
Data Systems Fault Coping for Real-time Big Data Analytics Required
Architectural Crucibles

Stephen Cohen

Microsoft Corporation
stcohen@microsoft.com

William Money
The Citadel, The Military College of South Carolina

willmny@gmail.com
Abstract

This paper analyzes the properties and
characteristics of unknown and unexpected faults
introduced into information systems while processing
Big Data in real-time. The authors hypothesize that
there are new faults, and requirements for fault
handling and propose an analytic model and
architectural framework to assess and manage the
faults and mitigate the risks of correlating or
integrating otherwise uncorrelated Big Data, and to
ensure the source pedigree, quality, set integrity,
freshness, and validity of data being consumed. We
argue that new architectures, methods, and tools for
handling and analyzing Big Data systems functioning
in real-time must design systems that address and
mitigate concerns for faults resulting from real-time
streaming processes while ensuring that variables such
as synchronization, redundancy, and latency are
addressed. This paper concludes that with improved
designs, real-time Big Data systems may continuously
deliver the value and benefits of streaming Big Data.

1. Introduction: Third Generation
Processing of Real-time Big Data

Some questions arising from big data, its
aggregation, processing, and analysis include [1]:
• How do we know when there is corruption, or data

loss in Big Data sets?
• What is the value of data if it appears to conflict,

have deficiencies, or to be changed with other data?
• How can we know when data are missing, and are

there some data sets that are more critical or
important if missing than others?

• What is the impact of missing or corrupt data upon
the analysis and subsequent decisions?
These issues can arise from faults in the processes

of collection, ingestion, cleansing, integration, and
analysis of Big Data. The faults addressed in this paper
are defined to be situations where validated algorithms
that use Big Data sets encounter mixed type, multiple,
asynchronous, combined and interdependent data
streams with one or more data sets that do not conform
to pre-defined data criteria. Encountering these faults
introduces new risks of varying degrees in the quality,
utility, and reliability of subsequent conclusions and

decisions. Finally, we recognize that architectures
addressing these new faults may themselves introduce
operational issues into these systems, such as: how the
data should be retained, and how to manage demands
for reviews, and restrictions (for audit or legal
reasons).

Given the growing number of possible faults in
real-time Big Data systems and the increase of
associate risks, we hypothesize: H1: New architectural
elements are required to increase resiliency, and
dependability in Big Data systems. Resilience and
dependability are defined for this paper as a system’s
ability to recover and return to a known state. This
paper presents an architectural framework that will
mitigate the increased risk of poor decisions that could
be made if decision makers do not account for the
faults that may occur.

1.1 Gen 1 and Gen 2 Big Data Systems

We have functionally grouped Big Data
processing into three generations as shown in table one
below. The table describes our Big Data systems
generations and their descriptive and distinguishing
characteristics. We will discuss the specific fault
conditions and handling performed in these generations
of systems in table 1

A simplified overview of the differences between
the first two generations Big Data systems reveals that
Generation 1 addressed sets and combination issues,
and incorporated tools addressing concerns such as
interval measurements, interval tracking and latent data
analysis. The second generation data systems captured
data more rapidly, established analytical rhythms (with
predictable circadian variations that might be long term
– but known) for analysis frameworks, addressed event
detection and reactive response scenarios, and
addressed linked Big Data events by mapping
downstream actions to the analytical results. In direct
comparison to generation 1, generation 2 systems
emphasized immediacy and demanded that processing
Big Data occur in real-time. As examples, The
generation 2 time sensitive issues utilize data that
could impact or enable stock trading with sub-second
response requirements, identifying systems monitoring,
access, authorization, and fraudulent activity
anomalies, etc. A second differentiating key concern of
the generation 2 systems was accepting and managing

1023

Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

URI: http://hdl.handle.net/10125/41274
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301370933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

stream processing (and multiple data streams) that
required techniques beyond those found in the
generation 1 large volume crunching exercises.

Table 1. Generations of Big Data Processing

The stream processing requirement for velocity

and variety represents two of the five descriptors of
Big Data (volume, velocity, variety, value, and
complexity [1]), and are especially critical for
generation 2 systems. The generation 2 “streaming

processing” for Big Data required that the platform
process data streams or sensor data (usually a high
ratio of event writes versus numbers of reads against
the same data set). It is contrasted with “complex event
processing” (CEP) from generation 1 which utilizes
event-by-event processing and aggregation (e.g. on
potentially out-of-order events from a variety of
sources – often with large numbers of rules or business
logic). The generation 1 CEP engines were highly
optimized to process discreet “business events” that,
for example, compare out-of-order or out-of-stream
events, applying decisions and reactions to event
patterns. For this reason, multiple types of event
pattern detection and processing evolved through
queries, rules and procedural approaches.

How has fault processing been handled in
Generation 1 and Generation 2 Big Data systems? In
generation 1 solutions, fault handling was implemented
with caching that addressed the increased latency in
geo distributed systems; data copies (for validation or
after analysis); strict authorization and high
authentication meeting both security and privacy
concerns as to prevent tampering and ensure a full and
timely audit trail. The system processes employed
linear sequential software development similar to a
classic or waterfall life cycle model that controls
software development projects, develops detailed task
plans with assigned responsibility. Overall, analytic
Big Data projects were driven by incorporating
managerially generated questions focusing on the
understood and accepted metrics derived from the large
amounts of data. Reporting processes employed
analytics to answer more specific and detailed
managerial and performance focused questions.
Developers subsequently built in more and more
system routines and functionality through progressive
engineering phases. In summary, the generation 2
processes were designed and constructed as sequential
processes, and recognition of known failure points.
Data quality was monitored, and data with high
diversity, or potentially limited quality and validity
was excluded from analyses and computational
algorithms, or mitigated with standard statistical
missing data procedures.

Generation Defining Characteristics
Generation 1
Systems

• Addressed Big Data sets
combinatorial issues

• Incorporated tools for addressing
interval measurements, interval
tracking and latent data analysis

Generation 2
Systems

• Required Rapid data capture
• Recognized analytical data

rhythms (circadian variations -
amplitude, phase, stability,
variability, etc.) for analysis
frameworks

• Addressed event detection and
reactive response scenarios

• Addressed faults involving missed
events by expanding point data
solutions with time series
solutions such as the Fourier
transform

• Provided fail-safe mechanisms
when data are blank, or exceed
upper and lower bounds

Generation 3
Systems

• Addresses the need for continuous
processing of real-time streams of
data by providing native support
for real time and time delayed
stream analytics

• Proactively defend against
multiple source system data
consistency variations comparing
new data sets to similar prior
datasets from different sources
during ingest

1024

 Fault tolerance solutions for streaming

applications aimed at guaranteeing that no data were
lost or that no data item was delivered to an application
more than once by storing checkpoints for consistency
between replicas. Partial fault tolerance methods
protecting only the most critical stream operators for
processing algorithms are approximate by nature and
achieved then acceptable results under data loss and
duplicate data delivery. [2] Other techniques used state
management processes that enable a distributed stream
processing system to accommodate faults by
replicating computational states across nodes with
checkpoints and active, passive, and upstream backup.
[3] Application level check-pointing was used for fault
tolerance for tightly-coupled streaming applications
using Light-weight Summary Structure (LSS)
summarizing the state of the program with a small
amount of memory. [4] Implemented at the application
levels, Hadoop protects geographically distributed data
from network link and node failures using data
replication and Heartbeat messages. [5] Photon,
Google Advertising System, joins geographically
distributed data streams possibly unordered and
delayed (web search queries and user clicks on
advertisements) by using joined logs derived from key
business metrics, including billing for advertisers. It
tolerates infrastructure degradation and datacenter-
level outages guaranteeing that there will be no
duplicates in the joined output (at-most-once
semantics) at any point in time, and that most joinable
events will be present in the output in real-time (near-
exact semantics). [6] Finally, Apache Apec Fault
Tolerance uses asynchronous and distributed
checkpointing to persistently store with automatic
detection and recovery of failed containers, heartbeat,
process status notification, buffering for replay of data
from a recovery point. [7]

1.2 Generation 3 relies on stream processing

 Generation 3 systems are now incorporating real-
time streams of data that must perform continuous
recursive analysis. Thus, our second hypothesis that
new functional capabilities are required in Generation
3 systems to mitigate and correct faults encountered
with continuous recursive analysis prior to storage.
These systems present new opportunities for faults, and
require new detection and correction processes. These
systems must be highly scalable, continuously
available, fault tolerant with highly flexible fault
coping mechanisms designed to quickly respond to
detected faults through flexible response mechanism
even when a potential or hypothetical fault has not
previously been encountered in a functioning system.
This has led us to propose a second hypothesis: H2:
New functional capabilities are required in Generation
3 systems to mitigate and correct these faults.

Great flexibility is demanded because of the real
time processing demands of these systems. Our
definition of real-time is based upon Young’s [8]
definition where information processing activity must
“…respond to externally generated input stimuli within
a finite and specified period.” The third generation
systems are highly sensitive to time, from both a data
ingestion and computation perspective; and must
address faults from missing data or errors without
introducing latencies or increasing operational risk.

The concern for immediate processing became
acute with the addition of real-time computation where
consuming applications were presented streams of data
that must be processed quickly so decisions can be
made to react to changing conditions and situations
depicted and known only after the data had been
analyzed by the new features and mechanisms.

 Generation 1 Generation 2 Generation 3
Size Gigabytes Terabytes Exobytes
Scale Large dedicated system multiple large systems Mesh, Hive, neural nets
Participating Nodes 1 clusters Mesh, Hive, neural nets
Response to Failure stop and restart fail over to replica fail in place with transparent redirection
Timing of Response late - after the fact current - at time of failure early - proactive assumption of failure
Focus of Processing known query query in context unknown query - gathering all potential data
Frequency of Processing known interval constant within predetermined windows continuous
Timing of Prcessing highly latent quickly after data consumption was complete near real time
Frequency of Data Consumption selected period of time known interval continuously
Integration of Calculated Values rarely often always
Event Driven singular focus of effort regularly known events always listening and responding to events
Data Quality ongong after storage inline validation with post storage review continuos verification / validation prior to storage

Table 2. Characteristics of Big Data Generations

1025

Generation 3 real-time streaming data can be
subjected to real time analysis during ingest prior to
storage as well as interacting with multiple sources,
select data to be merged into the processing flow, and
write or update other databases with the calculated or
processed information that is produced by the system
[9]

Either may apply “Streaming Analytics”
“…continuously calculate mathematical or statistical
analytics on the fly within the stream.” [10] High
volume data that must be accepted and managed in
real-time are well suited to stream processing, but they
require systems that are scalable, highly available and
very fault tolerant. [10]

Examples are found in processing used to develop
a “live DataMart” delivering “…ad-hoc continuous
query access to this streaming data that’s aggregated in
memory” for an end user. Analytic tools may provide
continuous pictures and descriptions of the live data to
users viewing the data through an analytic front end
[11].

2. Risks and Challenges in Generation 3
Processing of Real-time Big Data

Many generation 3 risks are derived from the
stream processing requirements incorporated into the
Big Data real-time systems. The risks in the systems
are 1) incomplete, missing, or erroneous collections
and subsequent incorrect (and unknown) errors in
resultant products; 2) failures to interrupt processing
when errors are encountered; 3) analysis errors due to
the ingestion errors; 4) incorrect decisions. The
management challenges are clear – to design and
implement systems that have techniques and processes
that eliminate or mitigate these risks.

Two major design risks arise when incorporating
streaming real-time big data. The inclusion of both
unbounded data streams and computational value while
each require different system lifecycles, as well as
different and new processes, and enhanced physical
topologies. Real-time Big Data systems are often
simultaneously ingesting data from multiple data
sources. Similarly, real-time systems processes are
executing and incorporating continuous calculations
along temporal dimensions that combine and compare
current data with/against raw or summarized past data.
The combination of these unique complications bring
with them additional risks for faults and potential
errors.

The first challenge is to establish a system with
multiple ingest processes running in parallel, with
detection and response capabilities for one or more
inbound data streams that will recognize and mitigate:

• Completely or partially failing Big Data sets and
streams. The failure could be a full source outage
where inbound data no longer flows or the
unexpected intermittently stopping of inbound data.

• Telemetry flat-lining where each source system is
pre-determined to be good or bad if the telemetry
becomes consistent for a known period of time.

• Exceeding minimum or maximum expected values
for a known period of time.

 The second challenge is to use computed values from
recent or past data sets in calculations with current
data creating a new version of recent output for the
next cycle without errors by designing and providing a
means to:
• Isolate and potentially remove any or all erroneous

inbound data. Consider a daily average across 100
sensors based on values from 0700h – 0700h the
following day. If 25% of the sensors fail to report,
the calculated rolling average would be incorrect.

• Identifying stuck sensor data where if the 100
sensors expected values are between 1-10 and some
‘stick’ on 100, the resulting calculations are wrong.

• Maintain processes that are constantly aware of the
current and future usage of the data.

• Maintain raw data transmitted in a data lake or
similar archive.

• Use corrected data with erroneous data, if business
appropriate, marked or removed, as the ‘new’
working set.

• Maintain a separately secured and managed audit
trail (for verification, maintenance, or comparison
and simulation of other such events to develop
further responses).

3. Generation 3 Real-time Big Data: An
Emerging Problem Space

The faults are described in the examples presented
below, and in the methodologies and techniques for
handling the unanticipated circumstances. [12]

They have been encountered in a wide variety of
applications such as Air Traffic Control Systems,
defense and space systems, as well as the growing
group known as IoT or “Internet of Things’ systems.
Historically, these systems have been categorized from
various perspectives including “… factors outside the
computer system and factors inside the computer
system.” [13] They have both hard and soft real-time
temporal completion deadlines with varying

1026

consequences if processing or results are incorrect.
Losses may be important in soft deadline real-time
systems, but truly horrendous in hard deadline real-
time systems. [14] Systems may also be fail-safe or fail
operational. Fail safe means that when the system
enters a state that is unreliable it will produce a result
that will be safe. An example is a traffic light that
blinks yellow or red if it cannot correctly monitor and
control traffic. Fail-operational systems require faults
to be identified and either isolated or addressed without
a notable reduction in primary operational metrics.
The methods of achieving the required predictability
have been addressed through static and dynamic
scheduling of systems tasks. This ensures that they will
meet deadlines. Static scheduling means that the
scheduling decisions are set at “compile time” or
historically when system files are joined offline.
Conversely, dynamic scheduling enables schedulabilty
tests to ascertain whether or not the tasks can be
performed by the set deadlines. [15]

3.1 Generation 3 Real-time Big Data Faults
Cannot Be Solved with Previous Solutions and
Techniques

As discussed, generation 3 Big Data systems
present more complex problems. They could be seen
as “context aware” in that they may be viewed using an
analytical model with recursive subsystems that require
many successful executions to support complex
decision making.

The proposed analytical model for fault
identification, detection, and mitigation process utilizes
non-linear interactive phases:
Phase Description
1 Auto monitoring and recognition of the

inbound data streams, metadata,
characteristics, and data sets

2 Identifying potential duplicate or
corresponding data sets predicted
relationships (equal, non-duplicative,
predicted sequencing)

3 Identifying direct and indirect critical
relationships impacting results, conclusions,
or decisions.
Identifying compensatory actions
(mandatory, optional)

4 Designing reactive subsystem procedures
5 Designing proactive intervention points and

steps
6 Integrating steps and subsystems actions at

the system level
7 Mapping of actions and outcomes at system

level

Table 3. Proposed analytical phases
These proposed analytic phases do not describe

how any particular designer should proceed with the
systems but rather offer our introductory approach for
appropriate phases of analysis. In each system,
subsystem inputs must handle concurrent processing of
the live, raw, and processed data. The system must
dynamically (and automatically) adjust its processing
based on contextual metadata and apply the
adjustments to one or more concurrent instances. The
actual responses designed will depend on the data
streams incorporated into system, characteristics of the
decisions impacted, and alternatives available. A
generic list of tentative responses that designers may
build into use is presented in table 4.

 Actionable Responses to Faults Types
1 Stream data removal (full)
2 Stream substitution
3 Inject alternative known set4 Replace values

(partial)
4 Utilize historical data (smoothed/raw)
5 Questions and Research on Real-time Big Data

Decision Making Risks
6 New working creation (excluding data0
7 Roll back (to old set)
8 Managements alerts (as specified)

Table 4. Preliminary Streaming Data
Response Descriptions

The generation 3 real-time systems processing

streams of Big Data pose a number of key risks that
must be s6ystematically addressed. Decision makers
must ask, what is the impact upon the analysis? Is
confidence in the system or the result (expressed as a
statistical measure of significance and confidence)
reduced if data are missing, incorrectly included, or
even intentionally changed? (And how can a decision
maker determine this?) New (or heightened) risks and
limitations will include how to set or determine
analysis results that may set time limits on the validity
of conclusions, sensitivity of the results or conclusions
to erroneous, distorted, or missing data in a stream,
linkages between the risks of error in the data streams,
and consequences of decisions made in immediate time
frames.

Architectures and designs must include not only
analytical components for performing required
calculations, but risk assessment applied through
knowledge engines that transmit immediate signals or
issues, and establish limitations on consequential
decisions. Fault events must be responded to base on
the data and business objectives of the decision
outcomes. The systems must incorporate confidence
assessments, and contingencies (showing limits under
varying fault and unknown situations), trends and

1027

changes in inflection points, and deltas in the data
streams. Methods of communicating this information
may require dashboards and notification tools that meet
today’s managers’ needs for high mobility and
immediate information (leading to knowledge) that is
not location or time dependent.

We have developed a meta data set that must be
collected on the streaming Big Data sets for generation
3 systems. It includes: stream frequency, time (collect,
ingest), synchronicity, rhythmic properties, bounds,
etc. Subsequent violations of the meta data predicted or
expected characteristics would invoke (as appropriate):
detailed testing, rule application (exclusion,
substitution, alternate insertions), other instream
actions, processing changes, and warnings or halts to
decisions and actions. As designers specify generation
there systems, the meta data will be developed and
actionable steps specified.

5. Examples of Big Data in Real-Time
Applications and Tools

The architectures and supporting infrastructures
required to manage streaming Big Data across a large
geographically diverse set of federated sensors are
subject to latency, connectivity, and recursive
dependencies. For example, huge amounts of data are
captured every second from the national power grid
infrastructure which accumulates measures taken by
SCADA, and Phasor Measurement Units (PMUs),
which capture sub second resolution. This was
reported to be over 10 terabytes of raw data per month
in 2014. [16] Identifying potential failures,
maintenance focus areas, and detecting externally
created anomalies are just a few of the critical activities
trying to simultaneously consume, process, and alert
against this and similar huge datasets. The additional
examples in the table below illustrate the magnitude
and complexity of these systems and their potential
faults.

In the near and not too distant future the sheer
magnitude of data, and its near real-time analysis will
have profound impacts on public safety and daily life.
During a recent Google conference Google claimed to
have more than a billion objects in their internet graph.
People, places, and activities are all connected through
well-known and lesser seen forces. In their University
of California, Davis publication “Large-Scale Graph
Visualization and Analytics” Kwan-Liu Ma and Chris
W. Muelder, provide various visualizations of data
including potential terrorist network identification. [17]

Huge amounts of data are captured from
infrastructure such as the national power grid which
accumulates measures taken by SCADA every second,
and Phasor Measurement Units (PMUs), which capture

sub second resolution. In 2014 it was reported to be
over 10 terabytes per month of raw data. [16]
Identifying potential failures, maintenance focus areas,
and detecting externally created anomalies are just a
few of the critical activities trying to simultaneously
consume, process, and alert against the dataset.

FAA flight control system

Description - A real-time application that replaces
the computer systems controlling air
traffic in the US.

Goals The En Route Automation
Modernization (ERAM) is
“…expected to increase air traffic
flow, improve automated navigation
and strengthen aircraft conflict
detection services, with the end result
being increased safety and less flight
congestion.” [18]

Functionality Processes critical data that include
aircraft identity, altitude, speed, and
flight path.

Dependencies Critical to other key air traffic
control systems that will be completed
under the overarching NextGen
technology upgrade plan. These
systems include: (1) Performance
Based Navigation (PBN), which
implements procedures that enable
controllers and flight crews to know
exactly when to reduce the thrust on
aircraft so they can then descend from
cruising altitude to the runway with
the engines set at idle power; (2)
Automatic Dependent Surveillance-
Broadcast (ADS-B), a satellite-based
system that receives information from
aircraft equipped with ADS-B that are
displayed so controllers can maintain
radar-like separation for aircraft
operating where no radar is available
(Gulf of Mexico, parts of Alaska). (3)
Data Comm: enables controllers and
pilots to communicate by direct digital
link (similar to text) rather than voice.
[19]

Success
Metrics:

Integrate the applications, and
protecting current and new air-traffic
control information systems, ensure
that aircraft avionics that operate and
guide aircraft deliver correct and
complete data to the controllers and
systems; doubles the number of flights
that controllers can display and track.

FAA Data, Visualization, Analysis, and Reporting
System (DVARS)

Description: To improve the capability to access
data and perform analyses on NAS
operations for decision making
analysis.

1028

Goals: Processes data and include metrics,
reports, and briefings that the FAA
uses to help identify deficiencies and
performance gaps.

Functionality: A data warehouse with capacity of
250 TB; visualization of 50,000 geo-
referenced flight trajectories; flight
supporting data such as airspace
volumes and weather; synthesizing
4500 flight trajectories / hour;
incorporate three years of data in the
production database. [19]

Dependencies: Huge quantities of data. A
passenger aircraft in-flight - Boeing
787 creates half a terabyte of data per
flight; other aircraft component
generate data and passenger generated
telemetry force off-lining original data
in many data centers; each different
part of the plane is telling us what it is
doing as the flight is going on. [20]

Success
Metrics:

Improve access to data and perform
analyses on NAS operations.

Tacoma Public Schools Child Data
Description: A data-driven, outcomes-based

analytic program to “Measure the
Whole Child” [21].

Goal: Leverage all test score, attendance,
and interaction with the school
systems to create predictive models
that helped teachers and administrators
increase graduation rates from 55% to
78%.

Functionality: Include data spanning five years for
students from grades 6 through 12.

Dependencies: Student demographics, academic and
student performance information;
algorithms to predict if a student
would be at risk of dropping out the
following semester.

Success
Metrics:

Almost 90 percent accurate. [21]
Graduation rates increased from 55%
to 78%.

Table 5. Example Big Data Solutions

6. Designing Systems with Fault Tolerance
and Resilience

6.1 Technical Architecture Requirements for a
Resilient New Design

To be resilient, Generation 3 systems must
demonstrate two characteristics. The first ability is to
tolerate fluctuations in the control systems without
impacting normal operations. [5] The second is the
ability to return to its original operating state after a
disruption. [22]

For generation 3, a primary software and hardware
architectural environment is proposed to manage the
risks and serve as a crucible for merging Big Data that
may be drawn from the Internet-of-Things (IoT),
systems of systems, and multiple converging data and
sources. The environment discussed in section 6.2
below addresses fault tolerance and the controlled and
careful mixing and merging of these diverse data. The
system architecture is based on complex operating
models, and utilizes multiple infrastructure and object
instances to achieve high levels of availability and to
protect data consistency. Predefined low level
services, explicit configuration, and device monitoring
are combined to address many of the opportunities for
error and distortions of the raw data that would quietly
corrupt the resulting analytical findings.

It is useful to consider an example of the initial
methods used to accomplish this by a user of streaming
big data, As of April 2016, LinkedIn reported having
433 million users with 106 million unique site visits
per month from 200 countries. [23] In their description
of how LinkedIn evolved their data ingest process Das
and Qiao [24] identified the following as common
requirements of the LinkedIn continuous ingest
process;
• Centralized data lake: standardized data formats,

directory layouts;
• Standardized catalog of lightweight

transformations: security filters, schema evolution,
type conversion, etc;

• Data quality measurements and enforcement:
schema validation, data audits, etc;

• Scalable ingest: auto-scaling, fault-tolerance, etc.

All of these are typical characteristics of large
multi-tenant ingest solutions. All strive to create and
maintain a standardized high quality information set.
However, these useful techniques are limited because
they only address the ingestion (front end) platform,
but do not compensate for critical streaming real-time
Big Data systems. These systems require the artful
combination of a control plane, data plane, and
management plane. We propose a system level version
of the traditionally network layer routing concepts.
[25]

In our proposed architecture, the control plane
provides a context and is exposed with a consistent
interface (API) to directly interact with the devices.
The control plane operations may be actual commands,
such as on or off or they may be control commands
passing parameters to be consumed by the receiving
device, a set of devices, or a class of devices causing
them to vary in a specific operational way.

1029

The management plane is a separately secured and
managed segment of the overall system management
structures focused on ownership by providing
allocation of resources, provisioning of the devices on
and off the system as well as management users. A
few examples include; provisioning and setting lease
durations for connected devices. The management
plane also contains the mechanics of communication
between data sources and data ingest.

The data plane is focused on processing data,
storage and tools optimization. The data plane is not
aware of how the management plane connects sources
and the management plane is not aware of the physical
layout of the ingested or computed data. The data
plane ensures data integrity, provides the means to
monitor and roll back, as well as providing the only
direct access to the raw data.

These design planes may be understood more
easily by the following analogy that describes how the
planes in routers perform distinct activities. These
planes (1) process the transit traffic in the data plane;
(2) utilize protocols to determine what else is going on
around the router in adjacent devices and typology
through the control plane protocols; and (3)
communicate and relate with the Network
Management Systems interfaces and subnet protocols,
etc. through the management plane. All the control-
plane protocols and data are combined into databases
used for forwarding and routing the transit traffic. It is
clear from the example that these planes recognize
components and states, perform auditing and logging,
and signal errors. [26]

The planes required in the streaming real-time Big
Data systems must perform somewhat similar but
highly more complex functions. The will require the
meta data previously described, more detailed rules
that govern their potential situations, states, and
actions; and the management planes to implement the
required actions as conditions are encountered.

6.2 Architecture, System Design, and
Development are Interdependent

The model below [Fig 1] is a notional high level
design for a real-time Big Data system. The Ingest
pipeline feeds the event processing engine, stream
analytics, data lakes, then structured storage in that
order. The sequencing is driven by the inherent need
to prioritize activities, and work with differing levels
of risk among the various workflows and processing
chains. In this high level design, the event processing
engine receives the first, least latent pass on the
inbound data to do integrity checking, mandatory
auditing and related logging, as well as initiating
additional simple value and range-based processing. If

there is a failure the system will have ‘black box’
recording to do post mortem and forensic analysis. The
next processes to get access to the data are the stream
analytics, because after the security and integrity
checks, the stream analytics require the closest to real-
time access. A failure after the stream analytics read
the raw data would still result in data loss but the real-
time calculations that typically drive user facing
interfaces, such as dashboards will have been updated.
The next step in this design ensures long term data
safety. Raw data is added to the un-sorted, un-
processed data lake for later retrieval and analysis.
Only after all of the safety systems are fed and the
write transactions are complete will the latent instances

of the data be exposed for consumption by long
running processes.

This architectural design is intended to ensure the
overall system needs remains a first class citizen in
parity with the data ingest and reporting subsystems.
The physical topology supporting and hosting backing
real-time Big Data systems is also unique. Early, Big
Data systems have leveraged a scale up resource model
incorporating large, internally redundant disk arrays
and compute subsystems. As the volume, speed of
ingest, and number of source systems ballooned even
the current legacy systems are moving to include scale
out models. As data centers have matured the
topologies have improved. Large, cold, white rooms
have been replaced by hot / cold aisle layouts. And in
many cases commodity hardware has replaced
mainframes. The largest hosting providers created
redundant systems spread across some distance for
disaster recovery objectives. Failover scenarios were
replaced with high availability and eventually with
highly resilient continuity of operations designs.
Resilience is achieved by; protecting the information
inflight, in process, and at rest. Inbound data must
have accompanying meta data for providence, and
some minimal form of reliable hash to mitigate

Figure 1. High Level Conceptual Design

1030

tampering; ensuring availability of the systems and
applications through redundant topologies, shared and
duplicative state management, and transactional
boundaries to ensure complete writes, and by
implementing systems that can communicate and
appropriately respond when required.

Consuming and storing large data sets are only one
step in the Big Data process. Including real-time needs
expands the problem space to include verification and
validation; security and post failure forensics; and raw,
computed and statistical dataset management. To be
successful, a generation 3 Big Data architecture must
support all of these needs. The hardware, network,
communication, security, and identity are extremely
inter-dependent. This is a significant shift from the
older style of highly co-dependent structures which
placed data consistency, manageability, and
recoverability well behind performance, and
scalability. The components of the overall solutions are
independently strong, self-contained, and capable of
managing most of their own lifecycles. They are equal
contributors to the success of the overall solution and
their volatility is well managed with limited impact on
the other participating components. At its best, the
solution components are externally reliable, scalable,
and secure.

There is a necessary emphasis on security for
generation 3 systems. Successful real-time Big Data
systems are subject to attack while ingesting data,
during pre-processing, storage, and again when latent
processing occurs. But the defensive and reactive
practices can be equally damaging. Each of the
workloads have their own attack surfaces and threat
vectors. Attempting to address all of them at once
would induce an unacceptable level of delay in the
system. To address this, we drive parallel processing
with prioritization in the threading and intentional
transactional boundaries around the slower, more latent
activities. This allows us to implement governance in
a concrete way.

In addition to clarity in architecture, a well thought
out hardware and network topology and diligently
applied levels of security, a heathy real-time Big Data
system requires a high level of organizational maturity.
Not just mature for consistency of operations, but a
maturity that allows the organization's culture to adopt
the latest in methodologies. Solution development and
operations must share a DevOps process. Firewalled
applications and data storage need to become
composable services sharing a service fabric. These
are key elements to operationalizing multiple
requirements from multiple constituencies, current and
future, both known and unknown.

7. Conclusions

The primary software and hardware architectural
environment described above acts as a highly
interactive milieu for merging Big Data that decision
makers will draw from the IoT, systems of systems,
multiple and multiple converging data and sources. It
utilizes the fault tolerant architectural design to control
and fuse these diverse data for managerial decision
making. The system architecture is mature, and
resilient because it flexibly addresses the many fault
situations where errors, distortions and
misinterpretations of the raw data and the analytical
findings can lead to incorrect or inappropriate
decisions and events. Stakeholders relying on the
results from a system based on this analytical model,
fault analysis, and architecture, will have a more
complete understanding of the risks and limitations of
real-time Big Data analytics, and a full appreciation of
why the findings and results must be carefully and
strictly applied to capture the value and positive
benefits from big data.

8. References

[1] Kaisler, S. Armour, F., Espinosa, J. A., & Money, W.
(2013, January). “Big data: issues and challenges moving
forward,” In System Sciences (HICSS), 2013 46th Hawaii
International Conference on System Sciences (pp. 995-1004).
IEEE.

[2] Jacques da Silva, G. Partial fault tolerance in stream
processing applications-methods and evaluation
techniques, (Doctoral dissertation, University of Illinois at
Urbana-Champaign), 2010.

[3] Madsen, K. G. S., Thyssen, P., & Zhou, Y. “Integrating
fault-tolerance and elasticity in a distributed data stream
processing system”, In Proceedings of the 26th International
Conference on Scientific and Statistical Database
Management, 2014, June. p. 48. ACM.

[4] Zhu, Q., Chen, L., & Agrawal, G. “Supporting fault-
tolerance in streaming grid applications”, In Parallel and
Distributed Processing, IPDPS April, 2008. IEEE
International Symposium, April, 2008 (pp. 1-12). IEEE.

 [5] Cowsalya, T., and S.R., Mugunthan. “Hadoop
Architecture and Fault Tolerence Based Hadoop Clusters in
Geographically Distributed Data Center”, ARPN Journal of
Engineering and Applied Sciences. April, 2015, Vol. 10: No.
7. Pp. 2818-2821.

[6] Ananthanarayanan, R., Basker, V., Das, S., Gupta, A.,
Jiang, H., Qiu, T., & S. Venkataraman, “Photon: fault-
tolerant and scalable joining of continuous data streams,”
In Proceedings of the 2013 ACM SIGMOD International

1031

Conference on Management of Data ACM. 2013, June, pp.
577-588.

[7] “Fault Tolerance and Processing Semantics in Apache
Apex.”
http://www.slideshare.net/ApacheApexOrganizer/webinar-
fault-toleranceandprocessingsemantics

[8] Young, S. J. Real-time languages: Design and
development, Ellis Horwood, Chichester, 1982.

[9] Juvva, K. Real-Time Systems. Carnegie Mellon
University, Pittsburg, Spring 1998.
https://users.ece.cmu.edu/~koopman/des_s99/real_time/ Last
accessed 4-23-2016.

[10] S. M. Mitchell, and M.S. Mannan, "Designing Resilient
Engineered Systems," Chemical Engineering Progress 102
(4), April 2006, pp. 39–45.

[11] Mall, R. Real-Time Systems: Theory and Practice,
Pearson Education, India, 2009.
https://books.google.com/books?id=coPT7vaEjFsC

 [12] D. A. Rennels, "Fault Tolerant Computing,"
http://web.cs.ucla.edu/~rennels/article98.pdf Last accessed 6-
14-2016.

[13] K. Wahner, "Real-Time Stream Processing as Game
Changer in a Big Data World with Hadoop and Data
Warehouse," InfoQ, Sep 10 2014.
http://www.infoq.com/articles/stream-processing-hadoop
Last accessed 4-23-2016.

[14] Pressman, R. S. Software Engineering. McGraw Hill,
New York. 2001.

[15] J. Kreps, "Putting Apache Kafka To Use: A Practical
Guide to Building a Stream Data Platform (Part 1)," February
24, 2015. http://www.confluent.io/blog/stream-data-
platform-1/ Last accessed 5-1-2016.

[16] Parashar. M. “Big Data Analytics for Power Grid
Operations,” IEEE-Northwest Energy Systems Symposium
(NWESS). Alston Grid, Inc. May 1, 2014.

[17] K. L. Ma, and C. W. Muelder, "Large-Scale Graph
Visualization and Analytics," Computer. Vol. 46:7. July
2013. pp. 39-46.
https://www.computer.org/csdl/mags/co/2013/07/mco201307
0039-abs.html Last accessed 6-14-2016.

[18] "Just completed ERAM system almost doubles the
number of flights that can be tracked in US airspace,"
Network World, Apr 30, 2015.
http://www.networkworld.com/article/2917198/software/faa-

2-million-lines-of-code-process-new-air-traffic-system.html
Last accessed: 5-31-2016.

[19] Data, Visualization, Analysis, and Reporting System
(DVARS) Draft Section C, Statement of Work (SOW).
February 29, 2016.
https://faaco.faa.gov/index.cfm/announcement/view/23
741 Last accessed 5-31-2016.

[20] M. Finnigan, "Boeing 787s to create half a terabyte of
data per flight, says Virgin Atlantic," ComputerWorldUK.
March 6, 2013.
http://www.computerworlduk.com/news/data/boeing-787s-
create-half-terabyte-of-data-per-flight-says-virgin-atlantic-
3433595/ Last accessed 6-7-2016.

[21] Microsoft Customer Stories, "Predicting student dropout
risks, increasing graduation rates with cloud analytics,"
August 5, 2015. http://enterprise.microsoft.com/en-
us/industries/citynext/tacoma-public-schools/ Last accessed
6-7-2016.

[22] Dictionary.com "resiliency," in Collins English
Dictionary - Complete & Unabridged 10th Edition.
HarperCollins Publishers. Dictionary.com
http://www.dictionary.com/browse/resiliency Last accessed:
6-12-2016.

[23] C. Smith, "By the Numbers: 125+ Amazing LinkedIn
Statistics," Digital Stat Articles, DMR. June 2, 2016.
http://expandedramblings.com/index.php/by-the-numbers-a-
few-important-linkedin-stats/ Last Accessed 6-7-2016.

[24] S. Das, and L. Qiao, "Gobblin' Big Data With Ease,"
LinkedIn.com. November 25, 2014.
https://engineering.linkedin.com/data-ingestion/gobblin-big-
data-ease Last accessed 6-7-2016.

[25] I. Pepelniak, "Management. Control, and Data Planes in
Network Devices and Software," inSpace, August 13, 2013.
http://blog.ipspace.net/2013/08/management-control-and-
data-planes-in.html Last accessed 6-2-2016.

[26] Vachon, B., "CCNA Security Portable Command Guide:
Network Foundation Protection," in CCNA Security (640-
554) Portable Command Guide. Cisco Press,
CiscoPress.com. May 18, 2012.

1032

