
Hardware acceleration of reaction-diffusion 
systems: a guide to optimisation of pattern 
formation algorithms using OpenACC 

Ruth E Falconer 
Alasdair N Houston 
Xavier Portell 
Wilfred Otten 

©2019 IEEE. Personal use of this material is permitted.
 Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works.

The published paper is available from 
doi: 10.23919/SpringSim.2019.8732883

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Abertay Research Portal

https://core.ac.uk/display/228178599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

HARDWARE ACCELERATION OF REACTION-DIFFUSION SYSTEMS: A GUIDE 

TO OPTIMISATION OF PATTERN FORMATION ALGORITHMS USING OPENACC 

Ruth E Falconer  

Alasdair N Houston 

Xavier Portell 

Wilfred Otten 

School of Design & Informatics 

Abertay University 

Cranfield Soil and Agrifood Institute 

Cranfield University 

Bell Street, Dundee, UK Bedfordshire, UK 

ABSTRACT 

Reaction Diffusion Systems (RDS) have widespread applications in computational ecology, biology, 

computer graphics and the visual arts. For the former applications a major barrier to the development of 

effective simulation models is their computational complexity - it takes a great deal of processing power to 

simulate enough replicates such that reliable conclusions can be drawn. Optimizing the computation is thus 

highly desirable in order to obtain more results with less resources. Existing optimizations of RDS tend to 

be low-level and GPGPU based. Here we apply the higher-level OpenACC framework to two case studies: 

a simple RDS to learn the ‘workings’ of OpenACC and a more realistic and complex example. Our results 

show that simple parallelization directives and minimal data transfer can produce a useful performance 

improvement. The relative simplicity of porting OpenACC code between heterogeneous hardware is a key 

benefit to the scientific computing community in terms of speed-up and portability. 

Keywords: OpenACC, GPGPU, Hardware acceleration. Gray-Scott, Reaction Diffusion Models. 

1 INTRODUCTION 

Reaction Diffusion Systems (RDS) are widely used in the modeling of complex systems and have been 

used extensively to investigate pattern formation in both chemical and biological systems. A considerable 

amount of literature has been published on pattern formation driven by the foundational work of Darcy 

Thompson, Alan Turing (Turing, 1952) and Hans Meinhardt (Meinhardt, 2003), recognizing the 

remarkably interesting patterns that RDS produce. These patterns can vary over space and time in 1,2 and 

3-dimensions. The first RDS’s where intended to emulate chemical reactions such as the Belousov–

Zhabotinsky reaction and animal/shell patterning e.g. seashells, tigers and zebra patterns (Turing (1952; 

Meinhardt, 2003). 

RDS are a class of Partial Differential Equations (PDE’s) that are required to be solved numerically. With 

increasing computational power they are a growing in popularity, and have been a source of inspiration for 

artists and scientists alike. More recent applications of RDS include texture synthesis, pattern formation, 

procedural content generation and theoretical ecology. Falconer and coworkers (Falconer et al. 2005; 

Falconer and Houston 2015) used RDS to generate the range of microbial phenotypes as observed in the 

laboratory; Galanter, (2014) situates RDS in the myriad of techniques used in generative art. Malheiros and 

Walter (2017) developed a minimalist RDS for pattern formation used in graphics and procedural content 

generation e.g. to generate maps in 2 or 3 dimensions which forms the space that a player occupies and 

interacts with. Finally, Turk, (1991) and Witkin and Kass, (1991) exploited RDS for real-time animated 

texture synthesis. 



Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

RDS are mathematical models which encapsulate at least two chemicals that diffuse and undergo 

transformations from one chemical to another - the reaction term. One of the simplest RDS is the Gray-

Scott model which is typically implemented using a structured spatial grid where computation proceeds as 

a series of cell updates. Updating the grid involves updating each cell based on the values of neighboring 

cells using a stencil-based pattern of computation. As such they do not belong to the class of algorithms 

known to be embarrassing parallel as dependencies exists amongst the cells to be processed. Nevertheless 

there have been several investigations into optimizing RDS particularly using GPGPU approaches. 

Harris (2005) investigated a Cg GPGPU implementation of the Gray-Scott model which mapped 

computational concepts to GPUs. The approach uses a single texture and a kernel that runs on the GPU, 

that captures the underlying Gray-Scott computation. Falconer and Houston (2015) ported a microbial RDS 

to the GPU using the Direct Compute framework reporting noticeable speedups. Schram (2013) developed 

an GPGPU application to perform Monte Carlo simulations on a subset of reaction–diffusion models. 

Speeding up the pipeline is important as Monte Carlo methods require many runs for statistical 

accuracy/correctness. The authors report that the GPU algorithm is roughly 55 times faster than an 

optimized version for the CPU. A major barrier to the development of effective simulation models is their 

computational complexity - it takes a great deal of processing power to simulate enough replicates at an 

appropriate spatial scale such that reliable conclusions can be drawn. Optimizing the computation is thus 

highly desirable in order to obtain more results with less resources (time, energy and hardware).  

Low-level approaches appear to dominate the hardware acceleration of RDS, where it appears, that 

portability and maintainability are sacrificed for performance. Recently frameworks have emerged that 

generate portable and maintainable codes for heterogeneous architectures which are now prevalent. These 

frameworks include OpenACC which is a high level, descriptive, directive approach to parallel 

programming. The programmer specifies the block of code, often a nested loop, to be run in parallel on an 

accelerator (GPU, multicore CPU) and leaves the exact mapping to the complier. The compiler output 

shows the mapping between OpenACC and CUDA constructs. OpenACC permits single source code for 

different architectures (multi and many-cores) promoting portability. OpenACC has two main constructs to 

create parallel regions to be run on the accelerator, the parallel and the kernels constructs. Although 

both allows offloading the computation of nested loops they are not equivalent. The former requires analysis 

by programmer to ensure safe parallelism and some clauses require parallel, e.g. reduction. The latter 

gives control to the compiler to undertake the parallel analysis and parallelizes what it believes safe. There 

is a paucity of OpenACC implementations of RDS that have been described and formulated in the literature, 

despite the widespread applications and uses of RDS. 

2 METHODS 

This work describes the OpenACC implementation of two case studies: the first the simplest RDS 

formulation - the Gray-Scott Reaction Diffusion (GSRD) written from scratch and optimized using 

OpenACC, including performance measurements. Other than its aesthetic appeal, GSRD is of interest here 

precisely because of its simplicity compared to other RD models that attempt to simulate phenomena 

observable in the real-world such as microbial growth. A more detailed description and discussion of this 

model may be found at: https://groups.csail.mit.edu/mac/projects/amorphous/GrayScott. The motivation 

was to learn the workings of the OpenACC directives before applying to a more complex and realistic 

example. Such simulation models tend to be more complex in every respect: irregular spatial structure in 

3D, many mobile reacting components, incorporation of phases with variable pressure and temperature, 

flow in addition to diffusive transport, and far more complex systems of coupled partial differential 

equations. As an example of a higher complexity model, consider microbial activity within porous media 

having an effect on wet-dry cycle behavior within pore space at small length scales (tens of millimeters or 

less). Such behavior potentially leads to large scale phenomena affecting e.g. the drainage versus retention 

of surface water. An improved understanding of such phenomena may be able to better inform policy 

https://groups.csail.mit.edu/mac/projects/amorphous/GrayScott


Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

making for more effective management within the natural and built environment. Consequently, an initial 

investigation into OpenACC using a simplified model is attractive: less effective strategies can be rapidly 

eliminated, allowing effort to be concentrated on the most promising optimizations. Finally, we present the 

lessons learned from translating and generalizing the learnings to an existing legacy codebase of a RDS 

describing microbial patterning in structured environments with complex boundaries (case study 2). 

From the literature there are a several things to consider in order to produce performant OpenACC code: 

These include ensuring enough compute intensity and limiting data transfers from host to device. Both case 

studies are compute intensive and possess nested loops which can map to parallel or kernel constructs. 

Minimization of data transfers has also been duly considered in the two case studies below. 

2.1 Case Study 1: Pattern Formation using the Gray-Scott model  

The GSRD is defined as: 

𝜕𝑈

𝜕𝑡
= 𝐷_𝑢𝛻2𝑈 − 𝑈𝑉2

 + 𝐹(1 − 𝑈), 

𝜕𝑉

𝜕𝑡
= 𝐷_𝑣𝛻2𝑉 − 𝑈𝑉2

 − (𝐹 + 𝑘)𝑉 

Where U and V are the interacting ‘chemical’ species. The first and last two terms of the RDS represents 

the diffusion and reaction properties respectively. Diffusion of the chemical species U and V is 

implemented using a finite difference form of the Laplacian operator applied to a scalar field on a two-

dimensional Cartesian grid (with indices x, y, and cell size h).The GS parameters used in the OpenACC 

implementation are: Du = 0.5,  Dv = 0.1, F= 0.023 and k =0.049. 

 

Figure 1: High-level view of the implementation of the GS OpenACC program flow – see 

https://github.com/DrAl-HFS/GSRD.git for source code. 

2.1.1 GSRD OpenACC Implementation 

Some familiarity with acceleration directives was gained from the many available guides and examples but 

using OpenACC effectively required the development and test of progressively less simple code in order 

to better understand how directives should be used for correctness and efficiency. A case in point was the 

handling of boundary conditions in discretized diffusion: a 1D test case was very helpful in clarifying 

https://github.com/DrAl-HFS/GSRD.git


Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

effective strategies. In cases where compiler output is examined to identify or clarify problems, 

simplification of source code is highly desireable. 

A high-level overview of the OpenACC GSRD program flow is illustrated in Figure 1. All code is 

downloadable via Github. The directives used to transfer data and offload portions of the computation to 

the accelerators are described in Tables 1 and 2, depending on whether the directive is related to data 

movement or computation.  

Table 1: Data Movement and Processing Directives. 

Directive Function 

#pragma acc data present( pR[:pO->n], 

pS[:pO->n], pO[:1], pP[:1] ) 
Ensure all necessary data (Result and Source 

scalar field buffers, plus Organizational metadata 

and numerical model Parameters) 

is present on compute device. 

#pragma acc data present_or_create( 

pR[:pO->n] )  

copyin( pS[:pO->n] ) copyout( pR[:pO->n] 

)     

present_or_copyin( pO[:1], pP[:1] ) 

Double buffered data movement used for even 

numbered iteration count: following an even 

number of iterations, the updated state will lie 

within the SR (Source-Result) scalar field buffer 

and this is therefore copied back to the host (as 

well as being copied to the device before the first 

iteration). The TR (Temporary-Result) buffer 

has received the temporary result of the first and 

subsequent odd-numbered iterations and 

therefore does not require any copy from or to 

the host nor does it require any initialization of 

its contents prior to the first iteration. The 

Organizational metadata and numerical 

Parameters are copied in for read-only access. 

#pragma acc data present_or_create( 

pTR[:pO->n] )  

copy( pSR[:pO->n] )  

present_or_copyin( pO[:1], pP[:1] ) 

Double buffered data movement used for even 

numbered iteration count: following an odd 

number of iterations, the updated state will lie 

within the R (Result) scalar field buffer which 

must be copied back to the host. The initial state 

given within the S (Source) buffer is copied from 

the host prior to the first iteration. The O & P 

metadata and parameters are copied in for read-

only access. 

Table 2: Computation Directives. 

Directive Function 

#pragma acc parallel loop Parallelizes nested loop for updating the two 

chemical species values applied to each cell of the 

computation grid: outer for loop for processing 

the compute domain excluding boundaries. 

Iterations of subsequent nested loops are 



Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

independent and may 

be executed in any order (ideally concurrently). 

#pragma acc loop vector 
Parallelizes nested loop for updating the two 

chemical species values applied to each cell of 

the computation grid: inner for loop for 

processing the compute domain excluding 

boundaries. Iterations of subsequent for loops are 

suitable for (SIMD) vector execution 

#pragma acc parallel 
Parallelizes the computation of the chemical 

species values pertaining to the boundaries e.g. 

the four lines. Iterations of subsequent nested 

loops are independent and may 

be executed in any order (ideally concurrently) 

#pragma acc loop vector * 4  
Parallelizes the computation of the boundaries 

e.g. the four lines. Iterations of subsequent for 

loops are suitable for (SIMD) vector execution 

 

For case study 1 the speed-up and scalability of the GSRD system was investigated using the parallelization 

directives described above applied to computation on grids of size 512*512, 1024*1024 and 2048*2048. 

The performance gains achieved by running on multi- and many-core accelerators were investigated. 

Additionally for the CPU builds the number of threads the program will use to run the parallel compute 

regions is controlled with the environment variable ACC_NUM_CORES. 

 

Figure 2: Bottlenecks observed in both the computation of the diffusion (diffusion process) and the reaction 

terms (fungal activity) prior to parallelization. 

2.2 Pattern Formation in Microbial Systems  

The system of equations describing the Microbial Reaction Diffusion (MRD) system is defined in Falconer 

and Houston (2015). There are more state variables (chemical species) in the MRD and the reaction terms 



Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

governing the transformations from one state variable to another are more complicated. This model has 

been used to explore the role of soil fungi in carbon degradation and the Carbon cycle. 

The model has been implemented in C++ and exists as two main classes: one relating to the properties and 

functionality of the microbial organism (fungi.cpp) and the environment (Environment.cpp) in which it 

interacts. Profiling of the non-accelerated version of the code highlights bottlenecks in both the computation 

of the diffusion and the reaction terms of the model (Figure 2). OpenACC efforts are therefore directed to 

these functions. The directives used to offload portions of the computation to the accelerators are described 

in Tables 3 and 4 depending on whether the directive is related to data movement or computation. 

2.2.1 MRD system OpenACC Implementation 

For case study 2 the speed up of the algorithm was investigated by running the MRD algorithm, using the 

parallelization directives described in Tables 3 and 4 and running on the host, a multi- and many-core  

(GPU) accelerator. Additionally, the effect of using the parallel versus kernel directives when 

parallelizing the two most costly functions was investigated. 

Table 3: Data Movement and Management Directives used in case study 2. 

Directive Function 

# pragma acc enter data copyin (this)  
In Constructors: Copies the host pointer to the 

device.  

# pragma acc update device (this) 
In Constructors: Copies all members to the 

device. 

# pragma acc exit data delete (this) 
In Destructor: Removes the data from device 

when the destructor is called. 

present(this) 

present(environment) 

present(environment.DOC[0:x][0:y][0:z]) 

Avoids unnecessary data movement between 

host and device. Notice that to let the compiler 

know the members of the environment, both the 

pointer (environment) and the size of the data 

members have to be specified (deep copy). 

pragma acc parallel The data directive defines a region of code in 

which GPU arrays remain on the GPU and are 

shared among all kernels in that region 

 

Table 4: Data Processing Directives used in case study 2. 

Directive Function 

# pragma acc loop reduction(+totdtUptk)  
The reduction clause informs the compiler that 

all operations are summed up in some local 

variables, so the compiler can deal with it. 

# pragma acc loop 
The parallelisation of the nested i, j and k loops 

is achieved using a parallel region including the 

present data clause, which informs the compiler 

that the data required are already in the device 



Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

(avoiding unnecessary data movement between 

host and device).  

#pragma acc kernels present(this),\ 

//specify otherdata on the device 

{ 

#pragma acc loop 
  for (int i=0; i<x; i++){ 
#pragma acc loop 
   for (int j=0; j<y; j++){ 
#pragma acc loop 

    for (int k=0; k<z; k++){ 

The parallelization of the nested i, j and k loops 

is achieved using kernel clause and so use the 

rules for a kernel construct. The present data 

clause, informs the compiler that the data 

required are already in the device (avoiding 

unnecessary data movement between host and 

device). 

#pragma acc parallel present(this),\ 

//specify other data on the device 

{ 

#pragma acc loop 

  for (int i=0; i<x; i++){ 
#pragma acc loop 
   for (int j=0; j<y; j++){ 
#pragma acc loop 

    for (int k=0; k<z; k++){ 

The parallelization of the nested i, j and k loops 

is achieved using parallel clause and so use the 

rules for a parallel construct. The present data 

clause, informs the compiler that the data 

required are already in the device (avoiding 

unnecessary data movement between host and 

device). 

Table 5: Mapping of the kernel and parallel directives to the compute intensive diffusion and activity 

functions. 

Scenario Directives applied 

S1 Kernel directives used in both diffusion and activity functions 

S2  Parallel directives used in both diffusion and activity functions 

S3 Parallel and Kernel directives in activity and diffusion functions 

respectively  

S4 Kernel and Parallel directives in activity and diffusion functions 

respectively 

2.3 Platform and Tests Performed  

The simulations were launched using a PC mounting an Intel Xeon E5-2630 v4 (10 Core, 2.2GHz, 25MB 

cache) and an NVIDIA GeForce GTX 1080 (1708MHz GPU, 2560 CUDA Cores, 8GB 10010 MHz 

GDDR5X, revision number 6.1) (CUDA Driver version 8000, NVRM version NVIDIA UNIX x86_64 

Kernel Module  375.66) under Ubuntu 17.04 64-bit.  

The PGI Community Edition 18.4 compilers for C and C++ applications were used. Case studies 1 & 2 

were compiled using the following: 

pgcc -c11 -Ox -Mautoinline -Minfo=all -ta=host,multicore,tesla *.c  or 

pgc++ -Ox -Kieee -Minfo=all -std=c++11 -ta= host,multicore,tesla -ta=time *.cpp 

The compilation flag “-Ox” sets the optimisation level to x. The compilation flag “–Kieee” forces the 

compiler to strict compliance to IEEE 754 floating point standard. The compiling flag “–ta=time” produces 

information of the time spend in the device and the CUDA grid and block used in every kernel launched. 

The source code can be compiled to run on both CPU and GPU via the -ta flag using host, allowing for a 

single thread CPU implementation; multicore, allowing for a multithreaded CPU implementation s; or 

tesla:cc60, generating code for the NVIDIA Geforce GTX 1080 (Pascal architecture) graphic card. The 



Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

Minfo=all command line argument informs the compiler to print out accelerator info and CUDA mappings 

for the parallelised code. Timing results were gathered using the chrono library and -ta=time flag for the 

host, multicore and GPU for each of the case studies n = 15 in all cases.  

3 RESULTS 

3.1 GSRD system 

Figure 3 demonstrates the simulation output at four different time points up to 10000 iterations. The top 

row demonstrates how the emerged patterns are reminiscent of microbial growth (Falconer et al 2005). The 

bottom row has repeated initial conditions (of the top row) and reveals the repeated patterns that can be 

achieved. 

 

Figure 3: Patterns obtained from GSRD model. 

Figure 4 presents the results of the OpenACC implementation run on a multi-core processor and shows how 

the compute times scale with image size when all ten cores are used. As expected a non-linear scaling is 

observed and computation time increases with image size. 

    

Figure 4a: Box plots (n=15) showing the results of the OpenACC GSRD implementation on a multi-core 

processor and shows how the timings are affected by the number of cores used. The number of cores can 

be varied using the environment variable ACC_NUM_CORES. As expected the compute time decreases 

with a higher number of cores used. Figure 4b:Box plots (n=15)showing the effect of offloading the 



Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

computation to the multicore CPU using all available cores for images of size: 512*512, 1024*1024 and 

2048*2048. 

The timings gathered when the same GSRD computation for different grid sizes was offloaded to the 

GPU is presented in Fig 5a. It can be observed that the timings are an order of magnitude faster than the 

equivalent multicore results (Figure 4b). 

 

 

Figure 5: Effect of offloading the computation to GPU for images of size: 512*512, 1024*1024 and 

2048*2048. Box plots are presented with  n=15. 

3.2 MRD system 

Figure 6 shows the timings of the MRD being run using a single thread, multithreaded (max number of 

threads = 10) as well as a GPU application (S3)  specified in Table 5. The results demonstrate the substantial 

speed-ups that can be achieved using some form of parallelization for either the CPU or GPU. 

 

Figure 6: Effect of offloading the computation using the Host, Multicore and GPU (S3) settings. 

The final set of results as in Figure 7, looked at the different configurations of using parallel and kernel 

directives on the two compute intense functions. The results show that the different ways to express the 

parallelism can have an effect on the timings. It shows that S3 with the parallel and kernels 

directives in the activity and diffusion functions respectively maximizes parallelization. 



Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

 

Figure 7: Effect of different configurations of the parallel and kernel directives applied to the diffusion and 

activity functions – see table 5 for details of the scenarios S1 -S4. 

4 DISCUSSION AND CONCLUSIONS 

For each case study substantial speed ups were observed using multi (CPU) and many (GPU) core 

accelerators. OpenACC positions itself as an ‘easy to accelerate’ option which is certainly true when the 

existing code has many nested loops and is compute heavy. Another key advantage of OpenACC is the 

ability to have a single source code generating a unified binary for different architectures, therefore 

enhancing portability. In the scientific computing community portable and optimised code is highly 

desirable.  

Achieving efficient parallel computation on a GPU with OpenACC requires efficient data flow between 

host and device. Well-structured data with a clear separation of readable and writable components helps to 

keep the necessary OpenACC copy directives manageable. For a dynamically allocated buffer the original 

address only must be used in a copy directive (a derived pointer to some segment of a large buffer generates 

runtime errors). In the GS code, numerous buffers are individually allocated to avoid cumbersome 

directives (copying a sub-buffer requires offset, address and sub-length which may impact readability). 

Moving from a trivial to a more complex example required the use of higher-level directives for device data 

creation, deletion and synchronisation linked to unstructured data regions. Unstructured data regions are 

used to define data regions when scoping does not permit the use of normal structured data regions (e.g. the 

constructor/destructor of a class). enter and exit data defines the start and end of an unstructured data 

lifetime. 

It may not always be clear which directive to employ to maximise parallelism (parallel versus 

kernels). It was assumed that the activity function would be more performant using the kernels directive. 

The activity function is complicated as it possesses many mobile reacting components with several nested 

loops. It was assumed that by giving control to the compiler more efficient parallel code would be generated 

by combining the nested loops into single kernel or by creating multiple parallel kernels. The results 

however show that using the parallel directive lead to better performance for the activity function. It is 

not clear why this is the case and is the focus of future efforts. Other future tests include using the 

collapse and tile to further improve performance. The diffusion algorithm may benefit from tiling as 

threads in the same tile access the same shared, and faster access, memory – limiting the number of reads 

from global memory therefore maximizing data locality.  

It was noted that with MRD that optimizations above -O2 lead to limited parallelisation e.g. the compiler 

output: “Complex loop carried dependencies prevent parallelization”. There is little information on the 

source of this and perhaps having less conditional statements in the code might permit higher level 



Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

optimizations to be applied. The programmer therefore must ensure model correctness when directives are 

applied and consult the OpenACC complier output to determine what has actually been done. Fine tuning 

of the application requires a good understanding of how the OpenACC constructs (gang, worker and vector) 

map to CUDA constructs (grid, block, warp) however this may affect portable optimization potential.  

Finally, as can be observed vast speed ups are achieved using the simplest parallel directives applied to 

nested loops if due attention is given to minimising data transfers, therefore OpenACC can be a fast route 

to parallelism. This has relevance to those subjects disciplines that exploit RDS such as computer graphics, 

visual arts and computational biology and ecology.  

ACKNOWLEDGMENTS 

The research reported in this article was made possible by the financial support of the Natural Environment 

Research Council (NE/P014208/1). Data underlying this paper can be accessed at 

https://doi.org/10.17862/cranfield.rd.7560518. 

REFERENCES 

Falconer, R. E. et al. (2005) ‘Biomass recycling and the origin of phenotype in fungal mycelia.’, 

Proceedings. Biological sciences / The Royal Society, 272(1573), pp. 1727–34. doi: 

10.1098/rspb.2005.3150. 

Falconer, R. and Houston, A. (2015) ‘Visual Simulation of Soil-Microbial System Using GPGPU 

Technology’, Computation. Multidisciplinary Digital Publishing Institute, 3(1), pp. 58–71. doi: 

10.3390/computation3010058. 

Galanter, P. (2014) ‘XEPA - Autonomous Intelligent Light and Sound Sculptures That Improvise Group 

Performances’, Leonardo. MIT Press, 47(4), pp. 386–393. doi: 10.1162/LEON_a_00844. 

Harris, M. (NVIDIA) (2005) ‘Mapping Computational Concepts to GPUs’, in Pharr, M. and Fernando, R. 

(eds) GPU gems 2 : programming techniques for high-performance graphics and general-purpose 

computation. Professional, Addison-Wesley. 

Malheiros, M. and Walter, M. (2017) ‘Pattern formation through minimalist biologically inspired cellular 

simulation’, in Proceedings of Graphics Interface 2017. Canadian Human-Computer Communications 

Society / Société canadienne du dialogue humain-machine (GI 2017), pp. 148–155. doi: 

10.20380/GI2017.19. 

Meinhardt, H. (2003) ‘Pattern Forming Reactions and the Generation of Primary Embryonic Axes BT  - 

Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models’, in Sekimura, 

T. et al. (eds). Tokyo: Springer Japan, pp. 3–19. doi: 10.1007/978-4-431-65958-7_1. 

Schram, R. D. (2013) ‘Reaction–diffusion model Monte Carlo simulations on the GPU’, Journal of 

Computational Physics, 241, pp. 95–103. doi: https://doi.org/10.1016/j.jcp.2013.01.041. 

Thompson, D. W. (1992) On Growth and Form, Canto. Cambridge: Cambridge University Press. doi: DOI: 

10.1017/CBO9781107325852. 

Turing, A. M. (1952) ‘The Chemical Basis of Morphogenesis’, Philosophical Transactions of the Royal 

Society of London. Series B, Biological Sciences. The Royal Society, 237(641), pp. 37–72. Available at: 

http://www.jstor.org/stable/92463. 

Turk, G. (1991) ‘Generating Textures on Arbitrary Surfaces Using Reaction-diffusion’, SIGGRAPH 

Comput. Graph. New York, NY, USA: ACM, 25(4), pp. 289–298. doi: 10.1145/127719.122749. 

Witkin, A. and Kass, M. (1991) ‘Reaction-diffusion Textures’, in Proceedings of the 18th Annual 

Conference on Computer Graphics and Interactive Techniques. New York, NY, USA: ACM 

https://doi.org/10.1016/j.jcp.2013.01.041


Falconer, Houston, Portell and Otten 

 

SpringSim-HPC, 2019 April 29-May 2, Tucson, AZ, USA; ©2019 Society for Modeling & Simulation International (SCS) 

(SIGGRAPH ’91), pp. 299–308. doi: 10.1145/122718.122750. 

AUTHOR BIOGRAPHIES 

RUTH E FALCONER is a Professor of Complex Systems Modeling at Abertay University. She holds a 

PhD in Theoretical Ecology and a BSc Hons in Physics. Her research interests are the broader use of video 

game technology (infrastructure (GPUs) and game engines etc.)  to develop playable simulations in the 

built and natural environments. Her email address is r.falconer@abertay.ac.uk.  

ALASDAIR N HOUSTON received his Ph.D. from Abertay University and is currently a freelance 

software developer. He has worked on many industry and research software projects including game 

development as well as novel quantitative methods for the 3D image analysis. This has resulted in freely 

available software, for image quality assessment, image segmentation and morphological analysis. His 

email address is al.houston@gmail.com. 

WILFRED OTTEN is a Full Professor of Soil Biophysics  at Cranfield University (United Kingdom). He 

holds a Ph.D. in Horticultural Sciences from Wageningen University (The Netherlands). His research 

interests include biological invasions in heterogeneous crop and soil environments, emergent soil properties 

and soil behavior in response to environmental changes, and the development of novel technologies to 

characterize porous media. His email address is wilfred.otten@cranfield.ac.uk. 

XAVIER PORTELL is a Research Fellow in Modelling Soil Processes at Cranfield University (United 

Kingdom). He holds a Ph.D. in Agri-food Technology and Biotechnology from Universitat Politècnica de 

Catalunya (Spain). His research interests lie in the mechanistic modeling of microbial systems at scales 

directly relevant for microorganisms.  His email address is xavier.portell@cranfield.ac.uk 

mailto:r.falconer@abertay.ac.uk
mailto:al.houston@gmail.com
mailto:wilfred.otten@cranfield.ac.uk
mailto:xavier.portell@cranfield.ac.uk

	Falconer cover
	Falconer_HardwareAccelerationOfReaction_Accepted_2019

