

A HOLISTIC REDUNDANCY- AND INCENTIVE-BASED

FRAMEWORK TO IMPROVE CONTENT AVAILABILITY IN

PEER-TO-PEER NETWORKS

by

Octavio Herrera-Ruiz

BSc Eng Electronics, National Autonomous University of México, 1997

(Ingeniero Mecánico Electricista-Electrónico, UNAM, México, 1997)

M.S. Telecommunications, University of Pittsburgh, 2001

Submitted to the Graduate Faculty of

School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2012

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Octavio Herrera-Ruiz

It was defended on

December 9th, 2011

and approved by

Dr. Prashant Krishnamurthy, Associate Professor, Telecommunications, SIS

Dr. Daniel Mosse, Professor, Computer Science, School of Arts and Sciences

Dr. David Tipper, Associate Professor, Telecommunications, SIS

Dr. Martin Weiss, Professor, Telecommunications, SIS

Dissertation Advisor: Professor Taieb Znati, Telecommunications, SIS

Copyright © by Octavio Herrera-Ruiz

2012

 iii

A HOLISTIC REDUNDANCY– AND INCENTIVE–BASED FRAMEWORK

TO IMPROVE CONTENT AVAILABILITY IN PEER-TO-PEER NETWORKS
Octavio Herrera-Ruiz, PhD

University of Pittsburgh, 2012

Peer-to-Peer (P2P) technology has emerged as an important alternative to the traditional

client-server communication paradigm to build large-scale distributed systems. P2P enables the

creation, dissemination and access to information at low cost and without the need of dedicated

coordinating entities. However, existing P2P systems fail to provide high-levels of content

availability, which limit their applicability and adoption. This dissertation takes a holistic

approach to device mechanisms to improve content availability in large-scale P2P systems.

Content availability in P2P can be impacted by hardware failures and churn. Hardware

failures, in the form of disk or node failures, render information inaccessible. Churn, an inherent

property of P2P, is the collective effect of the users’ uncoordinated behavior, which occurs when

a large percentage of nodes join and leave frequently. Such a behavior reduces content

availability significantly. Mitigating the combined effect of hardware failures and churn on

content availability in P2P requires new and innovative solutions that go beyond those applied in

existing distributed systems. To addresses this challenge, the thesis proposes two

complementary, low cost mechanisms, whereby nodes self-organize to overcome failures and

improve content availability. The first mechanism is a low complexity and highly flexible hybrid

redundancy scheme, referred to as Proactive Repair (PR). The second mechanism is an

incentive-based scheme that promotes cooperation and enforces fair exchange of resources

among peers. These mechanisms provide the basis for the development of distributed self-

 iv

organizing algorithms to automate PR and, through incentives, maximize their effectiveness in

realistic P2P environments.

Our proposed solution is evaluated using a combination of analytical and experimental

methods. The analytical models are developed to determine the availability and repair cost

properties of PR. The results indicate that PR’s repair cost outperforms other redundancy

schemes. The experimental analysis was carried out using simulation and the development of a

testbed. The simulation results confirm that PR improves content availability in P2P. The

proposed mechanisms are implemented and tested using a DHT-based P2P application

environment. The experimental results indicate that the incentive-based mechanism can promote

fair exchange of resources and limits the impact of uncooperative behaviors such as “free-

riding”.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... XVI

1.0 INTRODUCTION ...1

1.1 CONTENT AVAILABILITY ... 2

1.1.1 Physical errors...6

1.1.2 Logical errors ..7

1.2 THESIS STATEMENT ... 8

1.3 RESEARCH OVERVIEW AND CONTRIBUTIONS ... 8

1.4 DISSERTATION ORGANIZATION ... 12

2.0 BACKGROUND AND LITERATURE REVIEW ...14

2.1 P2P TECHNOLOGY... 14

2.1.1 P2P Taxonomies and Features ..15

2.1.1.1 Unstructured P2P Overlays...17

2.1.1.2 Structured P2P Overlays ...18

2.1.2 P2P Architectures Comparison ...21

2.1.3 Content Availability..23

2.1.3.1 Effect of Churn ...23

2.1.3.2 Effect of User Behavior ..25

2.1.4 Content Ownership in P2P Networks ...26

2.2 BAMBOO.. 28

2.3 LITERATURE REVIEW .. 33

2.3.1 Churn Models..33

2.3.2 Redundancy Methods..35

2.3.3 Incentives and Content Availability..38

 vi

3.0 CONTENT AVAILABILITY FRAMEWORK ..41

3.1 FRAMEWORK STRUCTURE ... 41

3.2 FRAMEWORK MODELS .. 43

3.2.1 User Behavior Component..43

3.2.2 Node Availability Component ..44

3.2.3 Network Structure Component ...46

3.2.4 Content Component ..46

3.2.5 Incentives and Redundancy Component...48

3.2.6 Response Variables...49

3.3 FRAMEWORK PARAMETERS .. 51

3.3.1 User Behavior Component..52

3.3.2 Node Availability Component ..52

3.3.2.1 Session Lengths ..53

3.3.2.2 Off-line Interval ..55

3.3.2.3 Oscillating Network Size ..56

3.3.3 Network Component...57

3.3.3.1 Modelnet ...58

3.3.4 Content Component ..60

3.3.5 Incentives and Redundancy Component...62

3.3.5.1 Redundancy...62

3.3.5.2 Incentives-Based Mechanism ...63

4.0 REDUNDANCY..64

4.1 REDUNDANCY SCHEMES .. 66

4.2 FILE AVAILABILITY.. 67

4.2.1 Heterogeneous node availabilities ..68

4.2.2 Homogeneous node availabilities ...73

4.2.2.1 Storage Overhead..74

4.2.2.2 Fragment Availability Model..76

4.3 REDUNDANCY REPAIR .. 79

4.3.1 Failed Repairs ...83

4.3.2 Repair Cost..84

 vii

4.3.2.1 Proactive Replication with Different (S, r) Parameters89

4.3.3 Maintenance Epochs ...91

4.4 REDUNDANCY MAINTENANCE ... 95

4.4.1 System Architecture..98

4.4.2 Agents ...100

4.4.3 System Processes ..101

5.0 INCENTIVES..110

5.1 ECONOMIC MODELS... 110

5.2 INCENTIVE-BASED MECHANISMS FOR CONTENT AVAILABILITY 112

5.2.1 Objective ...112

5.2.2 Design Guidelines...113

5.2.3 Agents ...114

5.2.4 Control Metric...115

5.2.5 Incentive and Penalty Functions ...116

5.2.5.1 Replication Probability Function ..119

5.2.5.2 Transmission Bandwidth Function ...120

5.3 INCENTIVE-BASED MECHANISM CONSTRUCTION .. 122

5.3.1 Redundancy-Maintenance Finite State Machine ..122

5.3.1.1 Requestor State ...124

5.3.1.2 Holder-Publisher State ..124

5.3.1.3 Holder-Provider State ...125

5.3.1.4 Index State ..127

5.3.1.5 Candidate State ...128

5.4 ENHANCED CONTRIBUTION METRIC .. 129

5.5 ADDITIONAL CONSIDERATIONS... 133

6.0 EVALUATION..136

6.1 SIMULATION-EMULATION PLATFORM ... 136

6.2 BASE CONFIGURATION ... 137

6.3 PERFORMANCE METRICS.. 139

6.4 REDUNDANCY EFFECT .. 142

6.5 PARAMETERS EXPLORATION .. 144

 viii

6.5.1 Proactive Replication Redundancy Scheme ...145

6.5.1.1 PR Redundancy with Different Coding Gains (S)148

6.5.1.2 PR Redundancy with Different Reception Efficiencies (k)149

6.5.2 Redundancy Maintenance...149

6.5.2.1 Adaptive Maintenance Epochs ...150

6.5.2.2 TARGET Fragment Availability ..151

6.5.2.3 Minimum Number of Segments Available (MIN_SEG)153

6.5.3 Incentive-Based Mechanism...154

6.5.3.1 Sigmoid Functions Parameters ...155

6.5.3.2 Contribution Gain function ...160

6.6 REDUNDANCY-SYSTEM FLEXIBILITY... 164

6.6.1 Churn Rate ..164

6.6.2 Nodes Participation...165

6.6.3 Benefactor Nodes..170

6.6.4 Content Space Size ...171

7.0 CONCLUSIONS AND FUTURE WORK ..174

APPENDIX A..178

BIBLIOGRAPHY..181

 ix

LIST OF TABLES

Table 1. Peer-to-Peer Systems Properties... 16

Table 2. Comparison of P2P Architectures... 22

Table 3. Response Variables... 50

Table 4. Content Availability Framework Parameters ... 51

Table 5. User Behavior Parameters .. 52

Table 6. Node Availability Component Parameters ... 53

Table 7. Churn Measurement Studies... 54

Table 8. Peers User Class Sample Session Distributions ... 55

Table 9. Bamboo Parameters .. 58

Table 10. File Type/Size Distribution... 61

Table 11. Content Parameters ... 62

Table 12. Redundancy Mechanism Parameters .. 63

Table 13. Incentive-Based Mechanism Parameters .. 63

Table 14. Redundancy Notation: Redundancy Scheme(s) Parameters... 65

Table 15. Redundancy Notation: File Availability ... 65

Table 16. Redundancy Notation: Repair Cost .. 66

Table 17. Repair Cost Calculation Parameters ... 85

Table 18. Redundancy Methods with Flexible vs Fix Coding Gain... 88

Table 19. IndexEntry Data Structure .. 104

Table 20. Content Contribution Metric... 116

Table 21. Sigmoid Function Parameters... 117

Table 22. Replication Probability Function Parameters ... 119

Table 23. Transmission Bandwidth Function Parameters .. 121

Table 24. IndexTable Data Structure .. 128

Table 25. Base Content/Networking Configuration ... 138

 x

Table 26. Response Variables for Alternative Redundancy Schemes.. 147

Table 27. Size and Popularity Components in Contribution Gain Functions............................. 160

 xi

LIST OF FIGURES

Figure 1. Content Availability System States and Transitions Diagram .. 5

Figure 2. Content Availability System Proposed in this Dissertation .. 10

Figure 3. Dissertation Organization.. 12

Figure 4. Unstructured P2P Overlays Taxonomy... 17

Figure 5. Structured P2P Overlays Taxonomy ... 19

Figure 6. Overlays Network Design Decisions... 20

Figure 7. Churn’s Effect on Content Availability... 24

Figure 8. Neighbors in Bamboo.. 29

Figure 9. Distributed Hash Table.. 30

Figure 10. Bamboo’s Performance Under Churn ... 32

Figure 11. Content Availability Framework... 42

Figure 12. User Behavior Model: User Profiles ... 43

Figure 13. Node Churn Model .. 45

Figure 14. Content Component Factors .. 47

Figure 15. Overlay Network Size vs Simulation Time... 57

Figure 16. Modelnet Network Topology .. 59

Figure 17. Redundancy Data Structure... 68

Figure 18. Algorithm 1 Sample Output .. 73

Figure 19. Minimum Storage Overhead ... 75

Figure 20. Redundancy Repair Cost ... 85

Figure 21. Repair Cost for Flexible and Fixed Coding Gain.. 87

Figure 22. Repair Cost for PR with different Coding Gain (S) values ... 90

Figure 23. Repair Cost for PR with different Replication Gain (r) values................................... 90

Figure 24. PR Cost vs MDS and Ideal MDS Cost.. 94

 xii

Figure 25. System Architecture for Redundancy Maintenance .. 98

Figure 26. System Processes Overview.. 102

Figure 27. Effect of Incentive-based Mechanism: a) Normal System, b) System with Incentives

... 113

Figure 28. Sigmoid Function .. 118

Figure 29. Replication Probability Function... 120

Figure 30. Transmission Bandwidth Function.. 122

Figure 31. Redundancy-maintenance process FSM.. 123

Figure 32. Time Contribution Gain .. 131

Figure 33. Sample Simulation’s Cost Results Output .. 140

Figure 34. Sample Simulation’s Efficiency Results Output ... 141

Figure 35. Effect of Redundancy on Content Availability ... 144

Figure 36. Cost and Efficiency for Alternative PR Redundancy Settings.................................. 146

Figure 37. Adaptive Maintenance Epochs and Publication Rate: a) Adapt>0, b) Adapt>=0, c)

Smooth with α=0.4 and d) Smooth with α=0.8.. 151

Figure 38. Cost and Efficiency for Different TARGET Values ... 152

Figure 39. Cost and Efficiency for Different MIN_SEG Values.. 154

Figure 40. Cost and Efficiency for Different Incentive-based Mechanism Parameters 156

Figure 41. Transmission Bandwidth CDF for Various TB-Util Shape Parameter Values 157

Figure 42. Transmission Bandwidth for different TB-Util Shape Parameter Values (Scatter

Diagram) ... 158

Figure 43. Fair Allocation of Resources in Incentive-based Mechanism................................... 159

Figure 44. Cost and Efficiency for Contribution Gain Functions... 161

Figure 45. Download’s Transmission Bandwidth CDF for Contribution Gain Functions 162

Figure 46. RP-Cost Function for Contribution Gain Functions.. 163

Figure 47. Cost and Efficiency for Various Churn Rates ... 165

Figure 48. Cost and Efficiency for Different Percentage of Non-Participants 167

Figure 49. Distribution of Transmission Bandwidth versus Content Contribution for: a)

compliant nodes b) non-compliant nodes. .. 169

Figure 50. Cost and Efficiency for Different Percentage of Benefactors 170

Figure 51. Cost and Efficiency for Different Content Space Sizes .. 172

 xiii

Figure 52. Content Availability for Different Content Space Sizes ... 173

Figure 53. Alternative Node Initializations for Transient Removal ... 180

 xiv

LIST OF ALGORITHMS

Algorithm 1. Optimization of Redundancy Resources ... 72

Algorithm 2. Items Registration Process at Holder Agent ... 103

Algorithm 3. Items Registration Process at Index Agent ... 105

Algorithm 4. Redundancy Evaluation by Index Agent... 106

Algorithm 5. Smooth Maintenance Epoch Mechanism at Index Agent 107

Algorithm 6. Adaptive Maintenance Epoch Mechanism at Index Agent 108

Algorithm 7. RedundancyFix at Index Agent... 109

Algorithm 8. RedundancyFix at Holder Agent... 109

Algorithm 9. Function getSpeed() .. 126

Algorithm 10. Function Utility()... 127

Algorithm 11. Procedure AcceptReplica() ... 128

Algorithm 12. Function Cost().. 129

Algorithm 13. Procedure PerfectSimulation() .. 179

 xv

ACKNOWLEDGEMENTS

“Utopia lies at the horizon.
When I draw nearer by two steps,

it retreats two steps.
If I proceed ten steps forward, it

swiftly slips ten steps ahead.
No matter how far I go, I can never reach it.

What, then, is the purpose of utopia?
It is to cause us to advance.”

― Eduardo Hughes Galeano

Author of Open Veins of Latin America

It has been a very long road to reach this milestone. Too many times it seemed even utopic that I

would make it, but here I am. At this point, I believe it is important to stop for a few minutes and

reflect on why and how I got here. The why has always been easy, I want to use my field of

expertise (i.e., telecommunications) to improve the livelihood conditions in my home country,

México. The how is more complicated, but I believe that at least I have to acknowledge and

thank all the people who has been fundamental in the completion of this milestone. They have

provide me with guidance, support, inspiration and love throughout (and before) this process. I

will dedicate the rest of this section solely to this.

I want to thank my advisor Dr. Taieb Znati for his guidance in the development of this

research and his continuous encouragement to improve it. In addition, I want to thank my

 xvi

http://www.goodreads.com/author/show/859172.Eduardo_Hughes_Galeano

dissertation committee for their input on my research work and their teachings during my PhD

and Master program.

I am thankful for “my team” of editors that kindly donated their time to help me improve

my written work. Sandy, Bedda, Emilio, Ruth, Julie and Daniel have certainly played a

fundamental role in improving the quality of this document.

I am grateful for all the organizations and individuals that provided me with financial

support during my graduate studies. First of all, my wife, who kept me afloat during the last two

terms of this endeavor. My alma mater, the National Autonomous University of México

(UNAM) and the former Central Academic Computing Division (DGSCA) now DGTIC where I

grew professionally, academically and personally. I will always cherish the years I spent as an

intern, staff, faculty and manager. The CONACYT and the Fulbright-Garcia Robles scholarship

program for their financial support. The graduate program in telecommunications for granting

me a full tuition waiver during my master studies. The European Union Center of Excellence and

European Studies Center (EUCE/ESC) at the University of Pittsburgh, for the Graduate Student

Assistant appointment (GSA) that supported me during most of my PhD studies. Special thanks

to Dr. Alberta Sbragia, whose leadership defined the GSA policies of the EUCE/ESC and who

always trusted in my technical expertise. Jorge Reyes, who trusted me to work with him despite

my limited handyman experience. From him, I learned not only to be proud of what you do, but

also that even the messiest project can be done orderly and cleanly. Bosch’s Research and

Technology Center, where I was an intern. The projects I developed there were professionally

fulfilling. The Vira I. Heinz (VIH) Program for Women in Global Leadership for granting me the

opportunity to work freelance, editing their website.

 xvii

 xviii

I also want to thank the extraordinary group of people that have provided me with

emotional support one way or another throughout this endeavor: my wife Sandy (obviously), my

family at large (incluyendo a todos los enanos), my closest friends Bedda and Emilio (always

generous and supportive) and my friends of the squash federation (lead by the brave David

Brumble).

I definitively want to thank those people who inspire me and provided me with role models. My

parents first of all. Next, my brother Gilberto, who bought for me my first computer and was the

first in the family to get a PhD; then he became the Dean of Engineering and now the future

Chancellor at his university. He certainly has been a great career model (even thought matching

his career path appears utopic). My sister (Dra. nena) who has managed to sprung a successful

academic career together with two bright and beautiful chilpayates. Also, professor Alberta

Sbragia, who managed to balance her teaching, research and leadership position at the

EUCE/ESC. Finally, Professor Daniel Mosse, for his exemplary academic attitude, always

willing to help students, thought provoking comments and his upbeat personality.

1.0 INTRODUCTION

The Peer-to-Peer (P2P) networking paradigm comprises several alternative distributed

architectures to build large-scale virtual networks (e.g., unstructured and DHT-based P2P

networks1) on top of an existing network infrastructure, generally the Internet. The primary

objective of these networks is to enable the sharing of services and content among participants.

The resources and tasks needed for end-to-end communication are contributed and performed

(with several possible levels of decentralization) by the participating nodes. Generally, P2P

networks are open access self-organizing systems formed by volunteer nodes; nonetheless,

individual nodes are autonomous and self-interested in nature.

P2P technology has emerged as a viable solution for the deployment of large-scale

distributed applications such as content distribution and file sharing. Currently, deployed P2P

systems reach several million users, with several hundred thousand peers 2 connected

simultaneously [1]. Recent measurement studies indicate that P2P applications still make up the

majority of the Internet traffic worldwide [2] and more than half of all upstream traffic in the USA

is still attributed to P2P applications [3] 3 .

1 We present a brief description of these two architectures in Chapter 2.
2 The terms user, node and peer are used interchangeably throughout this work in reference to a uniquely identifiable

autonomous entity (e.g., a single computer) participating in the P2P network.
3 However, real-time entertainment traffic constitutes the majority of the total traffic nowadays.

 1

The shear size and open access nature of the P2P application environment generate

important challenges for the design of reliable and efficient P2P networks. Intermittent node

connectivity, also known as churn, is one of them. Not only because nodes’ joins and leaves

increase the network’s overhead, but also because reliable access to resources (e.g., files, in a file-

sharing P2P network) can be limited by this intermittent availability pattern. Another key

challenge is how to minimize the incidence of non-cooperative behaviors, which can lead to

unfairness, performance degradation and limited scalability. A well known example for this class

of behavior is free-riding, which has been documented as a major problem in many deployed P2P

networks [4] [5].

In this dissertation, we undertake the specific problem of content availability in large-scale

P2P networks. The following section describes the challenges mentioned above in the context of

content availability in P2P networks and outlines our proposed solution. We also present our thesis

statement and describe how this dissertation proves it. For an overview of P2P technology and its

operation we refer the reader to section 2.1.

1.1 CONTENT AVAILABILITY

Content availability refers to the ability of the system to make content (e.g., files) readily

accessible to users. Presently, deployed P2P systems exhibit important content availability

performance issues. For example, in BitTorrent 40% of the swarms4 lack publishers (i.e., seeds5)

4 In BitTorrent, a swarm is a set of nodes that cooperatively download a single file by exchanging portions of it among
them.
5 In BitTorrent, a seed is a member of the swarm (i.e., node) that has a complete copy of the file being downloaded.

 2

during more than 50% of their lifetime [6], and in 86% of the cases the participants (i.e., leechers6)

are unable to reconstruct the original data [7].

P2P has characteristic features that demand different content availability solutions to those

applied in other distributed systems. Large-scale, open access, heterogeneous resources and churn

are just a few of these features. The case of redundancy is a perfect example. Traditionally, erasure

coding is used in distributed systems to prevent data loss due to failures. However, it is generally

assumed that performing repairs after such failures is not of major scalability or cost concern. In

P2P systems, redundancy still is a plausible solution to protect the system against failures, but

repairs have major cost and scalability implications. First, due to the rate of content errors

generated in the system. When nodes leave the network or when hard-disks fail, the network needs

to be reorganized to compensate for the content lost. Second, because access bandwidth is limited.

Nodes commit their access bandwidth to repairs without impacting their performance.

Consequently, redundancy for P2P networks must address not only availability as key design

principle, but repair bandwidth cost as well. In addition, distributed self-organizing processes and

data structures to manage the redundancy are key architectural requirements to device reliable and

scalable access to content in P2P networks. In particular, we argue that a hybrid redundancy

scheme, combining traditional MDS (Maximum Distance Separable) erasure coding and

replication redundancy, can provide content availability reliably and efficiently. Our proposed

redundancy scheme, named Proactive Repair (and described in detail in Chapter 4) uses erasure

coding to achieve a good storage-availability tradeoff. In addition, our scheme generates replicas

for each fragment proactively, so that when a single fragment is lost, it can be repaired using

minimum bandwidth.

6 In BitTorrent, leechers are members of the swarm that have not completed the transfer of the file.

 3

Our proposed solution also includes self-organizing distributed algorithms to monitor the

state information of our proposed redundancy scheme. We name redundancy maintenance process

to this component. Building the algorithms for the redundancy maintenance process is easy using a

Distributed Hash Table (DHT) P2P architecture (described with more detail in Chapter 2), which

we assume in our solution. The basic lookup functionality in a DHT can be used to define a single

point of contact (i.e., the index node) where nodes can gather information for each file. Nodes

storing fragments would announce their availability at this point and nodes requesting a file could

retrieve a list of targets from the same location. In addition, the node responsible for this location

could evaluate the file availability and determine if a repair is needed. In which case, it would

instruct the proper nodes to start a repair.

The correct operation of the components above is conditioned upon the full participation of

nodes storing and repairing redundancy. However, to assume full cooperation limits the

applicability of any solution. Thus, we embed an incentives-based mechanism into the operation of

the system to foster cooperation and regulate fair exchange of resources among nodes, with the

purpose of maximizing the feasibility of our solution. Our proposed incentive is a bartering

mechanism for content availability (i.e., storage) versus performance (i.e., transmission

bandwidth). Nodes receive a level of service proportional to their contribution towards the content

availability of the system.

To characterize content availability in P2P networks, we present a multi-level failure

model, similar to the one introduced in [8]. The purpose of this model is to describe the possible

states of the system, on a per file basis (i.e. file availability), and the type of events that can cause a

transition between these states.

 4

The top level represents the ideal state. Whenever a piece of this information is lost, the

system enters into the error state. We say that a content error (or simply an error) has occurred. If

content errors accumulate without taking any corrective measures, the system will reach the failed

state; at which point, the original data can not be retrieved from the system. Thus, in simple terms,

the purpose of our research is to develop data structures and algorithms that would allow us to

avoid the failed state efficiently.

Figure 1. Content Availability System States and Transitions Diagram

In a P2P system, multiple events generate content errors. Some of these errors originate at

the network and application layers while others occur at the lower layers. To the best of our

knowledge, there is no initiative consolidating content failure models for different layers into a

comprehensive content availability model for P2P. In that regard, our research presents a

multifaceted content availability framework integrating the effects of content errors at different

layers of the application stack and presents a robust and efficient set of mechanisms to alleviate

such failures.

There is extensive research on how to recover from content errors at lower layers (e.g., disk

failure and nonrecoverable read errors), but these initiatives ignore other sources of content errors

prevalent in P2P networks. For instance, in the work presented by Weatherspoon and Kubiatowicz

[9] content availability is assumed to be dominated solely by disk failure rates. The research on

Ideal

Error

Failed

 5

how to handle content failures at the network and application layers is also extensive, but weak

content availability requirements are usually analyzed [10] and content errors at the lower layers

are completely ignored. In contrast, our research goal is to provide strong content availability

guarantees while considering a diverse set of content errors. We categorize all lower layer errors as

physical errors, and all upper layer errors as logical errors. Next, we briefly describe this

taxonomy.

1.1.1 Physical errors

One of the key features of P2P systems is their support for large scale deployments. The shear

number of nodes embedded into the system implies that storage resources are typically constituted

by a very large pool of independent storage devices. As a result, despite the low probability

associated with nonrecoverable disk read errors and disk failures, the large number of components

embedded into the system translate this probabilities into an error rate that can impact the

reliability of content [11]. Furthermore, the distributed nature of P2P system prevents the use of

data protection mechanisms typically used in centralized storage facilities (such as RAID). Thus,

the effect of disk failures (and other hardware related errors) is likely to be higher than in other

computing architectures. In general, addressing this type of failures can be done easily with

traditional reliability measures. For example, given a set of hardware related failure rates –which

are usually modeled as i.i.d. events– and a desired availability level, we can achieve a required

reliability figure by defining a minimum level of data redundancy to be hardcoded into the system.

 6

1.1.2 Logical errors

In addition to the physical errors inherent in any computing system, P2P networks have many

more sources of errors. Thus, reliability in P2P networks is more complex and dynamic than in

some other distributed systems. For instance, PlanetLab’s nodes [12] have server-like

availabilities; thus, the redundancy requirements to achieve a desired level of content availability

are much lower than in a traditional P2P system [10]. Furthermore, reliability in a P2P system can

not be engineered using the same static reliability metrics used in some other distributed systems.

We categorize as logical errors a wide variety of content error events such as routing

inconsistencies (when these prevent access to content), nodes departures (i.e., churn) and even

content-related user behaviors (e.g., users canceling data transfers or free riding7).

Addressing the content availability effects of logical errors in P2P networks is the most

challenging task of our research due to the number, complexity and dynamism of the factors

involved. Furthermore, the temporal, quantitative and qualitative contributions of individual nodes

towards the overall content availability of the network are typically highly heterogeneous. Some

users contribute large amounts of resources consistently during long periods of time, while others

may contribute only a few or no resources at all to improve content availability. As a result, any

content availability mechanism to be used should use a holistic approach to manage this diversity

in behaviors. Mechanisms to manage the intermittent connectivity nature of peers should be

complemented with mechanisms to compensate the heterogeneity in user-behaviors prevalent in

P2P networks.

7 In the context of this dissertation, free riders are nodes consuming resources without sharing a fair portion of their
resources with other nodes in the overlay.

 7

1.2 THESIS STATEMENT

The thesis of this dissertation is that the combination of erasure coding and replication

redundancy constitutes a flexible and cost effective way to provide reliable access to content in

P2P overlay networks. Moreover, this hybrid redundancy scheme can be integrated seamlessly

with incentive-based mechanisms to support fair allocation of resources and to improve the

scalability of the system while recognizing the participants’ autonomy and diversity.

To validate the thesis statement above, we take an approach that combines analytical and

experimental methods. The analytical portion shows that our proposed hybrid redundancy

mechanism outperforms other redundancy schemes in terms of its repair bandwidth requirements.

We also develop distributed self-organizing algorithms to automate the redundancy repair for our

proposed scheme. In addition, we augment these algorithms with an incentive-based mechanism to

promote cooperation and achieve fair exchange of resources among nodes. Together, these

mechanisms constitute a holistic framework to improve content availability in P2P networks. The

experimental work presented demonstrates the feasibility of our framework. In addition, it

realistically incorporates the complex nature of a dynamic P2P routing architecture into our

validation process. Our experimental work is based on a deployed DHT-based P2P application

stack, named Bamboo [13].

1.3 RESEARCH OVERVIEW AND CONTRIBUTIONS

Redundancy and economic models for P2P networks are addressed extensively in the research

literature [14], [15], [16], [17], [18]. However, to the best of our knowledge, the analysis and

 8

integration of these components has not been proposed earlier in the literature to address the

diverse set of content failures present in P2P networks. To do so, this work pursues two research

thrusts:

i) Creation of a robust content availability model capturing the heterogeneous and

dynamic nature of P2P networks

ii) Development of a multifaceted redundancy-maintenance mechanism to improve

content availability in the presence of diverse sources of errors

The aim of the first thrust is to capture the effects of two types of content errors into our

analysis: physical errors and logical errors. In addition, we want to capture the diverse habits,

capabilities, needs, and interests of individual P2P participants. From this content availability

model, it will be possible to portray how these heterogeneous capabilities and attitudes are

reflected by the content error events in the network.

The goal of the second research thrust is to create and integrate scalable redundancy and

incentive-based mechanisms capable of improving content availability in P2P networks.

To study content availability in P2P networks, we develop analytical models for file

availability and redundancy maintenance. We use these models to demonstrate the superior

performance of our proposed redundancy scheme against erasure coding and network coding

redundancy. In addition, we present a content availability evaluation framework that defines the

factors and levels to be analyzed experimentally.

This dissertation proposes the use of redundancy to compensate the negative effects of

dynamic node membership and other content error events, together with a utility/cost economic

model to achieve fair allocation of resources and self-organization. The redundancy-maintenance

method proposed has low maintenance bandwidth, with minimal complexity and superior

flexibility properties. In the incentive-based mechanism we propose, we assume that peers transfer

 9

the items they posses upon request. Thus, peers’ content availability contribution can be expressed

simply as a function of the number of items hosted by a node. Nonetheless, we explore the use of

additional qualifiers to improve the fairness of the mechanism, such as size, popularity and the

amount of time each item has been shared,. Nodes receive an incentive in the form of performance

(i.e., download bandwidth, as in BitTorrent) in exchange for hosting entire or fragments of files to

improve the content availability of the network. In addition, the incentives-based mechanism

presented provides a mechanism to achieve fair allocation of resources (i.e., each node receives a

level of service proportional to its content availability contribution) while preserving node

autonomy. The functional components for our system are illustrated in Figure 2.

Figure 2. Content Availability System Proposed in this Dissertation

The relevant features of the proposed solution are simplicity, scalability, self-organization

and flexibility. Simplicity is achieved by engineering a proactive redundancy-maintenance process

that does not require complex data structures or elaborate scheduling algorithms. Scalability is

achieved in two ways: by using less maintenance bandwidth than other redundancy schemes, and

by implementing the redundancy-maintenance process in a completely distributed fashion. In

addition, the redundancy-maintenance mechanism adapts its operation automatically in order to

maintain its performance when the network conditions change through time.

Redundancy-Maintenance Process

CCoonntteenntt AAvvaaiillaabbiilliittyy PPrroocceessss

Redundancy
Scheme

Incentive-based
Mechanism

 10

The proposed solution is implemented as a DHT-based content availability system. The

underlying routing architecture employed is named Bamboo [19] and it has been used earlier to

test other distributed applications. Our system is tested using an emulated8 wide area networking

environment, named Modelnet [20], which captures the delay and bandwidth restrictions of P2P

networks deployed over the Internet. This system architecture (Modelnet + Bamboo + Redundancy

Maintenance Process) is used to conduct extensive simulations to demonstrate the content

availability features of the proposed solution.

In summary, the contributions of this dissertation are:

• The creation of a broad content availability framework (Chapter 3.0)

• The definition of a new low-complexity and highly-flexible redundancy scheme that

requires small amounts of repair bandwidth (Sections 4.1 and 4.3.2)

• The formulation of an analytical model to determine fragment availability, for code-based

redundancy schemes, in P2P networks (Section 4.2.2.2)

• The formulation of analytical models to asses the redundancy repair cost for different code-

based redundancy schemes (Section 4.3)

• The formulation of a redundancy-maintenance process (Section 4.4) with incentive-based

mechanisms (Section 5.3) that:

o Uses a proactive redundancy maintenance methodology that consumes the same or

less maintenance bandwidth than other methods (Section 4.3.2)

o Improves the content availability of items independently of their popularity

o Is completely distributed (Section 4.4.1) and self-organizing (Section 5.2.2)

o Adapts automatically to the dynamic conditions in the network (Section 4.4.3)

• A prototype implementation of the redundancy-maintenance process with incentive-based

mechanisms as proof of concept (Chapter 6.0)

8 However, we use the term simulation in our experimental work in reference to the entire simulated P2P networking
environment..

 11

Figure 3 illustrates how the topics presented in each chapter are integrated to create a

content availability system for P2P networks under churn.

Chapter 3 Chapter 4

Chapter 5

Redundancy Methods

Incentive-based

Mechanisms

Redundancy-Maintenance Chapters

4 & 5

C
on

te
nt

 A
va

il
ab

il
it

y
F

ra
m

ew
or

k

Content Availability Chapter 6

Figure 3. Dissertation Organization

1.4 DISSERTATION ORGANIZATION

This dissertation is organized in seven chapters.

Chapter 2 presents an overview of P2P and the research literature related with our research.

As part of the background section on P2P, we include a description of the operation of the DHT

routing substrate employed in the implementation of the proposed content availability system. In

the literature review section, we describe research initiatives organized in four topics: churn

models, redundancy methods, incentives mechanism and content availability.

 12

Chapter 3 presents a framework describing the major factors affecting content availability

in a P2P system. In addition, this section presents the levels used for each of these factors in the

experimental portion of this work.

Chapter 4 introduces different redundancy schemes that can be used to improve content

availability in P2P networks. In this chapter, we assess the effectiveness of our proposed

redundancy scheme and compare its performance with other code-based redundancy methods.

Chapter 5 introduces economic models for P2P networks and describes the implementation

of an incentive-based mechanism to promote the participation of nodes in a redundancy-

maintenance process.

Chapter 6 presents an evaluation of our prototype implementation of a content-availability

system that uses our proposed redundancy scheme in conjunction with incentive-based

mechanisms to improve content availability.

Finally, Chapter 7 presents the conclusion of this study and possible directions for future

work.

 13

2.0 BACKGROUND AND LITERATURE REVIEW

The purpose of this chapter is to present an overview of the features of P2P technology as well as a

review of a variety of subjects related with content availability in P2P networks. The rest of this

chapter is organized as follows. Section 2.1 presents a description of P2P technology. Section 2.1.4

describes Bamboo [21], which is the DHT routing architecture employed for the construction of

the redundancy maintenance system presented in this dissertation. Section 2.1.4 describes the

different content ownership modes in P2P networks. Finally, Section 2.3 presents an overview of

the research literature related with our research.

2.1 P2P TECHNOLOGY

Peer-to-Peer (P2P) computing or networking is a distributed application architecture where

participants self-organize into virtual networks of nodes and logical links on top of an existing

network infrastructure, generally the Internet. The participants are autonomous, self-interested

nodes that share a portion of their resources to provide the services and content offered by the

network.

P2P technology has emerged as a viable solution for the deployment of large-scale

distributed applications such as content distribution (with BitTorrent as the most prominent

example) and file sharing (with Napster first, and Gnutella, and many others later on). Currently,

 14

deployed P2P systems reach several million users, with several hundred thousand peers 9

connected simultaneously at any time. The number of individuals, groups and organizations that

have adopted the P2P computing paradigm is growing steadily, as does the amount of traffic

exchanged. In recent years, content distribution sites exhibited tremendous grow; Mininova’s 10

site for example, doubled its number of downloads in 2008 to 7 billion in a year [22]. In addition,

recent measurement studies indicate that P2P applications make up the majority of the Internet

traffic worldwide [2]. The emergence of real-time video traffic in the entertainment industry

(Netflix in particular) has surpassed P2P downstream traffic during peak periods in North America

[23], but more than half of all upstream traffic is still attributed to P2P applications [3] 11 .

2.1.1 P2P Taxonomies and Features

P2P computing covers a broad range of systems and applications that can be categorized using

multiple taxonomies and characterizing features. For example, Milojivic et al., in [24] present

taxonomies for the classification of P2P computing from a system, application, and market

perspective; Keong et al., in [25] classify P2P networks as unstructured and structured, and

employ a nine dimension taxonomy to compare them. More recently, Buford and Yu in [26]

classify P2P networks in unstructured and structured categories, and also describe other classes of

P2P overlays, such as hierarchical, service, semantic and sensor overlays. This section summarizes

the properties of P2P systems and describes the fundamental characteristic of unstructured and

9 The terms user, node and peer are used indistinctively throughout this work in reference to a uniquely identifiable
autonomous entity (e.g., a single computer) participating in the overlay network.

10 Mininova is an indexer site for the popular BitTorrent network.
11 However, real-time entertainment traffic constitutes the majority of the total traffic nowadays.

 15

structured overlays. For a comprehensive review of different classes of P2P overlays we refer the

reader to [26].

Table 1. Peer-to-Peer Systems Properties

Property Description

Decentralization
The responsibility for the operation of the system is equally distributed among
participants. There is no central point of control. However, in many designs this
property is relaxed and some nodes assume special roles.

Resource
Sharing

The resources required to support the services and content offered by the network
are provided by its participants. The nature and amount of resources depends on
the application and the system’s architecture. As a result of the decentralized and
resource sharing properties, nodes in P2P overlay networks (i.e., peers) play dual
roles as providers and consumer of resources.

Scalability

The minimum amount of resources that each node needs to commit to the overlay
grows less than linear with respect to the network size. In addition, the
performance metrics of the system, such as response time, does not degrade
significantly with increased system size or load.

Autonomy
Participation in the overlay is voluntary. Every node decides unilaterally the extent
of its participation, including the amount of resources committed and when to join
and leave the system.

Self-organization

Nodes use local knowledge to make decisions that over time result in a better
organization of the system. Nodes continuously adapt to the dynamic networking
conditions in the overlay, assuming the responsibility for maintaining their own
neighbor relationships despite the continuous arrival and departure of other nodes
to and from the overlay.

Fault resiliency

The decentralized overlay architecture precludes the existence of single points of
failure. This allows the system to continue its normal operation without significant
performance degradation in the presence of node and communication errors. After
a failure, the system is capable of reorganizing itself without the intervention of a
centralized coordination entity (i.e., self-organization). This property also
translates, at some degree, into a capability to avoid censorship and resist other
types of attacks.

Cost of
ownership

A premise of the P2P paradigm is that the aggregated value of the participants’
resources is greater than the sum of the individual resources. Furthermore, given
that these resources are contributed voluntarily, the deployment and/or
maintenance cost of the system is amortized by its members. As a result, P2P
technology constitutes a cost effective alternative for the deployment of network
services, features and functionalities that would require modifications in the
underlying network infrastructure.

Table 1 describes the fundamental properties applicable to most P2P systems. Depending

on specific implementation decisions, different systems favor some properties over others. For

 16

example, Napster used a pure P2P data transfer principle, but its content indexing implementation

was completely centralized, thus not P2P.

There are two major P2P overlay architectures, structured and unstructured. Most P2P

systems can be classified into one of these architectures based on the way relationships between

nodes are built and maintained.

2.1.1.1 Unstructured P2P Overlays

In unstructured P2P overlays, peers join the network without any prior knowledge of the topology

and form a random graph in a flat or hierarchical manner that usually exhibits small world

phenomena. Nodes rely solely on their adjacent nodes for delivery of messages to other nodes in

the overlay. This type of P2P systems usually supports data location using complex queries, but

generally there are not guarantees (i.e., data location is a probabilistic process). Unstructured

overlays can be further classified according to the data location/distribution model used in

centralized, distributed and hybrid systems. Figure 4 illustrates this taxonomy.

Unstructured Overlays

Centralized Distributed Hybrid
• Napster
• BitTorrent

(early)

• Gnutella (early)
• Kazaa (early)
• BitTorrent

• Gnutella
• Kazaa

Figure 4. Unstructured P2P Overlays Taxonomy

Napster emerged in 1999 as a file-sharing application based on a centralized indexing

mechanism and direct content transfer among participants. The popularity of P2P file-sharing

applications rapidly transformed the distribution of Internet’s traffic, making up more than half of

 17

it as early as 2006 [26]. The content distribution application BitTorrent (before version 4.2.0) used

a similar approach, but today its architecture includes alternative distributed mechanisms for

coordinating data upload and download. The early implementations of file sharing applications

Gnutella and Kazaa were completely distributed (i.e., nodes were organized in a random flat

topology), but scalability problems with the message propagation technique (i.e., flooding)

fostered the adoption of hierarchical architectures (i.e., hybrid) and alternative message forwarding

mechanism, such as random walks, that have allowed these systems to scale successfully to

hundreds of thousands of nodes.

2.1.1.2 Structured P2P Overlays

In structured P2P overlays, the network topology is formed according to specific criteria and

algorithms to achieve robustness and improve performance. Structured overlays use a key-based

virtual addressing space for node identification and for data placement or location. Nodes

cooperate to maintain routing information about how to reach other members of the overlay and

support a consistent exact-match data location functionality. Xuemin, et al., in [26] classify

structured networks according to the number of hops needed to reach other nodes in multi-hop,

variable-hop and O(1) hop.

Multi-hop structured overlays are further subdivided in logarithmic and constant degree

systems. Logarithmic degree systems are subdivided in prefix-based routing and ring geometry.

Figure 5 presents this taxonomy together with the name of two sample systems in each category.

 18

Structured Overlays

Multi-hop Variable-hop O(1) hop

• Pastry
• Bamboo

• Accordion
• Tork

• EpiChord
• Kelips Logarithmic

Degree
Constant
Degree

Ring

• Chord
• Kademlia

• CAN
• Viceroy Prefix

Routing

Figure 5. Structured P2P Overlays Taxonomy

Aberey et al., in [27] present a characterization framework for P2P overlays based on six

key design aspects:

1. Identifier space

2. Mapping of resources and peers

3. Management of the identifier space

4. Graph embedding

5. Routing strategy

6. Maintenance strategy

This framework is presented in Figure 6 to illustrate the overall construction of structured

P2P overlays. In structured systems, both nodes and resources are mapped into a common

identifier space (functions FP and FR in the diagram). In the figure, nodes identifiers are

represented by circles and resource identifiers are represented by rectangles. The terms nodeId and

key are commonly used in reference to the identifiers of nodes and data elements respectively.

Keys are associated to the node with a nodeId numerically closer to their own value. In addition,

nodes organize themselves to form a geometry defined by the system architecture (e.g., ring, tree,

etc.) and continuously maintain this topology to adapt to the dynamic networking conditions in the

 19

overlay. The overlay’s structure facilitates data location and provides performance bounds on the

number of hops required to reach any node in the overlay, however, it does not support complex

queries.

Figure 6. Overlays Network Design Decisions12

Most structured overlays use a Distributed Hash Table (DHT) to create the system’s

address space. This is accomplished by employing a globally known hash function to map nodes’

IP socket and data objects’ identifiers into a key-based address space (generally in the order of 128

bits long), and distributing the responsibility of managing a portion of this address space among

the participating nodes.

Examples of structured overlays include mostly academic works, such as Bamboo [21] and

Chord [28], but there are also deployed systems like eMule [29]. Most deployed unstructured

overlays have adopted DHT-based indexing services to improve their data discovery mechanisms.

In Section 2.2 we present a more detailed description of Bamboo’s DHT implementation, which

we use in the experimental portion of this work.

12 Original figure taken from 27. Karl Aberery, et al., The essence of P2P: A reference architecture for overlay
networks, in Fifth International Conference on Peer-to-Peer Computing. 2005: Konstanz, Germany.

 20

2.1.2 P2P Architectures Comparison

During the last decade of research and development, the P2P application ecosystem grew

enormously. Multitudes of P2P system architectures were introduced and in many cases, these

architectures have evolved into multifaceted complex systems that are difficult to compare due to

the diversity of features and functionalities involved. For example, presently there are at least

twenty software implementations available for the Gnutella network with no less than a dozen

optional features [30]. In addition, the Gnutella specification evolved from a flat topology with a

broadcast-based content discovery mechanism into a hierarchical architecture with random walks

and hash-based content discovery mechanisms. Thus, the reader should keep in mind that when

comparing among different overlay architectures, the literature refers to the properties that

characterize the fundamentals of each architecture, and not their current, state of the art

implementations. In the paragraphs that follow, we compare several properties of structured

overlay architectures versus unstructured overlay architectures and present a summary of our

observations in Table 2.

Structured overlays are fully decentralized and most unstructured architectures are not.

Decentralization is important in terms of fault tolerance and scalability, but presently, this

difference does not seriously jeopardized the viability of unstructured overlays.

P2P architectures use diverse resource discovery paradigms. Structured systems provide an

exact-match consistent data location functionality, which is analogous to their routing

functionality. Unstructured systems on the other hand, use a probabilistic data location service

(such as limited scope broadcast and random walks) that supports the usage of keywords and

wildcards. In early unstructured overlays, successful data discovery was intimately related to the

items’ popularity, but presently many systems have incorporated hash-based indexing

 21

functionalities in their architectures to provide consistent data location services (independent of the

items’ popularity).

Table 2. Comparison of P2P Architectures

Architecture
Features

Structured Unstructured

Sample Systems Bamboo & Chord Kazaa & Gnutella

Network topology Deterministic Random (two layer)
hierarchy

Decentralization Full Limited

Scalability Yes Yes

Resource Discovery
Distributed w/
exact-match

(same as routing)

Limited-broadcast w/
keyword & wildcard

support

Performance guarantees Yes Limited

Fair allocation of resources n/a 13 Yes 14

Fair allocation of resources and cooperation among nodes is assumed by most P2P

architectures. That is, nodes are expected to benefit from the system only as much or in proportion

to what they contribute [18]. However, most deployed systems suffer from an uneven distribution

of resources. To address this problem, systems incorporate additional mechanisms to promote

cooperation and fair exchange of resources among peers. Currently, the inclusion of this type of

mechanisms is an open issue and is not fundamentally limited by the architecture being used in the

overlay.

13 Bamboo and Chord do not enforce fair allocation of resources, but other deployed DHT-based systems do.
14 Kazaa and Gnutella do not enforce fair allocation of resources, but BitTorrent does.

 22

2.1.3 Content Availability

Deployed P2P networks organize large amounts of resources across the Internet. However, the

availability of these resources is hindered (among other factors) by the occurrence of i) intermittent

node participation, which is an unavoidable feature of the open nature of this environment and ii)

the autonomous operation of participants, expressed as an heterogeneous, and sometimes

disproportionate, contribution and consumption of resources among peers.

2.1.3.1 Effect of Churn

In most P2P networks a node’s connectivity is transient. This phenomenon, called churn, is the

main source of dynamism in the network. Understanding the impact of churn on content

availability is the keystone to improve content availability in P2P overlay networks.

Participation in P2P networks is open, meaning that any node across the Internet can join

the system. Churn is an unavoidable feature of the open nature of this application environment

because users decide autonomously when and for how long to join the network, when to leave and

whether to return. Thus, P2P communities are a dynamic conglomerate of heterogeneous hosts and

resources where the participation of individual hosts is voluntary and transient.

Previous studies have shown that churn in P2P networks is prevalent across different

applications and highly heterogeneous [31]. Nodes exhibit session lengths that can vary from a few

minutes [32] to several hours or even days. The impact on content availability occurs when users

leave the network, taking their content with them. In addition, users returning to the system get to

decide unilaterally whether to share the content they previously obtained from the system. As a

result, after a node departure, the network needs to reorganize the remaining peers to maintain

reliable access to content.

 23

Figure 7 presents a basic scenario that illustrates the effect of churn on content availability.

In Figure 7.a every node can access the information stored in the network. There are five nodes

sharing four unique data items. In Figure 7.b two of the nodes storing data have left the network

and two new ones have joined. At this point, only three of the original data items are still available

and the system has no means to recover the lost data.

a)
P2P Network

b)
Churning P2P Network

Available
files

New

New

Available
files

Figure 7. Churn’s Effect on Content Availability

Figure 7.b also illustrates that out of the two items lost; only one of them is now

inaccessible. This is due to the extra copy stored at another node. This suggests the trivial solution

to the problem: generate copies of all data items in every node, but this is certainly inefficient and

not scalable.

Instead, a scalable solution to this problem should:

i) Generate only enough redundancy in the system to handle the departure of

nodes between maintenance epochs and

ii) Reorganize the remaining nodes to regenerate any lost data before items

become inaccessible due to additional churn events

 24

While this solution is expressed in simplistic terms, its realization involves major

complexity. For example, how do we determine how much is enough redundancy? And how do we

reorganize the remaining nodes?

Redundancy is a necessary component to achieve content availability in P2P networks [10].

However, the selection of a redundancy method cannot be performed using the same cost-

performance tradeoffs as in other distributed systems. Reliability needs to be continuously

repaired. That is, any data loss due to churn (and other logical or hardware related failures) needs

to be regenerated before the content availability degradation becomes irreversible. Performing this

redundancy-maintenance efficiently has been described as the key limiting factor for the scalability

of distributed storage P2P applications [10]. In particular, the amount of bandwidth needed to

maintain the reliability of a redundancy method is a fundamental scalability concern in P2P

environments.

2.1.3.2 Effect of User Behavior

Participants in P2P networks are usually expected to voluntarily share resources towards a

common goal15. Nevertheless, peers are autonomous and decide the extent of their participation in

the network unilaterally. In the absence of proper incentives, users acting rationally in their own

self-interest do not commit enough resources towards the network’s overall objective. Improving

content availability in P2P networks requires mechanisms capable of dynamically managing not

only transient and heterogeneous node connectivity, but also diverse individual tradeoffs between

the peers’ goals and the network’s content availability objective.

15 In that regard, P2P file-sharing networks can be modeled using economic models as an instance of private
provisioning of a public good.

 25

This dissertation uses economic models to address the user behavior aspects of the content

availability in P2P networks. In these models, the term participant is equivalent to the terms users

or node. Thus, the terms user, peer, node and participant are used indistinctively throughout this

work in reference to the computers that form the overlay network.

Economic and networking processes have multiple similarities: complexity, autonomous

self-interested participants and dynamic time-varying conditions, are just a few of them. Economic

concepts and models have been used effectively in the study and construction of distributed

systems, including P2P. In the economic incentives model in particular, the basic principle is that

for an efficient and fair allocation of resources, there must be incentives for providers to share their

resources as well as encouragement for consumers to maximize the utility of the received

resources [33]. In P2P networks, nodes play a dual role as both consumer and providers of

resources and consequently, the objective of incentive-based mechanisms is to allow nodes to

reach a balance between their provider and consumer roles.

2.1.4 Content Ownership in P2P Networks

In structured P2P networks, nodes and content are both mapped deterministically to IDs in the

same key-naming space. According to their IDs, each participating node becomes responsible for a

section of the key-naming space (namely, Distributed Hash Table). The network supports three

basic content operations: query, indexing and storage. In a DHT-based system, queries are

functionally the same as routing. Therefore, a query operation consists in routing for a given key

and finding the node responsible for that portion of the key-naming space. A node managing the

section of the key-naming space including the ID of content ci is called the root or home node for

content ci. Indexing is a redirection service that links content-IDs with the nodes storing the

 26

item(s), namely holder nodes. The operation of indexing can take two forms: register and fetch.

The register operation is when a node adds or updates its information to the index and fetch is

when nodes request the list of nodes storing a given item. The indexing operation consists of

several steps. First, nodes query for the root-node of the file they are interested in. Second, nodes

contact that node directly to either register or fetch information. Finally, a storage operation is

simply a request to download or upload data. For example, if node A sends a download request to

node B, then A is consuming resources from B, and if the request is an upload, then A is

publishing content to B.

Nodes can play four alternative roles in the network, namely publisher, index, holder and

requestor. The publisher node is the original creator of a data item. An index node is the root node

for a specific item. A holder, is a node storing a partial or complete copy of an item. Finally,

requestor nodes represent users downloading information from other nodes.

Content ownership can take two forms; nodes keep copies of the files for which they are

root nodes (assuming temporal ownership of the item), or they simply keep pointers to the actual

location of the file, namely the publisher node. We will refer to these two variants as root

ownership and node ownership respectively.

For retrieval of content, the node ownership model implies that publisher nodes

periodically contact their root nodes to refresh their indexing information, and requestors perform

a two-stage process to retrieve content from the overlay. First, they ask the root node for a list of

candidates, and second, they attempt to contact one or more of these candidates directly to retrieve

the item. Successful content retrieval is a dynamic process that involves the publisher node, the

item’s root node and the requestor node. For a successful retrieval of content two conditions must

be met i) the item’s indexing information (at the root node) is updated and ii) the remaining

 27

session length of the publisher and requestor nodes are long enough to complete the transfer. Both

of these conditions are influenced by churn. The first condition requires publisher nodes to

continuously monitor the availability of their root nodes and find new ones as needed.

In the root ownership case, items are first uploaded to their root nodes. Still, publisher

nodes might be required to monitor their root nodes to guarantee the availability of their contents.

However, holder nodes do not interact with peers requesting an item. Instead, items are

downloaded directly from the root nodes. This mechanism decouples, to some extent, the

availability of items with the liveliness of their publisher(s), since the publisher node can be

offline while the root node is still uploading an item to another peer. On the other hand, if the root

node leaves the network, the item will need to be transferred once more into a new root node;

regardless of any present or future demand for the item. This model is assumed in distributed

storage applications such as CFS [34] and OceanStore [35]. The problem with this approach is that

in order to minimize the maintenance overhead, the participant nodes must have high availability,

which is not the case for open P2P application environments.

2.2 BAMBOO

Bamboo [21] is a reengineered version of Pastry [36], a DHT-based P2P routing architecture that

uses a circular identifier space, with IDs 160 bits long organized as a sequence of digits base 2b. In

Bamboo, nodes maintain two sets of neighbors, the left set and the routing table, illustrated in

Figure 8 by dashed and solid arrows respectively. The leaf set contains the k nodes preceding and

the k nodes following the current node in the circular identifier space. The routing table is a set of

nodes organized in matrix form. All the node identifiers (nodeIDs) in row l coincide in l digits with

 28

the current nodeId and the value of the next digit determines their column in the routing table. That

is, a node in row l and column i shares l digits with the current nodeId and its l+1 digit has a value

equal to i.

Figure 8. Neighbors in Bamboo.

The basic functionality in Bamboo (and other DHT-based routing architectures) is a

distributed (key, value) lookup service. Given a target key D, nodes follow the following

algorithm:

1) Check leaf set. If D lies within its leaf set, then it forwards the query to the nodeId

numerically closest to D. If that node is the local node, routing terminates. If not,

continue with step 2.

2) Route message. The node computes the longest matching prefix between D and

its own nodeId, denoted by L. The value of the first digit in D different from the

local nodeId can be denoted as D(L+1). If the node has a non-empty routing entry

at row L, column D(L+1) it forwards the request to that node; otherwise it goes to

step 3.

3) Forward to leaf. The message if forwarded to the member in the leaf set

numerically closest to D.

The process above is performed by every node that the request is forwarded to. When the

final destination is reached (step 1) a message is sent back to the originating node with the nodeId

and the network address of the destination. In DHT-based systems, the processes of routing and

 29

data location are functionally the same. That is, the lookup service we just described is used for

both routing and resource discovery.

Figure 9 illustrates the basic procedure employed to map nodes and content into the

overlay’s identifier space. For nodes, their IP socket (or other form of unique identification) is used

as input of the hash function to obtain a key value, namely the nodeId, which is used for routing

and to claim responsibility for a portion of the identifier space. For data items, the identifier (e.g.,

file name) is used as input of the hash function, and the key value obtained determines which node

is responsible for managing the lookup service for that item. The node with the numerically closest

nodeId to the object’s key value is called the root node or home node for the object.

Distributed
Network

Key Data

Peers
IP Socket

Hash
function 3AF024C0 132.48.10.2:106

NodeID:
52ED8840

Figure 9. Distributed Hash Table

The scalability of DHT-based P2P system is derived from the structure of their routing

tables. The distance between the local nodeId and the target key is reduced logarithmically at every

step throughout the lookup process. Thus, DHT-based networks are able to provide a deterministic

location service in O(log N) steps, where N is the number of nodes in the network. Other DHT-

based systems have similar scalability metrics and also share other functional and structural

similarities with Bamboo, but their description is beyond the scope of this work and comparative

descriptions are available elsewhere [25, 37].

 30

The resiliency of DHT-based architectures is derived from the routing geometry embedded

in their neighbor set. That is, the pattern of neighbor links across the overlay, independently of the

routing algorithms or state management algorithms used [38]. The work of Gummadi, et. al.

presented in [38] describes that the addition of sequential neighbors significantly increases the

static resiliency 16 of a system, but increases its latency. In addition, the flexibility in neighbor

selection (FNS 17) is better than using flexible route selection (FRS 18) to improve the performance

of the system (i.e., latency). In that regard, Bamboo’s leaf set provides good static resiliency, and

proximity neighbor selection is used to boost performance when more than one node can be used

to fill in a routing table entry.

The creators of Bamboo summarize the factors allowing the system to handle high levels of

churn efficiently in three functionalities: periodic recovery, adaptive timeouts and proximity

neighbor selection. After a node failure, the remaining nodes need to reorganize their routing table

and possible their leaf set. To avoid overwhelming the system with route repair messages, Bamboo

opts for a periodic route maintenance policy that bounds the amount of bandwidth consumed. In

addition, Bamboo maintains different timers for each of its neighbors (i.e., timeouts), which allow

it to discern judiciously between node failures and network congestion or processor load. Lastly,

Bamboo uses a two steps process to fill in its routing table entries. First, it performs a lookup for a

random identifier with a required prefix p corresponding to a hole in its routing table and uses the

returned value to fill it in. Secondly, nodes query their neighbors’ routing tables to find alternative

entries providing better latencies. The objective of the first process, called global tuning, is

correctness, while the goal of the second one is performance. The system prioritizes correctness

16 Static resiliency describes the capacity of the network to route messages after failures and before route repairs are
performed. This is a fundamental property in dealing with churn.

17 Flexible neighbor selection is a measure of the level of flexibility nodes have to fill in entries in their routing tables.
18 Flexible route selection is a measure of the level of flexibility of the routing algorithm to select the next hop.

 31

and improves its performance opportunistically when the amount of traffic being managed by the

node allows it.

The results presented in Figure 10 are taken from Bamboo’s technical report [13]. In these

graphs, the capacity of Bamboo to handle extremely high levels of churn (i.e., small median

session times) can be easily appreciated. Even when the median session length falls below eight

minutes, Bamboo manages to perform most requested lookups with a mean latency that

outperforms other systems. Nonetheless, we showed in [39] that if the maintenance intervals of

Chord (or other DHT-based system) are tune up according to the expected level of churn, the

performance level obtained is comparable to Bamboo.

Figure 10. Bamboo’s Performance Under Churn

Bamboo was selected over other DHT-based architectures to analyze the effects of churn

on content availability because of its software architecture and its probed performance in churning

environments. Bamboo is a mature open source DHT implementation written in java using an

event-driven single-thread programming style. Thus, we can obtain accurate measurements of a

deployed DHT 19 rather than the simplified DHT implementations available in P2P simulators

[40]. In addition, there is a reasonable amount of documentation available to guide our

19 Bamboo was offered as a public DHT service in PlanetLab during 2005-2009.

 32

development efforts [19] without having to deal with detailed implementation issues related with

the operation of a DHT application substrate.

2.3 LITERATURE REVIEW

2.3.1 Churn Models

The continuous and unsynchronized arrival and departure of nodes to and from the overlay

network is called churn. When nodes leave the network, the content they were contributing also

disappears. Thus, understanding the content availability problem space requires analyzing the

fundamental properties of churn in P2P networks. Some research initiatives have tackled this

subject using analytical models, and some others using empirical studies.

Yao, et al. in [41] highlight that the heterogeneity of lifetimes and off-line intervals is a

fundamental property of P2P networks. The authors develop a model for heterogeneous user churn,

from which they derive multiple closed form expressions that characterize the properties of nodes

in unstructured P2P networks, including their residual lifetime distribution and isolation

probability. In our work, we use a variant of this model to recreate the churn behavior of existing

P2P networks. Their work is extended in [42] to accommodate non-stationary arrivals of nodes,

and create a sampling technique to measure session lengths in unstructured P2P systems. These

papers provide insightful findings with regard to the connectivity and availability properties of

nodes in P2P networks, but their scope does not contemplate the implications of churn at the

content level.

 33

There is a long list of measurement-based research initiatives using probabilistic models to

characterize the distribution of session lengths in deployed P2P networks. These characterizations

are important to understand the properties of these systems and to synthesize churn events for

simulation studies. Pareto [43, 44] and Weibull [45, 46] are the most commonly reported

distributions in the research literature, but the results presented in these studies do not include node

level characterizations. Yao, et al. in [41] explain that a perfectly shaped Pareto or any other

distribution can be the product of a mix of multiple independent exponential distributions. Thus, it

is not possible to conclude the real distribution of session lengths of individual nodes by just

observing their aggregated behavior.

Luo, et al. in [47] present an alternative view for the characterization and synthesis of

churn. Instead of analyzing the network as a single black-box, the authors divide the user

population in multiple geographical regions and assign different user behaviors to them –as in our

work presented in [48].– This model is used to generate the cyclical node membership exhibited in

deployed P2P systems. The authors also provide a set of MatLab tools that automate the generation

of churn logs for simulation studies.

Presently, the research community has not yet agreed in a general model for the distribution

of session lengths of individual nodes or their aggregate distribution. As an alternative, Fernández-

Casado, et al. in [49] developed a tool integrating several competing models to build a general

purpose churn generator capable to generate complex churn logs for simulations. The availability

of this type of tools facilitates the comparative analysis on the performance of P2P systems using

different churn models. Nonetheless, most of the recent research literature in P2P networks uses

public network traces [50, 51] to recreate the node dynamics of deployed systems. In our case,

 34

these measurements lack the appropriate granularity and flexibility for analysis at the content level.

Furthermore, some of them could present significant measurement bias [52].

In summary, there has been much progress on modeling and characterizing churn in P2P

networks. However, the shear size and heterogeneity in this type of networks make it quite difficult

to obtain definite fine grained measurements and models. Our research combines the results

presented in diverse measurement studies with analytical models to build a flexible churn

framework to analyze the fundamental content availability properties of P2P networks and possible

methods to improve it.

2.3.2 Redundancy Methods

Redundancy is a mechanism commonly used to improve the reliability of systems by

provisioning excess resources. For distributed data storage, there are multiple methodologies to

achieve this reliability. Each of these methods uses different tradeoffs between data reliability and

other system properties such as storage space or maintenance bandwidth. The research literature on

redundancy in P2P environments can be categorized into three categories: i) studies matching a

given networking condition (i.e., average node availability) with a redundancy method ii) studies

defining the optimal parameter settings for a redundancy method given a set of requirements (e.g.,

required file availability and average node availability) and iii) studies defining new redundancy

data structures. In addition to these categories, it is important to highlight that a major concern of

using redundancy in P2P environments is the amount of bandwidth required to regenerate any data

loss due to node departures. This is regularly referred as the repair problem [10], [53]. This

concern generates a new cost vs performance space for the design of redundancy methods. The

 35

fundamental constraint for this problem is that in P2P networks access bandwidth is scarcer and

more expensive than storage space [10].

With respect to the first category, Rodriguez and Liskov in [10] argue that for system with

high node availability (such as PlanetLab) replication redundancy should be preferred and

furthermore, for other system settings the storage overhead savings of erasure coding might not be

worth the associated cost, due to the added system complexity. Lin, et al, in [54] present an

analytical expression in terms of storage overhead (S) and node availability (a) to determine which

redundancy method provides better file availability. If S*a<1, replication performs better and for

S*a>1 erasure coding performs best.

With respect to the second category, If the system needs to be engineered to achieve a

required level of file availability (i.e. 0.99), Rodriguez and Liskov in [10] or Bhagwan et al. in [55]

present analytical expression to obtain the optimal storage overhead for both erasure coding and

replication. This optimal value is such that the product S*a is always greater than one; thus,

according to the arguments presented by Lin, et al, in [54], erasure coding redundancy is always

preferred. In [56], Dimakis, et.al., contrast the redundancy repair cost of erasure coding, with two

variants of network coding. Their results indicate that it is possible to construct coding methods

with significant repair bandwidth savings over erasure coding over a wide range of target file

availabilities. However, their results also indicate that as the network becomes unstable (i.e., lower

average node availability) the performance of network coding can become inferior to the

performance of erasure coding.

With respect to the third research category, that is, the introduction of new redundancy

methods, the research literature is abundant. A recent survey of the field of network coding by

Dimakis, et al. in [53] present recent advancements in network coding that reduce the redundancy

 36

repair problem by orders of magnitude compared with standard erasure codes. In addition, this

paper describes the different repair modalities of erasure coding, highlighting that minimum

bandwidth with exact-repairs is the best suited network coding modality for distributed storage

applications. In that regard, Rashmi, et al. in [57] present a minimum bandwidth exact-repair

(MBR) explicit construction code for any combination of the parameters (m, k, d) where m is the

total number of nodes, k is the number of blocks needed for the file reconstruction and d is the

number of nodes required for the reconstruction of lost fragments. This is the first explicit code

construction that allows the selection of the number of nodes (m) independently of other system

parameters. Dominuco and Biersack in [58] present an alternative construction of erasure codes,

called Hierarchical Codes. The authors argue that cost is improved because the average number of

transfers needed is lower than in traditional erasure coding (despite needing a higher number of

repairs). However, the authors account the number of transfers as cost rather than the product of

the number of repairs times the average number of blocks transferred (i.e., bytes transmitted). For

the mechanism presented by the authors, the task of choosing which blocks should be downloaded

to perform a repair has been reduced compared to the cost of traditional erasure coding, but it is

still a non trivial problem. Williams, et al. in [59] evaluate different redundancy techniques for P2P

storage. They advise the use of hybrid schemes combining replication and either erasure coding or

bucketing (data bundling) as a reasonable compromise between maintenance cost and availability.

The authors conclude that replication should be used to simplify data access (most of the time) and

erasure codes should be employed to achieve the last nines in the desired availability level. In that

regard, Wu, et al. in [60] and Xu, et al. in [61] propose hybrid redundancy mechanisms that

combine erasure coding and replication. In the work of Wu, et al. [16, 60] content resides on the

user-nodes. These nodes regularly contact a set of M Indexer nodes to register their contents

 37

(whole-file and fragments) and based on this information, Indexer nodes decide when to send

redundancy repair instructions back to the user-nodes. Whole-file replication is assumed as a by-

product of user activity. Assuming the existence of at least one whole-file replica available, the

system only employs erasure coding to reach a target file availability level for those items with

insufficient replicas available. In the work of Xu, et al. [61] on the other hand, the location of

content is determined by a hash function. Both nodes and content are mapped into a virtual

identification space in which several physical nodes share the same virtual ID and are responsible

for maintaining a target number of replicas for each object. One shortcoming of all the initiatives

mentioned above is the assumption that all nodes cooperate fully in the redundancy maintenance

process when needed. In our research, the structure of our redundancy method is different. We use

erasure coding as the foundation to achieve reliability, and replication as a mean to minimize (and

simplify) the redundancy repair problem. Furthermore, we integrate the redundancy maintenance

problem with economic models to overcome the problems of cooperation and fairness in the

context of distribution of content in P2P networks.

2.3.3 Incentives and Content Availability

The next bodies of research related with our work are the use of incentives mechanism in

P2P networks and the focus of our research, content availability itself. The research literature on

economic-based mechanism for P2P systems is vast. The issues commonly addressed are fair

allocation of resources and prevention of free-riding [62, 63], but content availability is rarely

mentioned as a desirable property or by-product of these mechanisms. Furthermore, the resource

most commonly managed by these mechanisms is bandwidth, which is a short-lived property of

the system [64] and does not translate directly into our objective of improving content availability.

 38

Geels and Kubiatowicz [14] argue that solutions for large-scale replica management should

be based on economic models and they outline the benefits of adopting this approach. They

introduce the term Replica Management Economy (RME) to describe this type of systems and

highlight that automatic resource management, scalability and guarantees through mechanism

design are the key advantages of using economic models to deal with this problem. The authors

state that RME allow the level of node autonomy that is necessary in a heterogeneous environment

like the Internet; regulating the interactions between nodes while fostering cooperation across

domains. The authors explain that one of the directions of future research in this field is the design

of utility functions to rate the worthiness of alternative actions by a RME player. Our research

advances on this path.

To the best of our knowledge, the only two research initiatives targeting content

availability in P2P networks specifically are incentive-based mechanisms. Antoniadis, et al. in [18]

present an incentive mechanism to control the minimum amount of time that nodes should

participate in the system, as well as the minimum number of files that they should share throughout

that time. Bai, et al. in [33] on the other hand, analyze the use of bundling 20 to improve the

availability of contents (in BitTorrent in particular) improving even the download time

experienced by peers when publishers exhibit high unavailability. Our research differs from these

works in three aspects: i) we want to investigate the use of incentive-based mechanisms that would

not require nodes to change their churn behavior, ii) we want to explore the system design

tradeoffs in the context of DHT-based P2P systems and iii) our system does not differentiate

between different types of content; thus, it foster content diversity (regardless of popularity),

minimize node accountability and preserves node autonomy. That is, the system allows nodes to

20 Bundling consist on handling more than one object together to be transferred as a unit.

 39

decide unilaterally how much information they want to store; in the understanding that their

performance is a function of their contribution.

An additional aspect related with the construction of incentives mechanisms is the

definition of redundancy maintenance strategies. In that regard, Data and Aberer in [65] employ a

Markov model to analyze the performance of different redundancy maintenance strategies in P2P

networks. They determine that a randomized lazy redundancy maintenance mechanism offers

significant advantages over existing deterministic and procrastination mechanisms. Yet, they

assume full cooperation among nodes in their analysis. Sit, et al. in [66] present a proactive

replication system that is capable to maintain high content availability using only several kilobytes

per second of bandwidth. The authors argue that “creating redundancy constantly at a limited rate

is simple, flexible and effective approach to maintain data durability”. However, their evaluation is

based on the availability of server-like distributed systems (PlanetLab) and full cooperation among

peers. In contrast, our work uses randomized redundancy maintenance strategies integrated with

incentives mechanisms. In addition, the structure of our redundancy method can be understood as a

proactive redundancy repair strategy, which in the long-run minimizes the system’s repair

bandwidth.

 40

3.0 CONTENT AVAILABILITY FRAMEWORK

In this chapter we present a framework for studying content availability in P2P networks. The

construction of this framework pursues two fundamental goals: First, to guide our analysis by

organizing the diverse factors that can determine the performance of a P2P network and second, to

describe the fundamental properties and models that characterize the architecture and operation of

a P2P network. The elements portrayed into each component of this framework determine the

settings for the various setups in the experimental portion of this work.

The layout of this chapter is as follows. Section 3.1 describes the overall structure of our

proposed framework. Section 3.2 describes the models embedded into each of its components, and

Section 3.3 presents the parameters to be used in each component during the experimental portion

of this study and describes the rationality for the settings selected.

3.1 FRAMEWORK STRUCTURE

Our content availability framework has six components, named User Behavior, Node

Availability, Network Structure, Content, Performance Metrics and Incentives and Redundancy.

Figure 11 depicts our framework.

 41

Figure 11. Content Availability Framework

In conjunction, the six components of our framework constitute a complete characterization

of a P2P system, from a content availability perspective. The properties and models included in our

framework define not only the fundamental characteristics of the network (e.g., routing

architecture) but also the performance metrics to be used as a measure of the success or failure of

the system.

The first component in our framework is called User Behavior. It models the human

attitudes that affect the performance of P2P systems. The second component, Node Availability,

models the intermittent connectivity of individual nodes. That is, this component models when

nodes are online and offline. The third component, Network Structure, models the elements related

to inter-node communication. Consequently, the network routing architecture, the underlying

Internet topology and other network-related metrics fall within this component. The fourth

component, Content, characterizes the properties of the content being offered in the P2P network.

The fifth component, Incentives and Redundancy, characterizes and models the two fundamental

User
Behavior

Content

Network
Structure

Performance
Metrics

Incentives &
Redundancy

Content Availability
Framework

Node
Availability

 42

mechanisms we propose as solution to improve content availability in P2P networks. Finally, the

sixth component, named Performance Metrics, describes the response variables used to measure

the performance of the system and the effectiveness of the mechanisms we propose. The following

sections will further describe the elements incorporated into each component.

3.2 FRAMEWORK MODELS

3.2.1 User Behavior Component

The User Behavior component models the fundamental user attitudes toward P2P

networking that could affect the performance of a P2P system. It has been widely documented that

P2P networks are highly heterogeneous [67]. For instance, some users share lots of resources while

others share little to nothing at all [68]. In this work, we recreate the heterogeneous nature of users

behaviors in P2P networks using a two class user profiling technique. We name these two classes

Benefactors (Be) and Peers (Pe). Figure 12 illustrates our user profiles model and the properties

that characterize each of the two profiles we use in our framework.

Figure 12. User Behavior Model: User Profiles

P2P Network
Participants

(Users) User Profiles Characteristics

Benefactors
(Be)

Peers
(Pe)

• Minority
• High connectivity factor
• Long session lengths

• Low connectivity factor
• Heterogeneous session lengths

 43

Given a set of nodes, a small fraction of them is assigned at random to the Benefactors user

class and the rest are assigned to the Peers user class. Both profiles are characterized using two

fundamental properties: connectivity factor and a probability density function for the average

session length of the nodes in each class. We define the term connectivity factor as the probability

of finding a node online during its lifetime. The average session length is defined using a set of

probability density functions to be described in the next component, node availability.

With the Benefactors user class, we want to portrait a set of users that contributes resources

generously and consistently to the network. Thus, we assume that Benefactors (Be) are users who

stay connected to the overlay network during long periods of time and exhibit a high connectivity

factor. In our analysis we want to investigate if the stability of the overlay network depends on the

contributions of the Benefactors user class. That is, we want to analyze if the portion of the

network population within this class can play a crucial role in the performance and the type of

applications that can be deployed in P2P networks.

We use the Peers (Pr) user class to complement the Benefactors user class recreating the

heterogeneous node participation pattern reported in deployed P2P networks. To accomplish this

goal, we adapted the heterogeneous user churn model presented by Yao, et. al. in [41]. In their

model, both the online and offline intervals are selected independently using two probability

density functions (pdf). In our model, we use a single pdf to define the online interval and the

offline interval is obtained using the connectivity factor parameter.

3.2.2 Node Availability Component

The Node Availability component captures the churn behavior of individual nodes. That is, the

rates at which nodes join and leave the overlay network during their lifetime. An On/OFF state

 44

model is used to characterize this behavior. Figure 13 presents this model. The “ON” state

represents the time interval during which nodes are active members of the overlay network. During

this time, nodes generate lookup traffic and attempt to download items from other nodes. The

“OFF” state represents the time elapsed offline until the node rejoins the network.

ON State: OFF State:
Node is participating Node does not

in the overlay generate/handle any traffic

Figure 13. Node Churn Model

The term node availability (a) is used in the research literature to characterize the

probability of nodes being active. To avoid confusion with other availability metrics that we use

throughout this dissertation, the term connectivity factor (Cf) is used instead. For the ON/OFF

model presented above, connectivity factor is measured as the quotient of the average ON interval

over the sum of the average ON and OFF intervals of a node. Throughout this work the average

online interval is called average session length. Within the Node Availability component ON

represents the average session length, and OFF represents the average offline interval. Thus, the

connectivity factor can be expressed as follows:

OFFON

ONCf
+

= (3.1)

In our description of the User Behavior component, we mention that ON and Cf are the

characterizing factors for each user class. Consequently, rather than using equation (3.1), as

presented above, we employ the following variant in our model:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

Cf
ONOFF 11 (3.2)

OFFON

 45

3.2.3 Network Structure Component

The Network Structure component models the way nodes are organized and how they interact with

each other to maintain the overlay. The fundamental elements that can determine the behavior of

the system under churn include the underlying network topology, the network size (N) and the P2P

network architecture (i.e., routing mechanism). For this component, we assume that the properties

of the underlying physical network and the overlay network topology can be modeled

independently.

For the properties of the physical network, we assume a WAN setting and we employ

existing tools to define the characteristic bandwidth and delay properties of the network. In

particular, we employ Inet-3.0 [69] to generate our model of the physical network.

In our model, Network size (N) represents the total number of nodes participating in the

overlay network and the term overlay network size (NO), is used to denote the average number of

simultaneously active nodes in the network. These two elements are related by a constant, called

churn factor (Ch). That is, .NChNO ⋅=

The structure of our framework does not preclude the analysis of multiple P2P network

architectures, but the scope of our current work is limited to structured systems. Thus, the

architecture of the network is assumed to be DHT-based.

3.2.4 Content Component

The Content component models the data items stored in the overlay network and the exchanged

patterns of these items among nodes. For our characterization of content we categorize factors into

subcomponents named offer, demand, ownership model and initialization. In addition, this

 46

component describes the different roles that nodes can play with respect to content. The main

factors included in this component are presented in Figure 14.

Figure 14. Content Component Factors

The factors included in the offer subcomponent are quantitative in nature. We use the term

content space in reference to the total number of files (M) to be assigned to the nodes participating

in the network. These files are categorized by type into video, audio and web-like items and

initialized in size according to results presented in the research literature [70]. This type/size

breakdown is expressed by the tuple <A,V,W> where A is the percentage of audio files, V is the

percentage of video files and W is the percentage of web-like content. The demand subcomponent

is much simpler. It defines the item selection process (i.e., request rate and items popularity).

The content component defines the initial assignment of data items to individual nodes.

That is, before starting the simulation. In addition, the relative frequency at which each individual

Offer
• Total # files
• % video files
• % audio files
• % web files

Demand
• Request rate
• Popularity

distribution

Initialization
• # complete files per node
• # code fragments per file

Ownership Model
• Node ownership
• Nodes roles: publisher,

index, requestor and host

Content Component

 47

file is requested by peers and the average time elapsed between requests are also defined in this

component.

In Section 2.1.4 we described two content ownership models to describe the process

involved in the retrieval of content (creation, storage, indexing, etc.) and the roles that nodes can

play with regard to content management (publisher, index, holder and requestor). In our research,

the node ownership model is assumed. In addition, the following content indexing and retrieval

model is assumed for the rest of the dissertation. Nodes play three alternative roles, namely

holder 21 , index and requestor. Content holders have one or more items in their storage space and

they regularly contact their corresponding index nodes for indexing purposes. Consequently, index

nodes have a list of all the nodes with items (i.e. holder nodes) that map to the portion of the key-

naming space they manage. When a requestor node searches the overlay network for an item, it

only needs to reach the index node to obtain a list of all the available nodes holding a copy of that

item.

3.2.5 Incentives and Redundancy Component

The purpose of this work is to improve content availability in P2P networks. To do so, we propose

the use of redundancy and incentive-based mechanisms. The first of these two mechanisms,

redundancy, is a common practice in multiple fields as the mean to build reliable systems out of

unreliable components. The second mechanism, incentives, is commonly used to model

interactions among autonomous self-interested participants and as a mean to accomplish

cooperation among them towards a common goal.

21 The term publisher node is replaced by holder node to generalize data possession to the case where content
availability is provided using redundancy.

 48

In our research, we use redundancy to accomplish reliability under the assumptions that, in

P2P networks, idle repair bandwidth is scarcer and more expensive than idle storage space [10].

Thus, we have a redundancy optimization problem, which needs to be formulated as a repair

bandwidth minimization problem. In addition, we assume that given the heterogeneity of resources

and behaviors among P2P networks’ participants, incentives-based mechanisms is a proper tool to

model their interactions, foster their cooperation and achieve self-organization (for the redundancy

repair process of the redundancy scheme we propose).

Given the importance of these mechanisms in our work, the analysis and description of

these components is presented in separate chapters. Redundancy is discussed in Chapter 4.0 and

Incentives in Chapter 5.0.

3.2.6 Response Variables

For complex systems such as P2P networks it is not possible to fully characterize their operation

using a single metric. Li et. al. in [71] propose a two-metric framework named cost-performance

to evaluate the design tradeoffs of DHT-based P2P networks. The cost metric accounts for the

amount of traffic exchanged among nodes to maintain the operation of the network and the

performance metric reflects lookups delay. In our previous research [39], we shown that in some

settings, the lookups success rate is an vital response metric, which we named efficiency. If the

system efficiency is poor, the metrics in the cost-performance framework become irrelevant. In

addition, for our content availability analysis these metrics (cost, performance and efficiency) need

to be qualified at the content level. We need to define the additional traffic that should be

considered

 49

in the cost metric and whether performance should be still measured using lookups delays or other

time-delay metric, such as the delay between the start of a file lookup (i.e., root lookup) and the

initial transfer of data. Furthermore, since our proposed mechanisms to improve content

availability in P2P networks are distributed in nature, we need metrics reflecting not only the

aggregate behavior of the system (i.e., mean cost), but also the distribution of these metrics among

nodes as a function of their level of participation.

In our study, we define two metric categories that we named aggregate and spread. In the

aggregate category, we use three metrics: lookup success rate, content retrieval success rate and

redundancy repair bandwidth. The first two metrics characterize the efficiency of the system and

the third one measures cost. In the spread category, we use only one metric, which is transmission

bandwidth between nodes versus content contribution, where content contribution is measured as a

function of the number of data items (both fragments and complete files) stored by nodes.

Therefore, the spread metric is in fact the combination of two system properties. In addition to the

metrics mentioned above Table 3 presents one more response variable that is important to

characterize the operation of our system, the level of churn in the network. We measure this

property as the mean (or median) session length of nodes throughout a simulation.

Table 3. Response Variables

Metric Description Units

Cost Redundancy-maintenance cost Bytes/file/second
Bytes/file/node/second

Efficiency:
• Routing-level
• Content-level

lookup success rate
content downloads success rate

%

Spread Distribution of transmission bandwidth
versus content contribution n/a

Churn Mean/median session length Minutes

 50

In addition to the metrics mentioned above, which are quantitative in nature, the evaluation

of our system requires a set of metrics for which we can not derive simple quantitative results. So

is the case of fairness for the mechanisms we propose. In particular, we expect that our spread

metric will reflect that the performance (i.e., transmission bandwidth) of nodes remains

proportional to their contribution towards the reliability of the system (i.e. content contribution).

3.3 FRAMEWORK PARAMETERS

Our content availability framework can be used to study the impact of i) the overlay community

composition in terms of classes of user behaviors (Benefactors and Peers), ii) churn in terms of the

node’s average session length and their distribution, iii) the content characteristics in terms of

number of resources and their query distribution and iv) content management strategies to improve

content availability. The last topic is the focus of this dissertation.

Table 4. Content Availability Framework Parameters

Component Number of
elements Factor(s) Description

User Behavior 1 ΩBe Network make (user type distribution)

Node Availability 2 pairs E[gn(t)], ai
Average session length and average
availability for each user-class

Network Structure 1 N Network size
Content 1 M Content space size

Incentives &
Redundancy 2 sets Redundancy-Set

Incentives-Set

Redundancy method parameters &
Incentive-based mechanism
parameters

A full factorial design considering all the elements described in this framework has not

been completed due to the extensive number of variants possible. Instead, only a reduced number

 51

of elements have been selected to conduct our content availability study. Table 4 summarizes the

elements we use as factors for the experimental portion of this dissertation.

The following paragraphs describe the levels selected for each of the factors listed in Table

4; as well as the initialization of other elements not considered as factors. Chapter 6.0 presents

results for the different combinations of parameters selected.

3.3.1 User Behavior Component

Every node in the overlay network is mapped to one of the two classes used in our

framework. Thus, a network make (i.e., portion of nodes in each user class) can be expressed

simply with percentages. ΩBe and ΩPr denote the percentage of nodes in the Benefactors and Peers

user classes, respectively. Since ΩBe + ΩPr = 1, only one of these values is needed to fully

characterize the user population. In our experimental work we use three levels for ΩBe. The

selection of levels for the percentage of Benefactors assumes that this user class is small in most

P2P application environments. The values considered are presented in Table 5.

Table 5. User Behavior Parameters

Parameter Levels

Benefactors (ΩBe) 5, 10 and 20

3.3.2 Node Availability Component

To define the churn behavior of every node we use two parameters, session length and connectivity

factor. The connectivity factor is a constant parameter value for each user class and for the session

length we use a probability distribution function (pdf). For the Benefactors user class, we use a

 52

Pareto pdf and for the Peers user class we use an exponential pdf. The parameters for the pdf of

individual nodes are obtained as follows. For Benefactors, all nodes use the same constant

parameter value and for the Peers user class, the average session length of individual nodes is

obtained using a Pareto distribution. These parameters are presented in Table 6.

Table 6. Node Availability Component Parameters

Parameter
Node Class

Average Session Length: E[fi(x)] Average Node Availability: a

Benefactors fBe(x) ~ Pareto with parameters:
α=1.09 β=0.85 hrs

0.75

Peers
fPr(x) ∼ exp(λx): λx=G(t)

G(t) ~ Pareto with parameters:
 α=1.5/1.09 β=900/1350 sec

0.25

The following paragraphs describe in more detail our selection of parameters for the node

availability component.

3.3.2.1 Session Lengths

Table 7 presents a list of measurement studies of deployed P2P networks and the most relevant

churn properties reported in them. The nodes’ median session time ranges from one minute to one

hour and the distribution of session lengths reported includes Pareto, Weibull and Lognormal

distributions. Some of these results show extremely high levels of churn, with median session

lengths in the order of minutes [32, 72]. These results contrast with results assigning a value on the

order of half an hour to the location parameter of a Pareto distribution [42], mis-estimating the

relevance of short sessions. In either case, we adopt a conservative approach in our experimental

settings by selecting the session lengths of users in such a way that the experimental distribution of

session lengths fits with several of the empirical results of high churn reported in the literature.

 53

Assuming that the behavior of super-peers in the Gnutella network constitute a behavioral

match for our Benefactors user class, we use the characterization presented by Wang, et al. in [44]

to set parameters for this type of nodes. According to this research, the session length of the

Benefactors class follows a Pareto distribution with a shape parameter α=1.09 and a location

parameter β=0.85 hrs.

Table 7. Churn Measurement Studies

Reference Network(s) Churn Metrics/Comments

Active Measurements Studies

Bolla [73] Gnutella
Lognormal distributed
Session lengths: α=1.2, σ=1.25
Offline intervals: α=3.42, σ=2.0

90% < 2 hrs

Wang [42] Gnutella Sessions are power-law distributed with α=1.15,
β=0.69

Wang [44] Gnutella Super-peers’s sessions are Pareto distributed with
α=1.09, β=0.85 5% < 8 min

Steiner [74] KAD Session are Weibull distributed with parameters
(169.53, 0.6151) 50% < 155 min

Stutzbach [45]
Gnutella (G)

BitTorrent (B)
Kad (K)

Sessions are not exponential or heavy tailed

50% < 30 min for G, K
50% < 12 min for B
25% >2hrs for G, K
15% > 2hrs for B

Bustamante [43] Gnutella Sessions are Pareto distributed: 4.338x-1.0607 50% < 1hr

Bhagwan [52] Overnet IP measurement underestimate availability by factor
of 4 50% < 1 hr

Chu [75] Gnutella Significant time of day effect 31% < 10 min
20% > 2 hrs

Saroiu [76] Gnutella 50% < 1 hr
30 % > 2 hr

Passive Measurement Studies

Gummadi [32] Kazaa 50% < 2.4 min
90% < 28.25 min

Sen [72]
Fast-Track
Gnutella

DirectConnect
 50% < 1 min

60% < 10 min

An exponential distributed model is used for the session lengths of the Peers user class, but

their aggregate behavior follows a Pareto distribution. This is accomplished by initializing the

average session length of each node independently at random using a Pareto distribution, called the

 54

initialization function. The parameters of this distribution can take the following values: shape (α )

can be 1.5 or 1.09, and the location parameter (β) can be 900 or 1,350 seconds. This initialization

is adapted from the churn model presented by Yao, et.al. in [41]. Table 8 presents the resulting

quantiles of the distribution of session lengths using different parameters for the initialization

function. The selection of these parameters represents a compromise between different

measurement studies. For instance: Wang et al. in [42] state that session lengths are Pareto

distributed with a location parameter of 0.69 hrs; Stutzbach et al. in [45] report that the median

session length is 30 minutes; and other authors report at least 31% of the nodes leave before 10

minutes and approximately 20% staying connected longer than two hours [75, 76].

In Section 2.1 we argue that for a conservative evaluation of the system, higher levels of

churn should be preferred, and in that regard, exponential session lengths exhibit higher churn

levels than Pareto or Weibull models. In addition, the results presented by Zhonghong et al. in [77]

indicate that the lookup performance of a DHT-based system using exponential, Pareto and

Weibull distribution models does not exhibit significant performance differences. Thus, our

selection of exponential session lengths for the Peers user class seems acceptable.

Table 8. Peers User Class Sample Session Distributions

Initialization Distribution Session Lengths Quantiles
Pareto (1.50, 900) [4.55 7.37 10.63 14.45 19.22 25.23 33.48 46.15 72.38]

Pareto (1.09, 900) [4.68 7.90 11.60 16.03 21.62 28.70 39.32 56.49 96.58]

Pareto (1.50, 1350) [5.63 9.78 14.69 20.35 27.53 36.53 49.02 68.95 110.77]

3.3.2.2 Off-line Interval

In order to fully characterize the churn behavior of a node we need to define the average interval

nodes stay off-line. This is done using the average session length and the connectivity factor of

each user class.

 55

For the selection of the connectivity factor, Benefactors are assumed to participate actively

in the overlay during 75% of their lifetime, and for the Peers user class lower connectivity factors

are employed. In particular, a value of 0.25 is considered for the experimental work presented in

this dissertation, which is in the same order of magnitude used by other research initiatives [10,

78].

3.3.2.3 Oscillating Network Size

One aspect of churn not being reflected into our experimental setting is the possible correlation of

arrivals and departures of nodes. The existence of this phenomenon is suggested by the overlay

network size fluctuations exhibited in deployed networks. Some researchers have tackled this

problem by using non-stationary arrival models [42] and others by breaking down the user

population into time zones and assigning them periodic activity patterns [47]. Either way, these

models focus on reproducing the oscillating network behavior across a 24 hour cycle. In our case,

we are evaluating the negative effects of churn on content availability over shorter periods of time,

a few hours in particular. Still, the churn model presented in this dissertation does generate an

oscillating network size and represents a more realistic node activity model than those presented

earlier in the literature, such as Rhea, et al. in Bamboo [21] that uses a constant network size, or Li,

et al. in [71] that uses a single exponential distribution to generate the session length of nodes.

Figure 15 presents the evolution of the overlay network size in two experiments selected at

random. It is clear that our churn model does produce oscillations in the overlay network size, but

by no means are we trying to reproduce the cyclic behavior reported in the literature. The objective

is simply to stress the dynamic properties of the routing mechanism beyond what has been done

previously in the research literature.

 56

0 30 60 90 120 150 180 210 240 270
250

300

350

400

450

500

Time [min]

O
ve

rla
y

N
et

w
or

k
S

iz
e

Figure 15. Overlay Network Size vs Simulation Time

3.3.3 Network Component

The network component parameters use three elements: network size, DHT-routing architecture

and Internet topology. Two of these elements are in themselves a complex entity and multiple

parameters are required to fully characterize them.

It is unfeasible to conduct a detailed simulation analysis for realistic network sizes.

Deployed P2P networks reach several hundred thousand nodes, but the simulation platforms for

P2P systems available do not support content level analysis at such scale [40]. Nonetheless, we

strive to use the biggest network size possible in all of our simulations because to some degree,

route flexibility and content availability depend on the size of the overlay network (in the sense

that it implies diversity). Thus, the scale of our experiments depends on the capacity of the

simulation platform being used and the hardware resources at our disposal. In particular, the

simulation results presented in this work implement a network of 1,840 nodes.

With respect to the DHT routing architecture, Bamboo [21] is employed with its default

parameters in all the experiments reported in this dissertation, as shown in Table 9.

 57

Table 9. Bamboo Parameters

Parameter Value Update interval

Leaf set size = 3 4 sec

Routing table base = 2 far alarm 10 sec
near alarm 20 sec

Ping interval - 20 sec

3.3.3.1 Modelnet

The Inet topology generator [69] is used in this dissertation to create the underlying network

topology for all experiments. The topology consists on 1,344 edge nodes distributed across 836

distinct AS-level stub networks in a 4,000 node wide area network. From this point forward, this

network topology model is referred as net-model. The bandwidth and delay restrictions for the net-

model are enforced using Modelnet [20], which emulates a wide area networking environment

using a cluster of machines interconnected by a LAN infrastructure.

Modelnet defines two types of machines: emulators and hosts. The emulator is nothing

more than a packet forwarding agent that redirects packets according to the topological descriptors

provided in a net-model. Host machines perform the function of edge-nodes, with their networking

characteristics also defined in the net-model. For scalability, each host machine is multiplexed

logically –according to its capacity– into multiple independent elements named Virtual Nodes

(VN). Each VN is equivalent to an edge-node in the net-model. An application can then be

deployed by executing instances of the application software being tested in each VN. From the

application point of view, a VN instance is an end-host with its unique IP address. Each

application instance is independent of all other VN instances running in the same physical node.

The communication between these application instances is accomplished by forwarding all traffic

through the emulator node.

 58

For our evaluation of content availability mechanisms for P2P networks using Bamboo and

Modelnet we employ the following resources: a cluster of twelve Red Hat Enterprise Linux 4

machines and one FreeBSD 4.9 system. The machine running FreeBSD 4.9 is a Dell PowerEdge

2550 Server with Dual PIII 1.4GHz, 2GB RAM and Gigabit Ethernet NIC. The Red Hat systems

have the following mix of hardware resources: eight have Pentium III 1.4 GHz processors, 512

MB RAM and Fast Ethernet NICs; three have Core i7 2.66 GHz processors with 12 GB RAM and

Gigabit Ethernet NICs; and one machine has AMD Athlon 64 X2 Dual Core 2.6 GHz processor

with 6 GB RAM and Gigabit Ethernet NIC.

Figure 16. Modelnet Network Topology

The diversity in the architecture of the machines used in our experimental cluster creates

some system complexities. Besides having to install a set of libraries for each architecture (32 and

64 bits CPUs) we also had to specify Java’s TCP/IP stack version (by default Java uses IPv6 and

Modelnet’s library only works with IPv4). Moreover, we had to fine tune our data structures to

maximize the CPU and memory utilization of every machine. The first system setting we used in

our experiments supported a total 1,128 nodes; and after additional fine tuning of all the system

parameters (in Modelnet, Java and the OS) we scale our experimental platform to 1,840 nodes.

 59

Depending on their resources, each cluster machine hosts 88, or 176 virtual machines (VN)

running one or two instances of Bamboo for a total of 1,840 overlay nodes. The FreeBSD machine

uses Modelnet to enforce the wide-area delay and bandwidth restrictions of a 4000-node wide-area

network topology with 1,344 client nodes connected to 836 distinct stubs by 10 Mbps to 100 Mbps

links. Figure 16 illustrates the structure of the net-model employed in the experimental portion of

the dissertation.

3.3.4 Content Component

The content component has three elements: content space size, query distribution, and type/size

breakdown. The first two elements are a single value parameter, while the third one is a tuple with

three values plus a model characterizing the file sizes for each data type. In addition, this section

describes the procedure used to initialize the content space of individual nodes before a simulation

starts.

The content space used in the experimental portion of this work is constructed as follows.

A maximum number of unique items is defined for each simulation setting. In most cases, a value

of 500 items is used, but 400, 750 and 1,500 unique data items are also employed in some

experiments. Each item is assigned a unique numerical identifier and is assigned type and size

properties according to the distributions indicated in Table 10, as reported in [70].

The selection of items each node holds at the beginning of a simulation is crucial for the

performance and the evolution of the system’s content. The scenario that we want to evaluate

focuses on the long-tail portion of the popularity distribution. That is, those rare items for which

the system has just a few whole-copies. For items highly demanded, content availability is a

natural by-product of demand. Injecting additional redundancy into the system for these items

 60

would be wasteful. Thus, in this study only a small fraction of nodes is initialized with whole-copy

items

Table 10. File Type/Size Distribution

Audio 80%

Distribution Lognormal
Lognormal Parameters σ2=0.12 μ = 1.42 MB

Video 05%

Distribution Lognormal if x < 6MB, Pareto Otherwise
Lognormal Parameters σ2=1.23 μ = 1.55 MB
Pareto Parameters a = 6.0 b=0.12

Web-like 15%

Distribution Lognormal w/max 843 MB
Lognormal parameters σ2=1.978 μ = 7.763 B

At the beginning of every simulation, content is assigned randomly among nodes as

follows: 5% of the Peers are assigned 6 unique whole-copy items and 10% of the Benefactors

receive 1 whole-copy item. The Peers user class is assigned a bigger portion of the content space

to stress the effect of churn on content availability. In addition, each node is assigned a uniformly

random distributed number of fragments between zero and F; where F is equal to 3*m for nodes

that were assigned a whole-copy item, and 5*m otherwise. The value of m is the total number of

fragments used by the coding mechanism. As a result, the content space of each experiment varies.

The effects of this content initialization process are discussed further in Chapter 6.0.

When a node is in the online state, it generates content request at exponentially distributed

intervals. The average time between these requests is 5 minutes for all nodes. The items requested

are chosen uniformly at random and individual nodes do not request the same item twice during

their lifetime.

 61

Table 11 summarizes the parameters used for the content component of the content

availability framework.

Table 11. Content Parameters

Parameter Level(s)/Distributions Description
Resource space (M) 400, 500, 750 and 1,500 Number of unique items

File types T(0.6, 0.1, 0.3) Percentage of Audio, Video, and
Web-like files

Whole-copy items Peers: 95% 0, rest 6
Benefactors: 90% 0, rest 1

Initial number of whole-copy items
assigned to each node

Fragments w/whole-copy: Uniform(3*m)
w/o whole-copy: Uniform(5*m)

Initial number of fragments
assigned to each node

Query distribution Uniform Selection of items for downloads

3.3.5 Incentives and Redundancy Component

3.3.5.1 Redundancy

The redundancy subcomponent includes four elements: redundancy method, transmission

bandwidth, maintenance epoch policy and target file availability. The first element, redundancy

method, defines whether the system employs replication redundancy or the hybrid redundancy

method introduced in this dissertation; that is, proactive redundancy. The second element,

transmission bandwidth, defines the maximum amount of bandwidth for a single data transfer

between two nodes. The third element, maintenance epoch policy, indicates the algorithmic variant

employed to adjust the interval between redundancy repair decisions taken by Index nodes. Finally,

the fourth element, target number of fragments, defines the redundancy metric22 (i.e., MIN_SEG

and TARGET) that controls how the maintenance epoch is adapted, and whether redundancy

repair messages are to be generated.

22 These factors are presented in Section 4.5.3.

 62

The proactive redundancy method utilized in the experimental portion of this work has

three parameter values: the number of blocks a file is originally split (n), the storage overhead used

by the mechanism (S) and the number of replicas that the hybrid mechanism will generate for each

unique fragment (r). In the case of replication redundancy, which is also tested experimentally for

comparison purposes, only the storage overhead parameter (S) is used.

Table 12. Redundancy Mechanism Parameters

Factors Levels

Proactive Redundancy
n = {6, 8}
S = {2, 3, 4}
r = {2}

Replication Redundancy S = 5
Transmission bandwidth 80, 125 [kBps]

Maintenance Epoch Policy Static, Adaptive<, Adaptive≤,
Smooth α=0.4 and Smooth α=0.8

Target number of fragments
(MIN_SEG, TARGET) 0.5, 0.6, 0.7, 0.8, 0.9

3.3.5.2 Incentives-Based Mechanism

The incentive-based mechanism presented in this dissertation employs two variants of a sigmoid

function. The first one is called TB-Utility and the second one is called RP-Cost. Table 13 presents

the factors and levels employed for these two equations (described in Section 5.2.5) during the

evaluation of the redundancy-system presented here.

Table 13. Incentive-Based Mechanism Parameters

Parameters’ Levels Function
Shape Shift/Bias

RP-Cost 3.5, 5.5 1.25, 1.85
TB-Utility 1.25, 2.25, 3.25 0.05

 63

4.0 REDUNDANCY

The most popular applications of P2P technology are content distribution and file-sharing. In both

cases, content durability is limited by the fading popularity of items and the diverse failure content

error patterns present in this type of networks; namely intermittent peer connectivity disk failures

and network errors. Content redundancy can improve reliability of these systems, but given the

large scale and high levels of churn in P2P networks, redundancy needs to be maintained in a

timely manner. In this chapter, we analyze different aspects of redundancy for P2P networks and

present an automated redundancy repair mechanism for P2P networks under churn.

Redundancy is the provision of excess resources to improve the reliability of a system. In

the context of P2P networks, redundancy can be used to improve both the availability and the

durability of content by distributing whole or code-based copies of a file among the network’s

participants.

In this chapter, we address three questions with regard to redundancy. First, how can we

determine the proper level of redundancy to guarantee a desired file availability level? Second,

what redundancy schemes perform better in P2P environments in terms of their repair cost? And

third, how should we automate the maintenance of such redundancy? The term repair cost

describes the amount of information exchanged between peers to restore the redundancy state

information lost due to content errors. We tackle the questions above by building an analytical

 64

framework that demonstrates the cost and performance advantages of our proposed redundancy

scheme versus other schemes; in particular, erasure coding and network coding.

Our analytical formulation is organized in two stages. First, we describe file availability for

a system where data is encoded and stored using a k-out-of-N redundancy scheme with replication.

Second, we analyze the redundancy repair cost for different constructions of the k-out-of-N

redundancy scheme with replication. The file availability analysis portraits the static properties of

the redundancy system (i.e., resiliency) and the repair cost formulation focuses on how to maintain

these properties in the long term (i.e., maintainability).

Table 14. Redundancy Notation: Redundancy Scheme(s) Parameters

Parameter Description

k Reception efficiency. Minimum number of unique fragments needed to
reconstruct a file

N Total number of unique fragments generated.

S Coding Gain. S=N/k

M Total number of fragments generated (including replicas)

d Repair degree. Nodes needed to reconstruct a fragment using network coding
redundancy. k ≤ d < N

r Replication gain. Number of per-fragment replicas maintained. r ≥ 1

Ri Replication gain for fragment type i. Ri ≥ 1

Table 15. Redundancy Notation: File Availability

Parameter Description

AF File Availability (for a k-out-of-N redundancy system)

Af Fragment availability (for a 1-out-of-Ri redundancy system)

Φ Target file availability (i.e., AF ≥ Φ)

φ Target fragment type availability (i.e., Af (Ri) ≥ φ)

fi,j Fragment i, replica j. i = 1,…N; j = 1,…,Ri
m

jix , Fragment i, replica j stored at node m. m = 1,…,M

qm Availability of node m. 0 < qm < 1.0

 65

Table 16. Redundancy Notation: Repair Cost

Parameter Description

a Availability. Can be used in reference to nodes, disks or other system component
(e.g., an = node availability, af = fragment-replica availability)

δ Maintenance epoch. Time interval at which repairs are performed

gn Distribution of nodes session lengths, μn =mean

gd Distribution of disk lifetimes, μd =mean

α Fragment size

β Repair unit. Data exchanged between two nodes during a repair
r
ep Probability of error-free disk read operation
t
ep Probability of error-free repair unit transmission
r
eb Non-recoverable disk error rate
t
eb Transmission bit error rate

L Redundancy loss. Number of nodes that left the system

Ω Repair cost. Total amount of information transferred during a maintenance epoch

T Long-run redundancy repair interval (10 hrs)

τ Time needed to transfer a repair unit

F File size

B Repair bandwidth. Average repair bandwidth between a pair of nodes.

4.1 REDUNDANCY SCHEMES

In our analysis we consider three different code-based redundancy schemes. Maximum Distance

Separable (MDS) erasure coding, exact minimum bandwidth regenerating (exact-MBR) network

coding and our proposed scheme, named Proactive Replication (PR). The basic structure of all

these methods is a k-out-of-N redundancy scheme.

In the MDS scheme, the file content is encoded to generate a set of N unique fragments,

each of which is stored at different nodes. The encoding scheme is such that any k-out-of-N

 66

fragments are sufficient to reconstruct the original file. In such scheme, a file of size F results in

each node storing a fragment of size α=F/k bytes. The regeneration of a lost fragment typically

requires regenerating the original file, resulting in a repair overhead cost of α*k bytes.

Similarly to MDS, exact-MBR uses a k-out-of-N code. However, exact-MBR differs from

MDS in the amount of information stored at each node and in the number of nodes required to

reconstruct a single lost fragment. We base our analysis in the exact-MBR construction presented

by Rashmi in [79]. In this scheme, nodes store fragments of size α=2*d*F/(k*(2d-k+1)) bytes,

where k≤d<N represents the repair degree. To reconstruct a single fragment, information from d

distinct nodes is required, resulting in d different transfers of size β=α/d bytes from each node.

Our proposed redundancy scheme, PR, also uses k-out-of-N erasure codes. Our scheme,

however, produces r replicas of each fragment. The replicated fragments are then stored at N*r

different nodes. This strategy obviates the need to recreate the original file to repair a single lost

fragment. Thus, the cost for such repairs is only F/k bytes. To calculate file availability for this

new redundancy scheme, we analyze two different scenarios. First, the case when node availability

is heterogeneous and second, for homogeneous node availability.

4.2 FILE AVAILABILITY

We assume the existence of a community of nodes that cooperatively store information. This

community is formed by a fully connected set of nodes M={ n1, n2, …, nM} that are available with

probabilities P={q1, q2, …, qM} respectively. Data is stored in the system using a k-out-of-N

redundancy scheme with replication. The structure of this redundancy scheme is as follows. For a

file of size F, we define the set F = {f1, f2, …, fN} as a collection of N unique fragments of equal

 67

size (e.g., F/k) such that any subset of k elements from F suffices to reconstruct the original file.

Let G be the set of all fragments contained in the system, which is a superset of replicas of

fragments in F:

 G = (4.1)
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=∈
UU

j

i

R

j
ji

f

f
1

,
F

1,1f 1,2f … 1,kf … 1,Nf

2,1f 2,2f … 2,kf … 2,Nf

 … …
…

 2,2 Rf
… … …

NRNf ,

1,1 Rf kRkf ,

Figure 17. Redundancy Data Structure

Figure 17 shows a graphical representation of set G. There is a total of N unique fragment

types and each fragment type i (fi) is replicated a total of Ri times, where Ris are not necessarily the

same. When Ri=1 and node’s availability is homogeneous, file availability can be obtained

using the well-known formulation for a k-out-of-N redundancy scheme, the binomial distribution.

For our proposed redundancy scheme, PR, there are not analytical models available (to the best of

our knowledge). Consequently, we develop our own to analyze the file availability properties of

PR.

,i∀

4.2.1 Heterogeneous node availabilities

The availability of a file stored using the data structure described above (for Ris>1) is given by:

AF = Pr[at least k fragment types are available] (4.2)

 68

This is a k-out-of-N redundancy scheme, where the availability of each fragment type is a

1-out-of-Ri redundancy scheme. For this redundancy structure we want to solve the following

optimization problem:

minimize: Cost= (4.3) ∑
=

N

i
iRC

1
)(

subject to: AF ≥ Φ (4.4)

The availability of the file (AF) for a set of nodes, M, with heterogeneous availabilities has

been studied extensively and does not have a closed form solution. The methods reviewed by Kuo

and Zuo in [80] for evaluating the reliability of a k-out-of-N system are enumerative in nature;

thus, using them to solve our optimization problem is computationally expensive. Alternatively,

we adopt a decomposition strategy to obtain a feasible closed form solution for our optimization

problem. By doing so, we obtain an alternative formulation that can be easily implemented in an

iterative algorithm.

Let κi denote the probability that at least one fragment type i (fi) is available:

κi = Pr[at least one fragment type i is available]

 = 1 – Pr[no fragment type i is available]

 = (4.5))1(1
1

,∏
=

−−
iR

j

m
ji

mq χ

where, is an indicator function such that m
jix ,

⎩
⎨
⎧

=
 otherwise0

m ode 1 ,
,

ninhostedisfif
x jim

ji (4.6)

Let φ be a target fragment availability that we want to guarantee for all fragment types fi

such that κi ≥ φ. Now, using (4.5) and (4.6) in (4.4) we can obtain a closed form solution for the

availability of the file:

 69

AF = (4.7) iNi
N

ki i
N −

=

−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑)1(φφ

Since equation (4.7) has the form of the binomial distribution, we can use the normal

approximation to the binomial distribution to derive an optimal value (i.e., minimum) for φ that

would satisfy the original constraint of our optimization problem (i.e., AF ≥ Φ):

2
2

)/(2
/(4)/(/

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+++
=

kSS
kSSkSkS εεε σσσ

φ (4.8)

Where S is the coding gain of the MDS erasure coding scheme (i.e. N/k), k is the reception

efficiency and σε is the number of standard deviations for the required level of file availability. For

example, for a target file availability of two nines (0.99), k=8 and N=12, φ=0.8142.

Now, our initial optimization problem can be rewritten as follows:

minimize: Cost= (4.3) ∑
=

N

i
iRC

1

)(

subject to: Af (Ri) ≥ φ i∀ (4.9)

What we have accomplished is to reduce the complexity of our file availability problem.

Now, we have to guarantee the availability of each fragment type independently. Furthermore, if

we consider the cost function to be a non-decreasing concave function of Ri and the availability of

the set of nodes storing the same fragment type, the original optimization problem is reduced to a

set of N independent optimization problems; one for each fi plus an additional set of constraints to

guarantee that each node stores at most one fragment (4.12) and that the total number of fragment

does not surpass the total number of nodes (4.13):

minimize: ∑
=

−∗=
iR

j

m
ji

m
i qdRC

1
,)1()(χ i∀ (4.10)

 70

subject to:Af (Ri) =1- ≥ φ ∑
=

−∗=
iR

j

m
ji

m
i qdRC

1
,)1()(χ i∀ (4.11)

 ∑
=

≤
M

m

m
ji

1
, 1χ ji,∀ (4.12)

 (4.13) ∑
=

≤
N

i
i MR

1

In addition, if the availabilities (qm) of all the nodes is assumed to be i.i.d. and equal to a,

equation (4.11) can be used to obtain a closed form solution for Ri:

)1log(
)1log(

)1(1

)1(1)(
1

a
R

thus
a

aRA

i

R

R

j
if

i

i

−
−

≥

≥−−=

≥−−= ∏
=

φ

φ

φ

 (4.14)

Algorithm 1 presents the pseudo-code for finding a feasible solution for the optimization

problem defined by equations (4.10) through (4.13). Notice that the fragment availability is

calculated using a recursive formula (Af (Ri+1)= Af (Ri)*(1-q)+q) to minimize the processing cost

of the algorithm.

In order to minimize cost, nodes have to be assigned to a fragment type subject to:

min ∆cost =)()1(ii RCRC −+

 (4.15)
)1(

)1()1(

1,

1
,

1

1
,

m
Ri

m

R

j

m
ji

m
R

j

m
ji

m

i

ii

qd

qdqd

+

=

+

=

−∗=

−∗−−∗= ∑∑
χ

χχ

and

max ∆Af = Af (Ri+1) - Af (Ri+1)

 = ⎥
⎦

⎤
⎢
⎣

⎡
−−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−− ∏∏

=
+

=

)1(1)1()1(1
1

,,
1

,

ii R

j

m
ji

mm
iji

m
R

j

m
ji

m qqq χχχ

 71

 (4.16)
()

() m
ji

m
i

m
ji

m
R

j

m
ji

m

qR

qq
i

1,

1,
1

,

)(

)1(1)1(

+

+
=

⋅Ψ=

−−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∏

χ

χχ

Procedure optimizeRedundancy()
Purpose: Find a mapping of fragment replicates to nodes
{N: total number of unique fragments}
{M: set of nodes with their availability probabilities qm }
{MIN_AVA: minimum availability needed for each fragment type }

 1: for fi = 1 to N do
 2: node = select next node
 3: assign node to fi
 4: Afi = availability node
 5: end for
 6: for fi = 1 to N do
 7: while true
 8: if Afi < MIN_AVA then
 9: node = select next node
10: assign node to fi
11: p=availability of node
12: Afi = Afi*(1-q)+q
13: else
14: break
15: end if
16: end while
17: end for

Algorithm 1. Optimization of Redundancy Resources

Equations (4.15) and (4.16) translate into a simple, and intuitive, node selection strategy:

use the nodes with the greatest node availability first. For a given set of node availabilities,

Algorithm 1 can determine quickly if a target level of file availability is feasible. We implemented

our algorithm in Matlab and by synthetically generating a random set of node availabilities, we can

easily determine the minimum node-set required to achieved a required level of file availability.

For example, Figure 18 shows some sample results assuming uniformly distributed node

availability between 0.15 and 0.45. The target file availability (of 0.99) is not feasible until the

node set is larger than 63 nodes.

 72

>> p=unifrnd(.15,.45,50,1);
>> [sol p q]=optimizeRedundancy(p);
Using provided node availability vector...
 Target file availability:0.9900
 Target fragment (type) availability = 0.8142
...
 Unfeasible solution!! ran out of nodes
>> p=unifrnd(.15,.45,63,1);
>> [sol p q]=optimizeRedundancy(p);
Using provided node availability vector...
 Target file availability:0.9900
 Target fragment (type) availability = 0.8142
...
DONE, Cost=42.5836
Solution:
 0.44 0.44 0.44 0.42 0.41 0.40 0.40 … 0.39 0.39 0.38
 0.38 0.38 0.37 0.35 0.34 0.31 0.30 … 0.25 0.23 0.18
 0.38 0.37 0.36 0.35 0.33 0.31 0.30 … 0.24 0.21 0.18
 0.38 0.37 0.35 0.34 0.32 0.30 0.29 … 0.24 0.20 0.17
 0 0 0 0 0 0.30 0.29 … 0.24 0.19 0.17
 0 0 0 0 0 0 0 … 0.23 0.19 0.17
 0 0 0 0 0 0 0 … 0 0.19 0.17
 0 0 0 0 0 0 0 … 0 0 0.16

Figure 18. Algorithm 1’s Sample Output

4.2.2 Homogeneous node availabilities

File availability has been used to define the fundamental relationships between the parameters of a

redundancy scheme and the reliability requirements of a system. Assuming i.i.d. node

availabilities, file availability is traditionally presented as:

AF = , N=S*k (4.17) iNi
N

ki
aa

i
N −

=

−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑)1(

where:

File availability, AF. Measures the reliability of the redundancy scheme. It is frequently

expressed as one or more nines of availability (e.g., AF ≥ 0.99).

Node availability, a. Captures the unreliable nature of the components of the system.

 73

Reception Efficiency, k. Denotes the number of fragments needed to reconstruct the

original data

Coding gain, S. Is the fraction of the total number of fragments in the system over the

number of fragments needed for reconstruction. Assuming all fragment

to be unique, S = N/k.

For the construction of a redundancy system, AF an a are usually given. AF in the form of a

system requirement and a as an environmental condition. The optimal values for S and k can be

engineered to achieve different design objectives. For example, MDS provide an optimal tradeoff

between reliability and storage space [79]. Given the tuple a, k and AF, an optimal value (i.e.,

minimum) for S can be obtained (either numerically or analytically [10]) and similarly, given a

value of a, S, and AF an optimal value for k can be determined [54].

In a system without maintenance, the file availability formulation is used to define both

reliability and cost for redundancy scheme, but for a system with maintenance, file availability

only determines the minimum parameter settings to achieve a required level of reliability. Cost on

the other hand, has to be engineered using additional metrics and guidelines. In particular, we need

to define a fragment availability model capable to capture the redundancy repair costs for our

redundancy scheme as well as for other redundancy schemes. In the next two sections we

introduce the cost metric traditionally used to compare different redundancy schemes and then we

describe our fragment availability model.

4.2.2.1 Storage Overhead

In a k-out-of-N redundancy system for data storage, cost is measured by the ratio of the total

amount of storage used by the redundancy scheme and the storage space occupied by the original

data. In a P2P environment though, repair cost is more important because access bandwidth is

 74

scarcer and more expensive than storage space [10]. Nonetheless, storage overhead remains a

fundamental performance measure of the system that needs to be taken into consideration.

The next figure presents the minimum storage overhead for four redundancy schemes:

MDS erasure coding, exact-MBR network coding, our proposed hybrid redundancy method, PR,

with r=2, and Replication.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

S
to

ra
ge

 O
ve

rh
ea

d

Node Availability (a)

AF >0.99 k=d=16, r=2 Replication
exact-MBR
PR
MDS

Figure 19. Minimum Storage Overhead

These results illustrate that code-based redundancy methods use less storage overhead than

replication redundancy, especially at low average node availabilities. For exact-MBR network

coding, the coding gain parameter, S, uses the same value as MDS, but the storage overhead at

each node is higher. For a file of size F, the amount of information stored by each node is F/k in

MDS, while for exact-MBR each node stores 2*F*d/k(2*d-k+1) [81]. For PR, each node stores F/k

bytes, but the total amount of storage used is larger than MDS’ storage. The PR scheme stores r

copies of each unique fragment versus the single copy stored by MDS redundancy. However, for

low node availabilities the additional storage overhead of PR is minimum compared with MDS. In

terms of storage overhead savings, MDS is the most efficient method, but its redundancy

 75

maintenance cost is high. Exact-MBR network coding redundancy and PR redundancy utilize

additional storage in order to minimize repair maintenance cost, which we analyze in the following

sections.

In addition to storage overhead, the results presented in Figure 19 can be used to determine

another important system metric. The total number of nodes needed to store a file. We refer to this

property as node-set. For replication redundancy, this parameter’s value is the same than storage

overhead. For exact-MBR and MDS, the node-set is the product of the coding gain times the

reception efficiency, N = S*k. For PR, the node-set is the product of the coding gain, the reception

efficiency and the replication factor, m = N*r = S*k*r. Consequently, in terms of the number of

nodes needed to store a file, replication redundancy requires the least number of nodes, followed

by MDS and exact-MBR, and finally, by PR. For MDS and exact-MDS, small node availabilities

require larger node-set values which translate into an added coding/decoding complexity. For PR,

this increment in coding/decoding complexity also applies, but at a lower degree. In our opinion,

large node-set values should be avoided not only for their added coding/decoding complexity, but

for their practical implications. As the number of nodes needed to store a single file increases,

managing the node-set becomes more complex. For example, for a=0.3, MDS and exact-MBR

require a minimum coding gain of S=5.25, which implies a redundancy-set with at least 84 nodes.

4.2.2.2 Fragment Availability Model

For the calculation of file availability using a k-out-of-N redundancy system most of the research

literature equates the availability of individual fragments with the availability of the host holding

them. In our case, we use a broader model for the availability of these fragments. This model

reflects the probability of hardware errors in addition to the traditional host availability component.

Furthermore, our formulation derives host availability based on an analytical model of the node’s

 76

session length probability distribution, rather than system traces [10, 56, 58]. This approach has

two advantages. First, results can be obtained for a wider range of network conditions. That is, we

are not limited to the availability of traces. Second, the relationship between the system

maintenance epochs and the average node availability is expressed explicitly, which allow us to

define a repair frequency for a redundancy maintenance algorithm that would maximize the

performance of the system.

In our model, af denotes the availability of a single fragment. This metric is the product of

two probabilities. First, the probability that the node storing the fragment is available. Second, the

probability that if that node is available, no hardware errors will prevent access to the fragment.

Other research initiatives consider host availability [56] or disk failures [9] as the only sources of

content errors. Conversely, our model is broader. It can be customized to model environments

where host availability is dominant as well as environments where hardware and communication

errors are important (e.g., wireless networks). We consider the probability of disk failures and the

probability of data corruption as the main sources of hardware errors. In turn, we use disk read

errors and transmission errors to construct the data corruption component of our model. For a

given system maintenance epoch δ, fragment availability is given by:

δ
fa = Pr[node is available | δ]*Pr[no hardware errors | δ] (4.18)

The first term in the right side of equation (4.18) measures the residual lifetime probability

of the node storing the fragment given that the node has survived one maintenance epoch. In other

words, this probability measures if the fragment can be used during the next maintenance interval

to reconstruct the original file or to perform repairs. We use an to denote this probability. The

probability that a fragment is available after a maintenance epoch, can be calculated using the

expression derived in [9]:

 77

δ
na = Pr[x - δ | x > δ] = ∫∫

∞∞

−⋅=
−

⋅
⋅

δδ

δ
μ

δ
μ

dxxxfdx
x

xxfx
n

nn

n)()(1)((4.19)

where the term (x-δ)/x reflects the probability of storing a fragment early enough in a

node’s session so that it is still available after the next maintenance epoch, gn is the node’s session

length probability distribution, and μn is the expected value of this distribution (i.e., mean value).

The second term in the right side of equation (4.18) has three factors: the availability of

disks storing the fragment, the probability of non-recoverable read errors, and the probability of

corrupted data transmissions. We use ae to denote the resulting probability, denotes disk

availability, denotes uncorrupted read operations and denotes successful data transmissions.

δ
da

rp tp

Pr[no hardware errors|δ] = Pr[disk available|δ]*Pr[no read errors]*Pr[no tx errors]

δ
ea = (4.20) trd ppa ⋅⋅δ

Substituting (4.19) and (4.20) in (4.18) we have

δ
fa = * δ

na δ
ea

 = * (4.21) δ
na trd ppa ⋅⋅δ

The disk availability component, , in equation (4.20) can be obtained using a similar

approach to the one used for . That is, we can use equation (4.19) by replacing gn and μn with

the disk’s lifetime probability distribution and its respective mean value, which we denote by gd

and μd respectively.

δ
da

δ
na

∫∫
∞∞

−⋅=
−

⋅
⋅

=
δδ

δ δ
μ

δ
μ

dxxxfdx
x

xxfxa d
dd

d
d)()(1)((4.22)

To derive the probabilities of uncorrupted disk read operations and successful data

transmissions we use a simple binomial model and assume that bits fail independently. Let α

 78

denote the size of a fragment, denote the disk’s non-recoverable read error rate, and denote

the transmission bit error rate. Then, and can be obtained as follows:

rb tb

rp tp

α)1(rr bp −= (4.23)

β)1(tt bp −= (4.24)

We assume that to retrieve the data needed for repairs, nodes must read the whole

fragment. The size of a fragment is denoted by α, and β denotes the amount of information

transferred to another node during a repair. In MDS and PR redundancy β = α, and in exact-MBR

redundancy β = α/d. Placing (4.23) and (4.24) in (4.21) we get the following expression for the

availability of a fragment.

δ
fa = Pr[node is available | δ]*Pr[no hardware errors | δ]

δ
fa = * * * (4.25) δ

na δ
da α)1(rb− β)1(tb−

With this, our fragment availability model is complete. It comprises the system

maintenance epoch (δ) the availability of nodes () and disk (), and the probability of disk-

read errors () and finally the probability of failed transmissions (). With this

model, we can formulate a repair cost metric for our proposed redundancy scheme and compare it

against other redundancy schemes.

δ
na δ

da

α)1(rb− β)1(tb−

4.3 REDUNDANCY REPAIR

When nodes leave the system, the reliability of the redundancy method deteriorates. To avoid

permanent data loss, the system needs to reconstruct any redundancy lost regularly. The amount of

 79

data transferred between nodes to maintain the reliability of the system is referred as repair cost.

We use ΩF to denote this metric.

The two fundamental system components that determine ΩF are redundancy scheme, and

maintenance epoch. The structure and parameters of the redundancy scheme determine the amount

of information to be transmitted to reconstruct the redundancy lost. The system maintenance epoch

determines the frequency and number of repairs to be performed during each maintenance interval.

For longer maintenance epochs, a larger number of nodes leave the system.

We assume that at time t=0 we have m hosts cooperatively storing a file’s fragments. We

also assume that nodes store single fragments and that their availability, is homogeneous and

stationary. Let denote the expected number of nodes lost during a maintenance interval (with

length δ). The expected value of can be obtained as the expected value of a binomial

distribution with a total of m items:

,δ
fa

δ
FL

δ
FL

[]

())1(1)(

]Pr[

1

1

δδδ

δδ

f

m

i

i
f

im
f

m

i
ii

amaa
i
m

i

lLlLE

−⋅=−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

=⋅=

∑

∑

=

−

=
FF

 (4.26)

The number of hosts storing the file (i.e., m) is determined by the parameters of the

redundancy method. Notice that the expected value of the binomial distribution is obtained for

 because we want the number of offline nodes, rather than the number of nodes that remain

active.

δ
fa−1

Once the number of fragments lost is known, we can calculate the cost of repairing them.

We assume that all the redundancy lost during a maintenance epoch is fully repaired during the

next maintenance interval. Let T denote a long period of time (e.g. 10 hours). We use the term

 80

long-run repair cost to refer to the average redundancy repair cost of the system during T. Thus,

repair cost is a recurrent process performed T/δ times in average. Given T and δ, the long-run

maintenance cost of a k-out-of-m system using MDS, exact-MBR and PR redundancy is given by:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⋅⋅⋅+

⋅⋅⋅

⋅⋅+

=Ω

PRTkL

MBRexactTdL

MDSTkL

PR

MBR

EC

2

2

2

)(

-)(

)(

δ
βγ

δ
β

δ
β

δ

δ

δ

δ

F

F

F

F (4.27)

In all the expressions in equation (4.27), the last term correspond to the frequency of

repairs (1/seconds) and the remaining terms correspond to their size (bytes). The cost contributions

of these components increase in opposite directions. For short maintenance epochs, the frequency

component is high and size is small 23 . Conversely, for long maintenance epochs the frequency

component gets smaller, but the size component becomes larger. Thus, a fundamental problem is

to determine if there is an optimal setting to balance the cost of these components for each

redundancy scheme.

The first expression in equation (4.27) corresponds to MDS erasure coding redundancy

when no nodes are available with a complete copy of the item. In this scenario, nodes stores α =

F/k bytes; where F is the size of the file. For repairs, nodes connect to k available nodes and

transfer β = α = F/k bytes from each node to reconstruct the original data and then transfer the L

fragments lost to new nodes. The research literature refers to this scenario as the redundancy repair

problem due to the potential high overhead cost [82].

The second expression in equation (4.27) corresponds to exact minimum-bandwidth

regenerating (exact-MBR) network coding redundancy. Authors present this type of redundancy as

23 However, for short maintenance epochs, the size efficiency of EC is worst (i.e., highest overhead).

 81

an alternative to traditional MDS erasure coding [79, 82]. Exact-MBR codes can repair individual

fragments without reconstructing the original file first, but they incur in an additional storage

overhead in every node (compared with MDS). Some of these solutions are not practical because

the repair degree is m - 1, like in [78]. However, the exact-MBR code presented by Rashmi, et.al.,

in [79] allows the selection of the repair degree, d, independently of the other parameters. For this

exact-MBR code construction, the size of each fragment is α = 2*d*F/k(2*d-k+1). For repairs,

nodes contact d available nodes and transfer β = α/d bytes from each.

The third expression in equation (4.27) is another alternative to the redundancy repair

problem of MDS erasure coding, a hybrid redundancy method that we name Proactive Replication,

PR. Our approach differs from previous analysis of hybrid redundancy mechanisms in several

aspects. First, we are presenting a full analytical formulation for the properties of this redundancy

method (i.e., the file availability and repair cost equations); as opposed to using it as a simplified

redundancy repair scenario where a complete file copy is assumed to be available all the time, like

in [10] or [59]. Second, the structure of our hybrid redundancy method is different from other

hybrid methods presented in the literature. Again, in [10] a complete copy of the file exists in

parallel to the EC redundancy data. In [60] MDS is an auxiliary mechanism to replication; when

not enough replicas are available, the system generates MDS blocks to reach a target file

availability. In our approach, we use replication on top of MDS. The MDS component is used for

reliability and replication is used to minimize repair cost. This mechanism can be conceptualized

as either a new hybrid redundancy method, or as a proactive redundancy repair policy. In either

case, the main feature of the mechanism is a significant reduction of the repair cost. In PR, the size

of each fragment is α = F/k. For repairs, if there is at least one fragment replica available, nodes

contact a single node to transfer β = α = F/k bytes. When there is no fragment replica available,

 82

nodes contact k available nodes to reconstruct the original file first (i.e., regular MDS). The

probability of using the regular MDS repair mechanism is captured by the parameter γ.

Given a redundancy loss Li (i.e., number of nodes lost during a maintenance epoch),

repairs are done using the traditional MDS mechanism when all r replicas of a fragment are lost

simultaneously. This happens with a probability equal to the portion of r-nodes arrangements that

can be made with Li elements out of the total number of r-nodes arrangements that can be obtained

with N*(r-1) nodes. In other words, the probability of using EC repair goes from zero to one as the

number of fragment lost goes from zero to N*(r-1). The top value for Li comes from the maximum

number of fragments that can be lost (i.e., all replicas) by the redundancy structure before only

MDS repair is possible.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −⋅
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

r
rN

r
Li)1(

γ (4.28)

4.3.1 Failed Repairs

The cost formulation presented in equation (4.27) assumes a perfect repair scenario. To capture

more realistic scenarios where repairs can fail due to churn and hardware errors we enhanced our

repair cost model with a retransmission factor R(τ) which reflects the average number of

transmission attempts needed before a successful repair.

[]
[]

[]
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=⋅⋅⋅⋅+

=⋅⋅⋅⋅

=⋅⋅⋅+

=Ω

PR,)(

MBR-exact,)(

MDS,)(

2

2

2

B
TRkL

B
TRdL

B
TRkL

PR
PR

MBR
MBR

MDS
CE

βτ
δ

βτγ

βτ
δ

βτ

βτ
δ

βτ

δ

δ

δ

δ

F

F

F

F (4.29)

where

 83

()
()

1

12

1

1

)(

]| hardware Pr[]| Pr[

]| Pr[)(

−

−

−

−

=

⋅⋅∗=

⋅=

=

ρ

ττ

ττ

ττ
trdn ppaa

errorsnoavailablenodes

repairsuccessR

 (4.30)

and

B = Repair bandwidth between a pair of nodes (4.31)

Individual repairs are successful with probability ρ. This probability depends on the

probability that each pair of nodes exchanging data remains active long enough to complete the

data transfer (i.e., τ seconds) and the probability of no hardware errors; which in turn depends on

the amount of information stored and transferred (i.e., α and β). To obtain the value of τ, we

assume a constant value for the amount of bandwidth committed to repairs. Let B denote this

value, then τ =β/B. The probability ρ is obtained using a similar approach to the formulation of

 with the exception that in this case, two nodes must remain active: ,δ
fa

R(τ)-1 = ()2 * * * (4.32) δ
na δ

da α)1(rb− β)1(tb−

4.3.2 Repair Cost

The following figure presents the repair cost across a wide range of average node availabilities for

MDS, exact-MBR, PR and the ideal version of MDS redundancy. The ideal version of MDS

assumes that fragments can be repaired transferring only β bytes (i.e., without reconstructing the

original file first). The parameters used for these calculations are listed in Table 17. For the

expected value of the disk lifetime distribution we use the annual failure rate (AFR) reported in

[83]. For the probability of bit read errors, we assume the disk specifications of a consumer-class

SATA hard-drive [84] and for the transmission bit error rate, we assume the value reported in [85].

 84

The procedure used to obtain these results is as follows. First, we obtain the minimum coding gain,

S, needed to achieve a file availability of 0.99 for each redundancy scheme for different average

fragment availabilities. Then, repair cost is calculated using equation (4.29), for each redundancy

method using the S value obtained.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
102

103

104

Fragment Availability (aδ
f
)

A
ve

ra
ge

 K
B

/s

AF >0.99 & λ-1=15 min
F=1.0 MB, d=k=16, r=2
B=40 kbps

MDS

PR

exact-MBR

Ideal MDS

Figure 20. Redundancy Repair Cost

Table 17. Repair Cost Calculation Parameters

 File Availability Repair Cost
 Free Parameter Fixed Parameter(s)

MDS S k=16, Φ=0.99

Exact-MBR S k=d=16, Φ=0.99

PR S k=16, r=2, Φ=0.99

F=1.0MB
gn ∼ exp, μn=15 minutes

T=10hrs, B=40kbps
gd ∼ exp, μd=100k hours

rb =1.1x10-14 and = 1x10-13 tb

The most important point to be highlighted from the results presented in Figure 20 is that

the performance of our proposed redundancy method, PR, outperforms exact-MBR. In addition, all

plots indicate that repair cost is an increasing function of average node availability. This suggests

that the system should be tune up to work at low node availabilities (i.e., long maintenance

epochs). However, this presents two drawbacks. First, the system requires higher coding gains,

which implies a larger node-set (i.e., number of nodes) to store files. As the node-set increases, so

 85

does the complexity of selecting and scheduling fragments for repairs. Second, our model

simplifies the heterogeneous and dynamic nature of P2P networks. For longer maintenance epochs,

(i.e., low node availability) the reliability of the system is more likely to be overwhelmed by churn

and other dynamic processes. Consequently, we consider that a reasonable reliability vs cost

performance compromise could be achieved at the higher average fragment availability values.

For the results in Figure 20, MDS performs better than exact-MBR redundancy for average

node availabilities below 0.5. This result is consistent with the observations presented by Dimakis,

et. al., in [78]. The authors indicate that as the network becomes less stable, the performance of

network coding can be “very slightly worse” than erasure coding. Our availability model allow us

to determine precisely at which point substituting MDS with other redundancy schemes is a viable

solution. Furthermore, our model provides a solid and flexible framework to compare the

performance of redundancy schemes using different combination of parameters. For example, we

can easily determine the performance gain obtained when exact-MBR uses different repair

degrees, k < d < N.

The overall structure of our proposed mechanism does not exclude the use of exact-MBR

network coding instead of MDS for the coding component of the scheme. In that case, the repair

cost for this alternative redundancy construction is:

[]

[]
⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅==⋅⋅⋅

=⋅⋅⋅⋅
=Ω

r

MBR

r

MBR
MBR

r

MBR
MBR

BW
d

BW
TRL

BW
TRdL

βατ
δ

ατ

βτ
δ

βτ

αα
δ

ββ
δ

δ

,)(

,)(

2

2

F

F

F (4.33)

The first expression in equation (4.33) corresponds to regular exact-MBR repair (i.e.,

contact d nodes and transfer β bytes from each one) and the second expression correspond to our

proposed proactive repair mechanism (i.e., contact a single node and download α bytes from it).

 86

PR is performed with probability 1-γ (which is calculated using equation (4.28) and regular exact-

MBR repair is performed with probability γ.

Coding gain is changed to obtain each of the points in the cost versus fragment availability

performance space presented in Figure 21. We label these results as “flexible” in reference to the

changes in coding gain. In a real deployment scenario, fragment availability can vary, but coding

gain can not be adjusted dynamically; instead, it must be engineered to sustain the mean (or worst)

fragment availability scenario.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

102

103

104

Fragment Availability (aδ
f)

R
ep

ai
r C

os
t (

Ω
) [

kB
ps

]

F=1.0MB, d=k=8, r=2

Af>0.99 & λ-1=15 minFlexible MDS
Flexible exact MBR
Flexible Ideal MDS
Fix MDS S=2.5
Fix exact MBR S=2.5
Fix PR S=2.5
Fix Ideal MDS S=2.5

Figure 21. Repair Cost for Flexible and Fixed Coding Gain

Figure 21 presents the cost versus fragment availability performance of MDS, ideal MDS,

exact-MBR and PR redundancy. Coding gain remains constant to S=2.5. We label these results

“fixed” in reference to their coding gain. Additional plots are included in this graph to illustrate the

performance bounds for each scheme. In particular, we have included three flexible schemes:

flexible MDS, flexible ideal MDS and flexible exact-MBR. For the fix redundancy schemes, all

the performance values to the left of the points where the fix and flexible variants intersect do not

satisfy the file availability requirement of 0.99. Thus, the cost performance of the fix schemes is

 87

bounded by their flexible scheme variants. For example, the fix ideal MDS and flexible ideal MDS

schemes intersect at an average fragment availability value of 0.65. For average fragment

availabilities below this value, the fixed scheme consumes less repair bandwidth than its flexible

counterpart, but the resulting file availability is no longer above 0.99.

Some key differences and similarities between the flexible and fixed schemes presented in

Figure 21 are summarized in Table 18. In both sets, MDS and Ideal MDS constitute the upper and

lower performance bounds of the system. When the repair cost performance of the fix set is better

(i.e., lower) than its flexible counterpart, its file availability is below the required level. For the

points where both sets achieve the required level of file availability, the repair cost of the fix set is

higher than the flexible set. The repair cost performance of exact-MBR and PR redundancy is

better than MDS across most of their feasible range, but it is inferior to the performance of Ideal

MDS.

Table 18. Redundancy Methods with Flexible vs Fix Coding Gain

 Flexible Coding Gain Fixed Coding Gain
Feasible range full limited
File Availability, AF 0.99 Varies

Highest Reliability high δ
fa high δ

fa

Lowest Cost low δ
fa low δ

fa

MDS preferred δ
fa < 0.55 n/a

Computing the repair cost ratio for exact-MBR and PR redundancy versus ideal MDS we

obtain the following. Exact-MBR’s performance is a constant factor below ideal MDS (i.e., higher

cost), 1.7334 to be specific. This value comes mainly from the ratio of the β values for these two

redundancy schemes. That is d/k(2d-k+1) vs 1/k. For PR redundancy, this ratio varies for different

average fragment availabilities. At the highest fragment availability, the repair cost of PR is

 88

slightly higher (10%) than ideal MDS, and it increases for lower fragment availabilities, reaching

the same overhead as exact-MBR at =0.55. δ
fa

The next set of figures illustrates the effects of changing the parameters of exact-MBR and

PR redundancy.

4.3.2.1 Proactive Replication with Different (S, r) Parameters

The next two figures illustrate the repair cost performance trend for PR when coding gain, S, and

redundancy degree, r, are changed. Figure 22 presents results for different S and Figure 23

illustrate the performance trend using different r.

The results in Figure 22 indicate that the best repair cost is achieved when the redundancy

scheme uses smaller coding gains. The only drawback is that the range of feasible average

fragment availabilities is reduced (for a required level of file availability). For example, given AF ≥

0.99, S=1.5 and k=8, the system achieves the required file availability level only for average

fragment availabilities above 0.6. Larger coding gain values improve the reliability of the system

and increase the feasible range of PR. For S=2.5, ≥ 0.35 and for S=4.0, ≥ 0.21 to achieve AF

≥ 0.99. However, there is an increase in the repair cost associated with increasing the coding gain

parameter.

δ
fa δ

fa

 89

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

102

103

104

Fragment Availability (aδ
f
)

R
ep

ai
r C

os
t (

Ω
) [

kB
ps

]

F=1.0MB, r=2

AF >0.99 & λ-1=15 minFlexible MDS
Fix PR S=4.0
Fix PR S=2.5
Fix PR S=1.5
Flexible Ideal MDS

Figure 22. Repair Cost for PR with different Coding Gain (S) values

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

102

103

104

Fragment Availability (aδ
f
)

R
ep

ai
r C

os
t (

Ω
) [

kB
ps

]

F=1.0MB, k=8

AF >0.99 & λ-1=15 min
Flexible MDS
Fix MDS S=2.5
Fix PR S=2.5, r=2
Fix PR S=2.5, r=3
Fix Ideal MDS S=2.5
Flexible Ideal MDS

Figure 23. Repair Cost for PR with different Replication Gain (r) values

The results in Figure 23 indicate that larger replication gains, r, allow PR to perform closer

to ideal MDS at the high end of the availability spectrum. This is a promising result because it

suggests that additional storage used in the replication component of the PR mechanism has a net

effect of reducing the repair bandwidth of PR over a wider range of fragment availabilities.

 90

In summary, our analytical models for fragment availability and redundancy repair cost

indicate that our proposed Proactive Replication (PR) redundancy scheme can reduce significantly

the repair cost of a k-out-of-N redundancy system in a P2P environment. The simple design of the

proposed method can use either MDS erasure coding or exact-MBR network coding redundancy

for its coding component. In addition, its replication component adds not only to the efficiency of

the redundancy method, but to its flexibility. Replication gain can be adjusted dynamically to

satisfy different file availability requirements without increasing repair cost. Our analytical results

indicate that both repair cost and reliability increase with average fragment availability.

Consequently, an automated redundancy maintenance system to improve content availability in

P2P networks should avoid both ends of the fragment availability spectrum. Low fragment

availability should be avoided due to reliability concerns, and high fragment availabilities should

be avoided due to repair cost concerns. As an initial system engineering guideline, we propose that

the system should be set up to operate at average node availabilities between 0.65 and 0.85. We

believe that this is a reasonable compromise between cost and reliability. In addition, at lower node

availabilities, the performance gain of PR versus MDS redundancy is less significant.

4.3.3 Maintenance Epochs

The results presented earlier are time-invariant. That is, each point in the performance

space is valid for all systems regardless of their particular churn regimes. Tuning a particular

system to achieve a particular point in the performance space requires mapping the system

dynamics and fragments’ availability. In practice, the only system parameter that can be adjusted

to tune the system’s operation for a target fragment availability metric is the system maintenance

 91

epoch, δ. In our fragment availability model, the average fragment availability and the system

maintenance epoch can be derived from equation (4.25):

δ
fa = * * * (4.25) δ

na δ
da α)1(rb− β)1(tb−

In most P2P settings, the above probability is likely to be dominated by node availability. If

we assume that this factor is exponentially distributed (with mean λ), the relationship between a

required average fragment availability value, ai, and the system’s maintenance epochs can be

obtained as:

δ = –λ*log(ai) (4.34)

In fact, given a required level of file availability AF ≥ φ and the redundancy parameters S

and k, we can derive an optimal formulation for the redundancy maintenance of MDS using the

normal approximation to the binomial distribution [10, 55]. Other researchers have used this

method to obtain the optimal coding gain, S, but to the best of our knowledge the following

formulation has not been presented earlier in the literature:

2
2

)/(2
/(4)/(/

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+++
=

kSS
kSSkSkS

a εεε σσσ (4.35)

Where σε is the number of standard deviations for the required level of file availability. For

our content availability problem, the formulation above defines the minimum average node

availability needed to achieve the required file availability. Using this formulation, we can

determine the maximum maintenance epoch for a given parameter tuple (φ, S, k).

From the results presented earlier (see ~Figure 21~Figure 23), we know that repair cost

increases with average fragment availability. Consequently, the formulation above also defines the

average fragment availability, that results in a minimum repair cost. Nonetheless, we

,minaa f =δ

 92

have also argued that at amin the reliability of the system is the lowest. Thus, it should be avoided.

Furthermore, for the PR redundancy mechanism we are proposing, the closer the system operates

to amin, the smaller performance gain we get with MDS. As a result, amin must be considered as an

absolute minimum, and the redundancy maintenance for the system should be tune up to operate at

larger values. δ
fa

The results in Figure 23 provide additional insights regarding the cost vs performance

tradeoffs of PR redundancy. The figure presents the redundancy repair cost ratio of PR redundancy

with respect to MDS and Ideal MDS. The y-axe to the right is for the two plots that increase their

values for longer maintenance epochs. We name this set the Ideal ratio. The scale to the left

correspond to the other two plots, which exhibit an exponential decay. We name this set the MDS

ratio.

The Ideal ratio is obtained as the ratio of the PR redundancy repair cost over the cost of

ideal MDS. For the shorter maintenance epochs this ratio is close to the ideal value (i.e., 1.0) and

for larger maintenance epochs it degrades until it reaches 1.8. At this point, the performance of the

PR redundancy method is the same as regular MDS and any further improvement in this ratio are

due to the convergence of the repair costs of MDS and Ideal MDS.

The MDS ratio is obtained as the ratio of the repair cost of MDS erasure coding over the

repair cost of PR. The large values shown in the figure for short maintenance epochs illustrate the

significant cost savings of PR redundancy versus regular MDS. Although shorter maintenance

epochs produce the best repair ratios, the absolute repair cost of the system is also the highest (see

Figure 22). Consequently, the system needs to be engineered to achieve a compromise between the

absolute repair cost and the best repair cost ratios. In particular, we believe that the system should

 93

not operate with an Ideal ratio larger than 1.5. That is, the repair cost of PR should not exceed the

repair bandwidth of ideal MDS by more than 50%.

The results in Figure 24 also illustrate an important adaptability requirement for the

automated redundancy repair mechanism. For example, if the system is tune up to operate with an

Ideal ratio no larger than a given value, its maintenance epoch is different for node sets with

different churn behaviors. For an overlay network with exponentially distributed average node

session lengths and λ-1 = 15 minutes, the maintenance epoch is 6 minutes and for λ-1 = 20 minutes

it is 8 minutes (33% longer). A misconfiguration on either case would cause the system to

consume more bandwidth (shorter epochs) or lower Ideal ratio performance than desired (larger

epochs). The key conclusion from these results is that for networks with dynamic and

heterogeneous node behaviors (i.e., most P2P networks), an automated redundancy maintenance

mechanism must be capable of self-tuning in order to achieve a predefined cost performance

tradeoff.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20
0

2.5

5

7.5

10

12.5

15

17.5

20

Maintenance Epoch δ [min]

M
D

S
/P

R

Redundancy Parameters: S=2.5, k=8, r=2

0 2 4 6 8 10 12 14 16 18 20
1

1.125

1.25

1.375

1.5

1.625

1.75

1.875

2

P
R

/Id
ea

l M
D

S

λ-1=20 min, MDS/PR

λ-1=15 min, MDS/PR

λ-1=15min, PR/Ideal MDS

λ-1=20 min, PR/Ideal MDS

Figure 24. PR Cost vs MDS and Ideal MDS Cost

The next question we need to tackle to define the best parameter settings for a redundancy

maintenance mechanism is; what metric should we use to control the adaptation of maintenance

 94

epochs? The obvious answer is average node availability, but this implies tracking down the

sessions (or residual lifetimes) of peers. This presents its own set of challenges [44] and might not

reflect accurately fragment availability at the file granularity level. Instead, we propose the use of

the redundancy loss model presented earlier in equation (4.26):

())1(1)(
1

δδδδ
f

m

i

i
f

im
f amaa

i
m

iL −⋅=−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= ∑

=

−
F (4.26)

This model establishes a direct relationship between average fragment availability and the

number of fragments lost during a maintenance interval. Therefore, instead of measuring node

availability, we can simply count the number of fragments lost during a maintenance epoch.

Furthermore, we can account for this metric at different levels of the granularity. For instance, we

can track only the total number of missing fragments (i.e., the MDS component) or the total

number of fragments with 1, 2 or r copies available (i.e., MDS plus replication). Using the number

of fragment lost (or alternatively, the percentage of fragments still available) is simpler to

implement and manage than nodes’ sessions lengths. For the rest of this work, it is assumed that

the availability properties of the overlay network are obtained using this metric.

Next, we address the architectural and system-level design issues related with the creation

of an automated redundancy maintenance mechanism.

4.4 REDUNDANCY MAINTENANCE

The previous section provides us with insights about the selection of a redundancy method

for P2P environments under churn. For the remainder of this work, we assume the use of a

Proactive Replication, PR, redundancy scheme. The coding component of this method is a

 95

maximum distance separable (MDS) erasure code and replication redundancy is applied on top of

it to achieve low repair bandwidth. This section describes the system and architectural

considerations to build a scalable and efficient redundancy maintenance system to improve content

availability in P2P networks under churn.

The system’s goal is to improve the availability of every single file managed by the overlay

network regardless of their popularity. We refer to this set of files as the system content space. To

accomplish this goal, the system fundamental building block is a distributed hash table (DHT)

lookup functionality that supports an efficient indexing and retrieval of individual items. DHTs are

characterized by their decentralization, fault tolerance and scalability properties, which can be

capitalized to build a completely distributed redundancy maintenance mechanism.

The architecture of the system we are proposing is completely distributed. That is, all nodes

have equal functionalities and they share responsibilities for the operation of the system. The

design objectives of this system are the following:

1) Minimize repair bandwidth

2) Scalability and self-organization

3) Flexibility and Simplicity

The first objective is crucial for the performance of the system. In P2P networks, access

bandwidth is more limited and expensive than storage space [86]. Limiting the amount of

information transferred to restore the data lost when nodes leave the system is not a trivial task.

Our proposed PR redundancy scheme is just the first component toward achieving this objective.

Other important factors needed to minimize the repair bandwidth of the system were presented

earlier in this chapter. For example, according to the analytical results presented earlier (see

Section 4.4.2), we determined that average fragment availabilities between 0.65 and 0.85 can be a

good compromise between reliability and cost.

 96

The second objective, scalability and self-organization, is crucial to accommodate the large

scale nature of P2P systems. The system we are presenting pursues these goals by being

completely distributed. The responsibility of managing the system’s redundancy information is

assigned uniformly at random across the overlay. In addition, we decouple the repair and control

components of the redundancy system. Nodes performing control functions decide when repairs

are needed, but they are not involved in the actual repair process (transfer of data); thus, avoiding

the creation of a common bottleneck.

The third objective, flexibility and simplicity, is embedded into several of the components

of the system, such as the redundancy method and the availability metric. We avoid the use of

complex data structures whenever possible. The hybrid redundancy scheme we are proposing

implements a simple and yet highly flexible design. Its structure and repair mechanism are much

simpler that other schemes (such as exact-MBR). In addition, its replication component can be

adapted dynamically, as opposed to the fixed parameters that must be used with other redundancy

schemes. For the availability metric, we simply count for the number of fragments lost between

maintenance epochs, avoiding the complexity of measuring the system churn rate. At the same

time, the system is capable to adapt to the unique availability conditions of each item (i.e., the set

of nodes storing the file).

The following sections describe the components of the system we are proposing. First,

from an architectural perspective, to describe the fundamental functionalities required using a

bottom-up design and second, using an agent-based model to describe the different roles that nodes

can play and the processes governing their interactions.

 97

4.4.1 System Architecture

The system is modeled as a three layers architecture, shown in Figure 25. At the bottom

layer, we have a set of core functionalities. The middle layer manages the redundancy state

information of the system and the upper layer handles the exchange of data among nodes. The

operation of the upper layers depends on the functionality provided by the underlying level(s).

The bottom layer, core services, implements the fundamental functionalities on top of

which the system is build. In particular, a key-based lookup service for location/indexing of

content. The objective of this component is to define a single (still dynamic) point of contact for

content retrieval and redundancy management. All structured P2P systems support this

functionality, and some of the most important deployed unstructured P2P systems (such as

Gnutella and BitTorrent) have it implemented. This functionality maps content identifiers to a key-

based naming space (key space) that provides an easy and consistent access to contents

independently of their popularity rank. Nodes cooperatively manage this location/indexing service

by assuming responsibility for a portion of the key space, which works as a rendezvous point for

the nodes storing content and those requesting it.

 Redundancy
Management

Core Svcs

 Data Exchange

Figure 25. System Architecture for Redundancy Maintenance

The middle layer, redundancy management, uses the information stored in the key space to

monitor the redundancy state information of the system. We assume that all nodes storing items

 98

notify the system of their availability using keepalive messages or similar methods. The system

verifies regularly whether repairs are needed or not. If repairs are needed, the proper set of nodes

gets notified to start a repair process. In addition, during each evaluation the system adjusts the

periodicity of its verification process in order to minimize the repair bandwidth consumed.

The top layer, data exchange, initiates, monitors and terminates the data transfer between

nodes. For repairs, the process is purely P2P and for content retrieval, the system supports up to k

concurrent data transfers to improve performance. In the case of failed or staled transmissions, this

layer takes care of initiating alternative data transfers.

At each layer, the system performs a set of processes that control the interaction between

nodes. For the description of these processes we use an agent-based model, but before discussing

this model and the processes regulating the interaction among agents, we need to precise some

terms and concepts used in the following section.

The system’s content space is a finite set of data objects. We use the term item in reference

to a complete copy or a fragment of these objects. Given a set of items {i1, i2,…,im} with unique

identifiers { l1, l2,…,lm } associated with the complete copy of the original data, there is a unique

node in the overlay named the root node of item ii. Let r(ii) denote this relationship. For a DHT-

based overlay network routing infrastructure, r(ii) is defined as follows:

r(ii) = nx | hash(id_nx) is the closest numerical value to hash(li) (4.36)

where

nx is an active overlay node

id_nx is a unique identifier of node nx (e.g., a node’s socket).

hash is a well known hash function, such as SHA-1 24 .

24 http://en.wikipedia.org/wiki/SHA-1

 99

A lookup is a procedure that determines the current root node for an item. That is, it returns

the current r(ii) value. We want to emphasize the use of the word current, because the transient

nature of the participation of nodes in a P2P system causes the value of r(ii) to change, eventually.

We use the term key in reference to the identifier of nodes and data object in the DHT. For

instance, the key of item ii is hash(li) and the key of node nx is hash(id_nx). The processes we

describe next are performed regularly by the active nodes in the overlay network in order to cope

with churn, but in order to make an efficient use of their resources and to minimize cost, their

periodicity is adjusted dynamically.

4.4.2 Agents

Nodes performing multiples client/server functionalities, either alternatively or

simultaneously is at the core of the P2P application paradigm. The operation of the P2P

redundancy maintenance system we are proposing is not the exception. These functionalities can

be conceptualized as agents. An agent is an instance of a system functionality being performed by

individual nodes. Thus, the terms node and agent are used interchangeably throughout this section.

The interactions between agents constitute the system. These interactions are regulated by

predefined processes that generate/trigger events to activate specific agents on nodes. Depending

on their role in the redundancy repair mechanism, nodes can play three fundamental roles for a

specific item ii.

• Holder. These are nodes with a whole or partial copy of item ii.

• Index. This is the root node of item ii.

• Candidate. These are nodes not currently associated with item ii.

 100

Nodes alternate between roles according to the event being handled. For example, if the

node receives an item registration message, the index agent gets activated to process the request.

Agents operate at the content level, which implies that nodes can execute multiple instances of the

same agent concurrently, each associated with a different item. For instance, a peer can be an

Index for items ii and ii+1, a Holder of item ij and a candidate for item ik.

Holder nodes maintain a list of index nodes for the items they currently store, contacting

them periodically to indicate the availability of these items. Index nodes maintain a list (i.e., index)

of all holder nodes with copies of a particular item. This indexing information reflects the current

redundancy state information of the system; thus, it can be used to determine when to perform

repairs. When a repair for item ii is needed, holder nodes for this item are notified to start a repair

process, which consist on contacting one or more candidate nodes and transfer data to them. Upon

finalizing the data transfer, candidate nodes become holder nodes for item ii.

4.4.3 System Processes

The redundancy maintenance system we are proposing can be modeled as a dynamic

system of autonomous interacting agents. The interaction of these agents is circumscribed to three

fundamental (interconnected) processes:

• Registration

• Redundancy Evaluation (maintenance)

• Redundancy Repair

Figure 26 shows the complete procedural flow of the automated redundancy maintenance

system we are proposing. Peers are indicated by circles and labeled according to the agent being

executed at each stage. The procedures and functions for the algorithms we are presenting are

 101

indicated by rectangular boxes, together with some sub-processes executed at Algorithm 2 and

Algorithm 3. Network messages between nodes are indicated by dashed lines. In the diagram, it is

assumed that all messages correspond to a single content item. In addition, it is assumed that the

registration message from Holder 1 does not reach the Index node within the maintenance epoch’s

maintenance window 25 , but the registration message of Holder 2 does.

Holder
1

Holder
2

Index

Candi-
date(s)

Index registration
Algorithm 3

Update/Clean
Indexing Information

 maintenance
epoch?

Is
Redundancy Evaluation

Algorithm 4

Adjust maintenance epoch
 Algorithms 5|6

Is repair
needed?

Redundancy Fix
Algorithm 7

Yes

Yes

Redundancy Fix
Algorithm 8

Registration Messages
Algorithm 2

Figure 26. System Processes Overview

The mechanisms presented above assume that all nodes cooperate voluntarily in the

redundancy maintenance process. In practice however, we know that P2P networks are formed by

autonomous nodes with heterogeneous resources and diverse objective functions. As a result,

25 This parameter is presented in Algorithm 4. Its purpose is to limit during how many seconds the system performs
repairs at each maintenance epoch.

 102

without the proper incentives, nodes will avoid cooperating in the redundancy maintenance

process, which could lead to the overall unfairness and performance degradation of the network. In

other words, individual nodes will try to obtain a maximum gain from the system committing the

least amount of resources possible unless we define cooperation rules to balance the performance

and capabilities of individual nodes with the overall performance goal of the system. We address

this concern in the next chapter. For the rest of this section we assume that nodes cooperate fully.

Procedure Registration()
Purpose: Send keep_alive messages to item’s root nodes
{n: total number of items this nodes holds}
{item_key: key value of item i}
{item_seg: fragments of item i that this node holds}

 1: for item = 1 to n do
 2: Get item_key
 3: Get item_seg
 4: while (next_registration_time(item)-now <= 0) do
 5: if root(item) == null then
 6: root(item)=lookup(item_key)
 7: end if
 8: send registration_msg(root(item), item_key, item_seg)
 9: success = wait_for_ack()
10: if success then
11: set next_registration_time(item) = minimum + random(mean)
12: else
13: root(item) = null;
14: set next_registration_time(item) = now
15: end if
16: end while
17: end for

Algorithm 2. Items Registration Process at Holder Agent

The processes we are presenting define the set of rules and algorithms that nodes should

follow to cooperatively improve the availability of content. The first process, registration, is the

only self-initiated process. The other two processes are triggered in response to events generated

by the registration process. Registration starts when Holder agents attempt to contact their index

nodes to announce the availability of the content they hold. The procedure performed by Holders

 103

is presented in Algorithm 2. The objective of this algorithm is simple, to push the state information

of each node sharing content into the overlay.

Unless noted otherwise, it is assumed that key values are used to uniquely identify items

within the algorithms presented.

To improve the efficiency of the registration process, the system allows the aggregation of

items. That is, when several items share the same root node, a single registration message is used.

At the receiving end of the registration process, Index agents process each registration message and

trigger the redundancy evaluation process, if needed. Algorithm 3 shows the pseudo code for the

Index agents. The interaction between the Index agent for item ii and all its Holder agents provide

the fundamental functionality of the system, a dynamic distributed content indexing service; as

described earlier for the core services layer of the system architecture.

Table 19. IndexEntry Data Structure

Field Description
File_ID Contains a hash key
Last_evaluation Contains a time stamp
Last_unique Contains a file availability metric

Redundancy-
SetTable

Contains an array of:
Peer Contains an IP socket
Fragment(s) Contains a bit map
Last_registration Contains a time stamp

.

Index agents maintain an IndexEntry data structure, shown in Table 19, for each of the

items they are responsible for. The information, per file, consists of four elements: the item ID in

the key-naming space, one time stamp, the result of the last file availability evaluation and a table

with all the nodes in the redundancy-set of the item. For this redundancy-set table, three values are

recorded for each node: peer ID (i.e., socket), a bit-map describing the portion of the original data

stored by each peer and a time stamp of the last registration message received from each node.

 104

When an Index agent determines that a node (which recently joined the overlay), is the root node

of one or several of the items it is currently indexing, it transfers the respective IndexEntry data

structure to the new node. On the other hand, when an Index node leaves the overlay, the

IndexEntry data structure is lost. In this case, the data structure is regenerated once the Holder

agents detect the failure of their current root node and contact a new one.

The redundancy evaluation process is triggered in an Index agent only at the beginning of

each maintenance epoch. The MAINT_WINDOW constant defines this interval. By default, the

system uses a value of 30 seconds. Only the registration messages received within this interval

trigger the redundancy evaluation process; all others are just used to update the IndexEntry data

structure.

Algorithm 3. Items Registration Process at Index Agent

Procedure Handle_Registration(registration_msg)
Purpose: Update IndexEntry for all items in registration_msg and evaluate if repairs are needed
{x: number of items contained in registration_msg}
{EPOCH: default redundancy maintenance interval}
{shift_epoch: adapts maintenance epoch dynamically. Updated by Evaluate_Redundancy process}
{MAINT_WINDOW: interval during which redundancy evaluation can be triggered}

 1: peer = getHolder(registration_msg)
 2: now = current time
 3: for item = 1 to x do
 4: id = get_key(item)
 5: segments = get_fragments(item)
 6: IndexEntry = getIndexEntry(id)
 7: update IndexEntry.Redundancy-SetTable using (id, peer, segments, now)
 8: if (now – IndexEntry.last_evaluation) > (EPOCH + shift_epoch) then
 9: IndexEntry.last_evaluation = now
10: end if
11: elapsed = now – IndexEntry.last_evaluation
12: if elapsed < MAINT_WINDOW then
13: initiate redundancy evaluation using peer
14: IndexEntry.last_evaluation = now;
15: end if
16: end for

The pseudo code for the redundancy evaluation process for Index agents is presented in

Algorithm 4-6. Algorithm 5 and Algorithm 6 are mutually exclusive; these are two variants of the

 105

algorithm used to adapt the system maintenance epochs dynamically. Algorithm 5 uses a smoothed

average of the number of unique fragments available to control the maintenance epochs of the

mechanism, while Algorithm 6 uses the number of fragments lost (or gained) during a single

maintenance epoch.

The pseudo code for the redundancy repair procedure performed at Index nodes is

presented in Algorithm 7. The process is quite simple; the Index agent gets a random candidate

node for each of the bits the holder node peer can repair. These candidates are obtained from the

IndexEntry data structures of other items Index node is root, or directly from its routing table. The

only condition for this selection is that the candidate node must not be listed in the IndexEntry data

structure of the item being repaired. In addition, a set of backup targets is added to the message in

case that any of the preselected candidates is not longer available.

Procedure Evaluate_Redundancy(peer)
Purpose: Evaluate if repairs are needed, and update the next maintenance epoch.
{peer: node that triggered this process}
{MIN_SEG: minimum number of unique segments required}
{DO_SMOOTH: controls which algorithm is used to update the maintenance epoch}

 1: remove stalled entries
 2: unique = unique segments available
 3: if unique > MIN_SEG then
 4: if DO_SMOOTH then
 5: shift_epoch = Update_MaintenanceEpoch()
 6: else
 7: shift_epoch = Update_MaintenanceEpoch_L()
 8: end if
 9: if cpl < 1.0 then
10: missing = get IndexEntry missing fragments
11: peer_seg = get fragments peer has
12: if (missing & peer_seg > 0) then
13: initiate redundancy repair using peer and missing & peer_seg
14: end if
15: end if
16: end if

Algorithm 4. Redundancy Evaluation by Index Agent

 106

The redundancyFix message generated by Index nodes is received by a holder node and

processed using the pseudo code presented in Algorithm 7. Upon receiving this message, the

holder node will attempt to push a replica of the segments requested. The initial target for this data

transfer is the candidate node previously selected by the Index node (Algorithm 8). Holder nodes

use an auxiliary data structure named pending replicas to monitor the progress of each repair. If the

replication fails or stales for any reason, the holder node will retrieve an alternate candidate node

from the pending replicas data structure and to complete the redundancy repair with it. Once the

repair request is completed, or all target entries have been exhausted, the pending replicas data

structure for item i is cleared.

Function Update_MaintenanceEpoch()
Purpose: Adjust the length of the maintenance epochs of the system.
{m: total possible number of unique segments}
{alpha: smoothing average factor, default = 0.4}
{TARGET: number of fragments available [k…m]; default 0.3*m }

 1: unique = unique segments available
 2: avg = alpha*last_unique+(1-alpha)*unique
 3: if avg < TARGET then
 4: result = -10 seconds
 5: else
 6: if avg == m then
 7: result = 0
 8: else
 9: if avg > 0.8*m then
10: result = 5 seconds
11: else
12: result = 2.5 seconds
13: end if
14: end if
15: end if
16: last_unique = avg
17: return shift_epoch + result

Algorithm 5. Smooth Maintenance Epoch Mechanism at Index Agent

In summary, the automated redundancy maintenance mechanism we are proposing is

composed of three fundamental processes: registration (with instances at Holder and Index nodes),

evaluation (performed exclusively by Index nodes) and repair (initiated by Index agents, but

 107

executed entirely by Holder agents). The effectiveness of these mechanisms depends greatly on

nodes participating on these processes. To promote this participation while preserving node

autonomy, we propose the use of economic incentives. These incentives, define a set of simple, yet

effective, rules for fair exchange of resources in the overlay that can be easily integrated into the

automated redundancy maintenance process describe above.

Function Update_MaintenanceEpoch_L()
Purpose: Adjust the length of the maintenance epochs of the system.
{m: total possible number of unique segments}
{TARGET: number of fragments available [k...m]; default 0.3*m}

 1: unique = unique segments available
 2: loss = last_unique-unique
 3: if loss > 0 then
 4: if loss > TARGET then result = -10 seconds
 5: else
 6: if loss > TARGET/2 then result = -2.5 seconds
 7: end
 8: end
 9: else
10: if loss == 0 then
11: result = 0 // in Adapt>=0, result=2.5
12: else
13: if loss < -TARGET/2 then result = 5 seconds
14: else result = 2.5 seconds
15: end if
16: end if
17: end if
18: last_unique = unique
19: return shift epoch + result

Algorithm 6. Adaptive Maintenance Epoch Mechanism at Index Agent

 108

Procedure RedundancyFix(peer, segs)
Purpose: Send a redundancy repair request to peer.
{peer: holder node that will perform the repair}
{segs: bit-map with the list of fragments to be repaired}
{BACKUP: it controls whether to include backup targets or not}

 1: for i=1 to num_bits_in(segs) do
 2: target = select random candidate
 3: seg = select random bit in segs
 4: add (target,seg) to redundancyFix_msg
 5: end for
 6: if BACKUP then
 7: for i=1 to 6 do
 8: target = select random candidate
 9: add(target,nil) to redundancyFix_msg
10: end for
11: end if
12: send redundancyFix_msg to peer

Algorithm 7. RedundancyFix at Index Agent

Procedure handle_RedundancyFix(msg)
Purpose: Perform redundancy repairs.
{msg: redundancyFix message received}

 1: id = get item key from msg
 2: for i=1 to size(msg) do
 3: target = get target i
 4: seg = get fragment i to be repaired
 5: if seg <> nil then
 6: push seg to target
 7: store (id, target, seg) in pending replicas
 8: else
 9: store (id, target, nil) in pending replicas
10: end
11: end for

Algorithm 8. RedundancyFix at Holder Agent

 109

5.0 INCENTIVES

This chapter presents an incentive-based mechanism to promote the participation of nodes in a

redundancy-maintenance process to improve content availability in P2P networks and describes its

implementation. The structure of this chapter is as follows. Section 5.1 introduces the use of

economic models in P2P networks. Section 5.2 outlines the components and design guidelines of

the incentive-based mechanism. Section 5.3 describes its construction and in Section 5.4 we

describe the formulation of an enhanced contribution metric for our mechanism. Finally, in Section

5.5 we conclude with a discussion of additional considerations regarding the implementation of

our incentive-based mechanism.

5.1 ECONOMIC MODELS

Economic models are simplified abstract representation of complex economic processes in the

form of logical, qualitative and/or quantitative relationships between a set of variables. Problems in

the fields of economics and distributed systems have multiple structural similarities, which allow

both disciplines to borrow tools, terminology and models from each other to conduct sophisticated

analysis. In that regard, economic inspired models have been used in multiple research initiatives

pursuing fair allocation of resources in P2P networks [14, 15, 17, 62]. The key motivation behind

these initiatives is that the benefits of P2P networking depend heavily in cooperation among peers,

 110

but in reality most systems suffer from the tragedy of the commons problem [87]. This dilemma

arises from the situation in which multiple users, acting independently and rationally according to

their own self-interest, contribute as few resources as possible to the network [88]; even when

these actions deteriorates the long-term properties of the system from which they benefit. For

example, free-riders26 is an instance of this type of problem in file-sharing networks. Measurement

studies of deployed systems reported that in 2000 about 66% of the participants in P2P networks

were free-riders [4] and recent studies confirm that this phenomenon still persist, with more than

70% of the nodes being free-riders [89].

One branch of economics that has been used extensively to alleviate the problem of fair

allocation of resources in P2P networks is economic incentives. This type of mechanism assesses,

coordinates and controls the outcome of a system by influencing the behavior of its participants 27

in a certain way. We use this approach in our research.

There are three classes of incentive-based mechanisms: monetary-payment, fixed

contribution and reciprocity-based [17]. A monetary-payment scheme relies on the existence of a

central banking authority, which could result in a central point of failure and scalability concerns.

In fixed contribution schemes, nodes are forced to make minimum contributions to the system,

which does not take node heterogeneity into account. Reciprocity-based schemes use rules to

control the allocation of resources as a function of nodes’ contribution to the network’s overall

objective. An example of this technique is BitTorrent’s bandwidth bartering mechanism. This

dissertation adopts the reciprocity-based approach to build an incentive-based mechanism because

26 Free-riders are nodes consuming resources in the overlay while sharing few to no resources with the rest of the
network.

27 The term participant in economic models is equivalent to node in P2P terminology.

 111

it supports a completely distributed implementation to achieve scalability, and it is also capable of

accommodating node heterogeneity.

5.2 INCENTIVE-BASED MECHANISMS FOR CONTENT AVAILABILITY

The description of the incentive-based mechanism we propose is organized in five sections

entitled: objective, design guidelines, agents, control metric, and finally, incentive functions. The

following sections describe in detail each of these stages.

5.2.1 Objective

The goal of the incentive-based mechanism is to promote the participation of nodes in a

redundancy-maintenance process by regulating the allocation of resources between nodes in

proportion to their contribution. In other words, our proposed incentive-based mechanism is a

bartering economy of resources (e.g., bandwidth) vs contribution, in the form of redundancy state

information (e.g., fragments). Chapter 4.0 describes the components and operation of the

redundancy-maintenance process. It is assumed that by participating in the redundancy-

maintenance process, nodes can attain better levels of service, statistically speaking, that those that

do not collaborate.

Figure 27 illustrates the desired effect of the incentive-based mechanism on the behavior of

nodes. These figures portrait the levels of contribution of three random nodes, through time,

toward the global objective of the system, which in our case, is content availability. The right

 112

figure shows the results we expect to achieve. Notice that the behavior of nodes still is random and

heterogeneous in nature, but their content availability contribution exhibits an upward trend.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
od

e
C

on
tri

bu
tio

n

Time

node 1
node 2
node 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
od

e
C

on
tri

bu
tio

n

Time

node 1
node 2
node 3

 a) b)
Figure 27. Effect of Incentive-based Mechanism: a) Normal System, b) System with Incentives

5.2.2 Design Guidelines

Four design properties are sought for the incentive-based mechanism presented in this dissertation:

incentive, penalty, decentralization, and adaptability and lightweight [17]. The incentive property

refers to the creation of a positive encouragement component that can affect the behavior of nodes

so that the utility of the system increases. In contrast, the penalty property defines the negative

effect that non-compliant nodes may face by contributing few to no resources towards the common

goal. The decentralization property is adopted as a fundamental architectural consideration to

improve the scalability and robustness of the system. Last, the adaptability and light weight

property refers to the capability of the incentive-based mechanism to adapt efficiently to different

networking and node behavior scenarios while minimizing the produced overhead.

 113

To minimize overhead, the incentive-based mechanism needs to be embedded into existing

system functionalities, which includes the redundancy maintenance process. The redundancy

maintenance process presented in Chapter 4.0 can be easily augmented with incentives. From a

communications perspective, the implementation of the incentive-based mechanism we propose

only requires a contribution metric to be piggybacked into existing systems messages.

5.2.3 Agents

In economic models, it is common practice to conceptualize different stakeholders in the economic

process as agents. Agents represent autonomous entities participating in the economic process and

can affect its outcome. In a P2P economic model each physical node performs multiple agent roles.

The incentive-based mechanism we propose for content availability employs the following agents:

Holder, Index, Requestor and Candidate. Holder nodes store information with the purpose of

sharing it with the rest of the network, improving the content availability of that specific piece of

information. Requestors are nodes that consume resources from the network. In other words,

Requestors are nodes downloading information. Index nodes manage the list of all available

Holder nodes storing data for a specific data item and provide a relaying service between

Requestors and Holders. When a Requestor node wants to obtain an item, it contacts an Index node

to get a list of Holder nodes to download it from. During the redundancy-repair process, nodes

available to store data for a specific item are called Candidates.

Holder nodes have two modalities: provider and publisher. The provider modality answers

download requests from Requestor nodes. The publisher modality is in charge of communicating

to Index nodes its presence as well as restoring lost redundancy information.

 114

5.2.4 Control Metric

The incentive-based mechanism we propose measures the level of participation of nodes in the

content availability of the network and uses it as a control metric. Assuming that redundancy is

being used to provide reliable access to content, the level of participation is measured in terms of

the primary elements defined in the redundancy scheme. For replication redundancy, these

elements are copies of files, and for code-based redundancy schemes the primary elements are

file’s fragments. The term content contribution or simply contribution is used in the rest of this

work to denote the control metric of our incentive-based mechanism.

With respect to the redundancy scheme to be used in the system, we believe that code-

based mechanisms should be preferred because in addition to a fine-grained content contribution

metric, the system gains additional properties. For instance, nodes are not accountable for the

fragments they hold (since these are randomly selected), censorship becomes an extremely hard

task to accomplish, and code-based mechanisms represent a good tradeoff between storage space

and reliability. In the following sections we assume that the redundancy scheme used in the

network is our proposed redundancy scheme, Proactive Replication (PR). That is, redundancy is

code-based.

Let rm denote the contribution of node m, which is defined as follows:

() ()pstGFr mm
m ,,,χχ ⋅= (5.1)

where:

() m
i j

m
ji

m nF == ∑∑
∀ ∀

,χχ (5.2)

We name this function fragment count. is an indicator function (defined as before in Section

4.2.1 for our PR redundancy scheme):

mχ

 115

⎩
⎨
⎧

=
 otherwise0
 nodein hosted is 1 ,

,

mfif
x jim

ji (5.3)

and ()pstG m ,,,χ is named contribution gain, which is a non-decreasing function of fragments’

age (i.e., time), size and popularity. For this function, we define two variants named basic

contribution gain and enhanced contribution gain as follows:

()
⎩
⎨
⎧

⋅⋅
=

EnhancedpLsKtH
Basic

pstG m

)()()(
1

,,,χ (5.4)

For simplicity, we use the first formulation (i.e., basic contribution gain) to describe the

structure and implementation of our incentive-based mechanism in the following sections. In

Section 5.5 we describe the enhanced contribution gain case.

Table 20. Content Contribution Metric

Parameter Name Description

rm Content contribution measures the content availability contribution of node
m

()mF χ Fragment Count counts the number of fragments node m stores

()pstG m ,,,χ Contribution Gain augments fragment count as a function of items’ age
(t), size (s) and popularity (p)

In the redundancy system presented in this dissertation, nodes are expected to include their

content contribution when communicating with other nodes. Depending on the nature of the

communication, the content contribution metric could be used to assign a level of service to the

requesting node in proportion to its contribution.

5.2.5 Incentive and Penalty Functions

The incentive-based mechanism translates the node contribution metric in two system

properties that promote cooperation in the redundancy-maintenance process by providing positive

 116

and negative feedback to the end-user. These properties are realized using two functions, namely

the utility and the cost functions. In the mechanism we propose, the utility function is used as

incentive and the cost function as penalty. In turn, these two functions are based on a sigmoid

function, which has the form:

 σ

σ

)(1
)(

)(
tgtm

tgtm
m rr

rr
rS

+
= (5.5)

where:

Table 21. Sigmoid Function Parameters

Parameter Description

rm is the content contribution of node m
rtgt is the target (average) content contribution
σ is the shape parameter, σ > 1

Sigmoid functions have a tilted S-shaped curve that return values between zero and one.

The return value can be used to assign a level or probability of service to requesting nodes. The use

of a normalized content contribution value in this function allows us to model the system behavior

independently of the scale of the content space. Sigmoid functions exhibit three characteristic

phases that portray the desired evolution in the behavior of peers for the incentive-based

mechanism: starting, maturing and aging [33]. These phases are illustrated in Figure 28. During

the starting phase a node’s contribution is small and so is its payoff. In the maturing phase, as

nodes increase their contribution, their payoffs increase rapidly. Finally, when nodes reach the

aging phase, additional increments to their contribution do not increase their payoff significantly.

 117

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Contribution: rm/ravg

Starting Maturing Aging

Figure 28. Sigmoid Function

The cost function is named Replication Probability (RP-cost) and the utility function is

named Transmission Bandwidth (TB-utility). Given the dual nature of nodes as providers and

consumer of resources, the cost and utility functions can be interpreted as a positive (i.e.,

incentive) and negative (i.e., penalty) feedback to user behavior. In RP-cost, the function is used as

a probability by the incentive-based mechanism. It determines the likelihood of a node accepting to

store additional elements with the purpose of improving the overall content availability of the

network, and increasing its future performance metric (i.e., utility). In other words, the RP-cost

function represents a cost for the downloading node, but also an opportunity to improve its

performance. The TB-utility function is used to assign a level of service to requesting nodes. It

determines how much bandwidth nodes can expect from other peers during a data transfer. This

transmission bandwidth can be interpreted as a performance metric (i.e., utility) or as the amount

of time nodes have to stay connected to finish the download (i.e., cost).

To be able to effectively influence the behavior of nodes towards participating in the

content availability process, the RP-utility and TB-cost functions use a modified version of the

sigmoid function described above. The modifications presented ahead adjust the shape of the curve

 118

and modify the mapping of the nodes’ contributions to the starting, maturing and aging phases of

the sigmoid function.

5.2.5.1 Replication Probability Function

For the RP-cost function, two modifications are done on (5.5). First, the complement of the

sigmoid function (i.e., 1-S(rm)) is used because when nodes have a small content contribution the

probability of hosting new replicas must be high. The function should allow nodes to improve their

utility. When nodes have a high content contribution, the replication probability should be close to

zero (the aging phase). Second, the incentive-based mechanism uses shifted node contribution

values. This modification defines at what contribution level nodes should stop accepting new

replicas. In the original sigmoid function, when a node’s contribution reaches the target content

contribution value (rtgt) its replication probability is equal to 50% and it does not reaches zero until

the contribution value of the node is much larger than the target value (e.g., rm >3*rtgt). Instead, the

RP-cost function should reach zero when the target content contribution value is reached.

The general form for the RP-cost function is:

 RP-Cost(rm,θ)
c

c

tgtm

tgtm

rr
rr

σ

σ

θ
θ

)(1
)(

1
⋅+

⋅
−= (5.6)

where:

Table 22. Replication Probability Function Parameters

Parameter Description

rm is the content contribution of node m
rtgt is the target (average) content contribution in the network
θ is the contribution shift parameter, θ > 1
σc is the cost shape parameter, σc > 1

 119

Figure 29 presents four alternative RP-cost functions that combine two shape and two shift

parameter values. The value of the shape parameter determines the length of the maturing phase.

For larger values of the shape parameter, the upper and lower transition points (i.e., the knees of

the curve) from starting to maturing phases and from maturing to aging phases are more

pronounced. The shift parameter on the other hand, determines the contribution value at which the

function reaches zero. The results presented in Figure 29 indicate that for a smooth transition from

accepting new replicas to rejecting all of them, the values of the shape parameter should be kept

low.

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Content Contribution: ri/ravg

R
P

-c
os

t(r
m

, θ
)

σ=3.5,θ=1.25
σ=5.5,θ=1.25
σ=3.5,θ=1.85
σ=5.5,θ=1.85

Figure 29. Replication Probability Function

5.2.5.2 Transmission Bandwidth Function

For the TB-utility function, a small offset value is added to the sigmoid function to avoid

starving new nodes. When nodes first join the network, their content contribution is zero, and if

these nodes are not allowed to receive at least a minimum transmission bandwidth, they would not

be able to participate in the redundancy-maintenance process at all.

The general form for the TB-utility function is:

 120

 TB-Utility(rm,β)
u

u

tgtm

tgtm

rr
rr

σ

σ

β
)(1

)(
+

+= (5.7)

where:

Table 23. Transmission Bandwidth Function Parameters

Parameter Description

rm is the content contribution of node m
rtgt is the target (average) content contribution in the network
β is the bandwidth bias parameter, β > 0
σu is the utility shape parameter, σu > 1

Using a bandwidth bias too small could constitute a barrier to entry for new nodes and

using a value too high would diminish the effectiveness of the positive feedback component of the

system (i.e., incentive). For the incentive-based mechanism evaluated in Chapter 6.0, the

bandwidth bias parameter selected is equal to 0.05. Figure 30 presents the TB-utility function

employed in the experimental portion of this work for three alternative shape parameter values (σ)

of 3.25, 2.25 and 1.25. When a node’s contribution reaches the target value (rtgt) the function takes

a value of 0.5+β regardless of the shape parameter used. Higher values of the shape parameter

produce a more pronounced knee effect before and after the target contribution value (rtgt). The

effect of the shape parameter can be interpreted as a mean to modify the “length” of the maturing

phase of the sigmoid function. For larger values of the shape parameter the function has a more

pronounced “S” shape; with the starting and aging phases occupying a larger range of the node’s

contribution values.

 121

0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Content Contribution: rm/ravg

R
P

-U
til

ity
(r m

, β
)

σ=1.25,β=0.05
σ=2.25,β=0.05
σ=3.25,β=0.05

Figure 30. Transmission Bandwidth Function

5.3 INCENTIVE-BASED MECHANISM CONSTRUCTION

The use of the RP-cost and TB-utility functions in the redundancy-maintenance process is

described using a finite state machine (FSM) representation of this process. The naming and

operation of the states of this FSM correspond to the economic agent model presented earlier in

Section 5.2.3.

5.3.1 Redundancy-Maintenance Finite State Machine

The FSM in Figure 31 presents the state transitions of a single physical node using the incentive-

based mechanism. The physical node could be performing multiple roles (i.e., agents)

simultaneously, but for the sake of clarity throughout this description it is assumed that the node

can only be in one state at a time. Throughout this description the term node is used in reference to

the local physical node and the term peer is used in reference to other physical nodes.

 122

From the redundancy-maintenance process point of view, the FSM can be in six different

states: Active Node, Index, Holder-provider, Requestor, Holder-publisher and Candidate. In the

first state, active node, the system is not performing any redundancy-related activity, but is

participating actively in the overlay network. The second state, holder-provider, represents the

node serving information to other peers (i.e., uploading on request). The third state, requestor, is

when the node downloads information from the network (i.e., downloading from other peers,

which must be in the holder-provider state). The fourth state, holder-publisher, represents the node

pushing information into the network (i.e., generating new replicas). Finally, the sixth state,

candidate, represents a node that is been considered to receive new replicas (i.e., this node is the

target of another peer in the holder-publisher state).

locally driven

network driven

Active
Node

Holder
provider

Holder
publisher

Candidate

Requestor

Registration
Request

Storage
Request

Content
Request

Repair
Request

Index

Figure 31. Redundancy-maintenance process FSM

The transition of the physical node from the active node state to a different one is triggered

by specific events. These events are classified in two categories depending on whether the event

was generated by the local node or by a peer. In that regard, the states of the FSM are said to be

 123

network driven or locally driven, as indicated in Figure 31. Network driven events are requests

generated by peers (i.e., other physical nodes in the overlay network). In this figure, the transitions

(i.e., arrows in the figure) indicate the name of the event that triggers the transition from the active

node state to the respective “network driven” state. The transitions from the active node to the

locally driven states (holder-publisher and requestor) are generated by timers or by the end-user.

The following sections describe the operation of each state/agent.

5.3.1.1 Requestor State

The Requestor state represents nodes consuming resources (i.e., content) from the overlay. The

node transitions to this state when it submits a request for content to the overlay. If the node

remains in the system after completing a download, and if it decides to share the item28, this state

contributes indirectly to the redundancy-maintenance process.

5.3.1.2 Holder-Publisher State

The Holder-publisher state performs two activities depending on whether the transition was

generated locally or by the network (i.e., a repair request from a peer). The local transition occurs

periodically when nodes contact their respective Index peers. The occurrence of network transition

on the other hand, is random in nature and is triggered when nodes need to perform a redundancy

repair operation. The frequency of these repairs depends on the level of churn exhibited in the

network.

For local transition, the number of Index peers to be contacted depends on the set of items

stored by the node. To avoid traffic spikes, registration requests of individual items should be

28 This is the default behavior for most file-sharing applications, but measurement studies have reported that peers do
not keep all the items they download in the system’s share-directory.

 124

unsynchronized, unless two or more items share the same Index node, in which case their

registration requests are aggregated to minimize overhead.

For network driven transition, the node receives a repair request from one of its Index

peers. This repair request instructs the node to perform a redundancy repair procedure (see

Algorithm 7 and Algorithm 8 in Section 4.4.3). Repair request messages are created by Index peers

and contain a list of elements for the local node (i.e., Holder) to replicate. The selection of the

recipients for these replicas is performed by the Index peer according to their content contribution

metric. If any of the recipients (Candidate peers) fail to respond, Holders can select a new

recipient out of the list of alternative candidates provided by the Index peer in the repair request

message.

5.3.1.3 Holder-Provider State

The Holder-provider state represents the server side of a download. When nodes receive

content request messages (from Requestor peers) they look for a content contribution value in the

message. If a contribution value for the peer is found, the node uses it in the TB-utility function to

determine the amount of bandwidth to allocate for this transmission. A pseudo code for the

bandwidth calculation done by Holder-provider nodes is presented in Algorithm 9.

 125

Function getSpeed(cont)Function getSpeed(cont)

Algorithm 9. Function getSpeed()

Purpose: calculate maximum bandwidth that can be assigned to this request
Returns: maximum bandwidth, speed [kBps]
{ cont: is the content contribution of the requesting node }
{ MIN_TXBW: minimum transmission bandwidth }

 1: upBW = freeUploadBW()
 2: if upBW > MIN_TXBW then
 3: if cont>0 then
 4: speed = MIN_TXBW + upBW*utility(cont)
 5: else
 6: speed = MIN_TXBW + (upBW*random())%MIN_TXBW
 7: end if
 8: else
 9: speed = 0
10 end if

There are procedures used in the function getSpeed() for which an algorithm has not been

presented. These procedures are freeUploadBW() and random(). The first is a function that returns

the total amount of upload bandwidth not yet committed by the node and random() is a uniformly

distributed random variable between zero and one. The random() function is used for non-

compliant peers and for compliant peers with zero contribution. It is possible to use a different

function for non-compliant peers, but this does not represent any additional gain based on our

penalty design guideline (Section 5.2.2).

The pseudo-code of the function utility() used in the getSpeed() function is presented in

Algorithm 10. This function uses a procedure named IndexTable.GetAverageContribution(). The

purpose of this procedure is to calculate the average contribution of peers that register their items

at the current local node (Index agent). If this value is larger than a predefined average node

contribution (TARGET_CONT), the node will use this value instead for normalizing the content

contribution of the requesting peer. It is assumed that a larger than expected average content

contribution is due to the existence of a larger than expected content space. In such a case, the

system would be able to adapt its behavior accordingly.

 126

Function Utility(cont)
Purpose: calculate utility function for requesting node
Returns: utility value, u [UTIL_BIAS,1]
{ cont: is the content contribution of the requesting node }
{ TARGET_CONT: default normalization value for content contribution }
{ SIGMA_UTIL: shape parameter }
{ UTIL_BIAS: bandwidth bias parameter}

1: avg = IndexTable.GetAverageContribution()
2: if avg > 1.5*TARGET_CONT then
3: norm = avg
4: else
5: norm = TARGET_CONT
6: end if
7: a = (cont/norm)^SIGMA_UTIL
8: u = UTIL_BIAS + a/(1+a)

Algorithm 10. Function Utility()

5.3.1.4 Index State

When a node receives a registration request, it transitions into the Index state and evaluates

whether the originating peer should receive a repair request. Algorithm 4 presents the pseudo code

employed by the Index node for this evaluation. As described in Section 4.4.3, Index nodes are in

charge of decisions in the redundancy repair process. They are the brain of the process and the

actual cost associated with the transfer of information is responsibility of other peers. In this way,

Index nodes do not have a direct incentive to misbehave.

The number of repairs to be made for a single file can vary greatly depending on the set of

nodes participating in the storage process. One approach to minimize this maintenance cost is

selecting nodes with the highest availability, but this represents a negative incentive for highly

available nodes and a scalability concern as well. In our implementation, we use an alternative

approach to balance the load of the redundancy mechanism instead. The IndexTable data structure,

presented in Table 23, keeps a list of the nodes within its array of IndexEntry elements (see Table

 127

19 in section 4.5.3 for a description of this data structure). When the list of targets is built, nodes

with the lowest contributions are added first.

Table 24. IndexTable Data Structure

Field Description
Content Contains an array of < IndexEntry>
Nodes Contains an array of <peers>

5.3.1.5 Candidate State

Nodes transition to the Candidate state when they receive a Storage request from a Holder-

publisher node. In order to accept/reject the Storage request, Candidate nodes evaluate their cost

function. If the value is above a randomly generated number, the request is accepted and the

Holder node is notified that it can initiate its upload (with a maximum bandwidth proportional to

the content contribution of the publishing Holder node). The pseudo code employed by Candidate

nodes is listed in Algorithm 11 and Algorithm 12.

Procedure AcceptReplica(cont)
Purpose: accept/reject Replica request from Holder peer
{ cont: is the content contribution of the Holder peer }
{ mycont: is the content contribution of this node }

1: if cost(mycont) > random() then
2: bw = utility(cont)
3: send accept message(bw)
4: else
5: send reject message()
6: end if

Algorithm 11. Procedure AcceptReplica()

 128

Function Cost(cont)
Purpose: calculate cost function for cont contribution
Returns: cost value, c [0,1]
{ cont: is the content contribution of this (or requesting) peer }
{ TARGET_CONT: default normalization value for content contribution }
{ SIGMA_COST: shape parameter }

1: avg = IndexTable.GetAverageContribution()
2: if avg > 1.5*TARGET_CONT then
3: norm = avg
4: else
5: norm = TARGET_CONT
6: end if
7: a = (cont/norm)^SIGMA_COST
8: c = 1 - a/(1+a)

Algorithm 12. Function Cost()

5.4 ENHANCED CONTRIBUTION METRIC

In Section 5.2.4 we defined node contribution, rm, as the product of two functions, fragment count,

F(χm) and contribution gain, G(χm,t,s,p), where χm is an indicator function (taking the value of

one) for the fragments fi,j stored at node m. In addition, we defined two alternative formulations for

G(χm,t,s,p). First, a unitary contribution gain (i.e., G(χm,t,s,p)=1) and second, a contribution gain

with time, size and popularity components. The purpose of our second formulation is to augment

our incentives mechanism with the means to induce additional changes in user behavior.

The reasoning behind enhancing our contribution metric with time is that by rewarding

nodes for the time they share content, the incentive mechanism can also promote lower churn rates,

which would reduce the redundancy maintenance traffic. With the addition of size and popularity,

we expect that by rewarding the nodes that store rare, or large, items, we could further reduce the

system’s redundancy maintenance load. We assume that repairing large files’ fragments is more

 129

costly than repairing fragments for smaller files. Furthermore, we assume that highly popular items

are replicated naturally in the system. That is, nodes are more likely to perform download requests

by themselves (i.e., replicate the complete file, without incentives) for highly popular items than

for rare items. Thus, the availability of popular items depends less on our redundancy maintenance

process.

For our augmented contribution gain function we defined three auxiliary functions, H(t) for

the time component, K(s) for size and L(p) for popularity. All of them are defined as staircase

functions with the following form:

∑∑ ∑
∀ ∀ =

Ψ⋅=
i j

N

x
Axx

m
ji

m

w
n

wZ
1

,)(1)(αχ (5.8)

where

nm is the result of the fragment count function, F(χm).

m
ji ,χ is an indicator function for fragment fi,j being stored at node m

N > 0 is the number of steps (i.e., levels) in the function

αx is the gain at level x. αx <1.0 constitute a penalty and αx >1.0 is an reward.

Ax are disjoint intervals in w and ΨAx is the indicator function of A:

⎩
⎨
⎧

∉
∈

=Ψ
Axif
Axif

Ax 0
, 1
 (5.9)

To define the time, size and popularity components of the contribution gain function we

need to define a set of α values and a set of A intervals reflecting the desired penalty or reward for

each interval.

Let T=2 minutes be a base time interval for the time component of our contribution gain

function so that

 130

H
xA ={[0, T), [T, 2T), …, [10T, ∞)} (5.10)

for which we define the following penalty/reward value set

H
xα ={0.5, 0.75, 0.95, 1.15, 1.3, 1.45, 1.6, 1.7, 1.8, 1.9, 2} (5.11)

The equations above define an incentive mechanism where nodes with session lengths

shorter than 6 minutes receive a penalty (i.e., ax<1.0) and those with session lengths of 6 minutes

and larger receive an incentive. In addition, the reward for sessions larger than 10T (20 minutes)

remains constant. Figure 32 presents the resulting function H(t).

0 1 2 3 4 5 6 7 8 9 10 11
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Normalized session length [t/T]

Ti
m

e
C

on
tri

bu
tio

n
G

ai
n

Figure 32. Time Contribution Gain

For the size component of our content gain function, K(s), we use a single step staircase

function with Savg being the fragment size at which nodes start receiving a reward. Thus, K(s) is

defined by

K
xA ={[0, Savg), [Savg, ∞)} (5.12)

and

H
xα ={1.0, 1.5} (5.13)

 131

For the popularity component of our content gain function, L(p), we assume that files’

popularity is Zip-f distributed. Let pi be the CDF popularity of the item ranked i and let p0 be the

popularity threshold at which nodes start receiving an incentive. The popularity gain function, L(p)

is defined by

L
xA ={[0, p0), [p0, 1.0)} (5.14)

and

L
xα ={1.0, 1.25} (5.15)

In addition to the individual formulations presented above for time, size and popularity, we

also explore a combined metric for the size and popularity components:

∑∑ ∑
∀ ∀ =

Γ⋅=
i j

N

x
Ax

m
ji

m

ps
n

psKL
1

,),(1),(χ (5.16)

where

⎪
⎩

⎪
⎨

⎧

>
≤

<
=Γ

++

++++

++

max_/max_
/min_/

min_/min_
),(

00

0000

00

gssg
ssgss

gssg
ps

pp
avg

pp

pp
avg

pppp
avg

pp

pp
avg

pp

Ax (5.17)

The factors in equation (5.17) allow us to define the minimum (g_min) and maximum

g_max) size-popularity gains. The value of p0 is used to determine at what point of the popularity’s

CDF the system switches its incentive from a penalty to reward (i.e., p+p0=1).

We include this additional metric assuming that the time and storage contributions of nodes

can be directly influenced by the incentives mechanism. Popularity on the other hand, is

independent. In other words, each node could adopt a (selfish) strategy to maximize their benefit

by defining maximum time and storage contributions. Furthermore, the amount of traffic

associated with a particular item is determined by its size and its popularity. In other words, how

often a file is requested and how much information is exchanged to serve these requests is

 132

independent of the time component in our contribution gain function. Nonetheless, we want to

explore whether integrating size and popularity into a single metric could allow us to steer the

contributions of nodes to compensate for any potential bias caused by a skewed popularity

distribution.

5.5 ADDITIONAL CONSIDERATIONS

Flexibility is a key feature of the PR redundancy method we present in this dissertation. The

parameters of code-based mechanisms need to be known by all members of the overlay to enable

file reconstruction by any nodeThis implies that these parameters are fixed and changing them to

achieve different storage or reliability tradeoff would be costly if not unmanageable. In contrast,

the hybrid redundancy mechanism that we propose in this dissertation allows us to change two of

its parameters dynamically without affecting the underlying operation of the underlying code-

based redundancy scheme. These parameters are the number of fragments replicated and the

replication gain to be used for each of these fragments. The evaluation of the redundancy system

presented in the Chapter 6.0 of this dissertation does not explore all the possibilities of adjusting

these parameters. We leave this endeavor for future research.

For a redundancy mechanism to be compatible with a market economy, the system should

be able to certify the contributions of individual peers. The incentive-based mechanism presents

nodes with a tradeoff between their content contribution and the level of service they would get

from other peers. Therefore, nodes will be tempted to exaggerate their contributions in order to

gain additional performance. To avoid this form of cheating, the system should provide a light

weight verification mechanism.

 133

Providing proof of data possession would not be a difficult task in most redundancy

methods 29 . An audit mechanism could be used to verify the validity of a node’s contribution,

counteracting the incentive to cheat. Proof of data possession could be accomplished using some

form of self-certifying data for each fragment. Furthermore, this mechanism can also be used by

content publishers to secure their contribution against tampering.

The use of redundancy in the system also contributes to the redistribution of requests, and

their associated traffic, among the active members of the overlay, with possible performance gains.

In that regard, a node performing a redundancy repair has an incentive to distribute any future

demand for the object it is currently replicating. To minimize the negative effects of sharing (i.e.,

performing a repair) additional mechanism could be implemented. For example, prioritizing

acknowledge messages over traffic, as suggested in [15]. (But this is beyond the scope of our

current work.)

For nodes joining the overlay network with zero contribution, the system should provide an

alternative mechanism for increasing their contribution without waiting for an Index node to select

them as Candidates. In that regard, the system implementation that we evaluate in Chapter 6.0

allows nodes to request Index nodes for a list of fragments to be replicated. Once nodes obtain this

list, they can initiate download requests for as many of items as provided by the Index node.

We believe that the structure of the mechanism presented in this dissertation does not

preclude the use of additional mechanism to improve the performance of the system. Most

incentives mechanism use short-term performance metrics, such as the bandwidth bartering

mechanism of BitTorrent, as opposed to our mechanism, which uses a long-term metric. In that

regard, the only system modification needed to allow two (or more) mechanisms to allocate

29 Except in the case of the functional repair modalities of network coding, which are not considered in this work.

 134

resources concurrently is the definition of a function to reserve a certain amount of resources for

each mechanism. For example, one could assign 25% of the transmission bandwidth to content

availability and the rest to another incentive mechanism. In addition, there are other mechanisms

that can be added to our proposed system to improve its effectiveness. Gamification is one of them

[90]. The contribution metric of the incentive-based mechanism can be presented graphically to the

end-user as a rating or score. The purpose of such feedback would be to provide a positive

psychological feedback to the end user when s/he is contributing to the content availability of the

system. Here again, the effectiveness of such mechanism would depend on the end-user perception

of the incentive, but given that social networks and internet gaming are part of our daily lives, we

think that there is an opportunity for making this approach work.

 135

6.0 EVALUATION

The structure and operation of the PR redundancy scheme and the incentive-based mechanism we

propose in this dissertation share a simple design philosophy. Nonetheless, their interplay in a

heterogeneous and dynamic P2P environment is too complex to be evaluated analytically. As an

alternative, this chapter presents an experimental evaluation. The layout of this chapter is has

follows. Section 6.1 presents the software platform used in this evaluation. Section 6.2 describes a

base system configuration, against which the alternative system configurations can be compared.

Section 6.3 discusses some of the metrics obtained in the experiments and describes the

presentation of results. Section 6.4 examines the impact of different system variants on the content

availability of the network. Section 6.5 presents the system’s response using different settings for

its redundancy and incentives components and Section 6.5.3.2 describes the capacity of the

proposed mechanisms to adapt to different networking conditions, such as varying churn rate and

content space size.

6.1 SIMULATION-EMULATION PLATFORM

Our redundancy-system has been implemented using Bamboo [21] and Modelnet [20]. Bamboo is

our DHT application substrate and Modelnet is used to emulate wide area networking conditions

using a cluster of computers. A description of Bamboo operation is presented in Section 2.2 and a

 136

description of the net-model employed in Modelnet is presented in Section 3.3.3.1. At the routing

layer, the experiments using Modelnet-Bamboo are actually emulations rather than simulations.

Each packet generated by Bamboo’s application stack is injected into the physical network and

forwarded to another node through Modelnet’s emulator node. At the application layer, it is

unfeasible to transfer the actual content without overwhelming the capacity of the emulator or the

physical network. Thus, the actual transfer of content is simulated rather than emulated. For the

transfer of files, nodes only exchange control information. Throughout the rest of this section, no

distinction will be made between the emulation and simulation component of the experiments and

the term simulation is used in reference to both. All experiments are executed for 4.5 hours and

replicated to obtain proper confidence intervals of the evaluation metrics being reported. The

response variables of the system (described in Section 3.2) are recorded throughout the simulation

(excluding the initial transient interval) and unless noted otherwise, the average values reported are

for one single hour of operation of the system, between 2:45 and 3:45 hours after the start of the

simulation.

6.2 BASE CONFIGURATION

The goal of the system we are proposing is to enable the creation of P2P systems that would work

as open access content repositories. In a certain way, the overlay network would work as a public

library whose content collection has been donated (and maintained) by its members. For example,

our redundancy maintenance mechanisms could be used to build a P2P-based wikileaks [91] with

better performance and resistance to censorship that the current web-based approach or to build a

P2P-based Internet Archive [92] with improved scalability and lower cost of ownership.

 137

The design of the system components (i.e., redundancy and incentives) we are presenting is

quite simple. Nonetheless, their interactions in a dynamic and heterogeneous P2P setting is quite

complex. The performance of the system can vary dramatically given different content and

environmental conditions (e.g., churn). To manage this complexity and to guide our analysis of the

proposed redundancy system, we define a reference system configuration, which we name the base

configuration. Unless noted otherwise, the content and networking conditions of the system are

assumed to be the ones presented in Table 24.

Table 25. Base Content/Networking Configuration

Parameter Value Description
Unique Items 500 Content space size
Nodes 1,840 Total network population

Network Make
10% Benefactors
90% Peers

Network population breakdown
by class

Benefactors: 0.1 probability of having 1
whole-copy item Content

Contribution 30 Peers: 0.05 probability of having 6
whole-copy items

Initial content contribution for
each node class

Benefactors: Pareto(1.09,3060)
Cf=0.75, median 100 min

Churn
Peers: initialized using Pareto(1.50,900)
Cf=0.25, median 19.22 min

Churn parameters for each node
class: session length distribution
and average node connectivity
factor.
Resulting median session length 31

Redundancy Erasure Coding with (k, S) = (6, 3) and
proactive replication r = 2

Base redundancy method and
maintenance strategy

Incentives TB-Util with σu=2.25, β=0.05
RP-Cost with σc=3.5, χ=1.85

Default parameter settings for
incentive-based mechanism

When the overlay network operates without any of the content availability mechanisms we

propose, the content contribution defined for the base configuration is such that the performance of

the system exemplifies the content availability problems of P2P networks under churn.

30 A detailed description of the initialization process, including the addition of fragments to the content storage of
nodes is presented in Section 3.3.4.

31 The average mean and median session lengths across 100 of the simulations performed are 34.45 and 18.69 minutes
respectively.

 138

In most graphs, a legend is added to specify the redundancy and content parameters used in

each setup. For example, “EC(6, 3) 500 Items” indicates that the MDS erasure coding component

of the redundancy system uses the parameters (k, S)=(6, 3) and that the content space size includes

500 unique items. If the redundancy and/or content parameters are not specified, the values

presented in Table 24 must be assumed.

6.3 PERFORMANCE METRICS

We use two fundamental metrics to characterize the performance of the system, cost and

efficiency. The terms cost and efficiency are used, respectively, to describe the amount of traffic

generated to maintain the redundancy state information and the effectiveness of the content

retrieval process. Cost is measured in bytes per second per file and efficiency is measured as a

percentage.

Unless noted otherwise, the cost metric used in this section is the per file redundancy repair

cost rate (7th column of the line PUB-Bp in the Per_f_rates section in Figure 33). Since the level of

involvement of nodes in the redundancy maintenance process can be highly heterogeneous, we

believe that the per file cost metric is more adequate to compare the behavior of different system

settings.

The simulation’s processing script produces multiple cost results. The results labeled with

“#” are a count of the number of repairs, and the results labeled with “B” report bytes transferred.

The results without the “p” suffix indicate that measurements are taken throughout the whole

simulation. Conversely, the results with the “p” suffix indicate that measurements are taken only

during a measurement window of one hour in the second half of the simulation (more specifically,

 139

between 2:45 and 3:45 hours). The number of repairs made during the simulation provides a count

for the total number of repairs (T), the successful repairs (G) and the number of failed repairs (F).

Besides the absolute count for each of category (columns 1-3), average values are obtained using

the mean overlay network size during the simulation (columns 4-6) and the total number of unique

files in the simulation (columns 7-9).

Method: HYBRID n=6 m=18 r=2
Avg File Size [Tot,G,F,Gp]=3931.21 3835.11 5245.31 3841.51 kbytes
Tot Tx_bytes=23189 Mbytes, Avg Tx_time[T,G,F]=89,72,331 sec

 Total Good Fail | Net_rates [T,G,F]<#,kbytes> | Per_f_rates [T,G,F] <#,kbytes>|
PUB# 36242 33772 2470 | 148.02 137.93 10.09 | 0.30 0.28 0.02 | #/sec
PUB-B 23745848 21586530 2159318 | 96983.44 88164.29 8819.15 | 193.97 176.33 17.64 | kB/sec
PUB#p 7217 6665 552 | 120.28 111.08 9.20 | 0.24 0.22 0.02 | #/sec
PUB-Bp 4760589 4267279 493309 | 79343.16 71121.33 8221.83 | 158.69 142.24 16.44 | kB/sec

Figure 33. Sample Simulation’s Cost Results Output

The efficiency metric, namely download rate, can be calculated using different

measurements. This is illustrated in Figure 31. The simulation’s processing script produces results

for five metrics:

1. Total content lookups (Search column)

2. Lookups returning a root entry (Finish column)

3. Lookups that fail (Fail column)

4. Non-empty content responses from Index nodes (QryR[x] column)

5. Number of successful content retrievals (ContSuc column)

The QN line presents a total count for each metric throughout the simulation and the

following lines indicate the effectiveness metric for each category. That is, the ratio of each metric

over a reference metric. Line Q1 uses the Search count as reference for all calculations; line Q3

uses the Finish count, and line Q4 uses the QryR[x] count to obtain the effectiveness metric. The

purpose of the last two metrics is to analyze the efficiency of different sub-processes. For example,

line Q4 calculates the efficiency metric using the non-empty index requests, (which for the sample

 140

values presented in Figure 34 is 73% of the total) resulting in a efficiency metric of 80% for the

content retrieval process (instead of 59%, which is obtained using the total count).

Simul wide values
Q Search Finish Fail QryR[x] ContSuc
QN 28486 28208 446 20811 16701
Q1% 1.00 0.99 0.02 0.73 0.59
Q3% 1.00 0.00 0.74 0.59
Q4% 1.00 0.80

Analyzing Queries during [8820...12420] sec simul time
Qp Search Finish Fail QryR[x] ContSuc
QNp 6646 6610 101 5104 4309
Q1p% 1.00 0.99 0.02 0.77 0.65
Q4p% 1.00 0.84

Figure 34. Sample Simulation’s Efficiency Results Output

The alternative efficiency metrics presented above allow us to focus our development

efforts on those sub-processes with the highest potential to improve the performance of the system.

In that regard, it is clear that the lookup process of Bamboo is highly efficient (Finish column in

Figure 34). Consequently, our development efforts were focused on content indexing, replication

and retrieval algorithms.

All the efficiency metrics presented in the rest of this section are obtained using the total

number of Search requests generated (first metric shown in line QN, Figure 34). We selected this

metric for two reasons. First, to avoid efficiency figures (e.g., line Q4p) that would reflect an

artificially high system performance. Second, to be able to compare different system settings

consistently. The network is able to complete at least 98% of the lookup operations across all

simulations, but in the best case scenario, only 80% of these requests culminate with a non-empty

targets-list message back from Index nodes. Thus, to visualize the maximum indexing efficiency

achieved by the system (column QryR[x] in Figure 34), the top scale in all the efficiency plots is

set to 0.8. As a result, the scale used in the plots of the efficiency metric is absolute, but its

 141

graphical representation also conveys its relative performance with respect to the maximum

efficiency of the content indexing mechanism.

Section 3.2 describes that to characterize the behavior of a system under churn we require

three evaluation metrics: cost, performance and efficiency. Most of the results to be presented in

the following sections are content related, and in that context, we do not require the lookup’s

performance metric. Nonetheless, this metric has been recorded and verified not to exceed a 500

milliseconds threshold for all simulations. In fact, the median lookup delay does not exceed 270

milliseconds in any of the simulations performed.

6.4 REDUNDANCY EFFECT

The first research question that we need to address to determine the relevance of our proposed

redundancy maintenance system is what are the positive and negative effects of using redundancy

in a P2P system under churn? Figure 35 illustrates both of these effects. On the positive side, the

use of redundancy substantially improves the efficiency of the system (i.e., content retrieval). On

the negative side, the use of redundancy requires additional transmission bandwidth and storage

resources. We consider that the negative effects are unavoidable. Then, the next question is

whether these negative effects can be controlled and to what extent. The analytical results

presented in Section 4.3.2 indicate that our proposed PR redundancy scheme consume less

resources than MDS erasure coding (and even exact-MBR network coding). The system evaluation

presented in this chapter is a proof of concept of the effectiveness and flexibility of the PR

redundancy scheme.

 142

Figure 35 contains two sets of results. The first set, top graph, presents the download rate

metric (i.e., efficiency), and the second set, lower graph, illustrates the average cost metric of the

system. These cost and efficiency metrics correspond to six different system configurations labeled

as follows: Plain, Reactive, Periodic, Adapt>0, Adapt>=0 and Smooth. The first system

configuration, Plain, does not use any form of redundancy. This represents a system with content

availability problems. The second system variant, Reactive, corresponds to a maintenance policy

that repairs any fragment lost as soon as it is detected. The third system variant, Periodic, uses a

fix-epoch redundancy-maintenance policy. That is, repairs are spaced in time by a constant

interval. The fourth system variant, Adapt>0, uses an adaptive redundancy-maintenance

mechanism that increases its maintenance epochs when the redundancy completeness 32 metric

increases. The fifth system configuration, Adapt>=0, is an adaptive redundancy-maintenance

mechanism that increases its maintenance epochs when the redundancy completeness metric

remains stable or increases. Finally, the sixth system configuration, Smooth, uses a smoothed

average algorithm to adapt the system’s maintenance epochs. The pseudo code for the alternative

adaptation algorithms used by the redundancy-maintenance process are presented in Algorithm 5

and Algorithm 6, Section 4.4.3.

The results presented in Figure 35. Effect of Redundancy on Content Availability clearly

show that redundancy considerably improves content availability in P2P networks. Without

redundancy, the system only completes 7.2% of the content requests; with any of the redundancy-

maintenance modalities the system achieves a download success rate above 62%. The difference

between the alternative redundancy modalities is the cost to be paid for this improved content

availability. The reactive repair policy consumes the most bandwidth, followed by the periodic

32 This metric is a value between 0 and 1 that measures the availability of unique fragments.

 143

repair policy (i.e., fixed maintenance epochs). The three adaptive maintenance mechanisms use a

proactive repair policy that achieves different reductions on the system cost metric with respect to

the periodic system modality: Adapt>0 scheme reduces cost by 50%, Adapt>=0 by 27% and

Smooth does it by only 5%. The adaptive maintenance epoch algorithms presented in this

dissertation prove the advantages of this feature but should not be taken as optimal. We believe

that additional system considerations should be taken into account to construct an ideal adaptation

algorithm, but this goes beyond the scope of our current evaluation.

Plain Reactive Periodic Adapt>0 Adapt>=0 Smooth
0

0.2

0.4

0.6

0.8

S
uc

ce
ss

 R
at

e

Plain Reactive Periodic Adapt>0 Adapt>=0 Smooth
0

500

1000

1500

C
os

t [
kb

ps
/it

em
] EC(6,3)a 500 Items

Figure 35. Effect of Redundancy on Content Availability

6.5 PARAMETERS EXPLORATION

The redundancy-system presented here possesses two components that improve content

availability in churning P2P networks. The first is redundancy, and the second, is an incentive-

based mechanism. Both of these mechanisms have a set of parameters that can determine its

 144

effectiveness in improving content availability. The following sections explore an array of

parameters settings for these mechanisms and analyze their impact on the system behavior.

6.5.1 Proactive Replication Redundancy Scheme

Chapter 4.0 presented an analytical discussion of the maintenance cost properties of alternative

redundancy schemes, particularly MDS erasure coding and exact-MBR network coding (Section

4.3.2.) These analytical results indicate that MDS erasure coding is not adequate for P2P

environments due to its high repair cost requirements.

Section 4.1 introduced our proposed hybrid redundancy scheme, Proactive Replication

(PR), which combines the reliability properties of MDS erasure coding with the simplicity of

replication to achieve low redundancy repair cost. The analytical results represented in Chapter 4.0

are a simplified version of the complex redundancy maintenance process that occurs in a P2P

network. Thus, we rely on simulations to make a more realistic assessment of the capacity of a

redundancy scheme to improve the content availability of a P2P network. For example, the

analytical results assume an ideal content registration process. That is, the content indexing

information is assumed to be accurate all the time. During the experimental evaluation, this

simplification is removed.

Figure 36 presents the cost and efficiency results for several settings of the PR redundancy

as well as for replication redundancy. For PR, the graphs show different parameters settings of its

erasure coding component. All settings use the Adapt>0 maintenance policy, except for EC(6,3),

which uses a periodic maintenance policy and is included as reference only.

The results clearly indicate that PR redundancy outperforms replication redundancy. The

download success rate of replication redundancy (last bar to the right) is quite low, below 20%. In

 145

addition, the maintenance cost of replication redundancy is highly inefficient. At least 25% of the

maintenance bandwidth consumed by replication redundancy corresponds to failed repair attempts.

In contrast, failed repairs in the system using PR redundancy are always below 7%. This is a clear

indication that the amount of data transferred during each repair operation has a significant effect

on the efficiency of a churning system. In addition, the download rate (i.e., efficiency) of the

proactive redundancy method is superior to replication redundancy because nodes take advantage

of concurrent downloads. This is a well known performance improvement mechanism used in

deployed P2P file-sharing networks.

All the variants of the PR redundancy scheme presented achieve similar efficiency metrics,

but they differ on the amount of maintenance bandwidth consumed.

EC(6,3) EC(6,2)a EC(8,2.25)a EC(4,3)a EC(6,3)a EC(8,3)a Rep(5)a

0.2

0.4

0.6

0.8

S
uc

ce
ss

 R
at

e

EC(6,3) EC(6,2)a EC(8,2.25)a EC(4,3)a EC(6,3)a EC(8,3)a Rep(5)a
0

500

1000

1500

C
os

t [
kb

ps
/it

em
] Base Case

500 ItemsS=2 S=3

Figure 36. Cost and Efficiency for Alternative PR Redundancy Settings

The experimental settings presented in Figure 37 for PR redundancy illustrate the behavior

of the system for various combinations of the parameters k and S. Parameter k is the reception

efficiency of the MDS erasure coding component and parameter S is its coding gain; which

determines the total number of unique fragments generated by the coding scheme (i.e., N=S*k).

The replication component of PR, parameter r, uses a constant value of 2 in all the experimental

 146

settings. Table 25 list the success rate and cost results obtained in each experimental setup,

together with two additional system attributes, the system’s mean maintenance epoch and mean

repair rate.

Table 25 also includes results for one system variant not included in Figure 37. This

variant, EC(6,3)a-7, replicates only seven out of the 18 total fragments defined by the erasure

coding component of PR redundancy. These results suggest that there are significant cost savings

when not all fragments are replicated and furthermore, the effectiveness of the system does not

deteriorate with this measure. This is certainly an interesting line of experimentation for future

research. For instance, different fragment sets could be replicated using various priorities in order

to find different cost/efficiency tradeoffs.

Table 26. Response Variables for Alternative Redundancy Schemes

System Setting
Download

Rate
[%]

Cost
[bps/file]

Average Maintenance
Epoch

[seconds]

Average Repair
Rate

[repairs/file/sec]

EC(6, 2)a 0.572 386.14 148.68 0.67

EC(8, 2.25)a 0.613 473.51 148.97 1.01

EC(4, 3)a 0.618 596.18 166.54 0.65

EC(6, 3)a 0.638 559.15 156.93 1.03

EC(8, 3)a 0.656 487.07 155.38 1.17

EC(6, 3)a – 7 0.635 349.28 161.75 0.51

In Section 4.3.2.1 we argued that PR redundancy with small parameter values, namely for k

and S, produce the smallest redundancy state information (i.e., set of fragments), However, this

redundancy state information needs more frequent maintenance than other settings with larger

overheads (i.e., S parameter). Moreover, when longer maintenance intervals are used, the methods

with larger overhead values consume the same maintenance bandwidth as methods with smaller

parameters at shorter maintenance intervals. We found that the analytical results presented in

 147

Section 4.3.2.1 apply only partially to our experimental results. The following sections describe

our observations with respect to the effects of parameter S first, and with respect to the effects of

parameter k second. The parameter being discussed in each section appears in boldface in the text.

6.5.1.1 PR Redundancy with Different Coding Gains (S)

The net effect of augmenting the coding gain parameter, S, is to increase the total number of nodes

storing an item. That is, the redundancy-set. The experimental results indicate that larger values of

S improve download rate, but they also increase the system’s cost metric. For example, EC(6,3)a’s

efficiency is higher than EC(6,2)a by 7%, but EC(6,2)a consumes 31% less bandwidth.

According to our analytical results, (Section 4.4.3) by increasing S, we expect the system’s

maintenance epoch to increase 33 while others metrics would remain constant. In the experimental

evaluation we observed that the maintenance epochs increase for larger S values, but so does the

maintenance cost. For example, the average redundancy maintenance epoch increases from 149 to

157 seconds when S increases from 2 (in EC(6,2)a) to 3 (in EC(6,3)a).

Table 26 includes an alternative metric for the efficiency of the redundancy maintenance

process, average repair rate per file. In the experiments we performed, larger S values increase this

metric. For example, EC(6,2)a has a repair rate of 0.67 and in EC(6,3)a this metric increases to

1.03. Thus, maintaining a single file becomes more costly for larger S values. Nonetheless, it is

also clear that this additional cost increases the efficiency of the system; from 0.57 for EC(6,2)a to

0.64 for EC(6,3)a.

33 The analytical results suggest that larger overhead values can be used to maximize reliability without significantly
increasing the system’s maintenance cost. The only requirement is the use of larger maintenance epochs.

 148

6.5.1.2 PR Redundancy with Different Reception Efficiencies (k)

The value of the reception efficiency parameter, k, determines the number of nodes needed to

reconstruct a file as well as the size of each fragment. The experimental results presented in Figure

36 illustrate that increasing k reduces cost and increases efficiency. For example, EC(8,3)a has a

lower cost and better efficiency than EC(6,3)a.

With respect to the number of repairs, increasing the value of k increases the average

system repair rate. The coding gain in EC(8,2.25)a was selected to have exactly the same total

number of nodes as EC(6,3)a; that is, 18 nodes. Both configurations use the same total number of

nodes to store a single file, but their fragments are of different sizes. The repair rate of EC(8,2.25)a

is slightly lower than the repair rate of EC(6,3)a. If this metric is adjusted according to the value of

k (i.e., divide it by k), the resulting cost values are 0.17 for EC(6,3)a and 0.13 for EC(8,2.25)a.

Consequently, these results corroborate that for a fixed value for the total number of nodes to store

a file, higher values of k reduce the average amount of information exchanged during repairs and

should be preferred. However, increasing k, while N is kept constant, causes the availability of the

redundancy scheme to degrade.

6.5.2 Redundancy Maintenance

Adaptability is without a doubt a desirable system property; especially for heterogeneous

environments such as P2P networks. While a small set of highly available nodes could maintain

the availability of a specific file, there is also the probability that correlated node departures could

cause a specific content to suffer sudden availability transitions. In that situation, applying exactly

the same redundancy-maintenance mechanism for both scenarios is inefficient. For the

mechanisms proposed in this dissertation, the redundancy-maintenance interval is the fundamental

 149

dynamic parameter that adapts the operation of the system to different node membership

configurations. The following subsections describe two alternative adaptation mechanisms and the

role of the parameters TARGET and MIN_SEG in the operation of the system.

6.5.2.1 Adaptive Maintenance Epochs

Figure 37 includes four sets of results. The top graphs present the evolution of the average

maintenance epochs, and the graphs at the bottom illustrate the average redundancy repair rate in

the system (i.e., publication rate). The first row of graphs corresponds to the two variants of

Algorithm 6 and the second row of graphs corresponds to two variants of Algorithm 5. The graphs

in Figure 37.a (left column) correspond to the adaptation mechanism labeled earlier as Adapt>0,

and the graphs in Figure 37.b (right column) to Adapt>=0. The graphs in Figure 37.c (second row,

left column) correspond to the adaptation mechanism labeled earlier as Smooth, with α=0.4, and

the last set of graphs correspond to the same Smooth algorithm, but with α=0.8.

The only algorithmic difference between Adapt>0 and Adapt>=0 is that if two consecutive

evaluations of the redundancy completeness metric are equal, Adapt>=0 increase the maintenance

epoch by 2.5 and Adapt>0 does not. The resulting effect is almost a factor of four increase in the

average maintenance epoch for Adapt>=0 compared with Adapt>0. As a result, the Adapt>=0

system variant also produces a higher average number of repairs. Thus, this system configuration

consumes more resources than the alternative Adapt>0 repair policy. For the Smooth adaptation

algorithm, the two α values used to obtain the smoothed average produce a similar effect on the

average redundancy maintenance of the system and its respective repair rate. In terms of cost and

efficiency, the Smooth algorithm performs worst than Adapt>0. Consequently, Adapt>0 is the

default setting for the rest of our experimental work. After all, previous research has highlighted

 150

that one added benefit of proactive redundancy maintenance mechanisms is that the maintenance

bandwidth usage of each node becomes predictable [66].

0 50 100 150 200 250
120

140

160

180

200

Epochs+ ≥ 0

M
ai

nt
en

an
ce

 E
po

ch
 [s

ec
]

0 50 100 150 200 250
0

1

2

3

4

5

EC(6,3) 500 Items

P
ub

lic
at

io
n

R
at

e
[c

op
ie

s/
se

c]

Simulation time

0 50 100 150 200 250
0

200

400

600

800

Epochs+ ≥ 0

M
ai

nt
en

an
ce

 E
po

ch
 [s

ec
]

0 50 100 150 200 250
0

1

2

3

4

5

EC(6,3) 500 Items

P
ub

lic
at

io
n

R
at

e
[c

op
ie

s/
se

c]
Simulation time

a) b)

0 50 100 150 200 250
0

200

400

600

800

Smoothed average α=0.4

M
ai

nt
en

an
ce

 E
po

ch
 [s

ec
]

0 50 100 150 200 250
0

1

2

3

4

5
EC(6,3) 500 Items

P
ub

lic
at

io
n

R
at

e
[c

op
ie

s/
se

c]

Simulation time

0 50 100 150 200 250
0

200

400

600

800

Smoothed average α=0.8

M
ai

nt
en

an
ce

 E
po

ch
 [s

ec
]

0 50 100 150 200 250
0

1

2

3

4

5
EC(6,3) 500 Items

P
ub

lic
at

io
n

R
at

e
[c

op
ie

s/
se

c]

Simulation time
 c) d)

Figure 37. Adaptive Maintenance Epochs and Publication Rate: a) Adapt>0, b) Adapt>=0, c) Smooth with

α=0.4 and d) Smooth with α=0.8

6.5.2.2 TARGET Fragment Availability

The analytical evaluation of the redundancy maintenance cost presented in Section 4.3.3 indicates

that for a redundancy method with fixed parameters, the redundancy maintenance cost decreases

for longer maintenance intervals. However, increasing the maintenance epochs also deteriorates

 151

the reliability of the redundancy mechanism. To achieve maximum efficiency without jeopardizing

the reliability of the redundancy mechanism, the Adapt>0 maintenance epoch adaptation

mechanism continuously adjusts the system maintenance interval. The parameter TARGET in

Algorithm 6 (Section 4.4.3) determines the amount of redundancy gain/loss that triggers a certain

maintenance epoch adjustment. For example, when the system increases its redundancy, Algorithm

5 increases the maintenance epoch by 5 seconds if the gain is greater than TARGET/2 or by 2.5

seconds otherwise. In other words, the TARGET parameter controls the rate and size of

adjustments in the maintenance epoch adaptation mechanism.

Figure 38 presents the efficiency and cost metrics for the system using several TARGET

values. The upper graph presents the efficiency metric and the bottom one the cost metric. The

efficient values do not change significantly among the different parameter settings listed (there is

only a 2% difference), and for the cost, longer values of the TARGET parameter result in a lower

cost metric.

0.5 0.4 0.3 0.2 0.1
0.5

0.6

0.7

0.8

S
uc

ce
ss

 R
at

e EC(6,3)a 500 Items

0.5 0.4 0.3 0.2 0.1
0

200

400

600

800

C
os

t [
kb

ps
/it

em
]

Figure 38. Cost and Efficiency for Different TARGET Values

The smallest value of TARGET exhibits the highest maintenance cost metric and the

lowest efficiency. Therefore, this extreme parameter value should be avoided. Increasing the value

 152

of TARGET improves both metrics, but efficiency starts to decay after 0.3. For the rest of the

evaluation of the redundancy system a value of 0.3 for the TARGET is assumed. This is a

conservative setting to preserve the reliability of the system.

6.5.2.3 Minimum Number of Segments Available (MIN_SEG)

Line 3 in Algorithm 4 (Section 4.4.3) controls the adaptation of maintenance epochs based on

whether the number of unique segments available is above the MIN_SEG threshold or not.

Figure 39 presents the cost and efficiency metrics for the system using different values for

this parameter. The first column represents an aggressive content availability approach. Replicas

are created whenever possible regardless of the current availability of the file (i.e., total number of

unique fragments available). This is the default for all the experimental settings presented, unless

noted otherwise. In terms of efficiency, there is not a significant advantage of using either variant,

but with respect to cost, preventing the generation of new replicas when no enough fragments are

available for a single file (i.e. less than k unique fragments exist) represents a significant cost

savings measure. For example, if instead of replicating fragments all the time (i.e. MIN_SEG=0.0)

the system uses a MIN_SEG threshold of 0.3, cost is reduced by 34%. More importantly, this

modification does not degrade the efficiency metric. Notice that the presence of a complete copy

of a file implies the availability of all its segments. Thus, the redundancy maintenance mechanism

would trigger a maintenance process when there is at least one complete copy of a file or when the

number of nodes storing unique fragments is above MIN_SEG*m.

 153

0.0 0.20 0.30
0.5

0.6

0.7

0.8

S
uc

ce
ss

 R
at

e EC(6,3)a 500 Items

0.0 0.20 0.30
0

200

400

600
C

os
t [

kb
ps

/it
em

]

MIN_SEG

Figure 39. Cost and Efficiency for Different MIN_SEG Values

The cost savings of using a MIN_SEG value other than 0.0 can also be measured in terms

of the average repair rate in the system. For instance, for MIN_SEG=0.3, the average repair rate is

0.51 and for MIN_SEG=0.0 the average repair rate is 0.92. With respect to the average

maintenance epoch, the value of the parameter MIN_SEG does not produce significant differences

among the settings presented. For example, for MIN_SEG=0.3 the average maintenance epoch is

155.3 seconds, compared with 154.9 for MIN_SEG=0.0.

6.5.3 Incentive-Based Mechanism

The incentive-based mechanism serves various purposes in the redundancy-maintenance process.

First, to promote nodes participation, second, to facilitate self-organization and third, to regulate

fair exchange of resources. The last property is also enforced for exchange of resources in

processes other than redundancy-maintenance, such as files downloads.

Using different variants of the incentive-based mechanism should not have a significant

impact on the cost metric of the system since repairs are mainly determined by churn rather than

 154

cooperation. For the system’s efficiency on the other hand, the positive and negative feedback

components of these variants (presented in Chapter 5.0) can produce both a positive and negative

effects.

We understand that the success or failure of any explicit or implicit incentive-based

mechanism depends heavily on the actual perception of the incentives by the system’s participants

[93]. In that regard, our evaluation does not reflect the perception of end-users towards the

proposed incentive-based mechanism. Still, the results illustrate the potential capabilities of the

proposed mechanism.

This section, examines different parameter settings for our incentive-based mechanism for

content availability. First, we examine the use of different parameters settings for the sigmoid

functions used in our mechanism and their effects on the behavior of the system. Second, we

analyze the effects of different variants of the contribution gain function (presented in Section

5.2.4).

6.5.3.1 Sigmoid Functions Parameters

In this section, the content contribution metric is assumed to be the number of fragments stored by

nodes. That is, we assume that the system uses an unitary contribution gain function (i.e., equation

5.4, G(χm,t,s,p)=1).

Figure 40 presents the cost and efficiency metrics for different parameter settings of the

sigmoid functions of the incentive-based mechanism. Each bar’s label (e.g., (3.25,2.5)) indicates

the value of the shape parameter for the TB-Util and RP-Cost functions, respectively. The RP-Cost

shift parameter, ϑ, is equal to 1.85 for all the results presented, except for the last one, which uses

1.25 instead. These results corroborate that the incentive-based mechanism does not determine the

 155

cost of the redundancy maintenance process. The efficiency of the system on the other hand,

presents slight variations, but we do not consider this to be a negative effect. That is, this effect on

the system’s efficiency is one of the intended effects of the incentive-based mechanism. If nodes

decide not to participate in the redundancy process, there must be negative consequences.

(3.25,3.5) (2.25,3.5) (1.25,3.5) (2.25,5.5) (2.25,3.5)*
0.5

0.6

0.7

0.8
S

uc
ce

ss
 R

at
e EC(6,3)a 500 Items χ=1.25

(3.25,3.5) (2.25,3.5) (1.25,3.5) (2.25,5.5) (2.25,3.5)*
0

200

400

600

800

C
os

t [
kb

ps
/it

em
]

Utility Functions Shape Parameter (TB-Util,RP-Cost)

Figure 40. Cost and Efficiency for Different Incentive-based Mechanism Parameters

For the TB-Util function, the experimental results indicate that its shape parameter can

determine the efficiency metric of the system. It produces the lowest efficiency metric for σ u=3.25

(first bar) and the highest for σu=1.25 (third bar). Higher efficiency for lower values of the shape

parameter is not surprising because σu determines the allocation of bandwidth among peers for all

data transfers (i.e., repairs and file downloads).

 156

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transmission Bandwidth [kBps]

F(
x)

σu=3.25

σu=2.25

σu=1.25

Figure 41. Transmission Bandwidth CDF for Various TB-Util Shape Parameter Values

Figure 41 presents sample CDFs of the transmission bandwidths of three simulations

settings with different σu values. The median transmission bandwidth for σu=1.25 is 100 kBps and

only 80 kBps for σu=3.25. Before nodes’ content contribution reaches the target average value

(rtgt), the TB-Util function assigns larger transmission bandwidths sooner (i.e., for smaller

contributions) for σu=1.25, than for σu=3.25. In addition, when nodes’ content contribution

surpasses the target content contribution, the TB-Util function increases the nodes’ payoff slower

for σu=1.25, than for σu=3.25. We believe that the system should sacrifice efficiency (i.e. for nodes

with smaller contributions) to avoid nodes contributing only small amount of resources to the

system. Thus, small σu values should be avoided. The experimental results presented in Figure 42

illustrate the reasoning for this design guideline. This figure presents a scatter diagram of the

transmission bandwidths assigned to nodes for each of their download requests versus their

contribution. In addition, this figure presents the resulting average transmission bandwidth for each

node contribution value. Nodes with smaller contributions (e.g., less than 30) receive better

transmission bandwidths when the system uses σu=1.25 than when σu=3.25. Conversely, nodes

with larger contributions (e.g., above 80) reach smaller average transmission bandwidths for

 157

σu=1.25 than for σu=3.25. Consequently, in order to promote nodes committing more than just the

target contribution, the system should use larger σu values.

The incentive-based mechanism uses a probabilistic approach for fair allocation of

resources. The results in Figure 43 clearly indicate that nodes with higher content contributions

receive better service from their peers. Nodes with smaller contributions can obtain good

transmission bandwidths from other peers, but the probability of such events is lower than for

nodes with higher contributions.

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

Node Contribution

Tr
an

sm
is

si
on

 B
an

dw
id

th
 [k

B
ps

]

EC(6,3)a 500 Items

Scatter σu=1.25

Scatter σu=3.25

mean σu=1.25

mean σu=3.25

Figure 42. Transmission Bandwidth for different TB-Util Shape Parameter Values (Scatter Diagram)

The incentive-based mechanism promotes the participation of nodes in the redundancy

repair process in the form of an improved future performance. That is, nodes participate in good

faith in the redundancy maintenance process expecting to improve their performance during

subsequent participations in the system. Using an economic analogy, the incentive mechanism

promotes investments (in the form of storage) given the promise that nodes will receive an

economic return in the future (in the form of bandwidth).

 158

The incentives-based mechanism defines a mechanism for fair exchange of resources

among members, which is independent of the redundancy maintenance process. That is, nodes are

assigned resources in proportion to their current content participation in the system. Even if nodes

decide not to participate anymore in the redundancy maintenance process, they get a fair share of

resources. This feature is illustrated in Figure 43, which presents two experimental scenarios where

30% of the nodes do not participate actively in the redundancy maintenance process. In the first

scenario (left graph), the non-compliant nodes (i.e., nodes that are not performing any redundancy

maintenance activity) have a wide array of contribution values. Consequently, the transmission

bandwidth they receive is also spread across the full spectrum of transmission bandwidths. In the

second scenario (right graph), the non-compliant nodes have only minor content contributions. As

a result, the transmission bandwidth they receive from other nodes is at the lower end of the

spectrum. Thus, if we assume that the problem of free-riders in P2P networks is associated with

nodes that do not contribute content, our incentive-based mechanism does a good job at limiting

their impact on the performance of the system. We explore this feature further in the following

section.

5 15 25 35 45 55 65 75 85 95 105 115 125
0

2

4

6

8

10

12

14

Transmission Bandwidth [kbps]

%
 o

f T
ra

ns
m

is
si

on
s

Default Initialization
30% non-compliant nodes

Compliant nodes
Non-compliant nodes

5 15 25 35 45 55 65 75 85 95 105 115 125
0

2

4

6

8

10

12

14

Transmission Bandwidth [kbps]

%
 o

f T
ra

ns
m

is
si

on
s

30% non-compliant nodes
with minimum contribution

Compliant nodes
Non-compliant nodes

Figure 43. Fair Allocation of Resources in Incentive-based Mechanism

 159

6.5.3.2 Contribution Gain Function

The enhanced contribution gain function (described in Section 5.4) gives us greater flexibility to

promote the cooperation of nodes (to improve content availability) as well as self-organization.

This portion of our experimental work is performed with non-default parameters. In

particular, Peers’ churn is initialized using Pareto(1.5, 1,350) and for MIN_SEG we use a value of

0.3.

For the different components of the contribution gain function we use the following

settings. For the time component, all nodes use the same staircase function (equations 5.10 and

5.11, presented in Section 5.4). For the size and popularity components, we use four parameters

settings, which are summarized in Table 27.

Table 27. Size and Popularity Components in Contribution Gain Functions

Set Name Parameters Values

Gain1
K(s): ={[0, 4MB/k), [4MB/k, ∞)} and ={1.0, 1.5} K

xA H
xα

L(p): ={[0, 0.8), [0.8, 1.0)} and ={1.0, 1.25} L
xA L

xα

Gain2 K(s): ={[0, 4MB/k), <si>, [12MB/k, ∞)} and ={0.5, <si/4MB/k >, 3.0} K
xA H

xα

Gain3 KL(s,p): with savg=4MB/k, p0=0.2, g_min =1.0, g_max=2.0),(psAxΓ

Gain4 KL(s,p): with savg=4MB/k, p0=0.8, g_min=0.5, g_max=3.0),(psAxΓ

The time component used in all contribution gain function variants provides both penalties

and rewards. If nodes’ sessions are shorter than 2 minutes, their time contribution gain is 0.5 (see

Figure 32 in Section 5.4). In other words, they are penalized when their sessions are short. Only

nodes’ sessions lasting longer than four minutes receive a reward.

For the size and popularity components of the contribution gain function, Gain1 and Gain3

are reward-only schemes while Gain2 and Gain4 are penalty-reward schemes. Gain1 and Gain3

provide and incentive when nodes’ storage size or popularity are above a predefined threshold.

 160

Gain2 and Gain4 schemes on the other hand, include a penalty component. Gain2 uses a unitary

popularity gain though. For the size contribution gain, nodes storing less than 4MB/k receive a

contribution gain penalty of 0.5, and as nodes increase their average fragment size contribution,

they receive larger size contribution gains, up to 3.0 when their average fragment size reaches

12MB/k. In the Gain4 scheme, the popularity and size content gains are merged. Nodes receive a

penalty when is less than (where savg=4MB/k) and a reward otherwise, up to a maximum

size-penalty contribution gain of 3.0. We included a variant without popularity, Gain2, assuming

that in practice measuring the popularity of individual items could be a complex task; especially in

a dynamic distributed system. Thus, we include this variant to analyze the behavior of a

contribution gain formulation that does not require any global knowledge to operate.

0pps + 6.1
avgs

PR PR+Gain1 PR+Gain2 PR+Gain3 PR+Gain4
0

0.2

0.4

0.6

0.8

S
uc

ce
ss

 R
at

e

PR PR+Gain1 PR+Gain2 PR+Gain3 PR+Gain4
0

100

200

300

C
os

t [
kb

ps
/it

em
] EC(6,2)a 500 Items

Figure 44. Cost and Efficiency for Contribution Gain Functions

Figure 44 presents the cost and efficiency metrics for the four simulations sets in Table 27

and for PR with a unitary contribution gain. Considering a confidence interval of 95%, the cost

metrics obtained can not be differentiated. That is, the results obtained are statistically equivalent.

For the efficiency metric, the differences between sets are minimal. Nonetheless, to determine

 161

conclusively whether these contribution gain variants are equivalent or not, we analyze additional

system properties.

The objective of the contribution gain variants is to modify a node’s contribution metric.

Thus, we present the effects of the different contribution gain variants on the RP-Cost and the TB-

Utility functions.

0 15 30 45 60 75 90 105 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Download's Transmission Bandwidth [kBps]

C
D

F

PR
PR+Gain1
PR+Gain2
PR+Gain3
PR+Gain4

Figure 45. Download’s Transmission Bandwidth CDF for Contribution Gain Functions

Figure 45 presents the CDF of the transmission bandwidths (i.e., TB-Utility function) that

nodes receive for their download requests. PR, (with a unitary contribution gain) has the lowest

median transmission bandwidth while Gain2 and Gain4 present the highest. Given that these

contribution gain variants produce similar efficiency metrics, we consider that the best variant is

the one resulting in better transmission bandwidths. Consequently, based on the experimental

results obtained, we conclude that using an enhanced contribution gain function improves the

system. All the contribution gain variants presented in Figure 45 improve the system’s median

transmission bandwidth with respect to PR.

 162

In Figure 46, we present the average RP-Cost function in the system during the 4.5 hours

that each experiment last. As expected, at the beginning of the simulation this function returns

values close to one. That is, nodes accept new replicas with high probability. As the system

evolves, nodes increase their individual content contribution, so that new storage requests

(targeting the same node) are rejected with increasing probability. We think that this mechanism

helps the system to achieve self-organization. Nodes with smaller contributions are “offered” a

chance to increase their content contribution first. When nodes reject (or fail) a repair request,

other nodes with larger contributions are selected next as targets.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R

-C
os

t

Time

PR
PR+Gain1
PR+Gain2
PR+Gain3
PR+Gain4

Figure 46. RP-Cost Function for Contribution Gain Functions

The Rep-Cost function of PR and Gain2 decreases much slower than in the other schemes.

Whether this trend is better or worst than the sharper change in Rep-Cost exhibited in Gain1,

Gain3 and Gain4 remains an open question. The experimental results obtained are inconclusive.

Furthermore, the redundancy maintenance process (Algorithm 4, Section 4.4.3) selects target

nodes (i.e., candidates to receive new replicas) using a simple sorted list of node’s contributions.

Consequently, whether these contributions are higher or lower is not important as long as Index

 163

nodes maintain their list of target nodes sorted. Lastly, the fact that all experiments exhibit a

decaying RP-Cost trend indicates that nodes behave as expected. That is, they increase their

storage contribution as needed.

6.6 REDUNDANCY-SYSTEM FLEXIBILITY

In addition to exploring the behavior of the system using different parameter settings for the

redundancy and incentive-based mechanisms, we study the behavior of the system with different

environmental configurations. In particular, results are presented for different churn regimes, for

different distribution of nodes classes, and for the presence of nodes that, for some undetermined

reason, decided not to participate in the redundancy-maintenance process.

6.6.1 Churn Rate

The first condition to evaluate is different churn rates. All of the results presented earlier used the

churn parameters listed in Table 24, which result in a median session length of 18.69 minutes. The

analytical results presented in Section 4.3.3 suggest the existence of significant redundancy-

maintenance savings when the system is able to adapt to even small variations in the average

session length of the network. The results in Figure 47 illustrate this effect. The difference among

each of the experimental settings presented is the parameters used for the initialization function of

the Peers user class (see Section 3.3.2.1). The first bar uses Pareto(1.5,900), the second one uses

 164

Pareto(1.5,1350) and the third one uses Pareto(1.09,1350). For the experiments presented, the

resulting median session lengths are 18, 28, and 30 minutes, respectively34.

1.5,900 1.5,1350 1.09,1350
0.5

0.6

0.7

0.8

S
uc

ce
ss

 R
at

e EC(6,3)a 500 Items

1.5,900 1.5,1350 1.09,1350
0

200

400

600

C
os

t [
kb

ps
/it

em
]

Peers' Session Length Parameters

Figure 47. Cost and Efficiency for Various Churn Rates

Figure 47 shows that the system is capable to adapt to different churn conditions,

improving its response metrics accordingly. For lower churn rates, the system performs fewer

repairs and thus consumes fewer resources. In addition, the efficiency of the system increases for

lower churn rates, reaching 69% for the slowest churn rate scenario.

6.6.2 Nodes Participation

The objective of the incentive-based mechanism is to promote participation in the redundancy

process rather than to exclude nodes from benefiting from the network. The incentives mechanism

recognizes that participants can have diverse objective functions and that their behaviors do not

have to be homogeneous in order to achieve the system goal (i.e., content availability). In other

words, each participant can decide autonomously its own level of participation in the system. In

34 The average session lengths for these experiments are 34, 48 and 54 minutes respectively.

 165

that regard, the next set of results, presented in Figure 48, illustrates the behavior of the system

when different percentages of nodes do not participate in the redundancy-maintenance process. As

before, content is distributed among nodes at the beginning of the simulation, but for these

experiments, a fraction of the node population does not accept or publish any new fragments.

Nonetheless, these non-participant nodes do perform the regular overlay tasks such as indexing,

lookups, and respond to download requests.

The results obtained indicate that larger percentages of non-participating nodes degrade the

efficiency of the system by a small degree and reduce the maintenance cost per file. This loss of

efficiency is not surprising, as it is caused by the scarcity of data items that are held only by non-

cooperating nodes 35 . As a result, the availability of these items can be highly dependant on the

availability of the non-cooperating nodes, rather than on the effectiveness of the redundancy

mechanism. Nonetheless, the distribution of fragments among nodes at the beginning of the

simulation compensates, to some degree, for this dependency; thus the loss of efficiency is limited.

The reduction of the cost metric on the other hand, is the result of a more complex process.

For the content space used in these experiments a total of 9,000 unique data fragments are

being exchanged among nodes 36 . Given that the proactive redundancy method uses a replication

factor of 2, the redundancy maintenance process will attempt to maintain a total of 18,000

fragments available at all times. In addition, since the average overlay network size is about 415

nodes, each node has to store (on average) 43.4 fragments to maintain complete redundancy state

information. In fact, for the experimental setting with 100% of the nodes cooperating in the

redundancy maintenance process, the average number of segments in the network is 49.16. That is,

35 The percentage of complete items held exclusively by non-cooperating nodes at the beginning of the simulation
varies widely across experiments, from 4% to 23%.

36 The content space is 500 items and the erasure coding method generates 18 fragments for each file (k, S = 6, 2),
which results in a total of 9,000 unique fragments.

 166

the system does generate more redundancy of what is ideally needed. Furthermore, in Section

6.5.2.3 we described the significant cost effects of the MIN_SEG parameter (e.g. 34% savings

when MIN_SEG=0.3 instead of 0.0). In the experimental setting presented in Figure 48,

cooperating nodes use MIN_SEG=0.0. This means that nodes replicate fragments “aggressively.”

On the other hand, non-cooperating nodes do not contribute to this “excessive” maintenance

traffic, which is reflected in the maintenance bandwidth savings shown in the figure.

0% 15% 20% 30%
0.5

0.6

0.7

0.8

S
uc

ce
ss

 R
at

e EC(6,3)a 500 Items

0% 15% 20% 30%
0

200

400

600

C
os

t [
kb

ps
/it

em
]

Percentage of Non-Cooperating Nodes

Figure 48. Cost and Efficiency for Different Percentage of Non-Participants

For the experimental settings with non-cooperating nodes, we would expect an increase in

the average number of fragments of cooperating nodes, but that is not necessarily the case. There

are two reasons for this. First, the average number of fragments in non-cooperating nodes at the

start of the simulation is close to optimal. That is, 45.13, 44.19 and 42.2 for the experimental

setting with 15%, 20% and 30% non-cooperating nodes respectively. In turn, the resulting average

number of fragments of the cooperating nodes is 47.6, 47.3 and 45.6 for the experimental setting

with 15%, 20% and 30% non-cooperating nodes respectively. This is consistent with the

performance trend of the cost metric. Second, the redundancy maintenance process is nothing more

than the permutation of fragments across the available nodes, that is, the distribution of up to 9,000

 167

unique items in N0 bins without repetition; where N0 is the average number of nodes cooperating in

the redundancy process. The system adapts continuously to the dynamic set of N0 nodes and the

fragments they hold. For smaller values of N0, the redundancy system has a smaller set of

arrangements possible for the 9,000 unique fragments. Thus, it generates repairs less often. Indeed,

for the experimental settings with 100%, 85%, 80% and 70% cooperating nodes the average repair

rate is 0.91, 0.53, 0.43 and 0.28 repairs per second, respectively. This explains the improved cost

metric when the number of non-cooperating nodes increases.

In order to corroborate the ability of the incentive-based mechanism to allocate resources

fairly, we repeated the experiment with 30% non-cooperating nodes. This time however, the

initialization of fragments among the non-compliant nodes was kept to a minimum. Figure 49

presents the results for this experimental setting. The graphs to the left present the distribution of

transmission bandwidth among the participating nodes and the graphs to the right present the

results for the non-compliant node population. The y-axe is for the transmission bandwidth. The

value of 1 in the y-scale corresponds to the highest bandwidth (120 kbps) and the value of 8

corresponds to 10 kbps. The results show clearly that the non-compliant nodes are assigned small

transmission bandwidths (because of their poor content contribution). Nonetheless, it is important

to note that the incentive-based mechanism allows them to participate in the network. The set of

participating nodes on the other hand, receive transmission bandwidths proportional to their

contribution. Thus, they receive a better service than their non-compliant counterparts. Figure 49

presents the results in two different views. The difference between the graphs in the first and

second row is that the scales in the x and y axes are reversed. This is done solely for illustrative

purposes, since we are not interested in analyzing the response of the system for specific

contributions or transmission bandwidth scenarios. Instead, we are interested in showing that the

 168

incentive-based mechanism we have developed has the property of differentiating the performance

of nodes according to their contribution.

1 2 3 4 5 6 7 8

5
15

25
35

45
55

65
75

85
95

105
115

125

0

500

1000

1500

2000

2500

TxBW High to Low
Node Contribution

Fr
eq

ue
nc

y

1 2 3 4 5 6 7 8

5
15

25
35

45
55

65
75

85
95

105
115

125

0

1000

2000

3000

4000

TxBW High to Low
Node Contribution

Fr
eq

ue
nc

y

123456785
15

25
35

45
55

65
75

85
95

105
115

125

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

123456785
15

25
35

45
55

65
75

85
95

105
115

125

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

 a) b)

Figure 49. Distribution of Transmission Bandwidth versus Content Contribution for: a) compliant nodes b)

non-compliant nodes.

 169

6.6.3 Benefactor Nodes

Using a class-based user model in the construction of the content availability framework enables

us to analyze to what extent the behavior of the Benefactors user class determines the efficiency of

the system. While controlling the problem of free-riding has been the focus of multiple research

initiatives, the presence of altruist behaviors represents another opportunity for improving the

performance of the system [93]. The next set of simulations explores this possibility.

Figure 50 illustrates that the system exhibits good metrics even with a small percentage of

Benefactor nodes present. On the opposite side of the spectrum, a larger number of Benefactors in

the network only produces only a small improvement in system efficiency (i.e., download rate) and

a small reduction in redundancy-maintenance cost. Thus, the efficiency of the system is not

dependent on this user class, and using larger numbers of Benefactor nodes does not constitute a

strategic alternative for improving content availability in P2P networks.

5% 10% 20%
0.5

0.6

0.7

0.8

S
uc

ce
ss

 R
at

e EC(6,3)a 500 Items

5% 10% 20%
0

200

400

600

800

C
os

t [
kb

ps
/it

em
]

Percentage of Benefactors

Figure 50. Cost and Efficiency for Different Percentage of Benefactors

 170

6.6.4 Content Space Size

We mentioned earlier that the main scalability concern for content-sharing networks is the amount

of bandwidth required to preserve content availability [10]. In that regard, the proposed

mechanisms circumvents the redundancy maintenance problems of erasure coding by proactively

replicating fragments. This way, the amount of information needed for a repair is significantly

reduced. The next set of results presents the system’s efficiency and cost metrics for various

content space sizes.

With respect to efficiency, the system can sustain a good efficiency metric for up to 750

unique items, but its efficiency drops to 0.5 for 1500 items. With respect to cost, these results

indicate that the system consumes less bandwidth per file in the larger content size experiments,

which is important for scalability. However, in the 1,500 unique items experiment, this

improvement in cost is not relevant since there is a serious efficiency loss. In addition, to properly

establish the scalability of the redundancy system with respect to the content size, the units of the

cost metric need to be kbps per node, rather than kbps per file. In that regard, we have included a

third set of results in Figure 51 presenting this alternative cost metric. In this case, it is clear that

for bigger content space sizes each node needs to commit additional bandwidth, but fortunately,

this increment in bandwidth is sublinear with respect to the content space size. For instance, the

cost for 750 items is 113.84 kbps per node, which represents an increase of 34.2% with respect to

the cost of 84.83 kbps per node for the content space of 500 unique items. For the system

configuration of 1,500 items, additional elements at play explain the abrupt drop in efficiency.

The decay in system efficiency for larger content sizes is not necessarily caused by a

degradation of the redundancy repair mechanism. The initial content contribution of each node

(described in Section 3.3.4) is performed in two stages. In the first stage, nodes receive complete

 171

files, and in the second, nodes are assigned fragments. The number of items for which at least one

node has a complete copy assigned is random, and the distribution of fragments among nodes is

random as well. As a result, the redundancy-system might end up with insufficient resources for

some items. In the different experiments conducted using a content space size of 500 unique items,

the percentage of items with at least one complete copy assigned to nodes ranges between 0.5 and

0.67. We believe that this initial content distribution is a crucial factor for the efficiency of the

system. In fact, this explains why none of the experimental setups surpasses the 69% efficiency

mark.

500 750 1500
0.4

0.6

0.8

S
uc

ce
ss

 R
at

e EC(6,3)a

500 750 1500
0

200

400

600

C
os

t [
kb

ps
/it

em
]

500 750 1500
0

100

200

300

C
os

t [
kb

ps
/n

od
e]

Content Space Size

Figure 51. Cost and Efficiency for Different Content Space Sizes

Figure 52 presents a scatter diagram of the content availability of items throughout the

simulation for the three experimental content space sizes mentioned earlier. For the 500 and 750

items configuration, there is little difference in the availability of contents. The availability of each

item rarely drops below 0.8. However, for the 1,500 configuration, the graph illustrates the content

availability problems in the system.

 172

0 50 100 150 200 250

0.6

0.8

1

EC(6,3)a 500 Items mean=0.916

0 50 100 150 200 250

0.6

0.8

1

EC(6,3)a 750 Items mean=0.913
C

on
te

nt
 A

va
ila

bi
lit

y

0 50 100 150 200 250

0.6

0.8

1

EC(6,3)a 1500 Items mean=0.852

Simulation Time [min]

Figure 52. Content Availability for Different Content Space Sizes

 173

7.0 CONCLUSIONS AND FUTURE WORK

Three of the most important features of P2P technology versus the traditional client-server

paradigm are scalability, fault tolerance and ease of deployment. Nonetheless, P2P has inherent

challenges that must be addressed to enable the adoption of this technology in new applications

environments as well as to improve the performance of already deployed P2P system. Intermittent

node connectivity and non-cooperative user behavior are two of them. These challenges generate a

dynamic set of problems not present in existing client server architectures, and we recognize

content availability as one of them. This dissertation explores the problem of content availability in

P2P networks and proposes a holistic redundancy maintenance framework to alleviate it.

The redundancy maintenance process presented in this dissertation can be conceptualized

as a hybrid redundancy method or as a proactive redundancy maintenance policy. This mechanism,

named Proactive Replication redundancy, combines the reliability gains of coding mechanisms

(i.e., erasure coding or network coding) with the simplicity and flexibility of a proactive replication

policy. A distinctive feature of the proposed mechanism compared with MDS erasure coding is a

reduction in the amount of bandwidth needed for redundancy repairs. Furthermore, the proposed

mechanism is not a replacement of other code-based mechanisms designed for distributed storage

applications, such as exact-MBR network coding, it is a mean to augment their effectiveness by

providing an alternative view of the redundancy maintenance problem caused by churn. That is,

proactive repair.

 174

The redundancy maintenance process presented in this dissertation is augmented with

incentive-based mechanism to promote cooperation among participants and achieve fair allocation

of resources. The use of incentive-based mechanisms is complementary to the proactive repair

methodology proposed and obeys to the open nature of the P2P application environment. In

particular, the diversity of resources and objectives among users, which need to be mediated and

reconciled into a coherent cooperative framework. The proposed incentive-based extension for the

redundancy maintenance process manages this heterogeneity in the network and provides the

means to achieve fair allocation of resources.

The evaluation of the proposed redundancy maintenance process explores the relevance of

different parameter settings in the behavior of the system; from which we derived the following

conclusions:

Content Availability. Code-based redundancy with proactive replication of fragments is a

redundancy maintenance methodology capable to improve the content availability of P2P networks

significantly. For the experimental settings presented, the proposed mechanism improves the

content retrieval of the system by a factor of eight. Some of the lines for future research on this

topic include analyzing the durability properties of the system and examining how the

characteristics of the content space could influence the behavior of the system. With respect to

durability, we would like to analyze the capacity of the system to extend the average lifetime of

items in the absence of their publishers. That is, for how long the fragment replication mechanism

can guarantee the availability of an item in the absence of nodes with a complete copy of the item.

With respect to the characteristics of the content space, we would like to analyze the behavior of

the system in application scenarios with different content distribution characteristics to the ones

evaluated in this dissertation, like BitTorrent or a distributed gaming application. Furthermore, we

 175

would like to explore the use of popularity to control the redundancy maintenance process more

efficiently, giving higher priority to highly demanded items.

Adaptability of Maint enance Epochs. The heterogeneity in nodes’ behaviors and the

dynamic conditions of P2P networking demand the implementation of adaptive mechanisms. The

algorithms presented in this dissertation adjust the rate of the redundancy maintenance process

according to the storage conditions of each individual file; achieving redundancy maintenance

savings of up to 56% versus reactive repair alternatives and 50% with respect to a periodic repair

methodology (Figure 35). Other research initiatives like [10, 56] use reactive repairs policies and

explore different timeout values to reduce the redundancy-maintenance traffic cost. However, they

operate at a completely different time scale than our system and they use loose content availability

guarantees. For instance, Rodriguez in [10] analyzes the bandwidth requirements for replication

and erasure coding using timeouts in the order of hours, which is adequate to solve the problem of

nodes departing the overlay definitely, rather than strict content availability. The Adapt>0 and

Adapt>=0 adaptation algorithms presented in this dissertation exhibit almost a factor of four

difference on their mean maintenance epochs (156 vs 566 respectively), with Adapt>=0

consuming 46% more bandwidth than Adapt>0. We also presented an adaptation algorithm based

on smoothed averages, but its performance does not surpass the one of Adapt>0. Naturally, a

subject of future research on this topic is the exploration of alternative adaptation algorithms to

achieve better bandwidth savings.

Incentives for Content Availability . The incentive-based mechanism presented in this

dissertation barters content contribution for performance as a viable solution to promote content

availability in P2P networks. The experimental evaluation presented in this dissertation indicates

that the proposed mechanism effectively assign resources among nodes in proportion to their

 176

contribution to the content availability of the overlay. In addition, other factors can be used to

further characterize the content contribution of nodes to improve fairness and boost performance.

Such is the case of time (i.e., session lengths) and storage (i.e., average fragment size). An

interesting subject for future research is the combination of the proposed incentive, for content

availability, with other incentive mechanisms for performance, like BitTorrent’s tic-for-tac.

Cost. The proposed redundancy maintenance process presented in this dissertation reduces

the redundancy-maintenance cost problem by orders of magnitude using a low complexity and

flexible mechanism. However, for the level of node dynamics evaluated, the system consumes an

amount of bandwidth that could be excessive for most end-users’ connectivity. For instance, the

system variants presented in Figure 37 consume no less than 368 kbps per file. Given that the

average file size in the system is 3.5 MB, the redundancy maintenance traffic is almost 10% of the

file size every second. Consequently, a natural extension to our current work is the use of the

redundancy system presented as a general purpose redundancy maintenance framework to

determine feasible P2P application scenarios.

 177

APPENDIX A

TRANSIENT REMOVAL

The experimental portion of this work emulates a wide area P2P network using a cluster of

computers interconnected by a switched LAN. Validation of the P2P routing substrate

implementation is not required because the system uses exact copies of a deployed DHT

application substrate. However, the price to be paid for using this architecture is time. Nodes

execute a fully functional P2P routing stack in real time; thus, each experiment takes several hours

to complete. In that regard, removing the transient behavior is critical not only for the accuracy of

the measurements, but also for the cost of each experiment.

For the average session length of nodes, this work employs two mechanisms to reproduce

the heterogeneous and unsynchronized behavior of nodes in a controlled environment. The first

mechanism is the initialization process in our two-class node behavior model to recreate the

heterogeneous distribution of user sessions seen in deployed systems. The second mechanism is

pre-computing the initial session (or departure) for each node before starting the simulation. The

second mechanism highly reduces the cost of each experiment, since other techniques to remove

the transient component of the simulation require the system to be running for considerably longer

intervals.

 178

Overlay network size is the system property that better reflects transient behavior in an

experiment. This metric depends on the number of simultaneously active nodes. That is, the

superposition of the ON/OFF model of multiple independent nodes. Fast churning nodes become

unsynchronized quickly, but nodes with longer session lengths (i.e., Benefactors) can take several

hours to have their arrival and departures times unsynchronized. To minimize the length of this

transient behavior, the initial session or offline interval of nodes is pre-computed according to the

pseudo-code shown in Algorithm 13.

Algorithm 13. Procedure PerfectSimulation()

The cost savings of this mechanism versus other initialization options are presented in

Figure 53. The curve for the perfect simulation [94] mechanism reaches steady state in

approximately fifteen minutes, while the other mechanisms reach steady state in no less than one

hour. In the All-ON variant, every node starts online and the average overlay network size does not

reach the steady state for three hours. This is due to the effect of long on-line sessions of the

Procedure PerfecSimulation(N)
Purpose: Pre-compute initial node state for simulations
Returns: Tuple (state, length) for each node
{ N: Total number of nodes in simulation }
{ T: Time interval used to reach steady state }
{ lifetime[]: Array containing the cumulative ON/OFF intervals of each node }
{ state[]: Array containing ON/OFF state of each node }

 1: for i = 1 to N do
 2: while lifetime[i] < T do
 3: if state[i] = ON then
 4: lifetime[i] += nextSession()
 5: state[i] = OFF
 6: else
 7: lifetime += nextOffline()
 8: state[i] = ON
 9: end if
10: done while
11: length[i] = lifetime[i] – T
12: done for

 179

benefactors user class. Conversely, when all nodes start in the offline state (All-OFF) or each node

is selected at random to start either in the ON or OFF state (Random Start), the system reaches a

steady state faster. Nonetheless, it is still about ninety minutes for both mechanisms, which is at

least six times longer than using the perfect simulation technique.

0 15 30 45 60 75 90 105 120 135 150 165 180
200

300

400

500

600

700

800

Time [min]

O
ve

rla
y

N
et

w
or

k
Si

ze

Perfect Simulation
All-ON
All-OFF
Random Start

Figure 53. Alternative Node Initializations for Transient Removal

In all the measurements reported in the experimental section of this work, the values within

the first fifteen minutes of each experiment are always excluded.

 180

BIBLIOGRAPHY

1. Daniel Stutzbach, Reza Rejaie, and S. Sen, Characterizing Unstructured Overlay
Topologies in Modern P2P File-Sharing Systems. IEEE/ACM Transactions on Networking,
2008. 16(2).

2. Hendrik Schulze and K. Mochalski, Internet Study 2008/2009. 2009, ipoque.

3. BitTorrent Still Dominates Global Internet Traffic. 2010 October 10 [cited; Available
from: http://torrentfreak.com/bittorrent-still-dominates-global-internet-traffic-101026/.

4. E. Adar and B. Huberman, Free riding on Gnutella, in First Monday. 2000.

5. Jaeok Park and M.v.d. Schar. Pricing and Incentives in Peer-to-Peer Networks. in
INFOCOM. 2010.

6. Daniel S. Menasche, et al., Content Availability and Bundling in Swarming Systems, in
CoNeXT’09. 2009: Rome.

7. Ruben Cuevas, et al., Is Content Publishing in BitTorrent Altruistic or Profit-Driven?, in
Proceedings of the 2010 ACM Conference on Emerging Networking Experiments and
Technology, CoNEXT 2010. 2010, ACM: Philadelphia, PA.

8. Parhami, B., Defect, Fault, Error, ..., or Failure? IEEE Trans. on Reliability, 1997. 46(4).

9. Hakim Weatherspoon and John D. Kubiatowicz, Erasure Coding vs Replication: A
Quantitative Comparison, in IPTPS. 2002.

10. Rodrigo Rodriguez and Barbara Liskov, High Availability in DHTs: Erasure Coding vs
Replication, in IPTPS. 2005.

11. Xin, Q., et al. Reliability mechanisms for very large storage systems in 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and Technologies (MSST). 2003.
Santa Cruz, CA.

12. Planet-Lab. [cited; Available from: http://www.planet-lab.org/.

13. Sean Rhea, et al., Handling Churn in a DHT, in Technical Report. 2003, University of
California, Berkeley.

 181

http://torrentfreak.com/bittorrent-still-dominates-global-internet-traffic-101026/
http://www.planet-lab.org/

14. Dennis Geels and J. Kubiatowicz, Replica management should be a game, in Proceedings
of the 10th workshop on ACM SIGOPS European workshop. 2002: Saint-Emilion, France.

15. M. Feldman, et al., Quantifying Disincentives in Peer-to-Peer Networks, in 1st Workshop
on Economics of Peer-to-Peer Systems. 2003: Berkeley, CA.

16. Hongxing Li and G. Chen, Data Persistence in P2P Networks with Redundancy Schemes,
in Sixth International Conference on Grid and Cooperative Computing. 2007, IEEE.

17. Kan Zhang, Nick Antonopoulos, and Z. Mahmood, A Review of Incentive Mechanisms in
Peer-to-Peer Systems, in First International Conference on Advances in P2P Systems.
2009, IEEE Computer Society.

18. Panayotis Antoniadis, Costas Courcoubetis, and Ben Strulo, Incentives for Content
Availability in Memory-less Peer-to-Peer File Sharing Systems, in ACM SIG on
Ecommerce. 2005.

19. Rhea, S. The Bamboo Distributed Hash Table 2009 [cited; Available from: http://bamboo-
dht.org/.

20. Modelnet. [cited; Available from: http://modelnet.ucsd.edu.

21. Sean Rhea, et al. Handling Churn in a DHT. in USENIX '04. 2004.

22. Mininova’s Torrent Downloads Double to 7 Billion in a Year. 2009 January 5 [cited;
Available from: http://torrentfreak.com/mininovas-torrent-downloads-doubled-in-a-year-
090105/.

23. Netflix is Killing BitTorrent in the US. 2011 April 27 [cited; Available from:
http://torrentfreak.com/netflix-is-killing-bittorrent-in-the-us-110427/.

24. Dejan S. Milojicic, Vana Kalogeraki, and et al., Peer-to-Peer Computing, in HP Technical
Report. 2002, HP.

25. Eng Keong Lua, et al., A Survey and Comparison of Peer-to-Peer Overlay Network
Schemes. Communications Surveys & Tutorials, IEEE 2005. 7(2).

26. Xuemin Shen, et al., Handbook of Peer-to-Peer Networking. 2010: Springer.

27. Karl Aberery, et al., The essence of P2P: A reference architecture for overlay networks, in
Fifth International Conference on Peer-to-Peer Computing. 2005: Konstanz, Germany.

28. Ion Stoica, et al. Chord: A scalable peer-to-peer lookup service for internet applications. in
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications. 2001.

29. The eMule Project. 2011 [cited; Available from: http://www.emule-project.net/.

 182

http://bamboo-dht.org/
http://bamboo-dht.org/
http://modelnet.ucsd.edu/
http://torrentfreak.com/mininovas-torrent-downloads-doubled-in-a-year-090105/
http://torrentfreak.com/mininovas-torrent-downloads-doubled-in-a-year-090105/
http://torrentfreak.com/netflix-is-killing-bittorrent-in-the-us-110427/
http://www.emule-project.net/

30. Gnutella. Wikipedia 20 July 2011 [cited; Available from:
http://en.wikipedia.org/wiki/Gnutella#Software.

31. D. Stutzbach and R. Rejaie, Understanding Churn in Peer-to-Peer Networks, in Technical
Report. 2005, University of Oregon.

32. Gummadi, K.P., et al., Measurement, Modeling, and Analysis of Peer-to-Peer File-Sharing
Workload, in SOSP '03 Proceedings of the nineteenth ACM symposium on Operating
systems principles 2003, ACM.

33. Xin Bai A , Dan C. Marinescu A , and et. al., A Macroeconomic Model for Resource
Allocation in Large-Scale Distributed Systems. Parallel and Distributed Computing, 2008.

34. Dabek, F., et al. Wide-Area Cooperative Storage with CFS. in ACM SOSP 2001.

35. S. Rhea, et al. Pond: The OceanStore Prototype. in 2nd USENIX conference on File and
Storage Technologies (FAST). 2003.

36. Antony Rowstron and Peter Druschel. Pastry: Scalable, Distributed Object Location And
Routing For Large-Scale Peer-To-Peer Systems. in IFIP/ACM Middleware. 2001.
Heidelberg, Germany: ACM

37. Androutsellis-Theotokis, S. and D. Spinellis, A survey of peer-to-peer content distribution
technologies. ACM Computer Surveys, 2004. 36(4): p. 335-371.

38. Gummadi and et al. The Impact of DHT Routing Geometry on Resilience and Proximity. in
ACM SIGCOMM. 2003.

39. Octavio Herrera-Ruiz and T. Znati. Static Resiliency vs Churn-Resistance Capability of
DHT-Protocols. in ISCA PDCS 2005. Las Vegas, Nevada.

40. Naicken, S., et al., The State of Peer-to-Peer Simulators and Simulations ACM Computer
Communications Review, 2007. 37(2): p. 95-98.

41. Z. Yao, et al. Modeling Heterogeneous User Churn and Local Resilience of Unstructured
P2P Networks. in IEEE ICNP. 2006.

42. X. Wang, et al., Robust Lifetime Measurement in Large-Scale P2P Systems with Non-
Stationary Arrivals, in IEEE P2P. 2009.

43. F. E. Bustamante and Y. Qiao, Friendships that last: Peer lifespan and its role in P2P
protocols, in International Workshop on Web Content Caching and Distribution. 2003.

44. X. Wang, Z. Yao, and D. Loguinov, Residual-Based Estimation of Peer and Link Lifetimes
in P2P Networks. IEEE/ACM Transactions on Networking, 2009. 17(no. 3).

45. D. Stutzbach and R. Rejaie. Understanding Churn in peer-to-peer networks. in ACM
Internet Measurement Conf. (IMC). 2006.

 183

http://en.wikipedia.org/wiki/Gnutella#Software

46. M. Steiner, T. En-Najjary, and E. W. Biersack. A Global View of KAD. in 7th ACM
Internet Measurement, IMC’07. 2007. San Diego, California, USA.

47. Qiuming Luo, et al., A Novel Model and a Simulation Tool for Churn of P2P Network, in
Parallel and Distributed Computing, Applications and Technologies. 2010.

48. Octavio Herrera and T. Znati, Modeling Churn in P2P Networks, in 40th Annual
Simulation Symposium. 2007.

49. Enrique Fernández-Casado, Marc Sánchez-Artigas, and P. García-López, Affluenza:
Towards Universal Churn Generation, in P2P. 2010.

50. Boxun Zhang, Alexandru Iosup, and D. Epema, The Peer-to-Peer Trace Archive, in
Parallel and Distributed Systems Report Series. 2010, Delft University of Technology.

51. Godfrey, B. Repository of Availability Traces. 2010 [cited; Available from:
http://www.cs.illinois.edu/~pbg/availability/.

52. Ranjita Bhagwan, Stefan Savage, and Geoffrey M. Voelker, Understanding Availability, in
IPTPS. 2003.

53. AG Dimakis, K Ramchandran, and Y Wu and C Suh. A Survey on Network Codes for
Distributed Storage. in IEEE Surveys. 2011.

54. W. K. Lin, D.M. Chiu, and Y. B. Lee, Erasure Code Replication Revisited, in IEEE P2P.
2004.

55. Ranjita Bhagwan, Stefan Savage, and Geofrey M. Voelker, Replication Strategies for
Highly Available Peer-to-Peer Storage Systems, in Tech Report. 2002, UC San Diego.

56. Alexandros G. Dimakis, et al., Network coding for Distributed storage Systems, in
INFOCOM. 2007: Anchorage, Alaska.

57. K. Rashmi, N. B. Shah, and P.V. Kumar, Optimal Exact-Regeneration Codes for
Distributed Storage at teh MSR and MBR Points via Product-Matrix Construction. IEEE
Trans. Information Theory, 2010.

58. Alessandro Dominuco and E. Biersack, Hierarchical Codes: How to Make Erasure Codes
Attractive for Peer-to-Peer Storage Systems. in Proceedings of Peer-to-Peer Computing,
2008: p. 89-98.

59. Chris Williams, et al. Redundancy Management for P2P Storage. in Proceedings of the
Seventh IEEE International Symposium on Cluster Computing and the Grid 2007.

60. Fan Wu, Tongqing Qiu Yuequan Chen, and Guihai Chen, Redundancy Schemes for High
Availability in DHTs, in IPSA 2005. 2005.

 184

http://www.cs.illinois.edu/%7Epbg/availability/

61. Guangping Xu, Gang Wang, and J. Liu, A hybrid redundancy approach for data
availability in structured P2P network systems, in International Symposium on Pacific
Dependable Computing. 2007, IEEE.

62. Nishida, H. and T. Nguyen, A Global Contribution Approach to Maintain Fairness in P2P
Networks. IEEE Transactions on Parallel and Distributed Systems, 2010. 21(6): p. 812-826.

63. Rameez Rahman, et al. Improving efficiency and fairness in p2p systems with effort-based
incentives in ICC. 2010.

64. Tsuen-Wan Johnny Ngan , et al., On Designing Incentives-Compatible Peer-to-Peer
Systems in 2nd Bertinoro Workshop on Future Directions in Distributed Computing
(FuDiCo II: S.O.S.). 2004: Bertinoro, Italy.

65. Anwitaman Datta and Karl Aberer. Internet-Scale Storage Systems under Churn – A Study
of the Steady-State using Markov Models. in Sixth IEEE International Conference on Peer-
to-Peer Computing. 2006.

66. Emil Sit, et al., Proactive Replication for Data Durability, in 5th Int’l Workshop on Peer-
to-Peer Systems (IPTPS). 2006.

67. Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement Study of Peer-
to-Peer File Sharing Systems. in Multimedia Computing and Networking (MMCN). 2002.

68. Shanyu Zhao, Daniel Stutzbach, and Reza Rejaie. Characterizing Files in the Modern
Gnutella Network: A Measurement Study. in SPIE/ACM Multimedia Computing and
Networking. 2006. San Jose, CA.

69. Inet topology generator v 3.0. [cited; Available from:
http://topology.eecs.umich.edu/inet/.

70. Mauro Andreolini and Riccardo Lancellotti. Analysis of peer-to-peer systems: workload
characterization and effects on traffic cacheability. in 12th Annual Meeting of the IEEE /
ACM International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2004) 2004. Volendam (NL).

71. J. Li, et al., A Performance vs. Cost Framework for Evaluating DHT Design Tradeoffs
under Churn, in INFOCOM. 2005: Miami, FL.

72. Subhabrata Sen and Jia Wong, Analyzing peer-to-peer traffic across large networks.
IEEE/ACM Transactions on Networking (TON), 2004.

73. R. Bolla, et al., A measurement study supporting P2P file-sharing community models.
Computer Networks, 2009(53): p. 485-500.

74. Moritz Steiner, Taoufik En-Najjary, and E.W. Biersack, Analyzing Peer Behavior in KAD,
in Research Report. 2007, Institut Eurecom: Sophia-Antipolis, France.

 185

http://topology.eecs.umich.edu/inet/

75. Jacky C. Chu, Kevin S. Labonte, and Brian N. Levine, Availability and locality
measurements of peer-to-peer file systems, in SPIE 2002.

76. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A Measurement Study of Peer-to-Peer File
Sharing Systems. in Multimedia Computing and Networking (MMCN). 2002. San Jose, CA.

77. Zhonghong Ou, E. Harjula, and M. Ylianttila, Effects of Different Churn Models on the
Performance of Structured Peer-to-Peer Networks, in Personal, Indoor and Mobile Radio
Communications. 2009.

78. Dimakis, A.G., P. B. Godfrey, and Y. Wu. Network Coding for Distributed Storage
Systems. in Information Theory. 2010.

79. K. V. Rashmi, et al., Optimal Exact-Regeneration Codes for Distributed Storage at the
MSR and MBR Points via Product-Matrix Construction. IEEE Trans. Information Theory,
2010.

80. Kuo, W. and M. J. Zuo, Thek-out-of-n System Model, in Optimal Reliability Modeling:
Principles and Applications. 2003, Wiley. p. 231-280.

81. K. V. Rashmi, et al. Explicit Construction of Optimal Exact Regenerating Codes for
Distributed Storage. in Proc. Allerton Conf., Urbana-Champaign. 2009. San Diego.

82. Alexandros G. Dimakis, et al. A Survey on Network Codes for Distributed Storage. in IEEE
Surveys. 2011.

83. Pinheiro, E., W.-D. Weber, and L.A.e. Barroso, Failure Trends in a Large Disk Drive
Population. USENIX Conference on File and Storage Technologies, 2007.

84. Hard drive manufacturer specifications. 2011 [cited; Available from:
http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701220.pdf.

85. Lehpamer, H., Transmission Networks Fundamentals, in Microwave Transmission
Networks, Second Edition. 2010, McGrawHill. p. 15.

86. Charles Blake and Rodrigo Rodriguez, High Availability, Scalable Storage, Dynamic Peer
Networks: Pick Two, in HotOS IX. 2003.

87. Hardin, G., The Tragedy of the Commons, in Science. 1968. p. 1243-1248.

88. Tragedy of the commons. 2011 [cited; Available from:
http://en.wikipedia.org/wiki/Tragedy_of_the_commons.

89. S. B. Handurukande, et al., Peer Sharing Behavior in the eDonkey network, and
implications for the design of server-less file sharing systems. SIGOPS Oper. Sys. Rev.,
2006. 40: p. 359-371.

 186

http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701220.pdf
http://en.wikipedia.org/wiki/Tragedy_of_the_commons

 187

90. Deterding, S. Meaningful Play: Getting Gamification Right Google Tech Talk [Webcast]
Jan 24, 2011 [cited 2011; Available from:
http://www.youtube.com/watch?v=7ZGCPap7GkY&feature=relmfu.

91. Wikileaks. [cited; Available from: wikileaks.org.

92. Schwarz, T., et al., Disk Failure Investigations at the Internet Archive, in NASA/IEEE
Conference on Mass Storage Systems and Technologies. 2006.

93. Zghaibeh, M. and K.G. Anagnostakis, On the Impact of P2P Incentive Mechanisms On
User Behavior, in NetEcon+IBC. 2007: San Diego.

94. Mecke, K.R. and D. Stoyan, A Primer in Perfect Simulation. Springer Lecture Notes in
Physics, 2000: p. 349 - 378.

http://www.youtube.com/watch?v=7ZGCPap7GkY&feature=relmfu

	TITLE PAGE

	COMMITTEE MEMBERSHIP PAGE

	ABSTRACT

	TABLE OF CONTENTS
	LIST OF TABLES

	Table 1. Peer-to-Peer Systems Properties
	Table 2. Comparison of P2P Architectures
	Table 3. Response Variables
	Table 4. Content Availability Framework Parameters
	Table 5. User Behavior Parameters
	Table 6. Node Availability Component Parameters
	Table 7. Churn Measurement Studies
	Table 8. Peers User Class Sample Session Distributions
	Table 9. Bamboo Parameters
	Table 10. File Type/Size Distribution
	Table 11. Content Parameters
	Table 12. Redundancy Mechanism Parameters
	Table 13. Incentive-Based Mechanism Parameters
	Table 14. Redundancy Notation: Redundancy Scheme(s) Parameters
	Table 15. Redundancy Notation: File Availability
	Table 16. Redundancy Notation: Repair Cost
	Table 17. Repair Cost Calculation Parameters
	Table 18. Redundancy Methods with Flexible vs Fix Coding Gain
	Table 19. IndexEntry Data Structure
	Table 20. Content Contribution Metric
	Table 21. Sigmoid Function Parameters
	Table 22. Replication Probability Function Parameters
	Table 23. Transmission Bandwidth Function Parameters
	Table 24. IndexTable Data Structure
	Table 25. Base Content/Networking Configuration
	Table 26. Response Variables for Alternative Redundancy Schemes
	Table 27. Size and Popularity Components in Contribution Gain Functions

	LIST OF FIGURES

	Figure 1. Content Availability System States and Transitions Diagram
	Figure 2. Content Availability System Proposed in this Dissertation
	Figure 3. Dissertation Organization
	Figure 4. Unstructured P2P Overlays Taxonomy
	Figure 5. Structured P2P Overlays Taxonomy
	Figure 6. Overlays Network Design Decisions
	Figure 7. Churn’s Effect on Content Availability
	Figure 8. Neighbors in Bamboo
	Figure 9. Distributed Hash Table
	Figure 10. Bamboo’s Performance Under Churn
	Figure 11. Content Availability Framework
	Figure 12. User Behavior Model: User Profiles
	Figure 13. Node Churn Model
	Figure 14. Content Component Factors
	Figure 15. Overlay Network Size vs Simulation Time
	Figure 16. Modelnet Network Topology
	Figure 17. Redundancy Data Structure
	Figure 18. Algorithm 1’s Sample Output
	Figure 19. Minimum Storage Overhead
	Figure 20. Redundancy Repair Cost
	Figure 21. Repair Cost for Flexible and Fixed Coding Gain
	Figure 22. Repair Cost for PR with different Coding Gain (S) values
	Figure 23. Repair Cost for PR with different Replication Gain (r) values
	Figure 24. PR Cost vs MDS and Ideal MDS Cost
	Figure 25. System Architecture for Redundancy Maintenance
	Figure 26. System Processes Overview
	Figure 27. Effect of Incentive-based Mechanism: a) Normal System, b) System with Incentives
	Figure 28. Sigmoid Function
	Figure 29. Replication Probability Function
	Figure 30. Transmission Bandwidth Function
	Figure 31. Redundancy-maintenance process FSM
	Figure 32. Time Contribution Gain
	Figure 33. Sample Simulation’s Cost Results Output
	Figure 34. Sample Simulation’s Efficiency Results Output
	Figure 35. Effect of Redundancy on Content Availability
	Figure 36. Cost and Efficiency for Alternative PR Redundancy Settings
	Figure 37. Adaptive Maintenance Epochs and Publication Rate: a) Adapt>0, b) Adapt>=0, c) Smooth with α=0.4 and d) Smooth with α=0.8
	Figure 38. Cost and Efficiency for Different TARGET Values
	Figure 39. Cost and Efficiency for Different MIN_SEG Values
	Figure 40. Cost and Efficiency for Different Incentive-based Mechanism Parameters
	Figure 41. Transmission Bandwidth CDF for Various TB-Util Shape Parameter Values
	Figure 42. Transmission Bandwidth for different TB-Util Shape Parameter Values (Scatter Diagram)
	Figure 43. Fair Allocation of Resources in Incentive-based Mechanism
	Figure 44. Cost and Efficiency for Contribution Gain Functions
	Figure 45. Download’s Transmission Bandwidth CDF for Contribution Gain Functions
	Figure 46. RP-Cost Function for Contribution Gain Functions
	Figure 47. Cost and Efficiency for Various Churn Rates
	Figure 48. Cost and Efficiency for Different Percentage of Non-Participants
	Figure 49. Distribution of Transmission Bandwidth versus Content Contribution for: a) compliant nodes b) non-compliant nodes.
	Figure 50. Cost and Efficiency for Different Percentage of Benefactors
	Figure 51. Cost and Efficiency for Different Content Space Sizes
	Figure 52. Content Availability for Different Content Space Sizes
	Figure 53. Alternative Node Initializations for Transient Removal

	LIST OF ALGORITHMS

	Algorithm 1. Optimization of Redundancy Resources
	Algorithm 2. Items Registration Process at Holder Agent
	Algorithm 3. Items Registration Process at Index Agent
	Algorithm 4. Redundancy Evaluation by Index Agent
	Algorithm 5. Smooth Maintenance Epoch Mechanism at Index Agent
	Algorithm 6. Adaptive Maintenance Epoch Mechanism at Index Agent
	Algorithm 7. RedundancyFix at Index Agent
	Algorithm 8. RedundancyFix at Holder Agent
	Algorithm 9. Function getSpeed()
	Algorithm 10. Function Utility()
	Algorithm 11. Procedure AcceptReplica()
	Algorithm 12. Function Cost()
	Algorithm 13. Procedure PerfectSimulation()

	1.0 INTRODUCTION
	1.1 CONTENT AVAILABILITY
	1.1.1 Physical errors
	1.1.2 Logical errors

	1.2 THESIS STATEMENT
	1.3 RESEARCH OVERVIEW AND CONTRIBUTIONS
	1.4 DISSERTATION ORGANIZATION

	2.0 BACKGROUND AND LITERATURE REVIEW
	2.1 P2P TECHNOLOGY
	2.1.1 P2P Taxonomies and Features
	2.1.1.1 Unstructured P2P Overlays
	2.1.1.2 Structured P2P Overlays

	2.1.2 P2P Architectures Comparison
	2.1.3 Content Availability
	2.1.3.1 Effect of Churn
	2.1.3.2 Effect of User Behavior

	2.1.4 Content Ownership in P2P Networks

	2.2 BAMBOO
	2.3 LITERATURE REVIEW
	2.3.1 Churn Models
	2.3.2 Redundancy Methods
	2.3.3 Incentives and Content Availability

	3.0 CONTENT AVAILABILITY FRAMEWORK
	3.1 FRAMEWORK STRUCTURE
	3.2 FRAMEWORK MODELS
	3.2.1 User Behavior Component
	3.2.2 Node Availability Component
	3.2.3 Network Structure Component
	3.2.4 Content Component
	3.2.5 Incentives and Redundancy Component
	3.2.6 Response Variables

	3.3 FRAMEWORK PARAMETERS
	3.3.1 User Behavior Component
	3.3.2 Node Availability Component
	3.3.2.1 Session Lengths
	3.3.2.2 Off-line Interval
	3.3.2.3 Oscillating Network Size

	3.3.3 Network Component
	3.3.3.1 Modelnet

	3.3.4 Content Component
	3.3.5 Incentives and Redundancy Component
	3.3.5.1 Redundancy
	3.3.5.2 Incentives-Based Mechanism

	4.0 REDUNDANCY
	4.1 REDUNDANCY SCHEMES
	4.2 FILE AVAILABILITY
	4.2.1 Heterogeneous node availabilities
	4.2.2 Homogeneous node availabilities
	4.2.2.1 Storage Overhead
	4.2.2.2 Fragment Availability Model

	4.3 REDUNDANCY REPAIR
	4.3.1 Failed Repairs
	4.3.2 Repair Cost
	4.3.2.1 Proactive Replication with Different (S, r) Parameters

	4.3.3 Maintenance Epochs

	4.4 REDUNDANCY MAINTENANCE
	4.4.1 System Architecture
	4.4.2 Agents
	4.4.3 System Processes

	5.0 INCENTIVES
	5.1 ECONOMIC MODELS
	5.2 INCENTIVE-BASED MECHANISMS FOR CONTENT AVAILABILITY
	5.2.1 Objective
	5.2.2 Design Guidelines
	5.2.3 Agents
	5.2.4 Control Metric
	5.2.5 Incentive and Penalty Functions
	5.2.5.1 Replication Probability Function
	5.2.5.2 Transmission Bandwidth Function

	5.3 INCENTIVE-BASED MECHANISM CONSTRUCTION
	5.3.1 Redundancy-Maintenance Finite State Machine
	5.3.1.1 Requestor State
	5.3.1.2 Holder-Publisher State
	5.3.1.3 Holder-Provider State
	5.3.1.4 Index State
	5.3.1.5 Candidate State

	5.4 ENHANCED CONTRIBUTION METRIC
	5.5 ADDITIONAL CONSIDERATIONS

	6.0 EVALUATION
	6.1 SIMULATION-EMULATION PLATFORM
	6.2 BASE CONFIGURATION
	6.3 PERFORMANCE METRICS
	6.4 REDUNDANCY EFFECT
	6.5 PARAMETERS EXPLORATION
	6.5.1 Proactive Replication Redundancy Scheme
	6.5.1.1 PR Redundancy with Different Coding Gains (S)
	6.5.1.2 PR Redundancy with Different Reception Efficiencies (k)

	6.5.2 Redundancy Maintenance
	6.5.2.1 Adaptive Maintenance Epochs
	6.5.2.2 TARGET Fragment Availability
	6.5.2.3 Minimum Number of Segments Available (MIN_SEG)

	6.5.3 Incentive-Based Mechanism
	6.5.3.1 Sigmoid Functions Parameters
	6.5.3.2 Contribution Gain Function

	6.6 REDUNDANCY-SYSTEM FLEXIBILITY
	6.6.1 Churn Rate
	6.6.2 Nodes Participation
	6.6.3 Benefactor Nodes
	6.6.4 Content Space Size

	7.0 CONCLUSIONS AND FUTURE WORK
	APPENDIX A
	BIBLIOGRAPHY

