
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Grossglauser, président du jury
Prof. A. Ailamaki, directrice de thèse

Prof. T. Neumann, rapporteur
Dr R. Rajwar, rapporteur
Prof. J. Larus, rapporteur

Scaling Up Concurrent Analytical Workloads
on Multi-Core Servers

THÈSE NO 7222 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 24 NOVEMBRE 2016

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES ET APPLICATIONS DE TRAITEMENT DE DONNÉES MASSIVES

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

Iraklis PSAROUDAKIS

The nonexistent is whatever

we have not sufficiently desired.

— Nikos Kazantzakis, Report to Greco

To my parents, to my family, to my friends...

Acknowledgements
....

....

In this small section, I would like to express my immense gratitude to all the people who

helped me reach “the light at the end of the tunnel” and offered me great joy and happiness.

....

First and foremost, I would like to thank my advisor Anastasia Ailamaki. With her constant

encouragement and guidance, she helped me find my true calling and materialize my potential.

I also thank Natassa for being the force behind my internship at the SAP HANA team, which

later turned into a fruitful collaboration for my PhD thesis.

....

I would also like to thank the jury members of my PhD thesis committee for their participation

and their comments: James Larus, Thomas Neumann, and Ravi Rajwar.

....

Next, I would like to thank my collaborators and colleagues at the DIAS lab of EPFL. Manos

Athanassoulis helped me with the first steps in the research world, and mentored me during my

first PhD project. I was anxiously bickering at him but he always found a way to calm me down.

Then there is the super duo of Danica Porobic and Pinar Tözün, whose advice, experience, and

warm attitude were second to none. I would also like to thank Ioannis Alagiannis for soothing

us with cool frappés, Manos Karpathiotakis for being at the forefront of all entertainment

activities inside and outside the lab, Matt Olma for his awesomeness and for directing all

the high-quality movies of the lab, Mirjana Pavlovic for her beautiful presence and attitude,

Renata Borovica for giving us hopeful glimpses of family life, Darius Sidlauskas for being a

great company and capturing me in some of my most awkward poses during our trips, Adrian

Popescu for capturing us in astonishing pictures, Raja Appuswamy for constantly motivating

us to go out after work, Utku Sirin for worthily continuing the legacy of the aforementioned

super duo, Eleni Tzirita Zacharatou for mesmerizing us with countless trip pictures, Georgios

Psaropoulos for effortlessly picking up the baton at SAP, Odysseas Papapetrou for being an

awesome officemate, Angelos Anadiotis for our short breaks of fresh air, Thomas Heinis for

always having the most unexpected and hilarious comments, Radu Stoica for switching our

attention to the important details, Erietta Liarou for our wonderful cooperation, Gaidioz

Benjamin Cyrille Damien and Lionel Sambuc for helping me and translating my abstract in

French, Farhan Tauheed for even more amazing photographs, Satya Valluri for our interesting

research discussions, Giannakopoulou Styliani Asimina for being an amazing junior student,

i

Acknowledgements

Cesar Matos for all the coffees I drank, Tahir Azim for his help during my dry-runs, and of

course Dimitra Tsaoussis Melissargos and Erika Raetz for helping us in all administrative tasks.

....

I feel extremely grateful for having more awesome friends in Lausanne. I would like to thank

Vasileios Trigonakis for being an invaluable friend who stood by me through all the years of

my PhD, Konstantina Christakou and Javier Picorel Obando for being awesome friends and

a great company, Christina Vlachou and Iris Safaka for helping define an unforgettable era,

Michalis Zervos, Alexandros Daglis and Onur Yürüten for being amazing flatmates, and all

other friends in Lausanne including, but not limited to, Eleni Smyrnaiou, Katerina Liapi, Stella

Sarri, Anastasia Mavridou, George Chatzopoulos, Stefanos Skalistis, Bojana Paunovic, Sofia

Karygianni, Dorina Thanou, David Kozhaya, Tudor David, Stanko Novakovic, Milos Vasic,

Mohammed El Seidy, and Emre Atsan.

....

Due to our collaboration with the SAP HANA team, I was also lucky enough to spend a great

deal of my PhD time at another wonderful place: in Heidelberg in Germany. I would like to

thank all the colleagues in the SAP HANA team. I would like to thank Norman May for being

a great mentor and helping me with all our publications and my thesis, Tobias Scheuer for

our effortless collaboration on the task scheduler, Abdelkader Sellami for helping transfer our

research to the real world, Wolfgang Lehner and Kai-Uwe Sattler for our collaboration, Arne

Schwarz for shaping an amazing campus team, Ingo Mueller and Ismail Oukid for giving me

strength and for participating together in the SIGMOD programming contest, Florian Wolf

for being a great junior student to advise and work with, David Kernert and Max Wildemann

for our outings, Marcus Paradies and Michael Rudolf for our discussions and their advice,

Robert Brunel for the amazing photographs, Elena Vasilyeva for her warm attitude and russian

treats, Frank Tetzel and Lucas Lersch for being great new members of the team, Matthias

Hauck and Thomas Bach for their support, and Hannes Rauhe for the hilarious discussions.

I would also like to thank all other members, collaborators, and friends from SAP including,

but not limited to, Alexander Boehm, Roman Dementiev, Thomas Willhalm, Daniel Booss,

Konstantinos Stergios, Konstantinos Drachtidis, Ioannis Kostis, Panagiotis Germanakos, Wal-

traud Germanakos, and Panagiotis Drouvelis. Of course I had the chance to make more great

friends in Heidelberg as well. I would especially like to thank Christina Papadimitraki, Anthi

Papasavva, Costas Demetriades, Helena Kotsis, Ioanna Lampropoulou, Nikos Doumpas, Gloria

Llopart, and Dimitris Chloridis for their company and support.

....

Additionally, I would like to thank my friends during my time in Irakleio and Athens, who

all supported me and contributed to my journey to reach this point. I would like to thank

Vaggelis Polychronopoulos, Anna Schizaki, Maria Petraki, and Elina Vasilikogiannaki for being

invaluable friends since childhood. Moreover, I would like to thank my friends during my

time in Athens: Georgios Santikos, Lina Stavridou, Renata Raidou, Minos Kontos, Alexandros

Sigaras, Dimitris Rizadis, Theodora Chaspari, Victoria Pismiri, and Bill Stavroulakis.

....

Last but not least, I would like to say many thanks to my family, without whom this jour-

ii

Acknowledgements

ney would not have been possible: my mother Evangelia Psaroudaki, my father Evangelos

Psaroudakis, and my brother Ioannis Psaroudakis.

....

Finally, I would like to acknowledge the funding that supported my PhD research. My work and

research on sharing across concurrent queries was supported by the European Commission

Collaborative Project “BigFoot”, Grant Agreement Number 317858. My work and research on

NUMA-aware data placement and task scheduling was supported by SAP S.E.

iii

Abstract

Today, an ever-increasing number of researchers, businesses, and data scientists collect and

analyze massive amounts of data in database systems. The database system needs to pro-

cess the resulting highly concurrent analytical workloads by exploiting modern multi-socket

multi-core processor systems with non-uniform memory access (NUMA) architectures and

increasing memory sizes. Conventional execution engines, however, are not designed for

many cores, and neither scale nor perform efficiently on modern multi-core NUMA archi-

tectures. Firstly, their query-centric approach, where each query is optimized and evaluated

independently, can result in unnecessary contention for hardware resources due to redun-

dant work found across queries in highly concurrent workloads. Secondly, they are unaware

of the non-uniform memory access costs and the underlying hardware topology, incurring

unnecessarily expensive memory accesses and bandwidth saturation. In this thesis, we show

how these scalability and performance impediments can be solved by exploiting sharing

among concurrent queries and incorporating NUMA-aware adaptive task scheduling and data

placement strategies in the execution engine.

....

Regarding sharing, we identify and categorize state-of-the-art techniques for sharing data and

work across concurrent queries at run-time into two categories: reactive sharing, which shares

intermediate results across common query sub-plans, and proactive sharing, which builds a

global query plan with shared operators to evaluate queries. We integrate the original research

prototypes that introduce reactive and proactive sharing, perform a sensitivity analysis, and

show how and when each technique benefits performance. Our most significant finding is

that reactive and proactive sharing can be combined to exploit the advantages of both sharing

techniques for highly concurrent analytical workloads.

....

Regarding NUMA-awareness, we identify, implement, and compare various combinations

of task scheduling and data placement strategies under a diverse set of highly concurrent

analytical workloads. We develop a prototype based on a commercial main-memory column-

store database system. Our most significant finding is that there is no single strategy for task

scheduling and data placement that is best for all workloads. In specific, inter-socket stealing

of memory-intensive tasks can hurt overall performance, and unnecessary partitioning of data

across sockets involves an overhead. For this reason, we implement algorithms that adapt task

scheduling and data placement to the workload at run-time.

v

Abstract

....

Our experiments show that both sharing and NUMA-awareness can significantly improve the

performance and scalability of highly concurrent analytical workloads on modern multi-core

servers. Thus, we argue that sharing and NUMA-awareness are key factors for supporting

faster processing of big data analytical applications, fully exploiting the hardware resources of

modern multi-core servers, and for more responsive user experience.

Keywords: Database management systems, Analytical processing systems, Multi-socket

multi-core servers, Non-uniform hardware topologies, Sharing data and work, Task scheduling,

Data placement, NUMA-awareness

vi

Résumé
Aujourd’hui, un nombre toujours croissant de chercheurs, d’entreprises et de scientifiques

recueillent et analysent des quantités massives de données à l’aide de systèmes de gestion

de base de données. Le système de base de données doit traiter les tâches d’analyses en

parallèle en exploitant les systèmes de processeurs multi-coeur multi-socket modernes avec

des architectures d’accès mémoire non uniforme (NUMA), ceci pour des quantités de mé-

moire croissantes. Les moteurs d’exécution classiques ne sont cependant pas conçus pour

les processeurs multi-coeur et leur performance n’augmente pas de manière importante sur

les architectures modernes multi-coeur NUMA. Tout d’abord, leur approche centrée sur la

requête, où chaque requête est optimisée et évaluée de façon indépendante, peut avoir pour

effet une contention inutile autour des ressources matérielles en raison de calculs redondants

qu’on retrouve dupliqués dans des requêtes concurrentes. Deuxièmement, ils ne prennent

pas en compte les coûts d’accès mémoire non uniformes et la topologie non uniforme du

matériel, occasionnant des accès mémoire inutilement coûteux et la saturation de la bande

passante. Dans cette thèse, nous montrons comment ces obstacles d’évolutivité et de perfor-

mance peuvent être dépassés en exploitant le partage entre les requêtes concurrentes ainsi

que l’intégration dans le moteur d’exécution de stratégies adaptatives de planification de

tâches et de placement de données tenant compte de la NUMA.

....

En ce qui concerne le partage, nous identifions les techniques connues de partage de données

et de calculs à travers des requêtes concurrentes en cours d’exécution et nous les classons

en deux catégories : le partage réactif, qui réutilise les résultats intermédiaires de sous-plans

communs à plusieurs requêtes, et le partage proactif, qui, pour exécuter l’ensemble des

requêtes, établit un plan d’exécution global basé sur des opérateurs partagés. Nous intégrons à

notre étude les prototypes de recherche originaux qui introduisent le partage réactif et proactif,

effectuons une analyse de sensibilité, et montrons comment et quand chaque technique

améliore la performance. Notre conclusion la plus importante est que les partages réactif et

proactif peuvent être combinés afin d’exploiter leurs avantages spécifiques pour traiter un

ensemble de requêtes analytiques hautement concurrentes.

....

En ce qui concerne la prise en compte des architectures NUMA, nous identifions, mettons en

œuvre, et comparons des différentes combinaisons de stratégies de planification de tâches et

de placement de données dans un vaste ensemble de charges de travail analytiques hautement

concurrents. Nous développons un prototype basé sur un système commercial de base de

vii

Résumé

données en mémoire. Notre constatation la plus importante est qu’il n’y a pas de stratégie

optimale unique pour la planification des tâches et le placement des données. En particulier,

le vol des tâches gourmandes en mémoire entre les sockets peut nuire à la performance, et

le partitionnement inutile des données sur les sockets implique une surcharge. Pour cette

raison, nous mettons en œuvre des algorithmes qui adaptent la planification des tâches et le

placement des données à la charge de travail en cours d’exécution.

....

Nos expériences montrent que le partage et la prise en compte des architectures NUMA

peuvent améliorer les performances et l’évolutivité des charges de travail analytiques hau-

tement concurrentes sur des serveurs multi-coeur modernes de manière significative. Ainsi,

nous défendons l’idée que le partage et l’adaptation à la NUMA sont des facteurs clés pour

offrir un traitement plus efficace de l’analyse de données en exploitant pleinement les res-

sources matérielles des serveurs multi-coeur modernes, et offrir une expérience utilisateur

plus réactive.

Mots clefs : Systèmes de gestion de base de données, Systèmes de traitement analytique, Ser-

veurs multi-socket multi-coeurs, Topologies matérielles non uniformes, Partage des données

et du travail, Planification des tâches, Placement de données, Adaptation à la NUMA

viii

Contents
Acknowledgements i

Abstract (English/Français) v

Table of Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Modern Multi-Core Processor Servers . 2

1.2 Why Conventional DBMS Do Not Scale Up Efficiently 3

1.3 How to Scale Up Efficiently . 4

1.3.1 Dimension #1: Sharing Data and Work Across Concurrent Queries 4

1.3.2 Dimension #2: NUMA-Aware Task Scheduling and Data Placement . . . 5

1.4 Thesis Statement, Contributions, and Methodology 7

2 Background and Related Work 11

2.1 Disk-Based Row-Stores vs. Main-Memory Column-Stores 11

2.2 Sharing Techniques . 12

2.2.1 Reactive Sharing . 15

2.2.2 The QPipe Execution Engine . 16

2.2.3 Proactive Sharing . 17

2.2.4 The CJOIN Operator . 19

2.3 Task Scheduling . 20

2.4 Non-Uniform Memory Access (NUMA) . 22

2.4.1 Multi-Socket Servers and NUMA-Awareness 22

2.4.2 Related Work in NUMA-Aware Task Scheduling and Data Placement . . 26

2.5 Overview of SAP HANA . 29

3 Sharing Data and Work Across Concurrent Queries 33

3.1 Introduction . 33

3.1.1 Methodologies for Sharing Data and Work 33

3.1.2 Integrating Reactive and Proactive Sharing 34

ix

Contents

3.1.3 Optimizing Reactive Sharing . 34

3.1.4 Reactive vs. Proactive Sharing . 35

3.1.5 Contributions . 36

3.2 Integrating Reactive and Proactive Sharing . 36

3.2.1 Benefits of Applying Reactive Sharing to Proactive Sharing 37

3.2.2 CJOIN as a QPipe Stage . 38

3.3 Optimizing Reactive Sharing . 39

3.3.1 Design of a Shared Pages List . 42

3.4 Experimental Evaluation . 43

3.4.1 Experimental Methodology . 43

3.4.2 Impact of Concurrency . 45

3.4.3 Impact of Data Size . 46

3.4.4 Impact of Similarity . 49

3.4.5 SSB Query Mix . 51

3.5 Conclusions . 52

4 Task Scheduling for Highly Concurrent Main-Memory Workloads 53

4.1 Integrating Task Scheduling in a DBMS . 53

4.1.1 Integration in SAP HANA . 55

4.1.2 Task Scheduler Architecture . 56

4.1.3 Dynamic Adjustment of Concurrency Level 58

4.1.4 Dynamic Adjustment of Task Granularity 61

4.1.5 Experimental Evaluation . 62

4.2 Scaling Up Mixed Transactional and Analytical Workloads 65

4.2.1 Mixed Workloads in SAP HANA . 67

4.2.2 Mixed Workloads in HyPer . 68

4.2.3 Setting Up the CH-benCHmark . 70

4.2.4 Experimental Evaluation . 71

4.3 Summary and Conclusions . 77

5 NUMA-Aware Task Scheduling and Data Placement Strategies 79

5.1 Introduction . 79

5.2 Data Placement of a Main-Memory Column . 80

5.2.1 Tracking Memory . 82

5.3 NUMA-Aware Task Scheduling . 84

5.3.1 NUMA-Aware Scheduling of Scans . 86

5.4 Experimental Evaluation of Concurrent Scans . 88

5.4.1 Uniformly Distributed Workload . 89

5.4.2 Skewed Workload . 93

5.5 NUMA-Aware Scheduling of Aggregations and Equi-Joins 96

5.5.1 The Overhead of Partitioning and Stealing 98

5.5.2 TPC-H and SAP BW-EML Benchmarks . 101

5.6 Summary and Conclusions . 102

x

Contents

6 Adaptive NUMA-Aware Task Scheduling and Data Placement 103

6.1 Introduction . 103

6.2 Tracking Resource Utilization . 105

6.3 Adaptive Data Placement . 108

6.3.1 Abstract Workflow . 108

6.3.2 Information and Eligibility of RUH . 110

6.3.3 Reducing the Utilization Imbalance . 112

6.3.4 Data Placer . 118

6.4 Adaptive Task Stealing . 119

6.5 Experimental Evaluation . 121

6.5.1 Adaptive Data Placement . 123

6.5.2 Adaptive Task Stealing . 124

6.5.3 Partitioning Overhead . 125

6.5.4 Changing Workload . 126

6.5.5 Workload Mix . 127

6.5.6 TPC-H benchmark . 127

6.6 Conclusions . 128

7 Conclusions and Future Directions 131

7.1 Thesis Summary . 131

7.2 Future Directions . 132

7.3 Impact . 134

Bibliography 153

Curriculum Vitae 155

xi

List of Figures
1.1 4-socket server. 2

1.2 The execution engine in a typical DBMS. 3

1.3 Thesis methodology . 8

2.1 Evaluation of three concurrent queries using (a) a query-centric model, (b)

shared scans, (c) reactive sharing, and (d) proactive sharing. 15

2.2 (a) Example of reactive sharing with two queries having a common sub-plan

below the join operator. (b) A step and a linear window of opportunity [91]. (c)

Conceptual design of QPipe, with the packets of an example of a query plan

dispatched to the relevant stages. 16

2.3 Example of shared selection and hash-join operators. 17

2.4 The CJOIN operator uses proactive sharing by evaluating a GQP for star queries. 19

2.5 An 8-socket server with Intel Xeon E7-8870 processors. 23

2.6 A 4-socket server with Intel Xeon E7-4880 v2 processors. 24

2.7 The general database architecture of SAP HANA. 30

2.8 Example of a dictionary-encoded column. 30

2.9 (a) The data structures of the main and the delta parts of a column. (b) The delta

part of a column is periodically merged into the main part. 32

3.1 Integration scheme of CJOIN as a QPipe stage. 38

3.2 Sharing identical results during SP with: (a) push-only model and (b) a SPL. . . 40

3.3 Evaluating multiple identical TPC-H Q1 queries with a push-based model during

reactive sharing (leftmost graphs), and with a pull-based model during reactive

sharing (middle graphs), using either 1 H/W thread (top graphs) or all available

H/W threads (bottom graphs) of the server. The rightmost graphs show the

corresponding speedups of the two methods of reactive sharing over not sharing. 41

3.4 Design of a shared pages list. 42

3.5 Size of SPL. 43

3.6 The SSB Q3.2 SQL template and the query plan. 45

3.7 Experiment with memory-resident (left) and disk-resident (middle) database of

SF 1. The table (right) includes measurements for the case of 256 concurrent

queries. 45

xiii

List of Figures

3.8 8 queries with a memory-resident database of SF 10. The table includes mea-

surements for 30% selectivity. 47

3.9 Memory-resident database of SF 10 and 30% selectivity. The table includes

measurements for 256 queries. 48

3.10 8 concurrent queries with disk-resident databases. The table includes measure-

ments for the case of SF 100. 49

3.11 Disk-resident database of SF 1 and 16 possible plans. The table includes mea-

surements for 256 queries. 50

3.12 Evaluating 512 concurrent queries with a varying similarity factor, for a SF 100.

The table includes the sharing opportunities of reactive sharing (average of all

iterations). 50

3.13 Disk-resident database of SF 30. Response time (left) and throughput experiment

(middle), varying the number of concurrent queries and clients respectively. The

table (right) includes measurements for both experiments. 51

4.1 Our task scheduler integrates two main thread pools of SAP HANA. 56

4.2 The data structures used by the task scheduler. 57

4.3 The task scheduler’s types of worker threads. 59

4.4 Experiment with TPC-H queries. Measurements on the right-hand side are for

the case of 1024 TPC-H concurrent queries. 63

4.5 Timelines for Fixed (left) and Hints (right), for the case of 1024 TPC-H queries. . 64

4.6 Conceptual figures of how we expect the performance of mixed workloads to be

affected by (a) data freshness, (b) flexibility, and (c) scheduling. 66

4.7 (a) HyPer design using virtual memory facilities to create snapshots for analyt-

ics [101]. (b) Restricting flexibility to support further optimizations of query

plans [117]. (c) Conceptual figure of scheduling for pipeline R of the query plan

of (b) [117]. 69

4.8 Schema of the CH-benCHmark. 71

4.9 Performance of the default configuration of SAP HANA. 73

4.10 Performance of SAP HANA when intra-query parallelism is disabled. 74

4.11 Performance of HyPer with the lowest level of analytical data freshness. 75

4.12 Performance of HyPer with an intermediate level of analytical data freshness. . 76

5.1 (a) Impact of NUMA on the performance of concurrent clients issuing scan-

heavy queries. (b) Memory throughput of the sockets for the case of 1024 clients. 80

5.2 Different data placements of a dictionary-encoded column on four sockets. . . 81

5.3 Example of a PSM after adding the virtual memory ranges to track (bold lines). 83

5.4 The design of our NUMA-aware task scheduler. 85

5.5 Task scheduling (a) for a scan or index lookups to find qualifying matches, and

(b) for the output materialization, for an IVP-placed column. 86

5.6 Evaluating OS, Target, and Bound scheduling strategies, with RR-placed columns. 90

5.7 As Figure 5.6, on the 8-socket Westmere-EX server. 90

5.8 The effect of the RR, IVP, and PP data placements. 91

xiv

List of Figures

5.9 Violin plots of the latency distributions. 91

5.10 Evaluating 1120 clients with different data placement and scheduling strategies,

on a 32-socket server. 92

5.11 Evaluating different selectivities. 93

5.12 Evaluating the OS, Target, and Bound strategies, with RR-placed columns. . . . 94

5.13 Evaluating the RR, IVP, and PP data placements, with the Bound strategy. . . . 94

5.14 As Figure 5.13, with a high selectivity. 95

5.15 As Figure 5.14, with the Target strategy. 95

5.16 NUMA-aware aggregation with a table partitioned across two sockets. 97

5.17 256 clients issuing aggregation or join queries on the 4-socket server, under

different cases of selectivity, available tables, stealing, and partitioning. Each

result of LLC misses belongs to the corresponding case of the left-hand side graphs. 99

5.18 TPC-H and SAP BW-EML with different PP granularities and scheduling strategies.101

6.1 A conceptual example of our adaptive data placement. 104

6.2 Tracking the resource utilization of tasks, TBP and TGP, and sockets. The values

are taken from instances of our experiments on our 4-socket server. 106

6.3 Each table part (TBP), table group part (TGP), and socket is associated with a

resource utilization history (RUH). 107

6.4 Abstract workflow of the Data Placer (DP). 108

6.5 Conceptual examples of calculating the partitioning eligibility of (a) an ineligible

RUH, and (b) an eligible RUH. 112

6.6 Calculating the utilization imbalance of a pair of sockets before and after (a)

moving, and (b) partitioning. 114

6.7 Calculating the imbalance considering (a) that the utilization of RUHs’ owner

does not increase, and (b) that it actually increases after moving a RUH’s owner. 115

6.8 Calculating the imbalance considering (a) that the utilization of RUHs’ owners

does not increase, and (b) that it actually increases after partitioning a RUH’s

owner. 116

6.9 Calibration experiment for three NUMA servers. 120

6.10 Adaptive data placement of three active tables (4-socket server). 123

6.11 Experiment showing how adaptive task stealing disallows stealing of memory-

intensive classes (4-socket server). 124

6.12 The overhead of partitioning for aggregations (8-socket server). 125

6.13 The impact of the number of groups (8-socket server) 126

6.14 Three different workload phases (8-socket server). 126

6.15 Balancing the utilization of a stable workload mix (8-socket server). 127

6.16 TPC-H throughput run (32-socket server). 128

xv

List of Tables
2.1 Sharing methodologies employed by a query-centric model and the research

prototypes we examine. 13

2.2 Performance characteristics of the multi-socket servers that we use. 24

3.1 Rules of thumb for sharing data and work across typical concurrent queries. . . 36

5.1 Workload properties best fitted for each data placement, and key characteristics. 82

6.1 Configurable parameters used in our algorithms. 109

6.2 Further characteristics of the NUMA servers of Table 2.2 that we use in this

chapter’s experimental evaluation. 121

xvii

1 Introduction

Traditionally, online transaction processing (OLTP) workloads have been the motivating force

behind the early relational database management systems (DBMS) of the 1970’s, and many

modern DBMS following their trail [84]. OLTP workloads are composed of short-lived transac-

tions that read or modify operational data, and are typically standardized, submitted through

application layers such as an Enterprise Resource Planning (ERP) software or an online shop.

During the 1990’s, however, a different form of data analysis emerged. The increasing im-

portance of business intelligence led to another class of long-running, scan-heavy, ad-hoc

queries, namely online analytical processing (OLAP) workloads [51]. Due to these substantial

differences from OLTP workloads, OLAP workloads are supported by specialized database

systems that are typically used in data warehouses [102]. Operational data is periodically

extracted from OLTP systems, transformed, and loaded into data warehouses for analytics.

Nowadays, the importance of analytical workloads is even more prominent, as the collection

and analysis of massive data is a key factor for the competitiveness of numerous businesses,

and the insight required in many scientific endeavors [181]. Terms such as “data deluge”

or “big data” have been coined to characterize the prominence of complex analytics [5].

Examples include the Large Hadron Collider (LHC) that produces around 30 petabytes of data

annually [4], or the 1000 Genomes Project that has generated about 200 terabytes of data [5].

The main characteristics of big data, all of which together comprise the five “V’s” of big data

[95, 198], are: (a) volume, due to the large size of the data, (b) variety, such as unstructured or

audiovisual data, (c) veracity, referring to the trustworthiness of the data, (d) velocity, meaning

the frequency of incoming data and analytical requests, and finally (e) value, referring to the

collective benefits of big data analytics.

In this thesis, we focus more on the velocity of incoming analytical requests, and specifically

on the increasing concurrency of analytical workloads. According to a study of the data

warehouses market [172], the majority of businesses using data warehouses serviced up to

50 concurrent users in 2012. The study projects that in the near future, data warehouses will

need to service up to 1000 concurrent users. Another example from the industry is found in

1

Chapter 1. Introduction

the sizing guide of SAP for business intelligence infrastructure [7], mentioning a number of

500 active concurrent users for business analytics.

DBMS are being called to scale up on modern hardware in order to efficiently process highly

concurrent analytical workloads. DBMS need to improve their performance by efficiently

exploiting the increase in processing power offered by a modern multi-core processor server.

1.1 Modern Multi-Core Processor Servers

The underlying hardware of database systems has been constantly evolving over the past

decades. The hardware provides better performance and more parallelism which can be used

by the database system to scale up and handle highly concurrent workloads. The way that

parallelism is offered by the hardware, however, is non-uniform. Parallelism is enabled at

different levels of a system, ranging from single-core capabilities to multi-socket multi-core

capabilities [27, 28].

Since the first processors of the 1970’s, processing power has been steadily improving ac-

cording to Moore’s Law [136], which states that the number of transistors in microprocessors

doubles approximately every two years. Initially, the processing power was being increased by

improving the performance of a single-core processor. Parallelism features at the level of a

single core appeared with simultaneous multi-threading (SMT) [187]. Since the last decade, it

has become increasingly difficult to cram smaller and smaller transistors into the same central

processing unit (CPU). Heat dissipation has become a major limitation for further improving

the performance of a single core [89]. As a way out of these constraints, processor vendors are

providing more cores in a single CPU.

C1
...

Socket 1

L1
L2

L3 cache
Memory

C15
L1
L2

C1
...

Socket 2

L1
L2

L3 cache
Memory

C15
L1
L2

C1
...L1

L2
L3 cache
Memory

C15
L1
L2

C1
...L1

L2
L3 cache
Memory

C15
L1
L2

Socket 3 Socket 4

Figure 1.1 – 4-socket server.

Most systems with just a few cores use a symmetric

multiprocessing (SMP) architecture, where all cores

use a single bus to access shared I/O devices and

main memory. SMP simplifies both hardware and

software, since all cores and shared resources are

treated equally and uniformly. The common bus,

however, creates a significant bottleneck for further

scaling up the number of cores. In addition, main

memory sizes have been increasing rapidly. Proces-

sor vendors are solving this issue by de-centralizing

main memory, forming a non-uniform memory ac-

cess (NUMA) architecture [41, 106, 174]. Typically, a

multi-core processor is attached to one socket. The

cores share a local memory bus, controller, and last-

level cache. Then, multiple sockets are interconnected with a communication network in

order to enable a processor core to access remote memory of another socket. Figure 1.1 shows

2

1.2. Why Conventional DBMS Do Not Scale Up Efficiently

a conceptual example of a 4-socket server (see Section 2.4 for more details). The term multi-

socket server refers to a shared-memory server with multiple sockets of multi-core processors

and a cache-coherent NUMA architecture. This means that the typical memory hierarchy of

SMT architectures is extended by one more level after the last-level cache, which includes the

interconnect network. Communication costs across the memory hierarchy can vary greatly,

even by an order of magnitude. Additionally, the bandwidth of an interconnect link is an

additional bottleneck to be considered [41, 156].

In summary, a modern server offers high parallelism, with a high number of cores, but at the

expense of uniformity. In order to efficiently scale up, DBMS need to both efficiently exploit

the available high parallelism, and leverage the knowledge about the non-uniformity of the

underlying NUMA architecture.

1.2 Why Conventional DBMS Do Not Scale Up Efficiently

Execution engine

Buffer pool

SQL queries

Parser

Optimizer

thread

Storage
manager

Q1 Q2 Q3

Figure 1.2 – The execution
engine in a typical DBMS.

Typical DBMS optimize and execute each query indepen-

dently [166], following a query-centric approach [91]. Figure 1.2

shows the execution engine in a typical DBMS, executing three

query plans after the relevant SQL queries have been parsed and

optimized [166]. Simply servicing highly concurrent OLAP work-

loads with a typical execution engine can result in contention

for hardware resources, and inefficient use of the performance

and parallelism offered by modern hardware, due to two orthog-

onal issues: lack of (a) sharing, and (b) NUMA-awareness.

Sharing. A DBMS is expected to handle a high number of con-

current queries with a limited number of computing resources.

Although high concurrency itself is a challenge in query exe-

cution, the total amount of work can be reduced significantly

through synergy among queries. Workloads with increased con-

currency can have several queries with common parts of data

and work, creating sharing opportunities. For example, queries

Q1 and Q2 in Figure 1.2 share a common sub-plan, visualized

with operators having the same color, which is executed redun-

dantly two times. Nevertheless, the query-centric model misses these sharing opportunities.

Sharing can avoid redundant computations across concurrent queries, decrease unnecessary

contention for I/O, CPU and memory resources, and significantly improve overall perfor-

mance [47, 91, 98, 157].

NUMA-awareness. Typical execution engines are NUMA-agnostic: they assume uniformity of

memory accesses in the underlying hardware. Figure 1.2 shows a typical case without intra-

query parallelism, where each query plan is executed with a logical thread. Thread scheduling,

3

Chapter 1. Introduction

and any in-memory data placement, across the sockets of a multi-socket server are left to

the operating system (OS). This can lead to numerous performance problems. For example,

issuing too few or too many threads can result in the underutilization or overcommitment

of CPU resources [158]. More importantly, the OS cannot readily decide on which sockets to

place data and threads. The reason is that the OS lacks application knowledge, and it cannot

easily predict the access patterns of database workloads, which are generally more demanding

and unpredictable than other typical applications [41]. Thus, query execution often results in

uncoordinated and inefficient scheduling and data placement on multi-socket servers. The

potential performance problems include slow remote memory accesses and unnecessary

bandwidth bottlenecks in a socket’s memory controller or an interconnect link [41, 64, 106].

1.3 How to Scale Up Efficiently

To efficiently scale up analytical workloads on modern multi-core processor servers, DBMS

need to consider both aforementioned orthogonal issues. Sharing presents an opportunity to

be exploited to avoid unnecessary contention of resources due to redundant work and improve

performance, especially for highly concurrent workloads that involve sharing opportunities.

NUMA-awareness is necessary to scale up on multi-socket servers, by preferring fast local

memory accesses and avoiding unnecessary bandwidth bottlenecks. In this section, we

summarize the most prominent related work and our contributions in both dimensions of

sharing and NUMA-awareness. Chapter 2 includes a detailed discussion of related work.

1.3.1 Dimension #1: Sharing Data and Work Across Concurrent Queries

A variety of ideas have been proposed to exploit sharing. Query-centric DBMS include compo-

nents that promote sharing, such as buffer pool management techniques [173], materialized

views [169], and shared scans [211]. These techniques, however, do not explicitly share across

concurrent queries inside the execution engine. More recently, there have been research

prototypes focusing on explicit sharing of data and work across concurrent queries at run-

time [33, 47, 77, 91].

Our contributions. In this thesis, we include a short survey of the state-of-the-art run-time

sharing techniques. We categorize them into two sharing techniques. The first one, reactive

sharing, reuses common intermediate results across concurrent queries. Reactive sharing is

implemented inside an operator-centric execution engine, QPipe [91]. The second run-time

sharing technique, proactive sharing, builds a global query plan with shared operators to

evaluate the whole mix of concurrent queries. The CJOIN operator employs proactive sharing

across equi-joins of concurrent star queries [47]. The technique is later advanced to additional

operators and general schemas [33, 77].

Furthermore in this thesis, we analyze these novel run-time sharing techniques in order to

fully understand how they work, how they compare them to each other, and how they can be

4

1.3. How to Scale Up Efficiently

used efficiently in practice. We integrate reactive and proactive sharing in the same system, by

integrating their original research prototypes, QPipe and CJOIN. We first show that the original

implementation of reactive sharing, using a push-based model, where shared intermediate

results are pushed to further operators in query plans, involves a serialization point which

constitutes a bottleneck on multi-core servers. We propose a pull-based model for reactive

sharing, which does not require a serialization point. Additionally, we perform an extensive

comparative sensitivity analysis and show how and when it is beneficial to use each one of

the sharing techniques. More importantly, we show that reactive and proactive sharing are

orthogonal techniques and can be combined to exploit the advantages of both [157, 159].

1.3.2 Dimension #2: NUMA-Aware Task Scheduling and Data Placement

As mentioned in Section 1.2, if the DBMS is NUMA-agnostic and leaves scheduling and

in-memory data placement to the OS, there can be numerous performance problems. In

this thesis, we show how a NUMA-aware DBMS can avoid these problems by assuming

full control of scheduling and in-memory data placement. Our NUMA-aware analysis and

implementation of scheduling and data placement is based on a prototype of SAP HANA, a

commercial main-memory DBMS [72]. The choice of a main-memory DBMS is due to the fact

that NUMA-awareness is more crucial for main-memory DBMS than conventional disk-based

DBMS, since disk I/O is the primary bottleneck for disk-based DBMS and NUMA-awareness is

a secondary bottleneck (see Section 2.1).

Related work in task scheduling. As a first step towards taking control of scheduling, we

propose that the DBMS decouples its scheduling from the OS, by employing task scheduling

[12, 43, 68, 125, 158]. Task scheduling uses a number of worker threads to process all operations

for the entire application lifetime. Tasks, which encapsulate operations, are stored in task

pools, and worker threads are employed to process the tasks. A worker thread continuously

takes tasks from a task pool and executes the tasks. If a task pool becomes empty, then work

or task stealing is typically used, i.e., a worker thread attempts to steal tasks from other task

pools. The OS is only aware of the worker threads, and the task scheduler is in full control of

how the tasks are assigned or scheduled to the worker threads.

Our contributions to task scheduling. In this thesis, we show how task scheduling can be

employed for highly concurrent main-memory workloads. We show how we handle blocking

tasks by issuing additional worker threads. Also we show that task scheduling can effortlessly

support intra-query task parallelism, while avoiding performance problems related to the over-

commitment of CPU resources. However, we show that excessive intra-query task parallelism

incurs an unnecessary overhead on performance, which can be avoided by using a concurrency

hint, reflecting the system’s recent CPU utilization, to adapt task granularity [158]. Although

this thesis is mainly focused on OLAP workloads, we show that for mixed OLTP and OLAP

workloads scheduling is one of the significant factors, among data freshness and flexibility,

that affect how mixed workloads utilize resources. Specifically for scheduling, we show that

5

Chapter 1. Introduction

OLAP workloads tend to dominate over the concurrent OLTP workloads, pinpointing the need

for workload management and task prioritization [162].

Related work in NUMA-aware task scheduling and data placement. Since our initial eval-

uation of task scheduling for main-memory DBMS, task scheduling has been prominent

in related work about NUMA-awareness in main-memory DBMS. The research prototypes

HyPer [117] and ERIS [103] show that task scheduling can easily help model the execution

engine after the topology of the underlying hardware on multi-socket servers. Task pools and

worker threads can be bound to the sockets of the server, and tasks can have an affinity for

a socket. In regard to data placement, the research prototypes typically partition data, e.g.,

tables, across multiple sockets. In regard to scheduling, queries are parallelized with multiple

tasks, and each task is issued to the task pool of the socket that contains the data the task

targets, in order to prefer fast local memory accesses over slower remote memory accesses. If

a socket does not have local tasks, then inter-socket task stealing is used, i.e., a worker thread

attempts to steal tasks from task pools of remote sockets.

Our contributions to NUMA-aware task scheduling and data placement. The research pro-

totypes in related work follow a static approach by always partitioning data and using inter-

socket task stealing [103, 117]. An analysis of different data placement and task scheduling

strategies is missing, which we conduct in this thesis. We extend our initial task scheduler

for NUMA-aware task scheduling on multi-socket servers, and we provide a comprehensive

analysis of the performance of various data placement and task scheduling strategies under

different kinds of workloads, and identify any involved trade-offs [161]. Our analysis identifies

two major trade-offs.

First, inter-socket task stealing can help saturate CPU resources in case of skewed workloads,

but may hurt overall performance if stolen tasks are memory-intensive, saturating and over-

whelming the bandwidth of remote memory controllers and the interconnect links. Second,

partitioning data across multiple sockets can also help balance utilization across sockets in

case of skewed workloads, but involves an overhead in processing and parallelizing queries.

This overhead can be avoided in case the utilization can be balanced without partitioning.

The two trade-offs mentioned above depend on the workload which can change at run-

time. To exploit these trade-offs, we propose a design that adapts the task scheduling and

data placement strategy to the workload at run-time [163]. We track the history of CPU and

memory bandwidth utilization of tables, tasks, and sockets. Regarding task scheduling, we

dynamically disallow inter-socket task stealing for memory-intensive tasks. Regarding data

placement, our execution engine periodically balances the utilization across sockets by either

moving or repartitioning tables, while avoiding the overhead of unnecessary partitioning.

6

1.4. Thesis Statement, Contributions, and Methodology

1.4 Thesis Statement, Contributions, and Methodology

Thesis Statement

Analytical workloads in conventional database systems do not scale and perform efficiently as

the degree of parallelism offered by modern multi-socket multi-core processor servers increases.

Sharing data and work across concurrent queries, and NUMA-aware adaptive task scheduling

and data placement, can significantly improve the scalability and performance of concurrent

analytical workloads on modern servers.

Thesis Contributions

In this thesis, we analyze the impact of (a) sharing data and work across concurrent queries,

and (b) adaptive NUMA-aware task scheduling and data placement on the performance of

highly concurrent analytical workloads on multi-core servers. Our main activities are:

• We conduct a short survey of state-of-the-art run-time sharing techniques and catego-

rize them into reactive and proactive sharing techniques.

• We integrate reactive and proactive sharing in the same system, by integrating the

original research prototypes that introduce them: QPipe for reactive sharing, and the

CJOIN operator for proactive sharing. We perform an experimental analysis to show

how and when reactive and proactive sharing can improve performance.

• We integrate task scheduling in a prototype based on a commercial main-memory

DBMS, namely SAP HANA. We perform an experimental evaluation of task scheduling

for highly concurrent analytical workloads. As an extension, we also evaluate mixed

workloads, and show that task scheduling, data freshness, and flexibility are significant

factors that affect how mixed workloads perform and utilize resources.

• We implement and experimentally evaluate NUMA-aware task scheduling and data

placement strategies under diverse workload characteristics.

We make the following findings:

• Reactive and proactive sharing techniques are orthogonal and can be combined to

exploit the advantages of both.

• Inter-socket stealing of memory-intensive tasks can hurt overall performance.

• Unnecessary data partitioning across sockets can incur a performance overhead.

7

Chapter 1. Introduction

Our technical contributions are the following:

• We propose a pull-based model for reactive sharing that does not require a serialization

point when sharing common intermediate results.

• We show how the task scheduler can avoid CPU underutilization by issuing more worker

threads when tasks block, and how to avoid the overhead of excessive intra-query

task parallelism by adapting task granularity using a concurrency hint that reflects the

system’s recent CPU utilization.

• We develop algorithms to adapt task scheduling and data placement to the workload at

run-time, in order to balance utilization across sockets while avoiding the overhead of

stealing memory-intensive tasks and unnecessary data partitioning.

Thesis Methodology

The methodology we follow is visualized in Figure 1.3, and is composed of the following steps:

1. Survey run-time sharing techniques

Survey techniques for sharing data and work across concurrent queries at run-time,

detailing the commonalities and differences [157] (see Chapter 2).

2. Evaluate run-time sharing techniques

Identify when and how to use reactive and proactive sharing to eliminate redundant

work and improve overall performance of the query mix [157, 159] (see Chapter 3).

3. Employ and evaluate task scheduling

Employ and evaluate task scheduling for highly concurrent workloads in a main-memory

DBMS, detailing the involved benefits and challenges [26, 158, 162] (see Chapter 4).

System: QPipe and CJOIN

Scaling up concurrent analytical workloads on multi-core servers

Dimension #1: Run-time sharing Dimension #2: NUMA-awareness

Step #1: Short survey of run-time
sharing techniques (Chapter 2)
Step #2: Integration and evaluation
of reactive and proactive
sharing (Chapter 3)

Step #3: Employ and evaluate
task scheduling (Chapter 4)
Step #4: Evaluate NUMA-aware task scheduling
and data placement strategies (Chapter 5)
Step #5: Adaptive NUMA-aware task scheduling
and data placement (Chapter 6)

System: Prototype based on SAP HANA

Figure 1.3 – Thesis methodology

8

1.4. Thesis Statement, Contributions, and Methodology

4. Evaluate NUMA-aware task scheduling and data placement strategies

Analyze and evaluate the performance of concurrent analytics in a main-memory DBMS

with various coordinated task scheduling and data placement strategies on multi-socket

servers [161] (see Chapter 5).

5. Adaptive NUMA-aware task scheduling and data placement

Adapt the data placement and task scheduling strategy in a main-memory DBMS to

the workload at run-time in order to avoid unnecessary remote memory accesses and

bandwidth bottlenecks [163] (see Chapter 6).

Outline

The rest of this thesis is organized as follows: Chapter 2 gives a necessary background on the

topics discussed in this thesis, and mentions related work. Chapter 3 presents how and when

to share data and work across concurrent queries at run-time. Chapter 4 presents how task

scheduling can be used in the execution engine of a main-memory DBMS and explores its

benefits and challenges. Chapter 5 identifies and evaluates NUMA-aware task scheduling

and data placement strategies for main-memory analytical workloads. Chapter 6 presents

how to adapt the task scheduling and data placement strategy to the workload at run-time.

Finally, Chapter 7 concludes by summarizing this work, and presents further opportunities for

extending this work.

9

2 Background and Related Work

In this thesis, we show how an execution engine can efficiently scale up analytics on modern

multi-core servers by (a) sharing data and work across concurrent queries, and by (b) employ-

ing adaptive NUMA-aware data placement and task scheduling at run-time. In this chapter,

we present related work in the literature, related to both run-time sharing and NUMA-aware

analytical processing. Additionally, we give an overview of the necessary background for the

topics discussed in this thesis.

We begin by explaining the main differences, advantages, and disadvantages of disk-based row-

store DBMS versus main-memory column-store DBMS (see Section 2.1). We continue with a

short survey of sharing techniques, focusing on run-time sharing techniques (see Section 2.2).

Afterwards, we give an overview of task scheduling and related work (see Section 2.3). Finally,

we discuss NUMA and related work about NUMA-awareness (see Section 2.4).

2.1 Disk-Based Row-Stores vs. Main-Memory Column-Stores

Conventional relational DBMS are based on the principles introduced by System R [35]. Data

is stored on hard disk in row format: a record’s attributes are placed contiguously on storage.

The benefit of a row-store, i.e., a DBMS which stores data in row format, is that it can easily

achieve high performance for record writes, and thus for OLTP workloads [181]. Examples

include numerous popular DBMS following this architecture such as Microsoft SQL Server,

IBM DB2, Oracle, MySQL, and PostgreSQL.

For OLAP workloads, disk-based DBMS are not ideal. Disk accesses are slow and can be-

come a major performance bottleneck for analytics [205]. This is one of the reasons why

sharing techniques, such as buffer pool management techniques, can have a large impact on

performance (see Section 2.2). In our evaluation of run-time sharing techniques, we use a

disk-based row-store, namely the QPipe execution engine [91] on top of the Shore-MT storage

manager [99], and we are able to show the impact of sharing on the performance of disk

accesses and of further query operators in the execution engine (see Chapter 3).

11

Chapter 2. Background and Related Work

Nowadays, we witness a shift to main-memory DBMS. Memory storage capacities and band-

width have been doubling roughly every three years, its price has been dropping by a factor

of 10 every five years, and its latency is shorter than hard disks by several orders of magni-

tude [205]. Modern high-end NUMA servers can have terabytes of main memory. All these

factors have made it possible to store large databases entirely in main memory. Further-

more when main memory is not sufficient, compression techniques can be used to fit more

data [22, 72, 118, 205], or fit only the actively used hot part of the database in main mem-

ory [66, 74, 180].

Additionally, for the efficient evaluation of OLAP workloads, there is a shift towards column-

stores. In a column-store, the values of all records for a single attribute are stored contiguously

on storage. There are several advantages for analytical workloads. Queries typically reference

only a few attributes, thus the DBMS needs to read only the required attributes for processing

a given query [23, 181]. Also, vectorization techniques can be used during query processing.

Vectorization involves fast processing of blocks of values of a column [195, 210], instead of the

Volcano style with per-tuple iterators [23, 82]. Moreover, compression techniques, apart from

saving memory space, can also decrease CPU overhead [22, 118, 197].

Examples of main-memory column-stores include SAP HANA [72], Oracle [63], IBM DB2

BLU [167], Microsoft SQL Server [111], HyPer [101]. For our NUMA-awareness analysis, we

use a prototype based on SAP HANA, a commercial main-memory column-store. This allows

us to show the significant impact of NUMA-aware data placement and task scheduling on the

performance of highly concurrent analytics on modern main-memory column-store DBMS

(see Chapter 4, Chapter 5, Chapter 6).

2.2 Sharing Techniques

In this section, we present a short survey on sharing techniques, focusing on run-time sharing

techniques. We first mention a variety of ideas that have been proposed to exploit sharing

in conventional query-centric systems, including buffer pool management techniques, ma-

terialized views, caching and multi-query optimization. Then, we proceed to more recent

research prototypes that introduce techniques for run-time sharing across concurrent queries.

In Table 2.1, we summarize the sharing methodologies used by conventional query-centric

systems, and the research prototypes we examine.

Sharing in the I/O layer. By sharing data, we refer to techniques that coordinate and share

the accesses of queries in the I/O layer. The typical query-centric DBMS incorporates a buffer

pool and employs eviction policies [55, 100, 132, 151]. Queries, however, communicate with

the buffer pool manager on a per-page basis, thus it is difficult to analyze their access patterns.

Additionally, if multiple queries start scanning the same table at different times, scanned pages

may not be reused.

12

2.2. Sharing Techniques

Table 2.1 – Sharing methodologies employed by a query-centric model and the research
prototypes we examine.

System
Conventional
query-centric

model
QPipe CJOIN DataPath SharedDB

Sharing in the
execution

engine

Query Caching,
Materialized
Views, MQO

Reactive
sharing

Proactive sharing
(for joins of star

queries)
Proactive sharing

Proactive sharing
(with batched

execution)

Sharing in the
I/O layer

Buffer pool
management

techniques
Circular scan
of each table

Circular scan of
the fact table

Asynchronous
linear scan of

each disk

Circular scan of
in-memory table

partitions
Depends on a

specific storage
manager?

No No No
Special I/O

subsystem (read-
only requests)

Crescando
(read and update

requests)

For this reason, shared scans have been proposed. Circular scans [58, 60, 91] are a form of

shared scans. They can handle numerous concurrent scan-heavy analytical queries as they

reduce buffer pool contention, and they avoid unnecessary I/O accesses to the underlying

storage devices. Furthermore, more elaborate shared scans can be developed for main-

memory scans [164], and for servicing different fragments of the same table or different groups

of queries depending on their speed [107, 211].

Shared scans can be used to handle concurrent updates as well. The Crescando [188] storage

manager performs a circular scan over memory-resident table partitions, interleaving the

reads and the updates of a batch of queries along the way. The scan first executes the update

requests of the batch for a scanned tuple in their arrival order, and then the read requests.

Shared scans, however, are not immediately translated to a fast linear scan of a disk, e.g. if

multiple scans are performed on the disk. The DataPath system [33], which uses a disk array

as secondary storage, stores relations column-by-column by hashing pages to the disks at

random. During execution, it reads pages from the disks asynchronously but sequentially,

thus aggregating the throughput of a sequential scan on every disk of the array. The process is

asynchronous from the execution engine. If the execution engine is busy, scanned pages are

dropped and reproduced later when the disk’s linear scan wraps around to the same point.

Sharing in the execution engine. By sharing work among queries, we refer to techniques that

avoid redundant computations inside the execution engine. A conventional query-centric

DBMS typically uses query caching and materialized views. Caching query results or inter-

mediate results is used to reduce the response time of repeating queries [176]. Materialized

views [34, 54, 169, 170] are pre-computed and cache common intermediate results that can

be used by new queries. The selection of materialized views is done in an off-line manner by

examining common sub-expressions in workloads that are known in advance. Both, however,

do not exploit sharing opportunities among in-progress queries.

Multi-Query Optimization (MQO) techniques [171, 175] are an important step towards more

sophisticated sharing methodologies. MQO detects and reuses common sub-expressions

13

Chapter 2. Background and Related Work

among queries. A global plan is built from these sub-expressions for all queries in the batch.

The sub-expressions are evaluated only once during the execution phase. MQO makes the

optimization phase more complex, but is suitable for long-running analytical queries, as the

savings might more than offset this overhead. We note that the global plan of MQO is different

from the global plan with shared operators in proactive sharing that we describe later. The

former is used to evaluate common sub-expressions once, while the latter is used to enable

shared operators for the whole query mix. There are two main disadvantages of classic MQO:

(a) it operates on batches of queries only during the optimization phase, and (b) it depends

on materializing shared intermediate results, at the expense of memory. This cost can be

alleviated by using pipelining [62], which exploits the parallelization provided by multi-core

processors. The query plan is divided into sub-plans and operators are evaluated in parallel.

Reactive and proactive run-time sharing techniques. Recently, more advanced forms of

sharing have appeared for sharing data and work across concurrent queries at run-time. We

categorize these state-of-the-art run-time sharing techniques into: (a) reactive sharing [91],

and (b) proactive sharing [33, 47, 48, 77]. Both leverage forms of pipelined execution and

sharing methodologies which bear some superficial similarities with MQO. These techniques,

however, provide deeper and more dynamic forms of sharing at run-time.

Reactive sharing is based on simultaneous pipelining (SP), a technique introduced in

QPipe [91], an operator-centric execution engine, where each relational operator is encap-

sulated into a self-contained module called a stage. Each stage detects common sub-plans

among concurrent queries, evaluates only one and pipelines the results to the rest when

possible. Simultaneous pipelining is considered as reactive sharing, since it acts by using the

sharing opportunities that inherently exist in the workload, e.g., common sub-plans.

Proactive sharing uses a global query plan (GQP) with shared operators, and is introduced in

the CJOIN operator [47, 48]. A single shared operator is able to evaluate multiple concurrent

queries. CJOIN uses a GQP, consisting of shared hash-join operators that evaluate the joins

of multiple concurrent queries simultaneously. More recent research prototypes extend the

logic to additional operators and to more general cases [33, 77]. A GQP can be considered as

proactive sharing, since it analyzes the workload beforehand and composes shared operators

synergistically in a global query plan.

Figure 2.1 illustrates how a query-centric model, shared scans, reactive sharing, and proactive

sharing operate through a simple example of three concurrent queries which perform natural

joins without selection predicates and are submitted at the same time. The last two queries

have a common plan, which subsumes the plan of the first. Figure 2.1a shows how a traditional

query-centric model evaluates the queries independently, missing any sharing opportunities.

Figure 2.1b depicts how shared scans can share the scan of a table, reducing contention for

CPU resources, the buffer pool and the underlying I/O device. Figure 2.1c shows how reactive

sharing identifies common sub-plans, evaluates only Q2, reuses intermediate results for Q1

and final results for Q3. Figure 2.1d illustrates how proactive sharing builds a GQP with shared

14

2.2. Sharing Techniques

(a) Query-centric model (c) Reactive sharing

A B C

Q1 Q2 Q3

(d) Proactive sharing

A B C

Q3

A B C

Q2

A B

Q1

Concurrent queries: Q1: A B Q2: A B C Q3: A B C

(b) Shared Scans

Q2

A B C

Q3

Q1

A B C

Q2

Q3
Q1, Q2, Q3

Q2, Q3Q1

Figure 2.1 – Evaluation of three concurrent queries using (a) a query-centric model, (b) shared
scans, (c) reactive sharing, and (d) proactive sharing.

join operators that evaluate all three queries. We note that shared scans are used with both

reactive and proactive run-time sharing techniques.

In the next sections, we delve into the details of reactive sharing first and then of proactive

sharing. We also give an overview of the research prototypes that introduce them. We use

these prototypes to integrate and evaluate reactive and proactive sharing in Chapter 3.

2.2.1 Reactive Sharing

Reactive sharing identifies identical sub-plans among concurrent queries at run-time, evalu-

ates only one and pipelines the results to the rest simultaneously [91]. Figure 2.2a depicts an

example of two queries that share a common sub-plan below the join operator (along with

any selection and join predicates), but have a different aggregation operator above the join.

With reactive sharing, only one of them is evaluated, and the results are pipelined to the other

aggregation operator.

Fully sharing common sub-plans is possible if the queries arrive at the same time. Otherwise,

sharing opportunities may be restricted. The amount of results that a newly submitted Q2

can reuse from the pivot operator, i.e., the top operator of the common sub-plan, of the in-

progress Q1, depends on the type of the pivot operator and on the arrival time of Q2 during

Q1’s execution. This relation is expressed as a window of opportunity (WoP) for each relational

operator [91]. Figure 2.2b depicts two common WoP, a step and a linear WoP.

A step WoP expresses that Q2 can reuse the full results of Q1 if it arrives before the first output

tuple of the pivot operator. If Q2 arrives afterwards, it cannot share the pivot operator and

needs to re-issue the computation independently. Joins and aggregations have a step WoP. The

point where the step WoP closes depends on when the first result is computed by the operator.

For example, a scalar aggregation has a “full” WoP, as the result is produced at the end of its

execution [91]. A linear WoP signifies that Q2 can reuse the results of Q1 from the moment it

arrives up until the pivot operator finishes. Then, Q2 needs to re-issue the operation in order

to compute the results that it missed before it arrived. Sorts and table scans have a linear WoP.

15

Chapter 2. Background and Related Work

Q1 Q3

Stage-S (sorts)

Packet Dispatcher

Query
Execution

Plan

Q1-S outin

Q1

T T
J

Σ
S

Q1-Σ outin

Q1-J outin2in1

Q1-T out

Q1 output

Intermediate
FIFO buffer

packet

Q2 Q1
Q2

Stage-Σ (aggregations)

Q3

Q2

Q2 Q1

Stage-J (joins)

Q3

Q2 Q1

Q1

Stage-T (table scans)

Q3

Q2

Thread
pool

Queued
packets

Q1-T out

Α

Q1

Σ

Β

Α

Q2

Σ

Β

w/o
sharing

Q1

Σ

Α

Q2

Σ

Β

w/ reactive
sharing

Re-use
results

100%

100%0%
Q1 progress

Q2 gain

100%

100%0%
Q1 progress

Q2 gain

(a) (b) (c)
Executing
packets

QPipe
execution

engine

Figure 2.2 – (a) Example of reactive sharing with two queries having a common sub-plan below
the join operator. (b) A step and a linear window of opportunity [91]. (c) Conceptual design of
QPipe, with the packets of an example of a query plan dispatched to the relevant stages.

In fact, the linear WoP of the table scan operator is translated into a circular scan of each table:

when Q2 arrives during Q1’s scan of a table, Q2 reuses the scanned pages from Q1. When Q1

finishes, Q2 starts scanning from the beginning of the table to scan the pages that it missed.

We note that caching query results or intermediate results [176] is a technique similar to

reactive sharing which shares common intermediate results at run-time. Actually they are

orthogonal and complementary. Reactive sharing can improve a query result cache by avoiding

identical sub-plans at run-time, with no previous entries in the result cache [91].

2.2.2 The QPipe Execution Engine

QPipe [91] is a relational execution engine that supports reactive sharing. QPipe is based on

the paradigms of staged databases [90]. The conceptual design is depicted in Figure 2.2c. Each

relational operator is encapsulated into a self-contained module called a stage. Each stage has

a queue for work requests and employs a thread pool for processing the requests.

An incoming query execution plan is converted into a series of inter-dependent packets. The

packet dispatcher then dispatches each packet to the relevant stage for evaluation. Data flow

between packets is implemented through FIFO (first-in, first-out) buffers and page-based

exchange, following a push-only model with pipelined execution. The buffers also regulate

differently-paced actors: a parent packet may need to wait for incoming pages of a child and,

conversely, a child packet may wait for a parent packet to consume its pages.

This design allows each stage to monitor only its packets for detecting sharing opportunities

efficiently. If it finds an identical packet, and their inter-arrival delay is inside the WoP of

16

2.2. Sharing Techniques

the pivot operator, it attaches the new packet (satellite packet) to it (host packet). While it

evaluates the host packet, QPipe copies the results of the host packet to the output FIFO buffer

of the satellite packet.

2.2.3 Proactive Sharing

Reactive sharing is limited to common sub-plans. If two queries have similar sub-plans

but with different selection predicates for the involved tables, reactive sharing is not able

to share them. Nevertheless, the two queries still share a similar plan that exposes sharing

opportunities. It is possible to employ shared operators, where a single shared operator can

evaluate both queries simultaneously. The basic technique for enabling them is sharing tuples

among queries and correlating each tuple to the queries, e.g., by annotating tuples with a

bitmap whose bits signify the queries that the tuple is relevant to.

This technique facilitates overall sharing. Tuples can be shared among active queries, as

interested queries read the same tuples and skip those that are not relevant to them. Also, it

allows for shared operators that can share work among queries with similar sub-plans but

possibly different predicates. A shared operator receives input tuples with their bitmaps

already modified accordingly by preceding shared operators. Then, it examines a tuple’s

relevant queries and evaluates its unit of work considering their possibly different predicates.

The simplest shared operator is a shared selection, that can evaluate multiple queries that

select tuples from the same relation. For each received tuple, the shared selection toggles the

bits of its attached bitmap according to the selection predicates of the queries. A hash-join

can also be easily shared by queries that share the same equi-join predicate (more relaxed

requirements are possible [33]). Figure 2.3 shows a conceptual example of how a single

shared hash-join is able to evaluate two queries. It starts with the build phase by receiving

tuples from the shared selection operator of the inner relation. Then, the probe phase begins

by receiving tuples from the shared selection operator of the outer relation. The hash-join

proceeds normally, by additionally performing a bitwise AND operation between the bitmaps

of the joined tuples in order to preserve the relevance of the output tuples to the active queries.

The most significant advantage is that a single shared operator can evaluate many similar

queries. For example, a shared hash-join can evaluate numerous queries having the same

equi-join predicate, and possibly different selection predicates. In the worst case, the union of

Α

8 16 11 23 “a” 018

Q1: SELECT A.c2, B.c2 FROM A, B
WHERE A.c1 = B.c1

AND A.c2 > 10 AND B.c2 < 5
Q2: SELECT Β.c3 FROM A, B
WHERE A.c1 = B.c1
AND A.c1 < 12 AND B.c2 > 3 + bitwise ANDσ Β σ

A.c1 A.c2 B.c1 B.c2 B.c3

8 16 23 “a” 018

buildprobe

bitmap

Figure 2.3 – Example of shared selection and hash-join operators.

17

Chapter 2. Background and Related Work

the selection predicates may force it to join the whole two relations. The disadvantage of a

shared operator in comparison to a query-centric one is that it entails increased bookkeeping.

For example, a shared hash-join maintains a hash table for the union of the tuples of the inner

relation selected by all queries, and performs bitwise operations between the bitmaps of the

joined tuples. For low concurrency, as shown by our experiments in Chapter 3, query-centric

operators outperform shared operators. A similar trade-off is found for the specific case of

shared aggregations on multi-core processors [56].

By using shared scans and shared operators, a global query plan (GQP) can be built for

evaluating all concurrent queries. GQP are introduced by CJOIN [47, 48], an operator based

on shared selections and shared hash-joins for evaluating the joins of star queries [102]. GQP

are advanced by the DataPath system [33] for more general schemas, by tackling the issues of

routing and optimizing the GQP for a newly incoming query. DataPath also adds support for a

shared aggregate operator, that calculates a running sum for each group and query.

Both CJOIN and DataPath handle new queries immediately when they arrive. This is feasible

due to the nature of the supported shared operators: selections, hash-joins and aggregates.

Some operators, however, cannot be easily shared. For example, a sort operator cannot easily

handle new queries that select more tuples than the ones being sorted [33]. To overcome this

limitation, SharedDB [77] batches queries for every shared operator. Batched execution is also

in line with Crescando, the underlying storage manager, that also uses batching for performing

shared scans. Batching allows standard algorithms to be easily extended to support shared

operators, as they work on a fixed set of tuples and queries. SharedDB supports shared sorts

and various shared join algorithms, not being restricted only to equi-joins. Later work from the

same team focuses on the special case of shared hash-joins with batched execution, advances

the parallelism features of shared hash-joins, and explores additional benefits of batched

execution, such as sharing the build phase of a hash-join and avoiding overhead in repeatedly

updating hash tables for incoming new queries [128]. Nevertheless, batched execution has the

following drawbacks, which can be disadvantageous for OLAP workloads: a new query may

suffer increased latency, and the latency of a batch is dominated by the longest-running query.

One other significant reason for batched execution is that SharedDB aims to support OLTP

workloads in addition to OLAP workloads. This is enabled by Crescando which interleaves

update and read requests along a main-memory shared scan, and by pre-computing the GQP.

SharedDB assumes that the types of possible queries are given in advance in the form of

prepared statements in order to pre-compute the GQP.

In the realm of optimization of proactive sharing, each research prototype suggests alternative

optimization approaches that fit their implementation. CJOIN proposes an online approach

for re-ordering the shared hash-joins of its GQP according to the selectivities of the query

mix [47, 48]. DataPath proposes an A*-style search to integrate a new query into the ongoing

GQP [33]. SharedDB authors, due to batched execution, propose a heuristic algorithm to

generate a GQP by considering the whole query mix and not just integrating a new query [78].

18

2.2. Sharing Techniques

2.2.4 The CJOIN Operator

For our analysis, we use the CJOIN operator [47, 48] which introduced GQP for the case

of star schemas. Without loss of generality, we restrict our evaluation in Chapter 3 to star

schemas, and correlate our observations to more general schemas (used, e.g., by DataPath [33]

or SharedDB [77]).

Star schemas are common for organizing data in relational data warehouses. They allow for

numerous performance enhancements [102]. A star schema consists of a large fact table, that

stores the measured information, and is linked through foreign-key constraints to smaller

dimension tables. A star query is an analytical query over a star schema. It typically joins the

fact table with several dimension tables and performs operations such as aggregations or sorts.

CJOIN evaluates the joins of all concurrent star queries, using a GQP with shared scans,

selections and hash-joins. Figure 2.4 shows the GQP that CJOIN evaluates for two star queries.

CJOIN adapts the GQP with every new star query. If a new query references already existing

dimension tables, the existing GQP can evaluate it. If a new query joins the fact table with a

new dimension table, the GQP is extended with a new shared selection and hash-join. Due to

the semantics of star schemas, the directed acyclic graph of the GQP takes the form of a chain.

CJOIN exploits this form to facilitate the evaluation of the GQP. It materializes the small

dimension tables and stores in-memory the selected dimension tuples in the hash tables

of the corresponding shared hash-joins. Practically, for each dimension table, it groups the

shared scan, selection and hash-join operators into an entity called filter. When a new star

query is admitted, CJOIN pauses, adds newly referenced filters, updates already existing filters,

augments the bitmaps of dimension tuples according to the selection predicates of the new

star query, and then continues. Parts of the admission phase, such as the scan of the involved

dimension tables, can be done asynchronously while CJOIN is running [48].

Consequently, CJOIN can evaluate the GQP using a single pipeline: the preprocessor uses a

circular scan of the fact table, and flows fact tuples through the pipeline. The data flow in

the pipeline is regulated by intermediate buffers, similar to QPipe. The filters in-between are

F

D1

Q1: σ(D1)
Q2: σ’(D1)

Q1: F D1

Q2: F D1
Q2: (F D1) D2

Q1: SELECT A, B, … FROM F, D1

WHERE F D1 AND σ(D1)
Q2: SELECT A, B, … FROM F, D1, D2

WHERE F D1 D2 AND σ’(D1) AND σ’(D2)

D2

Q2: σ’(D2)

Filter Filter Distrib-
utor

δ'1
δ'2

01
11

Dimension hash
table for D1 Dimension hash

table for D2

Q1 Q2

Preproc-
essor

GQP of CJOIN Evaluation of GQP with a single pipeline

F

Q1 Q2

tuples bitmapδ1
δ2
δ3

10
11
01

tuples bitmap

τ1
τ2

11
11

Fact
tuples

Query
bitmap

Figure 2.4 – The CJOIN operator uses proactive sharing by evaluating a GQP for star queries.

19

Chapter 2. Background and Related Work

actually the shared hash-joins that join the fact tuples with the corresponding dimension

tuples and additionally perform a bitwise AND between their bitmaps. At the end of the

pipeline, the distributor examines the bitmaps of the joined tuples and forwards them to the

relevant queries. For every new query, the preprocessor admits it, marks its point of entry on

the circular scan of the fact table and signifies its completion when it wraps around to its point

of entry on the circular scan.

This concludes our short survey on run-time sharing techniques. Chapter 3 continues the

topic of run-time sharing techniques, by integrating and evaluating them. Here, we continue

with related work on task scheduling, NUMA, and NUMA-awareness.

2.3 Task Scheduling

Task scheduling uses worker threads to process all operations for the entire application lifetime.

Tasks, encapsulating operations, are stored in task pools, and a number of worker threads,

typically a worker thread per hardware thread, are employed by the task scheduler to process

the tasks. A worker thread continuously takes tasks from a task pool and executes them. Next,

we present related work about task scheduling. In later chapters, we develop and employ a

task scheduler for main-memory workloads (see Chapter 4), and then focus on NUMA-aware

task scheduling (see Chapter 5) and adaptive inter-socket task stealing (see Chapter 6).

Task scheduling for parallel programs and parallel systems is a broad field of research. Early

related work focuses on static scheduling [83, 104], which is typically done at compile time

and assumes that basic information about tasks (such as processing times, dependencies,

synchronization, and communication costs) and the target machine environment are known

in advance. Given perfect information, a static scheduling algorithm attempts to produce the

optimal assignment of tasks to processors, that ideally balances their loads and minimizes

scheduling overheads and memory referencing delays [88]. Perfect information, however,

is hard to obtain for modern shared-memory multi-core servers and modern applications

where tasks may be generated dynamically and at a fast pace. For example, queries in a

DBMS arrive dynamically, and information about them can only be estimated, often with

high relative errors. More recent related work focuses on dynamic scheduling, which is done

on-the-fly at run-time [104, 153, 207]. Dynamic task scheduling does not require information

about the submitted tasks a priori and provides automatic load-balancing and improved

portability between different hardware architectures [131]. Dynamic task scheduling may also

use run-time measurement to re-adapt scheduling decisions [137, 145, 207] for better data

locality [207] or NUMA-awareness [41, 149].

The common design of recent dynamic task schedulers involves task pools where tasks are

submitted dynamically at run-time, and the scheduler employs a set of threads to work on the

tasks [94]. There are two main categories of task schedulers [68]: breadth-first schedulers [140]

and work-first schedulers [43] with various task-stealing techniques [24, 134, 142, 149] for

load-balancing and improved predictability in real-time applications [131]. In breadth-first

20

2.3. Task Scheduling

schedulers, when a task is created, it is placed in the task pools and the parent task continues

execution. In work-first schedulers, the thread of the parent task switches to execute child

tasks, for potentially better data locality [43]. The task scheduler that we design and employ in

this thesis uses dynamic task scheduling, and has a mixture of both approaches: when a task

generates a group of new tasks, the parent thread takes upon one of the new tasks, following

the work-first approach, while the rest of the tasks are dispatched to the task pools, following

the breadth-first approach, for load-balancing (see Chapter 4).

Hoffmann et al. [94] provide a survey on different task pool implementations. Distributed

task pools with stealing achieve best performance, as they minimize synchronization over-

heads and stealing amends load-balancing issues. We follow a similar approach for our task

scheduler. Johnson et al. [97] decouple contention management from scheduling and load

management, to combine the advantages of spin and blocking locks. Our task scheduler

is not concerned with how locks are used, but uses the information about blocked tasks to

dynamically adjust its concurrency level (see Chapter 4).

In highly concurrent analytical workloads with a large number of partitionable operations

issuing tasks, granularity of tasks plays an important role in communication, synchronization,

and scheduling costs [3, 52, 57, 122, 134]. Our experimental results corroborate these observa-

tions for main-memory DBMS. A recent analysis models and evaluates task schedulers, and

shows that task granularity also affects cache locality [204]. Recent task scheduling frameworks

such as OpenMP [11, 37] and Intel Thread Building Blocks [12] regulate task granularity by

requiring the developer to express parallelism in a higher-level abstract manner and use this

information. For our task scheduler, we assume that there is no central mechanism for data

parallelism, and that partitionable operations define their task granularity independently.

This is the common case for DBMS, where optimizing the granularity of a single partitionable

operation alone involves considerable research effort (see [42], for example, for partitioning

in hash-joins). Our solution it to give a concurrency hint to task creators, reflecting recent

CPU availability, which they can use as a limit when adjusting the task granularity of their

partitionable operations (see Chapter 4).

In this thesis, we also evaluate task scheduling for mixed OLTP and OLAP main-memory

workloads as well (see Chapter 4). For mixed workloads, we demonstrate the need for task

prioritization of the transactional workload over the dominating concurrent analytical work-

load. Further related work identifies that, apart from task prioritization, the task granularity of

analytical queries also plays a significant role in this effect [201].

In regard to multi-socket servers, task scheduling has been prominent in NUMA-related work.

The reason is that task scheduling can effortlessly reflect the underlying topology of a multi-

socket server. Next, we discuss related work to NUMA, and NUMA-aware task scheduling

and data placement. In Chapter 5, we modify our initial task scheduler of Chapter 4 for multi-

socket servers, and present an analysis of NUMA-aware task scheduling and data placement

21

Chapter 2. Background and Related Work

strategies. In Chapter 6, we proceed to adapt task scheduling and data placement to the

workload on multi-socket servers.

2.4 Non-Uniform Memory Access (NUMA)

In this section we give more details about NUMA and related work in NUMA-awareness.

Section 2.4.1 gives details and examples of multi-socket servers with a NUMA architecture. It

also gives an overview of the available facilities of the OS that the DBMS can use to achieve

NUMA-aware task scheduling and data placement. Section 2.4.2 discusses related work for

NUMA-aware task scheduling and data placement.

2.4.1 Multi-Socket Servers and NUMA-Awareness

As introduced in Section 1.1, processor vendors are scaling up hardware by interconnecting

sockets of multi-core processors, each with its own memory [27]. Memory is decentralized,

forming a non-uniform memory access (NUMA) architecture. Typically, multiple processor

cores are attached to one socket, and share a local memory bus, controller, and last-level cache.

Then, multiple sockets are interconnected with a communication network in order to enable a

processor core to access remote memory of another socket. Furthermore, for the typical case

of shared-memory systems, a cache-coherency protocol is used to keep multiple references

to the same memory address consistent. Both the inter-processor communication protocol

and the cache-coherence protocol are specific to each system and vendor. In this thesis, we

use the term multi-socket server to refer to a shared-memory server with multiple sockets of

multi-core processors and a cache-coherent NUMA (ccNUMA) architecture [112, 123].

Note on terminology. There is a difference between what is referred to as a socket and as a

NUMA node [106]. A socket in a server is a slot that allows for placing and replacing a central

processing unit (CPU). A NUMA node, according to the ACPI specification [61], is a collection of

hardware resources that may contain processors, memory, etc. At a minimum, a NUMA node

must have a an interface to the interconnect between nodes [61]. With respect to performance,

this means that accesses to memory within a NUMA node have roughly the same latency

and do not require a hop through an interconnect [10]. Thus, a socket does not necessarily

correspond to a NUMA node. For example, the IBM MAX5 memory expansion unit [192]

consists of a NUMA node without processors. Another example is the Cluster-on-Die mode,

supported by the Intel Xeon E5-2600 v3 processor family (code named Haswell-EP), which

logically divides a processor into two NUMA nodes [135].

In this thesis, we handle the typical case of multi-socket servers where each socket has dedi-

cated memory and corresponds to a NUMA node [10, 106]. For this reason, we use the terms

socket and NUMA node interchangeably. Next, we visualize two examples of multi-socket

22

2.4. Non-Uniform Memory Access (NUMA)

Legend: = memory channel = QPI link = I/O hub C = core L1, L2, L3 = level 1, 2, 3 caches MC = memory controller

C1 C2 C10
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C10
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C10
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C10
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C10
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C10
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C10
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C10
...L1

L2
L1
L2

L1
L2

L3

Socket 3

Socket 2

Socket 7

Socket 6

Socket 1

Socket 4

Socket 5

Socket 8

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

Figure 2.5 – An 8-socket server with Intel Xeon E7-8870 processors.

servers, of different processor generations and NUMA topologies, that we use in our experi-

ments (see Chapters 5-6). Our purpose is to show how multi-socket servers are designed, and

pinpoint the similarities and differences across their performance characteristics.

Example with Intel Westmere-EX processors. Figure 2.5 depicts an 8-socket multi-core server

(consisting of two IBM x3950 X5 boxes [192]). Each socket is comprised of a ten-core Intel Xeon

E7-8870 processor (code named Westmere-EX) at 2.40 GHz, with hyper-threading possible

(2 SMT threads per core). Each core has a 32 KB L1-I/D caches and a 256 KB L2 cache. Each

processor has a 30 MB L3 cache, shared by all its cores. Each socket has two memory controllers

(MC). Each MC supports two Intel SMI channels [2]. Each SMI channel supports two memory

channels, with up to 2 DDR3 DIMM attached on each channel. Our configuration has one

16 GB DIMM per memory channel. Each MC operates in “lockstep” mode [2], thus each SMI

channel is visualized as one memory channel in Figure 2.5. The server has a total of 160 H/W

threads, and 1 TB RAM. The inter-processor network is comprised of Intel QPI (QuickPath

Interconnect) links [1].

Example with Intel Ivybridge-EX processors. Figure 2.6 depicts a 4-socket multi-core server.

Each socket is comprised of a 15-core Intel Xeon E7-4880 v2 processor (code named Ivybridge-

EX) at 2.50 GHz, with hyper-threading possible (2 SMT threads per core). Each core has a

32 KB L1-I/D caches and a 256 KB L2 cache. Each processor has a 37.5 MB L3 cache, shared

by all its cores. Each socket has two memory controllers (MC). Each MC supports two Intel

SMI2 channels [6]. Each SMI2 supports two memory channels, with up to 3 DDR3 DIMM

attached on each channel. Our configuration has one 16 GB DIMM per memory channel. Each

23

Chapter 2. Background and Related Work

MC1

C1 C2 C15
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C15
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C15
...L1

L2
L1
L2

L1
L2

L3

C1 C2 C15
...L1

L2
L1
L2

L1
L2

L3

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1

16
GB

16
GB

16
GB

16
GB

MC2

16
GB

16
GB

16
GB

16
GB

MC1
16

GB
16

GB
16

GB
16

GB

MC2

16
GB

16
GB

16
GB

16
GB

Socket 1

Socket 3

Socket 2

Socket 4

Figure 2.6 – A 4-socket server with Intel Xeon E7-4880 v2 processors.

MC operates in “independent” mode [6, 194], thus each SMI2 channel is visualized as two

memory channels in Figure 2.6. The server has a total of 120 H/W threads, and 512 GB RAM.

The inter-processor network is comprised of Intel QPI links [1]. The Ivybridge-EX processor

generation is more recent than the Westmere-EX processor generation.

Performance characteristics of multi-socket servers. The two examples above show that

multi-sockets servers can vary by multiple factors, such as the number of sockets, the topology,

the maximum number of hops from one socket to another, the processor generation, etc.

These factors affect the performance characteristics of each server. In Table 2.2, we show the

local and inter-socket latencies and peak memory bandwidths for the multi-socket servers that

we have access to and use throughout our NUMA analysis in this thesis. The measurements

are taken with Intel Memory Latency Checker [190].

Table 2.2 – Performance characteristics of the multi-socket servers that we use.

Memory per socket

1 hop latency
Max hops latency

Local B/W
1 hop B/W

Max hops B/W
Total local B/W

(1) 8x10-core Intel
Xeon E7-8870

(Westmere-EX)
at 2.40GHz

128 GB

197 ns
245 ns

20.6 GB/s
11 GB/s
4.9 GB/s
103 GB/s

128 GB

170 ns
170 ns

70 GB/s
12.5 GB/s
12.5 GB/s
280 GB/s

128 GB

320 ns
390 ns

70 GB/s
10.5 GB/s
9.5 GB/s
560 GB/s

Statistic

Server (2) 4x15-core Intel
Xeon E7-4880v2
(Ivybridge-EX)

at 2.50GHz

(3) 8x15-core Intel
Xeon E7-8880v2
(Ivybridge-EX)

at 2.50GHz

(4) 32x15-core Intel
Xeon E7-8890v2
(Ivybridge-EX)

at 2.80GHz
768 GB

193 ns
500 ns

47.5 GB/s
11.8 GB/s
9.8 GB/s

1520 GB/s

(5) 32x18-core Intel
Xeon E7-8890v3

(Haswell-EX)
at 2.50GHz

512 GB

320 ns
590 ns

45.5 GB/s
15 GB/s
7.3 GB/s

1363 GB/s

Local latency 163 ns 108 ns 110 ns 112 ns 120 ns

24

2.4. Non-Uniform Memory Access (NUMA)

The first and second servers correspond to the previous examples of Figure 2.5 and Figure 2.6.

The third server is an 8-socket server, with a topology similar to the first server. The fourth

server is a rack-scale SGI UV 300 system, and the fifth server is a rack-scale SGI UV 300H

system, both having 32 sockets [21]. The fifth server has a more recent processor generation.

The SGI servers have specialized interconnects to scale up to 32 sockets [21, 112].

The performance characteristics of the different multi-socket servers show several interesting

facts about NUMA architectures. First, accesses to remote memory are slower than local

memory. On the 32-socket servers, the max hop latency is around 5x slower than the local

latency. Second, interconnects typically have a much lower bandwidth than that of a socket.

On the third server, the bandwidth of an interconnect is up to around 7x lower than the

bandwidth of a socket. Finally, the cache-coherence protocol is also important. On the older

Westmere-EX processor generation of the first server, the broadcast-based snooping cache-

coherence protocol utilizes the interconnects even for local memory accesses [1]. This is why

the total local bandwidth of the first server is not the aggregated local bandwidth of each

socket. The more recent processor generations use directory-based cache coherence.

NUMA-awareness. As is obvious by the performance characteristics, NUMA introduces new

considerations for software performance in comparison to uniform memory access archi-

tectures. These are pinpointed by Blagodurov et al. [41]: (a) accesses to remote memory are

slower than local memory, (b) the bandwidth of a socket can be separately saturated, and (c)

the bandwidth of an interconnect can be separately saturated. Due to the lack of knowledge

about inter-socket routing or the cache coherence, a NUMA-aware application attempts to

solve the above challenges in a simple way: optimizing for local memory accesses instead

of remote accesses, and avoiding unnecessary centralized bandwidth bottlenecks of either

sockets or interconnects.

Several of these considerations have been revisited in further related work. David et al. [65]

explore the challenges that non-uniform hardware entails for synchronization scalability, and

conclude that in order to be able to scale, synchronization should better be confined to a single

uniform socket. Albutiu et al. [30] explore similar considerations for NUMA-aware DBMS,

and offer a new guideline: the processor prefetcher can hide the slower latency of sequential

remote accesses. This guideline, however, should not be abused. As we show in this thesis,

multiple concurrent memory-intensive tasks, e.g., scans, should not be stolen across sockets,

as they can hurt overall performance (see Chapter 5). We propose an adaptive technique that

allows stealing based on the memory intensity of the tasks (see Chapter 6).

To sum up, a DBMS needs to become NUMA-aware and handle both the scheduling of its

operations and queries onto sockets, and the placement of its data structures across sockets.

Next, we describe the facilities available to the DBMS by the OS to achieve NUMA-aware

scheduling and data placement.

25

Chapter 2. Background and Related Work

NUMA-aware task scheduling. A NUMA-aware task scheduler uses a pool of worker threads

per socket. Each pool’s worker threads are bound, e.g., by using Linux’s

system call, to the cores of the corresponding socket [103, 117]. This guarantees worker threads

always locally access data placed on the socket. A task is queued to a task pool associated with

the socket where the data processed by the task is placed. We use a similar NUMA-aware task

scheduler in our NUMA analysis (see Chapter 5).

NUMA-aware data placement. The OS organizes physical memory into fixed-sized (typically

4 KB) pages [106]. When an application requests memory, the OS allocates new virtual memory

pages. Application libraries are responsible for organizing smaller allocations. Typically, virtual

memory is not immediately backed by physical memory. On the first page fault, the OS actually

allocates physical memory for that page. In Linux, the default placement strategy for the page

is the first-touch policy [106]: on the first page fault, the OS allocates physical memory from

the local socket (unless it is exhausted). Another moderate placement strategy is to use

interleaving [106], distributing pages in a round-robin fashion across all sockets. This avoids

worst-case performance scenarios with unnecessary centralized bandwidth bottlenecks, and

averages memory latencies. It involves, however, a lot of remote memory accesses. For

stronger control, additional facilities are provided by the OS. In Linux, e.g., can

be used to query and move already touched virtual memory. For best performance, the DBMS

should use these OS facilities to fully control and track the physical location of its virtual

memory. We use these facilities in our NUMA analysis (see Chapter 5).

By coordinating scheduling and data placement, the DBMS can prefer local memory accesses,

avoid unnecessary bandwidth bottlenecks, and become NUMA-aware. Next, we look at related

work in NUMA-aware task scheduling and data placement. In Chapter 5, we evaluate various

strategies for NUMA-aware task scheduling and data placement. In Chapter 6, we adapt task

scheduling and data placement to the workload at run-time.

2.4.2 Related Work in NUMA-Aware Task Scheduling and Data Placement

In the literature, there has been a recent wave of NUMA-aware related work. Next, we cate-

gorize related work in the database community into NUMA-aware static solutions, adaptive

solutions, black-box solutions, and standalone operators. Afterwards, we mention prominent

related work in the fields of co-scheduling, operating systems, and distributed systems. In all

cases, we explain the main differences and similarities to this thesis.

Static solutions. With respect to data placement, most DBMS not mentioning advanced

NUMA optimizations indirectly rely on the static first-touch policy for data placement, e.g.,

Vectorwise [209], Microsoft SQL Server’s column-store [111], or IBM DB2 BLU [167]. Ora-

cle’s distributed manager decides the NUMA location of columnar data when the topology

changes [138], but not when the workload changes. HyPer [117] chunks all data, and statically

26

2.4. Non-Uniform Memory Access (NUMA)

distributes them uniformly over the sockets. In this thesis, we show that unnecessary parti-

tioning involves an overhead for performance (see Chapter 5). We show that the DBMS should

adapt the data placement to the workload at run-time (see Chapter 6).

With respect to task scheduling, most DBMS allow inter-socket task stealing. IBM DB2 BLU

processes data in chunks so that they fit in the CPU cache [167]. Each worker thread processes

one chunk at a time and can steal chunks. In HyPer [117], each worker thread processes local

data chunks through a whole pipeline of operators, and inter-socket stealing is enabled. In a

recent thesis describing how to parallelize query plans in Vectorwise with task scheduling [86],

inter-socket stealing is allowed based on task priorities and the contention of sockets. In

this thesis, we show that inter-socket stealing of memory-intensive tasks can hurt overall

performance (see Chapter 5). We show that the DBMS should adapt inter-socket stealing to

the workload at run-time, and dynamically disallow the stealing of memory-intensive tasks

(see Chapter 6).

Adaptive solutions. Two state-of-the-art research prototypes use an adaptive NUMA-aware

solution for data placement: ERIS [103] and ATraPos [155]. ERIS is a storage manager that

employs adaptive repartitioning. ERIS uses a worker per core, which processes tasks targeting

a particular data partition. While ERIS targets storage operations, in this thesis we target

analytical workloads consisting of multiple operators (see Chapter 5). We show, in addition,

how partitioning involves an overhead, and can be avoided altogether depending on the

workload. ATraPos uses dynamic repartitioning for OLTP workloads, to avoid transactions

crossing partitions and avoid inter-partition synchronization [155]. ATraPos’s data-oriented

execution model uses a worker per partition, similar to ERIS. While ATraPos optimizes for

the latency of transactions, in this thesis we focus on optimizing the throughput of analytical

workloads by balancing socket utilization at run-time (see Chapter 6). Furthermore, we

note that in contrast to HyPer, ERIS, and ATraPos, we analyze data placement strategies for

dictionary-encoded columns (see Section 2.5).

Black-box solutions. In the systems community, the significance of data placement and

scheduling on servers with a NUMA architecture has been studied since the early 90’s. Typi-

cally, black-box solutions are proposed that track applications’ accesses to memory pages to

predict applications’ behaviors and dynamically use page migration, replication or caching

to improve the local memory accesses of applications. Black-box solutions have been sug-

gested that can exploit the hardware advantages of ccNUMA and COMA (Cache-Only Mem-

ory Architecture) designs [70, 147, 179, 206], or that can track memory accesses by instru-

menting the OS kernel or the applications [44, 45, 109, 110] or by using hardware coun-

ters [129, 130, 184, 185, 189], to support page migration and/or replication. Certain black-box

solutions consider some application knowledge by leveraging parallel and iterative frame-

works such as OpenMP [127, 146, 149, 183]. More recent examples of black-box solutions

focus on multi-core multi-socket servers, handle thread migration and consider bandwidth

bottlenecks as well, such as DINO [41] and Carrefour [64]. Black-box solutions, however, do

27

Chapter 2. Background and Related Work

not use application knowledge and attempt to predict the behavior of applications by tracking

memory accesses. Without application knowledge, results for a complex applications such

as DBMS, whose behavior can be changing, are sometimes sub-optimal [41, 199]. Giceva et

al. [79] use application knowledge and employ a DBMS-focused black-box static approach

to characterize and group the shared operators of a predefined global query plan, and place

them on a NUMA server with the main aim of improving overall energy efficiency. In this

thesis, we also employ a DBMS-focused black-box approach, but geared towards adapting

data placement and task scheduling at run-time (see Chapter 6).

Standalone operators. There is also related work on NUMA-aware standalone operators.

Albutiu et al. [30] show that prefetching can hide the latency of sequential remote accesses,

constructing a competitive sort-merge join. Hash-joins, however, are shown to be superior [38,

108]. Yinan et al. [120] optimize data shuffling on a fully-interconnected NUMA topology.

Most related work, however, optimize for low concurrency with a static data placement using

all sockets of the server. In this thesis, we do not focus on optimizing single operators on

multi-socket servers, but on improving the performance of highly concurrent workloads with

multiple NUMA-aware analytical operators by adapting task scheduling and data placement

to the workload at run-time (see Chapter 6).

Co-scheduling. Co-scheduling techniques attempt to optimize performance by considering

multiple resources, such as CPU utilization, cache efficiency, memory buffers, disk accesses,

etc [75, 114]. NUMA-awareness is a recent dimension that has not been extensively considered

in co-scheduling techniques. In this thesis, we focus on NUMA-aware scheduling, by pre-

ferring local memory accesses and avoiding unnecessary bandwidth bottlenecks on sockets

or interconnects. Our contributions can help to integrate NUMA-awareness as a significant

additional dimension in further co-scheduling techniques.

Operating systems. In the OS community, there are proposals for supporting the performance

requirements of high performance applications, such as DBMS, through the notion of multik-

ernel design, i.e., running customized light-weight kernels instead or alongside full-weight

kernels such as Linux [39, 76]. Giceva et al. suggest that light-weight kernels for DBMS should

support, among other functionality, NUMA-aware task scheduling and memory manage-

ment [80]. Most mainstream OS, however, such as Linux that we use in this thesis, do not

follow the multikernel design yet.

Distributed systems. It is long known that the data placement problem in distributed systems

is NP-complete [69, 208]. The input is a characterization of the data and a workload. We refer

to [152] for a discussion of solution methods. The most advanced method we are aware of

relies on a reduction to a graph partitioning problem which is passed to a heuristic solver that

may need minutes to run [81].

28

2.5. Overview of SAP HANA

Similar solvers are employed in several distributed DBMS tools. Examples include the SAP

Data Distribution Optimizer (DDO) [19], the physical database design advisor in DB2 [168],

the database tuning advisor in MS SQL Server [25], and Oracle’s distribution manager [138].

The produced data placement is static but the solver can be triggered again manually by the

administrator or automatically after a change in the network topology. The data placement,

however, does not adapt automatically to new workload characteristics. In our experience

workloads are rarely completely predictable, and there is a tendency towards highly concurrent

workloads generated by several applications. Our aim is to adapt the data placement across

NUMA nodes to the workload at run-time. The aforementioned solvers cannot quickly adapt

to a changing workload and cannot be immediately applied to our dynamic setting. Our

heuristic algorithm, however, considers only a few alternative placements, and can quickly

adapt to the workload (see Chapter 6).

Partitioning specifications and table groups. Our adaptive data placement uses two notions

found in automated distributed setups (see Chapter 6) [8, 19]. First, only tables for which the

administrator has defined a partitioning specification (e.g., hash partitioning on a column) are

automatically repartitioned. Second, table groups (TG) can be defined to recognize associated

tables used by multiple-input operators. We track utilization at the level of TG. When our

adaptive data placement decides to move or repartition a TG across sockets, it does so for all

the tables of the TG. Equi-joins on tables of a TG that are partitioned over the joined columns

(copartitioned tables), can be executed mostly locally at the sockets with the collocated table

parts [8]. TG and partitioning specifications can be defined manually by the administrator,

suggested by one of the aforementioned solvers for a workload, or given for popular workloads,

e.g., SAP BW [8].

2.5 Overview of SAP HANA

In this thesis, we use a prototype based on SAP HANA, a commercial main-memory DBMS, to

integrate and evaluate task scheduling (see Chapter 4), identify and evaluate NUMA-aware

task scheduling and data placement strategies (see Chapter 5), and adapt task scheduling

and data placement to the workload at run-time (see Chapter 6). In this section, we give an

overview of SAP HANA.

SAP HANA aims to efficiently support OLTP and OLAP workloads [72]. It supports a multitude

of data formats and provides facilities for an extensive spectrum of enterprise applications,

under a flexible and componentized architecture [71]. The general database architecture is

depicted in Figure 2.7. We refer readers to [72, 177] for a more extensive overview. SAP HANA

incorporates four main-memory storage engines to support various workloads: (a) a column-

store, that efficiently supports OLAP-dominated and mixed workloads, (b) a row-store, that is

suited for OLTP workloads, (c) a text engine, and (d) a graph engine [72]. Further components

provide extensions for enterprise applications, and various application interfaces such as

SQLScript and calculation models.

29

Chapter 2. Background and Related Work

Execution engine

Persistence Layer (Logging, Recovery, Page Management)

Task scheduler

Optimizer and Plan Generator

Calculation engine

Access interfaces (SQL, SQL Script, etc.)

Network Connection and Session management

Metadata
Manager

(NEW)

Column-
store

Row-
store

Graph
engine

Text
engine

Authoriza-
tion

Transaction
Manager

Figure 2.7 – The general database architecture of SAP HANA.

In this architecture realizing parallelism is the key to good scalability. For scaling out, SAP

HANA supports distributed query execution plans. Scaling up on every node is achieved

through multi-threaded algorithms that exploit data parallelism. These algorithms are imple-

mented with a special focus on hardware-conscious design and high scalability on modern

multi-core processors. Our task scheduler improves the scalability of these parallel algorithms

on a single shared-memory multi-core server (see Chapter 4). Furthermore, quick response

times for short-running queries are provided by an efficient session management and client

interface [113].

Main-Memory Column-Store

In this thesis, we use the main-memory column-store storage engine of SAP HANA for OLAP

workloads. Next, we describe the basic data structures in the main-memory column-store.

Similar data structures appear in other main-memory column-stores as well, although naming

of the data structures can be different [105, 111, 117].

Anna
Bree
Carl

Emma
Evie

value

... so
rt

ed

vid

Index-
vector (IV) Dictionary Index (IX)

15
3
6
7
0
1
4
8

...

pos

0
1
3
4
6

...

ix

0
1
2
3
4

vid

0
1
2
3
4

pos vid

0
1
2
3
4

3
3
6
1
4

...

Table “PERSONS”, column “NAME”

Figure 2.8 – Example of a dictionary-
encoded column.

The data of an uncompressed column can be stored

sequentially in a vector in main-memory. Com-

pression techniques are typically employed to re-

duce the amount of consumed memory, and po-

tentially speed up processing. The simplest and

most common compression is dictionary encod-

ing [118, 96, 105, 111]. In Figure 2.8, we show the

data structures that compose a column in a generic

column-store, along with an optional index.

The indexvector (IV) is an integer vector of

dictionary-encoded values, called value identifiers

(vid). The position (pos) relates to the row in the

relation/table. In SAP HANA, the dictionary stores

30

2.5. Overview of SAP HANA

the sorted real values of vid. Fixed-width values are stored inline, while variable-length ones

may require, e.g., using pointers or prefix-compressed storage for strings. A value lookup in

the dictionary can be done with binary search, but one can also implement predicates like

less-or-equal directly on the vid. The IV can be further compressed using bit-compression,

i.e., using the least number of bits (called bitcase) to store the vid. Vectorization enables the

efficient implementation of scans, including their predicates, using SIMD (Single instruction,

multiple data) instructions. In this thesis, we use scans implemented with SSE instructions, or

AVX2 instructions if supported by the processors, on bit-compressed IV [195, 197].

An optional inverted index (IX) can speed up low-selectivity lookups without scanning the IV.

It stores the positions where a vid appears in the IV. The simplest IX consists of two vectors.

Each position of the first correlates to a vid, and holds an index towards the second. The

second vector holds the, possibly multiple, positions of a vid in the IV.

In this thesis, we identify and evaluate different data placement strategies for placing the

above data structures across the sockets of a multi-socket server (see Chapter 5). We also show

how analytical operations can be parallelized in a NUMA-aware fashion by considering the

data placement (see Chapter 5). Furthermore, we adapt the data placement on a multi-socket

server to the workload at run-time (see Chapter 6).

Mixed OLAP and OLTP workloads

SAP HANA supports fully interactive ACID transactions [113]. With respect to transactional

isolation, the transaction manager of SAP HANA uses multi-version concurrency control

(MVCC) to ensure consistent read operations [20, 193]. The default isolation level is “read

committed”, which provides statement level snapshot isolation, and two modes of transaction

level snapshot isolation, “repeatable read” and “serializable”, are supported as well [20]. During

a transaction when rows are inserted, updated, or deleted, the system sets exclusive locks on

the affected rows for the duration of the transaction [20].

For our analysis of mixed OLTP and OLAP main-memory workloads in Chapter 4, we use the

main-memory column-store storage engine of SAP HANA. We note that a hybrid data layout

can improve the performance of mixed workloads [29, 85], but, for our analysis, we focus on

assessing the scalability of concurrency rather than different data layout approaches.

To support fast transaction processing in SAP HANA’s main-memory column-store, each

column is composed of two parts: the main, and the delta, as shown in Figure 2.9a. Data

in both parts are dictionary-encoded, using an IV and a dictionary, as shown in Figure 2.8.

Data in the main is dictionary encoded using a sorted dictionary. The dictionary-encoded

data is static, bit-compressed, and further compressed for fast scanning. The delta supports

transactional operations, and includes recently added, updated, and deleted data. The delta’s

dictionary is unsorted, and a cache-sensitive B+-tree is employed for fast lookups. To respect

transactional semantics, read operations query both the main and the delta.

31

Chapter 2. Background and Related Work

5
1
N
3

1

...

IV

0
1
2
3

N

...

Anna
Baron
Bruce
Daniel

Zebra

Dictionary

C1's main

so
rt

ed
0
1
1

...

IV

0
1
2

...

Carl
Al

Meg

Dictionary

C1's delta

Index

Update/insert
/deleteReads

C1 C2 C3 C4

C1 C2 C3 C4Delta store

Main store

Merge

Log Savepoint data area

Table access methods(a) (b)

Figure 2.9 – (a) The data structures of the main and the delta parts of a column. (b) The delta
part of a column is periodically merged into the main part.

Allowing the delta part to grow incessantly compromises performance of both analytical and

transactional operations due to the increasing bookkeeping overhead of the delta’s dictionary

and index. Thus, the delta is periodically merged into the main part, as shown in Figure 2.9b,

reconstructing the static data structures of the main part, and preparing an empty delta for

new data. For recovery, the merge operation may store a savepoint in persistent memory, and

further transactional operations (in the delta) are typically logged.

We continue the discussion of mixed workloads in Chapter 4. Through an experimental

evaluation, we pinpoint the main issues affecting the scalability of mixed workloads: data

freshness, flexibility, and task scheduling.

32

3 Sharing Data and Work Across Con-
current Queries

In this chapter, we tackle the first issue of why conventional DBMS do not scale up efficiently

on modern multi-core servers (see Chapter 1). We present how and when the execution

engine of a DBMS should employ reactive and proactive run-time sharing techniques across

concurrent queries to improve the overall performance of the query mix.

Publications. Parts of this chapter have been published in [157, 159].

3.1 Introduction

Today, in the era of data deluge, the concurrency requirements for analytical applications

can reach up to 1,000 concurrent users (see Chapter 1). General-purpose DBMS, however,

cannot easily handle OLAP workloads with such concurrency [47]. A limiting factor is their

query-centric model: DBMS optimize and execute each query independently (see Section 1.2).

Concurrent queries, however, often exhibit overlapping data accesses or computations. The

query-centric model misses the opportunities of sharing work and data, and results in perfor-

mance degradation due to the contention of concurrent queries for I/O, CPU and RAM.

3.1.1 Methodologies for Sharing Data and Work

A variety of ideas have been proposed to exploit sharing, including buffer pool management

techniques, materialized views, caching and multi-query optimization (see Section 2.2). More

recently, data is being shared at the I/O layer using shared scans (with variants also known as

circular scans, cooperative scans or clock scan) [58, 188, 211]. In this chapter, we evaluate run-

time sharing techniques at the level of the execution engine. We distinguish two predominant

methodologies: (a) reactive sharing [91], and (b) proactive sharing [33, 47, 48, 77].

Reactive sharing, alternatively known as Simultaneous Pipelining (SP), is introduced in

QPipe [91], an operator-centric execution engine, where each relational operator is encap-

sulated into a self-contained module called a stage. Each stage detects common sub-plans

33

Chapter 3. Sharing Data and Work Across Concurrent Queries

among concurrent queries, evaluates only one and pipelines the results to the rest when

possible. Proactive sharing is introduced in the CJOIN operator [47, 48]. Proactive sharing

analyzes the workload and builds synergistically shared operators in a global query plan

(GQP). A single shared operator is able to evaluate multiple concurrent queries. CJOIN uses a

GQP, consisting of shared hash-join operators that evaluate the joins of multiple concurrent

star queries simultaneously. More recent research prototypes extend the logic to additional

operators and to more general cases [33, 77].

Before continuing, please see Section 2.2 for a short survey of run-time sharing techniques,

and of QPipe and CJOIN. We use terminology introduced in that section.

3.1.2 Integrating Reactive and Proactive Sharing

In order to perform our analysis and experimental evaluation of reactive vs. proactive sharing,

we integrate the original research prototypes that introduced them into one system: we inte-

grate the CJOIN operator as an additional stage of the QPipe execution engine (see Section 3.2)

on top of the Shore-MT storage manager [99]. Thus, we can dynamically decide whether to

evaluate multiple concurrent queries with the standard query-centric relational operators of

QPipe, with or without reactive sharing, or the proactive sharing offered by CJOIN.

Furthermore, this integration allows us to combine the two sharing techniques, showing that

they are in fact orthogonal. As shown in Figure 2.1d of Section 2.2, proactive sharing misses

the opportunity of sharing common sub-plans, and redundantly evaluates both Q2 and Q3.

Reactive sharing can be applied to shared operators to complement proactive sharing with

the additional capability of sharing common sub-plans (see Section 3.2).

3.1.3 Optimizing Reactive Sharing

For the specific case of reactive sharing, it is shown in the literature [98, 164] that if there is a

serialization point, enforcing aggressive sharing does not always improve performance. In

cases of low concurrency and sufficient available resources, it is shown that the system should

first parallelize with a query-centric model before sharing.

To calculate the turning point where sharing becomes beneficial, a prediction model is pro-

posed [98] for determining at run-time whether reactive sharing is beneficial. In this chapter,

however, we show that the serialization point is due to the push-based communication orig-

inally employed by reactive sharing [91, 98]. We show that pull-based communication can

drastically minimize the impact of the serialization point, and is better suited for sharing

common results on servers with multi-core processors.

We introduce Shared Pages Lists (SPL), a pull-based sharing approach that eliminates the seri-

alization point caused by push-based sharing during reactive sharing. SPL are data structures

that store the intermediate results of relational operators, and allow for a single producer and

34

3.1. Introduction

multiple consumers. SPL make reactive sharing always beneficial and reduce response times

by up to 1.6x in cases of high concurrency, compared to not sharing. The original push-based

reactive sharing design and implementation [91, 98], on the other hand, increases response

times by up to 5.7x, compared to not sharing (see Section 3.3).

3.1.4 Reactive vs. Proactive Sharing

Having optimized reactive sharing, and having integrated the CJOIN operator in the QPipe

execution engine, we proceed to perform an extensive analysis and experimental evaluation of

reactive vs. proactive sharing (see Section 3.4). Our work answers two fundamental questions:

when and how an execution engine should share to improve performance.

Sharing in the execution engine. We identify a performance trade-off between using a query-

centric model and sharing. For a high number of concurrent queries, the execution engine

should share, as it reduces contention for resources and improves performance in comparison

to a query-centric model. For low concurrency, however, sharing is not always beneficial.

With respect to reactive sharing, we corroborate previous related work [98, 164], that if reac-

tive sharing entails a serialization point, then enforcing aggressive sharing does not always

improve performance. Our newly optimized reactive sharing with SPL, however, eliminates

the serialization point, making reactive sharing always beneficial.

With respect to proactive sharing, we corroborate previous work [33, 47, 48, 77] that shared

operators are efficient in reducing contention for resources and in improving performance

for high concurrency (see Section 3.4.2). The design of a shared operator, however, inherently

increases bookkeeping in comparison to the typical operators of a query-centric model. Thus,

for low concurrency, we show that shared operators result in worse performance than the

traditional query-centric operators (see Section 3.4.2).

Moreover, we show that reactive sharing can be applied to proactive sharing, in order to get

the best out of the two worlds. Reactive sharing can reduce the response time of proactive

sharing by 20%-50% for workloads with common sub-plans (see Section 3.4.4).

Sharing in the I/O layer. Our experimental results with reactive sharing also corroborate

previous work relating to shared scans. The pull-based reactive sharing for the table scan stage

is basically a circular scan per table. Our experiments show that a circular scan can either

retain or improve the performance of typical analytical workloads both in cases of low and

high concurrency, compared to independent scans (see Section 3.3).

Rules of thumb. Putting all our observations together, we deduce a few rules of thumb

for sharing, presented in Table 3.1. Our rules of thumb apply for the case of typical OLAP

workloads involving ad-hoc, long running, scan-heavy queries over relatively static data.

35

Chapter 3. Sharing Data and Work Across Concurrent Queries

When
How to share in the

Execution Engine I/O Layer
Low concurrency Query-centric operators + reactive sharing Reactive sharing

High concurrency Proactive sharing + reactive sharing (shared scans)

Table 3.1 – Rules of thumb for sharing data and work across typical concurrent queries.

3.1.5 Contributions

In this chapter, we perform an experimental analysis of two run-time work sharing methodolo-

gies, (a) reactive sharing, and (b) proactive sharing, based on the original research prototypes

that introduce them. Our analysis answers two fundamental questions: when and how an

execution engine should employ run-time sharing in order to improve the performance of

typical analytical workloads. Our work makes the following main contributions:

• Integration of reactive and proactive sharing: We show that reactive and proactive

sharing are orthogonal, and can be combined to take the best of the two worlds (Sec-

tion 3.2). We experimentally show that reactive sharing can further improve the perfor-

mance of proactive sharing by 20%-50% for workloads that expose common sub-plans.

• Pull-based reactive sharing: We introduce Shared Pages Lists (SPL), a pull-based ap-

proach for reactive sharing that eliminates the sharing overhead of push-based reactive

sharing. Pull-based reactive sharing is better suited for multi-core servers than push-

based reactive sharing, and can reduce response times by up to 1.6x compared to not

sharing (see Section 3.3).

• Evaluation of reactive vs. proactive sharing: We analyze the trade-offs of reactive and

proactive sharing, and their combination. We detail through an extensive sensitivity

analysis when each one is beneficial (Section 3.4). We show that query-centric operators

combined with reactive sharing result in better performance for cases of low concur-

rency, while the shared operators of proactive sharing, enhanced by reactive sharing,

are better suited for cases of high concurrency.

Outline. The rest of this chapter is organized as follows. Section 3.2 describes our implementa-

tion for integrating reactive and proactive sharing. Section 3.3 presents Shared Pages Lists, our

pull-based solution for sharing common results during reactive sharing. Section 3.4 includes

our experimental evaluation. We present our conclusions in Section 3.5.

3.2 Integrating Reactive and Proactive Sharing

By integrating reactive and proactive sharing, we can exploit the advantages of both forms

of sharing. In Section 3.2.1, we describe how reactive sharing can conceptually improve the

36

3.2. Integrating Reactive and Proactive Sharing

performance of the shared operators of proactive sharing in the presence of common sub-

plans, using several examples. These observations apply to general GQP, and are applicable to

the research prototypes we mention in Section 2.2. We continue in Section 3.2.2 to describe

our implementation based on CJOIN and QPipe.

3.2.1 Benefits of Applying Reactive Sharing to Proactive Sharing

Identical queries. If a new query is completely identical with an ongoing query, reactive

sharing takes care to reuse the final results of the ongoing query for the new query. If we

assume that the top-most operators in a query plan have a full step WoP (e.g. when final results

are buffered and given wholly to the client instead of being pipelined), the new query does

not need to participate at all in the GQP, independent of its time of arrival during the ongoing

query’s evaluation. This is the case where the integration of reactive and proactive sharing

offers the maximum performance benefit. Additionally, admission costs are completely

avoided, the tuples’ bitmaps do not need to be extended to accommodate the new query

(translating to fewer bitwise operations), and the latency of the new query is decreased to the

latency of the remaining part of the ongoing query.

Shared selections. If a new query has the same selection predicate as an ongoing query,

reactive sharing allows to avoid the redundant evaluation of the same selection predicate

from the moment the new query arrives until the end of evaluation of the ongoing query (a

selection operator has a linear WoP). For each tuple, reactive sharing copies the resulting bit

of the shared selection operator for the ongoing query, to the position in the tuple’s bitmap

that corresponds to the new query.

Shared joins. If a new query has a common sub-plan with an ongoing query under a shared

join operator, and arrives within the step WoP, reactive sharing can avoid extending tuples’

bitmaps with one more bit for the new query for the sub-plan. The join still needs to be

evaluated, but the number of bitwise operations can be reduced.

Shared aggregations. If a new query has a common sub-plan with an ongoing query un-

der a shared aggregation operator, and arrives within the step WoP, reactive sharing avoids

calculating a redundant sum. It copies the final result from the ongoing query.

Admission costs. For every new query submitted to the GQP of proactive sharing, an admis-

sion phase is required that possibly re-adjusts the GQP to accommodate it. In case of common

sub-plans, reactive sharing can avoid part of the admission costs. The cost depends on the

implementation.

For CJOIN [47, 48], the admission cost of a new query includes (a) scanning all involved

dimension tables, (b) evaluating its selection predicates, (c) extending the bitmaps attached to

tuples, (d) increasing the size of hash tables of the shared hash-joins to accommodate newly

37

Chapter 3. Sharing Data and Work Across Concurrent Queries

selected dimension tuples (if needed), and (e) stalling the pipeline to re-adjust filters [47, 48].

For identical queries, reactive sharing can avoid these costs completely. For queries with

common sub-plans, reactive sharing can avoid parts of these costs, such as avoiding scanning

dimension tables for which selection predicates are identical.

For DataPath [33], reactive sharing can decrease the optimization time of the GQP if it assumes

that the common sub-plan of a new query can use the same part of the current GQP as the

ongoing query. For SharedDB [77], reactive sharing can help to start a new query before the

next batch at any operator if it has a common sub-plan with an ongoing query and has arrived

within the corresponding WoP of the operator.

3.2.2 CJOIN as a QPipe Stage

We integrate the original CJOIN operator into the QPipe execution engine as a new stage, using

Shore-MT [99] as the underlying storage manager. In Figure 3.1, we depict the new stage that

encapsulates the CJOIN pipeline.

The CJOIN stage accepts incoming QPipe packets that contain the necessary information

to formulate a star query: (a) the projections for the fact table and the dimension tables to

be joined, and (b) the selection predicates. The CJOIN operator does not support selection

predicates for the fact table [47], as these would slow the preprocessor significantly. Fact table

predicates are evaluated on the output tuples of CJOIN.

To improve admission costs we use batching, following the original CJOIN proposal [48].

In one pause of the pipeline, the admission phase adapts the filters for all queries in the

batch. During the execution of each batch, additional new queries form a new batch to be

subsequently admitted.

With respect to threads, there is a number of threads assigned to filters (we assume the

horizontal configuration of CJOIN [47, 48]), each one taking a fact tuple from the preprocessor,

passing it through the filters up to the distributor. The original CJOIN uses a single-threaded

distributor which slows the pipeline significantly. To address this bottleneck, we augment

the distributor with several distributor parts. Every distributor part takes a tuple from the

Preprocessor Distributor

F D1 Shore-MT
QPipe

packets

Distributor
Part

Distributor
Part

...

...

Filters

Q1: CJOIN
F D1 D2

Q2: CJOIN
F D2

Q3: CJOIN
F D1 D3

CJOIN stage

Figure 3.1 – Integration scheme of CJOIN as a QPipe stage.

38

3.3. Optimizing Reactive Sharing

distributor, examines its bitmap and determines relevant CJOIN packets. For each relevant

packet, it performs the projection of the star query and forwards the tuple to the output buffer

of the packet.

CJOIN supports only shared hash-joins. Subsequent operators in a query plan, e.g., aggrega-

tions or sorts, are query-centric. Nevertheless, our evaluation gives us insight on the general

behavior of shared operators in a GQP with proactive sharing, as joins typically comprise the

most expensive part of a star query.

Reactive sharing for the CJOIN stage. We enable reactive sharing for the CJOIN stage with a

step WoP. Evaluating the identical queries Q2 and Q3 of Figure 2.1d of Section 2.2 employing

reactive sharing, requires only one packet entering the CJOIN stage. The second satellite

packet reuses the results.

CJOIN is itself an operator and we integrate it as a new stage in QPipe. As with any other QPipe

stage, reactive sharing is applied on the overall CJOIN stage. Conceptually, our implementation

applies reactive sharing for the whole series of shared hash-joins in the GQP. Our analysis,

however, gives insight on the benefits of applying reactive sharing to fine-grained shared

hash-joins as well. This is due to the fact that a redundant CJOIN packet involves all redundant

costs we mentioned in Section 3.2.1 for admission, shared selections operators and shared

hash-joins. Our experiments show that the cost of a redundant CJOIN packet is significant

and reactive sharing decreases it considerably.

3.3 Optimizing Reactive Sharing

In this section, we present design and implementation issues of reactive sharing, and how to

address them. Contrary to intuition, it is shown in the literature that reactive sharing is not

always beneficial: if there is a serialization point during reactive sharing, then sharing common

results aggressively can lead to worse performance, compared to a query-centric model that

implicitly exploits parallelism [98, 164]. When the producer (host packet) forwards results

to consumers (satellite packets), it is in the critical path of the evaluation of the remaining

nodes of the query plans of all involved queries. Forwarding results can cause a significant

serialization point. In this case, the DBMS should first attempt to exploit available resources

and parallelize as much as possible with a query-centric model, before sharing. A prediction

model is proposed [98] for determining at run-time whether sharing is beneficial. In this

section, however, we show that reactive sharing is possible without a serialization point, thus

rendering reactive sharing always beneficial.

The serialization point is caused by strictly employing push-based communication. Pipelined

execution typically uses FIFO buffers to exchange results between operators [47, 48, 91, 98].

This allows to decouple query plans and have a distinct separation between queries, similar to a

query-centric design. During reactive sharing, simultaneous pipelining forces the single thread

39

Chapter 3. Sharing Data and Work Across Concurrent Queries

(a)Host packet

Satellite
packet

Satellite
packet

Satellite
packet

forward results
FIFO buffer

Host packet

Satellite
packet

Satellite
packet

Satellite
packet

(b)

Figure 3.2 – Sharing identical results during SP with: (a) push-only model and (b) a SPL.

of the pivot operator of the host packet to forward results to all satellite packets sequentially

(see Figure 3.2a), which creates a serialization point.

This serialization point is reflected in the prediction model [98], where the total work of the

pivot operator includes a cost for forwarding results to all satellite packets. By using copying

to forward results [98], the serialization point becomes significant and delays subsequent

operators in the plans of the host and satellite packets. This creates a trade-off between sharing

and parallelism, where in the latter case a query-centric model without sharing is used.

Sharing vs. Parallelism. We demonstrate this trade-off with the following experiment, similar

to the experiment of [98], which evaluates reactive sharing for the table scan stage with a

memory-resident database. Though the trade-off applies for disk-resident databases and

other stages as well, it is more pronounced in this case. Our experimental configuration can

be found in Section 3.4. We evaluate two configurations of the QPipe execution engine: (a) No

Sharing (FIFO) , which evaluates query plans independently without any sharing, and (b) CS

(FIFO) , with reactive sharing enabled only for the table scan stage, thus supporting circular

scans (CS). FIFO buffers are used for pipelined execution and copying is used to forward pages

during reactive sharing, following the original push-only design [91, 98]. We evaluate identical

TPC-H [15] Q1 queries, submitted at the same time, with a database of scale factor 1. We use

either 1 H/W thread on the server, to simulate a uniprocessor, or all 24 H/W threads available

on the server. The leftmost graphs of Figure 3.3 show the response times of the configurations,

while varying the number of concurrent queries.

For the case of 1 H/W thread, CS (FIFO) has always equal or better performance than No

Sharing (FIFO) . For the case of 24 H/W threads, however, CS (FIFO) has always equal or

worse performance than No Sharing (FIFO) . Push-based reactive sharing suffers from low

utilization of CPU resources, due to the aforementioned serialization point of SP. The critical

path increases with the number of concurrent queries. For 128 concurrent queries, it increases

the response time by up to 5.7x, compared to the query-centric model, which evaluates queries

independently. In terms of CPU load, it uses on average 2.4 H/W threads, while the query-

centric model uses on average 23 H/W threads. To sum up, push-based reactive sharing can be

used if only 1 H/W thread is available to the DBMS, but should not be used if all H/W threads

of the multi-core server are available to the DBMS. This trade-off corroborates the prediction

model for uniprocessor and multi-core servers [98].

40

3.3. Optimizing Reactive Sharing

0

200

400

600

1 2 4 8 16 32 64 128

Re
sp

on
se

tim
e

(s
ec

)

of concurrent queries

No sharing
(FIFO)
CS (FIFO)

0

200

400

600

1 2 4 8 16 32 64 128

Re
sp

on
se

tim
e

(s
ec

)

of concurrent queries

No sharing
(SPL)
CS (SPL)

0

1

2

3

1 2 4 8 16 32 64 128

Sp
ee

du
p

of concurrent queries

FIFO
SPL

0

50

100

150

1 2 4 8 16 32 64 128

Re
sp

on
se

tim
e

(s
ec

)

of concurrent queries

No sharing
(FIFO)
CS (FIFO)

2.4 CPU

23 CPU

0

10

20

30

1 2 4 8 16 32 64 128

Re
sp

on
se

tim
e

(s
ec

)

of concurrent queries

No sharing
(SPL)
CS (SPL)

22 CPU

18 CPU

0

1

2

1 2 4 8 16 32 64 128

Sp
ee

du
p

of concurrent queries

FIFO
SPL

-5.7x

+1.6x

1 H/W thread used

24 H/W threads used

Figure 3.3 – Evaluating multiple identical TPC-H Q1 queries with a push-based model dur-
ing reactive sharing (leftmost graphs), and with a pull-based model during reactive sharing
(middle graphs), using either 1 H/W thread (top graphs) or all available H/W threads (bottom
graphs) of the server. The rightmost graphs show the corresponding speedups of the two
methods of reactive sharing over not sharing.

Nevertheless, the impact of the serialization point of reactive sharing can be minimized.

Simply copying tuples in a multi-threaded way would not solve the problem, due to synchro-

nization overhead and increased required CPU resources. A solution would be to forward

tuples via pointers, a possibility not considered by the original system. We can, however,

avoid unnecessary pointer chasing; by employing pull-based communication, we can share

the results and eliminate forwarding altogether. In essence, we transfer the responsibility of

sharing the results from the producer to the consumers. Thus, the total work of the producer

does not include any forwarding cost. Our pull-based communication model is suited for

reactive sharing for any stage with a step or linear WoP. Our pull-based model eliminates the

serialization point of the push-based model for reactive sharing, leading to better scalability

on servers with modern multi-core processors with virtually no sharing overhead.

To achieve this, we create an intermediate data structure, the Shared Pages Lists (SPL). SPL

have the same usage as the FIFO buffers of the push-only model. A SPL, however, allows a

single producer and multiple consumers. A SPL is a linked list of pages, depicted in Figure 3.2b.

The producer adds pages at the head, and the consumers read the list from the tail up to the

head independently.

To show the benefits of SPL, we run the same experiment as before, by employing SPL instead

of FIFO buffers. The middle graphs of Figure 3.3 show the response times of the configurations,

41

Chapter 3. Sharing Data and Work Across Concurrent Queries

while varying the number of concurrent queries. When reactive sharing does not take place, a

SPL has the same role as a FIFO buffer, used by one producer and one consumer. Thus, the No

Sharing (SPL) line has a similar trend with the No Sharing (FIFO) line. During reactive sharing,

however, a single SPL is used to share the results of one producer with all consumers.

With SPL, reactive sharing has the same or better performance than not sharing, for both

cases of 1 and 24 H/W threads, for all cases of concurrency. We avoid using a prediction

model altogether, for deciding whether to share or not. Parallelism is achieved due to the

minimization of the serialization point. For the case of 24 H/W threads, for high concurrency,

CS (SPL) uses more CPU resources than CS (FIFO) , and reduces response times by 1.6x in

comparison to No Sharing (SPL) . Our results corroborate the employment of shared scans for

DBMS that handle scan-heavy analytical workloads (see Section 2.2).

3.3.1 Design of a Shared Pages List

Figure 3.4 depicts a SPL. It points to the head and tail of the linked list. The host packet adds

pages at the head. Satellite packets read pages from the SPL independently. Due to different

concurrent actors accessing the SPL, we associate a lock with it. Contention for locking is

minimal in all our experiments, mainly due to the granularity of pages we use (32 KB). A

lock-free linked list, however, can also be used to address any scalability problems.

- List of finishing packets
- Atomic counter of reads
- Data

SPL - Lock
- List of satellite packets and their points of entry
- Maximum sizeHost packet

Satellite packetSatellite packet

Figure 3.4 – Design of a shared pages list.

If we allow the SPL to be unbounded, we can achieve the maximum parallelism possible,

even if the producer and the consumers move at different speeds. There are practical reasons,

however, why the SPL should not be unbounded, similar to the reasons why a FIFO buffer

should not be unbounded, including: saving RAM and regulating differently paced actors.

To investigate the effect of the maximum size, we ran the experiment of Figure 3.3, for the

case of 8 concurrent queries, varying the maximum size of SPL up to 512 MB. Figure 3.5 shows

the results. We observe that changing the maximum size of the SPL does not significantly

affect the response time. Hence, we chose a maximum size of 256 KB for our experiments to

minimize the memory footprint of SPL.

In order to decrease the size of the SPL, the last consumer is responsible for deleting the last

page. Each page has an atomic counter with the number of consumers that will read this page.

When a consumer finishes processing a page, he decrements its counter and deletes the page

42

3.4. Experimental Evaluation

if he sees a zero counter. In order to know how many consumers will read a page, the SPL

stores a list of active satellite packets. The producer assigns their number as the initial value of

the atomic counter of each emitted page.

0
1
2
3
4

256 4096 65536

Re
sp

on
se

tim
e

(s
ec

)

Maximum size of SPL (KB)

CS (SPL)

Figure 3.5 – Size of SPL.

Linear window of opportunity. To handle a linear WoP,

such as circular scans, the SPL stores the point of entry of

every consumer. When the host packet finishes processing,

the SPL is passed to the next host packet that handles the

processing for re-producing missed results.

When the host packet emits a page, it checks for consumers

whose point of entry is this page, and will need to finish

when they reach it. The emitted page has attached to it

a list of these finishing packets, which are removed from

the active packets of the SPL (they do not participate in the atomic counter of subsequently

emitted pages). When a consumer (packet) reads a page, it checks whether it is a finishing

packet, in which case, it exits the SPL.

Shared scans and SPL. Pull-based models, similar to SPL, have been proposed for shared

scans that are specialized for efficient buffer pool management and are based on the fact that

all data is available for accessing (see Section 2.2). SPL differ because they are generic and can

be used during reactive sharing at any operator which may be producing results at run-time.

It is possible, as well, to use shared scans for table scans, and use SPL during reactive sharing

for other operators.

3.4 Experimental Evaluation

This section includes our experimental sensitivity analysis of reactive vs. proactive sharing

techniques. We also show how proactive sharing can be enhanced by reactive sharing to

exploit the advantages of both for cases of high concurrency.

3.4.1 Experimental Methodology

We compare five configurations of the QPipe execution engine:

• CS , supporting reactive only for the table scan stage, i.e., circular scans. Subsequent

operators are query-centric, evaluated separately with pipelining, without sharing. This

serves as our baseline.

• RS , supporting reactive sharing additionally for the join stage. It improves performance

over CS , in cases of high similarity, i.e. common sub-plans. In cases of low similarity, it

behaves similar to CS .

43

Chapter 3. Sharing Data and Work Across Concurrent Queries

• PS , proactive sharing, which is the result of our integration of CJOIN into QPipe, hence

the joins in star queries are evaluated with a GQP of shared hash-joins. We remind that

CJOIN only supports shared hash-joins, thus subsequent operators are query-centric.

Nevertheless, this configuration allows us to compare shared hash-joins with the query-

centric ones used by the previous configurations, giving us insight on the performance

characteristics of general shared operators.

• PS+RS , which additionally supports reactive sharing for the CJOIN stage (see Sec-

tion 3.2.2). We use this configuration to evaluate the benefits of combining proactive

and reactive sharing. It behaves similar to PS in cases of low similarity in the query mix.

In all our experiments, reactive sharing for the aggregation and sorting stages is off. This

is done on purpose to isolate the benefits of reactive sharing for joins only, so as to better

compare RS and PS+RS .

We use the Star Schema Benchmark (SSB) [141], read-only, and Shore-MT [99] as the storage

manager. SSB is a simplified version of TPC-H [15] where the tables lineitem and order have

been merged into lineorder and there are four dimension tables: date, supplier, customer

and part. Shore-MT is an open-source multi-threaded storage manager developed to achieve

scalability on multi-core platforms.

We use a Sun Fire X4470 server with four hexa-core processors Intel Xeon E7530 at 1.86 GHz,

with hyper-threading disabled and 64 GB of RAM. Each core has a 32 KB L1 instructions cache,

a 32 KB L1 data cache, and a 256 KB L2 cache. Each processor has a 12 MB L3 cache, shared by

all its cores. For storage, we use two 146 GB 10 kRPM SAS 2.5” disks, configured as a RAID-0.

The O/S is a 64-bit SMP Linux (Red Hat), with a 2.6.32 kernel.

We clear the file system caches before every measurement. All configurations use a large buffer

pool that fits datasets of scale factors up to 30 (scanning all tables reads 21 GB of data from

disk). SPL are used for exchanging results among packets. We use 32 KB pages and a maximum

size of 256 KB for a SPL (see Section 3.3).

Unless stated otherwise, every data point is the average of multiple iterations with standard

deviation less or equal to 10%. Furthermore, we mention the average CPU usage and I/O

throughput of representative iterations (averaged only over their activity period), to gain

insight on the performance of the configurations.

Our sensitivity analysis is presented in the following Sections 3.4.2-3.4.4. We vary (a) the

number of concurrent queries, (b) whether the database is memory-resident or disk-resident,

(c) the selectivity of fact tuples, (e) the scale factor, and (d) the query similarity which is

modeled in our experiments by the number of possible different submitted query plans. We

measure performance by evaluating multiple concurrent instances of SSB Q3.2. It is a typical

star query that joins three of the four dimension tables with the fact table. The SQL template

and the execution plan are shown in Figure 3.6. We select a single query template for our

44

3.4. Experimental Evaluation

F D1

D2

D3

A

SSELECT c_city, s_city, d_year,
 SUM(lo_revenue) as revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey
 AND lo_suppkey = s_suppkey
 AND lo_orderdate = d_datekey
 AND c_nation = [NationCustomer]
 AND s_nation = [NationSupplier]
 AND d_year >= [YearLow]
 AND d_year <= [YearHigh]
GROUP BY c_city, s_city, d_year
ORDER BY d_year ASC, revenue DESC supplier

customer

date

Figure 3.6 – The SSB Q3.2 SQL template and the query plan.

sensitivity analysis because we can adjust the similarity of the query mix to gain insight on the

benefits of reactive sharing, and also, the GQP of CJOIN is the same for all experiments, with

the same 3 shared hash-joins for all star queries. Queries are submitted at the same time, and

are all evaluated concurrently. This single batch for all queries allows us to minimize query

admission overheads for proactive sharing, and additionally allows us to show the best case

for reactive sharing, as all queries with common sub-plans arrive surely inside the WoP of their

pivot operators. We note that variable inter-arrival delays can eliminate sharing opportunities

for reactive sharing, and refer the interested reader to the original QPipe paper [91] to review

the effects of interarrival delays for different cases of pivot operators and WoP.

3.4.2 Impact of Concurrency

We start with an experiment that does not involve I/O accesses to study the computational

behavior of the configurations. We store our database in a RAM drive. We evaluate multiple

concurrent SSB Q3.2 instances for a scale factor 1. The predicates of the queries are chosen

randomly, keeping a low similarity factor among queries and the selectivity of fact tuples varies

from 0.02% to 0.16% per query. Figure 3.7 (left) shows the response times of the configurations,

while varying the number of concurrent queries.

For this first experiment, we evaluate additionally the No Sharing variation of QPipe, without

Configuration
Measurement

Avg. # Cores
Used 20.6 19.7 18.8 3.47

Avg. # Cores
Used 20.9 19.8 17.1 3.49

Avg. Read
Rate (MB/s) 106.7 74.5 97.7 156

CS RS PS

Memory-resident database

Disk-resident database

No
Sharing

0

20

40

60

80

1 2 4 8 16 32 64 128256
Number of concurrent queries

Disk-resident database

0

20

40

60

80

1 2 4 8 16 32 64 128256

Re
sp

on
se

tim
e

(s
ec

)

Number of concurrent queries

No Sharing
CS
RS
PS

Memory-resident database

Figure 3.7 – Experiment with memory-resident (left) and disk-resident (middle) database of
SF 1. The table (right) includes measurements for the case of 256 concurrent queries.

45

Chapter 3. Sharing Data and Work Across Concurrent Queries

reactive sharing, to confirm the implications of Section 3.3. For low concurrency, CPU re-

sources are used sufficiently. Starting with as few as 32 concurrent queries, there is contention

for CPU resources, due to the fact that our server has 24 cores and all analytical operators are

evaluated separately. For 256 queries all cores are used at their maximum. The circular scans

of CS improve performance by reducing contention for CPU resources and the buffer pool.

CS misses several sharing opportunities at higher operators in the query plans. RS can exploit

them. Even though we use random predicates, the ranges of variables of the SSB Q3.2 template

allows RS to share the first hash-join 126 times, the second hash-join 17 times, and the third

hash-join 1 time, on average for 256 queries. Thus, it saves more CPU resources and results in

lower response time than the circular scans alone.

The shared operators of PS offer the best performance, as they are the most efficient in sav-

ing resources. PS has an initialization overhead in comparison to the other configurations,

attributed to its admission phase, which has a large part that pauses the pipeline (see Sec-

tion 3.2.1). The shared hash-joins in the GQP can effortlessly evaluate many instances of

SSB Q3.2. Nevertheless, admission and evaluation costs accumulate for an increasing num-

ber of queries, thus the PS line also starts to degrade. PS reduces the response time of the

query-centric No Sharing by a factor of 6, and of the circular scans of CS by a factor of 4.

We do not depict PS+RS , as it has the same behavior as PS . As we noted in Section 3.2.2, our

implementation of PS+RS supports sharing CJOIN packets with all predicates identical. This

is rare due to this experiment’s random selection predicates.

Our observations apply also to the same experiment with the database on disk, shown in

Figure 3.7 (middle). Response times for low concurrency have increased, but not significantly

for high concurrency because the workload becomes CPU-bound. For high concurrency, there

is CPU contention for No Sharing, which de-schedules scanner threads regularly resulting

in low I/O throughput. CS improves the performance. RS further improves performance by

eliminating common sub-plans. The shared operators of PS still prevail for high concurrency.

Furthermore, the overhead of the admission phase of CJOIN, that we observed for a memory-

resident database, is masked by file system caches for disk-resident databases. We explore this

effect in a next experiment, where we vary the scale factor.

Implications. Reactive sharing is able to eliminate common sub-plans. The shared operators

of proactive sharing are more efficient in evaluating a high number of queries, in comparison

to standard query-centric operators.

3.4.3 Impact of Data Size

In this section, we study the behavior of the configurations by varying the amount of data

they handle. We perform two experiments: in the first, we vary the selectivity of fact tuples of

queries, and in the second, the scale factor.

46

3.4. Experimental Evaluation

Impact of selectivity. We use a memory-resident database with scale factor 10. The query mix

consists of 8 concurrent queries which are different instances of a modified SSB Q3.2 template.

For the modified template, we select the maximum possible range for the year. Moreover, we

extend the WHERE clause of the query template by adding more options for both customer

and supplier nation attributes. For example, if we use a disjunction of 2 nations for customers

and 3 nations for suppliers, we achieve a selectivity of 2
25

3
25 ≈ 1% of fact tuples. Nations are

selected randomly over all 25 possible values and are unique in every disjunction, keeping a

minimal similarity factor. The results are shown in Figure 3.8. In this experiment, there is no

contention for resources and no common sub-plans. Thus, we do not depict CS , as it has the

same behavior as RS , and we do not depict PS+RS , as it has the same behavior as PS .

Configuration
Measurement
Avg. # Cores

Used 17.79 18.86

RS PS

0

20

40

60

80

100

120

140

0 10 20 30

Re
sp

on
se

tim
e

(s
ec

)

Selectivity (%)

PS Admission
PS
RS

0.
1

1.
0

10
.0

20
.0

30
.0

PS
1

10

100

1000

10000
0.

1
1.

0
10

.0
20

.0
30

.0

CP
U

tim
e

(s
ec

)

Selectivity (%)

Misc (#6) Locks (#5)
Scans (#4) Aggreg. (#3)
Joins (#2) Hashing (#1)

RS

Figure 3.8 – 8 queries with a memory-resident database of SF 10. The table includes measure-
ments for 30% selectivity.

Our selectivity experiments provide more insight on the general behavior of the configurations.

For this reason, we also include the time of the admission phase of CJOIN, and performance

breakdown graphs. The latter show the CPU time of all cores, as measured with Intel VTune

Amplifier, for different parts of the query evaluation. We compare the effect of sharing on

the CPU time of hash-joins rather than analyze the bottlenecks of QPipe and CJOIN, which

are largely dependent on implementation details. We further break down the CPU time of

hash-joins to two categories. The first, shown as “Hashing”, includes the total CPU time of the

and functions, which are the heart of the building and probing phases, and

allow us to compare the effect of sharing, without strong side-effects from implementation

details. The remaining CPU time of the hash-joins is shown as “Joins”.

Both RS and PS show a degradation in performance as selectivity increases, due to the increas-

ing amount of data they need to handle. PS , however, is always worse than RS . This is due

to three reasons mainly. Firstly, the cost of the admission phase of PS is increased, as more

tuples are selected for referencing in the hash tables of the filters.

Secondly, the shared operators inherently entail a bookkeeping overhead, in comparison

to standard query-centric operators. In our case, the additional cost of shared hash-joins

47

Chapter 3. Sharing Data and Work Across Concurrent Queries

includes the maintenance of larger hash tables for the union of the selected dimension tuples

of all concurrent queries, and bitwise operations between the bitmaps of tuples. Query-centric

operators do not entail these costs, and maintain a hash table for one query. The increased

bookkeeping costs are reflected in the CPU time of the area under Joins of PS , which is more

expensive than RS for all cases of selectivity. As the selectivity increases, the hashing CPU time

of RS increases faster than PS , as it does not share parts of the hash-joins of the concurrent

queries. We note that the bookkeeping overhead can be decreased significantly with careful

implementation choices. DataPath [33] uses a single large hash table for all shared hash-joins,

and techniques to decrease the maintenance and access costs for the hash table.

Thirdly, synchronization costs are a significant reason for the worse trend of PS . Threads

contend while passing tuples through the pipeline. Nevertheless, synchronization costs are

highly dependent on implementation. In DataPath or SharedDB, a shared operator in a

GQP does not necessarily require multiple threads. Nevertheless, for low concurrency, the

synchronization costs for a query are higher in a GQP than in the query-centric model, as a GQP

tends to be much larger than the constituent query plans. For one query in a GQP, tuples not

selected by it, but selected by other queries, need to pass through shared operators, and tuples

selected by the query may need to pass by additional shared operators to accommodate other

concurrent queries. This is also a reason why proactive sharing achieves better throughput for

high concurrency, but may hurt the latency of queries, especially for low concurrency.

We used 8 queries to avoid CPU contention. For higher concurrency, shared operators still

prevail, due to their efficiency in saving resources. Figure 3.9 shows the response times for

the case of 30% selectivity. For high concurrency, the query-centric operators of RS contend

for resources. This is also shown in the CPU times of the breakdown graph, which all scale

(superlinearly) with the number of queries. PS is able to save more resources and outperform

the query-centric operators. This is best reflected by the hashing CPU time, which stays at the

same level, irrespective of the number of queries, as the hashing is shared.

Configuration
Measurement
Avg. # Cores

Used 22.86 17.73

RS PS

16 32 64 12
8

PS
0

200
400
600
800

1000
1200
1400
1600
1800

16 32 64 128 256

Re
sp

on
se

tim
e

(s
ec

)

Number of Concurrent Queries

PS Admission
PS
RS

1

10

100

1000

10000

100000

16 32 64 12
8

CP
U

tim
e

(s
ec

)

Number of Concurrent Queries

Misc (#6) Locks (#5)
Scans (#4) Aggreg. (#3)
Joins (#2) Hashing (#1)

RS

Figure 3.9 – Memory-resident database of SF 10 and 30% selectivity. The table includes
measurements for 256 queries.

48

3.4. Experimental Evaluation

Impact of scale factor. The same trade-off between shared operators and query-centric

operators is observed by varying the scale factor. We use disk-resident databases and 8

concurrent queries with randomly varied predicates and selectivity between 0.02% and 0.16%.

The results are shown in Figure 3.10. The response times of RS and PS increase linearly. Their

slopes, however, are different. The reasons are the same as in our selectivity experiment.

Configuration
Measurement
Avg. # Cores

Used 5.96 1.68 5.38 2.47

Avg. Read
Rate (MB/s) 97.16 70.01 215.58 204.71

RS
(Direct I/O)

PS
(Direct I/O) PSRS

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80 90 100

Re
sp

on
se

tim
e

(s
ec

)

Scale Factor

RS (Direct I/O)
PS (Direct I/O)
RS
PS

SF Data (GB)
1 0.8
10 7.4
30 21.0
50 37.5
100 66.8

Figure 3.10 – 8 concurrent queries with disk-resident databases. The table includes measure-
ments for the case of SF 100.

We also show the response time of the two configurations by using direct I/O for accessing the

database on disk, to bypass file system caches. This allows us to isolate the overhead of CJOIN’s

preprocessor. As we have mentioned, the preprocessor is in charge of the circular scan of the

fact table, the admission phase of new queries, and finalizing queries when they wrap around

to their point of entry. These responsibilities slow down the circular scan significantly. Without

direct I/O, file system caches coalesce contiguous I/O accesses and read-ahead, achieving

high I/O read throughput in sequential scans, masking the preprocessor’s overhead.

Implications. For low concurrency, proactive sharing has a bookkeeping overhead in compar-

ison to query-centric operators. For high concurrency, however, the overhead is amortized.

3.4.4 Impact of Similarity

In this experiment we use a disk-resident database of scale factor 1. We limit the randomness

of the predicates of queries to a small set of values: there are 16 possible query plans for

instances of Q3.2. The selectivity of fact tuples ranges from 0.02% to 0.05%. In Figure 3.11, we

show the response times of the configurations, varying the number of concurrent queries.

RS evaluates a maximum of 16 different plans and reuses results for the rest of similar queries.

It shares the second hash-join one time, and the third hash-join 238 times, on average, for 256

queries. This leads to high sharing and minimal contention for computations. On the other

hand, CS does not share operators other than the table scan, resulting in high contention.

Similarly, PS misses exploiting these sharing opportunities and evaluates identical queries

redundantly. In fact, RS outperforms PS . PS+RS , however, is able to exploit them. For a group

49

Chapter 3. Sharing Data and Work Across Concurrent Queries

Configuration
Measurement
Avg. # Cores

Used 20.32 9.6 2.5 2.34

Avg. Read
Rate (MB/s) 74.37 120.2 130.18 130.15

CS RS PS PS+RS

0

10

20

30

40

50

1 2 4 8 16 32 64 128 256

Re
sp

on
se

tim
e

(s
ec

)

Number of concurrent queries

CS
RS
PS
PS+RS

50sec

13sec
14sec

12sec

Figure 3.11 – Disk-resident database of SF 1 and 16 possible plans. The table includes mea-
surements for 256 queries.

of identical star queries, only one is evaluated by the GQP. PS+RS shares CJOIN packets 239

times on average for 256 queries. Thus, PS+RS outperforms all configurations.

To further magnify the impact of SP, we perform another experiment for 512 concurrent queries,

a scale factor of 100 (with a buffer pool fitting 10% of the database), and varying the number

of possible different query plans. Figure 3.12 shows the results. PS is not heavily affected

by the number of different plans. For the extreme cases of high similarity, RS prevails. For

lower similarity, the number of different plans it needs to evaluate is larger and performance

is deteriorated due to contention for CPU resources. PS+RS is able to exploit identical CJOIN

packets and improve the performance of PS by 20%-50% for cases with common sub-plans.

For the case of identical queries, PS+RS reduces the response time of PS by 2x.

Implications. We can combine proactive and reactive sharing to eliminate redundant com-

putations and improve the performance of shared operators in a GQP for a query mix that

exposes common sub-plans.

Different
plans 1 128 256 512 Random

RS (1st
hash-join) 1 18 49 106 362

RS (2nd
hash-join) 0 95 156 196 82

RS (3rd
hash-join) 510 381 287 188 5

PS+RS 510 384 287 190 12

0

500

1000

1500

2000

2500

1 128 256 512 Random

Re
sp

on
se

tim
e

(s
ec

)

of possible different plans

RS
PS
PS+RS

Figure 3.12 – Evaluating 512 concurrent queries with a varying similarity factor, for a SF 100.
The table includes the sharing opportunities of reactive sharing (average of all iterations).

50

3.4. Experimental Evaluation

3.4.5 SSB Query Mix

In this section we evaluate Postgres , CS , RS , and PS+RS using a mix of three SSB queries

(namely Q1.1, Q2.1 and Q3.2), with a disk-resident database and a scale factor of 30. We use

PostgreSQL 9.1.4 as another example of a query-centric execution engine that does not share

among concurrent queries. We configure PostgreSQL to make the comparison with QPipe as

fair as possible. We use 32 KB pages, large shared buffers that fit the database, ensure that it

never spills to the disk and that the query execution plans are the same. The predicates for the

queries are selected randomly and the selectivity of fact tuples is less than 1%. Each query is

instantiated from the three query templates in a round-robin fashion, so all configurations

contain the same number of instances for each query type.

Figure 3.13 (left) shows the response times of the configurations, while varying the number of

concurrent queries. As Postgres is a more mature system than the two research prototypes,

it attains a better performance for low concurrency. Our aim, however, is not to compare

the per-query performance of the configurations, but their efficiency in sharing among a

high number of concurrent queries. Postgres follows a traditional query-centric model of

execution, and does not share among in-progress queries. CS results in a better performance

due to circular scans. RS further improves performance with the elimination of any common

sub-plans. PS+RS attains the best performance, as shared operators are the most efficient in

sharing among a high number of concurrent queries.

Configuration
Measurement

Avg. # Cores
Used 19.68 20.64 21.6 15.2

Avg. Read
Rate (MB/s) 16.9 63.2 111.9 137.4

Avg. # Cores
Used 20.16 21.6 21.6 16.8

Avg. Read
Rate (MB/s) 16.7 63.2 106.6 138.2

Postgres RS PS+RS

Response time experiment (256 queries)

Throughput experiment (256 clients)

CS

0

5

10

15

20

25

1 2 4 8 16 32 64 128256

Re
sp

on
se

tim
e

(x
10

0
se

c)

Number of concurrent queries

Postgres
CS
RS
PS+RS

0
2
4
6
8

10
12
14
16
18

1 2 4 8 16 32 64 128256

Th
ro

ug
hp

ut
(x

10
0

qu
er

ie
s/

h)

Number of concurrent clients

Figure 3.13 – Disk-resident database of SF 30. Response time (left) and throughput experiment
(middle), varying the number of concurrent queries and clients respectively. The table (right)
includes measurements for both experiments.

Figure 3.13 (middle) also shows the throughput of the three configurations, by varying the

number of concurrent clients. Each client submits three queries, which are instances of

the three query templates. Proactive sharing is able to handle new queries with minimal

additional resources. Thus, the throughput of PS+RS continues to increase. The throughput

of the query-centric operators of Postgres , CS and RS , however, ultimately flattens with an

increasing number of clients.

51

Chapter 3. Sharing Data and Work Across Concurrent Queries

3.5 Conclusions

In this chapter we perform an experimental study to answer when and how an execution

engine should share data and work across concurrent analytical queries. We review two state-

of-the-art run-time sharing techniques: reactive sharing and proactive sharing. We perform

an extensive evaluation of reactive and proactive sharing, based on their original research

prototype systems.

Work sharing is typically beneficial for high concurrency because the opportunities for com-

mon work increase, and it reduces contention for resources. For low concurrency, however,

there is a trade-off between sharing and parallelism, particularly when the sharing overhead is

significant. We show that proactive sharing is not beneficial for low concurrency as shared

operators in a GQP inherently involve a bookkeeping overhead compared to query-centric

operators. For reactive sharing, however, we show that it can be beneficial for low concurrency

as well, if the appropriate communication model is employed: we introduce SPL, a pull-based

approach that scales better on servers with modern multi-core processors than the original

push-based model of reactive sharing. SPL is a data structure that promotes parallelism by

shifting the responsibility of sharing common results from the producer to the consumers.

Furthermore, we show that reactive and proactive sharing are two orthogonal techniques

and their integration allows to share operators and handle a high number of concurrent

queries, while also sharing any common sub-plans presented in the query mix. In conclusion,

analytical query engines should employ query-centric operators with reactive sharing for low

concurrency and proactive sharing enhanced by reactive sharing for high concurrency.

In this chapter, we show how to tackle the first issue of why conventional DBMS do not

scale up efficiently on modern multi-core servers (see Chapter 1): sharing data and work

across concurrent queries. In the following chapters, we tackle the second issue: making the

execution engine NUMA-aware by assuming full control of scheduling and in-memory data

placement. As a first step towards taking control of scheduling, the next chapter (see Chapter

4) explores task scheduling inside the execution engine of a main-memory DBMS.

52

4 Task Scheduling for Highly Concur-
rent Main-Memory Workloads

In this chapter, we show how the execution engine of a main-memory DBMS can employ task

scheduling. This chapter is split into two sections. In Section 4.1, we show how we integrate

our task scheduler in a main-memory DBMS: SAP HANA [72]. We illustrate how the task

scheduler can handle blocking tasks in order to avoid underutilization of CPU resources, and

how to avoid the scheduling overhead of excessive intra-query task parallelism. In Section 4.2,

as an extension to this thesis, we investigate which factors affect the performance of mixed

workloads by examining the commonalities and differences between two prominent main-

memory DBMS: SAP HANA and HyPer [101]. We show that the main factors affecting the

way mixed workloads utilize resources are data freshness, scheduling, and flexibility. Regard-

ing scheduling specifically, we show that OLAP workloads tend to dominate over the OLTP

workloads, and pinpoint the significance of workload management such as prioritization.

Publications. Parts of Section 4.1 have been published in [26, 158]. Parts of Section 4.2 have

been published in [162].

4.1 Integrating Task Scheduling in a DBMS

The execution engine of a typical DBMS supports inter-query parallelism [121, 166] by using a

single logical thread for each short-lived latency-sensitive transactional query. Long-running

operations, such as complex transactional queries or analytical queries, may employ intra-

query parallelism [121, 166] using more logical threads. For parallelizing highly concurrent

workloads, simply issuing logical threads and leaving scheduling to the operating system (OS),

can lead to performance impediments such as unexpected OS bugs [124], high thread creation

costs, and numerous context switches. The context switches are incurred by the OS time

sharing policy that handles the oversubscription of CPU resources by balancing the usage of a

limited number of available hardware threads among a higher number of threads using time

slices [12, 119].

53

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

DBMS typically employ a query admission control to limit the number of processed queries

and avoid performance degradation due to overload [92]. A query admission control, however,

is a mechanism that operates on a per-query level, and can only indirectly avoid an excessive

number of threads. It does not control the CPU utilization of queries after they have been

admitted. Task scheduling [12, 24, 37, 43, 94] can be an alternative or complementary solution,

as it uses a number of threads to process all operations for the whole run-time of an application.

Tasks encapsulate operations and are stored in task pools. Worker threads are employed by

the task scheduler to process the tasks.

Moreover, task scheduling is well-suited for the recent wave of main-memory DBMS that forfeit

disk-based storage in favor of performance (see Section 2.1). By removing I/O bottlenecks,

main-memory DBMS can focus completely on optimizing CPU and memory utilization. Task

scheduling can prove a powerful tool for main-memory DBMS, as it automates the efficient

usage of CPU resources, especially of modern shared-memory multi-core processors [12, 37,

43, 142], and helps developers easily parallelize database operations.

Recent popular task scheduling frameworks include the OpenMP API [11, 37] and Intel Thread

Building Blocks (TBB) [12]. Their main advantage is that developers express partitionable

operations, that can be parallelized with a variable number of tasks, using a high level of

abstraction such as data parallelism. The high level of abstraction helps to automatically

adjust the task granularity of analytical partitionable operations, such as aggregations or

hash-joins. The high level of abstraction, however, also turns out to be a disadvantage, as

it cannot be used straightforwardly by already developed applications. Integration into a

commercial DBMS would require a re-write of large portions of code, which is a process with

significant cost and time considerations. Moreover, partitionable operations in commercial

DBMS typically define their task granularity independently, without the use of a central

mechanism for data parallelism. This is the common case, as optimizing the granularity of a

single DBMS paritionable operation alone involves considerable research effort (see [42], for

example, for partitioning in hash-joins). We show how to adjust task granularity in a main-

memory DBMS, in a non-intrusive manner, without the need of a high level of abstraction. We

supply partitionable operations with a hint reflecting recent CPU availability, that can be used

to adjust their task granularity. Our experiments show that when partitionable operations use

this concurrency hint, overall performance for analytical workloads is significantly improved.

Furthermore, recent task schedulers, e.g. Intel TBB, use a fixed number of worker threads,

equal to the number of hardware threads, to avoid oversubscription of CPU resources. The

fixed concurrency level, however, is only suited for CPU-intensive tasks that rarely block [13].

Tasks in DBMS can block due to synchronization. Thus, the fixed concurrency level can result

in underutilization of CPU resources. We show how the task scheduler can detect the inactivity

periods of tasks and dynamically adapt its concurrency level. Our scheduler gives control of

additional worker threads to the OS when needed.

54

4.1. Integrating Task Scheduling in a DBMS

Contributions. In Section 4.1, we apply task scheduling to a commercial main-memory DBMS.

Our experiments show the benefits of using task scheduling for scaling up main-memory

DBMS over modern multi-core servers, to efficiently evaluate highly concurrent analytical

workloads. Our main contributions are:

• We show that a fixed concurrency level for task scheduling is not suitable for a DBMS.

Our scheduler adapts its concurrency level, by detecting blocked tasks, and giving

control of additional worker threads to the OS to saturate CPU resources.

• We show that using a hint reflecting recent CPU availability helps to adjust the task

granularity of partitionable analytical operations. The concurrency hint improves overall

performance significantly in cases of high concurrency, by reducing costs related to

communication, synchronization and bookkeeping.

• We show how we integrate our task scheduler into a prototype of SAP HANA [72], a

commercial main-memory DBMS. We show that our task scheduler improves the per-

formance of highly concurrent analytical workloads (TPC-H [15]) by up to 16%.

Outline. In Section 4.1.1, we show how we integrate our task scheduler in SAP HANA. Next,

we present the general architecture of our scheduler in Section 4.1.2, how we handle blocking

tasks using a flexible concurrency level in Section 4.1.3, and how we use concurrency hints

to aid task creators of partitionable operations adapt their task granularity in Section 4.1.4.

Finally, in Section 4.1.5, we show our experimental evaluation.

4.1.1 Integration in SAP HANA

For an overview of SAP HANA and its general architecture, please see Section 2.5. Figure 4.1

depicts the architecture and various components of SAP HANA.

There are three independent thread pools. (1) The Dispatcher is a simple task graph scheduler

used typically for parallelizing partitionable analytical operations. (2) The Executor is a task

graph scheduler that processes plans of operations that can potentially be distributed across

servers. Plan nodes can use the Dispatcher for parallelizing on one server. (3) The Receivers

are threads that process received network requests. Short-running transactions are typically

completely executed within a Receiver. For more complex transactions, longer analytical or

distributed queries, a Receiver may use the Executor or the Dispatcher.

We design our new scheduler to integrate the two thread pools of the Executor and the

Dispatcher, which parallelize analytical and distributed operations. We do not integrate the

thread pool of Receivers, so that we do not hurt the latency of any short-running transactions

or queries. If a Receiver decides to parallelize using either the Executor or the Dispatcher, then

it indirectly uses our task scheduler. Our integration solves the following problems. Firstly,

55

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

Execution
engine

Persistence Layer (Logging, Recovery, Page Management)

Optimizer and Plan Generator

Calculation engine

Access interfaces (SQL, SQL Script, etc.)

Network

Metadata
Manager

(NEW)

Column-storeRow-store Graph engine Text engine

Authoriza-
tion

Transaction
Manager

Connection and Session managementReceivers

ExecutorDispatcher  Task scheduler 

Figure 4.1 – Our task scheduler integrates two main thread pools of SAP HANA.

by integrating two threads pools, which are resource-intensive, we alleviate the problem

of overcommitting CPU resources and decrease context switching costs. Secondly, DBMS

administrators need to configure only one thread pool instead of two. Thirdly, developers

need to know one thread pool implementation for parallelizing operations, and not two.

Our scheduler constitutes a new component in the general architecture of SAP HANA (see

Figure 4.1), and is orthogonal to other components such as the Persistency Layer or the

Transaction Manager. It is important to note that our scheduler does not compromise any

transactional correctness or persistency semantics.

4.1.2 Task Scheduler Architecture

To support fast scheduling of all heterogeneous general-purpose tasks, we opt for a dynamic

task scheduler that does not require or process a priori execution information about the tasks,

except for potentially a directed acyclic graph (DAG) defining their correlations and ultimately

their order of execution. The DAG can take any form, with the only restriction of having a single

root node. This does not prevent the creation of single-node graphs. Each node in the task

graph can contain any piece of code. A node can potentially spawn a new task graph, or issue

itself again to the scheduler. We can encapsulate tasks that coordinate synchronization among

themselves, since we take care to maintain a flexible concurrency level (see Section 4.1.3).

Optionally the developer can assign a priority for the task graph, which results in a decreased

or increased probability of being chosen for execution. The developer then dispatches the root

node to the scheduler, and can wait for execution of the task graph or continue immediately.

The scheduler maintains two sets of queues, depicted in Figure 4.2. The first set contains

one queue per priority and holds the root nodes of the submitted graphs that have not yet

been initiated for execution. The second set contains queues that hold the non-root nodes

to be executed. The second set actually constitutes the main distributed task pools for our

scheduler. The task pools can further be sorted by node depth, in order to favor execution of

deep-running graphs, or by the timestamp of the owning query, in order to favor execution of

56

4.1. Integrating Task Scheduling in a DBMS

earliest queries. For our experiments of Section 4.1.5, we sort the task pools by node depth,

because resource-intensive queries tend to create deep-running graphs, and we take care to

finish these queries early, in order to free up the resources. We use distributed task pools to

reduce synchronization contention. We create as many task pools as the number of sockets.

We note that in the next chapter (see Chapter 5), we describe how we modify our task scheduler

to support NUMA-aware task scheduling. More task pools can also be created if the number

of hardware threads in one socket is high and results in synchronization contention for the

task pool. Each worker thread is assigned to a specific task pool in a round-robin fashion

according to its ordinal identifier. If the worker thread finds its assigned task pool empty, it

starts querying other task pools, in a round-robin fashion, and steals tasks [94].

Root Node

Non-root
node

Task graph Priorities Task pools Workers

Max

Normal

Low ...
Figure 4.2 – The data structures used by the task scheduler.

When the task pools are empty, a free worker retrieves a root node from the queues of priorities,

with a probability that favors prioritized root nodes. This probability is configurable. We note

that in our experiments of Section 4.1.5, all tasks have the same priority. After executing

the root node, the worker thread continues executing the first descendant for better data

locality, while the rest of the descendants are dispatched randomly to the task pools for load-

balancing. When the task pools are not empty, a free worker retrieves his next task from the

task pools. When a non-root node is executed, the worker checks which descendants are ready

for execution, takes upon the first of them and dispatches the rest to the task pools.

Integration. Our simple design allows to integrate the two thread pools of SAP HANA into our

scheduler (see Section 2.5). We quickly bundle old tasks and generic blocks of code into tasks

for our task scheduler. As is standard for task schedulers [12], we do not bundle I/O-bound

operations into tasks. These operations are executed by separate threads that are handled

by the underlying OS scheduler. Since these threads do not reserve any worker threads from

our scheduler, we can keep the system busy with CPU-intensive tasks in the presence of I/O

operations. It is easy to detect I/O-bound operations in main-memory DBMS, as general

query execution is CPU-bound or memory-bound. Heavy I/O operations, such as savepoints,

are only done periodically and in the background to minimize the disruption of the general

performance of the database [72]. Thus, I/O-bound operations are traced mainly inside the

persistence or network layer.

Watchdog thread. To control workers, but also to monitor the state of execution, we reserve

an additional watchdog thread. The watchdog typically sleeps, but wakes up periodically to

57

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

gather information and potentially control worker threads, similar to the notion of centralized

scheduling [88]. We use light-weight mechanisms for monitoring, based on statistical counters,

such as the number of waiting and executing tasks, how many tasks each worker thread has

executed etc. These counters are updated using atomic instructions by each worker thread

and the watchdog.

4.1.3 Dynamic Adjustment of Concurrency Level

Employing a number of worker threads equal to the number of hardware threads is suitable

for task schedulers whose aim is to handle CPU-intensive tasks that do not block frequently

[12]. Our aim, however, is to integrate already-developed general-purpose code into tasks.

We need to handle tasks that can use synchronization primitives and locks. When tasks are

inactive, we take care to overlap inactivity periods with additional worker threads and saturate

CPU resources. Next, we describe a task’s potential inactivity states, and how our scheduler

handles them by adapting its concurrency level at run-time.

Blocked workers. The OS scheduler is the first to know when a thread blocks after a system

call for a synchronization primitive. It then cedes the CPU to another thread waiting for its

time slice. If we set a fixed number of worker threads equal to the number of hardware threads,

blocked threads will not be overlapped by other threads, as the OS scheduler does not have

knowledge of any other working threads in our application. This results in underutilization of

CPU resources, as the OS scheduler could potentially schedule another worker thread while

a worker thread blocks. Also, since we do not know how the developer synchronizes tasks, a

fixed concurrency level can lead to potential deadlocks, if the interdependency edges between

the nodes in a task graph are not correctly used. For example, if a node in a task graph requires

a conditional variable from another node at the same level of the task graph, the latter node

may not be scheduled in time if the nodes in the level are more than the hardware threads.

Deadlocks can also happen if code synchronizes heavily between different task graphs.

To avoid deadlocks and underutilization of CPU resources, we argue that a scheduler handling

general-purpose tasks should not use a fixed concurrency level. Our watchdog periodically

checks for blocked worker threads, and activates additional worker threads, that get scheduled

by the OS immediately and overlap the inactivity period. Thus, we cooperate with the OS by

voluntarily adjusting the concurrency level, and giving control of additional worker threads

to the OS when needed to saturate CPU resources. We exploit both the advantages of task

scheduling and the OS scheduler: Task scheduling ensures that the number of working threads

is small enough so that costly context switches are avoided. By dynamically adjusting the

concurrency level, we exploit the capability of the OS scheduler to quickly cede the CPU of a

blocked thread to a new worker thread.

To detect blocked threads efficiently, we do not use OS synchronization primitives directly.

The DBMS can encapsulate these in user-level platform-independent data structures. For

58

4.1. Integrating Task Scheduling in a DBMS

example, SAP HANA on Linux uses a user-level semaphore based on atomic instructions, that

calls the “futex” facilities of Linux when needed. We leverage these user-level synchronization

primitives to know when a worker is about to call a potential system call that could block.

Active concurrency level. We define:

concurrency level = total number of worker threads

The concurrency level is variable. There can be a number of inactive workers, such as blocked

threads, and a number of active workers (see Figure 4.3). We are mainly interested, however,

in keeping the total number of active workers as close as possible to the number of hardware

threads, in order to saturate CPU resources. For this reason, we define:

active concurrency level = concurrency level− inactive workers

When threads resume from inactivity, they are considered again in the active concurrency

level, which can at times be higher than the number of hardware threads.

Parked threads. In order to fix a high active concurrency level, when there are no free threads,

the scheduler gets the chance to preempt a worker when it finishes a task. We cannot preempt

a worker in the middle of a generic task, as it can be in a critical section and the consequences

can be unpredictable. Instead of ending the thread, we keep it suspended, in a parked state.

The watchdog is responsible for monitoring if the active concurrency level gets low and waking

up parked threads. Parked threads overcome the costs of creating logical threads, which

include the memory allocation of their stacks.

Other inactive threads. Apart from blocked and parked threads, we define two additional

states of inactivity. Firstly, there can be tasks that wait for another task graph. This inactivity

state is comparable to OpenMP’s suspend/resume points (e.g.) [37], or to TBB’s

wait methods (e.g.) [12]. Secondly, we give the developer the opportunity to

explicitly define a region of code as inactive. For both these cases of inactive threads, a new

worker thread is activated immediately if allowed by the active concurrency level, instead

of being activated by the watchdog. We note that while a worker thread is blocked, parked,

Inactive workers

Blocked
threads

Inactive
by user

Waiting
for a task

Active
workers

Watch-
dog

Other
threads

Task scheduler

Parked
Threads

Figure 4.3 – The task scheduler’s types of worker threads.

59

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

or waiting for another task graph, it is also considered inactive by the OS scheduler. A code

region, however, that is defined by the developer as inactive, pertains only to our scheduler’s

accounting for its active concurrency level, while the OS considers the relevant worker thread

as runnable and schedules it.

All the aforementioned types of workers are shown in Figure 4.3. The total number of inactive

workers is defined as:

inactive workers = blocked workers+ inactive by user

+workers waiting for a task graph+parked workers

Avoiding too many active threads. We note that activating additional worker threads in place

of inactive workers may not always be beneficial. If the inactivity period of a worker is short,

and the newly activated worker begins executing a large task, then when the first worker

returns from inactivity, there will be two worker threads active. If this situation is repeated

many times, the active concurrency level can get much higher than available hardware threads,

leading to context switching costs from the OS scheduler.

For this reason, it is important to handle inactivity states carefully. The inactivity states

where the developer specifies a code region as inactive, and where a task waits upon another

task, are typically not too short. These inactivity states lower the active concurrency level,

and immediately activate additional worker threads that increase the active concurrency

level up to the number of available hardware threads. The duration of the inactivity state of

blocked threads, however, is generally unknown, and can be too short. Thus, blocked tasks

are handled differently: they only lower the active concurrency level, and do not immediately

spawn additional workers. The active concurrency level is increased only when the watchdog

checks it periodically and attempts to fix it by activating additional worker threads, or in case

another inactive worker thread resumes activity in the meanwhile and thus increases the

active concurrency level and is allowed to continue working on next tasks. Thus, too short

block periods are typically hidden between the intervals of the watchdog and of active tasks.

Even in a bad case when the active concurrency level gets too high, this is quickly fixed when

active workers finish their current tasks and are preempted and parked in order to fix the

active concurrency level.

To support our intuition, our experiments have an active concurrency level that is most of the

time equal to the number of hardware threads (see Section 4.1.5). We note that the watchdog

interval we use in our experiments is 20 ms. We have experimented with larger intervals as

well, but have not noticed significant differences in the active concurrency level.

60

4.1. Integrating Task Scheduling in a DBMS

4.1.4 Dynamic Adjustment of Task Granularity

Partitionable operations can be parallelized using a variable number of tasks. Many analytical

operations fall into this category, e.g., aggregations and hashing. If a column needs to be

aggregated, it can be split into parts which can be processed in parallel independently. This is

a classic example of data parallelism using a fork-join approach [36].

For this kind of partitionable operations, a number of tasks lower than the number of hardware

threads, i.e., a coarse granularity of tasks, can underutilize CPU resources. A higher number

of tasks (up to the number of hardware threads) means that the partitionable operation

can potentially use more CPU resources and decrease its latency. Using a fine granularity,

however, can potentially introduce additional costs for communication, synchronization and

scheduling [3, 52, 122]. Thus, a balance is required for the task granularity.

Task schedulers like Intel TBB [12] can greatly help in case of partitionable operations. As

the developer expresses partitionable operations through higher-level algorithmic structures

and data parallelism, the framework employs a centralized mechanism for adjusting task

granularity. In DBMS, however, partitionable operations do not necessarily use a central mech-

anism for data parallelism. This is because optimizing the granularity of a single paritionable

operation alone involves considerable research effort (see [42], for example, for partitioning

in hash-joins). There can be distinct components for partitionable operations that handle

data parallelism and granularity independently. In SAP HANA, for example, each partitionable

operation employs heuristics to find the right task granularity, based on factors such as data

size, communication costs, and the number of hardware threads of the system.

In this thesis, we are not concerned with how each component calculates task granularity, but

with how task granularity affects performance when numerous concurrent queries, possibly

with additional partitionable operations, are being processed. The problem is that partition-

able operations calculate the number of tasks irrespective of other concurrent tasks. In the

worst case, every operation can dispatch a number of tasks equal to the number of hardware

threads. Our experiments of Section 4.1.5 show that this practice results in a myriad of tasks in

cases of high concurrency, and increased bookkeeping and scheduling costs. Task creators for

partitionable operations need to adjust their task granularity by considering other concurrent

tasks. To solve this problem, our scheduler provides information about the state of execution

to partitionable operations that they can use for the calculation of the task granularity.

Concurrency hint. If a partitionable operation issues more tasks than can be handled by free

worker threads at the moment, there is little to no benefit for parallelism, and redundant

scheduling costs. The intuition is that in cases of high concurrency, when the system is fully

loaded and free worker threads are scarce, partitionable operations should opt for a very

coarse granularity in order to minimize the number of tasks to be processed. In SAP HANA

specifically, if the concurrency hint is zero, analytical operations may opt for a single-threaded

optimized code path instead of a parallel code path.

61

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

Our scheduler can provide task creators with information about the current availability of

computing resources, as it has knowledge of the active concurrency level of the whole DBMS.

Thus, it can give a hint to task creators about the maximum number of tasks they should create

at the moment. The watchdog is responsible for calculating the concurrency hint, which is

an exponential moving average of the free worker threads in the recent past. The free worker

threads are defined as:

free worker threads = max{0,number of hardware threads−active concurrency level}

The concurrency hint is defined as:

concurrency hint = a ∗ free worker threads+ (1.0−a)∗previous concurrency hint

where 0 ≤ a ≤ 1.0

Due to the dynamic nature of our workers, which can change status often and quickly, an

average can give better results than an absolute value. For our experiments, we use an

exponential moving average, with equal weight for the free workers threads of the previous

observations and the currently observed number of free worker threads (i.e., a = 0.5). The

sampling rate is configured at 50 ms in our experiments, which provides reasonable smoothing

over the recent past, and also quickly captures changes in the number of free worker threads.

Due to the fact that the exponential moving average captures all past observations, we take

care to reset it to the number of hardware threads when it surpasses a predefined threshold.

This threshold is set to 90% of the number of hardware threads for our experiments.

4.1.5 Experimental Evaluation

We integrate our task scheduler in a prototype built on SAP HANA (SPS6), a commercial main-

memory column-store DBMS. We use the SPS6 version when our integration originally took

place, to show the contributions of our work that motivated the final integration of the thread

pools in later versions of SAP HANA. We compare the following variations of our prototype:

• Baseline, without our task scheduler, and with the three different thread pools (see

Section 4.1.1). This serves as our baseline.

• Fixed, which integrates two of the thread pools of Baseline into tasks for our task sched-

uler (see Section 4.1.1). This variation assumes workers blocked on synchronization

primitives as working, and includes them in the active concurrency level of the scheduler.

Also, this variation defines the concurrency hint as the number of hardware threads, to

simulate the original behaviour.

• Flexible, which is like Fixed, but uses a flexible concurrency level by assuming workers

blocked on synchronization primitives as inactive.

62

4.1. Integrating Task Scheduling in a DBMS

• Hints, which is like Flexible, but with the concurrency hint following the exponential

moving average of free workers in the recent past. Partitionable analytical operations

adjust their task granularity according to the concurrency hint. This variation is the best

of our task scheduler.

We use the server of Figure 2.5. It has eight ten-core processors Intel Xeon E7-8870 at 2.40 GHz,

with hyper-threading enabled, and 1 TB of RAM. The OS is a 64-bit SMP Linux (SuSE), with a

2.6.32 kernel. Unless stated otherwise, every data point in our graphs is an average of multiple

iterations with a standard deviation less than 10%. Our measurements for context switches

and CPU times are gathered from Linux. The total number of instructions retired are gathered

from Intel Performance Counter Monitor [196]. For all experiments, we warm up the DBMS

first and there are no thinking times. We make sure that all queries and clients are admitted,

and we disable query caching because our aim is to evaluate the execution of the queries and

not query caching.

We use a read-only variant of the TPC-H benchmark [15] with a scaling factor 10, stored in a

column-store. We measure performance by varying the number of concurrent queries, and

measuring the response time of each variation from the moment we issue the queries until the

last query returns successfully. Queries are instantiated from the 22 TPC-H query templates in

a round-robin fashion, with the same parameters for each query template for stable results,

but without query caching. We start measuring from 32 concurrent queries, to include all

query templates, up to 1024. The results are shown in Figure 4.4.

Fixed improves performance of Baseline by only 3% for high concurrency. The main im-

provement comes from reducing lock contention, as shown by the reduction in system CPU

0

25

50

75

100

125

150

32 96160224288352416480544608672736800864928992

Re
sp

on
se

tim
e

(s
ec

)

Number of concurrent queries

Baseline
Fixed
Flexible
Hints

32 128 256 512 1024

0

1E+13

2E+13

3E+13

In
st

ru
ct

io
ns

re
tir

ed

0
20
40
60
80

100
120
140

Nu
m

be
ro

ft
as

ks
(x

10
00

0)

(U
nk

no
w

n
fo

rB
as

el
in

e)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Idle Sys User

Ba
se

lin
e

Fl
ex

ib
le

Fi
xe

d

Hi
nt

sAv
er

ag
e

CP
U%

0
10
20
30
40
50
60
70
80
90

100

Co
nt

ex
tS

w
itc

he
s(

x1
00

00
)

Ba
se

lin
e

Fl
ex

ib
le

Fi
xe

d

Hi
nt

s

Baseline Fixed Flexible Hints

Fo
rt

he
ca

se
of

10
24

co
nc

ur
re

nt
qu

er
ie

s

Figure 4.4 – Experiment with TPC-H queries. Measurements on the right-hand side are for the
case of 1024 TPC-H concurrent queries.

63

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

time. The number of context switches has increased, even though we integrate all thread

pools of Baseline into a single task scheduler. We attribute this to the fixed concurrency level.

When workers block on synchronization primitives, the OS does not have knowledge of any

additional workers to schedule. It replaces the time slice of a blocked worker with any non-

CPU-intensive thread, outside the scheduler, with a small time slice. This is also reflected in

the increased idle CPU time.

Flexible, which has a flexible concurrency level, overcomes this problem and improves perfor-

mance of Baseline by 7%. When many worker threads block, the watchdog issues more worker

threads and gives the chance to the OS scheduler to schedule CPU-intensive worker threads

with new tasks and full time slices. That is reflected in the decreased idle CPU time, and the

fewer context switches.

Hints results in the best performance improvement of Baseline by 16%. The coarser task

granularity leads to a reduction of the total number of tasks by 86%. We achieve a signifi-

cant reduction in unnecessary bookkeeping and scheduling costs, which is reflected in the

16% reduction of the total number of instructions retired. Furthermore, we corroborate pre-

vious related work that a coarser granularity results in less costs for synchronization and

communication [3, 52, 122], since system CPU time is further decreased.

We note that for the case of 64 concurrent queries of Figure 4.4, the standard deviation for Hints

is up to 30%. As mentioned in Section 4.1.4, this is due to the fact that in a few iterations, a

partitionable operation that got a low concurrency hint was left in the end alone, underutilizing

CPU resources and slightly prolonging the response time. Nevertheless, the benefit of the

concurrency hint for the cases of high concurrency, on which we focus, is significant.

To better understand the effect of the flexible concurrency level and hints throughout the

whole experiment, we show the timelines for Fixed and Hints for the case of 1024 queries

in Figure 4.5. For Fixed, we notice the effect of bursts of too many tasks being issued to the

scheduler. The redundant scheduling, communication, and bookkeeping costs of these bursts

of numerous tasks result in erratic behavior of the CPU utilization. In contrast, the timeline for

Hints presents a much smoother run-time. The majority of the tasks are issued by all queries

0
2000
4000
6000
8000
10000
12000

0
20
40
60
80

100
120
140
160

0 20 40 60 80 100 120 140#
of

ha
rd

w
ar

e
th

re
ad

su
se

d

Time (sec)

N
um

berofw
aiting

tasks 0
1000
2000
3000
4000
5000
6000

0
20
40
60
80

100
120
140
160

0 20 40 60 80 100 120#
of

ha
rd

w
ar

e
th

re
ad

su
se

d

Time (sec)

N
um

berofw
aiting

tasks

Non-idle CPU Active workers Blocked Workers Concurrency hint Waiting tasks

Figure 4.5 – Timelines for Fixed (left) and Hints (right), for the case of 1024 TPC-H queries.

64

4.2. Scaling Up Mixed Transactional and Analytical Workloads

in the beginning of the experiment, and they are gradually scheduled until the end of the

experiment. The CPU utilization line is more stable.

4.2 Scaling Up Mixed Transactional and Analytical Workloads

In this section, we shortly extend the scope of this thesis to mixed OLAP and OLTP main-

memory workloads. We analyze the performance of two main-memory databases that support

mixed workloads, SAP HANA [72] and HyPer [101], while evaluating the mixed workload CH-

benCHmark [59] and scaling the number of concurrent transactional and analytical clients. We

identify that scheduling is one of the significant factors, among data freshness and flexibility,

that affect how mixed workloads utilize resources.

Real-time reporting. Nowadays, the design gap between OLTP-oriented and OLAP-oriented

DBMS or data warehouses is prominent, due to the increasing demands and performance

requirements of big data applications [181] (see Chapter 1). OLTP-oriented DBMS, such as

VoltDB [182] or IBM DB2, are typical row-stores that deliver high throughput for updates

and index-based queries (see Section 2.1). OLAP-oriented DBMS, such as Vectorwise [209] or

Sybase IQ [126] or DB2 BLU [167], are typical column-stores that deliver high performance

for complex analytical queries. In exchange for high performance, they do not support trans-

actional workloads or offer only a chunk-wise mechanism for loading data. As a result, data

analytics queries run on an outdated version of operational data. This is unacceptable for real-

time reporting, where organizations and enterprises are increasingly requiring analytics on

fresh operational data to gain a competitive advantage or obtain insight about fast-breaking sit-

uations [16, 150]. Examples include online games that make special offers based on non-trivial

analysis [49], liquidity and risk analysis, which benefits from fresh data while also requir-

ing complex analytical queries [154], and fraud detection analyzing continuously arriving

transactional data [144].

The need for real-time reporting necessitates the development of a new class of DBMS that can

efficiently support mixed (OLTP and OLAP) workloads processing common data of a common

schema [154]. Efficient processing means scaling OLTP clients to as many users as possible,

with reasonably short response times [73], while, at the same time, servicing OLAP clients

whose longer-running queries should be able to efficiently analyze the live operational data.

In this section, we evaluate the performance of two prominent main-memory DBMS that

support mixed workload: SAP HANA [72], and HyPer [101]. By examining their similarities

and differences, we aim to identify the factors that affect the performance of mixed workloads

while we scale the number of concurrent clients.

To evaluate mixed workloads, we prefer to not use benchmarks aimed for either OLTP or OLAP,

such as TPC-C, TPC-W, TPC-H, TPC-DS [14] or OLTP-bench [67], because the mixed workload

would work on disjoint datasets (as in our experiment of Section 4.1.5). As a new direction

to benchmarking mixed workloads, we employ the CH-benCHmark [59], which considers

65

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

concurrent OLAP and OLTP clients in a mixed workload on the same dataset, inspired by

TPC-C and TPC-H. We find the CH-benCHmark an adequate solution since it allows to scale

the number of concurrent transactional and analytical clients independently.

Scaling up mixed workloads. We identify three main factors that affect the performance of

mixed workloads while we scale the number of concurrent clients: (a) data freshness, (b)

flexibility, and (c) scheduling. In Figure 4.6, we sketch how we expect performance to be

affected by these three factors.

Data freshness refers to how recent is the data that is processed by analytical queries. On the

one hand, data can be stale, as is the case for typical data warehouses where operational data

is periodically replicated. This separation, with a low level of data freshness, allows for various

optimizations such as decoupling transactions and analytics, minimizing the interference

between them, and having additional materialized views or indexes or shared execution plans

(see Chapter 3) for analytics (which may be otherwise expensive to maintain with a high

level of data freshness). On the other hand, as the refresh rate is increased, performance is

compromised because we need to sustain the overhead of more frequent snapshots of the

transactional data for the analytical workload, and respect transactional semantics for the

concurrent OLTP workload.

Flexibility refers to the restrictions that a DBMS may impose on the transactional features

or expressiveness in order to increase optimization choices to enhance performance. For

example, a system can restrict flexibility by requiring that transactions are instantiated from

templates that are known in advance, allowing for pre-compilation of transactions [182].

Another example is restricting interactivity, i.e., transactions cannot have multiple rounds

of communication with a remote client, which allows optimizing execution [182]. Moreover,

it favors techniques like just-in-time (JIT) compilation which, at the expense of a small

compilation overhead, can improve the performance of ad-hoc queries [143].

Scheduling determines how, and the order in which transactions and analytical queries use

the system’s resources, including potential workload management techniques. For cases of

Pe
rfo

rm
an

ce

Analytical data freshness
stale recent

lo
w

hi
gh

Pe
rfo

rm
an

ce

Transactional flexibility
restrictive permissive

lo
w

hi
gh

An
al

yt
ica

lp
er

fo
rm

an
ce

Transactional performance
low high

lo
w

hi
gh

Figure 4.6 – Conceptual figures of how we expect the performance of mixed workloads to be
affected by (a) data freshness, (b) flexibility, and (c) scheduling.

66

4.2. Scaling Up Mixed Transactional and Analytical Workloads

high concurrency with numerous OLTP and OLAP clients and a fully saturated system, the

DBMS may opt to either favor transactions at the expense of analytical queries, or reversely.

Contributions. In Section 4.2, we survey, evaluate, and compare two state-of-the-art main-

memory DBMS for mixed workloads: SAP HANA and HyPer. Through our analysis, we detail

how (a) data freshness, (b) flexibility, and (c) scheduling affect the performance of mixed

workloads while we scale the number of concurrent clients. The most significant findings of

our experimental evaluation are:

• DBMS that maintain separate versions of the operational data for analytics, can suffer a

decrease in performance of up to 40% for high refresh rates.

• DBMS which are optimized for the execution of less flexible or less expressive transac-

tions, can achieve up to one order of magnitude better transactional throughput than

DBMS optimized for flexible and interactive transactions.

• The absence of workload management in cases of high concurrency, that saturate the

system, results in long-running and complex analytical queries overwhelming the sys-

tem, and significantly hurting the performance of short-lived transactional workloads.

Outline. In sections 4.2.1 and 4.2.2, we describe how SAP HANA and HyPer, respectively,

handle mixed workloads. In Section 4.2.3, we describe how we implement the CH-benCHmark.

Our experimental evaluation is presented in Section 4.2.4.

4.2.1 Mixed Workloads in SAP HANA

For a review of how SAP HANA handles mixed workloads, please see Section 2.5. Here, we

discuss shortly the issues of data freshness for analytical queries, how flexible are transactions,

and how scheduling works in SAP HANA.

Data freshness. The fact that both analytical and transactional operations target the same

data means that SAP HANA allows analytics to query the most recent version of operational

data. As soon as an OLTP operation, e.g., updates data in the delta of a column, the new

version is immediately available by the MVCC to upcoming analytical queries. Allowing OLTP

and OLAP to target common data, however, comes with the cost of synchronization for the

common data structures, such as the index of the delta’s dictionary (see Section 2.5).

Flexibility. SAP HANA supports fully interactive ACID transactions [113], which can contain

multiple round-trips to the client. Efficient and flexible support for distributed transactions

is available. Upon first execution, queries are compiled and the cached plan is available in

subsequent invocations of the same query. It supports multiple interfaces, including SQL and

specialized languages [72].

67

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

Scheduling. SAP HANA employs a pool of threads is employed for servicing network clients

and short-running transactions and queries, and our task scheduler for servicing analytical

queries (see Section 4.1). Analytical queries are expressed as single tasks or as multiple tasks

(intra-query parallelism) which are dispatched to the task scheduler. When the server is fully

saturated, scheduling decides how transactions and analytical queries utilize resources. We

show that the default configuration of SAP HANA favors analytical throughput over transac-

tional throughput. By decreasing parallelism of analytical queries, however, we can increase

transactional throughput to the detriment of analytical throughput (see Section 4.2.4).

4.2.2 Mixed Workloads in HyPer

HyPer is a research prototype main-memory relational DBMS that supports mixed OLTP

and OLAP workloads [101]. The aim is to support high OLTP throughput, as well as efficient

concurrent execution of OLAP workloads. The storage engine can be configured to be a

row-store or a column-store. We use the column-store configuration.

OLTP clients are serviced serially with a single thread [101]. This avoids the usage of locks or

latches for data structures, and, due to the absence of I/O, allows transactions to be executed

in one-shot, uninterrupted and efficiently. Multiple threads for OLTP are supported if the

schema is manually partitioned or the server supports hardware transactional memory [116].

We use the default single-threaded behavior.

For serving OLAP clients, HyPer uses an innovative way to provide snapshots of operational

data. As shown in Figure 4.7a, OS- and hardware-supported virtual memory facilities are

leveraged to create snapshots. Each arriving OLAP client forks the main OLTP process into

another process, getting a virtual memory snapshot to work on. The lazy copy-on-update

strategy ensures that a virtual page is not physically replicated, and OLTP and OLAP are reading

the same physical page. The OS creates a new physical copy only in the case a transaction

modifies a page. In this case, the parent OLTP process has the latest version, and the OLAP

process refers to the older version of the page. The capability to update OLAP snapshots on

demand in a single system is far more efficient than the usual two system setup (one for OLTP

and one for OLAP), since data does not need to be replicated from system to the other.

Data freshness. Conceptually, HyPer’s main OLTP process is similar to SAP HANA’s delta

and the OLAP processes are similar to versions of the main. Forking is similar to the merge

operation. In contrast to SAP HANA, analytical queries read their snapshot and not the freshest

data from the OLTP process. This allows decoupling of OLTP and OLAP, and synchronization

overhead is avoided. Also, since the OLAP client can update its snapshot on demand, data

freshness is customizable: on the one hand, the client can opt to take a snapshot and never

update it, or, on the other hand, update its snapshot after every couple of queries. The

downside of this tactic, however, compared to SAP HANA, is that, in the case that OLAP clients

68

4.2. Scaling Up Mixed Transactional and Analytical Workloads

a
bd

c

a’
b

a’’’
bd

c’

a’’’
b

Virtual memory

OLAP

OLAP

Archive (Backup)

O
LT

P

Log

Α

R

σ
Τ

σ

Β

S

σ

R

m
or

se
ls

Hashtable
(S)

storage
of red

storage
of blue

storage
of green

σ(R)σ(R)σ(R)

(a) (b) (c)

Three pipelines for the
execution of query:
σ(R) Ασ(S) Βσ(T)

Hashtable
(T)

Figure 4.7 – (a) HyPer design using virtual memory facilities to create snapshots for analyt-
ics [101]. (b) Restricting flexibility to support further optimizations of query plans [117]. (c)
Conceptual figure of scheduling for pipeline R of the query plan of (b) [117].

wish to keep their snapshots as fresh as possible, the virtual memory snapshot overhead is

increased (see Section 4.2.4).

Flexibility. HyPer is optimized for the execution of prepared statements or precompiled

transactions [101]. Ad-hoc queries and ACID transactions are both supported and compiled

by a just-in-time (JIT) compiler. The overhead of the elaborate compilation may be amortized

for multiple invocations of the same query or transaction, but can limit the scalability of

short-lived ad-hoc OLTP.

HyPer restricts flexibility for clients on purpose to allow for further optimizations. For example,

clients need to define if they are OLTP or OLAP clients. Also, for an OLTP client, the whole client

transaction is performed in a single batch, i.e. there cannot be multiple round-trips to a client

in a transaction. The restrictions for OLTP clients allow for, e.g., analysis of the transaction,

regarding the accessed and updated tables, or the control-flow [143]. These optimizations,

along with the serialization of transactions, can achieve significantly higher OLTP throughput

(see Section 4.2.4). Read-only OLAP clients access a read-only snapshot; ad-hoc queries are

fully supported because they are compiled as they arrive on the database server.

As shown in Figure 4.7b, the query plans created by the optimizer are composed of operator

pipelines through which tuples are pushed. Pipelines are broken by operators that cannot

be pipelined (e.g., a sort). By pushing tuples through a whole pipeline of several operators,

performance can be significantly improved with JIT compilation, better data locality, and

predictable branch layout [143].

Scheduling. HyPer includes a NUMA-aware (non-uniform memory access) task scheduler

for queries. Each phase of a query is parallelized, and the scheduler takes care to distribute

work evenly across sockets, using task stealing and elastic parallelism, and optimize for data

69

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

locality [117]. In Figure 4.7c, we show an example of how the scheduler executes the probe

phases of the hash-joins of pipeline R (of the query of Figure 4.7b), using three of the sockets

of a server (depicted in different colors). Relation R is partitioned into small fragments, called

morsels. A thread continuously takes a morsel from relation R, local to its socket, and passes

it through the pipeline, probing the hash tables for relations S and T, finally storing locally

the result. In comparison to SAP HANA, we show in our experiments (see Section 4.2.4), that

HyPer’s scheduling also favors analytical throughput over transactional throughput in cases of

high concurrency and saturation.

4.2.3 Setting Up the CH-benCHmark

The CH-benCHmark builds upon the widely used TPC-C and TPC-H benchmarks [14]. TPC-C

is used to analyze the performance of transactional workloads in a scenario of order processing,

while TPC-H analyzes the performance of analytical workloads in the context of a wholesale

supplier. The goal of the CH-benCHmark [59] is to combine TPC-C and TPC-H in a unified

schema, in order to analyze the performance of the mixed OLTP and OLAP workload. Next, we

give an overview of the CH-benCHmark, and how we adapt it.

Overview of the benchmark. The database schema of the CH-benCHmark is shown in Figure

4.8. The schema uses the nine tables of TPC-C and adds the tables , , and

from TPC-H. As in TPC-C, the size of the database scales with the number of

warehouses. The integrated schema has the following changes over TPC-H and TPC-C:

• contains 62 rows instead of 25, and is fixed to 10,000 rows.

• and can be joined on columns and . Col-

umn , however, is defined as a two-character code while is

defined as integer. To solve this mismatch, the following join condition was pro-

posed in the original definition of the CH-benCHmark:

. This is also the reason for increasing the

number of entries in from 25 to 62.

• Similarly, and can be joined using the following condition:

.

Regarding the workload, the CH-benCHmark uses the five transactions defined in TPC-C for

the OLTP workload. In contrast to TPC-C, an OLTP client randomly chooses a warehouse, and

there is no correlation between the number of warehouses and the number of clients.

The OLAP workload is based on the 22 queries defined in TPC-H, but adapted to the modified

schema (see Figure 4.8). A client either executes the OLTP workload or the OLAP workload.

Hence, the number of clients for each type of workload can be scaled independently.

70

4.2. Scaling Up Mixed Transactional and Analytical Workloads

(3000,3000) (1,1)(10,10) (1,1) (1,1)(1,*)

(1,1)

(1,*)

(1,1)

(0,1)

(1,1) (5,15)

(1,1)

(W,W)

(1,1)(3,*)

(1,1)

(100000,100000)

(1,1) (1,*)

(1,1)

SUPPLIER
(10,000)

NATION
(62)

REGION
(5)

WAREHOUSE
(W)

DISTRICT
(10*W)

CUSTOMER
(30,000*W)

HISTORY
(30,000*W) +

ORDER
(30,000*W) +

NEWORDER
(9,000*W) +

ORDERLINE
(300,000*W) +

STOCK
(100,000*W)

ITEM
(100,000)

(0,*)

(1,1) (0,*)

(1,1)

(0,*)

TPC-H

TPC-C

Figure 4.8 – Schema of the CH-benCHmark.

Adjusting the benchmark. The schemas of TPC-C and TPC-H were originally integrated in

an ad-hoc fashion using expressions in the join conditions of the queries. For foreign-key

relationships, as defined between tables and as well as tables

and , real-world schemas would avoid such expressions. This leads us to the decision to

materialize the join expressions explicitly in the database because it allows us to use standard

equi-joins for queries joining these tables. Thus, we introduce the following:

• A column in table computed as

.

• A column in table computed as

.

4.2.4 Experimental Evaluation

In this section, we evaluate and compare SAP HANA and HyPer (versions of June 2014) using

the CH-benCHmark. First, we detail the experimental configuration, how we setup each

system, and the performance metrics we measure. Then, we present the results of the experi-

mental evaluation for SAP HANA and HyPer, while detailing the implications of the results:

how data freshness, flexibility, and scheduling affect the performance of mixed workloads.

Experimental configuration. To execute the CH-benCHmark, we use the server of Figure

2.5. It has eight ten-core processors Intel Xeon E7-8870 at 2.40GHz, with hyper-threading

enabled (for a total of 160 hardware threads), and 1TB of RAM. The OS is a 64-bit SMP Linux

(SuSE), with a 3.0 kernel. We use “read committed” for the isolation level of SAP HANA (see

Section 2.5). HyPer executes transactions using timestamp ordering with a single thread.

71

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

We connect to SAP HANA via the ODBC interface. We use SQL prepared statements for both

OLTP and OLAP. Transactions are fully interactive and managed by standard ODBC calls. For

HyPer, we use its available client interface, as it does not offer an ODBC interface. We use

pre-compiled statements for OLTP (non-interactive), and send SQL statements for the OLAP

workload. The caching of OLAP query plans in HyPer is similar to using prepared statements.

In our experiments we use a one minute warm-up period, followed by a five minutes period

to collect throughput information. We use 100 warehouses, which amount to 6.7 GB of raw

CSV files to be imported. We note that we observe similar trends for a higher number of

warehouses. We are, however, more interested in assessing the scalability of concurrency than

the increase in data size. We scale the number of OLAP and OLTP clients exponentially (power

of 2) between 0 and 27 leading to 81 different combinations. Since the result of combination

0/0 is trivial, we are left with 80 combinations for the clients of the mixed workload.

For an OLTP client, the benchmark reports throughput in tpmC, as defined in TPC-C, i.e., the

number of successful new order transactions per minute. For an OLAP client, throughput is

reported in QphH, i.e., the finished TPC-H queries per hour. Defining an aggregated metric

for the whole benchmark is difficult in practice, and thus we follow the original benchmark

proposal and analyze both measures separately.

For each system, we present a figure showing the analytical throughput of all combinations

of OLTP and OLAP clients, and another figure showing the transactional throughput of all

combinations. In this pair of plots, each experiment is displayed twice. As an example we

refer the reader to Figure 4.9, where the black bar (T=32) in section A=8 represents a single

experiment with 8 analytical (OLAP) and 32 transactional (OLTP) clients. We also measure the

average CPU utilization of the host server as we increase the load.

Due to legal reasons, we do not disclose absolute numbers. For this reason, all throughput

results are normalized to undisclosed constants α for OLAP and τ for OLTP, where α and τ

are the maximum observed throughput values for OLAP and OLTP respectively. This does

not hinder us from showing the implications of our experiments, because our focus is on the

scalability of the mixed workload as we increase the number of clients, and comparing SAP

HANA and HyPer as to how they handle mixed workloads.

Experimental evaluation of SAP HANA. Figure 4.9 shows the performance of the default con-

figuration of SAP HANA as we scale the mixed workload. Figure 4.9a shows how analytical

throughput scales as we increase the number of analytical clients. For each case of analytical

clients, we also show how analytical throughput scales as we increase the number of transac-

tional clients. As shown in the figures, analytical throughput increases almost linearly up to

32 analytical clients. After that, as the system gets saturated (see Figure 4.9c), the increase of

throughput levels out.

Figure 4.9b demonstrates the scaling behavior of the transactional throughput as we increase

the number of analytical clients. For a small number of concurrent OLAP clients (up to 8),

72

4.2. Scaling Up Mixed Transactional and Analytical Workloads

0

0.2

0.4

0.6

0.8

(a) Analytical throughput

0

0.01

0.02

0.03

0.04

0.05

(b) Transactional throughput

 0

 20

 40

 60

 80

 100

(c) Average CPU utilization

Figure 4.9 – Performance of the default configuration of SAP HANA.

transactional throughput generally increases as we increase the number of OLTP clients up

to 32, after which, OLTP throughput drops. This is due primarily to the fact that more and

more transactions contend for modifying common data, resulting in higher abort rates, and,

secondarily, in increased synchronization overhead (in the latches of the deltas’ indexes). As

we add more OLAP clients, overall transactional throughput is generally hurt, as it almost

reaches zero throughput for the case of 128 concurrent analytical clients.

We call this scaling behavior the house pattern, due to the increasing OLAP throughput and the

decreasing OLTP throughput as we increase the number of OLAP clients. This effect is intrinsic

to the behavior of not distinguishing between short-lived transactions and complex analytical

queries. The scheduler of SAP HANA employs the server’s resources for analytical queries for

long durations, and does not leave enough space for the continuously arriving short-lived

OLTP transactions. As we add more OLAP clients, overall OLTP throughput decreases.

To reinforce our argument, we evaluate SAP HANA under a configuration which disables

intra-query parallelism, and decreases the effect of analytical queries overwhelming execution.

Figure 4.10 shows the results. OLTP transactions and OLAP queries are mostly executed with a

single thread (or task) each. OLAP throughput is overall lower than the default configuration,

since queries do not benefit from parallel execution any more. Still, OLAP throughput increases

73

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

0

0.2

0.4

0.6

0.8

(a) Analytical throughput

0

0.01

0.02

0.03

0.04

0.05

(b) Transactional throughput

 0

 20

 40

 60

 80

 100

(c) Average CPU utilization

Figure 4.10 – Performance of SAP HANA when intra-query parallelism is disabled.

as we increase the number of OLAP clients. The positive effect is that OLTP throughput is

overall improved in comparison to the default configuration. System utilization is lower than

the default configuration, and is only saturated for 128 analytical clients.

Experimental evaluation of HyPer. In Figure 4.11 we show the experimental results for the

most performant case of HyPer. In this case, we keep the initial snapshot for OLAP clients

throughout the whole experiment duration, i.e., OLAP clients do not see any updates from the

OLTP clients. This configuration minimizes the overhead of creating snapshots, and minimizes

any interference between the OLTP and OLAP workloads.

As we see in Figure 4.11a, the analytical throughput increases as we add more analytical

clients, reaching the maximum at around 32 analytical clients. Additional analytical clients

drop analytical throughput slightly, due to overwhelming the system with threads. Limiting

the overall number of used threads, similar to SAP HANA’s task scheduler, can avoid this

effect. In comparison to SAP HANA, analytical throughput reaches almost the same maximum,

indicating that both systems are similar in parallelizing and executing analytical queries. Also,

analytical throughput is not affected by scaling the transactional clients. This is expected,

since transactions are executed separately with a single thread.

Transactional throughput, as shown in Figure 4.11b, is significantly higher (up to an order

74

4.2. Scaling Up Mixed Transactional and Analytical Workloads

of magnitude) than that of SAP HANA. This is attributed to several reasons including: (a)

transactions are non-interactive whereas transactions in SAP HANA are interactive (with mul-

tiple round-trips to the client as defined in TPC-C), (b) transactions are pre-compiled for fast

execution, and (c) a single thread executes transactions serially, avoiding any synchronization

overhead. Conceptually, we can place HyPer to the left-most part of Figure 4.6b, and place

SAP HANA to the right-most part of the figure.

The trend of the OLTP throughput, however, is similar to SAP HANA. Firstly, we notice a similar

drop in throughput for more than 32 OLTP clients, for most experiments. As with SAP HANA,

numerous OLTP clients target common data, and result in high abort rates. Secondly, we also

identify the same house pattern as in SAP HANA: while we increase the number of analytical

clients, overall OLTP throughput drops and reaches almost zero for the case of 128 concurrent

OLAP clients. Both SAP HANA and HyPer fall in the left-most part of Figure 4.6c: under cases

of high concurrency and saturated resources, the scheduler favors analytics over transactions.

This shows a need for advanced workload management for mixed workloads, that can enable

the DBMS administrator to dynamically tip the scales of performance to either analytics or

transactions, choosing a spot across the whole span of the line of Figure 4.6c.

0

0.2

0.4

0.6

0.8

(a) Analytical throughput

0

0.2

0.4

0.6

0.8

(b) Transactional throughput

 0

 20

 40

 60

 80

 100

(c) Average CPU utilization

Figure 4.11 – Performance of HyPer with the lowest level of analytical data freshness.

75

Chapter 4. Task Scheduling for Highly Concurrent Main-Memory Workloads

Next, we show how the performance is affected by a different level of data freshness. Figure 4.12

shows the performance of an intermediate level of data freshness, where every OLAP client

takes a new snapshot from the OLTP process after executing all queries of TPC-H (after every

22 queries). Performance is overall decreased in comparison to the best performant case of

the lowest level of data freshness, supporting our expectations (see Figure 4.6a). Analytical

throughput is decreased by around 40%. Transactional throughput is decreased as soon as the

first OLAP client is added, by around 30%. This is mainly due to the overhead of forking the

OLTP process to create snapshots for OLAP clients. It actually interrupts the single-threaded

OLTP process and presents an overhead.

We note that increasing the level of data freshness further is not desirable in HyPer because

the extremely frequent forks at a fine granularity can significantly deteriorate performance.

In such cases, a sort of “snapshot bundling” could be implemented to decrease the snapshot

overhead at a small expense of data freshness: instead of every OLAP client forking the OLTP

process, several OLAP clients can be batched and serviced on a single snapshot.

While SAP HANA aims for the highest level of data freshness, HyPer provides the opportunity to

the DBMS administrator to choose the level of data freshness for analytics. This is a desirable

property when it is acceptable not to consider the latest updates in reports. For cases where

0

0.2

0.4

0.6

0.8

(a) Analytical throughput

0

0.2

0.4

0.6

0.8

(b) Transactional throughput

 0

 20

 40

 60

 80

 100

(c) Average CPU utilization

Figure 4.12 – Performance of HyPer with an intermediate level of analytical data freshness.

76

4.3. Summary and Conclusions

extreme real-time reporting is required, SAP HANA’s approach to executing both OLTP and

OLAP workloads on common data structures can be better for analytical throughput.

4.3 Summary and Conclusions

In this chapter, we show how task scheduling can be practically employed in a main-memory

DBMS. As tasks can use synchronization primitives, we show that the concurrency level of the

task scheduler should not be fixed, but be flexible. When worker threads block, more worker

threads should be issued, giving control of additional worker threads to the OS scheduler to

saturate CPU resources. Furthermore, for partitionable analytical operations, we observe that

task granularity can significantly affect scheduling costs in cases of high concurrency. For this

reason, our scheduler gives a concurrency hint to the task creators of partitionable operations,

reflecting the level of CPU contention. Using this hint, partitionable operations re-adjust their

task granularity, to avoid excessive scheduling costs for high concurrency.

Furthermore, we shortly extend the scope of this thesis to mixed workloads and evaluate the

performance of two state-of-the-art main-memory DBMS for mixed workloads: SAP HANA

and HyPer. We evaluate the CH-benCHmark by scaling the number of concurrent transactional

and analytical clients. Through our evaluation, we find that the most important factors that

affect the performance of mixed workloads are (a) data freshness, i.e., how recent is the

data that analytical queries are processing, (b) flexibility, i.e., optimizing the performance of

transactions and queries by restricting interactivity and/or expressiveness, and (c) scheduling,

i.e., how the DBMS utilizes resources for OLTP and OLAP clients.

Concerning data freshness, SAP HANA’s design, where OLTP and OLAP clients target com-

mon data, is suited for cases where the highest level of data freshness is required, whereas

HyPer’s design is suitable for cases where the DBMS administrator wishes to toggle the trade-

off between performance and data freshness. Concerning flexibility, we show that HyPer’s

less interactive statements allow for pre-compilation and achieve a very high transactional

throughput. Finally, concerning scheduling, we show that both systems exhibit a “house

pattern”, i.e., increasing OLAP clients can significantly hurt OLTP throughput in cases of high

concurrency and saturated resources. This behavior stresses the need for workload manage-

ment in mixed workloads, where OLTP statements can be distinguished from OLAP statements

and can be prioritized differently. The house pattern has been a motivation for the support of

workload management features in SAP HANA [8].

Overall, this chapter shows that task scheduling is a technique that helps the DBMS decouple

its scheduling from the OS. Intra-query parallelism can be achieved without unnecessary

context switches due to avoiding overcommitting CPU resources. Meanwhile, task scheduling

still allows opportunistic cooperation with the OS when needed, e.g., for supporting a flexible

concurrency level. In the next chapter (see Chapter 5), we show how the data structures of the

task scheduler can easily reflect the underlying topology of a multi-socket server, and support

various NUMA-aware task scheduling and data placement strategies.

77

5 NUMA-Aware Task Scheduling and
Data Placement Strategies

In this chapter, we analyze the performance of NUMA-aware task scheduling and data place-

ment strategies for main-memory column-stores, using a prototype based on SAP HANA.

Our analysis first focuses on the basic case of concurrent scans and is afterwards extended to

aggregations and equi-joins. The two main insights of our analysis are that unnecessary data

partitioning and inter-socket stealing of memory-intensive tasks involve a significant over-

head. In Chapter 6 we use these two insights to develop a data placement and task scheduling

strategy that adapts to the workload at run-time in order to balance utilization across sockets.

Publications. Parts of this chapter have been published in [161, 163].

5.1 Introduction

NUMA introduces new performance challenges for main-memory column-store DBMS, as

communication costs vary across sockets and the bandwidth of the interconnect links is an

additional bottleneck to be considered (see Section 2.5). The DBMS needs to become NUMA-

aware by handling the placement of its data structures across sockets, and scheduling the

execution of queries accordingly onto the sockets. Figure 5.1a shows the performance differ-

ence between a NUMA-agnostic and a NUMA-aware column-store as an increasing number of

analytical clients issues scan-heavy queries, on the 4-socket server of Table 2.2. See Section 5.4

for more details on the experimental configuration. In this scenario, NUMA-awareness sig-

nificantly improves throughput, by up to 5x. By avoiding inter-socket communication, the

memory bandwidth of the sockets can be fully utilized, as shown in Figure 5.1b.

In the literature, there has been a recent wave of related work for NUMA-aware analytical

DBMS (see Section 2.4.2). The majority employs a static strategy for data placement and

scheduling. For example, HyPer [117] and ERIS [103] partition data across sockets and paral-

lelize execution with a task scheduler. Each worker processes local tasks or steals tasks from

other workers. The trade-offs between different data placement and task scheduling strategies

have not been extensively analyzed yet.

79

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

0
1
2
3
4
5
6
7
8

1 4 16 64 25
6

10
24

Th
ro

ug
hp

ut
(x

10
4

q/
m

in
)

of concurrent clients

NUMA-agnostic
NUMA-aware

0
50

100
150
200
250

NU
M

A-
ag

no
st

ic

NU
M

A-
aw

ar
e

M
em

or
y

Th
ro

ug
hp

ut
(G

B/
s)

S4
S3
S2
S1

5x

(a) (b)

Figure 5.1 – (a) Impact of NUMA on the performance of concurrent clients issuing scan-heavy
queries. (b) Memory throughput of the sockets for the case of 1024 clients.

Contributions. In this chapter, we describe and implement data placement and task schedul-

ing strategies for main-memory dictionary-encoded column-stores. Through a sensitivity

analysis, based on a prototype of SAP HANA, we identify the trade-offs for each strategy under

various workload parameters. The main insights of our analysis are:

• We show that unnecessary partitioning can hurt throughput by up to 40% in comparison

to not partitioning. Partitioning should be used for hot data when the workload is

skewed, until socket utilization is balanced.

• We show that inter-socket stealing of memory-intensive tasks can hurt throughput by

up to 15%. Memory-intensive tasks should not be stolen across sockets.

Outline. In Section 5.2, we detail the implementation and implications of data placement

strategies. We present our NUMA-aware task scheduler in Section 5.3, and how concurrent

scans are scheduled. Section 5.4 includes our sensitivity analysis of concurrent scans. Sec-

tion 5.5 extends our analysis to aggregations and equi-joins. Finally, Section 5.6 contains the

conclusions of this chapter.

5.2 Data Placement of a Main-Memory Column

Before continuing, please see Section 2.5 for an overview of the basic data structures of a

main-memory dictionary-encoded column. Next, we describe three data placement strategies

for these data structures, shown in Figure 5.2. In Table 5.1, we summarize which workload

properties best fit each data placement and a few of their key characteristics.

Round-robin (RR). The simplest data placement is placing a whole column on a socket.

This means that queries wishing to scan this column, or do index lookups, should run and

parallelize within that socket to keep memory accesses local. A simple way to exploit this data

placement for multiple columns is to place columns on sockets in a round-robin way.

80

5.2. Data Placement of a Main-Memory Column

COLi

IV
IX

Di
ct

COLi

IV
IX

Di
ct

COLi

IV
IX

Di
ct

P1 P2 P3 P4

Round-robin (RR)

S1

S2

S3

S4

Physically partitioned (PP)IV partitioned (IVP)

Figure 5.2 – Different data placements of a dictionary-encoded column on four sockets.

As we show in our experiments, RR is not performant for low concurrency, because a query

cannot utilize the whole server, or for skewed workloads, because placing more than one hot

column on a socket creates a hotspot on that socket. Additionally, our evaluation shows that

for high concurrency, query latencies suffer a high variation in comparison to the following

partitioning strategies.

Indexvector partitioning (IVP). To overcome the aforementioned negative implications of

RR, we present a novel data placement, especially for scans, that partitions the IV across the

sockets. This can happen quickly and transparently by using, e.g., in Linux, to

change the physical location of the involved pages without affecting virtual memory addresses.

A scan can be parallelized within the socket of each part, potentially using all sockets.

The disadvantage of IVP is that there is no clear choice how to place the dictionary or the IX.

Unless the column has sorted values, the ordering of the vid in the IV does not follow the same

ordering as the vid of the dictionary and the IX. Thus, we interleave them across the sockets,

in order to average out the latency of memory accesses during materialization (converting

qualifying vid to real values from the dictionary – see Section 5.3.1) and during index lookups.

As we show in the experiments, the disadvantage of IVP results in high-selectivity scans and

index lookups suffering decreased performance. Although a high-selectivity scan can scan the

parts of the IV locally, the dominating materialization phase involves potentially numerous

remote accesses to the interleaved memory of the dictionary. Similarly, index lookups suffer

from remote accesses to the interleaved index.

Physical partitioning (PP). To overcome the limitations of IVP, we can opt for an explicit

physical partitioning of the table. PP can use a hash function on a set of columns, a range

partitioning on a column, or a simple round-robin scheme [8, 105]. The table and its columns

are split into the table parts (TBP) defined by the partitioning specification. PP is useful for

improving the performance through pruning, i.e., skipping a part if it is excluded by the query

predicate, and for moving parts in a distributed environment (see, e.g., SAP HANA [8] and

Oracle [105]). In this thesis, we use PP to place each part on a different socket. Since we wish to

evaluate NUMA aspects, we avoid exploiting the pruning capability in our sensitivity analysis.

81

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

Table 5.1 – Workload properties best fitted for each data placement, and key characteristics.

Data
placement Concurrency Selectivities Workload

distribution
Latency

distribution
Memory

consumed Readjustment

RR High All Uniform Unfair Normal Quick

IVP All
Low (w/o
index) &
medium

Uniform &
skewed Fair Normal Quick

PP All All Fair Potentially
lower/higher SlowUniform &

skewed

The advantage of PP is that each part of a column can be allocated on a single socket. A scan

is split into each part. The materialization phase for each part takes the qualifying vid of the

scan and uses the local dictionary to materialize the real values. In contrast to IVP, PP is thus

performant for high-selectivity queries and index lookups as well.

The disadvantages of PP are three-fold. First, PP is heavy-weight and time-consuming to

perform or repartition. The DBMS needs to recreate the components of all parts of the

columns. The second disadvantage of PP is its potentially increased memory consumption.

Although it results in non-intersecting IV across the parts of a column, the dictionaries and

the IX of multiple parts may have common values. For large data types, e.g., strings, this can

be expensive. There are, however, some cases when the memory consumption can decrease,

and this becomes an advantage for PP. If the unique values in a part decrease substantially, the

bitcase of the part can decrease. This can happen if the values are correlated to the partitioning

scheme, e.g., if the values are sorted according to the PP range partitioning scheme. The third

disadvantage is that analytical operations requiring to match values across the parts need a

pre-processing phase to match the potentially different vid of the same real value across the

parts. This disadvantage does not apply to scans, but applies to aggregations with a group-by

and to equi-joins (see Section 5.5).

Other data placements. We note that the aforementioned data placements are not exhaustive.

For example, one can interleave columns across a subset of sockets. Or, one can replicate

some or all components of a column on a few sockets, at the expense of memory. Replication

is an orthogonal issue. The three basic data placements we describe are a set of realistic

choices. More importantly, through our experiments in this chapter, we show how their basic

differences affect the performance of different workloads, and motivate a design that adapts

the data placement to the workload at run-time.

5.2.1 Tracking Memory

We need a way to expose a column’s data placement. For RR and PP, we can simply use a socket

identifier per column and partition. For IVP, however, a column’s component (IV, dictionary, or

IX) may exist on multiple sockets. For this reason, we design a novel data structure, Page Socket

82

5.2. Data Placement of a Main-Memory Column

Mapping (PSM), that summarizes the physical location of virtual address ranges. Figure 5.3

shows an example of a PSM. The figure depicts a piece of virtual memory consisting of ten 4 KB

pages. Each box includes the base address of each page. The color signifies the socket where

the page is physically allocated. Assume that we wish to track the physical location of virtual

address ranges and . This example can represent a

tiny column, without an index, placed with IVP, where the first range holds the IV, partitioned

across sockets S1 and S2, and the second range holds the interleaved dictionary.

The PSM maintains an internal vector of ranges. Each range consists of a virtual page address,

the number of subsequent pages, and the socket where they are physically allocated. If the

range is interleaved, the interleaving pattern signifies the participating sockets, and the socket

number denotes the starting socket. The ranges are sorted by the virtual address of their base

page. We choose a vector of ranges to optimize for reading the PSM instead of updating it.

Looking up the physical location of a pointer includes a quick binary search on the ranges’ first

pages, and, in case the range is interleaved, following the interleaving pattern. Furthermore,

we maintain another vector that summarizes the number of pages on each socket.

When we add virtual address ranges to the PSM, it maps them to page boundaries, checks

which pages are not already included, and calls on Linux to find out their physical

location. The algorithm goes through their physical locations, collapsing contiguous pages

on the same socket into a new range for the internal vector. It detects an interleaving pattern

when every other page is allocated on a different socket, following the same recurring pattern.

When the pattern breaks, the new interleaved range is inserted in the internal vector, and the

algorithm continues. The summary vector is updated accordingly.

PSM objects support additional useful functionality: we can remove memory ranges, ask for

a subset of the metadata in a new PSM, and get the socket where the majority of the pages

are. We can also move a range to another socket or interleave it. The PSM uses to

move the range, and update the internal information appropriately.

0x1000 0x2000 0x3000 0x4000 0x5000

0x6000 0x7000 0x8000 0x9000 0xa000

...

...

S1

S2

S3

S4

0x2000 0x4000 0x8000
2 2 3
1 2 2

0000... 0000... 1100...

#1 #2 #3
First page address (64 bits)
Number of pages (32 bits)

Socket (8 bits)
Interleaving pattern (256 bits)

Vector of ranges

3Summary: pages per socket (256 · 32 bits) 4 0 0 ...

Note: for simplicity, we display only the last 4 of the 16 hexadecimal characters of 64-bit addresses.

Figure 5.3 – Example of a PSM after adding the virtual memory ranges to track (bold lines).

83

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

The space used by a PSM depends on the number of stored ranges. For the indicative sizes

of Figure 5.3, we assume that a range can contain a maximum of 232 pages (or 16 TB for 4 KB

pages), and that a server can have up to 256 sockets. The size of a PSM is 360 · r +8192 bits,

where r is the number of stored ranges. Let us examine the size of the metadata for a column

on a 32-socket server, assuming we attach a PSM to the IV, dictionary, and IX of a column so

that we can query their physical location.

If a column is placed wholly on a socket, then r = 1 for the IV and the dictionary, and r = 2 for

the IX (contains 2 vectors). The metadata is 26016 bits, or 3 KB. If a column is placed with IVP

across all sockets, then r = 32 for the IV, r = 1 for the interleaved dictionary, and r = 2 for the

interleaved IX. The metadata is 37176 bits, or 5 KB. If a column is physically partitioned, with

32 parts, each part is wholly placed on a socket. The metadata is around 102 KB. The size of

the metadata is not large compared to the typical sizes of columns (at least several MB). We

note that one can decrease the space substantially by losing some accuracy and the capability

of querying specific virtual addresses by keeping only the summary vector.

5.3 NUMA-Aware Task Scheduling

In this section, we describe how we modify our initial task scheduler presented in Section 4.1 to

support NUMA-aware task scheduling. We then outline the different task scheduling strategies

for concurrent scans, considering also the data placement strategies of Section 5.2.

Tasks need to be able to choose the socket to run on, and the task scheduler needs to expose

the topology of the multi-socket server. Figure 5.4 depicts the design of our NUMA-aware

task scheduler. Upon initialization, the scheduler divides each socket into one or more thread

groups. Small topologies are assigned one thread group per socket, while larger topologies

are assigned a couple of thread groups per socket. Hyperthreads (denoted HT in Figure 5.4)

are grouped in the same thread group. Figure 5.4 depicts the thread groups for a socket of

the 4-socket server of Table 2.2. The main purpose of multiple thread groups per socket is to

decrease potential synchronization contention for the contained task priority queues.

Inside a thread group. Each thread group contains two priority queues for tasks. The first

has tasks that can be stolen by other sockets. The second has “bound” tasks that have a hard

affinity and can only be stolen by worker threads of thread groups of the same socket. As our

experimental evaluation shows, supporting bound tasks is essential for memory-intensive

workloads. The priority queues are protected by a lock. Lock-free implementations for

approximate priority queues [31] can be employed for cases of numerous short-lived tasks

where synchronization becomes a bottleneck. Each thread group maintains a number of

worker threads, which are distinguished as active or inactive. These worker threads are

handled similarly to Section 4.1.3 for maintaining the active concurrency level. The task

scheduler keeps the active concurrency level of each thread group equal to the number of its

H/W threads.

84

5.3. NUMA-Aware Task Scheduling

HT1
HT2

C1

... ...

Th
re

ad
gr

ou
p

1

So
ck

et
1

Th
re

ad
gr

ou
p

Priority
Queue

Hard
Priority
Queue

Active
workers

Inactive
by user

Parked
threads

Waiting
for a task

t
t

t
t
t

HT1
HT2

C2
HT1
HT2

C7
HT1
HT2

C8
HT1
HT2

C15

Th
re

ad
gr

ou
p

2

Blocked
threads

Inactive workers
t t

Figure 5.4 – The design of our NUMA-aware task scheduler.

Main loop of a worker thread. The worker firstly checks that it is allowed to run, by checking

that the number of working threads is not larger than the number of the H/W threads of the

thread group. If it is, the worker parks itself (see Section 4.1.3). If it is allowed to run, it peeks in

the two priority queues to get the element with the highest priority. If there are no tasks in the

thread group, it attempts to steal a task from the priority queues of the other thread groups of

the same socket. If there are no tasks, it goes around the thread groups of all sockets, stealing

tasks (not from the hard priority queues). If the worker thread finally has a task, it executes it,

and loops again. If no task is found, it goes to park.

Watchdog. A watchdog thread wakes up periodically (similarly to Section 4.1) to gather

statistics. It checks the active concurrency level of all thread groups. If a thread group is not

saturated (meaning its active concurrency level is lower than its number of H/W threads), but

has tasks, it signals parked worker threads, if there are any, else creates new worker threads. If

a thread group is saturated, but has more tasks, it also monitors that, in order to signal parked

threads in other non-saturated thread groups that can potentially steal these tasks.

Task priorities. We do not use the fixed priorities of our initial design (see Section 4.1). Instead,

each task has a numeric priority which is a weighted combination of a user-defined priority

and other information such as the depth of a task in its task graph and the timestamp of its

related SQL statement. In this thesis, we do not set the user-defined priority of tasks [200].

The timestamp of a query, however, affects the priorities of its tasks. The older the timestamp,

the higher the priority of related tasks. For our experimental evaluation, this also means that

tasks generated during the execution of a query are handled more or less at the same time.

Task affinities. A task can have an affinity for a socket, in which case it is inserted in the priority

queue of one of the thread groups of that socket. Additionally, the task can specify a flag for a

hard affinity so that it is inserted into the hard priority queue. In case of no affinity, the task

is inserted into the priority queue of the thread group where the caller thread is running (for

potentially better cache affinity).

85

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

By default, for NUMA-agnostic workloads, we do not bind worker threads to the H/W threads

of their thread groups, so that the OS schedules the NUMA-agnostic worker threads. We

bind a worker thread to the H/W threads of its thread group only when it is about to handle

a task with an affinity. And if the next task also has an affinity, the thread continues to be

bound, otherwise it unbinds itself before running a task without an affinity. This gives us the

flexibility to compare the OS scheduler, by not assigning affinities to tasks, against NUMA-

aware scheduling by assigning affinities to tasks.

5.3.1 NUMA-Aware Scheduling of Scans

In this section we describe how scans are scheduled in a NUMA-aware fashion by considering

the data placement. Tasks need to consult the PSM of the data they intend to process to define

their affinity. In Figure 5.5 we show the execution phases of a query selecting data from a

single column, assuming the column is placed using IVP: (a) finding the qualifying matches,

and (b) materializing the output [118]. Next, we describe these phases.

IX

IVsc
an

(a) (b)

lo
ok

up
s Output

Dict

vid

S1

S2

S3

S4

-o
r-

Figure 5.5 – Task scheduling (a) for a scan or index lookups to find qualifying matches, and (b)
for the output materialization, for an IVP-placed column.

Finding the qualifying matches. Depending on the predicate’s estimated selectivity, the

optimizer may either scan the IV, or perform a few lookups in the index (if there is an index). For

both cases, the query first needs to encode its predicate with vid. For a simple range predicate,

the boundaries are replaced with the corresponding vid. If the predicate is more complex, a

list of qualifying vid is built and used during the scan or the index lookups [195, 197].

In the case of a scan, it is parallelized by splitting the IV into a number of ranges and issuing a

task per range. The task granularity is defined by the concurrency hint (see Section 4.1.4), to

avoid too many tasks under cases of high concurrency, but also to opt for maximum parallelism

under low concurrency. In the case of IVP, as in the example of Figure 5.5, we round up the

number of tasks to a multiple of the partitions, so that tasks have a range wholly in one

partition. We define a task’s affinity by consulting the PSM of the IV for the task’s range.

Index lookups are not parallelized. For each qualifying vid, the IX is looked up to find the

qualifying positions of the IV. The affinity of the single task is defined as the location of the IX.

If it is interleaved, as in the case of IVP, we do not define an affinity.

86

5.3. NUMA-Aware Task Scheduling

The qualifying matches can be stored in two potential formats [118, 197]. For high selectivities,

a bitvector format is preferred where each bit signifies if the relevant position is selected. For

low selectivities, a vector of qualifying IV positions is built. Both formats typically consume

little space and we do not track their location on memory with a PSM.

Output materialization. Since we know the number of qualifying matches, we allocate the

whole output vector. The materialization is parallelized in case of a high number of results. In

such cases, we parallelize materialization similarly as the scan, by splitting the output into

ranges and issuing a task per range. A task, for each qualifying position of its range, finds the

relevant vid through the IV. Then it finds the real value by consulting the dictionary, and finally

writes it to the output.

Because different partitions of the IV may produce more or less qualifying matches, the output

may have unbalanced partitions. To define task affinities, we need a short preprocessing.

Going through all qualifying matches to figure out the exact boundaries is costly. Thus, we

divide the output vector length by a fixed number, e.g., the number of H/W threads of the

server, to make fixed-sized regions, and find the location of their boundaries by consulting the

PSM of the IV. We coalesce contiguous regions on the same socket to make up the final list of

partitions (visualized in Figure 5.5). For each partition, we issue a correspondingly weighted

number of tasks with the affinity of that partition’s socket, taking care that the number of tasks

does not exceed the concurrency hint, and that each partition has at least one task.

Figure 5.5 hints that we place the partitions of the output to their corresponding socket. Un-

fortunately, allocating a new output vector in order to specify its location turns out to have a

bad performance. Especially for high-selectivity concurrent scans, it involves numerous page

faults with heavy synchronization in the OS. This is one reason why SAP HANA implements its

own allocators [8, 191] to reuse virtual memory. Furthermore, we note that using

to move the partitions also runs into a similar problem in the OS. Thus, for concurrent work-

loads, re-using virtual memory for the output vectors, even if writes are remote accesses, is

better than explicitly placing the pages of the output vectors.

Remaining data placements. Figure 5.5 describes how a scan is scheduled when the column

is placed with IVP. In the case of RR, when a column is on one socket, the same scheduling is

involved, but without figuring out the boundaries of the output vector’s partitions. In the case

of PP, the phase of finding qualifying matches occurs once per table part, concurrently. There

is a single output vector, with a length equal to the sum of the lengths of the results of each

table part. The preprocessing phase of the materialization happens once, in a similar way as in

the case of IVP, by considering that partitions of the IV are now separate IV. The materialization

phase occurs once per table part, concurrently, and each table part knows the region of the

single output vector where to write the real values.

87

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

5.4 Experimental Evaluation of Concurrent Scans

In this section, we present a sensitivity analysis of concurrent scans for different data place-

ment and task scheduling strategies, under various workload parameters. We use a prototype

based on SAP HANA (SPS9). We extend the execution engine of SAP HANA with our NUMA-

aware data placements (see Section 5.2) and task scheduling (see Section 5.3).

For all experiments, we warm up the DBMS first. We make sure that all clients are admitted,

and we disable query caching. In several cases, we present additional performance metrics

gathered from Linux, SAP HANA, and H/W counters (using the Intel Performance Counter

Monitor tool [196]).

We generate a dataset with a large table, resulting in a 100 GB flat CSV file. It consists of 100

million rows, an ID integer column as the primary key, and 160 additional columns of random

integers generated with a uniform distribution. We use bitcases 17 to 26 in a round-robin

fashion for the 160 columns, to avoid scans with the same speed [195].

We use a Java application on a different server to generate the workload. The clients connect

and build a prepared statement for each column:

. The implications of our evaluation are relevant for queries that have a

predicate on multiple columns or project multiple columns as well. In the former case, the first

phase of Figure 5.5 is repeated (in parallel) for each column, to find the qualifying positions. In

the latter case, the materialization phase of Figure 5.5 is repeated (in parallel) for each column.

Each client continuously picks a prepared statement to execute. There are no thinking times.

The client does not fetch the results, otherwise the network transfer would dominate. We

measure the achieved queries over 2 min and report the average throughput (TP) per minute.

The additional performance metrics presented are averaged over the whole 2 minutes period.

Every data point and metric presented is an average of 3 iterations with a standard deviation

of less than 10%. The main server we use is the 4-socket Ivybridge-EX server of Table 2.2. The

OS is a 64-bit SMP Linux 3.0.101 (SUSE Enterprise Server 11 SP3).

The data placement strategies we compare are:

• Round-robin (RR). Each column is allocated on one socket, in a round-robin fashion.

• Indexvector partitioning (IVP). Each column’s IV is partitioned equally across the sockets.

• Physical partitioning (PP). The table is physically partitioned according to ranges of the

ID column. The number of equally-sized ranges is the number of the sockets. Each table

part is placed on a different socket.

The task scheduling strategies we compare are:

88

5.4. Experimental Evaluation of Concurrent Scans

• OS. We do not define task affinities, and we do not bind worker threads, leaving the

scheduling to the OS.

• Target. We define task affinities. Tasks may be stolen.

• Bound. We define task affinities, and set the hard affinity flag for tasks. Inter-socket

stealing is prevented.

The workload parameters we vary are:

• Concurrency. The number of clients in the workload.

• Indexes. Whether indexes can be used or not. In the majority of the experiments, we do

not use indexes.

• Selectivity. The selectivity of the range predicates.

• Column selection. The probability that a column may be selected. Can either be uniform

or skewed to make a subset of columns hot.

5.4.1 Uniformly Distributed Workload

In this section, we evaluate a uniform workload, i.e., clients pick a column to query, randomly

with uniform distribution.

Impact of scheduling

This experiment aims to show the largest performance difference between NUMA-agnostic

and NUMA-aware execution. We use RR to place the columns on the 4-socket server. Intra-

query parallelism is enabled, and the selectivity of the queries is low (0.001%). Indexes are not

used, thus scans are used, and the workload is memory-intensive. The throughput (TP) and

relevant performance metrics are shown in Figure 5.6. Performance metrics include the CPU

load, the number of tasks, and the number of tasks stolen across sockets. For the case of 1024

clients, performance metrics include the last-level cache (LLC) misses (local and remote), the

memory throughput of each socket, the instructions per cycle (IPC), the total traffic through

the QPI, and the total data (without the cache coherence) traffic through the QPI.

There is a 5x throughput improvement with the Target and Bound strategies, over the OS,

mainly due to the improved memory throughput. The LLC misses, most of which are

prefetched, are almost 5x more, and mostly local compared to the mostly remote misses of OS.

The number of processed tasks is 5x higher, and IPC is also 5x higher due to faster memory

accesses. QPI data traffic is reduced analogously, but cache-coherence traffic is generated

indirectly, even with local accesses, and cannot be avoided.

89

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

0
10
20
30
40
50
60

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
4
8

12
16

1 4 16 64 25
6

10
24

Ta
sk

s(
x

10
6)

Clients

OS Target Bound

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

0
10
20
30
40
50

O
S

Ta
rg

et
Bo

un
dLL

C
m

iss
es

(x
10

10
)

Remote Local 0

2

4

6

8

10

1
Q

PI
tr

af
fic

(T
B)

0
50

100
150
200
250

O
S

Ta
rg

et
Bo

un
dM

em
or

y
TP

(G
B/

s)

S4 S3 S2 S1

0
4
8

12
16

1 4 16 64 25
6

10
24St

ol
en

ta
sk

s(
x

10
5)

Clients

0

1

2

1

IP
C

0
1
2
3
4
5
6

1

Q
PI

da
ta

tr
af

fic
(T

B)

OS Target Bound

Performance metrics for the case of 1024 concurrent clients

5x

Figure 5.6 – Evaluating OS, Target, and Bound scheduling strategies, with RR-placed columns.

Overall, Bound achieves better throughput than Target. Although stealing improves CPU load,

it hurts throughput for memory-intensive workloads due to the incurred remote accesses and

stress on the remote memory controllers and the QPI. We revisit this effect later.

Implications. NUMA-awareness can significantly improve the performance of memory-

intensive workloads. Memory-intensive tasks should be bound to the socket of their data.

Impact of the cache-coherence protocol

Figure 5.7 shows the results of the previous experiment on the 8-socket Westmere-EX server

of Table 2.2. Bound decreases the QPI data traffic, but the total traffic is increased, due to

0
5

10
15
20
25
30

1 4 16 64 25
6

10
24TP

(x
10

3
q/

m
in

)

Clients

Bound

0
20
40
60
80

100

1 4 16 64 25
6

02
4

CP
U

lo
ad

(%
)

OS Target Bound

0
5

10
15
20
25
30

1

Q
PI

tr
af

fic
(T

B)

0
20
40
60
80

100

O
S

Ta
rg

et
Bo

un
d

M
em

or
y

TP
(G

B/
s) S8

S7
S6
S5
S4
S3
S2 0

2
4
6
8

10

1

Q
PI

da
ta

tr
af

fic
(T

B)

OS Target Bound

Performance metrics for the case of 1024 clients

Figure 5.7 – As Figure 5.6, on the 8-socket Westmere-EX server.

90

5.4. Experimental Evaluation of Concurrent Scans

the broadcast-based cache-coherence protocol (see Section 2.4.1). Due to the saturation of

the QPI, we cannot fully exploit the memory bandwidth of all sockets simultaneously. Thus,

Bound improves performance only by 2x compared to OS.

Implications. H/W characteristics, such as the cache-coherence protocol, can affect the

NUMA impact we observe on different servers. The performance improvement of preferring

local over remote accesses, however, still applies.

Impact of data placement

We continue with the previous experiment, using Bound, but with different data placements,

on the 4-socket Ivybridge-EX server of Table 2.2. Figure 5.8 shows the results.

0

20

40

60

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
10
20
30
40
50

RR IV
P PPLL

C
m

iss
es

(x
10

10
)

Local Remote

Performance metrics for 1024 clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients
RR IVP PP

0
50

100
150
200
250

RR IV
P PPM

em
or

y
TP

(G
B/

s)

S4 S3 S2 S1

0
2
4
6
8

10
12
14
16

1 4 16 64 25
6

10
24

Ta
sk

s(
x

10
6)

Clients

Figure 5.8 – The effect of the RR, IVP, and PP data placements.

All data placements reach the same throughput for high concurrency. IVP has slightly more

remote accesses than PP, since the dictionary is interleaved. Although the same throughput

is reached with parallelism, there is a difference between the data placements. In Figure 5.9,

we show violin plots of the query latency distributions. All have the same average latency. RR,

however, is unfair, with more variance. IVP and PP have most latencies closer to the average.

This is because in RR, queries queue up and execute on the socket level. With IVP and PP,

each query parallelizes across all sockets, and because the tasks are prioritized according to

the query’s timestamp, they complete approximately in the order they were received.

0
30

00

256 1024

Clients

RR

La
te

n
cy

(m
s)

0
15

00

256 1024

Clients

IVP

La
te

n
cy

(m
s)

0
15

00

256 1024

Clients

PP

La
te

n
cy

(m
s)

Figure 5.9 – Violin plots of the latency distributions.

Implications. Partitioning has a fair latency distribution.

91

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

Impact of scale on data placement

On the 4-socket server, partitioning achieves the same performance as RR. This is not the

case on large-scale servers, where partitioning can involve a “convoy” effect: the slowest

socket becomes a bottleneck, as detailed next. We evaluate the previous experiment on the

32-socket Haswell-EX server of Table 2.2. To showcase the convoy effect as prominent as

possible, for this experiment each column is targeted by 7 clients (for a total of 1120 clients)

and the concurrency hint is set to a minimum (each query executes a task graph with 1 task

per partition). Figure 5.10 shows the results for the data placements and scheduling strategies.

0
5

10
15
20
25
30

TP
(x

10
4

q/
m

in
)

0

20

40

60

80

100

CP
U

lo
ad

0
2
4
6
8

10
12

M
em

or
y

TP
(x

10
2

GB
/s

)

0
1
2
3
4
5
6
7
8
9

RR IV
P PP

LL
C

m
iss

es
(x

10
11

)

RR IVP PP

0
5

10
15
20
25
30

TP
(x

10
4

q/
m

in
)

0

20

40

60

80

100

CP
U

lo
ad

0
2
4
6
8

10
12

M
em

or
y

TP
(x

10
2

GB
/s

)

0
1
2
3
4
5
6
7
8
9

RR IV
P PP

LL
C

m
iss

es
(x

10
11

)

Remote Local

Bo
un

d
Ta

rg
et

Figure 5.10 – Evaluating 1120 clients with different data placement and scheduling strategies,
on a 32-socket server.

Bound is the best scheduling strategy since the tasks are memory-intensive. RR is the best

data placement, as it fully utilizes CPU load because the sockets process scans independently.

Partitioning, however, presents an overhead. This is not a NUMA effect due to a convoy effect.

Load is not perfectly balanced across the sockets. There are also side-effects from the OS

whose processes consume a substantial CPU load (56 H/W threads on average) during the

experiments. A socket becomes the slowest and has always more CPU load and queued tasks

than the rest of the sockets. Due to all queries needing to parallelize on all sockets, queries have

to wait for the slowest socket. Overall CPU load, memory throughput and query throughput

are effectively dropped for both IVP and PP.

Stealing can be a natural solution for balancing tasks and CPU load. For concurrent scans,

however, stealing does not help because tasks are memory-intensive. Figure 5.10 shows that

Target is able to saturate CPU load, but drops memory and query throughput for both IVP and

PP. Stealing memory-intensive tasks should be avoided. We revisit this effect in Section 5.4.2

on the 4-socket server.

92

5.4. Experimental Evaluation of Concurrent Scans

Implications. Unnecessary partitioning can cause a convoy effect for memory-intensive

workloads on large-scale multi-socket servers.

Impact of selectivity

In this experiment, we vary the selectivity from 0.001% up to 10%. We enable indexes, evaluate

1024 clients, and use RR and Bound, on the 4-socket server. We note that Target achieves

similar results since the workload is uniform and the concurrency is high. The results are

shown in Figure 5.11.

0
5

10
15
20
25
30
35

0.
00

1%
0.

01
%

0.
1% 1% 10

%LL
C

m
iss

es
(x

10
10

) Remote
Local

0
50

100
150
200

0.
00

1%
0.

01
%

0.
1% 1% 10

%

M
em

or
y

TP
(G

B/
s) S4

S3
S2
S1

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7

1

TP
(q

/m
in

) 0.001%
0.01%
0.1%
1%
10%

107

106

105

104

103

102

10
1

Figure 5.11 – Evaluating different selectivities.

As expected, throughput drops as we increase the selectivity. The optimizer chooses to perform

index lookups for selectivities 0.001%-0.1%, as implied by the low memory throughput and

the number of LLC misses. For larger selectivities, it chooses scans. For selectivity 1%, scans

dominate the execution, as is shown by the high memory throughput and the large number

of LLC misses. The workload is more memory-intensive. For selectivity 10%, however, the

materialization phase dominates the execution. Since the materialization consists of random

accesses due to the dictionary, it is less memory-intensive with less memory throughput and a

lower number of LLC misses.

Implications. For a dictionary-encoded column, with an index, the selectivity changes the

critical path of execution. It consists of index lookups for low selectivities with low mem-

ory throughput, memory-intensive scans for intermediate selectivities with high memory

throughput, and less memory-intensive materializations for high selectivities with intermedi-

ate memory throughput.

5.4.2 Skewed Workload

In this section, we use a skewed workload. Clients have a 20% probability of choosing a

random column from the first 80 columns of the dataset, and an 80% probability of choosing

one from the remaining 80 columns. We continue using the 4-socket server.

93

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

Impact of stealing memory-intensive tasks

We perform the first experiment of Section 5.4.1. We use RR, and we intend to see the effect of

scheduling strategies on performance. The results are shown in Figure 5.12.

0

10

20

30

40

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

OS Target Bound

0
5

10
15
20
25
30
35

O
S

Ta
rg

et
Bo

un
dLL

C
m

iss
es

(x
10

10
)

Remote Local

0
50

100
150
200

O
S

Ta
rg

et
Bo

un
dM

em
or

y
TP

(G
B/

s)

S4 S3 S2 S1

Performance metrics for 1024 clients

Figure 5.12 – Evaluating the OS, Target, and Bound strategies, with RR-placed columns.

Bound still achieves the best throughput, even though it underutilizes the server. As implied

by the memory throughput, only two sockets contain the hot set of columns.

One would expect that Target achieves better throughput, since it utilizes more CPU resources.

It decreases the throughput, however, by around 15%. The remote accesses overwhelm the

already saturated two hot sockets and the interconnect network.

Implications. Inter-socket stealing of memory-intensive tasks can decrease overall through-

put by up to 15%.

Impact of partitioning

To battle skewness, apart from collocating hot and cold columns, one can partition hot

columns. Figure 5.13 shows the results of the previous experiment using Bound, but evaluating

the different data placements and partitioning types. IVP and PP achieve the best throughput

as RR in the case of the uniform workload of Section 5.4.1. Skewness is smoothed out since

queries are parallelized across all sockets.

0
10
20
30
40
50
60

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

RR IVP PP

0
10
20
30
40
50

RR IV
P PP

LL
C

m
iss

es
(x

10
10

)

Remote Local

0
50

100
150
200
250

RR IV
P PP

M
em

or
y

TP
(G

B/
s)

S4 S3 S2 S1

Performance metrics for 1024 clients

Figure 5.13 – Evaluating the RR, IVP, and PP data placements, with the Bound strategy.

94

5.4. Experimental Evaluation of Concurrent Scans

Implications. Partitioning can significantly improve the throughput of skewed workloads.

Impact of partitioning type

One needs to consider two things for choosing between IVP and PP. Firstly, PP is expensive

to perform as it recreates columns. PP on this dataset takes around 18 min, compared to 4

min for IVP, and consumes around 8% more memory because dictionaries contain recurrent

values. Secondly, IVP interleaves the IX and the dictionary, which may be inefficient for index

lookups and intensive materialization phases.

As a practical example, Figure 5.14 shows the results of the previous experiment with a high

selectivity of 10%. Execution is dominated by the materialization phase, which involves

random accesses to the dictionary. PP is better, since it involves more local accesses.

0
2
4
6
8

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

RR IVP PP

0

5

10

15

20

RR IV
P PP

LL
C

m
iss

es
(x

10
10

)

Remote Local

0
20
40
60
80

100
120

RR IV
P PP

M
em

or
y

TP
(G

B/
s)

S4 S3 S2 S1

Performance metrics for 1024 clients

Figure 5.14 – As Figure 5.13, with a high selectivity.

Implications. To battle workload skewness, IVP is a quick solution. PP is slower to perform,

but has the best performance for all skewed workloads with low and high selectivities.

Impact of stealing tasks that are not memory-intensive

Stealing can be helpful when tasks are not as memory-intensive as scans, without such a high

memory throughput as scans. Figure 5.15 shows the results of the previous experiment with

0
2

4
6

8

1 4 16 64 25
6

10
24

TP
(x

10
3

q/
m

in
)

Clients

0
20
40
60
80

100

1 4 16 64 25
6

10
24

CP
U

lo
ad

(%
)

Clients

RR IVP PP

0

5

10

15

20

RR IVP PP

LL
C

m
iss

es
(x

10
10

)

Remote Local

0
20
40
60
80

100
120

RR IV
P PP

M
em

or
y

TP
(G

B/
s)

S4 S3 S2 S1

Performance metrics for 1024 clients

Figure 5.15 – As Figure 5.14, with the Target strategy.

95

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

high selectivities, but with the Target strategy. Stealing now does not hurt as in the case of

memory-intensive tasks in the first experiment of Section 5.4.2.

Stealing does not improve IVP and PP since they were already saturating CPU resources, but

improves RR, which now has full CPU load and achieves the same throughput as IVP. Stealing

incurs remote accesses, and both RR and IVP are still worse than PP which results in more

local accesses.

Implications. Inter-socket stealing should be allowed for tasks that are not memory-intensive.

5.5 NUMA-Aware Scheduling of Aggregations and Equi-Joins

To sum up our evaluation of concurrent scans, we remind that a scan has two phases: (a)

a memory-intensive phase that scans the bit-compressed IV for qualifying rows for a given

predicate, and (b) a less memory-intensive (with less memory throughput) phase that mate-

rializes the output values corresponding to the vid of the qualifying rows by consulting the

dictionary. The main implication of our analysis for task scheduling is that stealing of memory-

intensive tasks should be disallowed. The main implication about the performance of the

data placement strategies is that physical partitioning (PP) results in the best performance

and can battle skewness in the workload. However, it should not be abused on large-scale

servers as unnecessary partitioning can create a convoy effect for memory-intensive tasks that

should not be stolen. PP is better than IVP because the data structures of a part are wholly

allocated on a socket, and the scans result in more local accesses. In this section, we continue

our analysis to see the implications about task stealing and data partitioning for additional

NUMA-aware operators: aggregations and equi-joins.

We use the distributed implementation of analytical operators to support NUMA-aware ex-

ecution on a multi-socket server. For this reason, we support a simple data placement for

aggregations and equi-joins: a socket identifier per table part (TBP). We do not continue

further with PSM and the IVP data placement. An additional drawback of IVP is that it does not

capture any transient data structures, e.g., hash tables. This allows us to extend our analysis,

in this and the next chapter, to aggregations and equi-joins by realizing the RR and PP data

placement strategies at the level of tables and table parts. Our unit of data placement is a

row-wise partition of a table. We assume that the organization of associated columns into

tables is left to the administrator. Next, we describe our NUMA-aware implementation of

aggregations and equi-joins.

Aggregations. An aggregation uses the scan’s first phase to find the qualifying rows. Then it is

parallelized with multiple tasks, where each task executes two phases: (a) aggregating using

a local hash table (HT), and (b) merging the local HT to a set of disjoint result HT [186]. The

reason for the two phases is that they are interchanged potentially multiple times in order to

avoid large local HT that do not fit in the processor’s last level cache (LLC) [139, 186].

96

5.5. NUMA-Aware Scheduling of Aggregations and Equi-Joins

If there are multiple TBP, an additional phase precedes, that employs a global dictionary

(used in the subsequent aggregation phases) by matching the vid of the qualifying rows of the

group-by column from each TBP. Tasks are scheduled in a NUMA-aware fashion similar to

the scans. Although local HT are placed on a task’s socket, the global dictionary is accessed

by all tasks, and is placed on one of the sockets of the involved TBP. Each disjoint result HT is

placed on one of the involved sockets in a round-robin manner. During the merge phase, a

task merges local HT that can lie on multiple sockets into a result HT that lies on its socket.

A visualized aggregation example. To better understand how NUMA-aware aggregations are

executed, we depict in Figure 5.16 the following query:

.

In the example, we assume that the table is partitioned with round-robin partitioning into two

TBP, and that the first is placed on Socket 1 and the second on Socket 2. Execution starts with

the first phase of a scan, done concurrently on each TBP, in order to produce a bitvector that

signifies which rows of each TBP qualify the query’s range predicate. Since the same column

is the group-by column, execution then proceeds to produce minimal dictionaries from the

qualifying vid of each TBP, and merges them in parallel to create a global dictionary. It also

keeps a mapping from the minimal dictionaries. Note how “Anna” has different vid in each

TBP. The global dictionary can be placed on either socket.

Afterwards, the two aforementioned aggregation phases take place. During the first phase,

a task continuously handles portions of a table part’s scanned results and aggregates them

into a local HT. If a local HT exceeds a predefined size, a new one is created and used. The

predefined size is calculated on the basis of fitting the local HT of the concurrent aggregation

Carl
Anna
Dave
Abel
Evie
Kate
Anna
Anna
Dani

NAME
column

1
3
4
0
2

1
0
2
1

vi
d 1

0
1
2
3
4

Anna
Carl
Dani
Dave
Evie

0
1
2

Abel
Anna
Kate

N
AM

E 1 1
1
0
1
1

1
1
0
1

2
4

1
10

1
2
3

Abel
Anna
Carl
Dani
Dave

Abel
Anna
Carl
Dani
Dave

1
3
1
1
1

0
1

0
1
2
3
4

Di
ct

IV

vi
d 2

Di
ct

IV

bi
tv

bi
tv

Dictvi
d 1

vi
d 2

vi
d' vi
d'

ag
g

1
0

2
1

vi
d'

ag
g

1
3

3
1

vi
d'

ag
g

0
2
4

1
1
1

vi
d'

ag
g

Sockets: S1
S2

NAME
Data placement

N
AM

E 2

Scan Global
dictionary

Local
aggreg.

Final
aggreg. COUNT

Final results

HT that
fit in LLC

Disjoint
result HT

TBL is
round-robin
partitioned

1
3

1
1

Figure 5.16 – NUMA-aware aggregation with a table partitioned across two sockets.

97

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

tasks on a socket’s LLC [186, 139, 202]. For visualization purposes in Figure 5.16, we assume

that the size has been set to two entries. Note how two local HT are created for the first TBP.

After all scanned data has been aggregated into local HT, the merge phase is initiated to

calculate the final disjoint result HT. We note that the merge phase can also kick in earlier if

there are numerous local HT created, in which case the two phases are interchanged multiple

times until all data has been aggregated [186]. Each result hash table holds a disjoint subset of

all qualifying vid. The number of result HT is less than or equal to the number of involved tasks.

In this example, we assume two result HT. During the merge phase, a task handles the merging

of all local hash tables, which can reside on multiple sockets, into one result HT. Finally, the

final result set, to be fetched by the query, is constructed. It is constructed by appending the

disjoint HT, and by consulting the global dictionary to convert the vid to their real values.

Equi-joins. The NUMA-aware implementation of equi-joins is similar to their distributed

implementation [93, 178]. Consider an example of an equi-join of two tables with a selection

predicate on the first table. The first table is scanned to find qualifying rows for the predicate,

and the corresponding vid of the join column. A global dictionary is employed, similar

to aggregations, to map the vid of the join columns between the tables. This is done by

consulting the join columns’ dictionaries. The join column of the second table is searched

for the qualifying vid and rows. A potentially reduced set of vid is then used to filter out rows

of the first table whose vid did not occur in the second table. The matched rows from both

tables are joined, with the help of the global dictionary, to produce the final result. The steps

are parallelized with multiple tasks and scheduled in a NUMA-aware fashion, best when the

tables are on the same socket. If they are on different sockets, the tasks incur remote accesses

when mapping the vid of the join columns, and during the final result production.

If there are multiple TBP for the tables, the aforementioned steps are done by visiting all

involved TBP to map their vid using the global dictionary, and match the qualifying rows to

produce the final result. For this reason, remote accesses can be increased considerably if the

TBP reside on multiple sockets. There is one case when remote accesses are largely avoided.

If the tables are partitioned on the joined column, and each pair of TBP (of the two tables)

resides on the same socket, copartitioned equi-joins can be parallelized and executed locally

on the sockets where the pairs of TBP reside. Our adaptive data placement in the next chapter

(see Chapter 6) exploits this special case when the administrator has defined table groups (TG)

(see Section 2.4.2) that contain the joined tables, and partitioning specifications on the joined

column. Joins on other columns, or between tables outside a TG, are not guaranteed to have

mostly local accesses. This is similar to distributed joins with partitioned tables [8].

5.5.1 The Overhead of Partitioning and Stealing

Here, we perform an experimental evaluation of physical partitioning and stealing for our

NUMA-aware implementations of aggregations and equi-joins. We show that, unlike scans,

98

5.5. NUMA-Aware Scheduling of Aggregations and Equi-Joins

partitioning has an overhead for aggregations and equi-joins. Also, we confirm once again

that task stealing of memory-intensive tasks hurts throughput. Both of these implications

point to a need for adaptivity at run-time.

Figure 5.17 shows the throughput (TP) of concurrent aggregations or joins under different

cases of selectivity, available tables, task stealing, and partitioning (TBP/table). See Section 6.5

for more details on our methodology, dataset, and query types. Aggregations use query type :

each query picks a random table out of the available tables and aggregates a column with a

group-by. Joins use a slightly modified version of query type : a query picks a random pair

of tables (either - , - etc.) to join on their instead of the primary

key (PK) column, with a filter predicate as well. In the case of RR (1 TBP/table), the table pairs

are placed in a round-robin way around the sockets. In the case of PP (4 TBP/table), tables

are partitioned on the PK, and the TBP of a table pair are collocated on the same socket. This

configuration can show the worst overhead of partitioning. The server used is the 4-socket

Ivybridge-EX server of Table 2.2. All cases saturate CPU load, apart from the case of 1 table

with RR and Bound, which uses one socket.

0
2
4
6
8

10
12

1

TP
(x

10
4

q/
m

in
)

1 table 8 tables
0

20
40
60
80

100

1

CP
U

lo
ad

(%
)

1 table 8 tables
0

1

2

3

1M
em

.T
P

(x
10

2
GB

/s
)

1 table 8 tables

0

2

4

6

1

TP
(x

10
3

q/
m

in
)

1 table 8 tables
0

20
40
60
80

100

1

CP
U

lo
ad

(%
)

1 table 8 tables
0

1

2

1M
em

.T
P

(x
10

2
GB

/s
)

1 table 8 tables

Aggregations, selectivity 0.01% (~5000 rows):

Aggregations, selectivity 10% (~5000000 rows):

0
1
2
3
4
5

LL
C

m
iss

es
(x

10
9 /

s) Local
Remote

1 table 8 tables

0

1

2

3

LL
C

m
iss

es
(x

10
9 /

s) Local
Remote

1 table 8 tables

15
%

25
%

3x
2.

5x

Target (stealing) Bound (not stealing) RR PPColors: Patterns:

Joins on COL1, selectivity 0.01% (~5000 rows from first table):

0

5

10

1

TP
(x

10
3

q/
m

in
)

2 tables 8 tables
0

20
40
60
80

100

1

CP
U

lo
ad

(%
)

2 tables 8 tables
0
2
4
6
8

10

1M
em

.T
P

(x
10

GB
/s

)

2 tables 8 tables
0

5

10

15

LL
C

m
iss

es
(x

10
8 /

s) Local
Remote

2 tables 8 tables

40
%

Figure 5.17 – 256 clients issuing aggregation or join queries on the 4-socket server, under
different cases of selectivity, available tables, stealing, and partitioning. Each result of LLC
misses belongs to the corresponding case of the left-hand side graphs.

99

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

Low-selectivity aggregations are dominated by IV scans. The workload is memory-intensive,

as can be seen by the high memory TP (maximum 280 GB/s). As far as stealing is concerned, it

helps saturate the CPU load (for the case of 1 table with RR), but it does not improve the TP

as the workload is memory-intensive and stealing is unnecessary. In fact, it can hurt TP by

up to 15% (see case of 8 tables and Target vs. Bound). As far as partitioning is concerned, it

can greatly help improve the memory TP, improving the TP by up to 3x in case the workload

is skewed (see case of 1 table and RR vs. PP). But when partitioning is unnecessary, it has

an overhead of up to 25% (see case of 8 tables and RR vs. PP). The partitioning overhead is

due to the need of a global dictionary, plus the remote accesses during the merge phase, and

unnecessary scheduling overhead. We note that remote accesses during the merge phase are

necessary irrespective of the implementation [202, 139], and depend on the number of groups

involved (see Section 6.5.3 for a relevant experiment).

High-selectivity aggregations are dominated by the aforementioned aggregation phases. Due

to the random accesses and hashing involved, the workload is not memory-intensive as it

does not achieve a high memory TP. Stealing is now helpful. Stolen tasks do not run the risk

of overwhelming the remote memory controller or the interconnects. It can help saturate

CPU load and improve TP by up to 2.5x (see case of 1 table and RR). The implications about

partitioning are the same: it can help when the workload is skewed, otherwise it has an

overhead (see case of 8 tables and RR vs. PP). The reasons for the overhead are the same as in

the case of low selectivity, with the remote accesses of the merge phase more pronounced.

Joins are also not memory-intensive and stealing helps. The overhead of unnecessary parti-

tioning, however, is aggravated for joins that are not copartitioned. The overhead reaches up

to 40% (see case of 8 tables with RR vs. PP). The overhead is due to mapping the vid of the TBP

of both tables, and due to accessing TBP on all sockets for producing the final results.

Dictionary encoding. The overhead of partitioning includes the employment of a global

dictionary for aggregations and joins. The reason for keeping different dictionaries across

parts is due to the fact that SAP HANA supports mixed OLTP and OLAP workloads as well. This

allows handling vid independently in each partition. Even with global vid across the partitions,

however, or even without dictionary encoding at all, the need for adaptive data placement still

exists since unnecessary partitioning requires remote accesses for aggregations with groups

and joins that are not copartitioned.

Summary of implications. Summing up our analysis of scans, aggregations, and equi-joins,

partitioning should be used for skewed workloads to balance utilization across sockets, and

stealing should not be used for memory-intensive tasks. Both of these implications depend on

the workload. For this reason, we adapt data placement and task scheduling to the workload

at run-time in the next chapter (see Chapter 6).

100

5.5. NUMA-Aware Scheduling of Aggregations and Equi-Joins

5.5.2 TPC-H and SAP BW-EML Benchmarks

We further verify the basic implications of our analysis with two benchmarks. For the first

benchmark, we use TPC-H (read-only) [15] with a scaling factor of 100 (around 100 GB flat

files). We measure the throughput (queries per hour) of TPC-H Q1 instances with random

parameters, which are continuously issued by 32 concurrent clients. The clients can saturate

resources due to intra-query parallelism. We evaluate only Q1 to show a workload dominated

by aggregations on a single table (lineitem). In the next chapter, we evaluate all TPC-H query

templates (see Section 6.5.6).

For the second benchmark, we measure the throughput of the reporting load of SAP BW-EML

[9, 40].1 BW-EML is representative of realistic SAP BW (business warehouse) industrial work-

loads. It uses an application server to host BW users who query a database server. Throughput

is measured in navigation steps (or queries) per hour. At the core of the data model, there are

3 InfoCubes, each modeling multidimensional data with an extended star schema [115]. The

major part of the execution consists of queries which are dominated by scans and aggregations

on the InfoCubes, and less by equi-joins. Every presented measurement uses the maximum

number of users that can be serviced without timeouts. Our dataset has 1 billion records

(around 800GB of flat files).

To evaluate BW-EML, we split the 32-socket Ivybridge-EX rack-scale server of Table 2.2 into

two 16-socket ones, one hosting the application and the other the database server (running

our prototype of SAP HANA). We use the database server for TPC-H as well. We evaluate

the impact of different PP granularities, and the impact of inter-socket task stealing on the

throughput. Granularity PP2, for example, means that the tables are physically partitioned into

two partitions each. For each granularity, we distribute the partitions in a round-robin manner

around the sockets. The case of one partition per table degenerates to RR. Due to legal reasons,

throughput results are normalized to undisclosed constants c1 and c2, corresponding to the

maximum observed throughput for TPC-H and BW-EML respectively. This does not hinder us

from comparing the impact of the different data placement and scheduling strategies on the

throughput. The results are shown in Figure 5.18.

0
0.2
0.4
0.6
0.8

1

RR PP
2

PP
4

PP
8

PP
16

Th
ro

ug
hp

ut
(c

1
·Q

ph
H)

0
0.2
0.4
0.6
0.8

1

RR PP
2

PP
4

PP
8

PP
16

Th
ro

ug
hp

ut
(c

2
·n

av
.s

te
ps

/h
)

Target
(stealing)
Bound (no
stealing)

TPC-H Q1 instances (SF = 100) SAP BW-EML (SF = 1 billion rows)

Figure 5.18 – TPC-H and SAP BW-EML with different PP granularities and scheduling strategies.

1 We refer the reader to an IBM redbook [53] for a more detailed introduction to BW-EML and sample statements.

101

Chapter 5. NUMA-Aware Task Scheduling and Data Placement Strategies

TPC-H is severely skewed, since Q1 queries one table. Increasing the number of partitions

improves performance as queries are gradually executed locally on more sockets. There is

minimal overhead from partitioning, since the workload is skewed, and the aggregations

of Q1 have few groups. Our internal profiling indicates that Q1 is not memory-intensive

(without a high memory throughput) as its execution is dominated by the multiplications of

its aggregations. Due to this, stealing is better than not stealing. Without stealing, increasing

the number of partitions results in utilizing more sockets, finally matching the throughput of

stealing.

BW-EML, in contrast, has simpler aggregation expressions and is more scan-intensive. For

this reason, not stealing is always better than stealing. Increasing the number of partitions up

to 4 improves the performance of not stealing, since the 3 InfoCubes are partitioned across 12

sockets. Further partitioning, however, is unnecessary and incurs an overhead.

5.6 Summary and Conclusions

In this chapter, we analyze NUMA-aware data placement and task scheduling strategies for

main-memory analytical workloads. For concurrent scans, we propose three alternative data

placement strategies: RR, IVP, PP. With respect to task scheduling, we differentiate between

allowing and not allowing inter-socket stealing of tasks. Our experimental analysis shows that

PP achieves the best performance and can battle skewness in the workload. It should not,

however, be abused on large-scale servers unnecessarily. Moreover, we show that stealing of

memory-intensive tasks should be disallowed, otherwise it can hurt overall performance.

We continue our analysis with additional NUMA-aware analytical operators: aggregations

and equi-joins. With respect to data placement, we compare RR and PP, and identify that

PP involves an overhead for aggregations and equi-joins mainly due to the need of remote

accesses and translating and matching vid across the dictionaries of the table parts. With

respect to task scheduling, we confirm once again that inter-socket stealing of memory-

intensive tasks should be disallowed.

To sum up, partitioning should be used for hot data when the workload is skewed in order to

balance utilization across sockets, and stealing should be disallowed for memory-intensive

tasks. In the next chapter, we use these implications to adapt the data placement and task

scheduling to the workload at run-time (see Chapter 6).

102

6 Adaptive NUMA-Aware Task Schedul-
ing and Data Placement

In this chapter, we build upon the implications of our analysis in the previous chapter to

propose a data placement and task scheduling strategy that adapts to the workload at run-time.

Our adaptive data placement algorithm tracks resource utilization, and when a utilization

imbalance across sockets is detected, the algorithm corrects the imbalance by moving or

physically repartitioning tables. Also, inter-socket task stealing is dynamically disabled for

memory-intensive tasks that could otherwise hurt performance.

Publications. Parts of this chapter have been published in [163].

6.1 Introduction

In order to balance utilization across sockets, state-of-the-art systems [103, 117] partition data

across sockets and employ task scheduling with inter-socket task stealing. In the previous

chapter, our analysis showed that unnecessary partitioning can incur an overhead and that

stealing memory-intensive tasks can hurt overall performance, depending on the workload.

In this chapter, we use the implications of our analysis and adapt data placement and task

scheduling to the workload at run-time, with the aim to balance resource utilization across

sockets. We target highly concurrent workloads dominated by scans, aggregations, or equi-

joins working on a single table or table group (see Section 2.4.2).

Our proposed design relies on tracking the history of CPU and memory bandwidth utilization

at three levels (see Section 6.2): (a) tasks, (b) partitions of tables and table groups, and (c)

sockets. When the execution engine detects a utilization imbalance across sockets, it either

moves or repartitions tables in order to fix the imbalance (see Section 6.3). Moreover, it also

finds cold partitioned tables to consolidate and disallows inter-socket stealing of memory-

intensive tasks that would hurt performance (see Section 6.4).

Figure 6.1 shows a conceptual example of the most significant aspects of our adaptive tech-

niques. The server has four fully interconnected sockets. The workload consists of numerous

103

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

CP
U

lo
ad

Time

Socket 1

TBL1

TBL2 CP
U

lo
ad

Time

Socket 2
TBL3

CP
U

lo
ad

Time

Socket 3

TBL4
(part 1) CP

U
lo

ad

Time

Socket 4

TBL4
(part 2)

CP
U

lo
ad

Time

Socket 1
TBL1

TBL2

CP
U

lo
ad

Time

Socket 2
TBL3

(part 1)

CP
U

lo
ad

Time

Socket 3

TBL4 CP
U

lo
ad

Time

Socket 4
TBL3

(part 2)

Initially Finally

Figure 6.1 – A conceptual example of our adaptive data placement.

concurrent memory-intensive scans on three tables which are initially placed on two of the

server’s sockets. Task stealing is disallowed due to the memory intensity of the scans. Two of

the sockets are fully utilized, and their memory bandwidth is saturated, while the remaining

two sockets are idle. Our adaptive data placement detects the utilization imbalance, and takes

actions to fix it. It moves table TBL2 to socket 3, partitions TBL3 across sockets 2 and 4, and

finally merges the unutilized parts of T BL4. The final data placement is shown on the right-

hand side of Figure 6.1. Socket utilization becomes balanced. The total memory throughput is

2x higher than initially, improving the workload’s throughput by 2x (see Section 6.5.1).

Contributions. In this chapter, we present adaptive NUMA-aware techniques for main-

memory column-stores. We adapt data placement and inter-socket task stealing to workloads

dominated by operators working on a single table or table group (copartitioned tables), at

run-time. Our implementation and experiments are based on our prototype of SAP HANA.

Our contributions are the following:

• We present an adaptive data placement strategy that can improve throughput by up to

2x in comparison to partitioning tables across all sockets. Our adaptive strategy moves

and repartitions tables at run-time in order to balance the utilization across sockets.

• We adapt inter-socket task stealing to the memory intensity of tasks, improving through-

put by 1.1x-4x in comparison to always allowing stealing.

• To adapt data placement and task stealing, we need to know the system’s utilization. We

present a design that tracks the utilization history at the levels of (a) tasks, (b) partitions

of tables and table groups, and (b) sockets.

Outline. Section 6.2 shows how we track the utilization at the level of tasks, table or table group

parts, and sockets. Section 6.3 details our adaptive data placement. Section 6.4 describes how

we adapt inter-socket task stealing to the memory intensity of tasks. Section 6.5 includes our

experimental evaluation. Section 6.6 presents the conclusions of this chapter.

104

6.2. Tracking Resource Utilization

6.2 Tracking Resource Utilization

We track resource utilization (CPU load and memory throughput) across three levels: (a) tasks,

(b) table parts (TBP) and table group parts (TGP), and (c) sockets. Figure 6.2 depicts our

monitoring infrastructure with an example of concurrent low-selectivity scans dominated by

the scan’s memory-intensive first phase that scans the indexvector (IV).

Task classes. We organize tasks into classes that have similar functionality and memory

throughput. We use a different class for the tasks of the first phase of a scan (IV scan), for the

tasks of the second phase of a scan (materialization), for the aggregation tasks that interchange

between the two aggregation phases, and for every step of a join (see Chapter 5). For each

class, we track the observed memory throughput with a single exponential moving average.

Tasks in the same class should have similar memory throughput. We assume that classes

are defined manually, as we do for our NUMA-aware operators. One can further specialize

classes, e.g., by the involved predicates. As we show in Section 6.4, an aggregation’s memory

throughput can vary depending on the predicate’s complexity. In our experiments in Section

6.5, we use rather typical predicates and the defined task classes can sufficiently capture the

memory intensity of our NUMA-aware operators’ different phases.

Scheduling. When a task is scheduled on its intended socket, where its associated TBP is

placed, we aggregate its utilization on the level of the TBP and the socket. We atomically add

the average memory throughput of the task’s class to the memory throughput consumed by

the TBP. We also atomically increment the CPU load (number of threads) utilized by the TBP

and the socket. When the task either finishes or blocks in a synchronization primitive, we

atomically subtract the memory TP we previously added and decrement the CPU load. With

this method, we can keep track of the current local CPU load and the estimated local memory

throughput of TBP and sockets. We ignore on purpose stolen tasks. The utilization of sockets

that steal appear non-saturated in our metrics, as stealing is a temporary solution to balance

CPU load until our adaptive data placement algorithm (see Section 6.3) fixes the imbalance of

local utilization. In the example of Figure 6.2, we depict how the average memory TP of a task

class is used when scheduling tasks to aggregate the utilization at the level of TBP and sockets.

Measuring memory throughput. A task class is needed to assign an estimated memory TP

to a task when it is about to run. After the task ends, we calculate its consumed memory TP,

and push back the value to the exponential moving average of its class with a low weight:

classAverage = 0.9∗classAverage+0.1∗newValue. In our prototype of SAP HANA, we calculate

memory TP through H/W counters (integrating the Intel PCM tool [196]), and considered

only for non-stolen tasks that have not blocked or moved to another core during execu-

tion. The formula is: memoryTP = ((localLLCend − localLLCstart)∗ 64)/(timestampUSend −
timestampUSstart). This calculates the accessed bytes by associating every local LLC miss with

a cache line (64 bytes) retrieval. Dividing by the task’s duration, gives the average memory TP

105

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

in MB/s. We ignore on purpose remote LLC, since we do not wish to track remote memory

throughput in the task classes.

We note that the hardware counters of the Intel architecture codename Haswell do not capture

LLC misses caused by the prefetcher [18]. However, we can still compare the relative memory

throughput between task classes for supporting our adaptive task stealing (see Section 6.4).

We note that this problem does not exist on the Intel architecture codename Ivybridge, which

most of our experiments run on. Also, recent and upcoming Intel architectures, such as

codename Broadwell and Skylake, support hardware counters that can capture the local

memory throughput of a core [18, 196], and can be used in place of our formula.

Socket 1

...

2.3 GB/s

2.3 GB/s

15x IV scans
for Table 1

Time

M
em

.T
P

70
GB/s

Socket

Time

CP
U

30

Time

M
em

.T
P 35

GB/s

Table 1

Time

CP
U 15

Time

M
em

.T
P 35

GB/s

Table 2

Time

CP
U 15

...

2.3 GB/s

2.3 GB/s

RUH RUH RUH

15x IV scans
for Table 2

Task classes
(exp. avg. of

mem. TP)

TBP and TGP SocketsTasks

2.3 GB/s
Scan IV

0.4 GB/s
Scan mat.

0.6 GB/s
Aggreg.

Figure 6.2 – Tracking the resource utilization of tasks, TBP and TGP, and sockets. The values
are taken from instances of our experiments on our 4-socket server.

Table group parts (TGP). If a table group (TG) is defined for a group of copartitioned tables,

tasks do not aggregate their utilization at the level of TBP, but at the level of table group parts

(TGP). For example, if the tables are partitioned with three TBP each, then we keep three TGP.

Each one of the TGP tracks the aggregated utilization of the corresponding TBP of the tables.

We note that we place the TBP of a TGP on the same socket, thus a TGP is associated with a

single socket. If a table of the TG does not have a partitioning specification, it is considered as

a single TBP and placed on the first TGP.

Resource utilization histories (RUH). Every TBP, TGP, and socket, has a RUH that keeps track

of the memory throughput consumed and the number of threads used. The components of a

RUH are shown in Figure 6.3. It contains the number of memory pages occupied by the TBP

or TGP or socket, a pointer to the owner TBP or TGP or socket, the socket where the owner

is placed, and two history objects that capture the recent utilization for memory throughput

() and threads (). Especially for the pages of a TGP, we do not sum the pages of its

TBP, but keep the maximum pages of any of its TBP. This is because we later use the pages to

estimate the moving or partitioning time, and we can move/partition a TG’s TBP in parallel.

106

6.2. Tracking Resource Utilization

Resource Utilization
History (RUH)

pages: uint32_t
socket: int16_t
owner: TablePart*
 or TableGroupPart*
 or Socket*
memh: History //MB/s
cpuh: History //threads

History
value: uint64_t // atomically updated
ravg: double // recent average
samples: list<pair<uint64_t,uint64_t>>
entries: uint16_t
lock: ReadWriteLock
sample(): void // by refresher thread
avg(uint64_t us): double
reset(): void

Socket TablePart TableGroupPart

Figure 6.3 – Each table part (TBP), table group part (TGP), and socket is associated with a
resource utilization history (RUH).

A History object contains the absolute value that, as explained before, is atomically incre-

mented by a task when it is scheduled and decremented when it blocks or is de-scheduled.

The absolute value is periodically sampled into a list of pairs of timestamps and values. We

maintain one background refresher thread per socket, that periodically calls on the

histories of its socket and of a subset of all TBP and TGP. The method appends a

pair with the current timestamp and value to the back of the samples list, and increments the

entries. If the entries grow over a specified limit, it deletes the pair at the front of the list. In our

current implementation, a refresher thread runs every 100 ms, and the limit of the samples list

is set to 3000 entries, which means that it can reach up to around 47 KB, holding samples for

roughly the last 5 minutes.

We note that tasks atomically modify the absolute values of the RUH of TBP or TGP only. A

socket’s absolute values are periodically calculated by the corresponding refresher thread by

aggregating the absolute values of all TBP and TGP placed on the socket. This is to avoid

numerous atomic operations at the level of a socket, since many TBP and TGP can be placed

on it, and because we use a socket’s utilization mostly for monitoring purposes. The adaptive

data placement algorithm of Section 6.3 calculates the sockets’ utilization by aggregating

the utilization of TBP and TGP, in order to work on a single “snapshot” of how the sockets’

utilization is composed by the involved TBP and TGP.

The adaptive data placement algorithm makes heavy usage of the func-

tion of the RUH, which iterates the sample list to find the first entry that is not older than the

given microseconds, and starts averaging the entries up to the last entry (each entry is given

a weight equal to the microseconds passed since the previous entry), finally returning the

average utilization. If the given microseconds would require an entry older than the first entry

of the samples list, we assume that the value of the utilization during that period is equal to

the value of the first (oldest) entry.

Due to synchronization issues with the refresher threads, a read-write lock is used by both

the refresher threads (which write) and the adaptive data placement algorithm (which reads).

107

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

There are minimal synchronization issues due to the periodicity of the threads, and the fact

that every refresher thread processes a different socket and a different subset of TBP and TGP.

Finally, we also keep a shortcut average value for the last microseconds that correspond to the

period with which the adaptive data placement algorithm runs. At the end of every

call, the recent average () is updated by calling with the period of the adaptive

data placement algorithm. The algorithm can use this value immediately, without having to

calculate it with . This is a simple performance enhancement.

6.3 Adaptive Data Placement

First, we describe the abstract workflow of our adaptive data placement algorithm. Then we

gradually delve into algorithmic details.

6.3.1 Abstract Workflow

Our adaptive data placement’s main component is the Data Placer (DP) background thread.

Figure 6.4 shows its workflow. The first time tables are loaded into memory, they can be placed

across sockets in a round-robin manner. DP runs periodically to monitor the workload and

automatically takes care to either move or repartition tables to fix a utilization imbalance.

DP focuses on balancing CPU utilization, under the constraint of not creating a memory

bandwidth bottleneck. We remind that we refer to local-only utilization as tracked in Section

6.2. We balance the utilization between sockets with saturated CPU resources and colder

Data Placer (DP)Place TBP/TGP on sockets (e.g., round-robin)

Wait period Find active RUH per socket, and calculate
their eligibility for moving and partitioning

Calculate sock-
ets’ utilization

Calculate CPU imbal-
ance between sockets

Sort
pairs

Sort RUH
per socket

Merge a cold partitioned table/TG and move to coldest socket

Iterate
pairs

Iterate
hot RUH

Calculate utilization of new
placement for eligible RUH

Execute
placement

Reduces
imbalance?

Imbalance? Saturated?

Outlined steps repeated
first for moving and then

for partitioning RUH
Mem. TP

constraint?

Continue

Finished

Yes
No

Yes
No Finished

Continue

Yes
OK

No

Not
OK

Figure 6.4 – Abstract workflow of the Data Placer (DP).

108

6.3. Adaptive Data Placement

sockets, by moving or partitioning tables. This strategy allows tables that were previously on

saturated sockets to potentially increase their utilization using free worker threads on colder

sockets (due to intra-query parallelism), increasing the total system utilization.

At every period, DP gets a snapshot of the active RUH (of TBP and TGP) and their recent

utilization. It then calculates their eligibility for moving and partitioning, depending on

whether their past utilization has been stable. Then, DP sorts the RUH within each socket by

their recent utilization in descending order, aggregating them as well to calculate the recent

utilization of the sockets. Afterwards, DP calculates the CPU utilization imbalance between all

pairs of sockets, and sorts the pairs.

For every pair of sockets, DP investigates whether a new placement can reduce the imbalance.

DP proceeds only if the imbalance is over a threshold, and if the hot socket is saturated. If the

hot socket is not saturated, the TBP and TGP cannot increase their utilization by exploiting

free worker threads on the cold socket. DP iterates the RUH of the hot socket, and examines

whether moving or partitioning an eligible RUH’s owner (the corresponding TBP or TGP)

reduces the imbalance. If additionally it does not create a memory bandwidth bottleneck, DP

proceeds to move or partition the RUH’s owner.

The outlined steps in Figure 6.4 are first executed while considering moving an eligible RUH’s

owner. If none can be moved across all socket pairs, we repeat the steps considering partition-

ing an eligible RUH’s owner. This ensures we first prefer moving over partitioning, to avoid

any unnecessary overhead of partitioning (see Section 5.5.1).

In case DP did not move or partition a RUH’s owner, it goes on to see if there are any cold par-

titioned tables to merge. This optional step can give the opportunity to cold tables previously

partitioned to not suffer the partitioning overhead in case they are again utilized in the future

(see Section 6.5.3 for a relevant experiment).

Table 6.1 – Configurable parameters used in our algorithms.

Symbol Description Our value
cp Period of the Data Placer (DP) algorithm 1 second
ce

Eligibility threshold for the divergence between
the past and recent utilization of a RUH 30%

ci
Acceptable imbalance threshold between the

utilization of a pair of sockets
40% of

socket cores

cs
Lower threshold for considering a socket’s

utilization saturated
70% of

socket cores

Next, we detail how the eligibility of RUH is calculated (see Section 6.3.2), how we reduce

the utilization imbalance by moving or partitioning (see Section 6.3.3), and finally how all

pieces are put together in DP’s algorithm (see Section 6.3.4). The parameters used in our

algorithms are summarized in Table 6.1. The values shown are used for our experiments. They

are not absolute and can be modified to fit other systems, implementations and use cases.

We assume that sockets have the same number of H/W threads and maximum memory TP.

109

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

This is a standard assumption for NUMA servers, as processors are typically the same, and

administrators are advised to keep sockets balanced (same number and type of DIMM).

6.3.2 Information and Eligibility of RUH

At every period, DP finds the RUH of all TBP and TGP, takes a snapshot of their recent utilization

and calculates their eligibility to be moved or partitioned. For every RUH, this information

is stored in an InfoRUH object, which is defined in Algorithm 1, and calculated through the

function .

The algorithm first stores the recent CPU and memory throughput utilization of the RUH (lines

2-3). The RUH is deemed active if its utilization is non-zero (line 4). DP continues to calculate

the eligibility of the RUH for moving or partitioning. A RUH is deemed eligible if its average

utilization in the past does not diverge much from its recent utilization. The amount of time

we look into the past depends on the implementation of the move or partition operation.

Algorithm 1 Calculate information and eligibility of a RUH

struct InfoRUH:
RUH; // pointer to corresponding RUH object
recentCpu; // recent CPU utilization
recentMem; // recent memory throughput utilization
isActive; // whether the recent utilization is non-zero
canMove; // eligible for moving
canPartition; // eligible for partitioning

1: function CALCULATEINFORUH(corresponding RUH)
2: recentCpu ← RUH.cpuh.ravg
3: recentMem ← RUH.memh.ravg
4: isActive ← (recentCpu > 0 and recentMem > 0)
5: usMove ← (RUH.pages * speed of moving) * 2
6: pastCpu ← RUH.CPUH.AVG(usMove)
7: pastMem ← RUH.MEMH.AVG(usMove)
8: canMove ← (| recentCpu - pastCpu | < ce * recentCpu) and

(| recentMem - pastMem | < ce * recentMem)
9: canPartition ← canMove and 2 * current partitions ≤ sockets

10: if canPartition then
11: usPartition ← usMove + (RUH.pages * speed of partitioning)
12: pastCpu ← RUH.CPUH.AVG(usPartition)
13: pastMem ← RUH.MEMH.AVG(usPartition)
14: canPartition ← (| recentCpu - pastCpu | < ce * recentCpu) and

(| recentMem - pastMem | < ce * recentMem)

For the time to look into the past in the case of moving, we first calculate the time required to

move the RUH’s owner (line 5), by multiplying its pages with the speed of moving (microsec-

onds per page). The speed of moving and partitioning are calculated at start-up by moving

or partitioning a simple mock-up table to another socket, without a concurrent workload.

See Table 6.2 for the speeds of the servers we use in our experiments. The speeds are rough

estimates. One can improve accuracy by specializing the speeds by socket, or the concurrent

110

6.3. Adaptive Data Placement

workload, or a table’s characteristics such as the number of columns, data types, etc. However,

we do not need to be precise, since the aim of our eligibility calculations is to disallow instant

actions by DP and not delaying them for long.

In our current implementation, queries need to wait while a TBP is moved. We use SAP HANA’s

functionality to unload a TBP from memory and reload it on the desired socket. We do not use

use Linux’s , because it can mess up the statistics of SAP HANA’s NUMA-aware

memory allocators [191]. Due to queries waiting during the move, we double the time to look

into the past (line 5). This is optional and simply prolongs the amount of time to look into

the past. Conceptually, the additional time corresponds to the time required to “recover” the

utilization which drops to zero during the move. We then calculate the average past utilization

of both CPU and memory TP (lines 6-7). The RUH is eligible for moving if the past utilization

is within a threshold of the recent utilization (line 8).

The algorithm then continues similarly for calculating the eligibility of partitioning (lines 9-14).

There are three differences. First, we require that the RUH is also eligible for moving (line 9).

This is to enforce the preference of DP to having first considered moving the RUH’s owner

before considering partitioning it. Second, the amount of time to look into the past consists

of partitioning plus the time required to move the new partitions to the correct sockets (line

11). We use SAP HANA’s partitioning commands, which, contrary to the implementation of

moving, creates the partitions in the background and allows queries [8]. Third, we limit the

number of new partitions to the number of sockets to avoid excessive partitioning (line 9).

We note that when we partition a TBP or TGP, we partition the corresponding table or TG into

double their previous number of partitions. The reasons why we double the partitions are

two. First, partitioning is more time-consuming than moving. Since we decide to partition, we

can immediately have double number of partitions and give the algorithm more parts that

can potentially be moved later. Second, repartitioning with a number of partitions that is a

multiple of the previous number of partitions is fast since each existing partition can be split

separately and concurrently [8].

As an illustrative example, Figure 6.5 depicts two RUH, one that is eligible for partitioning,

and one that is not. Both RUH have similar recent utilizations. The utilization of the first one,

however, is not stable in the past, and is thus ineligible for partitioning yet.

Our adaptive techniques consider the average past utilization to estimate the upcoming

utilization and balance it across sockets. The eligibility criteria ensure that the past utilization

has been stable. We note that it is possible to extend the prediction of the upcoming utilization

by using more sophisticated forecasting techniques [46], which can potentially allow for a

more diverse set of eligible workloads.

111

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

now

>ce

futurepast

recent
past

Ut
ili

z-
at

io
n

usPartition

now futurepast

usPartition

Ut
ili

za
tio

n

(a) ineligible RUH (b) eligible RUH

pa
rt

iti
on

m
ov

e

re
co

ve
r

pa
rt

iti
on

m
ov

e

re
co

ve
r

Figure 6.5 – Conceptual examples of calculating the partitioning eligibility of (a) an ineligible
RUH, and (b) an eligible RUH.

6.3.3 Reducing the Utilization Imbalance

The purpose of balancing the CPU utilization between sockets is to allow tables to increase

their utilization by exploiting free threads on cold sockets when moved or partitioned out of

saturated sockets. When considering moving or partitioning a tables, however, we assume the

worst case that it does not increase its utilization. This allows us to be on the safe side when

calculating the new utilization imbalance, and truly decrease it with every move or partition.

Let us denote the utilization imbalance between two sockets at some timestamp tn as i mb(tn).

If our algorithm does nothing, the imbalance stays the same. If our algorithm moves or

partitions a RUH’s owner, the imbalance decreases: i mb(tn+1) ≤ i mb(tn). The sequence

i mb(tn) is monotonically decreasing with a lower bound of 0. According to the monotone

convergence theorem, the sequence will converge. In our case, since we limit partitioning to

a number of partitions capped by the number of sockets, the imbalance may converge to a

non-zero value. Also, we set a lower threshold for the imbalance (see Table 6.1), below which

DP does nothing. We note that even if tables increase their utilization after the new placement,

the resulting imbalance cannot exceed the previous one (see proof after Algorithm 2).

The algorithm for reducing the utilization imbalance of a pair of sockets is presented in

Algorithm 2. As mentioned, DP at every period calculates a snapshot of the recent utilization

of the system’s RUH by creating InfoRUH objects. It also aggregates the utilization of every

InfoRUH to calculate the snapshot of the recent utilization of every socket. For every socket,

this information is stored in an InfoSocket object, which is defined in Algorithm 2 as well.

Function receives two InfoSocket objects and a strategy (move or partition).

First, it discerns which socket is the hotter one and which is the colder one (lines 2-3). It then

gets the cores and maximum memory throughput of a socket (lines 4-5). These are calculated

once on a server (see Section 6.5 and Table 6.2). The current imbalance is calculated (line 6).

If the hot socket’s utilization is over our saturation threshold and the imbalance is over our

threshold (see Table 6.1), the function proceeds (line 7). It iterates the RUH of the hot socket

(line 8), and examines whether the utilization imbalance can be reduced by either moving

112

6.3. Adaptive Data Placement

Algorithm 2 Reduce the utilization imbalance between two sockets

struct InfoSocket:
recentCpu; // recent CPU utilization
recentMem; // recent memory throughput utilization
infoRUH[]; // InfoRUH of TBP and TGP placed on the socket

1: function REDUCEIMBALANCE(InfoSocket S1, InfoSocket S2, strategy)
2: S1 ← hotter socket of the two, according to recentCpu
3: S2 ← colder socket of the two, according to recentCpu
4: maxCpu ← H/W threads of a socket
5: maxMem ← Maximum memory throughput of a socket
6: imb ← S1.recentCpu - S2.recentCpu
7: if S1.recentCpu > cs * maxCpu and imb > ci * maxCpu then
8: for all S1.infoRUH do
9: if strategy = move and infoRUH.canMove then

10: S1’cpu ← S1.recentCpu - infoRUH.recentCpu
11: S2’cpu ← min(S2.recentCpu + infoRUH.recentCpu, maxCpu)
12: imb’ ← | S1’cpu - S2’cpu |
13: S2’mem ← S2.recentMem + infoRUH.recentMem
14: if imb’ < imb and S2’mem ≤ maxMem then
15: Move TBP or TGP to S2
16: return true
17: else if strategy = partition and infoRUH.canPartition then
18: S2freeCpu ← maxCpu - S2.recentCpu
19: halfRUH ← min(infoRUH.recentCpu / 2, S2freeCpu)
20: S1’cpu ← S1.recentCpu - infoRUH.recentCpu + halfRUH
21: S2’cpu ← S2.recentCpu + halfRUH
22: imb’ ← | S1’cpu - S2’cpu |
23: S2’mem ← S2.recentMem + (infoRUH.recentMem / 2)
24: if imb’ < imb and S2’mem ≤ maxMem then
25: Partition table or TG into 2 · current partitions, and move all new partitions to

their original sockets, apart from one partition of S1 which is moved to S2
26: return true
27: return false

(lines 9-16) or partitioning an eligible RUH’s owner (lines 17-26). Conceptual examples of the

calculations are shown in Figure 6.6.

In case of moving, the sockets’ new CPU utilization is calculated (lines 10-11). For the cold

socket, we cap the CPU utilization by the socket’s cores (line 11). The new CPU imbalance is

calculated (line 12). The new memory bandwidth of the cold socket is calculated (line 13),

without capping it. If the new CPU imbalance is less than the original, and we do not create a

memory bandwidth bottleneck on the cold socket (line 14), we move the TBP or TGP to the

cold socket (line 15), and return true (line 16). All TBP of a TGP are moved concurrently.

In case of partitioning, we calculate the cold socket’s free threads (line 18). Each new partition’s

CPU utilization is half of the original utilization, capped by the cold socket’s free threads (line

19). Then, we calculate the sockets’ new CPU utilization (lines 20-21) and imbalance (line 22).

The cold socket’s new memory bandwidth is calculated (line 23), without capping it. If the

113

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

im
b

Shot
c

m

Scold

im
b'

S’hot S’cold

c
m

(a) moving a RUH’s owner (b) partitioning a RUH’s owner

im
b

Shot

c
m

Scold

im
b'

S’hot S’cold

c/
2

c/
2

m
/2 m

/2

Legend: Investigated RUH (c=Threads m=Mem. TP) FreeOther RUH

Figure 6.6 – Calculating the utilization imbalance of a pair of sockets before and after (a)
moving, and (b) partitioning.

new CPU imbalance is less than the original, and we do not create a new memory bandwidth

bottleneck on the cold socket (line 24), we partition the RUH’s owner (line 25), and return true

(line 26). We note that we partition all tables of a TG concurrently. After partitioning, we move

concurrently all new TBP or TGP to their original sockets, apart from one of the hot socket

which is moved to the cold socket.

Proof of imbalance reduction even when the utilization of RUH increase

From here until the end of this Section, we prove that for a stable workload, even if RUHs’

owners increase their utilization after the new placement, the resulting imbalance cannot

exceed the previous one. When the hotter socket is saturated, the RUHs’ owners that were

there may have not been at their maximum utilization. They may be able to utilize more

free worker threads due to intra-query parallelism. As soon as a RUH’s owner is moved or

partitioned, the utilization of either the RUH’s owner or the other RUHs’ owners in the hotter

socket can increase. Next, we prove that even if the utilization of RUHs’ owners increases,

the resulting imbalance is still less than the original imbalance before moving or partitioning,

keeping the monotonic decrease of the imbalance and its convergence.

Moving a RUH’s owner without increasing utilization. Figure 6.7a shows what Algorithm 2

calculates, by considering that the utilization of RUHs’ owners does not increase. Using the

figure’s variables, the original and the resulting imbalance is:

i mb1 = r uh +usedh −usedc

i mb2 = | (r uh +usedc)−usedh |

If (r uh +usedc) > usedh , then the RUH’s owner is moved if

i mb2 < i mb1 ⇔ r uh +usedc −usedh < r uh +usedh −usedc ⇔ usedc < usedh

114

6.3. Adaptive Data Placement

Legend: RUH’s threads

(a) without increase

Free threads Other RUHs’ threads

(b) with increase

Ho
tt

er
so

ck
et

Co
ld

er
so

ck
et

ru
h

us
ed

h

us
ed

c

us
ed

h

ru
h

us
ed

c

ru
h

us
ed

h

us
ed

c

us
ed

' h

ru
h'

us
ed

c

im
b 1 im

b 2

im
b 1

im
b 2

Figure 6.7 – Calculating the imbalance considering (a) that the utilization of RUHs’ owner does
not increase, and (b) that it actually increases after moving a RUH’s owner.

If (r uh +usedc) < usedh ⇔ r uh < usedh −usedc , then the RUH’s owner is moved if

i mb2 < i mb1 ⇔ usedh − r uh −usedc < r uh +usedh −usedc ⇔ 0 < r uh

This means that 0 < r uh < usedh −usedc ⇒ usedc < usedh also in this case. Thus, our

algorithm moves the RUH’s owner if usedh > usedc , irrespective of the RUH’s utilization.

Moving a RUH’s owner with increasing utilization. Figure 6.7b shows the case when the

utilization of RUH may increase after the algorithm decides to move a RUH’s owner. A require-

ment is that the hotter socket needs to be saturated, so that the RUH on the hotter socket can

increase their utilization. After moving the RUH’s owner to the colder socket, both the moved

RUH’s owner and the RUHs’ owners on the hotter socket may have increased utilization.

The requirements in this case are: (a) usedc < usedh , which needs to apply, as we showed

before, for the algorithm to move the RUH’s owner, (b) r uh′ ≥ r uh, and (c) used ′
h ≥ usedh .

The resulting imbalance is:

i mb2 = | (r uh′ +usedc)−used ′
h |

If (r uh′ +usedc) > used ′
h , then we need to prove that

i mb2 < i mb1 ⇔ r uh′ +usedc −used ′
h ≤ r uh +usedh −usedc

⇔ r uh′ − r uh ≤ usedh −usedc + (used ′
h −usedc)

⇐ r uh′ − r uh ≤ usedh −usedc

Which is always true, since the moved RUH’s owner can maximally increase its utilization by

usedh −usedc (see Figure 6.7b).

115

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

If (r uh′ +usedc) < used ′
h , then we need to prove that

i mb2 < i mb1 ⇔ used ′
h − r uh′ −usedc ≤ r uh +usedh −usedc

⇔ used ′
h − r uh′ ≤ r uh +usedh

⇔ used ′
h − r uh′ ≤ socket’s H/W threads

Which is always true, since both quantities can maximally increase their utilization to a socket’s

H/W threads. Thus, we proved for the case of moving that even if the utilization of the RUHs’

owners increases, the resulting imbalance is equal or less than the original imbalance.

Partitioning a RUH’s owner without increasing utilization. Figure 6.8a shows what Algo-

rithm 2 calculates, by considering that the utilization of RUHs’ owners does not increase. We

assume that with hash (or round-robin) partitioning, both new partitions will have the same

utilization. The original and the resulting imbalance is:

i mb1 = r uh +usedh −usedc

i mb2 = | (usedh + (r uh/2))− (usedc + (r uh/2)) |

If usedh +(r uh/2) > usedc +(r uh/2) ⇔ usedh > usedc , then the RUH’s owner is partitioned if

i mb2 < i mb1 ⇔ (usedh + (r uh/2))− (usedc + (r uh/2))

< r uh +usedh −usedc ⇔ 0 < r uh

If usedh +(r uh/2) < usedc +(r uh/2) ⇔ usedh < usedc , then the RUH’s owner is partitioned if

i mb2 < i mb1 ⇔ (usedc + (r uh/2))− (usedh + (r uh/2)) < r uh +usedh −usedc

⇔ usedc −usedh < (r uh/2)

Legend: RUH’s threads

(a) without increase

Free threads Other RUHs’ threads

(b) with increase

Ho
tt

er
so

ck
et

Co
ld

er
so

ck
et

ru
h

us
ed

h

us
ed

c

us
ed

h

us
ed

c

ru
h

us
ed

h

us
ed

c

us
ed

' h

ru
h'

us
ed

c

im
b 1

im
b 2

im
b 1

im
b 2

1/2
ruh

1/2
ruh ru

h'

Figure 6.8 – Calculating the imbalance considering (a) that the utilization of RUHs’ owners
does not increase, and (b) that it actually increases after partitioning a RUH’s owner.

116

6.3. Adaptive Data Placement

Thus, our algorithm partitions a RUH’s owner if usedh > usedc , but if usedh < usedc it

partitions only if usedc −usedh < (r uh/2).

Partitioning a table part with increasing utilization. Figure 6.8b shows the case when the

utilization of the RUHs’ owners may increase after the algorithm partitions a RUH’s owner.

Similarly to the moving case, the requirement is that the hotter socket needs to be saturated,

so that the RUHs’ owners on the hotter socket can increase their utilization. After partitioning,

both the partitioned RUH’s owner and the RUHs’ owners on the hotter socket may have

increased utilization. The requirements are that (a) r uh′ ≥ r uh, and (b) used ′
h ≥ usedh .

Let us first examine the case when usedh > usedc . As shown before, in this case our algorithm

always partitions the RUH’s owner. The resulting imbalance is:

i mb2 = | (used ′
h + r uh′)− (usedc + r uh′) | = | used ′

h −usedc |

Since we know that used ′
h ≥ usedh > usedc , the imbalance is:

i mb2 = used ′
h −usedc

We need to prove that

i mb2 < i mb1 ⇔ used ′
h −usedc ≤ r uh +usedh −usedc

⇔ used ′
h ≤ r uh +usedh

⇔ used ′
h ≤ socket’s H/W threads

Which is always true. Let us now examine the case when usedh < usedc . The additional

requirement is that usedc −usedh < (r uh/2), which, as shown before, needs to apply for the

algorithm to partition the RUH’s owner. The resulting imbalance is:

i mb2 = | used ′
h −usedc |

If usedc > used ′
h , then we need to prove that

i mb2 < i mb1 ⇔ usedc −used ′
h ≤ r uh +usedh −usedc

⇔ 2 ·usedc −used ′
h −usedh ≤ r uh

⇐ 2 ·usedc −usedh −usedh ≤ r uh

⇔ usedc −usedh ≤ (r uh/2)

Which is true as one of the requirements. Finally, in the case that usedc < used ′
h , then we

117

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

need to prove that

i mb2 < i mb1 ⇔ used ′
h −usedc ≤ r uh +usedh −usedc

⇔ used ′
h ≤ r uh +usedh

⇔ used ′
h ≤ socket’s H/W threads

Which is always true, as used ′
h can maximally increase its utilization to the socket’s cores.

Thus, we proved for the case of partitioning that even if the utilization of the RUHs’ owners

increases, the resulting imbalance is equal or less than the original imbalance.

6.3.4 Data Placer

Our final Algorithm 3 implements the data placer (DP). After waiting for a period (line 2), DP

goes through all TBP and TGP (line 3). For every one, it calculates its InfoRUH (line 5), and if it

is active, DP adds it to the appropriate InfoSocket, aggregating its recent utilization as well to

the socket (line 7). At this point, we have a snapshot of the recent utilization in the past period.

DP then sorts the RUH of every socket by their recent CPU utilization in descending order

(line 8). This makes intensely used RUH to be considered first for moving or partitioning.

Algorithm 3 Data Placer

1: while true do
2: wait cp

3: InfoSocket[] ← initialize an InfoSocket object for every socket
4: for all loaded TBP and TGP do
5: InfoRUH ← CALCULATEINFORUH(RUH)
6: if InfoRUH.isActive then
7: Add and aggregate InfoRUH to the appropriate InfoSocket

8: Sort the InfoRUH in every InfoSocket by their recentCpu
9: list<tuple<InfoSocket, InfoSocket, imbalance>> ← empty list

10: for all pairs of InfoSocket do
11: Add new tuple(S1, S2, | S1.recentCpu - S2.recentCpu |) to list

12: Sort list by imbalance
13: for all pairs of InfoSocket in the sorted list do
14: if REDUCEIMBALANCE(S1, S2, move) then
15: goto line 2

16: for all pairs of InfoSocket in the sorted list do
17: if REDUCEIMBALANCE(S1, S2, partition) then
18: goto line 2

19: for all partitioned tables and TG in the catalog do
20: pages ← sum pages of all RUH of table or TG
21: usMove ← (pages * speed of moving) * 2
22: usPartition ← usMove + (pages * speed of partitioning)
23: if all RUH have 0 average utilization during last usPartition then
24: Merge and move to the coldest socket in the background

118

6.4. Adaptive Task Stealing

DP then calculates the imbalance of every pair of sockets (lines 9-11). The pairs of sockets

are sorted by their imbalance (line 12), so that we first examine the pair with the greatest

imbalance. For all pairs (line 13), we try to reduce their imbalance by moving a RUH’s owner

(line 14). If nothing is moved, we try again to reduce their imbalance by partitioning a RUH’s

owner (lines 16-18). If DP moves or partitions a RUH’s owner, it goes back to waiting.

If DP does not move or partition a RUH’s owner, it attempts to merge cold partitioned data.

It iterates through all partitioned tables and TG in the system catalog (line 19). DP checks

whether a table or TG is cold by looking into its past utilization. The amount of time to look

into the past is calculated (lines 20-22) as in Algorithm 1 for the case of partitioning, with the

difference of summing the pages of all RUH (since merging creates a single partition). If the

average past CPU and memory TP utilization of all RUH is zero (line 23), a background request

is initiated (line 24) which merges the table, or all involved tables in case of a TG, and moves it

to the coldest socket. We use a internally to keep track of tables or TG undergoing merging

in order to consider them ineligible for moving or partitioning until their merging completes.

Finally, we note that DP balances primarily the CPU utilization under the constraint of not

creating memory bandwidth bottlenecks. This is to allow newly placed data to potentially

increase their utilization. Since we balance local-only CPU utilization, this can indirectly

balance memory TP as well as shown in many of our experiments in Section 6.5. As an

extension, one may wish DP to continue explicitly balancing memory TP after CPU utilization

is balanced, under the constraint of not increasing the CPU imbalance.

6.4 Adaptive Task Stealing

As we showed in Chapter 5, stealing memory-intensive tasks can hurt overall performance.

Here, we pinpoint the switching point when tasks become memory-intensive enough that

they should not be stolen across sockets. The switching point depends on the hardware, the

implementation, and the workload. For this reason, we propose a calibration experiment that

the DBMS can run once on a server to find the switching point. In order to fully control the

memory intensity of tasks, we avoid the SQL layer of the DBMS, and use immediately the task

scheduler on simple data structures.

Calibration experiment. We place four 4 GB vectors of randomly generated on each

of the half sockets of the server. Thus, half of the sockets can have local accesses, while the rest

will either steal remote tasks or stay idle. The workload consists of one client thread per vector.

Each client continuously issues a query that sums the elements of its corresponding vector.

We measure the total throughput (TP). The client parallelizes the query with a number of tasks

equal to the number of hardware threads in a socket. The tasks are given equi-sized ranges

of the vector to sum. The reason we use four vectors per socket, and one client thread per

vector, is to have enough tasks to saturate the local socket and more tasks that can potentially

be stolen by another socket (that does not have data).

119

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

In order to control the memory intensity (in terms of memory throughput) of the summation,

we raise each element of the vector to a varying power : sum = vn
1 + vn

2 + vn
3 ... We implement

each task’s summation using a for loop to raise its element to the desired power . As we

increase , we increase the time spent in the for loop, thus increasing the CPU intensity.

Figure 6.9 shows the results of the calibration experiment for the three servers we use in our

experiments (see Section 6.5). For all servers, disallowing stealing results in the best TP for

lower values of , since the summation is more memory-intensive. This is also shown by the

system’s memory TP, which almost saturates the memory bandwidth of half the sockets. It is

also shown by the average memory TP of the task class (tasks belong to a single class in this

experiment).

0

25

50

0 10 20 30TP
(x

10
2

q/
m

in
)

Power

8-socket Ivybridge-EX server

0
5

10
15
20
25

0 10 20 30Ta
sk

cla
ss

(x
10

2)

Power

0
25
50
75

100

0 10 20 30TP
(x

10
2

q/
m

in
)

Power

32-socket Haswell-EX server

0
5

10
15

0 10 20 30Ta
sk

cla
ss

(x
10

2)

Power

0
1
2
3

0 10 20 30M
em

.T
P

(x
10

2)

Power

0
2
4
6
8

0 10 20 30M
em

.T
P

(x
10

2)

Power

0
5

10
15
20

0 10 20 30TP
(x

10
2

q/
m

in
)

Power

4-socket Ivybridge-EX server

0
5

10
15
20
25

0 10 20 30Ta
sk

cla
ss

(x
10

2)

Power

w/ stealing w/o stealing adaptive

0

1

2

0 10 20 30M
em

.T
P

(x
10

2)

Power

Adaptive's task class threshold: 1200 MB/s

Adaptive's task class threshold: 550 MB/s

Adaptive's task class threshold: 230 MB/s

MB/s

MB/s

MB/s

GB/s

GB/s

GB/s

4x

0
20
40
60
80

100

0 10 20 30CP
U

lo
ad

(%
)

Power

0
20
40
60
80

100

0 10 20 30CP
U

lo
ad

(%
)

Power

0
20
40
60
80

100

0 10 20 30CP
U

lo
ad

(%
)

Power

Figure 6.9 – Calibration experiment for three NUMA servers.

We note that disallowing stealing only achieves a 50% CPU load, since half of the sockets

have data. But it is better for memory-intensive workloads than allowing stealing, achieving

up to 4x better TP (on the 32-socket server). Stealing has 100% CPU load, but saturates the

interconnect network and overwhelms the already saturated remote memory controllers. The

overwhelmed memory controllers achieve much lower overall memory TP (for both local and

remote tasks) than the case of disallowing stealing.

As increases, the workload becomes more CPU-intensive, and the memory TP of the system

and the task class finally starts decreasing. In terms of CPI (cycles per instruction), e.g., on the

4-socket server for the case when stealing is disabled, it starts at 0.83 and gradually increases

120

6.5. Experimental Evaluation

up to 1.25 (for = 30). At a switching point, stealing becomes better, and remote tasks can be

satisfied through the interconnects and the remote memory controllers sufficiently.

At the switching point, we mark the memory TP of the task class as the threshold for stealing

vs. not stealing. Our adaptive task stealing uses this threshold at run-time. If the exponential

average of a task class becomes higher than the threshold, stealing is disallowed for this task

class. If the exponential average becomes lower than the threshold, stealing is allowed.

Figure 6.9 shows the threshold pinpointed for each server, and also shows the adaptive task

stealing that uses this threshold. The adaptive line achieves the best throughput for all cases

of power , successfully allowing stealing at the switching point.

Finally, we note that the calibration experiment can be further extended to specialize the

switching point for different number of sockets having data and different CPU utilization

per socket. An adaptive technique for finding the switching point at run-time, or disallowing

memory-intensive tasks if a socket is saturated, is not ideal as we cannot gauge whether

the memory bandwidth of a socket is saturated due to sufficient stealing or hurt due to

overwhelming stealing. Our current calibration experiment is sufficient for our use cases and

experiments, as it roughly finds out the switching point for the average case where half of the

server’s sockets have active data.

6.5 Experimental Evaluation

We first present our experimental configuration. Then, we present results of a custom bench-

mark and finally of a read-only variant of the TPC-H benchmark.

Experimental configuration. We use a prototype built on SAP HANA (SPS11) with our NUMA-

aware task scheduler. We add support for tracking resource utilization (see Section 6.2), and

employ our adaptive NUMA-aware data placement (see Section 6.3) and task stealing (see

Section 6.4).

For all experiments, we warm up the DBMS, we admit all clients and disable result caching.

LLC misses, CPU load, and memory throughput (TP) are gathered from Linux and H/W

counters (integrating Intel PCM [196]). The utilizations of RUH are the local-only utilizations

Table 6.2 – Further characteristics of the NUMA servers of Table 2.2 that we use in this chapter’s
experimental evaluation.

Stealing threshold
Move us/page

Partition us/page

1200 MB/s
59

109

550 MB/s
63

123

Statistic

Server 4x15-core Intel Xeon E7-
4880v2 (Ivybridge-EX) at

2.50GHz

8x15-core Intel Xeon E7-
8880v2 (Ivybridge-EX) at

2.50GHz

32x18-core Intel Xeon E7-
8890v3 (Haswell-EX) at

2.50GHz
230 MB/s

60
129

121

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

we track (via the same H/W counters). The imbalance metric corresponds to the maximum

imbalance between any two sockets, when calculated by DP. The imbalance fluctuates since

the averaged sampled utilizations of RUH also fluctuate, but in general is decreased with a

stable workload. Results shown with a timeline consist of a single run, while any data points

are averages of at least three iterations with a standard deviation <10%. Table 6.2 shows further

characteristics of the servers that we use in the following experiments.

Custom benchmark. Our dataset has 64 tables (). For each table we generate a CSV

file of 50 million rows, around 3.2 GB, for a total of 204 GB files. Each table has an integer

column (PK), 8 additional columns () of random integers (uniform distribution), and a

partitioning specification (hash) on . The 8 columns have bitcases 17 to 24, so as to have

different number of unique values. Each experiment mentions the initial table placement.

The workload is generated with a Java application on a different server. Clients continuously

issue queries and we measure the total throughput (TP). At each experiment, we mention how

many clients are used, which query type(s) they issue, which table(s) they target, and which

selectivity they use. The possible query types are:

(a) . The client selects a

random column from its target table. The query involves both scan phases mentioned in

Section 5.3.1.

(b)

. The client selects a random column () from its target

table to aggregate and group-by . This query involves the aggregation phases

mentioned in Section 5.5. We choose for the group-by because it has the least

number of unique values. We cast to double to avoid potential numeric overflow errors.

(c)

. The client joins two target tables on the column. A

random column is selected to filter and project. This query involves the equi-join steps

mentioned in Section 5.5. With multiple table parts, the equi-joins are copartitioned.

Before each experiment begins, we let clients build a prepared statement for each query they

can issue. There are no thinking times. The clients do not fetch results, in order to not let

the network transfer dominate. Each TP value in a timeline corresponds to the slope of the

achieved queries during the previous 30 seconds.

122

6.5. Experimental Evaluation

6.5.1 Adaptive Data Placement

The first experiment realizes the introductory example of Figure 6.1. and are placed

on socket S1, on S2, and is partitioned across S3 and S4. Each of the tables

are targeted by 64 clients executing query (a) with a low selectivity (0.001%) for 5 minutes.

Figure 6.10 shows the timelines of the throughput (TP), the utilization imbalance, and other

performance measurements such as H/W counters and our tracked utilization (RUH).

At the beginning, only S1 and S2 execute queries as shown by their RUH. Queries are dominated

by the scan’s first phase (“IV-Scan”). Tasks are memory-intensive as shown by the task class’s

memory TP, which is over the stealing threshold. That is why adaptive stealing disallows

stealing, and most LLC misses are local. As shown by the tables’ RUH, and share S1,

while fully utilizes S2.

DP recognizes the imbalance, but does not take action because the TBP are not yet eligible to

be moved or partitioned. DP searches the catalog to find which is partitioned and cold

(thus not shown in Figure 6.10), and at 16 sec starts a background request to merge it. The

merge finishes at 64 s, and the single TBP is moved to S4 (a cold socket) at 106 s. The merge

and move contribute to the small bump in the CPU load and memory TP of S3 and S4. Another

0 150 300
0

50
100
150
200
250
300

RU
H.

m
em

h.
ra

vg

Time (sec)

GB/s

0 150 300
0

25
50
75

100

CP
U

lo
ad

(%
)

Time (sec)

0
1
2
3

0
1
2
3

0 150 300

Th
re

ad
s(

x1
0)

TP
(x

10
3

q/
se

c)

Time (sec)
0 150 300

0
50

100
150
200
250
300

M
em

or
y

TP

Time (sec)

GB/s

0 150 300
0
2
4
6

LL
C

m
iss

es
(x

10
9 /

s)

Time (sec)

Local Remote

0 150 300
0

20
40
60
80

100
120

RU
H.

cp
uh

.ra
vg

Time (sec)

0

1

2

3

0 150 300Ta
sk

cla
ss

(G
B/

s)

Time (sec)

0
5

10
15
20
25
30

0 150 300

RU
H.

cp
uh

.ra
vg

Time (sec)

0
20
40
60
80

0 150 300RU
H.

m
em

h.
ra

vg

Time (sec)

GB/s

S1 S2 S3 S4

TBL1 TBL2 TBL3 TBL31 2IV-Scan

Sockets:

steal threshold

TP Imbalance

Figure 6.10 – Adaptive data placement of three active tables (4-socket server).

123

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

reason for their increased CPU load is that their worker threads attempt to steal tasks from

other sockets, but tasks are memory-intensive and cannot be stolen in this experiment. Since

S3 and S4 do not process any queries, we do not account this busy CPU load in their RUH.

At 53 s (see the orange markers on the timeline of the tables’ RUH graphs), DP examines the

pair of S1 and S3. It fixes their imbalance by moving , which has become eligible for

moving, to S3. The move completes at 91 s. Overall TP and memory TP are increased.

Next, DP detects that there is still a utilization imbalance because 3 sockets are utilized and

S4 is not (as shown by its RUH). At 108 s, DP examines the pair of S2 and S4. It decides to

fix their imbalance by partitioning , which is eligible for partitioning, into two parts. At

174 s, partitioning completes, and the two TBP are moved to S2 and S4 concurrently, which

completes at 190 s.

After that point, the imbalance is decreased within our configured threshold, and there are

no more actions. In comparison to the beginning of the experiment, overall memory TP is 2x

more, and TP is also 2x more.

6.5.2 Adaptive Task Stealing

To show the effect of adaptive task stealing, we use scans of varying selectivity. We place

on S2 and on S4. Adaptive placement is disabled. Each of the tables is targeted by 256

clients executing query (a) with the specified selectivity. Half of the sockets have local tasks,

while the other half would need to steal. For each selectivity, we execute 5 min runs of: enabled

stealing for all tasks, disabled stealing for all tasks, and adaptive stealing. We report each run’s

average throughput (TP). The results are shown in Figure 6.11.

1

w/o stealing w/ stealing adaptive

0
2
4
6
8

0.
00

1

0.
01 0.

1 1 10

TP
(x

10
4

q/
m

in
)

Selectivity (%)

0
1
2
3
4
5
6

0.
00

1
0.

01 0.
1 1 10

IV
-S

ca
n

cla
ss

(G
B/

s)

Selectivity (%)

0

0.4

0.8

1.2

0.
00

1
0.

01 0.
1 1 10

M
at

er
ia

liz
.c

la
ss

(G
B/

s)

Selectivity (%)

0

50

100

150

0.
00

1
0.

01 0.
1 1 10

Av
g.

M
em

.T
P

(G
B/

s)

Selectivity (%)

adaptive stealing threshold

23
%

70
%15

%

Figure 6.11 – Experiment showing how adaptive task stealing disallows stealing of memory-
intensive classes (4-socket server).

For low selectivities, the scan’s first phase (“IV-scan”) dominates. Tasks are memory-intensive

and stealing hurts TP by up to 23% for the case of 0.1% selectivity. As selectivity increases,

the scan’s second phase (materialization) dominates and is parallelized. The fewer IV-scan

tasks can utilize more memory bandwidth on their socket. The dominating materialization

tasks are less memory-intensive (with less memory throughput), due to their random accesses

to the dictionary, and thus stealing helps improve throughput by up to 70% for the case

124

6.5. Experimental Evaluation

of 10% selectivity. Adaptive stealing achieves the best throughput of either stealing or not

stealing in all cases of selectivity. It can also, e.g., for the case of 1% selectivity, further improve

performance by 15%. This is due to disallowing stealing of IV-scan tasks, and allowing stealing

of materialization tasks, instead of taking a static strategy for all task classes.

6.5.3 Partitioning Overhead

Here, we show how our adaptive data placement can avoid the overhead of unnecessary

partitioning, focusing on aggregations. We initially partition across all sockets of the

8-socket server. The experiment has three consecutive 5min phases. In the first, each table is

targeted by 8 clients executing query (b) with a high selectivity (10%). The second phase has

no activity. The third phase is the same as the first. Adaptive task stealing is enabled. Most

tasks are not very memory-intensive due to high selectivity and can be stolen. Figure 6.12

shows the results.

During the second phase, all tables are merged. During the third phase, DP moves tables that

happened to be merged on the same socket to balance utilization. TP reaches 1.7x of the TP

of the first phase, because there is no partitioning overhead, and the server can be saturated

with non-partitioned tables. This is also shown by the improved CPU load, memory TP and

local LLC misses.

0 5 10 150 5 10 15

S1 S2 S3 S4
S5 S6 S7 S8

0

1

2

3

0

1

2

0 5 10 15

Th
re

ad
s(

x1
0)

T
(x

10
2

q/
se

c)

Time (min)

0

1

2

3

M
em

.T
P

(x
10

2
GB

/s
)

Time (min)

0

1

2

3

4

LL
C

m
iss

es
(x

10
9 /

s)

Time (min)

Local RemoteTP Imbalance

0
25
50
75

100

CP
U

lo
ad

(%
)

Time (min)
0 5 10 15

S1 S2 S3 S4
S5 S6 S7 S8

Figure 6.12 – The overhead of partitioning for aggregations (8-socket server).

Impact of groups. Next, we detail how the partitioning overhead for aggregations increases as

the number of groups increases. This is an extension of the implications we showed in Section

5.5.1. We use either partitioned (8 TBP/table) or non-partitioned (1 TBP/table), placed

round-robin across the sockets. Adaptive placement is disabled. Each table is targeted by

8 clients issuing a variation of query (b) that selects with a high selectivity (10%), and

groups-by a different column. As we group-by through , the bitcase of the group-by

column increases, and so the number of groups increases. Figure 6.13 shows the results. Each

run is 5 minutes. We also include a case without a group-by, and show the percentage of

remote LLC misses out of all LLC misses.

125

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

0

11

22

1

TP
(x

10
3

q/
m

in
)

1TBP/TBL 8TBP/TBL

N/A COL1 COL2 COL3 COL4 COL5 COL6 COL7Group-by:

0%
10%
20%
30%
40%
50%

11TBP/TBL 8TBP/TBLLL
C

re
m

ot
e

m
iss

es
(%

)

63%
78%

0
20
40
60
80

100

1

CP
U

lo
ad

(%
)

1TBP/TBL 8TBP/TBL

Figure 6.13 – The impact of the number of groups (8-socket server)

For the case without grouping, both data placements perform similarly, with mostly local

accesses. As the number of groups increases, TP drops since we need to work on more hash

tables. For 1 TBP/table, merges happen locally to each socket, while for 8 TBP/table there is the

cost of the global dictionary and merges may need to access 7 other sockets. For this reason,

the drop in TP from to for 8 TBP/table is worse (78% drop) than for 1 TBP/table

(63% drop). This is also reflected in the percentage of LLC remote misses. Additionally, there is

a decline in CPU load in the partitioned case due to scheduling overhead. For several group-by

cases, the TP of 1 TBP/table is more than 2x than the TP of 8 TBP/table.

We note that the TP for the last two group-by columns in the partitioned case shows an increase

jump due to an internal SAP HANA optimization threshold for the number of groups. This

optimization does not affect the NUMA implications for the aggregations, since the percentage

of remote accesses continues to increase with the number of groups.

6.5.4 Changing Workload

Here, we show a workload with three consecutive phases. We place 8 tables on each socket

of the 8-socket server (all 64 tables are placed). Clients execute query (a) with low selectivity

(0.001%). The first phase lasts 15 min, and only (on S7) and (on S8) are targeted

by 512 clients each. The second phase lasts 5 min, and all 64 tables are targeted by 16 clients

each. The third phase lasts 10 min, and only (on S1) and (on S2) are targeted

by 128 clients each. Figure 6.14 shows the results.

0 10 20 30

S1 S2 S3 S4 S5 S6 S7 S8

0

1

2

3

0
1
2
3
4
5

0 10 20 30

Th
re

ad
s(

x1
0)

TP
(x

10
3

q/
se

c)

Time (min)

0
1
2
3
4
5

M
em

.T
P

(x
10

2
GB

/s
)

Time (min)

TP Imbalance

0

25

50

75

100

CP
U

lo
ad

(%
)

Time (min)

S1 S2 S3 S4 S5 S6 S7 S8

0 10 20 30

Figure 6.14 – Three different workload phases (8-socket server).

126

6.5. Experimental Evaluation

During the first phase, DP gradually partitions the hot tables to fill all sockets and reach

maximum TP. During the second phase, all tables become hot, TP stays at the maximum, and

DP takes no actions. At the third phase, only two sockets are used, and DP gradually moves

their hot tables to fill all sockets and reach maximum TP. This experiment shows how our

adaptive algorithms handle changing workloads.

6.5.5 Workload Mix

Here, we have an initial complex placement, a stable workload mix, and show that DP gradually

reaches a final stable state. We use , initially placed on 4 sockets of the 8-socket server

as shown in Figure 15. We use 128 clients, continuously issuing a random query out of the

queries shown in Figure 6.15. We define a TG for and another TG for , thus the

queries’ joins between these tables are copartitioned. Figure 6.15 shows the results.

 (a), 1%, TBL1
 (b), 1%, TBL6

 (a), 0.1%, TBL6
 (c), 1%, TBL1-2

 (b), 1%, TBL3
 (c), 1%, TBL3-4

 (b), 0.1%, TBL7
 (c), 0.1%, TBL4-5

0 10 20

S1 S2 S3 S4 S5 S6 S7 S8

0

1

2

3

0
2
4
6
8

10

0 10 20

Th
re

ad
s(

x1
0)

TP
(x

10
2

q/
se

c)

Time (min)

TP Imbalance

Initial and final placement of tables on sockets in format TBLxpart-number:

TBL33
TBL43
TBL53
TBL7

TBL34
TBL44
TBL54

TBL31
TBL41
TBL51

TBL12
TBL22

S1
TBL32
TBL42
TBL52

S2 S3 S4 S5 S6 S7 S8
TBL61 TBL62TBL11

TBL21

Clients' queries in format <query type, selectivity, target table(s)>:

0
1
2
3
4

M
em

.T
P

(x
10

2
GB

/s
)

Time (min)

0
25
50
75

100

CP
U

lo
ad

(%
)

Time (min)

- - TBL31
TBL41
TBL51

TBL32
TBL42
TBL52
TBL7

S1
-

S2 S3 S4 S5 S6 S7 S8
TBL6 - TBL1

TBL2

0 10 20

Figure 6.15 – Balancing the utilization of a stable workload mix (8-socket server).

Initially, four sockets have memory throughput. We note that CPU load is saturated, as there

are tasks that are not very memory-intensive and can be stolen. DP moves and partitions

tables to reach the placement shown in Figure 6.15 with a balanced utilization. All sockets

finally have memory throughput and mostly local accesses, improving throughput by 44% vs.

the initial throughput. Since in this experiment all clients issue all queries, there are drops in

throughput while DP holds an exclusive lock for moving a table.

6.5.6 TPC-H benchmark

Here, we show the TPC-H (read-only) [15] benchmark with a scaling factor 30 (30 GB files).

We use 512 clients, each continuously issuing a random query out of the 22 templates. We set

127

Chapter 6. Adaptive NUMA-Aware Task Scheduling and Data Placement

0 1 2 3 4 5 6 7 8
0
12
24
36

0
0.2
0.4
0.6
0.8

1

0 1 2 3 4 5 6 7 8

Th
re

ad
s

TP
(c

1
·q

/m
in

)

Time (h)

0
0.2
0.4
0.6
0.8

1

M
em

.T
P

(c
2

·G
B/

s)

Time (h)

TP Imbalance

0
20
40
60
80

100

CP
U

lo
ad

(%
)

Time (h)

0
0.2
0.4
0.6
0.8

1

LL
C

m
iss

es
(c

3
/s

)
Time (h)

Local Remote

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Figure 6.16 – TPC-H throughput run (32-socket server).

our configurable parameters cp (DP period) to 10 sec in order to better capture the longer-

running queries of TPC-H, and cs (saturation threshold) to 40% because the workload does

not constantly saturate CPU resources. The tables are initially placed on a single socket of

the 32-socket server. Adaptive task stealing is enabled. We define a partitioning specification

for all tables except nations and regions, and a TG for lineitems and orders so that they are

copartitioned on the orderkey columns. The results are shown in Figure 6.16, which are

normalized due to legal reasons with undisclosed constants to the maximum observed values.

This does not hinder us from showing DP’s impact.

Initially, one socket has memory TP. We note that more sockets have CPU load, as there are

tasks that are not very memory-intensive and can be stolen. Query throughput (TP) is only

around 0.2. DP gradually moves and repartitions tables and the TG to balance utilization.

Finally, all sockets have data, the TG of lineitems and orders has 32 partitions, customers have

4 partitions, partsupp has 8 partitions, while the remaining tables are not partitioned. All

sockets have memory TP and mostly local accesses. TP reaches around 0.8. Assuming the

initial TP corresponds to the typical case when an administrator simply loads the dataset, our

adaptive data placement helps improve TP by 4x.

6.6 Conclusions

In this chapter, we confirm once again that a static strategy for data placement and task

scheduling should not be employed. We show that unnecessary partitioning involves an

overhead of up to 2x in comparison to not partitioning. For this reason, we develop an

adaptive data placement algorithm that can track a utilization imbalance across sockets, and

can move or repartition tables at run-time to fix the imbalance. Furthermore, we show that

128

6.6. Conclusions

inter-socket stealing of memory-intensive tasks can hurt throughput by up to 4x in comparison

to not stealing. For this reason, we develop an adaptive technique that disallows stealing at

run-time for tasks whose memory intensity exceeds a threshold for a NUMA server.

129

7 Conclusions and Future Directions

Modern multi-core servers provide increasing parallelism but with non-uniform memory

access architectures. In this thesis we identify the major inhibitors for the performance of

typical execution engines while scaling up concurrent analytical workloads on modern multi-

socket multi-core servers. We claim that the execution engine needs to be redesigned in

order to exploit the increasing concurrency of modern analytical workloads by employing

sharing techniques across concurrent queries, and consider the non-uniformity of modern

multi-socket servers by employing adaptive data placement and task scheduling techniques.

The insights and techniques described in this thesis contribute toward this goal.

This chapter summarizes our contributions, discusses future directions, and highlights the

impact of this thesis.

7.1 Thesis Summary

In this thesis we identify two main dimensions that inhibit the efficient scalability of highly

concurrent analytical workloads on modern multi-core servers: the absence of sharing data

and work across concurrent queries, and the absence of NUMA-awareness in the execution

engine. Next, we detail our contributions with respect to these two dimensions.

Sharing. Query-centric execution engines, that execute each query independently of other

queries, miss numerous opportunities for sharing data and work across concurrently running

queries. We categorize state-of-the-art run-time sharing techniques into reactive and proac-

tive sharing techniques. Reactive sharing identifies and shares common sub-plans across

concurrent queries. Proactive sharing builds a global query plan with shared operators to

evaluate the whole query mix. We integrate reactive and proactive sharing in the same system

and perform an extensive sensitivity analysis of reactive vs. proactive sharing. We corroborate

previous work on that proactive sharing can effortlessly handle a large number of concurrent

queries with similar query plans. Our main contributions are a pull-based model for reactive

131

Chapter 7. Conclusions and Future Directions

sharing, and recognizing that reactive and proactive sharing are orthogonal sharing tech-

niques that can be combined. Applying reactive sharing on top of proactive sharing takes the

best of the two worlds and their combination is best suited for highly concurrent workloads.

NUMA-awareness. An execution engine that is not aware of the non-uniformity of multi-

socket servers can suffer significant performance degradation due to increased memory

access latencies and potential bandwidth bottlenecks in the interconnects and the sockets’

memory controllers. NUMA-awareness is especially important for the numerous modern

main-memory DBMS whose performance is directly affected by memory accesses (see Sec-

tion 2.1). We claim that the execution engine needs to coordinate data and thread placement

in order to efficiently utilize a multi-socket server.

In regard to data placement, we evaluate different strategies for placing data across sockets.

We can place data on one socket or partition it across multiple sockets if the workload is

skewed. We identify that always employing partitioning is not ideal, as partitioning involves

an overhead for executing analytical operators. For this reason, we propose an adaptive data

placement technique that employs partitioning only when needed under a skewed workload

in order to balance utilization across the sockets of a multi-socket server.

In regard to thread placement, we claim that the execution engine should employ a task

scheduler that can reflect the non-uniformity of the underlying hardware. Each socket has its

own worker threads and task queues. We can queue a task to the socket where its processed

data is placed. If there is skew in the workload, task stealing can balance CPU load across the

sockets. We identify, however, that inter-socket task stealing of memory-intensive tasks can

decrease overall performance by overwhelming the interconnects and the already saturated

memory controllers. For this reason, we propose an adaptive task stealing technique that

disallows inter-socket stealing of memory-intensive tasks.

7.2 Future Directions

Looking ahead, we can identify several opportunities for extending our work in this thesis.

In the realm of run-time sharing, it would be interesting to explore the benefits for OLTP work-

loads as well. SharedDB [77] supports sharing for OLTP and OLAP workloads, but its batched

execution is not well suited for long-running queries. It has been suggested that MVCC and

snapshot isolation can be exploited to share across the same snapshots of data [47]. Further-

more, reactive and proactive sharing do not exploit common sub-expressions as proposed

by multiple-query optimization [175]. An analysis of the challenges and potential benefits

of combining common sub-expressions with reactive and/or proactive sharing is missing.

Moreover, we show in this thesis that proactive sharing is not beneficial for low concurrency in

comparison to the query-centric model. The turning point, however, when proactive sharing

becomes beneficial needs to be pinpointed. It would be interesting to develop a prediction

model similar to reactive sharing [98], but for proactive sharing. Additionally, it would be

132

7.2. Future Directions

interesting to employ and evaluate run-time sharing techniques in the processing model sug-

gested by HyPer [117, 143]. The state-of-the-art run-time sharing techniques (see Section 2.2)

adapt the traditional Volcano [82] style iterator model of processing, pipelining tuples across

operators using intermediate buffers. In contrast, tuples in HyPer are passed through whole

operator pipelines without intermediate buffers.

In the realm of NUMA-awareness, we assume in this thesis that all sockets have the same

processor and memory characteristics. Although this is largely true for today’s multi-socket

servers, heterogeneity may become standard in future servers. An interesting extension of

our work would be to consider sockets with different characteristics such as heterogeneous

processors and different types of memories such as upcoming non-volatile memories. As an

example of mainstream heterogeneous processors, Intel plans to integrate CPU and FPGA [87,

165]. NUMA-awareness is needed to consider where data is placed in relation to the specialized

processing done with the FPGA. Non-volatile memories have different characteristics than

main memory, such as different write latencies [133]. NUMA-awareness on a server with both

main memory and non-volatile memory may need to be specialized, e.g., to store base tables

on non-volatile memory and process queries, that write intermediate results, on the main

memory of sockets near the related base tables.

On large-scale servers with hundreds of sockets, another interesting extension of our work

would be for our adaptive data placement algorithm to take multiple actions at the same

time, e.g., moving or partitioning tables to balance the utilization of multiple socket pairs.

Further optimization opportunities would be to consider placing table partitions on nearby

sockets at the expense of not aggressively reducing the utilization imbalance between far-away

sockets. Moreover, another opportunity would be an automated way of recognizing associated

tables, the dominant join predicates, and forming table groups for copartitioning the tables,

by tracking the workload at run-time. This would require the adaptation of an offline solver

for distributed data placement (see Section 2.4.2) or specially for copartitioned joins [203], for

execution at run-time. Energy efficiency is another aspect that becomes increasingly impor-

tant nowadays. It would be interesting to investigate how power management techniques,

such as dynamic voltage-frequency scaling, can be integrated with our adaptive NUMA-aware

techniques in order to improve the energy efficiency of analytical workloads [160].

Finally, although sharing and NUMA-awareness are orthogonal dimensions, an opportunity

lies in integrating and combining both dimensions in the same system to explore how NUMA-

aware sharing can further improve the performance of analytical workloads on multi-socket

servers. The implications of this thesis can provide valuable insight. For example, memory-

intensive operators, with a high memory throughput, could be avoided to be shared across

sockets, in order to avoid bandwidth bottlenecks, while less memory-intensive operators

could be shared across sockets.

133

Chapter 7. Conclusions and Future Directions

7.3 Impact

This thesis is a first step towards improving the scalability of concurrent analytical workloads

on modern multi-socket multi-core servers. Our analysis on run-time sharing techniques

show that sharing can improve the performance of query-centric execution engines by up to

6x. We also set the basis for combining reactive and proactive sharing techniques. Our novel

application of reactive sharing to proactive sharing can further improve the performance of

proactive sharing by up to 2x. Our adaptive NUMA-aware data placement and task scheduling

strategies pave the way for designing execution engines that consider the non-uniformity

of the underlying hardware and adapt to the workload in order to efficiently utilize all the

sockets of a multi-socket server. Our experiments show that our adaptive data placement can

improve performance vs. static data partitioning by up to 2x, while our adaptive task stealing

can improve performance vs. always stealing by up to 4x.

The implications of this thesis are expected to become increasingly important as multi-socket

multi-core servers keep scaling up. Indeed, there is already a 256-socket rack-scale server

available (see SGI UV 3000 [21]), and future servers may efficiently scale up by dispensing cache

coherency across sockets and supporting a fast communication protocol across sockets [148].

In the battle between scaling up vs. scaling out, there is no clear winner. Scaling up can be

better suited for several analytical workloads in terms of performance and cost than scaling

out [32, 50]. Scale-up servers can also be used in scale-out infrastructures. Multi-socket

servers, starting with as few as two sockets, are already used in the Amazon EC2 cloud [17].

Thus, the impact of both sharing and NUMA-awareness is expected to become more promi-

nent. As more and more computing resources become available, the DBMS is expected to

service an increasing number of concurrent queries. A query-centric execution engine will

miss an increasing number of opportunities for sharing across concurrent queries, saving

resources, and further improving its performance. Moreover, with an increasing number of

sockets, the significance of our adaptive NUMA-aware techniques is also expected to become

more prominent. We should not simply partition data and employ task stealing across the

sockets for all workloads. This thesis suggests that a better approach on multi-socket servers

is to adapt to the workload. In typical scenarios with multiple tables, partitioning should

be judiciously used up to the point of balancing utilization across the sockets of the server.

Also, task stealing should be used to balance load across the sockets, but should be avoided

for memory-intensive tasks that can cause a bottleneck in the interconnects and the remote

memory controllers.

134

Bibliography

[1] An introduction to the Intel QuickPath Interconnect, January 2009.

. 2.4.1, 2.4.1, 2.4.1

[2] Intel Xeon Processor E7 Family Uncore Performance Monitoring, April 2011.

. 2.4.1

[3] Intel articles - Granularity and Parallel Performance, February 2012.

. 2.3,

4.1.4, 4.1.5

[4] Computing at the European Organization for Nuclear Research (CERN), August 2012.

. 1

[5] The data deluge. Nature Cell Biology, 14(8):775–775, August 2012. ISSN 1465-7392. 1

[6] Intel Xeon Processor E7 v2 2800/4800/8800 Product Family - Datasheet - Volume

Two, March 2014.

. 2.4.1

[7] SAP BusinessObjects BI 4 - Sizing Guide, February 2014.

. 1

[8] SAP HANA Platform SPS 11 Administration Guide, December 2015.

. 2.4.2, 4.3, 5.2, 5.3.1, 5.5, 6.3.2

[9] SAP Enhanced Mixed Load (BW-EML) benchmark, February 2015.

. 5.5.2

[10] Red Hat Enterprise Linux 7 - Product Documentation - Performance Tuning Guide

- Chapter 3. CPU, March 2015.

. 2.4.1

135

Bibliography

[11] The OpenMP API specification for parallel programming. October 2016.

. 2.3, 4.1

[12] Intel Thread Building Blocks – Documentation – User Guide – The Task Scheduler

– Task-based Programming, June 2016.

. 1.3.2, 2.3, 4.1, 4.1.2, 4.1.3, 4.1.3, 4.1.4

[13] Intel Thread Building Blocks – Documentation – User Guide – The Task Scheduler –

When Task-Based Programming Is Inappropriate, August 2016.

. 4.1

[14] Transaction Processing Performance Council (TPC). , October

2016. 4.2, 4.2.3

[15] TPC-H Benchmark: Standard Specification, v. 2.17.1. October 2016.

. 3.3, 3.4.1, 4.1, 4.1.5, 5.5.2, 6.5.6

[16] SAP HANA Live for SAP Business Suite, April 2016. . 4.2

[17] Amazon EC2 dedicated hosts and instance types, August 2016.

and

. 7.3

[18] Intel 64 and IA-32 Architectures Software Developer’s Manual. Combined Volumes: 1,

2A, 2B, 2C, 2D, 3A, 3B, 3C and 3D. Order Number: 325462-059US., June 2016.

. 6.2

[19] SAP HANA Data Distribution Optimizer Administration Guide, March 2016.

. 2.4.2

[20] SAP HANA Platform Core SPS 12 - sap hana sql and system views reference -

transaction management statements, October 2016.

. 2.5

[21] SGI UV server line data sheets, July 2016. URL

. 2.4.1, 7.3

[22] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating Compression and

Execution in Column-oriented Database Systems. In Proceedings of the 2006 ACM

SIGMOD International Conference on Management of Data, pages 671–682. ACM, 2006.

2.1

[23] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-stores:

How different are they really? In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, page 967. ACM Press, 2008. 2.1

136

Bibliography

[24] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The Data Locality of Work

Stealing. In Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms

and Architectures (SPAA), pages 1–12. ACM, 2000. 2.3, 4.1

[25] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P. Marathe, Vivek R.

Narasayya, and Manoj Syamala. Database Tuning Advisor for Microsoft SQL Server

2005. In Proceedings of the Thirtieth International Conference on Very Large Data Bases

(VLDB), pages 1110–1121, 2004. 2.4.2

[26] A. Ailamaki, T. Scheuer, I. Psaroudakis, and N. May. Parallel execution of parsed query

based on a concurrency level corresponding to an average number of available worker

threads, 2016. US Patent 9,329,899. 3, 4

[27] Anastasia Ailamaki, Erietta Liarou, Pinar Tözün, Danica Porobic, and Iraklis Psaroudakis.

How to Stop Under-utilization and Love Multicores. In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data, pages 189–192. ACM, 2014.

1.1, 2.4.1

[28] Anastasia Ailamaki, Erietta Liarou, Pinar Tözün, Danica Porobic, and Iraklis Psaroudakis.

How to Stop Under-Utilization and Love Multicores. In Proceedings of the 31st IEEE

International Conference on Data Engineering (ICDE), 2015. 1.1

[29] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2O: A Hands-free Adaptive

Store. In Proceedings of the 2014 ACM SIGMOD International Conference on Management

of Data, pages 1103–1114. ACM, 2014. 2.5

[30] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Massively Parallel

Sort-merge Joins in Main Memory Multi-core Database Systems. Proc. VLDB Endow., 5

(10):1064–1075, June 2012. 2.4.1, 2.4.2

[31] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The SprayList: A Scalable Relaxed

Priority Queue. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP), pages 11–20. ACM, 2015. 5.3

[32] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion Hodson, and

Antony Rowstron. Scale-up vs Scale-out for Hadoop: Time to Rethink? In Proceedings of

the 4th Annual Symposium on Cloud Computing (SOCC), pages 20:1–20:13. ACM, 2013.

7.3

[33] Subi Arumugam, Alin Dobra, Christopher M. Jermaine, Niketan Pansare, and Luis

Perez. The datapath system: A data-centric analytic processing engine for large data

warehouses. In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of Data, pages 519–530. ACM, 2010. 1.3.1, 2.2, 2.2.3, 2.2.4, 3.1.1, 3.1.4, 3.2.1,

3.4.3

137

Bibliography

[34] Gupta Ashish and Inderpal Singh Mumick. Materialized Views. MIT Press, 2nd edition,

1999. ISBN 0471200247, 9780471200246. 2.2

[35] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths,

W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade,

and V. Watson. System R: Relational Approach to Database Management. ACM Trans.

Database Syst., 1(2):97–137, June 1976. 2.1

[36] Siu-lun Au and Sivarama P. Dandamudi. The Impact of Program Structure on the Perfor-

mance of Scheduling Policies in Multiprocessor Systems. Int’l Journal of Computers and

Their Applications, 3(1):17–30, 1996. 4.1.4

[37] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico

Massaioli, Ernesto Su, Priya Unnikrishnan, and Guansong Zhang. A Proposal for Task

Parallelism in OpenMP, pages 1–12. Springer Berlin Heidelberg, 2008. 2.3, 4.1, 4.1.3

[38] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. Multi-core, main-

memory joins: Sort vs. hash revisited. Proc. VLDB Endow., 7(1):85–96, September 2013.

2.4.2

[39] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,

Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The Multik-

ernel: A New OS Architecture for Scalable Multicore Systems. In Proceedings of the ACM

SIGOPS 22nd Symposium on Operating Systems Principles (SOSP), pages 29–44. ACM,

2009. 2.4.2

[40] Thomas Becker and Tobias Kutning. Searching for the Best System Configuration to Fit

Your BW Needs?, November 2012. . 5.5.2

[41] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorova. A

Case for NUMA-aware Contention Management on Multicore Systems. In Proceedings

of the 2011 USENIX Conference on USENIX Annual Technical Conference (USENIXATC).

USENIX Association, 2011. 1.1, 1.2, 2.3, 2.4.1, 2.4.2

[42] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and Evaluation of Main Memory

Hash Join Algorithms for Multi-core CPUs. In Proceedings of the 2011 ACM SIGMOD

International Conference on Management of Data, pages 37–48. ACM, 2011. 2.3, 4.1,

4.1.4

[43] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,

Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System. In

Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), pages 207–216. ACM, 1995. 1.3.2, 2.3, 4.1

[44] W. Bolosky, R. Fitzgerald, and M. Scott. Simple but Effective Techniques for NUMA

Memory Management. In Proceedings of the Twelfth ACM Symposium on Operating

Systems Principles (SOSP), pages 19–31, 1989. 2.4.2

138

Bibliography

[45] William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald, Robert J. Fowler, and Alan L.

Cox. NUMA Policies and Their Relation to Memory Architecture. In Proceedings of the

Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 212–221, 1991. 2.4.2

[46] George Edward Pelham Box, Gwilym Jenkins, and Gregory Reinsel. Time Series Analysis,

Forecasting and Control. John Wiley & Sons, Inc., 4th edition, 2008. ISBN 0471200247,

9780471200246. 6.3.2

[47] George Candea, Neoklis Polyzotis, and Radek Vingralek. A scalable, predictable join

operator for highly concurrent data warehouses. Proc. VLDB Endow., 2(1):277–288,

August 2009. 1.2, 1.3.1, 2.2, 2.2.3, 2.2.4, 3.1, 3.1.1, 3.1.4, 3.2.1, 3.2.2, 3.2.2, 3.3, 7.2

[48] George Candea, Neoklis Polyzotis, and Radek Vingralek. Predictable performance and

high query concurrency for data analytics. The VLDB Journal, 20(2):227–248, April 2011.

2.2, 2.2.3, 2.2.4, 2.2.4, 3.1.1, 3.1.4, 3.2.1, 3.2.2, 3.3

[49] Tuan Cao, Marcos Vaz Salles, Benjamin Sowell, Yao Yue, Alan Demers, Johannes Gehrke,

and Walker White. Fast Checkpoint Recovery Algorithms for Frequently Consistent

Applications. In Proceedings of the 2011 ACM SIGMOD International Conference on

Management of Data, pages 265–276. ACM, 2011. 4.2

[50] Xiang Cao, Kewal Keshaorao Panchputre, and David Hung-Chang Du. Accelerating data

shuffling in mapreduce framework with a scale-up numa computing architecture. In

Proceedings of the 24th High Performance Computing Symposium (HPC), pages 17:1–

17:8, 2016. 7.3

[51] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP

technology. ACM Sigmod record, 26(1):65–74, 1997. 1

[52] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. The impact of synchronization

and granularity on parallel systems. In Proceedings of the 17th Annual International

Symposium on Computer Architecture (ISCA), pages 239–248. ACM, 1990. 2.3, 4.1.4, 4.1.5

[53] W.J. Chen, B. Blaser, M. Bonezzi, P. Lau, J.C. Pacanaro, M. Schlegel, A. Zaka, A. Zietlow,

and IBM Redbooks. Architecting and Deploying DB2 with BLU Acceleration. IBM

Redbooks, 2014. ISBN 9780738440125. 1

[54] Rada Chirkova and Jun Yang. Materialized Views (Foundations and Trends in Databases).

Now Publishers Inc, 2nd edition, 2012. ISBN 0471200247, 9780471200246. 2.2

[55] Hong-Tai Chou and David J. DeWitt. An Evaluation of Buffer Management Strategies for

Relational Database Systems. In Proceedings of the 11th International Conference on

Very Large Data Bases (VLDB) - Volume 11, pages 127–141. VLDB Endowment, 1985. 2.2

139

Bibliography

[56] John Cieslewicz and Kenneth A. Ross. Adaptive Aggregation on Chip Multiprocessors.

In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB),

pages 339–350. VLDB Endowment, 2007. 2.2.3

[57] John Cieslewicz and Kenneth A. Ross. Data Partitioning on Chip Multiprocessors. In

Proceedings of the 4th International Workshop on Data Management on New Hardware

(DaMoN), pages 25–34. ACM, 2008. 2.3

[58] Latha S. Colby, Richard L. Cole, Edward Haslam, Nasi Jazayeri, Galt Johnson, William J.

McKenna, Lee Schumacher, and David Wilhite. Redbrick Vista: Aggregate Computation

and Management. In Proceedings of the Fourteenth International Conference on Data

Engineering (ICDE), pages 174–177. IEEE Computer Society, 1998. 2.2, 3.1.1

[59] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan

Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess, Kai-

Uwe Sattler, Michael Seibold, Eric Simon, and Florian Waas. The Mixed Workload CH-

benCHmark. In Proceedings of the Fourth International Workshop on Testing Database

Systems (DBTest), pages 8:1–8:6. ACM, 2011. 4.2, 4.2.3

[60] Cathan Cook. Database Architecture: The Storage Engine, 2001.

. 2.2

[61] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Tech-

nologies Ltd, and Toshiba Corporation. Advanced Configuration and Power Interface

Specification (ACPI) Revision 5.0 Errata A, 2013. . 2.4.1

[62] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. Pipelining in Multi-

query Optimization. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS), pages 59–70. ACM, 2001. 2.2

[63] Dinesh Das, Jiaqi Yan, Mohamed Zait, Satyanarayana R. Valluri, Nirav Vyas, Ramarajan

Krishnamachari, Prashant Gaharwar, Jesse Kamp, and Niloy Mukherjee. Query opti-

mization in Oracle 12c database in-memory. Proceedings of the VLDB Endowment, 8:

1770–1781, 2015. 2.1

[64] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud

Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic Management: A

Holistic Approach to Memory Placement on NUMA Systems. In Proceedings of the Eigh-

teenth International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 381–394. ACM, 2013. 1.2, 2.4.2

[65] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you always wanted

to know about synchronization but were afraid to ask. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles (SOSP), pages 33–48. ACM,

2013. 2.4.1

140

Bibliography

[66] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan Zdonik.

Anti-caching: A New Approach to Database Management System Architecture. Proc.

VLDB Endow., 6(14):1942–1953, September 2013. 2.1

[67] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux.

OLTP-Bench: An Extensible Testbed for Benchmarking Relational Databases. Proc.

VLDB Endow., 7(4):277–288, December 2013. 4.2

[68] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. Evaluation of OpenMP Task

Scheduling Strategies. In Proceedings of the 4th International Conference on OpenMP in

a New Era of Parallelism (IWOMP), pages 100–110. Springer-Verlag, 2008. 1.3.2, 2.3

[69] Kapali P. Eswaran. Placement of Records in a File and File Allocation in a Computer. In

Proceedings of the IFIP Congress on Information Processing, pages 304–307, 1974. 2.4.2

[70] Babak Falsafi and David A. Wood. Reactive NUMA: a design for unifying s-COMA and

CC-NUMA. In ACM SIGARCH Computer Architecture News, volume 25, pages 229–240,

1997. 2.4.2

[71] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg, and

Wolfgang Lehner. SAP HANA Database: Data Management for Modern Business Appli-

cations. SIGMOD Rec., 40(4):45–51, January 2012. 2.5

[72] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe,

and Jonathan Dees. The SAP HANA Database – An Architecture Overview. IEEE Data

Eng. Bull., 35(1):28–33, 2012. 1.3.2, 2.1, 2.5, 4, 4.1, 4.1.2, 4.2, 4.2.1

[73] Daniela Florescu and Donald Kossmann. Rethinking Cost and Performance of Database

Systems. SIGMOD Rec., 38(1):43–48, June 2009. 4.2

[74] H. Garcia-Molina and K. Salem. Main memory database systems: An overview. IEEE

Trans. on Knowl. and Data Eng., 4(6):509–516, December 1992. 2.1

[75] Minos N. Garofalakis and Yannis E. Ioannidis. Parallel Query Scheduling and Optimiza-

tion with Time- and Space-Shared Resources. In Proceedings of the 23rd International

Conference on Very Large Data Bases (VLDB), pages 296–305. Morgan Kaufmann Pub-

lishers Inc., 1997. 2.4.2

[76] Balazs Gerofi, Masamichi Takagi, Yutaka Ishikawa, Rolf Riesen, Evan Powers, and

Robert W. Wisniewski. Exploring the Design Space of Combining Linux with Lightweight

Kernels for Extreme Scale Computing. In Proceedings of the 5th International Workshop

on Runtime and Operating Systems for Supercomputers (ROSS), pages 5:1–5:8. ACM,

2015. 2.4.2

[77] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. SharedDB: Killing One

Thousand Queries with One Stone. Proc. VLDB Endow., 5(6):526–537, February 2012.

1.3.1, 2.2, 2.2.3, 2.2.4, 3.1.1, 3.1.4, 3.2.1, 7.2

141

Bibliography

[78] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald Kossmann.

Shared Workload Optimization. Proc. VLDB Endow., 7(6):429–440, February 2014. 2.2.3

[79] Jana Giceva, Gustavo Alonso, Timothy Roscoe, and Tim Harris. Deployment of Query

Plans on Multicores. Proc. VLDB Endow., 8(3):233–244, November 2014. 2.4.2

[80] Jana Giceva, Gerd Zellweger, Gustavo Alonso, and Timothy Rosco. Customized OS

Support for Data-processing. In Proceedings of the 12th International Workshop on Data

Management on New Hardware (DaMoN), pages 2:1–2:6. ACM, 2016. 2.4.2

[81] Lukasz Golab, Marios Hadjieleftheriou, Howard Karloff, and Barna Saha. Distributed

Data Placement to Minimize Communication Costs via Graph Partitioning. In Pro-

ceedings of the 26th International Conference on Scientific and Statistical Database

Management (SSDBM), pages 20:1–20:12. ACM, 2014. 2.4.2

[82] Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator: Extensibility

and Efficient Search. In Proceedings of the Ninth International Conference on Data

Engineering (ICDE), pages 209–218. IEEE Computer Society, 1993. 2.1, 7.2

[83] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and

approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete

Mathematics, 4:287–326, 1979. 2.3

[84] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., 1st edition, 1992. ISBN 1558601902. 1

[85] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudre-Mauroux,

and Samuel Madden. HYRISE: A Main Memory Hybrid Storage Engine. Proc. VLDB

Endow., 4(2):105–116, November 2010. 2.5

[86] Tim Gubner. Achieving many-core scalability in Vectorwise. 2014. Master thesis at

the Technische Universität Ilmenau.

. 2.4.2

[87] PK Gupta (Intel). Xeon+FPGA Platform for the Data Center. The Fourth Workshop on

the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2015). URL

. 7.2

[88] B. Hamidzadeh and D. J. Lilja. Dynamic scheduling strategies for shared-memory

multiprocessors. In Proceedings of the 16th International Conference on Distributed

Computing Systems (ICDCS), pages 208–215, May 1996. 2.3, 4.1.2

[89] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in servers.

IEEE Micro, 31(4):6–15, July 2011. 1.1

[90] Stavros Harizopoulos and Anastassia Ailamaki. A case for staged database systems. In

In Proceedings of 1st Conference on Innovative Data Systems Research (CIDR), 2003. 2.2.2

142

Bibliography

[91] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. QPipe: A Simul-

taneously Pipelined Relational Query Engine. In Proceedings of the 2005 ACM SIGMOD

International Conference on Management of Data, pages 383–394. ACM, 2005. (docu-

ment), 1.2, 1.3.1, 2.1, 2.2, 2.2, 2.2.1, 2.2, 2.2.2, 3.1.1, 3.1.3, 3.3, 3.3, 3.4.1

[92] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. Architecture of a

database system. Found. Trends databases, 1(2):141–259, February 2007. 4.1

[93] Gerhard Hill and Andrew Ross. Reducing Outer Joins. The VLDB Journal, 18(3):599–610,

June 2009. 5.5

[94] Ralf Hoffmann, Matthias Korch, and Thomas Rauber. Performance evaluation of task

pools based on hardware synchronization. In Proceedings of the 2004 ACM/IEEE Con-

ference on Supercomputing (SC), pages 44–. IEEE Computer Society, 2004. 2.3, 4.1,

4.1.2

[95] Judith Hurwitz, Alan Nugent, Fern Halper, and Marcia Kaufman. Big Data For Dummies.

For Dummies, 1st edition, 2013. ISBN 1118504224, 9781118504222. 1

[96] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, and

Martin L. Kersten. MonetDB: Two Decades of Research in Column-oriented Database

Architectures. IEEE Data Engineering Bulletin, 35(1):40–45, 2012. 2.5

[97] F. Ryan Johnson, Radu Stoica, Anastasia Ailamaki, and Todd C. Mowry. Decoupling

Contention Management from Scheduling. In Proceedings of the Fifteenth Edition of

ASPLOS on Architectural Support for Programming Languages and Operating Systems,

pages 117–128. ACM, 2010. 2.3

[98] Ryan Johnson, Stavros Harizopoulos, Nikos Hardavellas, Kivanc Sabirli, Ippokratis

Pandis, Anastasia Ailamaki, Naju G. Mancheril, and Babak Falsafi. To Share or Not to

Share? In Proceedings of the 33rd International Conference on Very Large Data Bases

(VLDB), pages 351–362. VLDB Endowment, 2007. 1.2, 3.1.3, 3.1.4, 3.3, 3.3, 3.3, 7.2

[99] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak

Falsafi. Shore-MT: A Scalable Storage Manager for the Multicore Era. In Proceedings

of the 12th International Conference on Extending Database Technology: Advances in

Database Technology (EDBT), pages 24–35. ACM, 2009. 2.1, 3.1.2, 3.2.2, 3.4.1

[100] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High Performance Buffer

Management Replacement Algorithm. In Proceedings of the 20th International Confer-

ence on Very Large Data Bases (VLDB), pages 439–450. Morgan Kaufmann Publishers

Inc., 1994. 2.2

[101] Alfons Kemper and Thomas Neumann. HyPer: A Hybrid OLTP&OLAP Main Memory

Database System Based on Virtual Memory Snapshots. In Proceedings of the 2011

IEEE 27th International Conference on Data Engineering (ICDE), pages 195–206. IEEE

Computer Society, 2011. (document), 2.1, 4, 4.2, 4.2.2, 4.7, 4.2.2

143

Bibliography

[102] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Complete Guide to

Dimensional Modeling. John Wiley & Sons, Inc., 2nd edition, 2002. 1, 2.2.3, 2.2.4

[103] Thomas Kissinger, Tim Kiefer, Benjamin Schlegel, Dirk Habich, Daniel Molka, and

Wolfgang Lehner. ERIS: A NUMA-Aware In-Memory Storage Engine for Analytical

Workload. In International Workshop on Accelerating Data Management Systems Using

Modern Processor and Storage Architectures (ADMS), pages 74–85, 2014. 1.3.2, 2.4.1,

2.4.2, 5.1, 6.1

[104] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for Allocating Directed

Task Graphs to Multiprocessors. ACM Comput. Surv., 31(4):406–471, December 1999.

2.3

[105] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson, S. Hase, A. Holloway,

J. Kamp, T. H. Lee, J. Loaiza, N. Macnaughton, V. Marwah, N. Mukherjee, A. Mullick,

S. Muthulingam, V. Raja, M. Roth, E. Soylemez, and M. Zait. Oracle Database In-Memory:

A dual format in-memory database. In IEEE 31st International Conference on Data

Engineering (ICDE), pages 1253–1258, April 2015. 2.5, 2.5, 5.2

[106] Christoph Lameter, Bill Hsu, Marc Sosnick-Pérez, David Bacon, Rodric Rabbah, Sunil

Shukla, Andrew Danowitz, Kyle Kelley, James Mao, and John P. Stevenson. NUMA (Non-

Uniform Memory Access): An Overview. ACM Queue, 11(7):40, 2013. 1.1, 1.2, 2.4.1,

2.4.1

[107] C. A. Lang, B. Bhattacharjee, T. Malkemus, S. Padmanabhan, and K. Wong. Increasing

Buffer-Locality for Multiple Relational Table Scans through Grouping and Throttling. In

2007 IEEE 23rd International Conference on Data Engineering, pages 1136–1145, 2007.

2.2

[108] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and Alfons Kem-

per. Massively Parallel NUMA-aware Hash Joins. In International Workshop on In-

Memory Data Management and Analytics (IMDM), 2013. 2.4.2

[109] Richard P. LaRowe, Jr., Mark A. Holliday, and Carla Schlatter Ellis. An analysis of dynamic

page placement on a numa multiprocessor. In Proceedings of the 1992 ACM SIGMETRICS

Joint International Conference on Measurement and Modeling of Computer Systems,

pages 23–34, 1992. 2.4.2

[110] Richard P. LaRowe Jr and Carla Schlatter Ellis. Experimental comparison of memory

management policies for NUMA multiprocessors. In ACM Transactions on Computer

Systems (TOCS), volume 9, pages 319–363, 1991. 2.4.2

[111] Per-Ake Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson, Mostafa Mokhtar,

Michal Nowakiewicz, Vassilis Papadimos, Susan L. Price, Srikumar Rangarajan, Remus

Rusanu, and Mayukh Saubhasik. Enhancements to SQL Server Column Stores. In

Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data,

pages 1159–1168. ACM, 2013. 2.1, 2.4.2, 2.5, 2.5

144

Bibliography

[112] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server.

In Proceedings of the 24th Annual International Symposium on Computer Architecture

(ISCA), pages 241–251. ACM, 1997. 2.4.1, 2.4.1

[113] J. Lee, Y. S. Kwon, F. Färber, M. Muehle, C. Lee, C. Bensberg, J. Y. Lee, A. H. Lee, and

W. Lehner. SAP HANA distributed in-memory database system: Transaction, session,

and metadata management. In IEEE 29th International Conference on Data Engineering

(ICDE), pages 1165–1173, April 2013. 2.5, 2.5, 4.2.1

[114] Rubao Lee, Xiaoning Ding, Feng Chen, Qingda Lu, and Xiaodong Zhang. MCC-DB:

Minimizing Cache Conflicts in Multi-core Processors for Databases. Proc. VLDB Endow.,

2(1):373–384, August 2009. 2.4.2

[115] Thomas Legler, Wolfgang Lehner, and Andrew Ross. Data Mining with the SAP

NetWeaver BI Accelerator. In Proceedings of the 32nd International Conference on

Very Large Data Bases (VLDB), pages 1059–1068. VLDB Endowment, 2006. 5.5.2

[116] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware transactional memory in main-

memory databases. In 2014 IEEE 30th International Conference on Data Engineering

(ICDE), pages 580–591, March 2014. 4.2.2

[117] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven Par-

allelism: A NUMA-aware Query Evaluation Framework for the Many-core Age. In

Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data,

pages 743–754. ACM, 2014. (document), 1.3.2, 2.4.1, 2.4.2, 2.5, 4.7, 4.2.2, 5.1, 6.1, 7.2

[118] Christian Lemke, Kai-Uwe Sattler, Franz Faerber, and Alexander Zeier. Speeding Up

Queries in Column Stores: A Case for Compression. In Proceedings of the 12th Inter-

national Conference on Data Warehousing and Knowledge Discovery (DaWaK), pages

117–129. Springer-Verlag, 2010. 2.1, 2.5, 5.3.1, 5.3.1

[119] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the Cost of Context Switch. In

Proceedings of the 2007 Workshop on Experimental Computer Science (ExpCS). ACM,

2007. 4.1

[120] Yinan Li, Ippokratis Pandis, René Müller, Vijayshankar Raman, and Guy M. Lohman.

NUMA-aware algorithms: the case of data shuffling. In 6th Biennial Conference on

Innovative Data Systems Research (CIDR), 2013. 2.4.2

[121] Ling Liu and M. Tamer Zsu. Encyclopedia of Database Systems. Springer Publishing

Company, Incorporated, 1st edition, 2009. ISBN 0387355448, 9780387355443. 4.1

[122] Hans-Wolfgang Loidl and Kevin Hammond. On the granularity of divide-and-conquer

parallelism. In Proceedings of the 1995 International Conference on Functional Program-

ming (FP), pages 135–144. British Computer Society, 1995. 2.3, 4.1.4, 4.1.5

145

Bibliography

[123] Tom Lovett and Russell Clapp. STiNG: A CC-NUMA Computer System for the Com-

mercial Marketplace. In Proceedings of the 23rd Annual International Symposium on

Computer Architecture (ISCA), pages 308–317, 1996. 2.4.1

[124] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma, and

Alexandra Fedorova. The linux scheduler: a decade of wasted cores. pages 1–16. ACM

Press, 2016. ISBN 978-1-4503-4240-7. 4.1

[125] Hongjun Lu and Kian-Lee Tan. Dynamic and Load-balanced Task-Oriented Datbase

Query Processing in Parallel Systems. In Proceedings of the 3rd International Conference

on Extending Database Technology: Advances in Database Technology (EDBT), pages

357–372. Springer-Verlag, 1992. 1.3.2

[126] Roger MacNicol and Blaine French. Sybase IQ Multiplex - Designed for Analytics. In

Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB) -

Volume 30, pages 1227–1230. VLDB Endowment, 2004. 4.2

[127] Zoltan Majo and Thomas R. Gross. Matching Memory Access Patterns and Data Place-

ment for NUMA Systems. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization (CGO), pages 230–241, 2012. 2.4.2

[128] Darko Makreshanski, Georgios Giannikis, Gustavo Alonso, and Donald Kossmann.

MQJoin: Efficient Shared Execution of Main-memory Joins. Proc. VLDB Endow., 9

(6):480–491, January 2016. 2.2.3

[129] Jaydeep Marathe and Frank Mueller. Hardware Profile-guided Automatic Page Place-

ment for ccNUMA Systems. In Proceedings of the Eleventh ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP), pages 90–99, 2006. 2.4.2

[130] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. Feedback-directed Page Placement

for ccNUMA via Hardware-generated Memory Traces. J. Parallel Distrib. Comput., 70

(12):1204–1219, December 2010. 2.4.2

[131] Sebastian Mattheis, Tobias Schuele, Andreas Raabe, Thomas Henties, and Urs Gleim.

Work Stealing Strategies for Parallel Stream Processing in Soft Real-time Systems. In

Proceedings of the 25th International Conference on Architecture of Computing Systems

(ARCS), pages 172–183. Springer-Verlag, 2012. 2.3

[132] Nimrod Megiddo and Dharmendra S. Modha. ARC: A Self-Tuning, Low Overhead

Replacement Cache. In Proceedings of the 2Nd USENIX Conference on File and Storage

Technologies (FAST), pages 115–130. USENIX Association, 2003. 2.2

[133] S. Mittal, J. S. Vetter, and D. Li. A Survey Of Architectural Approaches for Managing

Embedded DRAM and Non-Volatile On-Chip Caches. IEEE Transactions on Parallel and

Distributed Systems, 26(6):1524–1537, June 2015. 7.2

146

Bibliography

[134] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy Task Creation: A Technique

for Increasing the Granularity of Parallel Programs. In Proceedings of the 1990 ACM

Conference on LISP and Functional Programming (LFP), pages 185–197. ACM, 1990. 2.3

[135] D. Molka, D. Hackenberg, R. Schöne, and W. E. Nagel. Cache Coherence Protocol

and Memory Performance of the Intel Haswell-EP Architecture. In 44th International

Conference on Parallel Processing (ICPP), pages 739–748, 2015. 2.4.1

[136] G.E. Moore. Cramming More Components Onto Integrated Circuits. Proceedings of the

IEEE, 86(1):82–85, 1998. 1.1

[137] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant Scheduling. In

Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 422–431. Society for Industrial and Applied Mathematics, 1993. 2.3

[138] Niloy Mukherjee, Shasank Chavan, Maria Colgan, Dinesh Das, Mike Gleeson, Sanket

Hase, Allison Holloway, Hui Jin, Jesse Kamp, Kartik Kulkarni, Tirthankar Lahiri, Juan

Loaiza, Neil Macnaughton, Vineet Marwah, Atrayee Mullick, Andy Witkowski, Jiaqi Yan,

and Mohamed Zait. Distributed Architecture of Oracle Database In-memory. Proc.

VLDB Endow., 8(12):1630–1641, August 2015. 2.4.2

[139] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz Färber. Cache-

Efficient Aggregation: Hashing Is Sorting. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, pages 1123–1136. ACM, 2015. 5.5, 5.5,

5.5.1

[140] Girija J. Narlikar. Scheduling Threads for Low Space Requirement and Good Locality.

In Proc. of the 11th Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA), pages 83–95, 1999. 2.3

[141] Pat O Neil, Betty O Neil, and Xuedong Chen. The Star Schema Benchmark (SSB), Revision

3. 2009. 3.4.1

[142] Daniel Neill and Adam Wierman. On the Benefits of Work Stealing in Shared-

Memory Multiprocessors, 2011. Project Report at Carnegie Mellon University.

. 2.3, 4.1

[143] Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.

Proc. VLDB Endow., 4(9):539–550, June 2011. 4.2, 4.2.2, 7.2

[144] Tho Manh Nguyen, Josef Schiefer, and A. Min Tjoa. Sense & Response Service Architec-

ture (SARESA): An Approach Towards a Real-time Business Intelligence Solution and

Its Use for a Fraud Detection Application. In Proceedings of the 8th ACM International

Workshop on Data Warehousing and OLAP (DOLAP), pages 77–86. ACM, 2005. 4.2

147

Bibliography

[145] Thu D. Nguyen, Raj Vaswani, and John Zahorjan. Using runtime measured workload

characteristics in parallel processor scheduling, pages 155–174. Springer Berlin Heidel-

berg, 1996. 2.3

[146] Dimitrios S. Nikolopoulos, Constantine D. Polychronopoulos, Theodore S. Pap-

atheodorou, Jesús Labarta, and Eduard Ayguadé. Scheduler-Activated Dynamic Page

Migration for Multiprogrammed DSM Multiprocessors. J. Parallel Distrib. Comput., 62

(6):1069–1103, June 2002. 2.4.2

[147] Lisa Noordergraaf and Ruud van der Pas. Performance Experiences on Sun’s Wildfire

Prototype. In Proceedings of the 1999 ACM/IEEE Conference on Supercomputing (SC),

1999. 2.4.2

[148] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris Grot.

Scale-out numa. In Proceedings of the 19th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), pages 3–18, 2014.

7.3

[149] Stephen L Olivier, Allan K Porterfield, Kyle B Wheeler, Michael Spiegel, and Jan F Prins.

OpenMP Task Scheduling Strategies for Multicore NUMA Systems. Int. J. High Perform.

Comput. Appl., 26(2):110–124, May 2012. 2.3, 2.4.2

[150] Carl Olofson and Henry Morris. Blending transactions and analytics in a single in-

memory platform: Key to the real-time enterprise. Technical report, International Data

Corporation (IDC), February 2013. IDC 239327. 4.2

[151] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K Page Replace-

ment Algorithm for Database Disk Buffering. In Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, pages 297–306. ACM, 1993. 2.2

[152] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems, Third

Edition. Springer, 2011. ISBN 978-1-4419-8833-1. 2.4.2

[153] M. A. Palis, Jing-Chiou Liou, and D. S. L. Wei. Task clustering and scheduling for dis-

tributed memory parallel architectures. IEEE Transactions on Parallel and Distributed

Systems, 7(1):46–55, Jan 1996. 2.3

[154] Hasso Plattner. A Common Database Approach for OLTP and OLAP Using an In-memory

Column Database. In Proceedings of the 2009 ACM SIGMOD International Conference

on Management of Data, pages 1–2. ACM, 2009. 4.2

[155] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki. ATraPos: Adaptive transaction process-

ing on hardware Islands. In IEEE 30th International Conference on Data Engineering

(ICDE), pages 688–699, March 2014. 2.4.2

[156] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pinar Tözün, and Anastasia Ailamaki.

OLTP on Hardware Islands. Proc. VLDB Endow., 5(11):1447–1458, July 2012. 1.1

148

Bibliography

[157] Iraklis Psaroudakis, Manos Athanassoulis, and Anastasia Ailamaki. Sharing Data and

Work Across Concurrent Analytical Queries. Proc. VLDB Endow., 6(9):637–648, July 2013.

1.2, 1.3.1, 1, 2, 3

[158] Iraklis Psaroudakis, Tobias Scheuer, Norman May, and Anastasia Ailamaki. Task Schedul-

ing for Highly Concurrent Analytical and Transactional Main-Memory Workloads. In

Proceedings of the Fourth International Workshop on Accelerating Data Management

Systems Using Modern Processor and Storage Architectures (ADMS), 2013. 1.2, 1.3.2, 3, 4

[159] Iraklis Psaroudakis, Manos Athanassoulis, Matthaios Olma, and Anastasia Ailamaki.

Reactive and proactive sharing across concurrent analytical queries. In Proceedings

of the 2014 ACM SIGMOD International Conference on Management of Data, pages

889–892. ACM, 2014. 1.3.1, 2, 3

[160] Iraklis Psaroudakis, Thomas Kissinger, Danica Porobic, Thomas Ilsche, Erietta Liarou,

Pinar Tözün, Anastasia Ailamaki, and Wolfgang Lehner. Dynamic Fine-grained Schedul-

ing for Energy-efficient Main-memory Queries. In Proceedings of the Tenth International

Workshop on Data Management on New Hardware (DaMoN), pages 1:1–1:7. ACM, 2014.

7.2

[161] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anastasia

Ailamaki. Scaling Up Concurrent Main-memory Column-store Scans: Towards Adaptive

NUMA-aware Data and Task Placement. Proc. VLDB Endow., 8(12):1442–1453, August

2015. 1.3.2, 4, 5

[162] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexander Böhm,

Anastasia Ailamaki, and Kai-Uwe Sattler. Scaling Up Mixed Workloads: A Battle of Data

Freshness, Flexibility, and Scheduling. In Raghunath Nambiar and Meikel Poess, editors,

6th TPC Technology Conference on Performance Characterization and Benchmarking

(TPCTC) 2014. Revised Selected Papers, pages 97–112. Springer International Publishing,

2015. 1.3.2, 3, 4

[163] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anastasia

Ailamaki. Adaptive NUMA-aware data placement and task scheduling for analytical

workloads in main-memory column-stores. Proc. VLDB Endow., 10(2), 2016. 1.3.2, 5, 5,

6

[164] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and Guy M. Lohman.

Main-memory Scan Sharing for Multi-core CPUs. Proc. VLDB Endow., 1(1):610–621,

August 2008. 2.2, 3.1.3, 3.1.4, 3.3

[165] Ravi Rajwar, Martin Dixon, and Ronak Singhal. Specialized Evolution of the General

Purpose CPU. In Seventh Biennial Conference on Innovative Data Systems Research

(CIDR), 2015. 7.2

149

Bibliography

[166] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-

Hill, 3rd edition, 2002. ISBN 0072465638. 1.2, 4.1

[167] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk,

Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu, Guy M. Lohman,

Tim Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer, David Sharpe, Richard

Sidle, Adam Storm, and Liping Zhang. DB2 with BLU Acceleration: So Much More Than

Just a Column Store. Proc. VLDB Endow., 6(11):1080–1091, August 2013. 2.1, 2.4.2, 4.2

[168] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. Automating Physical

Database Design in a Parallel Database. In Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data, pages 558–569. ACM, 2002. 2.4.2

[169] Nicholas Roussopoulos. View Indexing in Relational Databases. ACM Trans. Database

Syst., 7(2):258–290, June 1982. 1.3.1, 2.2

[170] Nick Roussopoulos, Chungmin M. Chen, Stephen Kelley, Alex Delis, and Yannis Pa-

pakonstantinou. The ADMS Project: Views "R" Us. IEEE Data Eng. Bull., 18(2), 1995.

2.2

[171] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and Extensible

Algorithms for Multi Query Optimization. In Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, pages 249–260. ACM, 2000. 2.2

[172] Philip Russom. High-Performance Data Warehousing. The Data Warehousing In-

stitute (TDWI), October 2012. TDWI Best Practices Report.

. 1

[173] Giovanni Maria Sacco and Mario Schkolnick. Buffer management in relational database

systems. ACM Trans. Database Syst., 11(4):473–498, December 1986. 1.3.1

[174] Jochen Seidel. Job-Scheduling in Main-Memory Based Parallel Database Systems. 2010.

Diploma thesis at the Karlsruhe Institute of Technology (KIT). 1.1

[175] Timos K. Sellis. Multiple-query Optimization. ACM Trans. Database Syst., 13(1):23–52,

March 1988. 2.2, 7.2

[176] Junho Shim, Peter Scheuermann, and Radek Vingralek. Dynamic Caching of Query Re-

sults for Decision Support Systems. In Proceedings of the 11th International Conference

on Scientific and Statistical Database Management (SSDBM). IEEE Computer Society,

1999. 2.2, 2.2.1

[177] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and Christof

Bornhövd. Efficient Transaction Processing in SAP HANA Database: The End of a

Column Store Myth. In Proceedings of the 2012 ACM SIGMOD International Conference

on Management of Data, pages 731–742. ACM, 2012. 2.5

150

Bibliography

[178] O. Steinau and J. Hartmann. Method for calculating distributed joins in main memory

with minimal communicaton overhead, 2006. US Patent App. 11/018,697. 5.5

[179] Per Stenström, Truman Joe, and Anoop Gupta. Comparative Performance Evaluation

of Cache-coherent NUMA and COMA Architectures. In Proceedings of the 19th Annual

International Symposium on Computer Architecture (ISCA), pages 80–91, 1992. 2.4.2

[180] Radu Stoica, Justin J. Levandoski, and Per-Ake Larson. Identifying Hot and Cold Data in

Main-memory Databases. In Proceedings of the 2013 IEEE International Conference on

Data Engineering (ICDE), pages 26–37. IEEE Computer Society, 2013. 2.1

[181] Michael Stonebraker and Ugur Cetintemel. "One Size Fits All": An Idea Whose Time Has

Come and Gone. In Proceedings of the 21st International Conference on Data Engineering

(ICDE), pages 2–11. IEEE Computer Society, 2005. 1, 2.1, 4.2

[182] Michael Stonebraker and Ariel Weisberg. The VoltDB Main Memory DBMS. IEEE Data

Eng. Bull., 36(2):21–27, 2013. 4.2, 4.2

[183] Jie Tao, Martin Schulz, and Wolfgang Karl. SIMT/OMP: A Toolset to Study and Exploit

Memory Locality of OpenMP Applications on NUMA Architectures. In Proceedings of

the 5th International Conference on OpenMP Applications and Tools: Shared Memory

Parallel Programming with OpenMP (WOMPAT), pages 41–52, 2005. 2.4.2

[184] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Using Hardware Counters to Automati-

cally Improve Memory Performance. In Proceedings of the 2004 ACM/IEEE Conference

on Supercomputing (SC), 2004. 2.4.2

[185] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Hardware monitors for dynamic page

migration. J. Parallel Distrib. Comput., 68(9):1186–1200, September 2008. 2.4.2

[186] F. Transier, C. Mathis, N. Bohnsack, and K. Stammerjohann. Aggregation in parallel

computation environments with shared memory, 2012. US Patent App. 12/978,194. 5.5,

5.5

[187] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing

on-chip parallelism. In Proceedings of the 22nd Annual International Symposium on

Computer Architecture (ISCA), pages 392–403, June 1995. 1.1

[188] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann. Predictable

performance for unpredictable workloads. Proc. VLDB Endow., 2(1):706–717, August

2009. 2.2, 3.1.1

[189] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating System

Support for Improving Data Locality on CC-NUMA Compute Servers. In Proceedings

of the Seventh International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pages 279–289, 1996. 2.4.2

151

Bibliography

[190] Vish Viswanathan. Intel Memory Latency Checker, November 2013.

. 2.4.1

[191] Mehul Wagle, Daniel Booss, Ivan Schreter, and Daniel Egenolf. NUMA-Aware Memory

Management with In-Memory Databases, pages 45–60. Springer International Publish-

ing, 2016. 5.3.1, 6.3.2

[192] David Watts and Duncan Furniss. IBM eX5 Portfolio Overview. Sixth edition, April 2013.

2.4.1

[193] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory,

Algorithms, and the Practice of Concurrency Control and Recovery. Morgan Kaufmann

Publishers Inc., 2001. ISBN 1-55860-508-8. 2.5

[194] Thomas Willhalm. Independent Channel vs. Lockstep Mode – Drive your Memory

Faster or Safer, July 2014.

. 2.4.1

[195] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier,

and Jan Schaffner. SIMD-scan: Ultra Fast In-memory Table Scan Using On-chip Vector

Processing Units. Proc. VLDB Endow., 2(1):385–394, August 2009. 2.1, 2.5, 5.3.1, 5.4

[196] Thomas Willhalm, Roman Dementiev, and Patrick Fay. Intel Performance Counter

Monitor - A better way to measure CPU utilization, August 2012.

. 4.1.5, 5.4, 6.2, 6.5

[197] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faerber. Vectorizing database

column scans with complex predicates. In 4th International Workshop on Accelerating

Data Management Systems Using Modern Processor and Storage Architectures (ADMS),

pages 1–12, 2013. 2.1, 2.5, 5.3.1

[198] Jason Williamson. Getting a Big Data Job For Dummies. For Dummies, 1st edition, 2015.

ISBN 9781118903407. 1

[199] Kenneth M. Wilson and Bob B. Aglietti. Dynamic Page Placement to Improve Locality in

CC-NUMA Multiprocessors for TPC-C. In Proceedings of the 2001 ACM/IEEE Conference

on Supercomputing (SC), pages 33–33, 2001. 2.4.2

[200] Florian Wolf, Iraklis Psaroudakis, Norman May, Anastasia Ailamaki, and Kai-Uwe Sat-

tler. Extending Database Task Schedulers for Multi-threaded Application Code. In

Proceedings of the 27th International Conference on Scientific and Statistical Database

Management (SSDBM), pages 25:1–25:12. ACM, 2015. 5.3

[201] Johannes Wust, Martin Grund, Kai Hoewelmeyer, David Schwalb, and Hasso Plattner.

Concurrent Execution of Mixed Enterprise Workloads on In-Memory Databases, pages

126–140. Springer International Publishing, 2014. 2.3

152

Bibliography

[202] Yang Ye, Kenneth A. Ross, and Norases Vesdapunt. Scalable Aggregation on Multicore

Processors. In Proceedings of the Seventh International Workshop on Data Management

on New Hardware (DaMoN), pages 1–9. ACM, 2011. 5.5, 5.5.1

[203] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. Locality-aware Partitioning

in Parallel Database Systems. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pages 17–30. ACM, 2015. 7.2

[204] Steffen Zeuch and Johann-Christoph Freytag. QTM: Modelling Query Execution with

Tasks. In International Workshop on Accelerating Data Management Systems Using

Modern Processor and Storage Architectures (ADMS), pages 34–45, 2014. 2.3

[205] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, and M. Zhang. In-Memory Big Data Management

and Processing: A Survey. IEEE Transactions on Knowledge and Data Engineering, 27(7):

1920–1948, July 2015. 2.1

[206] Zheng Zhang, Marcelo Cintra, and Josep Torrellas. Excel-NUMA: Toward Programmabil-

ity, Simplicity, and High Performance. IEEE Trans. Comput., 48(2):256–264, February

1999. 2.4.2

[207] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova, and Manuel

Prieto. Survey of Scheduling Techniques for Addressing Shared Resources in Multicore

Processors. ACM Comput. Surv., 45(1):4:1–4:28, December 2012. 2.3

[208] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems, Third

Edition. Springer New York. ISBN 978-1-4419-8833-1 978-1-4419-8834-8. 2.4.2

[209] Marcin Zukowski and Peter A. Boncz. Vectorwise: Beyond Column Stores. IEEE Data

Eng. Bull., 35(1):21–27, 2012. 2.4.2, 4.2

[210] Marcin Zukowski, Peter A. Boncz, Niels Nes, and Sandor Heman. MonetDB/X100 – a

DBMS in the CPU cache. IEEE Data Eng. Bull., 28(2):17–22, 2005. 2.1

[211] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. Cooperative Scans:

Dynamic Bandwidth Sharing in a DBMS. In Proceedings of the 33rd International

Conference on Very Large Data Bases (VLDB), pages 723–734. VLDB Endowment, 2007.

1.3.1, 2.2, 3.1.1

153

CURRICULUM VITAE: IRAKLIS PSAROUDAKIS IS

Age:
Website:

Birth year: 1987 (Greece)
http://www.kingherc.com/

Address:
E-mail:

Please e-mail me to ask for address
kingherc@gmail.com

Objective: I am a technology enthusiast with a firm theoretical background and strong practical skills in
software and web development. I completed my PhD in computer science at EPFL (Lausanne, Switzerland).
After finishing my PhD thesis, I am interested in finding a challenging job in the technology industry.

Work experience
Aug. 2012 –
Dec. 2012

Software developer (Internship) – SAP S.E., Walldorf, Germany.
C++ developer for the thread and task scheduling framework of the SAP HANA database.

Nov. 2010 –
Aug. 2011

Computer programmer and analyst (Private) – Greek army, Greece.
Completed my military obligations as a private in the body of information technology.

Jan. 2009 –
Jun. 2010

Software and web developer (Under student fellowship) – Institute for the Management
of Information Systems (IMIS), Athens, Greece.
Did my diploma thesis “Application of Object Relational Mapping on the environment for
the management of webpages of courses of NTUA”, supervised by Prof. Timos Sellis.

Education
Sep. 2011 –
Dec. 2016

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
PhD. School of Computer and Communication Sciences, Data-Intensive Applications
Laboratory (DIAS) lab. In cooperation with the SAP HANA database team (Walldorf,
Germany) during Jan. 2013 – Sep. 2016. Thesis title: “Scaling Up Concurrent Analytical
Workloads on Multi-Core Processor Servers”. Core research areas:
 Sharing data and work across concurrent analytical queries.
Showed how two state-of-the-art sharing techniques, sharing common sub-plans and
sharing query operators, can be combined to further improve performance by up to 2x.
 Adaptive NUMA-aware data placement and task scheduling.
Showed how to adapt data placement and task stealing to the workload to improve the
performance of main-memory column-stores for analytical workloads by up to 4x.

Sep. 2005 –
Jul. 2010

National Technical University of Athens (NTUA), Athens, Greece.
5-Year Diploma (MSc equivalent) in Electrical & Computer Engineering.
 Major: computer science (information systems).
 GPA: 8.70/10.00. Ranking: inside 10% of the class.

Jun. 2005 Private Senior School Pagkritio Ekpaideutirio, Heraklion, Greece. Degree 19.6/20.00.

Publications and conferences
VLDB 2017 I. Psaroudakis, T. Scheuer, N. May, A. Sellami, A. Ailamaki. “Adaptive NUMA-aware data

placement and task scheduling for analytical workloads in main-memory column-stores”.
VLDB 2015 I. Psaroudakis, T. Scheuer, N. May, A. Sellami, A. Ailamaki. “Scaling Up Concurrent Main-

Memory Column-Store Scans: Towards Adaptive NUMA-aware Data and Task Placement”.
SSDBM 2015 F. Wolf, I. Psaroudakis, N. May, A. Ailamaki, K.-U. Sattler. “Extending database task

schedulers for multi-threaded application code”.
ICDE 2015 A. Ailamaki, E. Liarou, P. Tözün, D. Porobic, I. Psaroudakis. “How to Stop Under-

Utilization and Love Multicores”. (tutorial)
TPCTC 2014

I. Psaroudakis, F. Wolf, N. May, T. Neumann, A. Böhm, A. Ailamaki, K.-U. Sattler.
“Scaling up Mixed Workloads: a Battle of Data Freshness, Flexibility, and Scheduling”.

SIGMOD
2014

A. Ailamaki, E. Liarou, P. Tözün, D. Porobic, I. Psaroudakis. “How to Stop Under-
Utilization and Love Multicores”. (tutorial)

SIGMOD
2014

I. Psaroudakis, M. Athanassoulis, M. Olma, A. Ailamaki. “Reactive and Proactive Sharing
Across Concurrent Analytical Queries”. (demo)

DaMoN 2014 I. Psaroudakis, T. Kissinger, D. Porobic, T. Ilsche, E. Liarou, P. Tözün, A. Ailamaki, W.
Lehner. “Dynamic Fine-Grained Scheduling for Energy-Efficient Main-Memory Queries”.

ADMS 2013 I. Psaroudakis, T. Scheuer, N. May and A. Ailamaki. “Task Scheduling for Highly
Concurrent Analytical and Transactional Main-Memory Workloads”.

VLDB 2013 I. Psaroudakis, M. Athanassoulis, and A. Ailamaki. “Sharing Data and Work Across
Concurrent Analytical Queries”.

155

Computer skills

Programming
& IT skills

Excellent

 C++. Boost C++ libraries. Debugging with gdb.
 C# for Microsoft’s .NET Framework using Visual Studio.
 Java for desktop and web development.
 Web development: HTML, CSS, JavaScript, AJAX, jQuery.
 Performance analysis using perf and Intel VTune Amplifier.
 SQL. DBMS: Microsoft SQL Server, MySQL, PostgreSQL, SAP HANA.
 Software IDEs: Eclipse, NetBeans, Visual Studio, Dreamweaver, vim.

Good

 LAMP (Linux, Apache, MySQL, PHP) for web development.
 Windows Server 2008, its network infrastructure and tools.
 Learned during university: ML, Prolog, Matlab (for image & signal analysis),
assembly (for microprocessors 8085/6, AVR and DOS), UML.

Certifications

 ETS Graduate Record Examinations (GRE) scores: V. 530, Q. 800, A. 4.5. (Oct. 2010)
 Microsoft Certified Technology Specialist (MCTS) certifications: .NET Framework 3.5
(ASP.NET, Windows Forms, ADO.NET, Windows Communication Foundation
Applications), SQL Server 2008 (Database Development), Windows Server 2008
(Applications Infrastructure, Configuration).

 To validate, visit https://mcp.microsoft.com/Anonymous/Transcript/Validate and enter 857732, MCPpr0ven.
 Adobe Certified Associate for Rich Media Communication using Adobe Flash.
 European Computer Driving License (ECDL) Core Certificate.

Personal skills

Languages

 English – Fluent (Certificate of Proficiency in English, University of Cambridge).
ETS Test of English as a Foreign Language (TOEFL) score: 112 (internet-based), 2010.
 French – Conversational (Diplôme d’ Études en Langue Française 2nd Degré).
 Greek – Native speaker.

Competences

 Social: Frequent cooperation with teammates for the successful completion of projects.
 Problem-Solving: Worked on projects which required extensive analysis and research.
 Ability to multitask: Worked in more than one project at the same time with success.

Interests Technology and video games. Trips, photographing, driving and tennis. Music and movies.
Seminars and other events
27-31 Jan. 2014 CUSO Winter School on Data-Centric Systems, Veysonnaz, Switzerland.

7-12 Apr. 2013 Summer School “Implementation Techniques for Data Management Software”, Dagstuhl,
Germany

28 Jun. – 2 Jul.
2010

Onassis Foundation Science Lecture Series 2010 in Computer Science, Heraklion, Greece
Attended as a Scholarship Recipient Student

9-13 Nov. 2008 Microsoft TechEd Europe, Berlin, Germany. Participated as a Microsoft Student Partner.
Apr. 2003 European Parliament, Strasbourg, France

Won a scholarship (via an essay competition) by Euroscola for a one-week educational visit

Awards and distinctions
2015 Ranked 2nd place in the ACM SIGMOD programming contest
2011 Fellowship student for the first year of my PhD at EPFL
2010 Onassis Foundation Scholarship Recipient to attend the Onassis Science Lecture Series 2010
2007 Imagine Cup (global student competition by Microsoft) – IT Challenge – Ranked 10th

Memberships
2015 – now IEEE (Institute of Electrical and Electronics Engineers) member
2014 – now ACM (Association for Computing Machinery) member
2010 – now Member of the Technical Chamber of Greece (TEE)
2007 – 2011 Microsoft Student Partner in Greece

Active participation in the StudentGuru.gr community. For my presentations, please visit my
personal website. Awarded with MSDN Ultimate subscriptions.

156

