3,467 research outputs found

    Reactive and Proactive Sharing Across Concurrent Analytical Queries

    Get PDF
    Today an ever increasing amount of data is collected and analyzed by researchers, businesses, and scientists in data warehouses (DW). In addition to the data size, the number of users and applications querying data grows exponentially. The increasing concurrency is itself a challenge in query execution, but also introduces an opportunity favoring synergy between concurrent queries. Traditional execution engines of DW follows a query-centric approach, where each query is optimized and executed independently. On the other hand, workloads with increased concurrency have several queries with common parts of data and work, creating the opportunity for sharing among concurrent queries. Sharing can be reactive to the inherently existing sharing opportunities, or proactive by redesigning query operators to maximize the sharing opportunities. This demonstration showcases the impact of proactive and reactive sharing by comparing and integrating representative state-of-the-art techniques: Simultaneous Pipelining (SP), for reactive sharing, which shares intermediate results of common sub-plans, and Global Query Plans (GQP) for proactive sharing, which build and evaluate a single query plan with shared operators. We visually demonstrate, in an interactive interface, the behavior of both sharing approaches on top of a state-of-the-art storage engine using the original prototypes. We show that pull-based sharing for SP eliminates the serialization point imposed by the original push-based approach. Then, we compare, through a sensitivity analysis, the performance of SP and GQP. Finally, we show that SP can improve the performance of GQP for a query mix with common sub-plans

    Scaling Up Concurrent Analytical Workloads on Multi-Core Servers

    Get PDF
    Today, an ever-increasing number of researchers, businesses, and data scientists collect and analyze massive amounts of data in database systems. The database system needs to process the resulting highly concurrent analytical workloads by exploiting modern multi-socket multi-core processor systems with non-uniform memory access (NUMA) architectures and increasing memory sizes. Conventional execution engines, however, are not designed for many cores, and neither scale nor perform efficiently on modern multi-core NUMA architectures. Firstly, their query-centric approach, where each query is optimized and evaluated independently, can result in unnecessary contention for hardware resources due to redundant work found across queries in highly concurrent workloads. Secondly, they are unaware of the non-uniform memory access costs and the underlying hardware topology, incurring unnecessarily expensive memory accesses and bandwidth saturation. In this thesis, we show how these scalability and performance impediments can be solved by exploiting sharing among concurrent queries and incorporating NUMA-aware adaptive task scheduling and data placement strategies in the execution engine. Regarding sharing, we identify and categorize state-of-the-art techniques for sharing data and work across concurrent queries at run-time into two categories: reactive sharing, which shares intermediate results across common query sub-plans, and proactive sharing, which builds a global query plan with shared operators to evaluate queries. We integrate the original research prototypes that introduce reactive and proactive sharing, perform a sensitivity analysis, and show how and when each technique benefits performance. Our most significant finding is that reactive and proactive sharing can be combined to exploit the advantages of both sharing techniques for highly concurrent analytical workloads. Regarding NUMA-awareness, we identify, implement, and compare various combinations of task scheduling and data placement strategies under a diverse set of highly concurrent analytical workloads. We develop a prototype based on a commercial main-memory column-store database system. Our most significant finding is that there is no single strategy for task scheduling and data placement that is best for all workloads. In specific, inter-socket stealing of memory-intensive tasks can hurt overall performance, and unnecessary partitioning of data across sockets involves an overhead. For this reason, we implement algorithms that adapt task scheduling and data placement to the workload at run-time. Our experiments show that both sharing and NUMA-awareness can significantly improve the performance and scalability of highly concurrent analytical workloads on modern multi-core servers. Thus, we argue that sharing and NUMA-awareness are key factors for supporting faster processing of big data analytical applications, fully exploiting the hardware resources of modern multi-core servers, and for more responsive user experience

    How to Stop Under-Utilization and Love Multicores

    Get PDF
    Designing scalable transaction processing systems on modern hardware has been a challenge for almost a decade. Hardware trends oblige software to overcome three major challenges against systems scalability: (1) Exploiting the abundant thread-level parallelism provided by multicores, (2) Achieving predictively efficient execution despite the variability in communication latencies among cores on multisocket multicores, and (3) Taking advantage of the aggressive micro-architectural features. In this tutorial, we shed light on the above three challenges and survey recent proposals to alleviate them. First, we present a systematic way of eliminating scalability bottlenecks based on minimizing unbounded communication and show several techniques that apply the presented methodology to minimize bottlenecks in major components of transaction processing systems. Then, we analyze the problems that arise from the non-uniform nature of communication latencies on modern multisockets and ways to address them for systems that already scale well on multicores. Finally, we examine the sources of under-utilization within a modern processor and present insights and techniques to better exploit the micro-architectural resources of a processor by improving cache locality at the right level

    Data Systems Fault Coping for Real-time Big Data Analytics Required Architectural Crucibles

    Get PDF
    This paper analyzes the properties and characteristics of unknown and unexpected faults introduced into information systems while processing Big Data in real-time. The authors hypothesize that there are new faults, and requirements for fault handling and propose an analytic model and architectural framework to assess and manage the faults and mitigate the risks of correlating or integrating otherwise uncorrelated Big Data, and to ensure the source pedigree, quality, set integrity, freshness, and validity of data being consumed. We argue that new architectures, methods, and tools for handling and analyzing Big Data systems functioning in real-time must design systems that address and mitigate concerns for faults resulting from real-time streaming processes while ensuring that variables such as synchronization, redundancy, and latency are addressed. This paper concludes that with improved designs, real-time Big Data systems may continuously deliver the value and benefits of streaming Big Data

    A Mini Review of Peer-to-Peer (P2P) for Vehicular Communication

    Get PDF
    In recent times, peer-to-peer (P2P) has evolved, where it leverages the capability to scale compared to server-based networks. Consequently, P2P has appeared to be the future distributed systems in emerging several applications. P2P is actually a disruptive technology for setting up applications that scale to numerous concurrent individuals. Thus, in a P2P distributed system, individuals become themselves as peers through contributing, sharing, and managing the resources in a network. In this paper, P2P for vehicular communication is explored. A comprehensive of the functioning concept of both P2P along with vehicular communication is examined. In addition, the advantages are furthermore conversed for a far better understanding on the implementation

    Improving construction site management practices through knowledge management

    Get PDF
    There are several challenging engineering and management problems that occur on construction sites. Failure in managing construction site problems results in a high proportion of rework, defects, delays, disputes and cost overruns on construction projects. In site management, knowledge is often embedded not only in documents and repositories but also in organisational routines, processes, practices and norms. However, site management teams still do not have a systematic approach to managing knowledge. Knowledge management (KM) processes can effectively be used to enable construction site managers deal with on-site problems and risks in a systematic and efficient way. With regard to these problems, the aim of this research was to investigate the improvement of construction site management practices through the integration of knowledge management processes. The research methodology adopted consisted of several methods. A literature review on site management practices and knowledge management as first undertaken . This was followed by case studies involving five construction sites which sought to investigate the key problems of site management practices and to examine existing knowledge management practices on the construction site. They also explored how KM processes could improve current site management practices. The cases tudy findings underpinned by literature results were used to develop a conceptual framework to managing construction knowledge that is entrenched in site management processes. The integrated K&4 framework (incorporating both proactive and reactive approaches) was intended to enable site managers to adopt a knowledge management approach to addressing site management problems. The framework was encapsulated in a computer-based prototype system (developed using Microsoft Visual Basic) to simplify the use of the integrated KM framework and provide construction organisations with a practical tool. Evaluation of the prototype system was carried out by industry practitioners and construction researchers to assess its appropriateness and functionality. It was established that the prototype system was highly effective in enabling site managers to address site management problems from a knowledge management perspective. Several benefits of the system were also identified. It is concluded that construction site management practices can be improved if the knowledge dimensions of the problems are well understood and appropriately managed. This research has developed an integrated KM framework that provides a structured approach to achieving this. The framework is simple to use, requires a relatively short time to implement, is scalable to any type of project and can easily be deployed on any construction site. Knowledge gains economic value when it is used to solve problems, explore opportunities and make decisions. The developed prototype system is expected to increase the ability of the site manager to learn from previous experience and to better address any site management problems that may occur. It also enables the site manager to be proactive in minimising the number of problems that occur on the construction site and to reduce the impact of those that do occur

    Data Storage and Dissemination in Pervasive Edge Computing Environments

    Get PDF
    Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed. Hence, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. This thesis focuses on the design and evaluation of resilient and efficient data storage and dissemination solutions for pervasive edge computing environments, operating with or without access to the network infrastructure. In line with this dichotomy, our goal can be divided into two specific scenarios. The first one is related to the absence of network infrastructure and the provision of a transient data storage and dissemination system for networks of co-located mobile devices. The second one relates with the existence of network infrastructure access and the corresponding edge computing capabilities. First, the thesis presents time-aware reactive storage (TARS), a reactive data storage and dissemination model with intrinsic time-awareness, that exploits synergies between the storage substrate and the publish/subscribe paradigm, and allows queries within a specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis- semination system for wireless edge environments, implementing TARS; ii) Parsley, a flexible and resilient group-based distributed hash table with preemptive peer relocation and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework for data storage and dissemination across multi-region edge networks, that makes use of both device-to-device and edge interactions. The developed solutions present low overheads, while providing adequate response times for interactive usage and low energy consumption, proving to be practical in a variety of situations. They also display good load balancing and fault tolerance properties.Resumo Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca- lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co- nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua vez, o paradigma de computação na periferia da rede leva as computações e o armazena- mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede. Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma- zenamento e disseminação de dados em ambientes pervasivos de computação na periferia da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico- tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e aos recursos de computação na periferia da rede correspondentes. Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um modelo reativo de armazenamento e disseminação de dados com percepção intrínseca do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu- blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida, descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars- ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e com a periferia da rede. As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res- posta adequados para uso interativo e baixo consumo de energia, demonstrando serem práticas nas mais diversas situações. Estas soluções também exibem boas propriedades de balanceamento de carga e tolerância a faltas

    Learning workload behaviour models from monitored time-series for resource estimation towards data center optimization

    Get PDF
    In recent years there has been an extraordinary growth of the demand of Cloud Computing resources executed in Data Centers. Modern Data Centers are complex systems that need management. As distributed computing systems grow, and workloads benefit from such computing environments, the management of such systems increases in complexity. The complexity of resource usage and power consumption on cloud-based applications makes the understanding of application behavior through expert examination difficult. The difficulty increases when applications are seen as "black boxes", where only external monitoring can be retrieved. Furthermore, given the different amount of scenarios and applications, automation is required. To deal with such complexity, Machine Learning methods become crucial to facilitate tasks that can be automatically learned from data. Firstly, this thesis proposes an unsupervised learning technique to learn high level representations from workload traces. Such technique provides a fast methodology to characterize workloads as sequences of abstract phases. The learned phase representation is validated on a variety of datasets and used in an auto-scaling task where we show that it can be applied in a production environment, achieving better performance than other state-of-the-art techniques. Secondly, this thesis proposes a neural architecture, based on Sequence-to-Sequence models, that provides the expected resource usage of applications sharing hardware resources. The proposed technique provides resource managers the ability to predict resource usage over time as well as the completion time of the running applications. The technique provides lower error predicting usage when compared with other popular Machine Learning methods. Thirdly, this thesis proposes a technique for auto-tuning Big Data workloads from the available tunable parameters. The proposed technique gathers information from the logs of an application generating a feature descriptor that captures relevant information from the application to be tuned. Using this information we demonstrate that performance models can generalize up to a 34% better when compared with other state-of-the-art solutions. Moreover, the search time to find a suitable solution can be drastically reduced, with up to a 12x speedup and almost equal quality results as modern solutions. These results prove that modern learning algorithms, with the right feature information, provide powerful techniques to manage resource allocation for applications running in cloud environments. This thesis demonstrates that learning algorithms allow relevant optimizations in Data Center environments, where applications are externally monitored and careful resource management is paramount to efficiently use computing resources. We propose to demonstrate this thesis in three areas that orbit around resource management in server environmentsEls Centres de Dades (Data Centers) moderns són sistemes complexos que necessiten ser gestionats. A mesura que creixen els sistemes de computació distribuïda i les aplicacions es beneficien d’aquestes infraestructures, també n’augmenta la seva complexitat. La complexitat que implica gestionar recursos de còmput i d’energia en sistemes de computació al núvol fa difícil entendre el comportament de les aplicacions que s'executen de manera manual. Aquesta dificultat s’incrementa quan les aplicacions s'observen com a "caixes negres", on només es poden monitoritzar algunes mètriques de les caixes de manera externa. A més, degut a la gran varietat d’escenaris i aplicacions, és necessari automatitzar la gestió d'aquests recursos. Per afrontar-ne el repte, l'aprenentatge automàtic juga un paper cabdal que facilita aquestes tasques, que poden ser apreses automàticament en base a dades prèvies del sistema que es monitoritza. Aquesta tesi demostra que els algorismes d'aprenentatge poden aportar optimitzacions molt rellevants en la gestió de Centres de Dades, on les aplicacions són monitoritzades externament i la gestió dels recursos és de vital importància per a fer un ús eficient de la capacitat de còmput d'aquests sistemes. En primer lloc, aquesta tesi proposa emprar aprenentatge no supervisat per tal d’aprendre representacions d'alt nivell a partir de traces d'aplicacions. Aquesta tècnica ens proporciona una metodologia ràpida per a caracteritzar aplicacions vistes com a seqüències de fases abstractes. La representació apresa de fases és validada en diferents “datasets” i s'aplica a la gestió de tasques d'”auto-scaling”, on es conclou que pot ser aplicable en un medi de producció, aconseguint un millor rendiment que altres mètodes de vanguardia. En segon lloc, aquesta tesi proposa l'ús de xarxes neuronals, basades en arquitectures “Sequence-to-Sequence”, que proporcionen una estimació dels recursos usats per aplicacions que comparteixen recursos de hardware. La tècnica proposada facilita als gestors de recursos l’habilitat de predir l'ús de recursos a través del temps, així com també una estimació del temps de còmput de les aplicacions. Tanmateix, redueix l’error en l’estimació de recursos en comparació amb d’altres tècniques populars d'aprenentatge automàtic. Per acabar, aquesta tesi introdueix una tècnica per a fer “auto-tuning” dels “hyper-paràmetres” d'aplicacions de Big Data. Consisteix així en obtenir informació dels “logs” de les aplicacions, generant un vector de característiques que captura informació rellevant de les aplicacions que s'han de “tunejar”. Emprant doncs aquesta informació es valida que els ”Regresors” entrenats en la predicció del rendiment de les aplicacions són capaços de generalitzar fins a un 34% millor que d’altres “Regresors” de vanguàrdia. A més, el temps de cerca per a trobar una bona solució es pot reduir dràsticament, aconseguint un increment de millora de fins a 12 vegades més dels resultats de qualitat en contraposició a alternatives modernes. Aquests resultats posen de manifest que els algorismes moderns d'aprenentatge automàtic esdevenen tècniques molt potents per tal de gestionar l'assignació de recursos en aplicacions que s'executen al núvol.Arquitectura de computador

    A HOLISTIC REDUNDANCY- AND INCENTIVE-BASED FRAMEWORK TO IMPROVE CONTENT AVAILABILITY IN PEER-TO-PEER NETWORKS

    Get PDF
    Peer-to-Peer (P2P) technology has emerged as an important alternative to the traditional client-server communication paradigm to build large-scale distributed systems. P2P enables the creation, dissemination and access to information at low cost and without the need of dedicated coordinating entities. However, existing P2P systems fail to provide high-levels of content availability, which limit their applicability and adoption. This dissertation takes a holistic approach to device mechanisms to improve content availability in large-scale P2P systems. Content availability in P2P can be impacted by hardware failures and churn. Hardware failures, in the form of disk or node failures, render information inaccessible. Churn, an inherent property of P2P, is the collective effect of the users’ uncoordinated behavior, which occurs when a large percentage of nodes join and leave frequently. Such a behavior reduces content availability significantly. Mitigating the combined effect of hardware failures and churn on content availability in P2P requires new and innovative solutions that go beyond those applied in existing distributed systems. To addresses this challenge, the thesis proposes two complementary, low cost mechanisms, whereby nodes self-organize to overcome failures and improve content availability. The first mechanism is a low complexity and highly flexible hybrid redundancy scheme, referred to as Proactive Repair (PR). The second mechanism is an incentive-based scheme that promotes cooperation and enforces fair exchange of resources among peers. These mechanisms provide the basis for the development of distributed self-organizing algorithms to automate PR and, through incentives, maximize their effectiveness in realistic P2P environments. Our proposed solution is evaluated using a combination of analytical and experimental methods. The analytical models are developed to determine the availability and repair cost properties of PR. The results indicate that PR’s repair cost outperforms other redundancy schemes. The experimental analysis was carried out using simulation and the development of a testbed. The simulation results confirm that PR improves content availability in P2P. The proposed mechanisms are implemented and tested using a DHT-based P2P application environment. The experimental results indicate that the incentive-based mechanism can promote fair exchange of resources and limits the impact of uncooperative behaviors such as “free-riding”
    corecore