand that multiMPSO1 has a
very suitable number of sub-swarms, while multiMPSO2 has a unsuitable number
of sub-swarms for the test problems used in this paper. The experimental results are
given in Table 4 and plotted in Fig. 9 and the corresponding statistical results are
given in Table 5. From Table 4, Table 5 and Fig. 9 several results can be observed
and are analyzed as follows.

Firstly, LPSO-SOFCMA always performs better than LPSO-FCMA on all dy-
namic test problems. LPSO-FCMA can keep a certain population diversity level just
depending on its small local neighbor structure, while its particles may converge
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Table 4 Experimental results with respect to the overall offline performance of LPSO-
FCMAs on the dynamic test problems

Dynamics Algorithms

τ ρ LPSO-SOFCMA LPSO-FCMA multiMPSO1 multiMPSO2

50 0.1 1.81±0.33 2.77±2.61 1.30±0.28 1.84±0.50
50 1.0 2.68±1.24 4.17±5.36 2.21±0.59 4.15±0.81
50 2.0 3.50±1.12 3.68±1.83 2.68±0.51 4.66±0.85
50 5.0 6.32±1.54 7.05±4.24 4.24±0.77 7.94±1.31

100 0.1 1.29±0.99 1.32±1.44 0.64±0.24 1.07±0.19
100 1.0 1.25±0.39 1.32±0.70 1.47±0.26 2.93±0.59
100 2.0 2.03±1.46 2.07±1.31 1.46±0.28 2.69±0.60
100 5.0 3.36±0.72 3.47±0.97 1.97±0.23 3.69±0.55

200 0.1 0.60±0.48 1.22±2.04 0.32±0.06 0.74±0.12
200 1.0 0.79±0.57 0.72±0.38 0.83±0.22 1.84±0.58
200 2.0 1.00±0.82 1.44±1.96 0.70±0.13 1.46±0.54
200 5.0 2.16±2.16 2.11±1.08 1.00±0.15 1.94±0.42
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Fig. 9 Experimental results with respect to the overall offline performance of investigated
algorithms with different diversity schemes on the dynamic test problems.

into its neighbor best gbest as the number of iteration increases. That is, LPSO-
FCMA can not achieve a new peak after several iterations. However, this problem
can be addressed by the SORI scheme in LPSO-SOFCMA. The SORI scheme can
introduce a constant diversity into the population via re-initializing a segment of
separate particles randomly every fixed period of iterations. On the other hand,
the newly re-initialized particles with low fitness can be preserved and allowed to
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Table 5 The t-test results of comparing algorithms regarding the overall offline perfor-
mance on the dynamic test problems

t-test Result MPB Problem

τ = 50, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-SOFCMA − LPSO-FCMA s+ s+ + s+
LPSO-SOFCMA − multiMPSO1 s− − s− s−
LPSO-SOFCMA − multiMPSO2 + s+ s+ s+
LPSO-FCMA − multiMPSO1 s− − s− s−
LPSO-FCMA − multiMPSO2 − − s+ +
multiMPSO1 − multiMPSO2 s+ s+ s+ s+

τ = 100, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-SOFCMA − LPSO-FCMA + + + +
LPSO-SOFCMA − multiMPSO1 s− s+ s− s−
LPSO-SOFCMA − multiMPSO2 − s+ s+ s+
LPSO-FCMA − multiMPSO1 s− + s− s−
LPSO-FCMA − multiMPSO2 − s+ s+ +
multiMPSO1 − multiMPSO2 s+ s+ s+ s+

τ = 200, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-SOFCMA − LPSO-FCMA + − + −
LPSO-SOFCMA − multiMPSO1 s− + − s−
LPSO-SOFCMA − multiMPSO2 + s+ s+ −
LPSO-FCMA − multiMPSO1 s− + s− s−
LPSO-FCMA − multiMPSO2 − s+ + −
multiMPSO1 − multiMPSO2 s+ s+ s+ s+

evolve independently for several iterations, which enables LPSO-SOFCMA always
keep the exploration capacity for new peaks. The better results of LPSO-SOFCMA
over LPSO-FCMA in this experiment indicates that the proper diversity method
can improve the performance of algorithms in dynamic environments.

Secondly, multiMPSO1 outperforms LPSO-SOFCMA, while LPSO-SOFCMA
performs much better than multiMPSO2 on most dynamic problems. This is because
that the performance of multiMPSO for DOPs depends on the number of sub-
swarms with a great degree. MultiMPSO can obtain very good results if it owns a
proper number of sub-swarms; otherwise, it may perform a little worse. However, the
optimal setting regarding the number of sub-swarms is hard to obtain since many
dynamic environments are unknown in advance. Thus, the SORI method seems
to be a more adaptive diversity scheme for algorithms in dynamic environments.
Similar results have also been observed in [29].

4.5 Experimental Study on the Performance of Proposed PSO-Based MAs

In the final set of experiments, we attempt to compare the performance of LPSO-
SOFCMA with another existing peer PSO algorithm, multiCPSO algorithm pro-
posed in [2] on the DOPs. Two instances of multiCPSO, multiCPSO with 5 sub-
swarm and multiCPSO with 10 sub-swarms (denoted as multiCPSO1 and multi-
CPSO2 respectively), and a multiMPSO with 5 sub-swarms are considered in the
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Table 6 Experimental results with respect to the overall offline performance of LPSO-
FCMAs on the dynamic test problems

Dynamics Algorithms

τ ρ LPSO-SOFCMA multiMPSO multiCPSO1 multiCPSO2

50 0.1 1.83±0.38 1.32±0.45 2.31±0.37 2.58±0.34
50 1.0 2.48±0.84 2.17±0.34 2.81±0.58 3.14±0.35
50 2.0 3.16±0.65 2.62±0.51 3.50±0.49 4.52±0.51
50 5.0 6.50±2.05 4.32±1.59 7.13±1.68 10.22±1.94

100 0.1 1.06±0.63 0.61±0.23 1.11±0.14 1.29±0.15
100 1.0 1.25±0.39 1.32±0.70 1.47±0.26 2.93±0.59
100 2.0 1.95±0.89 1.37±0.25 1.68±0.21 2.27±0.33
100 5.0 3.34±0.70 2.17±0.41 3.50±0.47 5.26±0.68

200 0.1 0.59±0.35 0.36±0.16 0.60±0.07 0.68±0.07
200 1.0 0.68±0.33 0.95±0.45 0.66±0.07 0.83±0.09
200 2.0 0.88±0.17 0.74±0.14 0.85±0.12 1.19±0.19
200 5.0 1.66±0.37 1.03±0.17 1.70±0.22 2.61±0.39
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Fig. 10 Experimental results with respect to the overall offline performance of LPSO-
SOFCMA and peer algorithms on the dynamic test problems.

experiments. The number of neutral and charged particles in each sub-swarm are
set to 10 and 10 for multiCPSO1, while 5 and 5 for multiCPSO2, respectively.
The other relevant parameters are always the same as their original settings. For
LPSO-SOFCMA and multiMPSO, the same parameter setting in Sec. 4.4 is used
again. The experimental results are given in Table 6 and plotted in Fig. 10 and the
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Table 7 The t-test results of comparing algorithms regarding the overall offline perfor-
mance on the dynamic test problems.

t-test Result Algorithms

τ = 50, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-SOFCMA − multiMPSO s− − s− s−
LPSO-SOFCMA − multiCPSO1 s+ + s+ +
LPSO-SOFCMA − multiCPSO2 s+ s+ s+ s+

multiMPSO − multiCPSO1 s+ s+ s+ s+
multiMPSO − multiCPSO2 s+ s+ s+ s+
multiCPSO1 − multiCPSO2 s+ s+ s+ s+

τ = 100, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-SOFCMA − multiMPSO s− + s− s−
LPSO-SOFCMA − multiCPSO1 + s+ − +
LPSO-SOFCMA − multiCPSO2 s+ s+ + s+

multiMPSO − multiCPSO1 s+ + s+ s+
multiMPSO − multiCPSO2 s+ s+ s+ s+
multiCPSO1 − multiCPSO2 s+ s+ s+ s+

τ = 200, ρ ⇒ 0.1 1.0 2.0 5.0

LPSO-SOFCMA − multiMPSO s− s+ s− s−
LPSO-SOFCMA − multiCPSO1 + − − +
LPSO-SOFCMA − multiCPSO2 + s+ s+ s+

multiMPSO − multiCPSO1 s+ s− s+ s+
multiMPSO − multiCPSO2 s+ − s+ s+
multiCPSO1 − multiCPSO2 s+ s+ s+ s+

corresponding statistical results are given in Table 7. From Table 6, Table 7, and
Fig. 10, several results can be observed and are analyzed as follows.

Firstly, LPSO-SOFCMA always outperforms multiCPSO1 on the dynamic prob-
lems when the environment changes quickly, i.e., when τ = 50. When τ = 50, LPSO-
SOFCMA can always achieve the optimum more quickly than multiCPSO1 because
the FCLS operator has a strong exploitation capacity. The similar conclusion can
be further drawn from the t-test results regarding multiMPSO − multiCPSO in Ta-
ble 7, which will be explained in the later experimental analysis. When τ = 100 or
200, the situation becomes a little different. Two algorithms exhibit almost the same
performance, though LPSO-SOFCMA performs a little better than multiCPSO1 on
dynamic problems with ρ = 0.1 or 5.0, while multiCPSO1 performs a little better
than LPSO-SOFCMA when ρ = 1.0 or 2.0.

Secondly, multiMPSO significantly outperforms multiCPSO1 on most dynamic
environments, which is a very interesting result. The only difference between the two
algorithms multiMPSO and multiCPSO1 lies in the update course of sub-swarms.
In multiMPSO, the best fitness particle of each sub-swarm is improved by the FCLS
operator, while the update of charged particles in multiCPSO1 can be affected by
the exclusion force among them. Obviously, the FCLS operator in multiMPSO and
the charged particles in multiCPSO1 are both used to ensure the algorithm adapt
to the environmental changes quickly. The good performance of multiMPSO over
multiCPSO1 shows that our proposed FCLS operator has a very strong robustness
and adaptivity in dynamic environments.
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Thirdly, the behavior of multiMPSO2 seems to be disappointing and it is almost
beaten by the other algorithms on all dynamic environments due to its improper
number of sub-swarms, which has been explained in the above experimental analysis
(see Sec. 4.4).

Finally, the environmental parameters affect the performance of algorithms. The
performance of all algorithms increases when the value of τ increase from 50 to 100
to 200 or when the value of ρ decreases. It is easy to understand because when
τ becomes larger, algorithms have more time to find better solutions before the
next change, while the new optimum is closer to the previous one when ρ becomes
smaller.

5 Conclusions

In this paper, a PSO-based memetic algorithm is proposed and experimentally
investigated in dynamic environments. In the proposed memetic algorithm, a local
version of PSO with a ring-shape topology structure is hybridized with a fuzzy
cognition local search method, which is proposed based on a fuzzy cognition-only
model of PSO. To further enhance the exploration capacity of algorithm, a self-
organized random immigrants scheme is also extended into our proposed memetic
algorithm for DOPs. From the experimental results, the following conclusions can
be drawn on the dynamic test problems.

First, a local version of PSO algorithm enhanced by some suitable techniques can
exhibit a better performance in dynamic environments. For most dynamic problems,
LPSO-SOFCMA, which hybridized LPSO with the FCLS operator and the SORI
scheme, outperforms most of other peer algorithms.

Second, the FCLS operator can help MAs execute a robust local refinement
in both stationary and dynamic environments. In the experiments, LPSO-FCMA
always performs better than LPSO-RWMA for the stationary test problem, while
multiMPSO always outperforms multiCPSO for the dynamic test problems.

Third, it is always beneficial that several high fitness particles within different
peaks are selected from the population for local improvements when MAs are applied
in dynamic multi-modal environments. The choice algorithm proposed in this paper
proves to be a good solution for this problem.

Fourth, the diversity scheme can be efficient for improving the performance of
algorithms for DOPs. Comparing with the multi-swarm method, SORI seems to be
a more adaptive diversity scheme for algorithms in dynamic environments.

Finally, the environmental dynamics can affect the performance of algorithms.
In our experiments, algorithms perform better with the increasing of the frequency
of changes, while with the decreasing of the severity of changes.

Generally speaking, the experimental results indicate that the proposed algo-
rithm, where a local version PSO is hybridized with the FCLS operator and the
SORI scheme, seems a good optimizer for dynamic optimization problems.

For the future work, it is straightforward to compare our proposed PSO-based
MAs with some existing state-of-the-art PSOs for DOPs, such as the species-based
PSO in [24], multi-swarm quantum swarm optimization in [2], etc., in order to fur-
ther examine the performance of the proposed algorithm in dynamic environments.
Another interesting research work is that some other diversity schemes, such as
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memory-based mechanisms and speciation approaches, can be considered to be hy-
bridized with the proposed MAs for DOPs. In addition, it is also valuable to carry
out the sensitivity analysis on the effect of parameters, e.g., rs, rr, and t ri, on the
performance of the PSO-based MAs for DOPs in the future.
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