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Abstract 

This paper analyzes the properties and 
characteristics of unknown and unexpected faults 
introduced into information systems while processing 
Big Data in real-time.  The authors hypothesize that 
there are new faults, and requirements for fault 
handling and propose an analytic model and 
architectural framework to assess and manage the 
faults and mitigate the risks of correlating or 
integrating otherwise uncorrelated Big Data, and to 
ensure the source pedigree, quality, set integrity, 
freshness, and validity of data being consumed.  We 
argue that new architectures, methods, and tools for 
handling and analyzing Big Data systems functioning 
in real-time must design systems that address and 
mitigate concerns for faults resulting from real-time 
streaming processes while ensuring that variables such 
as synchronization, redundancy, and latency are 
addressed. This paper concludes that with improved 
designs, real-time Big Data systems may continuously 
deliver the value and benefits of streaming Big Data. 

1. Introduction: Third Generation 
Processing of Real-time Big Data 

Some questions arising from big data, its 
aggregation, processing, and analysis include [1]: 
• How do we know when there is corruption, or data 

loss in Big Data sets? 
• What is the value of data if it appears to conflict, 

have deficiencies, or to be changed with other data?  
• How can we know when data are missing, and are 

there some data sets that are more critical or 
important if missing than others? 

• What is the impact of missing or corrupt data upon 
the analysis and subsequent decisions? 
These issues can arise from faults in the processes 

of collection, ingestion, cleansing, integration, and 
analysis of Big Data. The faults addressed in this paper 
are defined to be situations where validated algorithms 
that use Big Data sets encounter mixed type, multiple, 
asynchronous, combined and interdependent data 
streams with one or more data sets that do not conform 
to pre-defined data criteria. Encountering these faults 
introduces new risks of varying degrees in the quality, 
utility, and reliability of subsequent conclusions and 

decisions. Finally, we recognize that architectures 
addressing these new faults may themselves introduce 
operational issues into these systems, such as: how the 
data should be retained, and how to manage demands 
for reviews, and restrictions (for audit or legal 
reasons).  

Given the growing number of possible faults in 
real-time Big Data systems and the increase of 
associate risks, we hypothesize: H1: New architectural 
elements are required to increase resiliency, and 
dependability in Big Data systems. Resilience and 
dependability are defined for this paper as a system’s 
ability to recover and return to a known state. This 
paper presents an architectural framework that will 
mitigate the increased risk of poor decisions that could 
be made if decision makers do not account for the 
faults that may occur. 

1.1 Gen 1 and Gen 2 Big Data Systems 

We have functionally grouped Big Data 
processing into three generations as shown in table one 
below.  The table describes our Big Data systems 
generations and their descriptive and distinguishing 
characteristics. We will discuss the specific fault 
conditions and handling performed in these generations 
of systems in table 1 

A simplified overview of the differences between 
the first two generations Big Data systems reveals that 
Generation 1 addressed sets and combination issues, 
and incorporated tools addressing concerns such as 
interval measurements, interval tracking and latent data 
analysis. The second generation data systems captured 
data more rapidly, established analytical rhythms (with 
predictable circadian variations that might be long term 
– but known) for analysis frameworks, addressed event 
detection and reactive response scenarios, and 
addressed linked Big Data events by mapping 
downstream actions to the analytical results. In direct 
comparison to generation 1, generation 2 systems 
emphasized immediacy and demanded that processing 
Big Data occur in real-time. As examples, The 
generation 2 time sensitive issues utilize data that 
could impact or enable stock trading with sub-second 
response requirements, identifying systems monitoring, 
access, authorization, and fraudulent activity 
anomalies, etc. A second differentiating key concern of 
the generation 2 systems was accepting and managing 
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stream processing (and multiple data streams) that 
required techniques beyond those found in the 
generation 1 large volume crunching exercises.  

Table 1. Generations of Big Data Processing 
 
The stream processing requirement for velocity 

and variety represents two of the five descriptors of 
Big Data (volume, velocity, variety, value, and 
complexity [1]), and are especially critical for 
generation 2 systems. The generation 2 “streaming 

processing” for Big Data required that the platform 
process data streams or sensor data (usually a high 
ratio of event writes versus numbers of reads against 
the same data set). It is contrasted with “complex event 
processing” (CEP) from generation 1 which utilizes 
event-by-event processing and aggregation (e.g. on 
potentially out-of-order events from a variety of 
sources – often with large numbers of rules or business 
logic). The generation 1 CEP engines were highly 
optimized to process discreet “business events” that, 
for example, compare out-of-order or out-of-stream 
events, applying decisions and reactions to event 
patterns. For this reason, multiple types of event 
pattern detection and processing evolved through 
queries, rules and procedural approaches.  

How has fault processing been handled in 
Generation 1 and Generation 2 Big Data systems? In 
generation 1 solutions, fault handling was implemented 
with caching that addressed the increased latency in 
geo distributed systems; data copies (for validation or 
after analysis); strict authorization and high 
authentication meeting both security and privacy 
concerns as to prevent tampering and ensure a full and 
timely audit trail.  The system processes employed 
linear sequential software development similar to a 
classic or waterfall life cycle model that controls 
software development projects, develops detailed task 
plans with assigned responsibility. Overall, analytic 
Big Data projects were driven by incorporating 
managerially generated questions focusing on the 
understood and accepted metrics derived from the large 
amounts of data. Reporting processes employed 
analytics to answer more specific and detailed 
managerial and performance focused questions. 
Developers subsequently built in more and more 
system routines and functionality through progressive 
engineering phases. In summary, the generation 2 
processes were designed and constructed as sequential 
processes, and recognition of known failure points. 
Data quality was monitored, and data with high 
diversity, or potentially limited quality and validity 
was excluded from analyses and computational 
algorithms, or mitigated with standard statistical 
missing data procedures.  

 

Generation Defining Characteristics 
Generation 1 
Systems 

• Addressed Big Data sets 
combinatorial issues 

• Incorporated tools for addressing 
interval measurements, interval 
tracking and latent data analysis 

Generation 2 
Systems 

• Required Rapid data capture 
• Recognized analytical data 

rhythms (circadian variations - 
amplitude, phase, stability, 
variability, etc.) for analysis 
frameworks 

• Addressed event detection and 
reactive response scenarios 

• Addressed faults involving missed 
events by expanding point data 
solutions with time series 
solutions such as the Fourier 
transform 

• Provided fail-safe mechanisms 
when data are blank, or exceed 
upper and lower bounds 

Generation 3 
Systems 

• Addresses the need for continuous 
processing of real-time streams of 
data by providing native support 
for real time and time delayed 
stream analytics 

• Proactively defend against 
multiple source system data 
consistency variations comparing 
new data sets to similar prior 
datasets from different sources 
during ingest  
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 Fault tolerance solutions for streaming 

applications aimed at guaranteeing that no data were 
lost or that no data item was delivered to an application 
more than once by storing checkpoints for consistency 
between replicas. Partial fault tolerance methods 
protecting only the most critical stream operators for 
processing algorithms are approximate by nature and 
achieved then acceptable results under data loss and 
duplicate data delivery. [2] Other techniques used state 
management processes that enable a distributed stream 
processing system to accommodate faults by 
replicating computational states across nodes with 
checkpoints and active, passive, and upstream backup. 
[3] Application level check-pointing was used for fault 
tolerance for tightly-coupled streaming applications 
using Light-weight Summary Structure (LSS) 
summarizing the state of the program with a small 
amount of memory. [4] Implemented at the application 
levels, Hadoop protects geographically distributed data 
from network link and node failures using data 
replication and Heartbeat messages. [5] Photon, 
Google Advertising System, joins geographically 
distributed data streams possibly unordered and 
delayed (web search queries and user clicks on 
advertisements) by using joined logs derived from key 
business metrics, including billing for advertisers. It 
tolerates infrastructure degradation and datacenter-
level outages guaranteeing that there will be no 
duplicates in the joined output (at-most-once 
semantics) at any point in time, and that most joinable 
events will be present in the output in real-time (near-
exact semantics). [6] Finally, Apache Apec Fault 
Tolerance uses asynchronous and distributed 
checkpointing to persistently store with automatic 
detection and recovery of failed containers, heartbeat, 
process status notification, buffering for replay of data 
from a recovery point. [7] 

1.2 Generation 3 relies on stream processing 

 Generation 3 systems are now incorporating real-
time streams of data that must perform continuous 
recursive analysis. Thus, our second hypothesis that 
new functional capabilities are required in Generation 
3 systems to mitigate and correct faults encountered 
with continuous recursive analysis prior to storage. 
These systems present new opportunities for faults, and 
require new detection and correction processes. These 
systems must be highly scalable, continuously 
available, fault tolerant with highly flexible fault 
coping mechanisms designed to quickly respond to 
detected faults through flexible response mechanism 
even when a potential or hypothetical fault has not 
previously been encountered in a functioning system.  
This has led us to propose a second hypothesis: H2: 
New functional capabilities are required in Generation 
3 systems to mitigate and correct these faults. 

Great flexibility is demanded because of the real 
time processing demands of these systems. Our 
definition of real-time is based upon Young’s [8] 
definition where information processing activity must 
“…respond to externally generated input stimuli within 
a finite and specified period.”  The third generation 
systems are highly sensitive to time, from both a data 
ingestion and computation perspective; and must 
address faults from missing data or errors without 
introducing latencies or increasing operational risk.  

The concern for immediate processing became 
acute with the addition of real-time computation where 
consuming applications were presented streams of data 
that must be processed quickly so decisions can be 
made to react to changing conditions and situations 
depicted and known only after the data had been 
analyzed by the new features and mechanisms. 

 Generation 1 Generation 2 Generation 3
Size Gigabytes Terabytes Exobytes
Scale Large dedicated system multiple large systems Mesh, Hive, neural nets
Participating Nodes 1 clusters Mesh, Hive, neural nets
Response to Failure stop and restart fail over to replica fail in place with transparent redirection 
Timing of Response late - after the fact current - at time of failure early - proactive assumption of failure
Focus of Processing known query query in context unknown query - gathering all potential data
Frequency of Processing known interval constant within predetermined windows continuous
Timing of Prcessing highly latent quickly after data consumption was complete near real time
Frequency of Data Consumption selected period of time known interval continuously
Integration of Calculated Values rarely often always
Event Driven singular focus of effort regularly known events always listening and responding to events
Data Quality ongong after storage inline validation with post storage review continuos verification / validation prior to storage

Table 2. Characteristics of Big Data Generations 
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Generation 3 real-time streaming data can be 
subjected to real time analysis during ingest prior to 
storage as well as interacting with multiple sources, 
select data to be merged into the processing flow, and 
write or update other databases with the calculated or 
processed information that is produced by the system 
[9] 

Either may apply “Streaming Analytics” 
“…continuously calculate mathematical or statistical 
analytics on the fly within the stream.” [10] High 
volume data that must be accepted and managed in 
real-time are well suited to stream processing, but they 
require systems that are scalable, highly available and 
very fault tolerant. [10] 

Examples are found in processing used to develop 
a “live DataMart” delivering “…ad-hoc continuous 
query access to this streaming data that’s aggregated in 
memory” for an end user. Analytic tools may provide 
continuous pictures and descriptions of the live data to 
users viewing the data through an analytic front end 
[11]. 

2. Risks and Challenges in Generation 3 
Processing of Real-time Big Data 

Many generation 3 risks are derived from the 
stream processing requirements incorporated into the 
Big Data real-time systems. The risks in the systems 
are 1) incomplete, missing, or erroneous collections 
and subsequent incorrect (and unknown) errors in 
resultant products; 2) failures to interrupt processing 
when errors are encountered; 3) analysis errors due to 
the ingestion errors; 4) incorrect decisions. The 
management challenges are clear – to design and 
implement systems that have techniques and processes 
that eliminate or mitigate these risks.   

Two major design risks arise when incorporating 
streaming real-time big data. The inclusion of both 
unbounded data streams and computational value while 
each require different system lifecycles, as well as 
different and new processes, and enhanced physical 
topologies.  Real-time Big Data systems are often 
simultaneously ingesting data from multiple data 
sources.  Similarly, real-time systems processes are 
executing and incorporating continuous calculations 
along temporal dimensions that combine and compare 
current data with/against raw or summarized past data. 
The combination of these unique complications bring 
with them additional risks for faults and potential 
errors. 

The first challenge is to establish a system with 
multiple ingest processes running in parallel, with 
detection and response capabilities for one or more 
inbound data streams that will recognize and mitigate: 

• Completely or partially failing Big Data sets and 
streams.  The failure could be a full source outage 
where inbound data no longer flows or the 
unexpected intermittently stopping of inbound data. 

• Telemetry flat-lining where each source system is 
pre-determined to be good or bad if the telemetry 
becomes consistent for a known period of time.   

• Exceeding minimum or maximum expected values 
for a known period of time.  

 The second challenge is to use computed values from 
recent or past data sets  in calculations with current 
data creating a new version of recent output for the 
next cycle without errors by designing and providing a 
means to: 
• Isolate and potentially remove any or all erroneous 

inbound data.  Consider a daily average across 100 
sensors based on values from 0700h – 0700h the 
following day.  If 25% of the sensors fail to report, 
the calculated rolling average would be incorrect.  

• Identifying stuck sensor data where if the 100 
sensors expected values are between 1-10 and some 
‘stick’ on 100, the resulting calculations are wrong. 

• Maintain processes that are constantly aware of the 
current and future usage of the data.   

• Maintain raw data transmitted in a data lake or 
similar archive.   

• Use corrected data with erroneous data, if business 
appropriate, marked or removed, as the ‘new’ 
working set.   

• Maintain a separately secured and managed audit 
trail (for verification, maintenance, or comparison 
and simulation of other such events to develop 
further responses). 

3. Generation 3 Real-time Big Data: An 
Emerging Problem Space 

The faults are described in the examples presented 
below, and in the methodologies and techniques for 
handling the unanticipated circumstances. [12]  

They have been encountered in a wide variety of 
applications such as Air Traffic Control Systems, 
defense and space systems, as well as the growing 
group known as IoT or “Internet of Things’ systems. 
Historically, these systems have been categorized from 
various perspectives including “… factors outside the 
computer system and factors inside the computer 
system.” [13] They have both hard and soft real-time 
temporal completion deadlines with varying 
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consequences if processing or results are incorrect. 
Losses may be important in soft deadline real-time 
systems, but truly horrendous in hard deadline real-
time systems. [14] Systems may also be fail-safe or fail 
operational.  Fail safe means that when the system 
enters a state that is unreliable it will produce a result 
that will be safe. An example is a traffic light that 
blinks yellow or red if it cannot correctly monitor and 
control traffic. Fail-operational systems require faults 
to be identified and either isolated or addressed without 
a notable reduction in primary operational metrics.  
The methods of achieving the required predictability 
have been addressed through static and dynamic 
scheduling of systems tasks. This ensures that they will 
meet deadlines. Static scheduling means that the 
scheduling decisions are set at “compile time” or 
historically when system files are joined offline. 
Conversely, dynamic scheduling enables schedulabilty 
tests to ascertain whether or not the tasks can be 
performed by the set deadlines. [15] 

3.1 Generation 3 Real-time Big Data Faults 
Cannot Be Solved with Previous Solutions and 
Techniques 

As discussed, generation 3 Big Data systems 
present more complex problems.  They could be seen 
as “context aware” in that they may be viewed using an 
analytical model with recursive subsystems that require 
many successful executions to support complex 
decision making.   

The proposed analytical model for fault 
identification, detection, and mitigation process utilizes 
non-linear interactive phases:  
Phase Description 
1 Auto monitoring and recognition of the 

inbound data streams, metadata, 
characteristics, and data sets 

2 Identifying potential duplicate or 
corresponding data sets predicted 
relationships (equal, non-duplicative, 
predicted sequencing) 

3 Identifying direct and indirect critical 
relationships impacting results, conclusions, 
or decisions.  
Identifying compensatory actions 
(mandatory, optional)  

4 Designing reactive subsystem procedures 
5 Designing proactive intervention points and 

steps 
6 Integrating steps and subsystems actions at 

the system level 
7 Mapping of actions and outcomes at system 

level   

Table 3. Proposed analytical phases 
These proposed analytic phases do not describe 

how any particular designer should proceed with the 
systems but rather offer our introductory approach for 
appropriate phases of analysis. In each system, 
subsystem inputs must handle concurrent processing of 
the live, raw, and processed data.  The system must 
dynamically (and automatically) adjust its processing 
based on contextual metadata and apply the 
adjustments to one or more concurrent instances. The 
actual responses designed will depend on the data 
streams incorporated into system, characteristics of the 
decisions impacted, and alternatives available. A 
generic list of tentative responses that designers may 
build into use is presented in table 4. 

 
 Actionable Responses to Faults Types 
1 Stream data removal (full) 
2 Stream substitution 
3 Inject alternative known set4 Replace values 

(partial) 
4 Utilize historical data (smoothed/raw) 
5 Questions and Research on Real-time Big Data 

Decision Making Risks 
6 New working creation (excluding data0 
7 Roll back (to old set) 
8 Managements alerts (as specified) 

Table 4. Preliminary Streaming Data 
Response Descriptions 

 
The generation 3 real-time systems processing 

streams of Big Data pose a number of key risks that 
must be s6ystematically addressed.  Decision makers 
must ask, what is the impact upon the analysis? Is 
confidence in the system or the result (expressed as a 
statistical measure of significance and confidence) 
reduced if data are missing, incorrectly included, or 
even intentionally changed? (And how can a decision 
maker determine this?) New (or heightened) risks and 
limitations will include how to set or determine 
analysis results that may set time limits on the validity 
of conclusions, sensitivity of the results or conclusions 
to erroneous, distorted, or missing data in a stream, 
linkages between the risks of error in the data streams, 
and consequences of decisions made in immediate time 
frames. 

Architectures and designs must include not only 
analytical components for performing required 
calculations, but risk assessment applied through 
knowledge engines that transmit immediate signals or 
issues, and establish limitations on consequential 
decisions. Fault events must be responded to base on 
the data and business objectives of the decision 
outcomes. The systems must incorporate confidence 
assessments, and contingencies (showing limits under 
varying fault and unknown situations), trends and 
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changes in inflection points, and deltas in the data 
streams. Methods of communicating this information 
may require dashboards and notification tools that meet 
today’s managers’ needs for high mobility and 
immediate information (leading to knowledge) that is 
not location or time dependent. 

We have developed a meta data set that must be 
collected on the streaming Big Data sets for generation 
3 systems. It includes: stream frequency, time (collect, 
ingest), synchronicity, rhythmic properties, bounds, 
etc. Subsequent violations of the meta data predicted or 
expected characteristics would invoke (as appropriate): 
detailed testing, rule application (exclusion, 
substitution, alternate insertions), other instream 
actions, processing changes, and warnings or halts to 
decisions and actions. As designers specify generation 
there systems, the meta data will be developed and 
actionable steps specified. 

5. Examples of Big Data in Real-Time 
Applications and Tools 

The architectures and supporting infrastructures 
required to manage streaming Big Data across a large 
geographically diverse set of federated sensors are 
subject to latency, connectivity, and recursive 
dependencies. For example, huge amounts of data are 
captured every second from the national power grid 
infrastructure which accumulates measures taken by 
SCADA, and Phasor Measurement Units (PMUs), 
which capture sub second resolution.  This was 
reported to be over 10 terabytes of raw data per month 
in 2014. [16] Identifying potential failures, 
maintenance focus areas, and detecting externally 
created anomalies are just a few of the critical activities 
trying to simultaneously consume, process, and alert 
against this and similar huge datasets.  The additional 
examples in the table below illustrate the magnitude 
and complexity of these systems and their potential 
faults. 

In the near and not too distant future the sheer 
magnitude of data, and its near real-time analysis will 
have profound impacts on public safety and daily life.  
During a recent Google conference Google claimed to 
have more than a billion objects in their internet graph.  
People, places, and activities are all connected through 
well-known and lesser seen forces.  In their University 
of California, Davis publication “Large-Scale Graph 
Visualization and Analytics” Kwan-Liu Ma and Chris 
W. Muelder, provide various visualizations of data 
including potential terrorist network identification. [17] 

Huge amounts of data are captured from 
infrastructure such as the national power grid which 
accumulates measures taken by SCADA every second, 
and Phasor Measurement Units (PMUs), which capture 

sub second resolution.  In 2014 it was reported to be 
over 10 terabytes per month of raw data. [16] 
Identifying potential failures, maintenance focus areas, 
and detecting externally created anomalies are just a 
few of the critical activities trying to simultaneously 
consume, process, and alert against the dataset.  

 
FAA flight control system 

Description -  A real-time application that replaces 
the computer systems controlling air 
traffic in the US. 

Goals The En Route Automation 
Modernization (ERAM) is 
“…expected to increase air traffic 
flow, improve automated navigation 
and strengthen aircraft conflict 
detection services, with the end result 
being increased safety and less flight 
congestion.” [18]  

Functionality Processes critical data that include 
aircraft identity, altitude, speed, and 
flight path. 

Dependencies Critical to other key air traffic 
control systems that will be completed 
under the overarching NextGen 
technology upgrade plan. These 
systems include: (1) Performance 
Based Navigation (PBN), which 
implements procedures that enable 
controllers and flight crews to know 
exactly when to reduce the thrust on 
aircraft so they can then descend from 
cruising altitude to the runway with 
the engines set at idle power; (2) 
Automatic Dependent Surveillance-
Broadcast (ADS-B), a satellite-based 
system that receives information from 
aircraft equipped with ADS-B that are 
displayed so controllers can maintain 
radar-like separation for aircraft 
operating where no radar is available 
(Gulf of Mexico, parts of Alaska).  (3) 
Data Comm: enables controllers and 
pilots to communicate by direct digital 
link (similar to text) rather than voice. 
[19]  

Success 
Metrics: 

Integrate the applications, and 
protecting current and new air-traffic 
control information systems, ensure 
that aircraft avionics that operate and 
guide aircraft deliver correct and 
complete data to the controllers and 
systems; doubles the number of flights 
that controllers can display and track. 

FAA Data, Visualization, Analysis, and Reporting 
System (DVARS) 

Description: To improve the capability to access 
data and perform analyses on NAS 
operations for decision making 
analysis.  
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Goals: Processes data and include metrics, 
reports, and briefings that the FAA 
uses to help identify deficiencies and 
performance gaps.  

Functionality: A data warehouse with capacity of 
250 TB; visualization of 50,000 geo-
referenced flight trajectories; flight 
supporting data such as airspace 
volumes and weather; synthesizing 
4500 flight trajectories / hour; 
incorporate three years of data in the 
production database. [19]  

Dependencies: Huge quantities of data.  A 
passenger aircraft in-flight - Boeing 
787 creates half a terabyte of data per 
flight; other aircraft component 
generate data and passenger generated 
telemetry force off-lining original data 
in many data centers; each different 
part of the plane is telling us what it is 
doing as the flight is going on. [20] 

Success 
Metrics: 

Improve access to data and perform 
analyses on NAS operations. 

Tacoma Public Schools Child Data 
Description: A data-driven, outcomes-based 

analytic program to “Measure the 
Whole Child” [21].  

Goal: Leverage all test score, attendance, 
and interaction with the school 
systems to create predictive models 
that helped teachers and administrators 
increase graduation rates from 55% to 
78%. 

Functionality: Include data spanning five years for 
students from grades 6 through 12.  

Dependencies: Student demographics, academic and 
student performance information; 
algorithms to predict if a student 
would be at risk of dropping out the 
following semester.  

Success 
Metrics: 

Almost 90 percent accurate. [21] 
Graduation rates increased from 55% 
to 78%.   

Table 5. Example Big Data Solutions 
 

6. Designing Systems with Fault Tolerance 
and Resilience 

6.1 Technical Architecture Requirements for a 
Resilient New Design 

To be resilient, Generation 3 systems must 
demonstrate two characteristics.  The first ability is to 
tolerate fluctuations in the control systems without 
impacting normal operations. [5] The second is the 
ability to return to its original operating state after a 
disruption. [22]  

For generation 3, a primary software and hardware 
architectural environment is proposed to manage the 
risks and serve as a crucible for merging Big Data that 
may be drawn from the Internet-of-Things (IoT), 
systems of systems, and multiple converging data and 
sources. The environment discussed in section 6.2 
below addresses fault tolerance and the controlled and 
careful mixing and merging of these diverse data. The 
system architecture is based on complex operating 
models, and utilizes multiple infrastructure and object 
instances to achieve high levels of availability and to 
protect data consistency.  Predefined low level 
services, explicit configuration, and device monitoring 
are combined to address many of the opportunities for 
error and distortions of the raw data that would quietly 
corrupt the resulting analytical findings.  

It is useful to consider an example of the initial 
methods used to accomplish this by a user of streaming 
big data, As of April 2016, LinkedIn reported having 
433 million users with 106 million unique site visits 
per month from 200 countries. [23] In their description 
of how LinkedIn evolved their data ingest process Das 
and Qiao [24] identified the following as common 
requirements of the LinkedIn continuous ingest 
process; 
• Centralized data lake: standardized data formats, 

directory layouts; 
• Standardized catalog of lightweight 

transformations: security filters, schema evolution, 
type conversion, etc; 

• Data quality measurements and enforcement: 
schema validation, data audits, etc; 

• Scalable ingest: auto-scaling, fault-tolerance, etc. 
 

All of these are typical characteristics of large 
multi-tenant ingest solutions.  All strive to create and 
maintain a standardized high quality information set.  
However, these useful techniques are limited because 
they only address the ingestion (front end) platform, 
but do not compensate for critical streaming real-time 
Big Data systems.  These systems require the artful 
combination of a control plane, data plane, and 
management plane.  We propose a system level version 
of the traditionally network layer routing concepts. 
[25]  

In our proposed architecture, the control plane 
provides a context and is exposed with a consistent 
interface (API) to directly interact with the devices.  
The control plane operations may be actual commands, 
such as on or off or they may be control commands 
passing parameters to be consumed by the receiving 
device, a set of devices, or a class of devices causing 
them to vary in a specific operational way.  
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The management plane is a separately secured and 
managed segment of the overall system management 
structures focused on ownership by providing 
allocation of resources, provisioning of the devices on 
and off the system as well as management users.  A 
few examples include; provisioning and setting lease 
durations for connected devices.  The management 
plane also contains the mechanics of communication 
between data sources and data ingest.   

The data plane is focused on processing data, 
storage and tools optimization.  The data plane is not 
aware of how the management plane connects sources 
and the management plane is not aware of the physical 
layout of the ingested or computed data.  The data 
plane ensures data integrity, provides the means to 
monitor and roll back, as well as providing the only 
direct access to the raw data.  

These design planes may be understood more 
easily by the following analogy that describes how the 
planes in routers perform distinct activities. These 
planes (1) process the transit traffic in the data plane; 
(2) utilize protocols to determine what else is going on 
around the router in adjacent devices and typology 
through the control plane protocols; and (3) 
communicate and relate with the Network 
Management Systems interfaces and subnet protocols, 
etc. through the management plane. All the control-
plane protocols and data are combined into databases 
used for forwarding and routing the transit traffic. It is 
clear from the example that these planes recognize 
components and states, perform auditing and logging, 
and signal errors. [26] 

The planes required in the streaming real-time Big 
Data systems must perform somewhat similar but 
highly more complex functions. The will require the 
meta data previously described, more detailed rules 
that govern their potential situations, states, and 
actions; and the management planes to implement the 
required actions as conditions are encountered. 

6.2 Architecture, System Design, and 
Development are Interdependent 

The model below [Fig 1] is a notional high level 
design for a real-time Big Data system.  The Ingest 
pipeline feeds the event processing engine, stream 
analytics, data lakes, then structured storage in that 
order.  The sequencing is driven by the inherent need 
to prioritize activities, and work with differing levels 
of risk among the various workflows and processing 
chains. In this high level design, the event processing 
engine receives the first, least latent pass on the 
inbound data to do integrity checking, mandatory 
auditing and related logging, as well as initiating 
additional simple value and range-based processing. If 

there is a failure the system will have ‘black box’ 
recording to do post mortem and forensic analysis. The 
next processes to get access to the data are the stream 
analytics, because after the security and integrity 
checks, the stream analytics require the closest to real-
time access.  A failure after the stream analytics read 
the raw data would still result in data loss but the real-
time calculations that typically drive user facing 
interfaces, such as dashboards will have been updated. 
The next step in this design ensures long term data 
safety.  Raw data is added to the un-sorted, un-
processed data lake for later retrieval and analysis.  
Only after all of the safety systems are fed and the 
write transactions are complete will the latent instances 

of the data be exposed for consumption by long 
running processes. 

This architectural design is intended to ensure the 
overall system needs remains a first class citizen in 
parity with the data ingest and reporting subsystems.  
The physical topology supporting and hosting backing 
real-time Big Data systems is also unique.  Early, Big 
Data systems have leveraged a scale up resource model 
incorporating large, internally redundant disk arrays 
and compute subsystems.   As the volume, speed of 
ingest, and number of source systems ballooned even 
the current legacy systems are moving to include scale 
out models.  As data centers have matured the 
topologies have improved.  Large, cold, white rooms 
have been replaced by hot / cold aisle layouts.  And in 
many cases commodity hardware has replaced 
mainframes.  The largest hosting providers created 
redundant systems spread across some distance for 
disaster recovery objectives. Failover scenarios were 
replaced with high availability and eventually with 
highly resilient continuity of operations designs. 
Resilience is achieved by; protecting the information 
inflight, in process, and at rest.  Inbound data must 
have accompanying meta data for providence, and 
some minimal form of reliable hash to mitigate 

Figure 1. High Level Conceptual Design 
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tampering; ensuring availability of the systems and 
applications through redundant topologies, shared and 
duplicative state management, and transactional 
boundaries to ensure complete writes, and by 
implementing systems that can communicate and 
appropriately respond when required. 

Consuming and storing large data sets are only one 
step in the Big Data process.  Including real-time needs 
expands the problem space to include verification and 
validation; security and post failure forensics; and raw, 
computed and statistical dataset management.  To be 
successful, a generation 3 Big Data architecture must 
support all of these needs.  The hardware, network, 
communication, security, and identity are extremely 
inter-dependent. This is a significant shift from the 
older style of highly co-dependent structures which 
placed data consistency, manageability, and 
recoverability well behind performance, and 
scalability. The components of the overall solutions are 
independently strong, self-contained, and capable of 
managing most of their own lifecycles.  They are equal 
contributors to the success of the overall solution and 
their volatility is well managed with limited impact on 
the other participating components. At its best, the 
solution components are externally reliable, scalable, 
and secure.   

There is a necessary emphasis on security for 
generation 3 systems.  Successful real-time Big Data 
systems are subject to attack while ingesting data, 
during pre-processing, storage, and again when latent 
processing occurs.  But the defensive and reactive 
practices can be equally damaging.  Each of the 
workloads have their own attack surfaces and threat 
vectors.  Attempting to address all of them at once 
would induce an unacceptable level of delay in the 
system.  To address this, we drive parallel processing 
with prioritization in the threading and intentional 
transactional boundaries around the slower, more latent 
activities.  This allows us to implement governance in 
a concrete way. 

In addition to clarity in architecture, a well thought 
out hardware and network topology and diligently 
applied levels of security, a heathy real-time Big Data 
system requires a high level of organizational maturity.  
Not just mature for consistency of operations, but a 
maturity that allows the organization's culture to adopt 
the latest in methodologies.  Solution development and 
operations must share a DevOps process.  Firewalled 
applications and data storage need to become 
composable services sharing a service fabric.  These 
are key elements to operationalizing multiple 
requirements from multiple constituencies, current and 
future, both known and unknown. 

7. Conclusions 

The primary software and hardware architectural 
environment described above acts as a highly 
interactive milieu for merging Big Data that decision 
makers will draw from the IoT, systems of systems, 
multiple and multiple converging data and sources. It 
utilizes the fault tolerant architectural design to control 
and fuse these diverse data for managerial decision 
making. The system architecture is mature, and 
resilient because it flexibly addresses the many fault 
situations where errors, distortions and 
misinterpretations of the raw data and the analytical 
findings can lead to incorrect or inappropriate 
decisions and events. Stakeholders relying on the 
results from a system based on this analytical model, 
fault analysis, and architecture, will have a more 
complete understanding of the risks and limitations of 
real-time Big Data analytics, and a full appreciation of 
why the findings and results must be carefully and 
strictly applied to capture the value and positive 
benefits from big data.   
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