The morphological evolution of voids at the unpassivated surfaces and the
sidewalls of the single crystal metallic films are investigated via computer
simulations by using the novel mathematical model developed by Ogurtani relying
on the fundamental postulates of irreversible thermodynamics. The effects of
the drift-diffusion anisotropy on the development of the surface morphological
scenarios are fully explored under the action of the electromigration (EM) and
capillary forces (CF), utilizing numerous combination of the surface textures
and the directions of the applied electric field. The interconnect failure time
due to the EM induced wedge shape internal voids and the incubation time of the
oscillatory surface waves, under the severe instability regimes, are deduced by
the novel renormalization procedures applied on the outputs of the computer
simulation experiments.Comment: 41 pages, 18 figures. related simulation movies utilizing numerous
combination of the surface texture, see
http://www.csl.mete.metu.edu.tr/aytac/thesis/movies/index.ht