

To cite this document: Hugues, Jérôme AADLib, A Library of Reusable AADL Models.

(2013) In: SAE Aerotech 2013 Congress & Exhibition, 24 September 2013 - 26

September 2013 (Montreal, Canada).

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 9290

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/17173843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

AADLib, a library of reusable AADL models

ABSTRACT

The SAE Architecture Analysis and Design Language is now
a well-established language for the description of critical
embedded systems, but also cyber-physical ones. A wide
range of analysis tools is already available, either as part of the
OSATE tool chain, or separate ones.

A key missing elements of AADL is a set of reusable building
blocks to help learning AADL concepts, but also experiment
already existing tool chains on validated real-life examples.

In this paper, we present AADLib, a library of reusable model
elements. AADLib is build on two pillars: 1/ a set of ready-to-
use examples so that practitioners can learn more about the
AADL language itself, but also experiment with existing tools.
Each example comes with a full description of available
analysis and expected results. This helps reducing the learning
curve of the language. 2/ a set of reusable model elements that
cover typical building blocks of critical systems: processors,
networks, devices with a high level of fidelity so that the cost
to start a new project is reduced.

AADLib is distributed under a Free/Open Source License to
further disseminate the AADL language. As such, AADLib
provides a convenient way to discover AADL concepts and
tool chains, and learn about its features.

INTRODUCTION

The design and implementation of critical real-time embedded

systems gather multiple domains, from low-level physics up to

complex control of systems to implement a full function. Such

complexity requires particular strategy to characterize each

level of abstractions, and then integration to ensure the system

under consideration is correctly built. The advent of Model-

Based Engineering is often perceived as a silver bullet to

achieve all these complex tasks: the system designer can

master its design through proper model artifacts (blocks,

connections, properties, etc.), virtual integration of system

blocks, and analysis.

The agenda for these projects focus on the many required

analysis: performance analysis (scheduling, network analysis,

etc.), memory and processor (latency, jitter, issues with cache

and pipelines), programming languages (simpler, smarter,

notion of model of computation), formal methods (breaking

limits in scalability of model checking, complexity of logic

formula, notion of time, probability, etc.). Each analysis relies

on a particular abstraction of the system: a model to be

manipulated electronically for better efficiency.

Hence, model-based engineering (MBE) emerged as a

convenient way to build models of systems to ease their

analysis. Several tools have been developed, ECLIPSE being

now the dominant platform, supporting UML and its

companion profiles MARTE [1] and SysML [2], and the

AADL language [3]. Proprietary tools like SCADE Studio or

Matlab/Simulink are also available. Each tool supports

different formalisms to express a system, and transformation

engines to perform a wide range of analysis (such as

behavioral, timing, safety) and eventually code generation.

The capability to define models and analyze them pave the

way to virtual integration of subsystems and their analysis: a

descriptive model of the system is built; the level of details of

each block, and their interconnection is expressive enough to

perform a complete analysis prior to actually build it. This

allows for early trade-off analysis and detection of defects in

the specifications, functional implementation or non-

functional properties. Such analytic capabilities build upon

existing model processing capabilities, typical analysis

techniques but also require new innovative frameworks to

address new level of complexities in design.

In this paper, we focus only on the AADL language, as we

contributed to its latest updates and tool chains. We note that

the interest by the industry in AADL is increasing, yet there is

a lack of basic blocks on which one can either

1. Learn about AADL concepts and existing tool chains

thanks to reusable examples

2. Have a library of reusable building blocks on which

one can start a new project. These building blocks

shall be complete enough to enable a wide range of

analysis.

In this paper, we introduce AADLib, a library of reusable

model assets. AADLib is build on two pillars:

1. a set of ready-to-use examples so that practitioners

can learn more about the AADL language itself, but

also experiment with existing tools. Each example

comes with a full description of available analysis

and expected results. This helps reducing the learning

curve of the language.

2. a set of reusable model elements that cover typical

building blocks of critical systems: processors,

networks, devices with a high level of fidelity so that

the cost to start a new project is reduced.

AADLib is distributed under a Free/Open Source License to
further disseminate the AADL language.

In the following, we introduce AADLv2 in next section. We
then introduce AADLib and illustrate its features on several
case studies.

OVERVIEW OF AADLV2

The “Architecture Analysis and Design Language” AADL is a

textual and graphical language for model-based engineering of

embedded real-time systems. It has been published as an SAE

Standard AS-5506A [36]. AADL is used to design and

analyze software and hardware architectures of embedded

real-time systems.

The AADL allows for the description of both software and

hardware parts of a system. It focuses on the definition of

clear block interfaces, and separates the implementations from

these interfaces. It can be expressed using both a graphical and

a textual syntax. From the description of these blocks, one can

build an assembly of blocks that represent the full system. To

take into account the multiple ways to connect components,

the AADL defines different connection patterns:

subcomponent, connection, and binding.

An AADL model can incorporate non-architectural elements:

embedded or real-time characteristics of the components (such

as execution time, memory footprint), behavioral descriptions.

Hence it is possible to use AADL as a back- bone to describe

all the aspects of a system. Let us review all these elements:

An AADL description is made of components. The AADL

standard defines software components (data, thread, thread

group, subprogram, process) and execution plat- form

components (memory, bus, processor, device, virtual

processor, virtual bus) and hybrid components (system).

Each Component category describe well identified elements of

the actual architecture, using the same vocabulary of system or

software engineering:

• Subprograms model procedures like in C or Ada. Threads

model the active part of an application (such as

POSIX threads). AADL threads may have multiple

operational modes. Each mode may describe a

different behavior and property values for the thread.

Processes are memory spaces that contain the

threads. Thread groups are used to create a hierarchy

among threads.

• Processors model microprocessors and a minimal operating

system (mainly a scheduler). Memories model hard

disks, RAMs, buses model all kinds of networks,

wires, devices model sensors, … !

• Virtual bus and Virtual processor models “virtual”

hardware components. A virtual bus is a

communication channel on top of a physical bus (e.g.

TCP/IP over Ethernet); a virtual processor denotes a

dedicated scheduling domain inside a processor (e.g.

an ARINC653 partition running on a processor).

Unlike other components, Systems do not represent anything

concrete; they combine building blocks to help structure the

description as a set of nested components.

Packages add the notion of namespaces to help structuring the

models. Abstracts model partially defined components, to be

refined during the modeling process.

Component declarations have to be instantiated into sub-

components of other components in order to model system

architecture. At the top-level, a system contains all the

component instances. Most components can have

subcomponents, so that an AADL description is hierarchical.

A complete AADL description must provide a top-most level

system that will contain certain kind of components

(processor, process, bus, device, abstract and memory), thus

providing the root of the architecture tree. The architecture in

itself is the instantiation of this system, which is called the

root system.

The interface of a component is called component type. It

provides features (e.g. communication ports). Components

communicate one with another by connecting their features.

To a given component type correspond zero or several

implementations. Each of them describes the internals of the

components: subcomponents, connections between those

subcomponents, etc.

An implementation of a thread or a subprogram can specify

call sequences to other subprograms, thus describing the

execution flows in the architecture. Since there can be

different implementations of a given component type, it is

possible to select the actual components to put into the

architecture, without having to change the other components,

thus providing a convenient approach to configure

applications.

The AADL defines the notion of properties that can be

attached to most elements (components, connections, features,

etc.). Properties are typed attributes that specify constraints or

characteristics that apply to the elements of the architecture:

clock frequency of a processor, execution time of a thread,

bandwidth of a bus, . . . Some standard properties are defined,

e.g. for timing aspects; but it is possible to define new

properties for different analysis (e.g. to define particular

security policies).

AADL is a language, with different representations. A textual

representation provides a comprehensive view of all details of

a system, and graphical if one want to hide some details, and

allow for a quick navigation in multiple dimensions. In the

following, we illustrate both notations. Let us note that AADL

can also be expressed as a UML model following the MARTE

profile [4].

The concepts behind AADL are those typical to the

construction of embedded systems, following a component-

based approach: blocks with clear interfaces and properties are

defined, and compose to form the complete system. Besides,

the language is defined by a companion standard document

that documents legality rules for component assemblies, its

static and execution semantics.

The following figure illustrates a complete space system, used

as a demonstrator during the ASSERT project. It illustrates

how software and hardware concerns can be separately

developed and then combined in a complete model.

Figure 1: ASSERT MPC Case Study

EXISTING AADL TOOLS

AADL provides interesting features to model Critical Real-

Time Embedded Systems, analyze them but also implement

them. In this section, we show that there is currently a good

coverage of support tools to assist designers. Actually, many

tools provide support for AADL
1
:

• Modeling: TOPCASED [5], OSATE [6], and Stood [7]
provide AADL modeling features for both textual and
graphical variants;

• Model of computation and architectural patterns:
AADLv2 annexes define patterns for supporting IMA
architectures; other initiatives provides patterns for the
Ravenscar computational model [8] or synchronous
languages [9], [10];

• Scheduling analysis: the Fremont toolset [11] and
Cheddar implement AADL performance analysis
methods [12]. Gateways from AADL to the Cheddar and
MAST tools are also available in TASTE;

• Dependability assessment; AADL provides an annex for
modeling propagation of error, to be updated for
AADLv2. Besides, connection with verification tools has
been experimented for instance in the COMPASS project
[13], the ADAPT toolset [14] and RT-Edge [15];

• Security: Patterns have been defined to model MILS
security patterns [16], [17];

• Model optimization: optimization can occur across
several dimensions: number of processors [18], use of
communication buffers [19], allocation of threads to
processors [20];

• Behavioral analysis: mapping to formal methods and
associated model checkers have been defined for Petri
Nets [21]; BIP [22], [23]; FIACRE [24]; RT-Maude [25];

• Performance analysis: performance of the system can be
evaluated either at the level of generated source code [26],
or from the interactions and I/Os in the system [27];

• Code generation: Ocarina implements Ada and C code
generators for distributed systems [28], a mapping for
RTSJ has been defined in [29]; AADS completes the
range of language with hardware description language
System-C [30]. Other initiatives exist to map AADL to
synchronous languages like SIGNAL [31] or Lustre [32].

!Several projects build on the foundations of these AADL tools

to build integrated toolsets: the TASTE toolset driven by the

European Space Agency [33]; the “System Architecture

Virtual Integration” (SAVI) by the Aerospace Vehicle

Systems Institute [34] an initiative gathering numerous key

1
 An updated list of supporting tools, projects and papers

can be found on the official AADL web site

http://www.aadl.info.

players from the aeronautics domain, and MASIW developed

by the ISPRAS in Russia [35]. These integrated toolsets have

to face many challenges, like the integration of additional

modeling notations like SysML [37], or SCADE and

Matlab/Simulink [36]. !

Hence, after more than 10 years of development around the

AADL, and the seminal paper from [38], one can assert that

AADL provides a complete toolbox for designing critical real-

time embedded systems.

INTRODUCING AADLIB

From the existing projects, we note that there are severe

differences. Besides, those can be blocking factors for the

adoption of AADL in a full project:

• Some of them are research projects, at a very low
TRL (Technical Readiness Level), in the 1-3 scale. This
means those have been tested only on simple models, and
may not scale to more complex ones. Also, these case
studies are not always publically available

• Many of these projects were developed in the context of
AADL1.0, and may require an update to handle the new
features of AADLv2. The maintenance of these projects
in not clear, and may not be performed by lack of support.

From these observations, we note that the state of AADLv2

tool support is unclear to an external user, interested in

applying AADL concepts to his project. There is a need to

have a clear view on the status of all these tools.

Furthermore, having many tools developed separately

introduce an interesting interoperability issue: how to make

sure that notionally equivalent models can be processed

equally by tools that 1) provides the same kind of results (e.g.

scheduling analysis) and 2) provides complementary

results (e.g. safety and scheduling analysis of a system).

One contribution we present in this paper is a library of

models elements to serve the community. This library

proposes two complementary facets:

1. A library of reusable models to start a new project. Such

library would provide a set of reusable patterns that could

help starting new projects.

2. A library of example models, each of which presents either

a particular modeling pattern or demonstrate how several

analysis tools can be applied on this model.

The general objective of this library is to provide a central

repository of AADL models geared towards the community.

To be effective, this library should be easily integrated with

existing AADL modeling environment, but also provide a

large variety of examples.

To support these objectives, we initiated a project on the

GitHub forge codenamed “AADLib” for AADL Library. This

project proposes AADL models freely reusable, under a

Free/Libre Software license, and is available at the following

address: https://github.com/yoogx/AADLib.

This library can be imported in OSATE2 AADLv2 editor as a

companion project, or used through the Ocarina suite of tools

from the command line.

Figure 2 Ocarina OSATE2 Integration

In the next sections, we present the two facets of AADLib:

1) library of reusable blocks, 2) library of reference models.

AADLIB: REUSABLE BLOCKS

The first set of elements of AADLib aims at providing
reusable building blocks. The requirements for such a library
are many-fold:

• Provides a library of well-known building blocks:
network interfaces, processors, devices, etc. These blocks
are derived from existing elements, used widely in the
industry (e.g. Ethernet, AFDX interfaces, Inertial
Measurement Unit, processors, etc.),

• Complete the set of property sets proposed by AADLv2
core with advanced properties, describing key non-
functional properties of a system,

• Propose modeling patterns to model and design both
equipment-level subsystems and top-level systems.

AADLib proposes a full set of reusable blocks, proposing
additions to the property sets defined in AADLv2 as well as
reusable blocks

AADLIB property sets

AADLv2 supports a wide set of non-functional properties.
Yet, to our surprise, some key properties are not present in the
current standard, and could be of great help to provide a clear
description of many blocks. AADLib provides additional
properties. We list here the additional concerns modeled:

• processor_properties.aadl: this property set
completes the properties applicable to processors with
endianess, frequency, MIPS, FPU or multi-core concerns,

• bus_properties.aadl: adds bandwidth and channel
type (duplex, half-duplex) considerations,

• data_sheet.aadl: connects AADL model entities to
data sheets or bill of materials for physical
implementation,

• electricity_properties.aadl: covers energy
converters and electric units. This is useful for
characterizing devices or processor consumptions.

• physical_properties.aadl: adds other units for
power, mass, etc.

• memory_segments.aadl: extend the description of
memory components with fine-grained definition of
segment or page descriptors.

These properties help providing a full description of a system,
it is used intensively to model the blocks forming the library
of reusable AADL elements provided by AADLib.

AADLib reusable model elements

In addition to extended property sets, AADLib proposes a set
of building blocks. These blocks provide a valuable asset to
start new models. The library is built following AADL model
hierarchy of elements:

• Processors: various ARM, AVR, PowerPC, SPARC, x86
processors are available, with endianess, frequency, ports
modeled;

• Buses: typical network interfaces are modeled, covering
AFDX, ARINC429, CAN, Ethernet, I2C, MIL-STD 1553,
PCI, SpaceWire, UART, USB, with known limits in
bandwidth, packet size, etc.,

• Miscellaneous devices: battery, GPS, accelerometers,
inertial measurement units, etc. Those are modeled after
components we use for teaching real-time or embedded
systems in our classes at ISAE,

• Full systems, modeled after known reference design:
Arduino, Aeroflex Gaisler boards, Wind River SBCs.

 The library is organized so that each component type and
associated implementation are in a separate AADL package so
as to ease inclusion in large scale projects.

AADLIB: EXAMPLE MODELS

As we mentioned earlier, the diversity in AADL tool support
and analysis capabilities make it difficult to learn AADL
concepts and apply them using well-chosen tools. To cope
with this issue, we propose a set of example models, all
compatible with OSATE2 and Ocarina, and for each model we
list compatible analysis tools.

For now, we focused mainly on analysis tools available
through Ocarina, and for compatibility with OSATE2, we
made sure this tool accepted all AADLib models.
Furthermore, Ocarina features are also available through
OSATE2 thanks to a dedicated plug-in.

Thanks to Ocarina functionalities, the following AADL
processing capabilities are available:

• Scheduling analysis, testing with either Cheddar or
MAST. Each tool having its own set of feasibility tests, it
is important to offer diversity,

• Model-checking, targeting either colored Petri
Nets (through CPN-AMI), or Timed Petri Nets (through
TINA), and associated tools for the verification of
temporal logic predicates,

• Code generation for C or Ada AADL runtimes, allowing
for rapid prototyping of an AADL system for deployment
on various RTOS or native targets,

• Worst-Case Execution-Time (WCET) analysis, based on
the previous code generator,

• Constraint checking, using the REAL constraint language
attached to validate a model conforms to a set of
architectural restrictions (e.g. MILS, ARINC653, etc.).

We organized the library to either demonstrate a basic
capability of the AADL (e.g. scheduling) or how to build
larger systems. For each model, a full description provides
information on what can be achieved. We list some of the
available models, to give an overview of the diversity of
concerns addressed:

• aocs: model of an Attitude Orbital Control System,
derived from an ESA technical report,

• ardupilot: models the ArduPilot UAV platform, adapted
from the POK project

• arinc653_annex: models from the ARINC653 annex
document for AADLv2

• asl: work in progress REAL theorems in preparation for
the ASL annex as part of SAE AS2/C committee work

• fcs: models a naive Flight Control Systems. Only the
architecture is developed, for analyzis with Cheddar.

• line_follower: a line follower robot for the Arduino
platform, using some parts available from SparkFun
Electronics.

• memory: this examples demonstrates how to define
logical and hardware memory layout, and how to ensure
they match.

• mixin: this example demonstrates how to support multiple
inheritance in AADLv2, using the “mixin” pattern defined
in many object-oriented languages like Ada.

• multicore: provides one solution for modeling multicore
systems in AADLv2, and performing code generation
using Ocarina.

• pathfinder_system: models the well known pathfinder
probe, and illustrates its priority inversion problem using
Cheddar.

• radar: a naive model of a radar system
• rap: Ravenscar Avionics Platform, written by Olivier

Gilles during his PhD. This models builds upon the
Generic Avionics Platform from SEI.

• ravenscar: case study issued from the ``Guide for the use
of the Ada Ravenscar Profile in high integrity systems''
written by Alan Burns, Brian Dobbing and Tullio
Vardanega. This model has been translated to AADLv2,
and extended to include REAL theorems to check
Ravenscar patterns.

• rma: two tasks with different period on the same node,
can be checked by Cheddar, or can generate code for
either PolyORB-HI/C or Ada.

• time_triggered: shows how to implement a time-triggered
architecture using delayed connections.

• uxv: models a series of UAV and UGV from ISAE DMIA
lab. Using REAL, we can evaluate the energy
consumption of the system.

Through this extensive set of examples, one can learn most of
AADLv2 concepts and apply them directly in a
comprehensive toolset. The figure below reproduces the
GANTT chart generated from a simulation of the PathFinder
system modeled in AADLv2.

Figure 3 Mars Pathfinder analysis from AADLv2 model

CONCLUSION

AADLv2 is now a well-established notation for modeling
critical, real-time embedded systems in all their complexity.
We presented the language and associated tools. We also
underlined the lack of a common library of reusable model
elements and examples.

To support these objectives, we initiated a project on the

GitHub forge codenamed “AADLib” for AADL Library. This

project proposes AADL models freely reusable, under a

Free/Libre Software license, and is available at the following

address: https://github.com/yoogx/AADLib.

This library of models builds on top of many years of
expertise in AADL we developed as part of the ASSERT and
TASTE projects, and interaction within the AADL
community.

As of today, AADLib provides more than 100 reusable
components, and 25 example models. Furthermore, AADLib
is mostly focused on Ocarina tool support.

Future work will concentrate on two directions

• Extend the tools that can operate on AADLib models, e.g.
fault analysis tools being developed by the SEI;

• Extend the library of models to new family of systems.

AADLib being open source, developed in an open way, we
welcome contributions and comments with a strong interest!

REFERENCES

1. OMG. A UML Profile for MARTE, version 1.1. OMG
Document Number: formal/2011-06-02, June 2011.

2. OMG. OMG Systems Modeling Language (OMG SysML).
OMG Document Number: formal/2010-06-01, June 2010.

3. SAE. Architecture Analysis and Design Language
(AADL) AS-5506A. Technical report, The Engineering
Society For Advancing Mobility Land Sea Air and Space,
Aerospace Information Report, Version 2.0, January
2009.

4. Madeleine Faugere, Thimothee Bourbeau, Robert de
Simone, and Sebastien Gerard. Marte: Also an UML
profile for modeling AADL applications. Engineering of

Complex Computer Systems, IEEE International

Conference on, 0:359–364, 2007.
5. P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D.

Sciamma, P. Michel, X. Crégut, and M. Pantel.
TOPCASED : An Open Source Development
Environment for Embedded Systems. Chapter 11, From

MDD Concepts to Experiments and Illus- trations, ISTE

Editor, pages 195–207, September 2006.
6. SEI. OSATE : An extensible Source AADL Tool

Environ- ment. SEI AADL Team technical Report,
December 2004.

7. P. Dissaux. Using the AADL for mission critical software
development. 2nd European Congress ERTS,

EMBEDDED REAL TIME SOFTWARE Toulouse,
January 2004.

8. Olivier Gilles and Jerome Hugues. Expressing and
enforcing user-defined constraints of AADL models. In
Proceedings of the 5th UML& AADL Workshop

(UML&AADL 2010), pages 337–342, University of
Oxford, UK, March 2010.

9. Zhibin Yang, Kai Hu, Jean-Paul Bodeveix, Lei Pi, Dianfu
Ma, and Jean-Pierre Talpin. Two formal semantics of a
subset of the aadl. In Perseil et al. [31], pages 344–349.

10. Peter Csaba Ölveczky, Artur Boronat, and José Meseguer.
Formal semantics and analysis of behavioral aadl models
in real-time maude. In John Hatcliff and Elena Zucca,
editors, FMOODS/FORTE, volume 6117 of Lecture Notes

in Computer Science, pages 47–62. Springer, 2010.
11. O. Sokolsky, I. Lee, and D. Clark. Schedulability

Analysis of AADL models . International Parallel and
Distributed Processing Symposium, IPDPS 2006„ April
2006.

12. F. Singhoff, A. Plantec, P. Dissaux, and J. Legrand.
Investigating the usability of real-time scheduling theory
with the Cheddar project. Journal of Real-Time Systems,

Springer Verlag, 43(3):259–295, November 2009.
13. Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen,

Viet Yen Nguyen, Thomas Noll, and Marco Roveri. The
com- pass approach: Correctness, modelling and
performability of aerospace systems. In Proceedings of

the 28th International Conference on Computer Safety,

Reliability, and Security, SAFECOMP ’09, pages 173–
186, Berlin, Heidelberg, 2009. Springer-Verlag.

14. Ana-Elena Rugina, Karama Kanoun, and Mohamed
Kaâniche. The adapt tool: From aadl architectural models
to stochastic petri nets through model transformation. In
EDCC, pages 85–90. IEEE Computer Society, 2008.

15. Myron Hecht, Alexander Lam, and Chris Vogl. A tool set
for integrated software and hardware dependability
analysis using the architecture analysis and design
language (aadl) and error model annex. In Perseil et al.
[31], pages 361–366.

16. Julien Delange, Laurent Pautet, and Fabrice Kordon. De-
sign, Verification and Implementation of MILS systems.
In Proceedings of the 21th International Symposium on

Rapid System Prototyping, pages 1–8, Fairfax, June 2010.
IEEE Computer Society. MoVe INT LIP6.

17. Jorgen Hansson, Bruce Lewis, Jerome Hugues, Lutz
Wrage, Peter Feiler, and John Morley. Model-Based
Verification of Security and Non-Functional Behavior
using AADL. IEEE Security & Privacy, 8(1):43–49,
January 2010.

18. Olivier Gilles and Jérôme Hugues. Towards Model- based
optimisations of Real-Time systems, an application with
the AADL. In 15th IEEE International Conference on

Embedded and Real-Time Computing Systems and

Applications (RTCSA 2009), Pekin, Chine, August 2009.
19. Peter H. Feiler. Efficient embedded runtime systems

through port communication optimization. In ICECCS,
pages 294– 300. IEEE Computer Society, 2008.

20. Dionisio de Niz and Peter H. Feiler. On resource
allocation in architectural models. In ISORC, pages 291–
297. IEEE Computer Society, 2008.

21. Xavier Renault, Fabrice Kordon, and Jerome Hugues.
Adapt- ing models to model checkers, a case study :
Analysing AADL using Time or Colored Petri Nets. In
IEEE/IFIP 20th International Sypmosium on Rapid

System Prototyping , Paris, France, June 2009.
22. Lei Pi, Jean-Paul Bodeveix, and Mamoun Filali.

Modeling aadl data communication with bip. In Fabrice
Kordon and Yvon Kermarrec, editors, Ada-Europe,

volume 5570 of Lecture Notes in Computer Science,
pages 192–206. Springer, 2009.

23. Mohamed Yassin Chkouri, Anne Robert, Marius Bozga,
and Joseph Sifakis. Translating aadl into bip - application
to the verification of real-time systems. In Michel R. V.
Chaudron, editor, MoDELS Workshops, volume 5421 of
Lecture Notes in Computer Science, pages 5–19. Springer,
2008.

24. Bernard Berthomieu, Hubert Garavel, Frédéric Lang, and
François Vernadat. Verifying dynamic properties of
indus- trial critical systems using topcased/fiacre. ERCIM

News, 2008(75), 2008.
25. Peter Csaba Ölveczky, Artur Boronat, and José Meseguer.

Formal semantics and analysis of behavioral aadl models
in real-time maude. In John Hatcliff and Elena Zucca,
editors, FMOODS/FORTE, volume 6117 of Lecture Notes

in Computer Science, pages 47–62. Springer, 2010.
26. Olivier Gilles and Jerome Hugues. Applying WCET anal-

ysis at architectural level. In Worst-Case Execution Time

(WCET’08), pages 113–122, Prague, Czech Republic,
July 2008.

27. Min-Young Nam, Rodolfo Pellizzoni, Lui Sha, and
Richard M. Bradford. Asiist: Application specific i/o inte-
gration support tool for real-time bus architecture designs.
In ICECCS, pages 11–22. IEEE Computer Society, 2009.

28. Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérôme
Hugues. OCARINA: An Environment for AADL Models
Analysis and Automatic Code Generation for High
Integrity Applications. In Reliable Software

Technologies’09 - Ada Europe, volume LNCS, pages
237–250, Brest, France, June 2009.

29. Jean-Paul Bodeveix, Raphaël Cavallero, David Chemouil,
Mamoun Filali, and Jean-François Rolland. A mapping
from aadl to java-rtsj. In Gregory Bollella, editor, JTRES,
ACM International Conference Proceeding Series, pages
165–174. ACM, 2007.

30. Roberto Varona-Gomez and Eugenio Villar. Aadl
simulation and performance analysis in systemc. In
Proceedings of the 2009 14th IEEE International

Conference on Engineering of Complex Computer

Systems, ICECCS ’09, pages 323–328, Washington, DC,
USA, 2009. IEEE Computer Society.

31. Yue Ma, Huafeng Yu, Thierry Gautier, Jean-Pierre
Talpin, Loïc Besnard, and Paul Le Guernic. System
Synthesis from AADL using Polychrony. In Electronic

System Level Synthesis Conference, San Diego,
California, États-Unis, June 2011.

32. Erwan Jahier, Nicolas Halbwachs, Pascal Raymond,
Xavier Nicollin, and David Lesens. Virtual Execution of
AADL Models via a Translation into Synchronous
Programs. In Proceedings of the 7th ACM & IEEE

international conference on Embedded software, pages
134 – 143, Salzburg, Autriche, 2007. ASSERT.

33. Eric Conquet, Maxime Perrotin, Pierre Dissaux,
Thanassis Tsiodras, and Jerome Hugues. The TASTE
Toolset: turning human designed heterogeneous systems
into computer built homogeneous software . In

Proceedings of Embedded Real Time Software and

Systems 2010, Toulouse, France, May 2010.
34. Peter Feiler, Joergen Hansson, and Dioniio de Niz.

System Architecture Virtual Integration: An Industrial
Case Study. Technical report, Software Engineering
Institue, Carnegie Mellon University, 2009.

35. Alexey V. Khoroshilov, Igor Koverninskiy, Alexandre
Pe- trenko, and Alexander Ugnenko. Integrating aadl-
based tool chain into existing industrial processes. In
Perseil et al. [31], pages 367–371.

36. Julien Delange, Jerome Hugues, Laurent Pautet, and
Diosisi odeNiz. AMDE-
basedProcessfortheDesign,Implementa- tion and
Validation of Safety Critical Systems. In Proceedings of

the 5th UML& AADL Workshop (UML&AADL 2010),
pages 319–324, University of Oxford, UK, March 2010.

37. Razieh Behjati, Tao Yue, Shiva Nejati, Lionel Briand, and
Bran Selic. An aadl-based sysml profile for architecture
level systems engineering: Approach, metamodels, and
ex- periments. Technical Report 2011-03, Simula
Research Lab- oratory, 2011.

38. Robert Allen,, Steve Vestal, Dennis Cornhill, and Bruce
Lewis. Using an architecture description language for
quantitative analysis of real-time systems. In Proceedings

of the 3rd international workshop on Software and

performance, WOSP ’02, pages 203–210, New York, NY,
USA, 2002. ACM.

