19,940 research outputs found

    Theoretical petrology

    Get PDF
    The central issues in petrology have remained remarkably unchanged in the last 50 years. In igneous petrology, the focus is on understanding the nature and cause of diversity in igneous rocks: on identifying primary magma types and constraints on the compositional and mineralogical characteristics, the physical conditions, and the evolutions of their source regions and on establishing the processes by which derivative magmas evolve from primary magmas. In metamorphic petrology, the major concern is with understanding the conditions and processes experienced by a rock in reaching its present state. In both igneous and metamorphic petrology, the ultimate goal is the integration of petrological constraints with those from other branches of earth science into regional and global theories of earth history. What has changed over the years, however, is the framework within which these issues are addressed: the backdrop provided by plate tectonics and geophysical constraints, the growing sophistication of chemical and physical models of rock systems, the ever increasing inputs from trace element and isotopic geochemistry, the sophistication and complexity of experimental approaches to petrological problems, and the growing body of detailed petrological studies of specific rock suites and associations from all over the world. What I will attempt in this report is to pinpoint and briefly review those areas of growing interest and emphasis in American efforts in petrology during the 1975–1978 quadrennium and the ways in which they were shaped by this framework

    Chemical and textural equilibration of garnet during amphibolite-facies metamorphism: The influence of coupled dissolution-reprecipitation

    Get PDF
    Metamorphic equilibration requires chemical communication between minerals and may be inhibited through sluggish volume diffusion and or slow rates of dissolution in a fluid phase. Relatively slow diffusion and the perceived robust nature of chemical growth zoning may preclude garnet porphyroblasts from readily participating in low temperature amphibolite-facies metamorphic reactions. Garnet is widely assumed to be a reactant in staurolite-isograd reactions, and the evidence for this has been assessed in the Late Proterozoic Dalradian pelitic schists of the Scottish Highlands. Three-D imaging of garnet porphyroblasts in staurolite-bearing schists reveal a good crystal shape and little evidence of marginal dissolution, however there is also lack of evidence for the involvement of either chlorite or chloritoid in the reaction. Staurolite forms directly adjacent to the garnet, and its nucleation is strongly associated with deformation of the muscovite-rich fabrics around the porphyroblasts. “Cloudy” fluid inclusion-rich garnet forms in both marginal and internal parts of the garnet porphyroblast and is linked both to the production of staurolite and to the introduction of abundant quartz inclusions within the garnet. Such cloudy garnet typically has a Mg-rich, Mn-poor composition and is interpreted to have formed during a coupled dissolution-reprecipitation process, triggered by a local influx of fluid. All garnet in the muscovite-bearing schists present in this area is potentially reactive, irrespective of the garnet composition, but very few of the schists contain staurolite. The staurolite-producing reaction appears to be substantially overstepped during the relatively high pressure Barrovian regional metamorphism reflecting the limited permeability of the schists in peak metamorphic conditions. Fluid influx and hence reaction progress appear to be strongly controlled by subtle differences in deformation history. The remaining garnet fails to achieve chemical equilibrium during the reaction creating distinctive patchy compositional zoning. Such zoning in metamorphic garnet created during coupled dissolution-reprecipitation reactions may be difficult to recognize in higher grade pelites due to subsequent diffusive re-equilibration. Fundamental assumptions about metamorphic processes are questioned by the lack of chemical equilibrium during this reaction and the restricted permeability of the regional metamorphic pelitic schists. In addition the partial loss of prograde chemical and textural information from the garnet porphyroblasts cautions against their routine use as a reliable monitor of metamorphic history. However the partial re-equilibration of the porphyroblasts during coupled dissolution-reprecipitation opens possibilities of mapping reaction progress in garnet as a means of assessing fluid access during peak metamorphic conditions

    Zebra pattern in rocks as a function of grain growth affected by second-phase particles

    Get PDF
    Alternating fine grained dark and coarse grained light layers in rocks are often termed zebra patterns and are found worldwide. The crystals in the different bands have an almost identical chemical composition, however second-phase particles (e.g., fluid filled pores or a second mineral phase) are concentrated in the dark layers. Even though this pattern is very common and has been studied widely, the initial stage of the pattern formation remains controversial. In this communication we present a simple microdynamic model which can explain the beginning of the zebra pattern formation. The two dimensional model consists of two main processes, mineral replacement along a reaction front, and grain boundary migration affected by impurities. In the numerical model we assume that an initial distribution of second-phase particles is present due to sedimentary layering. The reaction front percolates the model and redistributes second-phase particles by shifting them until the front is saturated and drops the particles again. This produces and enhances initial layering. Grain growth is hindered in layers with high second-phase particle concentrations whereas layers with low concentrations coarsen. Due to the grain growth activity in layers with low second-phase particle concentrations these impurities are collected at grain boundaries and the crystals become very clean. Therefore, the white layers in the pattern contain large grains with low concentration of second-phase particles, whereas the dark layers contain small grains with a large second-phase particle concentration. The presence of the zebra pattern is characteristic for regions containing Pb-Zn mineralization. Therefore, the origin of the structure is presumably related to the mineralization process and might be used as a marker for ore exploration. A complete understanding of the formation of this pattern will contribute to a more accurate understanding of hydrothermal systems that build up economic mineralization

    Surface morphological evolutions on single crystal films by strong anisotropic drift-diffusion under the capillary and electromigration forces

    Get PDF
    The morphological evolution of voids at the unpassivated surfaces and the sidewalls of the single crystal metallic films are investigated via computer simulations by using the novel mathematical model developed by Ogurtani relying on the fundamental postulates of irreversible thermodynamics. The effects of the drift-diffusion anisotropy on the development of the surface morphological scenarios are fully explored under the action of the electromigration (EM) and capillary forces (CF), utilizing numerous combination of the surface textures and the directions of the applied electric field. The interconnect failure time due to the EM induced wedge shape internal voids and the incubation time of the oscillatory surface waves, under the severe instability regimes, are deduced by the novel renormalization procedures applied on the outputs of the computer simulation experiments.Comment: 41 pages, 18 figures. related simulation movies utilizing numerous combination of the surface texture, see http://www.csl.mete.metu.edu.tr/aytac/thesis/movies/index.ht

    Laser spot welding of laser textured steel to aluminium

    Get PDF
    Laser welding of dissimilar metals (steel and aluminium) was investigated with the aim to increase the maximum tensile shear load of the Fe-Al joints. The increase was achieved by texturing the surface of steel prior to the laser spot welding process which was performed in a lap-joint configuration with the steel positioned on top of the aluminium and with a texture faced down to the aluminium surface. This configuration enabled an increase of the bonding area of the joints, because the molten aluminium filled in the gaps of the texture, without the need of increasing the process energy which typically leads to the growth of the intermetallic compounds. Different textures (containing hexagonally arranged craters, parallel lines, grid and spiral patterns) were tested with different laser welding parameters. The Fe-Al joints obtained with the textured steel were found to have up to 25% higher maximum tensile-shear load than the joints obtained with the untextured steel

    Hardware acceleration of reaction-diffusion systems:a guide to optimisation of pattern formation algorithms using OpenACC

    Get PDF
    Reaction Diffusion Systems (RDS) have widespread applications in computational ecology, biology, computer graphics and the visual arts. For the former applications a major barrier to the development of effective simulation models is their computational complexity - it takes a great deal of processing power to simulate enough replicates such that reliable conclusions can be drawn. Optimizing the computation is thus highly desirable in order to obtain more results with less resources. Existing optimizations of RDS tend to be low-level and GPGPU based. Here we apply the higher-level OpenACC framework to two case studies: a simple RDS to learn the ‘workings’ of OpenACC and a more realistic and complex example. Our results show that simple parallelization directives and minimal data transfer can produce a useful performance improvement. The relative simplicity of porting OpenACC code between heterogeneous hardware is a key benefit to the scientific computing community in terms of speed-up and portability

    The effect of (Ti + Al): V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings

    Get PDF
    Nano-scaled multilayered TiAlN/VN coatings have been grown on stainless steel and M2 high speed steel substrates at U-B = - 85 V in an industrial, four target, Hauzer HTC 1000 coater using combined cathodic steered arc etching/unbalanced magnetron sputtering. X-ray diffraction (XRD) has been used to investigate the effects of process parameters (Target Power) on texture evolution (using texture parameter T*), development of residual stress (sin(2) psi method) and nano-scale multilayer period. The composition of the coating was determined using energy dispersive X-ray analysis. The thermal behaviour of the coatings in air was studied using thermo-gravimetric analysis, XRD and scanning electron microscopy. The bi-layer period varied between 2.8 and 3.1 nm and in all cases a {1 1 0} texture developed with a maximum value T* = 4.9. The residual stress varied between -5.2 and -7.4 GPa. The onset of rapid oxidation occurred between 628 and 645 degreesC depending on the (Ti+Al):V ratio. After oxidation in air at 550 degreesC AlVO4, TiO2 and V2O5 Phases were identified by XRD with the AlVO4, TiO2 being the major phases. The formation of AlVO4 appears to disrupt the formation of Al2O3 which imparts oxidation resistance to TiAlN based coatings. Increasing the temperature to 600 and 640 degreesC led to a dramatic increase in the formation of V2O5 which was highly oriented (0 0 1) with a plate-like morphology. At 640 degreesC there was no evidence of the coating on XRD. Increasing the temperature to 670 degreesC led to further formation of AlVO4 and a dramatic reduction in V2O5. (C) 2003 Elsevier B.V. All rights reserved
    corecore