1,901 research outputs found

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    Assessment of a human computer interface prototyping environment

    Get PDF
    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance

    Evaluation of formal IDEs for human-machine interface design and analysis: the case of CIRCUS and PVSio-web

    Get PDF
    Critical human-machine interfaces are present in many systems including avionics systems and medical devices. Use error is a concern in these systems both in terms of hardware panels and input devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of buttons, knobs and displays is now a key element in the overall safety of the system. New integrated development environments (IDEs) based on formal methods technologies have been developed by the research community to support the design and analysis of high-confidence human-machine interfaces. To date, little work has focused on the comparison of these particular types of formal IDEs. This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based development and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on the PVS theorem proving system.This work is partially supported by: Project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) PhD scholarship

    BioSimulator.jl: Stochastic simulation in Julia

    Full text link
    Biological systems with intertwined feedback loops pose a challenge to mathematical modeling efforts. Moreover, rare events, such as mutation and extinction, complicate system dynamics. Stochastic simulation algorithms are useful in generating time-evolution trajectories for these systems because they can adequately capture the influence of random fluctuations and quantify rare events. We present a simple and flexible package, BioSimulator.jl, for implementing the Gillespie algorithm, Ï„\tau-leaping, and related stochastic simulation algorithms. The objective of this work is to provide scientists across domains with fast, user-friendly simulation tools. We used the high-performance programming language Julia because of its emphasis on scientific computing. Our software package implements a suite of stochastic simulation algorithms based on Markov chain theory. We provide the ability to (a) diagram Petri Nets describing interactions, (b) plot average trajectories and attached standard deviations of each participating species over time, and (c) generate frequency distributions of each species at a specified time. BioSimulator.jl's interface allows users to build models programmatically within Julia. A model is then passed to the simulate routine to generate simulation data. The built-in tools allow one to visualize results and compute summary statistics. Our examples highlight the broad applicability of our software to systems of varying complexity from ecology, systems biology, chemistry, and genetics. The user-friendly nature of BioSimulator.jl encourages the use of stochastic simulation, minimizes tedious programming efforts, and reduces errors during model specification.Comment: 27 pages, 5 figures, 3 table

    Model-based engineering of animated interactive systems for the interactive television environment

    Get PDF
    Les interfaces graphiques étaient la plupart du temps statiques, et représentaient une succession d'états logiciels les uns après les autres. Cependant, les transitions animées entre ces états statiques font partie intégrante des interfaces utilisateurs modernes, et leurs processus de design et d'implémentations constituent un défi pour les designers et les développeurs. Cette thèse propose un processus de conception de systèmes interactifs centré sur les animations, ainsi qu'une architecture pour la définition et l'implémentation d'animations au sein des interfaces graphiques. L'architecture met en avant une approche à deux niveaux pour définir une vue haut niveau d'une animation (avec un intérêt particulier pour les objets animés, leurs propriétés à être animé et la composition d'animations) ainsi qu'une vue bas niveau traitant des aspects détaillés des animations tels que les timings et les optimisations. Concernant les spécifications formelles de ces deux niveaux, nous utilisons une approche qui facilite les réseaux de Petri orientés objets pour la conception, l'implémentation et la validation d'interfaces utilisateurs animées en fournissant une description complète et non-ambiguë de l'ensemble de l'interface utilisateur, y compris les animations. Enfin, nous décrivons la mise en pratique du processus présenté, illustré par un cas d'étude d'un prototype haute-fidélité d'une interface utilisateur, pour le domaine de la télévision interactive. Ce processus conduira à une spécification formelle et détaillée du système interactif, et incluera des animations utilisant des réseaux de Petri orientés objet (conçus avec l'outil PetShop CASE).Graphical User Interfaces used to be mostly static, representing one software state after the other. However, animated transitions between these static states are an integral part in modern user interfaces and processes for both their design and implementation remain a challenge for designers and developers. This thesis proposes a process for designing interactive systems focusing on animations, along with an architecture for the definition and implementation of animation in user interfaces. The architecture proposes a two levels approach for defining a high-level view of an animation (focusing on animated objects, their properties to be animated and on the composition of animations) and a low-level one dealing with detailed aspects of animations such as timing and optimization. For the formal specification of these two levels, we are using an approach facilitating object-oriented Petri nets to support the design, implementation and validation of animated user interfaces by providing a complete and unambiguous description of the entire user interface including animations. Finally, we describe the application of the presented process exemplified by a case study for a high-fidelity prototype of a user interface for the interactive Television domain. This process will lead to a detailed formal specification of the interactive system, including animations using object-oriented Petri nets (designed with the PetShop CASE tool)

    The APEX framework: prototyping of ubiquitous environments based on Petri Nets

    Get PDF
    The user experience of ubiquitous environments is a determining factor in their success. The characteristics of such systems must be explored as early as possible to anticipate potential user problems, and to reduce the cost of redesign. However, the development of early prototypes to be evaluated in the target environment can be disruptive to the ongoing system and therefore unacceptable. This paper reports on an ongoing effort to explore how model-based rapid prototyping of ubiquitous environments might be used to avoid actual deployment while still enabling users to interact with a representation of the system. The paper describes APEX, a framework that brings together an existing 3D Application Server with CPN Tools. APEX-based prototypes enable users to navigate a virtual world simulation of the envisaged ubiquitous environment. The APEX architecture and the proposed CPN-based modelling approach are described. An example illustrates their use.Fundação para a Ciência e a Tecnologia (FCT) - bolsa de doutoramento SFRH/BD/41179/200

    Simulation in a dynamic prototyping environment: Petri nets or rules?

    Get PDF
    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are normally delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development

    Simulation in a dynamic prototyping environment: Petri nets or rules?

    Get PDF
    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development

    An evolutionary approach to the use of petri net based models : from parallel controllers to Hw/Sw codesign

    Get PDF
    The main purpose of this article is to present how Petri Nets (PNs) have been used for hardware design at our research laboratory. We describe the use of PN models to specify synchronous parallel controllers and how PN specifications can be extended to include the behavioural description of the data path, by using object-oriented concepts. Some hierarchical mechanisms which deal with the specification of complex digital systems are highlighted. It is described a design flow that includes, among others, the automatic generation of VHDL code to synthesize the control unit of the system. The use of PNs as part of a multiple-view model within an object-oriented methodology for hardware/software codesign is debated. The EDgAR-2 platform is considered as the reconfigurable target architecture for implementing the systems and its main characteristics are shown
    • …
    corecore