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A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with
renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on
load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity
costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net

power.

1. Introduction

An energy storage system (ESS) is a system that is capable
of absorbing energy, storing it for a period of time, and then
returning it for use. In an electrical grid, an ESS can be used to
match supply and demand. The ESS is charged when demand
is low and discharged when demand is high. Thus, the overall
energy efficiency of a system is improved, and the energy flow
from the electrical grid connected to the system is stabilized.
Reliability is a key issue in the effective use of renewable
energy and in smart grids, and thus the demand for ESSs is
increasing [1].

An ESS acts as a buffer between a generator and its load.
Renewable energy sources often generate power during off-
peak periods or when demand for energy is low. ESSs
enable better integration of renewable energy sources into
an electrical grid by (time-shifting) the generated power
and smoothing out spikes in demand. Power producers can
benefit from a more predictable generation requirement,
which can improve revenue. Installing an ESS can enable
industrial, commercial, or residential end-users to improve
the quality and reliability of their power supply and to reduce

their electricity costs and can act as a back-up power source
(2, 3].

Dynamic pricing of electricity is being facilitated by new
technologies such as smart meters. A form of dynamic pricing
that is being adopted in many areas is known as time-of-use
(TOU) pricing, in which electricity prices are set for a fixed
period. Energy providers use TOU pricing to drive down
demand at peak periods by using high prices to influence
customers’ consumption rather than more invasive controls
such as dynamic or passive demand response mechanisms, or
even power cuts [4, 5]. Typically TOU prices do not change
more than twice a year, buta TOU tariff is likely to have two or
three price levels (e.g., “off-peak’, “mid-peak’, and “on-peak”)
where the price is determined by the time of day. Customers
can be expected to vary their usage in response to this price
information and manage their energy costs by shifting their
usage to a lower cost period. ESSs will play an important role
in residential areas with a dynamic pricing policy. By storing
energy during low off-peak price periods and using the stored
energy when the price is high, consumers can avoid paying
high rates.
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In addition to charges based on usage, an electricity bill
may include a demand charge, which is determined by the
maximum energy capacity available to a customer, whether
or notitisactually used. The demand charge is billed as a fixed
rate that is calculated on a per kW basis. This charge is based
on the premise that commercial customers and other large
users should pay a share of the infrastructure costs associated
with the maintenance of capacity [6]. We will consider both
TOU pricing and demand charges [7].

Many problems related to the scheduling of the charging
and discharging of an ESS have been studied recently [8-
12]. Various optimization techniques can be applied to the
operation of ESSs. The most frequently used method is
dynamic programming, which was used by Maly and Kwan
[13]. They tried to minimize electricity cost for an ESS
with a given battery capacity, without unnecessarily reducing
battery life. Van de Ven et al. [14] aimed to minimize the
capital cost of an ESS subject to user demand and prices,
as a Markov decision process, which can be solved using
dynamic programming. Koutsopoulos et al. [15] addressed
the optimal ESS control problem from the point of view
of a utility operator and solved the off-line problem over
a finite period by dynamic programming. Romaus et al.
[16] investigated stochastic dynamic programming for energy
management of a hybrid ESS for electric vehicles. They aimed
to control the power flow to the ESS online, while taking
into account the stochastic influences of traffic and the driver.
Huang and Liu [17] applied adaptive dynamic programming
to the management of a residential ESS, with an emphasis
on domestic electricity storage systems. Their scheme was
designed to learn during operation as the environment of the
ESS changes unpredictably.

There have also been a number of studies using other
scheduling methods. Youn and Cho [18] used linear pro-
gramming to pursue optimal operation of an energy storage
unit installed in a small power station. Hu et al. [19] used
sequential quadratic programming to operate on ESS under
real-time changes to the electricity price, so as to maximize
profits. Nonlinear programming techniques were adopted by
Rupanagunta et al. [20] to design an optimal controller for
charge and discharge processes in ESSs, with the objective
of minimizing the operating costs of the storage facility. Yoo
et al. [21] used a Kalman filter to increase predictability in
controlling the power flows between the components of an
energy management system for a grid-connected residential
photovoltaic (PV) system combined with an ESS under
critical peak pricing. Lee [22] used multipass iteration particle
swarm optimization to determine the operating schedule of
an ESS for an industrial TOU-rate user who is also operating
wind turbine generators. Gallo et al. [23] used a hybrid
optimization technique to determine values of the battery
parameters required for an ESS operated by a smart grid
management system. Their method combines stochastic and
deterministic elements within a computationally efficient alg-
orithm.

In this paper we describe a real-coded genetic algo-
rithm (RCGA) for scheduling ESS charging and discharging.
Genetic algorithms (GAs) were used by Monteiro et al. [24]
for short-term forecasting of the energy output of a PV plant.
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They applied data mining techniques to historical forecasts of
weather variables. The GA was used to make spot forecasts of
power output from PV plants. We use an RCGA to schedule
ESS operations under TOU pricing with a demand charge,
when a supply of renewable energy, wind or solar energy, is
available.

The remainder of the paper is organized as follows. In
Section 2 we describe the ESS scheduling problem under
TOU pricing with a demand charge, when renewable elec-
tricity is available. In Section 3 we describe an RCGA that
addresses this problem. In Section 4 we present the simula-
tion results, and draw conclusions in Section 5.

2. ESS Scheduling Problem under
TOU Pricing with a Demand Charge

The formulation of our problem is similar to that of Lee [22],
but we aim to optimize a daily, rather than a monthly, bill.
Other studies have dealt with optimization problems under
TOU pricing. Cao et al. [25] proposed an intelligent method
to control EV charging loads in response to TOU price in a
regulated market. Lee and Chen [26] formulated the problem
of determining the optimal contract capacities and optimal
sizes of ESSs for customers using a TOU rate.

Notations/expressions in the appendix summarize the
notation and some of the expressions used in this study. The
load ; is the amount of energy used during time interval i, and
g; is the amount of energy generated over the same period.
The residual energy in the battery at the end of interval i is x;.
We set the length of a time interval to one hour. The energy
supplied to the battery during time interval i is x; — x;_; and
the net energy drawn from the grid is x;,—x;_, +I,—g;. Thus, the
cost of energy over the time interval i is (x; — x,_; +1; — g,) ;>
where p; is the price set for that interval. The possibility of
compensation tarift for feed-in electricity is not considered
in this study. If such a tariff is high, scheduling will favor
feeding electricity into the grid. However, the trend in smart
grid pricing is to encourage residential users to conserve
any electricity that they generate, so feed-in tariffs are likely
to become very low or zero, which is what we assume. In
this case, the total cost of energy over T time intervals is
ZiT:1 I(x; = xiy + 1, = g; > 0) (x; — x;_y + [; = g;)p;> where
I is the indicator function. We use twenty-four hour data and
set T to 24.

The total cost of electricity is the sum of the energy
charge and the demand charge, which is the product of the
fixed rate p* and the peak demand, and can thus be written
max;r{x; — x;_; +I; — g;}p*. The problem of minimizing
the total cost of electricity can now be expressed as follows:

Minimize
T
ZI (x; = X + 1= g; > 0) (% = x,2 + ;= g1) s
i=1

+max {x; = x;,_; +L;— g} p,
1<i<T
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subject to

@

where C is the total battery capacity, P, is the battery dis-
charge power, and P, is the battery charge power. The value
of x; cannot exceed the battery capacity, and the net amount
of energy x; — x;_; flowing in or out of the battery should lie
in the range [-P,, P.].

3. Real-Coded Genetic Algorithm

GAs that are based on real number representation are called
real-coded GAs (RCGAs) [27]. Real coding was first used in
specific applications, such as chemometric problems and in
using metaoperators to find the most appropriate parameters
for a standard GA [27]. Subsequently, RCGAs have mainly
been used in numerical optimization problems over contin-
uous domains [28-31].

In our RCGA, a population consisting of N/2 pairs are
randomly selected from a population of N, and crossover and
mutation operators are applied to each pair to generate N/2
offspring. Both parents and offspring are ranked and the best
N become the next generation. We use a population of 100,
and our RCGA terminates after 2,000 generations.

3.1. Encoding. Our RCGA is encoded using an array of T real
numbers. Our approach differs from a typical real encoding
in that each gene x; has its own range of real values that
are determined by the value of its left-sided gene x;_,. The
following two constraints must be satisfied by each value of x;:

0<x;<C,
2)
P, <x;—-x;_, <P & x;_,-P;<x;<x;,+P.
Therefore x; must satisty the following expression in x;_;:
max (0,x;,_; — P;) <x; <min(C,x;_; +P.).  (3)

3.2. Evaluation. The objective function for the problem is
used as the evaluation function of the RCGA: Z;FZI I(y;—yi +
Li=gi > 0)(yi = yiy + L= g)pi + maxyqerly; — yiy +1 -
g;1p” . Because this is a minimization problem, solutions with
smaller objective values are more likely to survive.

3.3. Initialization. Initially 100 solutions are generated, satis-
tying the feasibility constraint of (3). For each i (i = 1,
2,...,T), areal number is randomly chosen over the interval
[max(0, x;_, — P;), min(C, x;_, + P,)]. Each solution generated
by this procedure corresponds to an available ESS schedule.

3.4. Crossover Operator. We use the crossover operator BLX-
« [32, 33], where « is a nonnegative real-valued parameter.
This operator produces z; = (z,,2,,...,%,) offspring, where

TABLE 1: Residential customer load profile data used in this study.

Summer (Jun.-Sep.)

Seasons
Winter (Dec.-Feb.)
Types of day Weekday
Weekend
Weather scenarios Normal

z; is a random number chosen over the interval [C,;, — oI,
Chaxtoll, where C . = max(x;, y;), Cpin = min(x;, y;), and
I = C,.x — Cpoin- The value of « is set to 0.5 in our RCGA. To
ensure that each gene satisfies (3), BLX-« is modified so that it
accepts random real numbers over the interval [max(0, x;_; —
P;,Cin — o), min(C, x;_; + P.),C, .« + «l)], instead of the
interval [C_. —al,C_. + «I].

max
min max
3.5. Mutation Operator. In Gaussian mutation [34], the ith
parameter x; of an individual is mutated by x; = x; + N(0, 0;)
at a mutation rate p,,, where N(0,0;) is an independent
random Gaussian number with a mean of zero and a standard
deviation of ;. In our RCGA, 0; is set to min(C, x;_; + P,) —
max(0,x,_; — P;), which is the magnitude of the range of
feasible solutions. If a mutated value is not in [min(C, x;_;, +
P.), max(0, x;_, — P;)], then it is replaced by min(C, x;_, + P.)
or max(0, x;_; — P;), whichever is the closest, to produce a
feasible solution. If i < j < T, then changes to x; can aff-
ect the feasibility of x ;. Thus, values of x; which are not in
[min(C, x;_; + P,), max(0, x;_; — P,)] are similarly replaced
by the closer of min(C, x;_; + P.) or max(0,x;_; — P;). The

j
value of p,, is set to 0.1/T.

j-1

4. Simulation Results

4.1. Problems Instances. The load profile that we will use is a
residential customer profile provided by NorthWestern
Energy [35] and is based on data for 1992 and 1993. The com-
pany’s Load Vision profiling software was used to construct
profiles for typical diversified residential loads on weekdays
and at weekends for each season and three weather scenarios.
The portion of the data that we used in this study is presented
as Table L.

Hourly solar generation data were obtained using
PVWatts, developed by the National Renewable Energy
Laboratory (NREL). This calculator predicts the energy pro-
duction of residential and small commercial PV installations,
based on hourly data for sunny and cloudy days in Helena, a
city in the northwestern United States. The specifications of
the PV system that we consider are listed in Table 2.

Typical TOU prices were generated by simulations using
three price levels, for summer and winter, based on the TOU
pricing models of several utility companies. We consider
two daily rates of demand charge, 20 cents/kW (low) and
30 cents/kW (high). The TOU pricing model that we have
constructed is given in Table 3.

We consider a battery with a total capacity of 2 kWh, but
only 1.8 kWh is used to extend battery life. The maximum rate
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TABLE 2: PV system specifications.
DC rating 3kw
DC to AC derating factor 0.77
Array type Fixed tilt
Array tilt 46.6° (latitude)

Array azimuth 180.0° (true south)

TaBLE 3: Time-of-use prices used in this study (USD).

Hour

(from-—to) Summer (cents/kWh) Winter (cents/kWh)
0-1 5 5
1-2 5 5
2-3 5 5
3-4 5 5
4-5 5 5
5-6 5 5
6-7 5 5
7-8 10 15
8-9 10 15
9-10 10 15
10-11 10 15
11-12 15 10
12-13 15 10
13-14 15 10
14-15 15 10
15-16 15 10
16-17 15 10
17-18 10 15
18-19 10 15
19-20 5 5
20-21 5 5
21-22 5 5
22-23 5 5
23-24 5 5
P’ Demand charge rate: 20 (low), 30 (high) (cents/kW)

of charge and discharge is around to be 0.6 kW. Thus, we set
C to 1.8, and values of P, and P; of 0.6 kW are used in the
problem formulation.

4.2. Results and Discussion. We compared our RCGA with
a net-power-based algorithm (NPB) which charges or dis-
charges the battery to make up the difference between the
power generated and the load. This naive algorithm does not
consider the electricity price at all.
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The simulation results are shown in Table 4. All the algo-
rithms run in under a second on an Intel Xeon CPU E5530 @
2.40 GHz. A run of RCGA took 0.18 seconds.

The results in Table 4 show that our RCGA always out-
performs the NPB. The maximum benefit is 11% in Cases 7,
8, and 16, and the minimum is 4% in Case 2. The RCGA
performed better in the winter than in the summer. This
result can be explained by the difference in the summer and
winter price schedules. In summer, the peak period usually
occurs at a time when PV energy is plentiful, and so the
power drawn from the grid is easily reduced, without the
need for an elaborate algorithm. In winter, there is much less
PV energy available during peak periods, making the RCGA
more effective. We also show the effectiveness of the RCGA
by comparing it with another optimization method in the
appendix.

Figures 1 and 2 show simulated levels of battery charge
which are produced by the NPB and RCGA in the winter
and the summer scenarios. Typical PV and load profiles
with TOU prices for each season and weather scenario are
shown in Figures 1(a), 1(d), 2(a), and 2(d). The other figures
show battery charge, the average and peak power drawn from
the grid. The NPB charges the battery when the generation
exceeds the load and discharges otherwise. The ESS operated
on the NPB schedule charges the battery in the daytime when
the sun blazes and discharges the battery in the evening
when the sun sets, regardless of the season and the weather.
However, the RCGA optimizes the ESS charge schedule to
minimize the electricity cost under various constraints and
a given pricing policy. Thus, the ESS operated on the RCGA
schedule charges and discharges the battery dynamically
depending on the season and the weather. The figures show
that the RCGA schedules reduce both the peak power and
the purchase of electricity (i.e., grid power) during on-peak
periods.

5. Conclusion

We have developed an RCGA for ESS charge scheduling,
which is especially important for electricity customers who
have to contend with dynamic pricing. We considered TOU
pricing with a demand charge when electricity is supplied
to a customer with their own renewable energy genera-
tion facility. The scheduling problem for this scenario was
formally defined, and the RCGA was used to develop a
novel approach to charge scheduling. Experiments using the
load and generation profiles of typical residential customers
showed that scheduling by the RCGA reduced both the peak
power consumption and the purchase of electricity during
on-peak periods. This suggests that charge scheduling using
an RCGA can help to reduce customers’ electricity bills.

Neither battery efficiency nor the capital cost of a storage
system was considered in this study, although these factors
can clearly affect overall cost. Further studies that consider
these factors are needed. It would also be interesting to inves-
tigate how our RCGA performs under more dynamic pricing
schemes such as real-time pricing, which are a part of many
smart grid scenarios.
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TABLE 4: Comparison of simulation results for a single day.
Instance NO-ESS NPB RCGA
Case Rate Season Weather Day type Cost Cost Saving Ave. cost (Std.) Saving
1 Low Summer Sunny Weekday 83.69 68.76 18 63.87 (0.63) 24
2 Low Summer Sunny Weekend 82.28 65.42 20 62.90 (0.61) 24
3 Low Summer Cloudy Weekday 104.64 91.42 13 86.19 (1.09) 18
4 Low Summer Cloudy Weekend 111.40 107.71 3 98.32 (1.09) 12
5 Low Winter Sunny Weekday 185.43 161.05 13 150.08 (0.97) 19
6 Low Winter Sunny Weekend 176.93 152.00 14 140.67 (1.22) 20
7 Low Winter Cloudy Weekday 225.68 221.86 2 197.37 (0.74) 13
8 Low Winter Cloudy Weekend 233.26 233.26 0 207.44 (0.69) 11
9 High Summer Sunny Weekday 94.37 79.44 16 71.75 (0.72) 24
10 High Summer Sunny Weekend 92.47 75.44 18 70.43 (0.76) 24
11 High Summer Cloudy Weekday 115.32 102.10 11 96.32 (1.20) 16
12 High Summer Cloudy Weekend 121.42 117.73 3 108.42 (1.31) 1
13 High Winter Sunny Weekday 201.45 176.88 12 163.75 (1.26) 19
14 High Winter Sunny Weekend 192.56 166.84 13 153.75 (1.33) 20
15 High Winter Cloudy Weekday 241.70 237.88 2 211.49 (1.09) 12
16 High Winter Cloudy Weekend 248.89 248.89 0 221.26 (0.90) 1

NO-ESS is the cost with no ESS.
The NPB algorithm charges the battery when the generated power exceeds the load and discharges otherwise.
RCGA is our real-coded genetic algorithm (the average costs are obtained over 100 runs).

All costs are in US cents, and savings are percentages.
The saving for Algorithm A is obtained using the formula, 100 x (Costyq_gss — Cost 4)/Costyo.gss» Where Cost 4 is the electricity cost incurred by Algorithm

A.
TaBLE 5: Comparison between MSM and RCGA.
Case MSM RCGA
Ave. cost (Std.) Saving Ave. cost (Std.) Saving

1 67.31 (0.60) 20 63.87 (0.63) 24
2 65.99 (0.60) 20 62.90 (0.61) 24
3 91.59 (0.77) 12 86.19 (1.09) 18
4 100.04 (0.71) 10 98.32 (1.09) 12
5 155.49 (0.84) 16 150.08 (0.97) 19
6 146.52 (0.96) 17 140.67 (1.22) 20
7 202.14 (0.77) 10 19737 (0.74) 13
8 212.02 (0.74) 9 207.44 (0.69) 1
9 76.37 (0.82) 19 71.75 (0.72) 24
10 75.00 (0.73) 19 70.43 (0.76) 24
11 102.51 (0.78) 1 96.32 (1.20) 16
12 110.77 (0.87) 9 108.42 (1.31) 1
13 170.30 (1.06) 15 163.75 (1.26) 19
14 160.89 (1.04) 16 153.75 (1.33) 20
15 21718 (0.83) 10 211.49 (1.09) 12
16 226.66 (0.88) 9 221.26 (0.90) 1

The average costs in US cents are obtained over 100 runs.

Appendix
Effectiveness of the Proposed RCGA

To check the performance of our RCGA, we ran a multistart
method [36] which starts with many different initial solutions
and returns the best among them. We denote by MSM the
algorithm that randomly generates 10’ solutions as given in
Section 3.3 and produces the best as its final solution. Table 5
compares the performance of the MSM and the RCGA. A run
of the MSM took 5.4 seconds, which is 30 times longer than
that of the RCGA. The MSM showed better performance than
the NPB overall, but it was inferior to the RCGA for all the
cases. The results show the effectiveness of our genetic search
process.

Notations/Expressions

I;:

i Load during time interval i

gt Energy generated during time
interval i
X;: Residual energy in the battery at

the end of time interval i

X; — Xy Energy supplied to the battery
during time interval i

X; — x;_; +1; — g;: Net energy drawn from the grid
during time interval i
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pi Energy price set for time interval i
P Fixed price

(x; = x;_, +1; — g;) p;: Cost of energy over time interval i
T: Number of time intervals = 24

C: Battery capacity

P. Battery charge power

P, Battery discharge power

I(-): Indicator function such that I(true)

=1and I(false) = 0.
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